R. Lashkaripour & R. Chobin

FIXED POINT THEOREM ON COMPLETE \$-FUZZY METRIC SPACE

ABSTRACT: The main purpose of this paper is to give an extension of the fixed point theorem from fuzzy Banach space which is considered in [7] to £-fuzzy Banach space. Moreover, we show that any £-fuzzy contractive map with k as its contractive constant has a unique fixed point.

Keywords: t-norm, t-uniformly continuous, £-fuzzy metric space, £-fuzzy contractive; Fixed point theorem.

1. INTRODUCTION AND PRELIMINARIES

The concepts which is given through this section will be used in the sequel. One can find more about these definitions and statements in [1], [2], [3], [4], [5], [6].

Definition 1.1: Suppose that $\pounds = (L, \le_L)$ is a complete lattice and U a is non-empty set called universe. An \pounds -fuzzy set L on U is defined as a mapping $A: U \to L$. For each u in U, A(u) represents the degree(in L) to which U satisfies A.

Lemma 1.1: Consider the set L^* and operation \leq_{l} defined by:

$$L^* = \{(x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},$$

 $(x_1, x_2) \leq_{\underline{l}^*} (y_1, y_2) \Leftrightarrow x_1 \leq y_1$ and $x_2 \geq y_2$, for every $(x_1, x_2), (y_1, y_2) \in \underline{l}^*$. then $(\underline{l}^*, \leq_{\underline{l}^*})$ is a complete lattice.

Definition 1.2: An intuitionistic fuzzy set $A_{\xi,\eta}$ on a universe U is an object $A_{\xi,\eta} = \{(\xi_A(u), \eta_A(u) : u \in U\}; \text{ where for all } u \in U, \ \xi_A(u) \in [0,1] \text{ and } \eta_A(u) \in [0,1] \text{ are called the membership degree and the non-membership degree, respectively, of <math>u$ in $A_{\xi,\eta}$ and furthermore satisfy $\xi_A(u) + \eta_A(u) \leq 1$.

Classically, a triangular norm T on $([0,1], \leq)$ is defined as an increasing, commutative, and associative mapping $T:[0,1]^2 \to [0,1]$ satisfying.