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3.6.2 Avalanche Multiplication
“*The avalanche multiplication process is illustrated in Fig. 22b.

“* The p—n junction, such as a p*—n one-sided abrupt junction with a doping

concentration of N, =10 cm™ or less, is under reverse bias.

“*A thermally generated electron in the depletion region (designated by 1) gains

kinetic energy from the electric field.



“*If the field is sufficiently high, the electron can gain enough kinetic energy that on
collision with an atom, it can break the lattice bonds, creating an electron-hole pair

(2 and 2').

*** The newly created electron and hole both acquire kinetic energy from the field and

create additional electron-hole pairs (e.g., 3 and 3’).

“*These in turn continue the process, creating other electron-hole pairs.

* This process is therefore called avalanche multiplication.



(a) (b)
Fig. 22 Energy band diagrams under junction-breakdown conditions. («) Tunneling effect. (b) Avalanche multiplication.



“*To derive the breakdown condition, we assume that a current /_, is incident(Js 2)) )

at the left-hand side of the depletion region of width W, as shown in Fig. 23.

< If the electric field in the depletion region is high enough to initiate(s2_S &) the
avalanche multiplication process, the electron current /, will increase with distance
through the depletion region to reach a value M. _ at W, where M, the

multiplication factor, is defined as

M = : 81
. 7 (81)
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Fig. 23 Depletion region in a p—n junction with multiplication of an incident current.



“*Similarly, the hole current I, increases from x = Wto x = 0.
“*The total current / = (1, +1,) is constant at steady state.

“*The incremental electron current at x equals the number of electron-hole pairs
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“*where a, and a, are the electron and hole ionization rates, respectively.

“* If we use the simplified assumption that a, = a, = @, the solution of Eq. 82a is

]n (W) ~ ]n (0) 4
- -| " adx (83)
“*From Eqgs. 81 and 83, we have Gans Al 3 il
] ML . j OWadx. (83a)

“*The avalanche breakdown voltage is defined as the voltage at which M, approaches

infinity.
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“*Hence, the breakdown condition is given by

w
J‘O adx =1. (84)

“*From both the breakdown condition described above and the field dependence of
AF alayl ;s da i 5 YU e Jgl Ja sl

the ionization rates, we may calculate the critical field (i.e., the maximum electric

field at breakdown) at which the avalanche process takes place.

“*Using measured a, and a, (Fig. 27 in Chapter 2), the critical field E_ is calculated for
silicon and gallium arsenide one-sided abrupt junctions and shown in Fig. 24 as

functions of the impurity concentration of the substrate.
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Fig. 24 Critical field at breakdown versus background doping for Si and GaAs one-sided abrupt junctions.’
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“*Also indicated is the critical field for the tunneling effect.

It is evident that tunneling occurs only in semiconductors having high doping

concentrations.

“*With the critical field determined, we may calculate the breakdown voltages.

“*As discussed previously, voltages in the depletion region are determined from the

solution of Poisson’s equation:

V, (breakdown voltage) =

W _e&

2q

(Ny)"

(85)



for one-sided abrupt junctions and

32 1/2
v, = ad, (28*‘- J (a)"ﬁ G ) 3 AT 5 AS il (86)
3 \ g

for linearly graded junctions.

where N, is the background doping of the lightly doped side, €, is the semiconductor

permittivity, and a is the impurity gradient.

“*The breakdown voltage, as a first-order approximation, varies as Ny for abrupt

junctions and as a2 for linearly graded junctions.
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Fig. 7 (a) One-sided abrupt junction (with N, >> N,) in thermal equilibrium. (5) Space charge distribution.
(¢) Electric-field distribution. (d) Potential distribution with distance, where V; is the built-in potential. 16
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Fig. 9 Linearly graded junction in thermal equilibrium. (a) Impurity distribution. (5) Electric field distribution. (¢)
Potential distribution. (d) Energy band diagram.



“*Figure 25 shows the calculated avalanche breakdown voltages for silicon and gallium

arsenide junctions.

“*The dash-dot line (to the right) at high dopings or high-impurity gradients indicates

the onset of the tunneling effect.

“*Gallium arsenide has higher breakdown voltages than silicon for a given Ny or a,

mainly because of its larger bandgap.

“*The larger the bandgap, the larger the critical field must be for sufficient kinetic

energy to be gained between collisions.
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Fig. 25 Avalanche breakdown voltage versus impurity concentration for a one-sided abrupt junction and avalanche
breakdown voltage versus impurity gradient for a linearly graded junction in Si and GaAs. Dash-dot line indicates the

onset of the tunneling mechanism.’
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“*As Egs. 85 and 86 demonstrate, the larger critical field, in turn, gives rise to higher

| breakdown voltage.

EXAMPLE 8

Calculate the breakdown voltage for a Si one-sided p*—n abrupt junction with N, = 5 x

1016 cm3.

SOLUTION From Fig. 24, we see that the critical field at breakdown for a Si one-sided

| abrupt junction is about 5.7 x 10° VV/cm. Then from Eq. 85, we obtain...



