Turbulence Modeling (3 Credits)

Weeks	Sessions	Subjects
1	1 st , 2 nd	Conservation Laws of Fluid Motion
2	3 rd , 4 th	Forces on fluid particles
3	5 th , 6 th	Momentum equation in turbulent flow
4	7 th , 8 th	Is the flow turbulent?, Effect of turbulence on Navier-Stokes equations
5	9 th , 10 th	Turbulent boundary layer, What is turbulence?
6	11 th , 12 th	Scales of turbulence, Vorticity and vortex stretching
7	13 th , 14 th	Turbulence modeling objective
8	15 th , 16 th	Reynolds Averaged Navier-Stokes (RANS) Equations
9	17 th , 18 th	Boussinesq hypothesis, Turbulent viscosity
10	19 th , 20 th	Mixing length model, Spalart-Allmaras one-equation model
11	21 th , 22 th	The k-ε model, RNG k- ε, realizable k-ε
12	23 th , 24 th	k-ω model, Non-linear models, Reynolds stress model
13	25 th , 26 th	Direct Numerical Simulation (DNS)
14	27 th , 28 th	Large Eddy Simulation (LES)
15	29 th , 30 th	Student Project Presentation
16	31 th , 32 th	Student Project Presentation

References:

TURBULENT FLOWS; Pope; Cambridge University Press (2000)

A First Course in Turbulence; Tennekes & Lumley; *The MIT Press* (1972)

Turbulence Modeling for CFD; David C. Wilcox; DCW Industries (2006)