Turbulence Modeling (3 Credits) | Weeks | Sessions | Subjects | |-------|-------------------------------------|---| | 1 | 1 st , 2 nd | Conservation Laws of Fluid Motion | | 2 | 3 rd , 4 th | Forces on fluid particles | | 3 | 5 th , 6 th | Momentum equation in turbulent flow | | 4 | 7 th , 8 th | Is the flow turbulent?, Effect of turbulence on Navier-Stokes equations | | 5 | 9 th , 10 th | Turbulent boundary layer, What is turbulence? | | 6 | 11 th , 12 th | Scales of turbulence, Vorticity and vortex stretching | | 7 | 13 th , 14 th | Turbulence modeling objective | | 8 | 15 th , 16 th | Reynolds Averaged Navier-Stokes (RANS) Equations | | 9 | 17 th , 18 th | Boussinesq hypothesis, Turbulent viscosity | | 10 | 19 th , 20 th | Mixing length model, Spalart-Allmaras one-equation model | | 11 | 21 th , 22 th | The k-ε model, RNG k- ε, realizable k-ε | | 12 | 23 th , 24 th | k-ω model, Non-linear models, Reynolds stress model | | 13 | 25 th , 26 th | Direct Numerical Simulation (DNS) | | 14 | 27 th , 28 th | Large Eddy Simulation (LES) | | 15 | 29 th , 30 th | Student Project Presentation | | 16 | 31 th , 32 th | Student Project Presentation | ## **References:** TURBULENT FLOWS; Pope; Cambridge University Press (2000) A First Course in Turbulence; Tennekes & Lumley; *The MIT Press* (1972) Turbulence Modeling for CFD; David C. Wilcox; DCW Industries (2006)