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Figure 4-1 (a) Perspective view of optical fiber core-cladding structure.
(b) Side view of optical fiber, showing path of a light ray that enters the fiber end.

4-1 Acceptance Angle and Numerical Aperture

Total internal reflection 

will occur at the core-

cladding boundary if  

n2 < n1, provided that 

the internal waveguide 

angle θ is greater than 

the critical angle 

θc = sin– 1(n2/n1).
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Figure 4-2 Rays incident over some range of angles are coupled into
propagating modes (a and b). Other rays (c) are attenuated by partial
transmission at core–cladding boundary.

4-1 Acceptance Angle and Numerical Aperture

The fiber will accept light into the guided modes only for entrance angles within 

the range 0 < α < αmax.
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Figure 4-3 Light enters or exits the fiber 
within a cone of half-angle αmax.

4-1 Acceptance Angle and Numerical Aperture

In three dimensions for a cylindrical fiber, this corresponds to an acceptance
angle cone of half-angle max.

numerical aperture NA

(4-1)

(4-2)

(4-3)
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4-1 Acceptance Angle and Numerical Aperture

case of wide core diameters,multimode fibers

For small core diameterssingle-mode fibers

fractional index difference

A typical value for telecommunications fiber being  Δ≈ 0.01.

we can define a single approximate index n ≈ n1 ≈n2.

Germanium is often added to the core glass in an optical fiber to raise its
refractive index. Adding 20% Ge by weight gives Δn ≈0.025.

(4-3)

(4-5)
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EXAMPLE 4-1

 Determine the numerical aperture and acceptance angle for a multimode fiber

with core index 1.5 and fractional index difference 0.01,

 assuming that light is incident on the fiber from air. Repeat if the fiber is

immersed in water (index 1.33).

Solution: for the fiber in either air or water



M. A. Mansouri-Birjandi Lecture 4-2: Cylindrical Waveguides 8

4-2. Cylindrical Waveguide Modes

Figure 4-4 Fiber geometry with core radius a, core index n1, and cladding index n2

The problem of determining the allowed modes in a cylindrical geometry is
similar in principle to that of the planar waveguide, but the mathematical
treatment is much more complex.

The solution for g(r, Ф) turns out to be in the form of Bessel functions in the radial 
(r) direction and sinusoidal functions in the azimuthal (Ф) direction.

d = 2a.
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Number of Modes (1)

Figure 4-5 Rectangular approximation for fiber, with width d = 2a.

The allowed values of kx and ky

where ̂ i, ˆj, and ˆk are the usual unit vectors. where m and l are integers.

d = 2a.
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Number of Modes (2)

Figure 4-6 Allowed modes for
rectangular waveguides are
uniformly spaced in kx–ky space.

 The waveguide modes can be
represented as points in the two-
dimensional k space.

 The upper limits on m and l are found
by requiring that total internal reflection
occur at the core–cladding boundary.

Similar to Vp for planar waveguides:

[Eq. (3-8)], 

(4-9)

d = 2a.
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Number of Modes (3)

 The number of guided modes with ky = 0 for large V reduces to ≈ 2V/π.

 Similarly, for modes with kx = 0 there are ≈ 2V/π guided modes.

 The total number of guided modes for any combination of kx and ky is therefore
expected to be the product of these two numbers, or ≈ (2V/ π )2.

 This simple analysis gives the essential feature that: the number of modes is
~V2 for a 2-D waveguide, rather than ~V for a 1-D waveguide.

(3-10)1-D

The above calculation 
overestimates the number of 
allowed modes, because modes 
with k = (kx 2 +ky 2)1/2 > V/a are 
not guided. (4-11)

(4-10)
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EXAMPLE 4-2

 How many modes can propagate in a step-index fiber with a 100 μm diameter
core and Δ= 0.03? Take the core index of refraction as 1.5 and the free-space
wavelength as 1.00 μm.

Solution:
The core radius is a = D/2 = 50 μm, and the V parameter is:
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Mode Patterns (1)

 The mode pattern for a rectangular waveguide would consist of standing
waves in the x and y directions, with propagating waves in the z direction.

 Larger mode numbers m and l mean a more rapid variation in intensity
with x and y, giving rise to m maxima in the x direction and ≈l maxima in the y
direction.
 The situation is qualitatively the same for fibers with cylindrical symmetry, 
the difference being the symmetry and shape of the resulting modes.

Figure 4-7 
Typical mode 
patterns for the 
LPlm modes.

LP: linearly polarized
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Mode Patterns (2)

Figure 4-8
(a) End view of fiber,
showing spiraling of
skewed rays around the
fiber axis.
(b) Side view.

 There are m maxima in the mode intensity along a radial direction, and 2l
maxima along the circumference of a circle around the fiber center.

 In the ray picture, m corresponds to rays making different angles with the fiber 
axis.

 Likewise, the integer l corresponds to the helicity (tightness of the spiral) of the 
ray as it corkscrews down the fiber. 
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Single-Mode Fibers (1)

 Fro planar waveguides: single mode was allowed when Vp < π.

 Setting Vp = 2V as before, we might expect the single-mode condition for a 
fiber to be V ~ π /2.

The actual result of a rigorous treatment is close to this:

(4-12)

where

Eq. (4-12) can be 
written in the form: (4-13)
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Single-Mode Fibers (2)

(4-13)

1. The core radius, a, 2. Numerical aperture NA of the fiber,
3. The optical wavelength λ0.

 In principle, either a or NA could be reduced to achieve single-mode operation.

 In practice, NA ~ 0.20 is typical for fibers used in optical communications.

The wavelength at which the fiber just becomes single-mode is termed the 
cutoff wavelength λc , defined by

(4-14)

 For wavelengths  λ> λc , the fiber will be single-mode, whereas for  λ< λc it will 
be multimode.
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EXAMPLE 4-3

a) How small must the core be if only one mode is to propagate in a fiber with
Δ= 0.01?
Take the core index of refraction as 1.5 and the free-space wavelength as
1.00μm.

Solution:
For Δ<<1, we use the approximation NA ≈ n √(2Δ) = 0.212. 

The core diameter must therefore be less than 3.6 μm.
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EXAMPLE 4-3 (continue)

b) A fiber with the same Δ and n has a core diameter of 4.4 μm. For what
range of wavelengths will the fiber be single-mode?

Solution: 

This fiber would therefore be single-mode for  λ> 1.22 μm.
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Mode Chart (1)

 The modes in a planar waveguide can be described by an effective refractive 
index:

(4-15)

where β is the axial wave vector and λ0 is the free-space wavelength of light.

 Similarly, one can determine the effective index for an optical fiber, defined 
by Eq. (4-15), as a function of the core radius a.

 The resulting variation in neff for a fiber is shown in Fig. 4-9, plotted versus the 
dimensionless V parameter.

Qualitatively, the mode charts for the fiber and planar waveguide are similar.
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Mode Chart (2)

Figure 4-9 Mode chart for optical fiber
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Mode Chart (3)

1. In each case, there is one mode that can propagate for an arbitrary small
waveguide width.

2. As the waveguide width increases, other modes (which were “cut off” for
smaller V) become propagating as well.

3.

4. The number of propagating modes is found by drawing a vertical line at a
particular value of V and counting the number of mode lines that are crossed.

5. Some of the modes are “degenerate,” in the sense that they have the same
value of neff for a given V.

6. For example, for 2.6 < V < 3.8 there are four mode line crossings, for a total
of eight modes (including two polarizations for each spatial mode).
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Mode Chart (4)

7. The nomenclature for the modes in a circular waveguide depends on the
level of approximation.

8. Most optical fibers can be considered to be “weakly guiding,” with Δ<< 1.

9. The modes in an exact treatment are labeled TE, TM, HE, and EH.

10. The TE and TM modes are analogous to the transverse electric and
transverse magnetic modes. (Ez = 0 (TE) or Bz = 0 (TM)).

11. The HE and EH modes are hybrid modes in which both Ez and Bz are
nonzero.

12. In the optical fiber there are no modes that are truely TEM (transverse
electric and magnetic), with Ez = Bz = 0.

13. However, because of the weak guiding, light propagation in the fiber is
paraxial (close to the fiber axis), and the axial components Ez and Bz are
small.
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Mode Chart (5)

14. The next level of approximation is to neglect these axial fields and
consider the modes to be TEM.

15. These are the linearly polarized modes, LPlm, the patterns for which were
shown in Fig. 4-7.

16. The lowest order mode is LP01, which corresponds to the HE11 hybrid
mode.

17. The next-highest mode is LP11, which corresponds to the three modes
HE21, TE01, and TM01.

18. Similar groupings occur for the higher-order modes. For most applications
in which Δ<<1, the LP approximation is adequate.



M. A. Mansouri-Birjandi
Lecture 4-2: Cylindrical Waveguides

24

Gaussian Mode Approximation (1)

Figure 4-10 Gaussian modes with mode field diameter 2w in fiber of diameter
2a. Shown is a tightly confined mode with V = 2.2, and a loosely confined mode
with V = 1.2.

w: mode waist size, 
2w: mode field diameter

The lowest-order mode  LP01
in a single-mode fiber is found 
to be approximately Gaussian,
with electric field varying with 
radial distance r from the fiber 
axis as:

(4-16)
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Gaussian Mode Approximation (2)

Optical intensity I varies E2,

For 1.2 < V < 2.4, the mode waist size is approximately given by [Ref.]

(4-17)

(4-18)a: fiber core radius

As V decreases,(by decreasing the core radius), the mode waist size increases.

As the core is made smaller to confine the light, diffraction becomes more
important and acts to resist that confinement.
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Gaussian Mode Approximation (3)

 Diffraction phenomenon:
The steady-state mode distribution given by Eq. (4-16) is a result of 
the balance between the tendency of the high-index core to confine the beam
and the tendency  of diffraction to spread the beam out.

A fiber with very small V has a large ratio of w/a, and the resulting mode is
referred to as weakly guided.

 The beam may become so spread out that the majority of the mode’s energy
is contained in the cladding region rather than the core.

 This behavior can be useful for various devices such as fiber sensors and fiber
couplers, but is detrimental for low loss communications fiber.

 For best confinement of the mode the fiber V is often chosen to be not much
below the cutoff value of 2.405.
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Gaussian Mode Approximation (4)

A commonly used telecommunications fiber designed for 1550 nm has 
parameters 2a = 8.3 μm and  Δ= 0.0036.

(4-5) 

(4-9) 

NA ≈ 0.13

V ≈ 2.19 

(4-18) 2w = 9.8 μm

 This is only 18% higher than the actual core diameter, which means that the
mode is well confined by the core.



M. A. Mansouri-Birjandi Lecture 4-2: Cylindrical Waveguides 28


