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Review of the electromagnetic theory of light

1) Maxwell’s equations: wave equation

Light 1s, according to classical theory, the flow of electromagnetic
(EM) radiation through free space or through a medium in the form of
electric and magnetic fields. Although electromagnetic radiation
covers an extremely wide range, from gamma rays to long radio
waves, the term “light” 1s restricted to the part of the electromagnetic
spectrum that goes from the vacuum ultraviolet to the far infrared.
This part of the spectrum 1s also called optical range.

EM radiation propagates in the form of two mutually perpendicular
and coupled vectorial waves: the electric field E(r, t) and the
magnetic field H(r, t).

These two vectorial magnitudes depend on the position (r) and time (1)
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2. Classical electromagnetism

2.1 Electrostatics:

E: electric field
D: displacement vector
field

B: magnetic flux density
H: magnetic field

V: Potential
p: charge density

Gauss’s law: f V.

(Stoke’s theorem) v
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V-E=p/eje. 7 D=¢,¢E

V-B=0 (58) H = B/lu"(}lu’r

E=—VV

EdV = 36 E-ndS = [(p/b‘oﬁr)dV (59)
S 1%
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2. Classical electromagnetism

2.1 Electrostatics:

Capacitance:

C =

dV

=t
storedenergy: | AE = f CV—dtf =

dt

t'=—no

stored energy density: AU

Q

(60) C=—=

V

Lﬂ' —V

pA &yEA

pd/eye, d

[,
f CV"(Z‘V"=;CV“

Vi=()

1. energy stored per unit

volume in the electric field:

in a magnetic field:

energy stored per unit volume

AU=1E.D
2
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(64)

AU=1B.H
P

(65)
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2. Classical electromagnetism

Gauss’s law: f V-E dV = jé E-n"dS= f(p/éfu&fr)dV
, , ’

electric flux: E, =

Capacitance:

charging energy:

/
f Cvﬂdr =

Q

-
dreye r-

0
Potential: V=-— [ Er(,f!" = —f - dr =
v 'ﬁﬁ(}l‘.’: =

Q dmey e,

C== = (70)
=
Fl Fa
LH':LI ] Q:
f CV'dV' = eV = =

V=0
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2. Classical electromagnetism: (2.2 Electrodynamics)

Classical electrodynamics describes the spatial and temporal
behavior of electricand magnetic fields.

Plane waves can be
represented spatially as:

l .
sin(kx) = T et — o _“I“)
I

| _
COb(!\'r) — ;(efkl' _I_e—;kx)

i

e™ = cos(kx) 4 isin(kx)

(74)

(75)

(76)

Plane waves can be
represented femporally by:

iwt

e """ = cos(wt) —isin(wt)

A Kr=—on)

plane wave:

A: amplitude of the wave,
K=27/A :wave vector of magnitude,
o=2mf: angular frequency,

f=1/t: frequency,

T: periode
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2.2 Electrodynamics

Table 1.1 Maxwell equations

V.-D=p

V.-B=0
B
VxE=——
ot
dD
VxH=J+—
dt

Coulomb’s law
No magnetic monopoles

Faraday’s law

Modified Ampere’s law

D :displacement vector field
E: electric field, or electric flux density
Xe. electric susceptibility

P: electric polarization field

H and B: The magnetic field vector, or
the magnetic flux density

M: permeability,

D= ¢E = &5¢,F = &5(1 + Y, )E = &E + P |, relative permeability,

B = pH = lop,.H = po(1 + x,n ) H
= lo(H + M)
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Xm . Mmagnetic

susceptibility,

M: magnetization
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2.2 Electrodynamics

divergence theorem

: fv-a(z’gr:fa-nwdS
v S

S. Stokes’ theorem:

f(an)-n”ciSz(}ga-dl

§ C
dD
V. (VxH)=V-J+V.—
dt
JD
0=V.J+V.—
dt
. dap
O0=V.J+—
ot

jéH-dl=f(V><H)-n’“‘dSsz-n'”dSzl
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V: volume

n~: unit-normal
vector to the surface S
J: current density

p: charge density
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2.3 Light propagation in a dielectric medium

In the dielectric, current density J =0 because the dielectric has no mobile charge, and if
i, = 1 at optical frequencies then H = B/p,.

82
VX(YXE)__—(VXB)——MU (VXH)——MU&ED oo
82
V(V-E)~ V’E = —u,-5D oy
V'E = Mo - D 92)
ot?
0’

VZE(r, 1) = gy — woeE(r, 1) (93)
2 2 (94)

VE(r, 0) = =0’ pyepe, (0)E(r, )

. —w’ Solution:

wave equation: VZE(F- w) = (zd & (w)E(r, ) p;)alllle"v)vl:wes. 59)
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2.3 Light propagation in a dielectric medium

If g(w) 1s real and positive, the solutions to this wave equation for an electric tield
propagating in an isotropic medium are just plane waves. The speed of wave propagation
is ¢/n (), where n(w)=[e(®)]"? is the refractive index of the material. In the more
general case, when relative permeability pu, # 1, the refractive index is:

fe(w)y m(w
() = Vo (@) (@) = YW HO) (96)

A€ol

If one of either € or u 1s negative, refractive index 1s imaginary and electromagnetic waves
cannot propagate. It is common for metals to have negative values of €.

In a metal, free electrons can collectively oscillate at a long-wavelength natural frequency
called the plasma frequency, o, =(ne*/gym)'>.

e(w)= 1-0?,/w?: a good approximation for a metal at long wavelengths.

If o» o, : e=positive ,and electromagnetic waves can propagate through the metal.

For m«w,: e=negative ,nis imaginary, waves cannot propagate in the metal and are reflected.
why bulk metals are usually not transparent to electromagnetic radiation of frequency less than
®,?

P
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2.3. Light propagation in a dielectric medium

In a homogeneous dielectric medium: y, = 1 and g(w)=¢gy€, = (€' (w)+ €"(w))
where €' (w) and €”"(w) are the real and imaginary parts. In this situation:

E(r, (U) — E(}(w)gf]{(m).r — E{](w)gf(k (@)+ik" (w))k™-r (97)
f‘f l /
n(w)=, -(g(w)+,/ e*(w)+e?*(w)
A
- Slope of dispersion relation is
3 velocity of light, ¢
Fig. 1.17 Dispersion relation for g
an electromagnetic wave in free =
space. The slope of the line is &
the velocity of light.
o
0

Wave vector, k
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2.3 Light propagation in a dielectric medium

For the case: k”’(®w) =0 and p, = 1, the refractive index is just n(m) = [€’(®)]"?, and we
have a simple oscillatory solution with no spatial decay in the electric and magnetic field vector:

E(r, w) = E e @ ™" (99) H(r.w)=H,e ™" (00
VxE=—"0 (103)
Maxwell’s equations V-D=0 @on ot
in free space: V.B=0 (102 v H — (;_D o
p

The first two equations are divergence equations that require that k *E =0 and k ‘B =0.
This means that E and B are perpendicular (transverse) to the direction of propagation

k~.

in free space: Vx Eje™@ e = —py,— py Hﬂy it ik(w)r (105)
1K x E()f?_f“”.{?fk(w) "=iwpHye™ it ,ik(w)r (106)
Ik xXE=iwu,H (107)
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2.3 Light propagation in a dielectric medium

Using the fact that the dispersion relation for plane waves in free space is ®w= ck and the
speed of light is ¢ = 1/[gyuy]"2, leads us directly to:

[&,
H= /—k"xE (03

V o Hz‘iL
B(." = kw X E ‘

-
‘r’ Transverse electric field

Transverse magnetic field

Direction of propagation

where K™ = k/|K| 1s

the unit vector for k.

Fig. 1.18 Illustration of transverse magnetic field H, and electric field E, of a plane wave
propagating in free space in the x direction.
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2.3 Light propagation in a dielectric medium

Oscillating transverse electromagnetic waves can decay in time and in space.

E(r) =y |E,| sin(wt)e™ E(x) =y |E,|cos(kx)e™"*

e A
o 1o ®

S Z

= 0.5 o 0.5

= o

S =

=00k = 0.0

s 2

& 5

& 0.5 - D 0

~1.0 | | | I | ~1.0 | | | I L
0 10 20 30 40 50 0 I 2 3 4 5
Time, 1 (fs) Position, x ( um)

Fig. 1.19 (a) lllustration of temporal decay of an oscillating electric field.
(b) lllustration of spatial decay of an oscillating electric field.
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2.4 Power and momentum in an electromagnetic wave

The power in an electromagnetic wave can be obtained by considering the response of a
test charge e moving at velocity v in an external electric field E. The rate of work or
power is just ev - E, where evis a current. The total power in a given volume is:

3 Dy 5 :
[ @ E= [ (E-(VxH)-E-)d'r  a» Because:
‘ ‘ ot VxH=J+dD/di

Volume Volume

From: E-(VxH)=H-(VxE)—-V-(ExH)and VxE=—JB/i.
[ &*r).E=— [ VExH)E 2. B s, (10)
, : dt dt
Volume Volume
Or on different form: E. ? +H- ? =—J-E—-V-(ExH) (111)
or ot
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2.4 Power and momentum in an electromagnetic wave

1 1 dD JB
From (64), (65), AU=-E-D AU=-BH E-—+H-—=—-J-E-V.-(ExH)
(111): 2 2 It ot
. |
The total energy density: U= — (E D+B- H) (112)
2
U
Y e _J.E—V-S (113)
ot
S: Poynting vector: S—ExH (114)

The Poynting vector is the energy flux density in the electromagnetic field.

(115)

In free space, The total energy density: U=
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2.4 Power and momentum in an electromagnetic wave

In free space: [ —

H=g/m k" x

E

=

S: Poynting vector:

ax(bxc)=

(a-c)b—(a-b)c::)S \/

b()

Defining the Impedance
of free space:

o

=1y

For monochromatic plane waves propagating in the x direction, the Poynting vector:

|E(}|

0

S =

(LDb (k,x —wt + A o) K™

M.A. Mansouri-Birjandi
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(115) E([‘, w) — E e—fwrer'k(w).r (99)
(108) H(r, w) = Hye ™™ (100)
£
S=ExH= /Z2ExKk™ xE (116)
Mo
~ ~ (E-K')= £g -
(E-E)k™—(E-k7)E) — S= | —(E-E)k™| (118)
?117) \/:{)
() S = K™ (120
Zy = 120 x Q) —> Z (120)
|E0|
(121) (S) = )
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2.4 Power and momentum in an electromagnetic wave

Momentum: p

Electromagnetic waves carry not only energy, but also momentum.

The classical Lorentz force on a test charge € moving at velocity v F — f:’(E +v X B) (123)

is:
ExH S
F = dp/df E> p= = — > (124)
U. .
momentum can be expressed in terms of the energy density as: P= - k (125)
The magnitude of the 1 | S | U (126)
momentum is just: |P| — (_
U
= |p=— (127)
C
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2.5 Choosing a potential

In general, Maxwell’s equations allow electric and magnetic fields to be
described in terms of a scalar potential V(r, t) and a vector potential A(r, t).

V- (Vxa)=0 V.-B=0| [B=VxA

JB d JA
VxE=—"—=——VxA|l »® _  |Vx|E+-—]=0
=|7> or ot or: ( ot ) e
Since the curl of the gradient of any scalar field is zero, JA
we may equate the last equation with the gradient of a E + E =—AV (130)

scalar field, V, where:

)
: E(r,7) = —VV(r, 1) — ;—rA(r, nl
C
B(r,7) =V xA(r, 1) (132)
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3. Maxwell’s equation in a material medium

Maxwell’s equations form a set of four coupled equations
involving the electric field vector and the magnetic field vector of
the light, and are based on experimental evidence.

Two of them are scalar equations, and the other two are vectorial.

VxF = ‘B S S ool ddimndils
= ot D(r.t) : electric displacement vector
D B(r,t) : magnetic flux density vector
VXH=J+1— b lro (5ol dlmunils
ct p(r.t) : charge density
VD=p J(r,t) . current density vector
VB=0

No free pole

If in the medium there are no free electric charges, which is the
most common situation in optics, Maxwell’s equations simplify in

the form: ) =(
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3. Maxwell’s equation in a material medium

These relations are called construtive relations, and depend on the
electric and magnetic properties of the considered medium.
For a linear, homogeneous and isotropic medium, the consauive

relations are given by: D=cF B=uH J=c6F

—_— &

£1s the dielectric permittivity, # 1s the magnetic permeability and o
1s the conductivity of the medium.

Srl o9k

» A homogeneous medium 1mplies that the optical constants of the
medium & # and o are not dependent of the position vector r.

»In an isotropic medium these optical constants are scalar
magnitudes and independent of the direction of the vectors E and H,
implying that the vectors D and J are parallel to the electric field E,
and the vector B 1s parallel to the magnetic field H.
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» By using the constitutive relations for a linear, homogenous
and 1sotropic medium, Maxwell’s equations can be written in

terms of the electric field E and magnetic field H only

VXE = —;za—H
ct

V><H=O'E+£8—E

ot
VE=0

VH=0
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3.1 Wave equation

V x (ny) = V(V.y)—sz
Vx(VxE)=V(V.E)-V’E,

Ve(E)=Ve(D/g)=0

0B oH ) o(VxH)
E)=-Vx(—)=- — E)-V2E =
Vx(VxE) Vx(az) V x(u at):>v(v )-V?E = =
oD/ ) O°E O°H
’p ot VE=¢ V’H =¢
cowl 2go Asleo Ulod as EEE(x,y,Z,f)
H= H(x,y,z,t)
1 0°®
VD2 — . v - 1 1
Vp 6t \/;8 \/IUOJUrgOgr
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3. Maxwell’s equation in a material medium

» By combining adequately these four differential equations, it 1s
possible to obtain two differential equations in partial derivatives, one
for the electric field and another for the magnetic field.

e cE O’'E
ot ot’

V°’H = /IO'E-I-/L& H
ot ot

» These two differential equations are known as wave equations for a

material medium.

» The solution of both equations are not independent, because the
electric and magnetic fields are related through Maxwell’s equations.

27
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» A perfect dielectric medium 1s defined as a material in which the
conductivity 1s ¢ = 0.

» In this category fall most of the substrate materials used for
integrated optical devices, such as glasses, ferro-electric crystals or
polymers, while metals do not belong to this category because of their
high conductivity.

O°E
V'E = p1e—
ot~
O'H
V‘H = uc
! ot

»Each of these two vectorial wave equations can be separated on

three scalar wave equations, expressed as: O E
g )
Vg = s —

ot
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3.2 Wave equation in a dielectric media

» The scalar variable &(r, /) may represent each of the six Cartesian
components of either the electric and magnetic fields.

» The solution of this equation represents a wave that propagates with
a speed v (phase velocity) given by: 1

L =
\J HE

» For propagation 1n free space, and using the values for ¢,and u, we
obtain: 1 _—
c=—=~ 3.00x10°ms’
L&

0™0

»which corresponds to the speed of light in free space measured

experimentally.

» The speed of light has been obtained only using values of electrig
and magnetic constants.
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3.2 Wave equation in a dielectric media

» The propagation speed of the electromagnetic waves 1in a medium
v as function of the speed of light in free space c,
c
'1‘,!‘ E —

n

~ n represents the refractive index of the dielectric medium.

» The refractive index 1s related with the optical constant of the
material medium and the dielectric permittivity and the magnetic
permeability of the free space by:

» In most of the materials (non-magnetic materials),
and 1n particular in dielectric media, the magnetic
permeability 1s very close to that of free space: p ~ .
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3.2 Wave equation in a dielectric media

~ & relative dielectric permittivity (dielectric constant), defined as
the relation between the dielectric permittivity of the material medium
and that of the free space.

Matenial Refractive Wavelength
index (nm)
Glass (BK7) .51 633
Glass (ZBLAN) [.50 633
Polymer (PMMA) |.54 633
Silica (amorphous S10;) .45 633
Quartz (Si102) [.55 633
Silicon nitride (SiaNy) 2.10 633
Calcium fluoride (Cak>) .43 633
Lithium niobate (LiNbO3) 2.28 (ng) 633
2.20 (n,)
Silicon (S1) 3.75 1300
Gallivm arsenide (GaAs) 3.4 1000
Indium phosphide (InP) 3.17 1510

Refractive indices corresponding ro materials commonliy used in the fabrication of integrated
pliotonic components
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3.3 Monochromatic waves

“* The time dependence of the electric and magnetic fields within the
wave equations admits solutions of the form of harmonic functions.
Electromagnetic waves with such sinusoidal dependence on the
time variable are called monochromatic waves, and are characterised
by their angular frequency . In a general form, the electric and
magnetic fields associated with a monochromatic wave can be
expressed as:

E(r,7)=E, (r)cas[a}r-l—gp(r)]
H(r,7)=H, (r)cc}s[mr-l—(/‘)(r)]
<* where the tields amplitudes E,(r) and Hy(r) and the initial phase ¢(r)

depend on the position r, but the time dependence i1s carried out only
in the cosine argument through @
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3.4 Complex Notation of Monochromatic waves

E(r,t)= Re[E (r)e™ ]

H(r,?)= Re[H(r)e”m]

v E(r) and H(r) denote the complex amplitudes of the electric and
magnetic fields, respectively.

v'The electromagnetic spectrum covered by light (optical spectrum)
ranges from frequencies of 3 X 10° Hz corresponding to the far IR,
to 6 X 101 Hz corresponding to vacuum UV, being the frequency
of visible light around 5 X 104 Hz.

v'The average of the Poynting vector as a function of the complex
f1elds amplitudes for monochromatic waves

()= (Re e JeRe[ e ]) =ets)
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» S has been defined as: S = lE <xH"

2

~ S s called the complex Poyniing vector.

» The intensity carried by a monochromatic EM wave should be
expressed as:

I =|Re{s}|
» In the case of monochromatic waves, VxE =—-iuoH
Maxwell’s equations using the complex VxH =icoE

fields amplitudes E and H are simplified VE=0
notably (a dielectric and non-magnetic '

medium, ¢ = ¢ and u =1, VH=0
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3.4 Complex Notation of Monochromatic waves

v Now, if we substitute the solutions on the form of monochromatic
waves in the wave equation, we obtain a new wave equation, valid
only for monochromatic waves, known as the Helmholtz equation:

1/2
VE(r)+k*E(r)=0 k=ow(su,)  =nk,
VH(r)+FH(r)=0 k=%

v If the material medium is inhomogeneous the diclectric permittivity
is no longer constant, but position dependent € = &(r). The Helmholtz
equations are not longer valid.

v'For a locally homogeneous medium, in which &(r) varies slowly for
distances of ~1/4, those wave equations are approximately valid by

now defining & = m(r)k,, and m(r) = [e(r)/g,)]"2.
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3.5 Monochromatic plane waves in dielectric media

v" Consider the spatial dependence of the electromagnetic fields, For
monochromatic waves, the solution for the spatial dependence,
carried by the complex amplitudes E(r) and H(r), can be obtained by
solving the Helmholtz equation == V’E (r) +F*E (r) =(

V'H(r)+kH(r)=0

v' plane wave: One of the easiest and most intuitive solutions for the
Helmholtz equation also the most frequently used 1n optics.

v" The plane wave is characterised by its wave vecfork, and the
mathematical expressions for the complex amplitudes are:
E(r)=Ee™ H(r)=H,e™

v" The magnitudes E, and H, are now constant vectors
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3.5 Monochromatic plane waves in dielectric media

v" Each of the Cartesian components of the complex amplitudes E(r)
and H(r) will satisfy the Helmholtz equation.

v" The modulus of the wave vector K is: k =nk, = (% ) 7

v" @ 1s the angular frequency of the EM plane wave and 7 is the
refractive index of the medium where the wave propagates.

[E(r)=Ee™ kxE, = H,
lH(r):H e ™ =
A= kxH, =-wcE,

VxE=-iuoH
VxH=icoE ¥ These two formulae, valid only for plane
| monochromatic waves
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3.5 Monochromatic plane waves in dielectric media

kxH,=-wcE, , kxE,=wouH,

v" The electric field is perpendicular to the magnetic field and the
wave vector k.

v The magnetic field is perpendicular to the electric field and the
wave vector k.

v" Therefore, one can conclude that k, E and H are mutually
orthogonal, and because E and H /ze on a plane normal to the
propagation direction defined by k, such wave 1n called a fransverse
EM wave (TEM).

v" The fact that these three vectors are perpendicular implies

I

H, =(W%)EG q {%}ﬂ )Eﬂ =H, = k’=0’¢y,

0/
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The wave nature of light

A Direction of Propagation —» k

1,

An electromagnetic wave 1s a travelling wave which has time
varying electric and magnetic fields which are perpendicular to each
other and the direction of propagation, z.
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The wave nature of light

E and B have constant phase
in this xy plane; a wavefront

Propagation

E = E_sin{ af—kz)

A plane EM wave travelling along z, has the same £, (or B,) at any point in a

given xy plane. All elecinc field vectors 1n a given xy plane are therefore in phase.
The xy planes are of infinite extent in the x and y directions.
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3.5 Monochromatic plane waves in dielectric media

v" When dealing with a monochromatic plane EM wave it is useful to
characterise it by its radiation wavelength )., defined as the distance
between the two nearest points with equal phase of vibration,
measured along the propagation direction. The wavelength is

therefore expressed by: 27 2m A
A=vl=v/iv=—= =—
ko nk n

0

v' ), represents the wavelength of the EM wave in free space, given by:

9
: 27
foy=cl =c/L=—
k

0
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3.5 Monochromatic plane waves in dielectric media

v It 1s worth remarking that when an EM wave passes from one
medium to another its frequency remains unchanged, but as its
phase velocity is modified due to its dependence on the refractive
index, the wavelength associated with the EM wave should also
change. Therefore, when the wavelength of an EM wave 1s given, it
1s usually referred to the wavelength of that radiation propagating

through free space.

Co

C:

»

n

A

A

o

=
f

nk

3

n

A =2m/k

M.A. Mansouri-Birjandi

Lecture 2: Lightpropagation

42



owl oMb Uo,9 Z g 5 Ll 1 (Ui d) Wi Sy Aiwd*







Oyl Jlade Y g S 0




3 |S. Light propagation in absorbing media
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S. Light propagation in absorbing media
k =k—ia | 2 2 _g2(.2 2

% The complex ¢ 1 — k™ —a”=k; (,” K )

wavevector: k* =w? E.M= nf ko2 J | ka = k[';;q K

c

“*k represents the real wavevector, and a 1s called the attenuation
vector.

“* The electric field for a plane monochromatic wave in absorbing
medium . _ i(ot-k.r) | —ar_i(er—kr)
E(l.,f‘)—Re[EDe ]—Re[Eﬂe e ]

“*The planes of constant amplitude will be determined by the condition

ar = constant. and therefore they will be planes perpendicular to the

attenuation vector a.

“* The planes of equal phase will be defined by the condition of kr =
constant, and thus the phase front will be planes perpendicular to the
real wavevector k.
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S. Light propagation in absorbing media

¢ In general, these two planes will not be coincident, and in this case the EM
waveis said to be an inhomogeneous wave.

% In absorbing media, the vectors Kand a are parallel, and such a wave is
called a homogeneous wave.

< The vectors K, k and a are related to the optical constant of the medium

k =nk,, a = kk, k.=(n—ik)k,
¢ The electric field :

, \ (ot—n Ko Cxckor i(ei—nkor
E(l"‘t_f) — RG[EGEI{UI n, _I‘]] — R@[EGE Kkvlef[t’)f n 1}]

¢ One important aspect concerning light propagation in absorbing media is the

intensity variation suffered by the wave as propagates.
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Lossy media: | | = ()

V’E+K’E=0 y =ik, =i ue,

o % g" %
y=a+if=iw ,ug(1+_—j =i ,u'g[l—i—’j
g

IOE
VE—-y*E=0
E=aE =aFEe’" =>E=a4Ee“e"’*
o : attenuation factor

B : propagation constant (or phase cons.)
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Depth of penetration (or skin depth) g Goe b 398 Goc

if : fT=>aT=1loss T 5él
e
at 3kHz — 6 =0.038mm
at 10GHZ — 6 =0.66 um
s-1___1 :>,B=2—7T:>i=2—ﬂ=2 .,
o \/n.f.u.g A 5] f.ue
s 1 A

_az,B_27z
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S. The intensity of light in absorbing media

» we assume that the propagation i1s along the zaxis; in this case, the
intensity takes the form: 1

I(z)=

: the intensity associated with the wave at the plane

|E i |2 €—2 xkyz

2ep,
1

2¢c,

+
e

I =

E,

I(Z) =7 e—Eh’I{G:

0

~ The intensity of the wave decreases exponeniially as a function of
the propagation distance. I ( z) =], e

| _ . . 10, 1
» The absorption coefficient a, defined as: o = 2xk, = 2x— (m )
c

» The light attenuation in decibels (dB), 1 dB = 1010g(1 % } =4.3cd
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» A high electrical conductivity o (compared with &)
ke

2 , £ 1,
V2E=yc}'i—f+ﬂ5‘6 = = VE(r)+to u(s—ic/»)E(r)=0
0 Nt

HIZ

r £, (clearly, a complex quantity) is known as generalised dielectric
permittivity.

» The Helmholtz equation 1s still valid.

» Transparent dielectric medium (x = 0),
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7. EM Waves at planar Dielectric Interfaces

» Boundary conditions at the interface

v’ Another important aspect in the study of light propagation is the
behaviour of EM waves passing from one medium to another.

v'The behaviour of an EM monochromatic plane wave travelling
through a somogeneous medium, incident on a second Zomogeneous

medium, separated from the former by a planar interface.
v'The equations that determine the reflection and transmission
coefficients can be studied separately in two groups:

1) The electric field of the incident EM wave has only a parallel
component with respect to the incident plane (the magnetic field
being perpendicular to that plane)

2) the electric vector has only the component perpendicular to the
incident plane
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7. EM Waves at planar Dielectric Interfaces

» The relations between the incident, reflected and transmitted
waves are obtained by setting the adequate boundary conditions for the
fields at the planar interface, which are derived directly from
Maxwell’s equations.

v D _ 01 [ ( DNormal ) (DNormal )
- Medinuml Medium 2
—

\ e < .
” VB = (}J (BNormal ) _ (B“}]mmal ) at interface
| \ Mediuml Medium 2
V % E = _T (E_Tangtntial ) — (ETangential )
Ct Medium]1 Medium 2
> = 3
(A'D (HTangential ) _ (HTangential )
v X H = J + - q Medium1 Medium 2
cr J
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» The dielectric media are characterized
by their optical constant (&,,4,) and (&,,145),

E;- (I‘,, f) _ Eiez'(m,.r—k!.r)

Er (I‘,I) _ Eref{mrr—krr]
EI (I', r) _ Efef(mfr—k,r)

Medium 1

» Apply the condition of the continuity of the tangential component
of the electric field across the interface

[E (r.7)+E, (rf] —[E (r, I):I

Tangential Tangential

[E! i(o—k;r) n E (o, 1—k,1) ] _ I:Etei{rﬂff—krr)}

» As this relation should be valid for any instant of time, 1t follows that:

W =0 =0,
M.A. Mansouri-Birjandi Lecture 2: Lightpropagation ! ! 61



7. EM Waves at planar Dielectric Interfaces

» The condition of equal spatial dependence on the exponents at the
interface

kv +k,z =k, y+k,z=k,y+k,z (atthe interface x=0)

» This result indicates that the tangential component of the wavevectors
(for the incident, reflected and transmitted waves) must be equal:

k] =[k] =[k]

»In other words, at the boundary only the perpendicular component
of the wavevectors can change.

»Thus, the vectors k, and k, must lie in the plane defined by the k;
vector and the normal to the plane of the interface.
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» This plane, perpendicular to the plane that separates both media, 1s
called the incident plane, and all the wavevectors lie on 1t.

»1f we choose the incident plane as the v-zplane, in this case the y

components of the wavevectors are null: f x
k.z=k z==Fk z =—>> TR N S
k.sin@ =k sint =k, sin@ Mediumn 1 2
/2 )
ko=w(su) =k
1 ( 1 tl) i} | — 91 =9r
k., =0o(s,u )1/2
t 2772 J (law of reflection)

k.smn6 =k, st  (ITransmission law)
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» If the two homogeneous media are non-magnetic (1, ~ i, ~ 1,) and
non-absorbing materials (real refractive indices)

(gl/gﬂ)w

(/)"

1/2
— }'}1

(¢.1)

(£,)" =n

2

-

- k,sin@, =k, sin6, = ( n,sinf =n,sing,)

o

~ Snell’s Iaw 1s valid for dielectric materials.

»In the case of absorbing media, the equation & z =k _z =1k =
1s still valid, and 1s the correct relation to obtain the transmitted

wave.

M.A. Mansouri-Birjandi
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» The relations between the electric field amplitude for the incident,
reflected and transmitted waves,

» Transverse magnetic incidence (ITM incidence or p waves)
1) The electric field vector associated with the incident
monochromatic plane wave lies on the incident plane.
(Parallel Polarization)

r
"

%Ki
2) and the magnetic field vector %N e k
is perpendicular to both '
vectors
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E, =E =[E, ,0.E,_]
H =H/=0H,.0]

» The symbols || and L denote vectors l .
parallel and perpendicular to the F Vil 2
incident plane, respectively.

~ As the electric field vector 1s paralle
to the incidence plane, the TM
incidence 1s also called parallel incidence.

» The condition of the continuity of the tangential component of the

electric field at the interface:

( E Tangential ) . (E Tangential )

LU T W

:> Er’: + Er: = Erz

Medinm1 Medium 2

(@t -k, (@, =k, 1 (e, —k, v
[Eiei(m’ " cos8 —E ') cos 6’},] =[E?e?{”r ’I)COSQ}
x =0

x=0
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10. TM incidence (p waves)

» The temporal and spatial dependences of the exponentials are
equal (at ¥ =0) E cost) —E cost =E, cos6

»~ The condition of continuity of the normal component of the
dielectric displacement vector

(' D_\'omm; ) . ( DNmmal )

! Mediuml

- D_+D_ =D,
Medinm 2 I ER -

gE sméb +gE sméb =g E siné

» The relation between the electric field amplitudes of the reflected
and incident waves _ E n.cosl — 1, COSs Q

vt )E L=

E. n,cost0 +n,cost

» 1, denotes the reflection coefficient tor parallel polarisation.
» Fresnel equation for the parallel polarization
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» I, ,can also be written in several equivalent forms, one of which 1s

2 2 2 = 2
E_ n,cosf —nl\/nz —n; sin” 6
2

. (r )
T‘M || 2 2 - 2
E 5 CDSQ. +nl\/rf2 —n,; sin Q

1

-~
Z

» I'py 18 real when ¢.1s smaller than the critical angle, sing, =
1,

» ' ,can be positive or negative depending on the incidence angle.

» I’ vanishes 1f 11, > n, and it the incidence angle is tan 0 = L

"

~ The incidence angle 1s commonly known as the polarizing or
Brewster angle.
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» The relation between the amplitude between the transmitted and

incident waves E, 2n, cos G
fry =——= E

™
E.  n,cosf +n, cosb

» tr, o the transmission coefficient for parallel polarisation.

1.0

» In general r,,and 7, can

be complex magnitudes. 0sl

Al ny=1.00
Silica: n,=1.45

Rellection and transmission coeflicients
=]
L]
|

1.0 1 l 1 l 1 l 1 |
0 20 40 &0 80

Incident angle (deg)
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10. TM incidence (p waves)

» Although the reflection and transmission coefficients give us
valuable information concerning the relation between the electric field
amplitudes of the incident, reflected and transmitted waves, in many
cases the relevant parameter 1s the fraction of the incidentene energy that
1s reflected and transmitted at the interface, defined through reflectance

and transmittance.

» The reflectance R 1s defined as the quotient between the reflected
energy in an unit of time over a differential area, and the incident energy
per unit of time over the same area at the interface.

» The mransmuttance 1s defined as the quotient between the transmitted

energy per unit of time over a differential area and the incident energy 1n
that unit of time over the same area.
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E

e =T,
ET

Iy = E_

» From equation R

2
.

}TM’

-'-}-"I
-

n,cost —n, cost

n,cost +n,cost
- = R, +T,, =1

4n.n, cos b cosb,

™

) (n,cos6 +n, cos, ):'Z

o

{ n,cosg, —n,cosg, J it follows that the

n,cost. +n, coso,

reflectance will vanish for the condition 7, cosé, =n, coso),

» By combining R ,,with the Snell’s law, one obtains that the
reflectance is zero for an incident angle that fulfils the equation:

M.A. Mansouri-Birjandi

tan @ = n/
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11. Reflectance and transmittance for TM incidence

» This angle, for which Ry, = 0, is called Brewster’s angle Oy or the
Polarizing angle, because the reflected wave will be linearly polarized
for an incident wave with arbitrary polarization state.

» For the particular case of normal incidence (¢, = 0), the formula

for the reflectance 1s stmplified to: [ o )

o =
n, —I—I’i‘1

1.0

i ~ Reflectance and transmittance for TM
incidence corresponding to the interface
l air—silica (22, = 1.00, n,= 1.45). For an

_ incident angle at #, = 6, the reflectance

I o vanishes, corresponding to an angle of
02 iy 554

0.8

0.4 -

Helleclance and transmittance

0.0 1 I T - . } 1 ]
[i] 20 A0 &0 a0

Incident angle {deg)
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» 0,1s the angle of incidence which results in the reflected wave having

no electric field in the plane of incidence .

» The electric field oscillations are in the plane perpendicular to the plane
of incidence.

» In 0, the field in the reflected wave is then always perpendicular to the
plane of incidence.

» The reflected wave 1s then plane polarized.

» This special angle is given by

]
F

tan Qp =

n

—_

mcidence.
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12. Brewster’s angle or polarization angle (6,)

» When an unpolarized light wave is incident at the Brewster angle,
the reflected wave is polarized with its optical field normal to the plane
of incidence, that 1s parallel to the surface of the glass plate.

» The angle between the refracted (transmitted) beam and the reflected

beam is 90.

M.A. Mansouri-Birjandi

R
\  E parallel to paper

Glass plate

N

® E normal to paper

Reflected
light

Incident
light
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» The electric field vector of the incident wave 1s perpendicular to

the incident plane.

1 2 %
z M'Ed'um 1 £9 fLq

=

Reflection and transmission corresponding to TE incidence perpendicular
Polarization.
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13. TE incidence (n waves)

» The electric and magnetic field vectors associated with the incident
wave are:

E =E '=[0E_ 0]

H =H =[H, ,0.H_]

» The continuity of the tangential component of the electric field across
the boundar _
Y E,+E, =E,

~To obtain the reflection and transmission coefficients it 1s necessary to
find a second relation between the electric field amplitudes.

» The condition of continuity of the tangential component of the
magnetic field vector at the interface: H_ +H _=H_
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13. TE incidence (n waves)

» by relating the magnetic field vectors with the electric field vectors
by using equation kxE, = o H,

» After straightforward calculations, the boundary condition H_+H_=H_

C0 e — =k
becomes: y (E'r}' E}}:)_;’LHEW

» The reflection and transmission coetfficients for TE incidence are

obtained as a function of the wavevectors:
E km_ —km_ E 2k .

.I}—}__— = ] — .;(.IE = r — X
E. k. +k, E. k_+k_
» These coefficients can be expressed in a more convenient form as a
function of the incident and refracted angles and the refractive indices

of the two media by using Snell’s law:

"

n,cost) —n,cosd 2n, cost

I = : =

n, cus@. +n, COSQ n, cms@ +n, COSQ
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13. TE incidence (n waves)

» The transmission coefficient is positive, indicating that the direction of the
electric field vector of the transmitted wave 1s coincident to that of the incident
wave.

1.0
> By contrast,  the

electric field vector

05 L e

Aire Ny =1.00 ) .
Silica: n; —1.45 associated with the
reflected wave 1S

reversed in respect to

- that of the incident wave,

indicating a phase shift of

Heflection and transmission coefficients
&
o
i

7t in the reflected wave.

1.0 ! l ! | 1 | ! l
0 20 40 60 80

Incident angle (deg)
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Reflectance and transmittance

14. Reflection and Transmittance for TE incidence

-

E » [ n,cos8 —n,cosH
B =l—= — |F‘ | _ 1 i 2 t
o 1E ‘ .
E. \ 11, 608 €, +n,co80,
T E | 2 4nmn,cosd, cosb,
TE ~— YV TE iy 2
; cos @, +n, cos
E n,cosd +n,cosd,
» In TE incidence the reflectance 1s a
he monotonous increasing function of the
AR m=1.00 incident angle. Therefore, it a beam of non-
08~ Silica: n,=1.45 : : . wi -
i - polarised light is incident at an angle of &,
sl the interface only will reflect the TE
: component of such radiation, and thus the
04 reflected wave will be linearly polarised
i with the electric field vector perpendicular
=il to the incident plane. This 1s the reason
e i MR S T why Brewster’s angle 1s also called the

M.A. Mansouri-Birjandi

Incident angle (deg)

polarising angle, and this phenomenon can
be used to design polarisation devices.
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Transmitted
(refracted) light

+ Evanescent wave

f

t ¢ > ¢ TIR
Incident Reflected Critical angle i e
light light
(@)  sing=2 (b) (c)

Light wave travelling in a more dense medmum strikes a less dense medium. Depending on
the incidence angle with respect to¢. , which 1s determined by the ratio of the refractive

mdices, the wave may be transmitted (refracted) or reflected. (a)¢, <¢. (b) ¢ =¢. (c)
¢, > ¢. and total internal reflection (TIR).

. 7
siIng. = n—z
|
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Example

» n(Water)= 1.33, n(glass)=1.5.

» For most semiconductors, such as Si, GaAs, and InP, the index of
refraction 1s often in the 3< n <4, depending on the optical wavelength

and the material.
» Here we take a nominal value of n= 3.5 for a semiconductor.

» Find the reflectance at mormal incidence, the Brewster angles, and the
critical angles for these media at their interfaces with air.

» R =0.02tor water, R = 0.04 for ordinary glass, and R typically falls
in the range of 0.3 and 0.32 for a semiconductor.

~ 05 = 54° for water, 65~ 56° for ordinary glass, and &5 1s typically
around 74- for a semiconductor.

» 6. 49 for water, 6.~ 42° for ordinary glass, and &, 1s around 17° for
a semiconductor.
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