OPTIMIZATION OF PROCESSES

Term	2 nd Semester, 1397-1398
Lecturer	Kiyanoosh Razzaghi E-mail: razzaghi@eng.usb.ac.ir. Tel.: +54 3113 2451 (int. 2451)
Time	Mon. & Wed. (09:30–11:00) Prof. Khoshnoodi's Conference Hall
Evaluation	Homework 20%, Midterm exam 35%, Final exam 45%
References	 Engineering optimization: methods and applications, 2nd Edition (Ravindran, Ragsdell, Reklaitis), Wiley, 2006
	 Optimization of Chemical Processes, 2nd Edition (Edgar, Himmelblau, Lasdon), McGraw-Hill, 2001
	 Engineering Optimization: Theory and Practice, 4th Edition, (Rao), Wiley, 2009
	 Applied Optimization: Formulation and Algorithms for Engineering Systems (Baldick), Cambridge University Press, 2008
	• Ontimization in Departice with MATIAD, For Engineering Students and

• Optimization in Practice with MATLAB: For Engineering Students and Professionals (Messac), Cambridge University Press, 2015

LECTURES

Lecture 1	Introduction to Optimization, Applications of Optimization in Engineering, Structure of Optimization Problems
Lecture 2	Functions of a Single Variable, Properties of Single-Variable Functions, Optimality Criteria
Lecture 3	Region Elimination Methods, Bounding Phase, Interval Refinement Phase, Polynomial Approximation Methods
Lecture 4	Quadratic Estimation Methods, Successive Quadratic Estimation Method
Lecture 5	Methods Requiring Derivatives: Newton–Raphson Method, Secant Method, Cubic Search Method
Lecture 6	Functions of Several Variables, Optimality Criteria, Direct-Search Methods, Gradient-Based Methods: Cauchy's Method, Newton's Method, Conjugate Gradient Methods
Lecture 7	Linear Programming, Formulation of Linear Programming Models, Graphical Solution of Linear Programs in Two Variables
Lecture 8	Linear Program in Standard Form: Handling Inequalities, Handling Unrestricted Variables
Lecture 9	Simplex Method, Use of Artificial Variables, Two-Phase Simplex Method
Lecture 10	Constrained Optimality Criteria, Equality-Constrained Problems, Lagrange Multipliers, Kuhn–Tucker Conditions

Lecture 11	Constrained Direct Search, Treatment of Equality Constraints, Generation of Feasible Starting Points
Lecture 12	Random-Search Methods, Linearization Methods for Constrained Problems, Direct Use of Successive Linear Programs
Lecture 13	Quadratic Approximation Methods for Constrained Problems, Direct Quadratic Approximation, Quadratic Approximation of the Lagrangian Function
Lecture 14	Design Application, Problem Statement, General Formulation, Model Reduction and Solution
Lecture 15	Strategies for Optimization Studies, Model Formulation, Levels of Modeling, Solution Evaluation
Lecture 16	Engineering Case Studies, Optimization of an Ethylene Glycol–Ethylene Oxide

Lecture 16 Engineering Case Studies, Optimization of an Ethylene Glycol–Ethylene Oxide Process, Optimal Design of a Compressed Air Energy Storage System