DSP

Introduction

Mehdi Rezaei

Dept. of Electrical and Computer Engineering University of Sistan & Baluchestan

- Introduction to Digital Signal Processing
- Discrete-Time Signals and System (2 Weeks)
 - Discrete-Time Signals: Sequences (2.1)
 - Discrete-Time Systems (2.2)
 - Linear Time-Invariant Systems (2.3)
 - Properties of Linear Time-Invariant Systems (2.4)
 - Linear Constant-Coefficient Difference Equations (2.5)
 - Freq. Domain Representation of Discrete-Time Signals (2.6)
 - Representation of Sequences by Fourier Transforms (2.7)
 - Symmetry Properties of the Fourier Transform (2.8)
 - Fourier Transform Theorems (2.9)
- The Z-Transform (2 Weeks)
 - Z-Transform (3.1)
 - Properties of the Region of Convergence of the z-Transform (3.2)
 - The Inverse Z-Transform (3.3)
 - Z-Transform Properties (3.4)

- Sampling of Continuous-Time Signals (2 Weeks)
 - Periodic (Uniform) Sampling (4.1)
 - Frequency-Domain Representation of Sampling (4.2)
 - Reconstruction of a Band limited Signal from Its Samples (4.3)
- Transform Analysis of Linear Time-Invariant Systems(2Weeks)
 - The Frequency Response of LTI Systems (5.1)
 - Constant-Coefficient Difference Equations (5.2)
 - Frequency Response for Rational System Functions (5.3)
 - Relationship between Magnitude and Phase (5.4)
 - All-Pass Systems (5.5)
 - Minimum-Phase Systems (5.6)

- Structures for Discrete-Time Systems (2 Weeks)
 - Block Diagram Representation (6.1)
 - Signal Flow Graph Representation (6.2)
 - Basic Structures for IIR Systems (6.3)
 - Transposed Forms (6.4)
 - Basic Structures for FIR Systems (6.5)
 - Finite Precision Numerical Effects (6.6)
 - Effects of Coefficient Quantization (6.7)
 - Effects of Round-Off Noise in Digital Filters (6.8)
- Filter Design Techniques (2 Weeks)
 - Design of Discrete-Time IIR Filters from Continuous-Time Filters (7.1)
 - Design of FIR Filters by Windowing (7.2)
 - Optimum Approximation of FIR Filters (7.4)

- The Discrete-Fourier Transform (2 Weeks)
 - Discrete Fourier Series (8.1)
 - Properties of the Discrete Fourier Series (8.2)
 - The Fourier Transform of Periodic Signals (8.3)
 - Sampling the Fourier Transform (8.4)
 - The Discrete Fourier Transform (8.5)
 - Properties of the DFT (8.6)
- Computation of the Discrete-Fourier Transform (1 Weeks)
- Student Presentations and Project Check (1 Weeks)

Course Details

- Objective
 - Establish a background in Digital Signal Processing Theory
- Required Text
 - Discrete-Time Signal Processing, Prentice Hall, 2 or 3nd Edition,
 Alan Oppenheim, Ronald Schafer, John Buck
- Grading for BSc Students

– Midterm: 5 Points

- Final: 10 Points

Homework, Quiz, Attendance:5 Points

Grading for MSc Students

- Midterm 1: 5 Points

- Midterm 2: 5 Points

- Final: 10 Points

Presentation of Selected Topics:2 points (Extra)

- Matlab SP Toolbox
- DSP Processors and Platforms

Useful References

Text Books

- "Discrete-Time Signal Processing," 3e or 2e by Oppenheim, Shafer, and Buck, Prentice Hall Inc.
- "DIGITAL SIGNAL PROCESSING: Principles, Algorithms, and Applications", John G. Proakis, Dimitris G. Manolakis.
- "DIGITAL SIGNAL PROCESSING USING MATLAB", Vinay K. Ingle, John G. Proakis.
- "Schaum's Outline of Theory and Problems of Digital Signal Processing",
 Monson H. Hayes.

- ...

Web Sites

- Course slides at: http://vu.usb.ac.ir (ID:dsp90 , PW:vudspasd90)
- www.google.com
- http://www.jhu.edu/signals/index.html