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New models for estimating compressive
strength of concrete confined with FRP
sheets in circular sections
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Abstract

Models for determining the compressive strength of concrete columns confined by FRP have been presented in previous

studies. In this study, a large set of experimental data regarding circular columns confined with different types of FRP has

been collected. In order to increase the accuracy in the existing models, three modified models for predicting the

compressive strength of circular columns confined with FRP has been proposed by using the collected data. The FRP

strain efficiency factor in the proposed models is considered as: (i) a function of the strain ratio, (ii) a function of the

confinement stiffness ratio, and (iii) a function of the combination of these ratios. Studying the analytical results using the

proposed factors revealed that models wherein the FRP strain efficiency factor is a function of the strain ratio or the

combination of the confinement stiffness ratio and strain ratio give results closer to the experimental results.
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Introduction

Confinement is an effective method for increasing the
compressive strength of concrete columns. Concrete
and steel jackets, still in common use today, were
widely used in the past to reinforce concrete columns.
Although these methods increase the structure’s load
bearing capacity, concrete jackets increase column sec-
tion dimensions significantly and steel jackets perform
weakly against adverse environmental conditions.
Hence, older methods are to be replaced by innovative
retrofitting systems which are economical and easy
to implement.1

The idea of using FRP to reinforce the existing RC
columns against seismic loads was first proposed in the
mid-80s.2 The 1990 (California) and 1995 (Kobe,
Japan) earthquakes were important and effective fac-
tors for an extensive investigation regarding the appli-
cation of FRP for the retrofitting of concrete and
masonry structures in seismic zones.3

The first experimental study on concrete specimens
confined with three types of FRP under axial compres-
sive loads has been carried out by Nanni and
Bradford.4 They showed that the two mechanical prop-
erties of concrete, i.e. compressive strength and

ductility, would increase by confining the specimens

using FRP sheets.
Experimental studies that have examined the behav-

ior of FRP-confined columns are many and models

that have used these experimental results to estimate

the concrete compressive strength are numerous.

Fardis and Khalili5 were the first to propose one of

such models. Mander et al.6 presented a model for esti-

mating the compressive strength and axial strain of

FRP-confined concrete. The result of their research

was latter used by ACI 440.2R-02 Code.7 To estimate

the compressive strength of FRP-confined columns,

many models have been proposed wherein the actual

hoop rupture strain of the FRP wrap is not considered

and their developments are based on the ultimate FRP

strain reported by the manufacturer or on the Coupon
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test. Lam and Teng8 have considered a constant FRP

strain efficiency factor (defined as the ratio of actual
hoop rupture strain to ultimate tensile strain) for each
FRP type. Sadeghian and Fam9 have considered the

maximum confinement stress in the “confinement stiff-
ness ratio” as well as in “strain ratio” factors to take

into account the actual rupture strain and have pro-
posed some models to estimate the compressive
strength of concrete cylinders confined with FRP by

analyzing 518 specimens. Moodi et al.10,11 proposed a
model for estimating compressive strength of rectangu-

lar and square columns confined by FRP sheet. In their
study, the effective strain coefficient of FRP was con-
sidered as function of shape section.

In this study, a large set of experimental data has
been collected for circular columns confined with dif-

ferent types of FRP. Since modeling with larger statis-
tical populations will lead to more reliable results, the

statistical population used in this study is larger than
those used in previous studies. FRP strain efficiency
factor was considered as a factor of “strain ratio”,

“effective stiffness ratio”, or their combination and
three models were presented to estimate the compres-

sive strength of circular, FRP-confined, concrete col-
umns. Analyses of the results of 732 specimens show
that the proposed models estimate the strength values

more accurately.

Confinement mechanism

When concrete undergoes axial compression, it dilates
laterally (volumetric expansion or dilation). This dila-

tion is controlled by FRP jackets tensioned in loop
directions. Figure 1 shows the confinement effects in
the FRP-confined concrete. Neglecting tangential

stresses in the longitudinal direction of the column
specimen and considering the equilibrium of the

stresses applied on the FRP, the actual maximum con-
fining pressure (fl,a) can be found as follows

fl;a ¼ 2 tjffrp

D
¼ 2Efrpeh;ruptj

D
(1)

where D is the specimen diameter, Efrp is the elastic
modulus of FRP material, tj is the thickness of FRP

wrap, and eh,rup is the actual FRP rupture strain in loop
directions defined as follows

eh;rup ¼ keefrp (2)

where efrp is the ultimate tensile strain of FRP materials
and ke is the strain efficiency factor. In most models
presented for estimating the compressive strength of

FRP-confined columns, actual FRP rupture strain

has not been considered meaning that ke equals 1 in
these models, but in some past studies,8,9,12 the effect of
this rupture strain has been considered. Lam and Tang8

have considered a constant value for the strain factor
for each types of FRP; for AFRP, CFRP, GFRP, and
HM-CFRP, this factor is 0.851, 0.586, 0.624, and
0.788, respectively. Lim and Ozbakkaloglu12 have pre-
sented a relationship for this factor in the form of the
product of the following three factors:

1. Strain localization factor that considers the effect of
non-uniform strain distribution in FRP.

2. Local (in-situ) factor that considers the effect of the
difference between maximum strain measured on the
column and that found from Coupon (flat ten-
sion) test.

3. FRP-to-fiber strain ratio.
They proposed equation (3) for strain efficiency

factor as follows12

ke ¼ 0:9� 2:3f 0c � 10�3 � 0:75Efrp � 10�9 (3)

where f 0c is the strength of unconfined concrete.
Sadeghian and Fam9 proposed equation (4) as fol-

lows for FRP confinement stress considering the actual
FRP rupture strain

fl;a ¼ qeqkf
0
c (4)

where qe and qk are the strain and effective stiffness
ratio factors, respectively, defined as follows

qk ¼
2Efrptj

ð f 0cecoÞD
(5)

qe ¼
eh;rup
eco

(6)

Figure 1. Confinement mechanism in concrete.9

Moodi et al. 1015



where eco is the strain related to f0c in the uncon-
fined concrete.

The FRP strain efficiency factor in this study has
been considered as: (1) ratio of the ultimate FRP tensile
strain to the strain related to f0c and (2) ratio of the
effective stiffness which is defined as the ratio of FRP
elasticity modulus to the compressive strength of
the unconfined concrete. More information will be
provided in Section of compressive strength of confined
concrete.

Experimental database

Tests performed on the FRP-confined concrete are
numerous. In this study, a statistical population of
662 FRP-confined circular concrete specimens,
extracted from various studies, has been used for
modeling. The statistical population used in this
study is more complete than those used in earlier
researches and details of the specimens are given in
Table 1. They have diameters of 47–406mm (average
155mm) and unconfined compressive strengths of
2.6–55.2MPa (average 35MPa). FRP types used in
these database include CFRP, AFRP, GFRP, and
HM-CFRP with moduli of elasticity ranging from
4.9 to 640 GPa (average 170 GPa) and ultimate tensile
strength of 75–4810MPa (average 2712MPa). All FRP
jackets used in these data are single direction (hoop
direction). These experimental data will be used for
formulation purposes.

Genetic algorithm

Optimization of structures has always been a noticeable
developing area of research in the field of engineering
optimization and has made highly progress in the
last decade.96,97

The natural selection and evaluation process was
first observed and documented by Charles Darwin.
The fittest’s survival philosophy makes it easier to
reach the globally optimal solution. The methodology
is implemented numerically and developed for optimi-
zation problems, where the mathematical use of
GAs simulates natural evaluation and adaptation to
environmental variation. The process is initiated by
randomly or heuristically selecting a number of candi-
date design variables to create an initial population,
which is then encouraged to evolve over generations
to produce new designs that are better or fitter. It is
necessary to device a genetic coding system for repre-
sentation of design variable, which can be considered
to be a direct analogy of DNA structure of
chromosomes.

The design variables are coded by a bit string. With
this binary representation, the design variables can be T
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coded only as integers. So it is usually necessary to
introduce a linear scaling conversion system to appro-
priately obtain the required range of parameter values.
For example, a design having two continuous variables
b1 and b2 each is coded as a fixed length 10 bit string
like b1¼1001000011, b2¼1101010110. Values of these
parameters are selected at random. A 10 bit string is
employed with regard to the precision with which the
variables should be represented. Total design is repre-
sented by a 20 bit string created simply by concatenat-
ing b1 with b2.

By doing so, it is possible to create a founding pop-
ulation with members each represented by a 20 bit
string. The next stage of the procedure, following the
specification of the initial design population, is that of
reproduction, which incorporates the concept of natu-
ral selection. The fitness of different members of the
population must be evaluated before mating to pro-
duce the next generation. The fitness F is computed
from the objective function of the chosen problem
accordingly.

The selection of mating pairs for reproduction is a
crucial step in GA. There are two methods of mating
pool selection: fitness proportional or roulette wheel
(RW) and tournament selection (TS). The latter
method is proved to provide good selective pressure
by holding a tournament competition among N ¼ 2
individuals. The best individual (winner) from this
tournament is one with highest fitness and the winner
is then inserted into the mating pool. The tournament
competition continues until the mating pool is filled to
generate new offspring. The tournament winners’
mating pool has a single average fitness.

In biological reproduction, the child’s chromosomal
pattern is derived from the two parents’ chromosomal
strings and thus the child inherits both characteristics.
In GA, it is the crossover process that ensures the
transfer of design information from generation to
generation, essentially by a simple swapping of one
(single-point) or two sections (two-point) of bit string
representation of two parent designs to obtain two off-
spring design solutions.

The positioning and extent of the crossover time is
randomly selected and may differ in each generation
for each mating couple. Following the crossover, the
natural evolution of the mutation concept is introduced
into GA by occasionally switching the bit value at a
randomly selected location of the generated strings.
This action is important as it protects against prema-
ture design convergence to an optimal solution. The
procedure is repeated until according to the objective
function the new generation ceases to improve. When
this happens, the youngest generation’s most fitting
individual is an optimal design solution. Figure 2
shows sketch of the GA used in this work.98

In this study, GA is used for optimizing target func-

tion defined in the following sections. For all cases,

initial population and iteration are considered 10,000

and 100, respectively.

Compressive strength of

confined concrete

Compressive strength of FRP-confined concrete can be

estimated by various models some of which are provid-

ed in Table 2. As shown, effects of actual FRP rupture

Figure 2. Sketch of the GA.99
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strain has not been considered in models proposed by
Wu and Wei,100 Pham and Hadi,101 Fahmy and Wu,102

Youssef et al.,94 and Kumutha et al.103

In this research, the equation of the compressive
strength of the FRP-confined concrete with circular
section has been considered as follows

f 0cc ¼ f 0c þ afl;a (7)

wherein the actual confinement stress caused by the
FRP wrap (fl,a) has been considered based on equation
(1). Considering the strength of the unconfined con-
crete, the value of a is found as follows

a ¼ a1 f 0c � 35MPa
a2 f 0c > 35MPa

�
(8)

Based on the average unconfined compressive
strength of the specimens in Table 1, 35MPa has
been selected. In this study, the strain efficiency
factor ke has been considered as two separate functions
(or their combination) which create three separate

models for estimating the compressive strength of the

FRP-confined concrete. These two functions are the

strain ratio (qe) and effective stiffness ratio (qk) defined
as follows

qk ¼
Efrp

f0c
(9)

qe ¼
efrp
eco

(10)

Next, models presented for estimating the compres-

sive strength of the FRP-confined concrete are dis-

cussed wherein the FRP strain efficiency factor is

considered in three different forms.

Model I: FRP strain efficiency factor as a function

of ffective stiffness

In this case, the FRP strain efficiency factor is consid-

ered as a function of the stiffness ratio

ke ¼ fðqeÞ ¼ b1 þ c1q
k1
k (11)

Table 2. Some of the available models for the compressive strength prediction of FRP-confined circular concrete columns.

Paper Model Descript

Wu and Wei100 f 0cc ¼ f 0c 0:75þ 2:7 fl
f 0c

� �0:9
� �

fl ¼ 2ffrp tj
D

Pham and Hadi101 f 0cc ¼ 0:7f 0c þ 1:8fl þ 5:7 t
D
þ 13 fl ¼ 2ffrp tj

D

Ozbakkaloglu and Lim104 f 0cc ¼ ð1þ 0:0058 k1
f 0c
Þf 0c þ k1ðfl;a � floÞ

flo ¼ k1 0:43þ 0:009
k1

f 0c

� �
eco

k1 ¼ 2Efrptj

D
� f 0c

1:65

fl;a ¼ 2Efrpeh;ruptj
D

Fahmy and Wu102 f 0cc ¼ f 0c þ k1fl

fl ¼ 2ffrptj

D
k1 ¼ 4:5fl;a

�0:3 f 0c � 40MPa

k1 ¼ 3:75fl;a
�0:3 f 0c > 40MPa

�

Teng et al.105
f 0cc ¼ f 0c ð1þ 3:5ðqk � 0:01Þqe qk � 0:01
f 0cc ¼ f 0c qk < 0:01

�
qk ¼ 2Efrptj

f 0c
eco

� �
D

; qe ¼ eh;rup
eco

Youssef et al.94 f 0cc ¼ f 0c ð1þ 2:25ð fl
f 0c
Þ54Þ fl ¼ 2ffrp tj

D

Kumutha et al.103 f 0cc ¼ f 0c þ 0:93fl fl ¼ 2ffrp tj
D

Guralnick and Gunawan106 f 0cc ¼ f 0c ð0:616þ fl;a
f 0c
þ 1:57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fl;a
f 0c
þ 0:06

q
Þ fl;a ¼ 2Efrpeh;ruptj

D

Lam and Teng107 f 0cc ¼ f 0cð1þ 3:3
fl;a
f 0 c
Þ fl;a ¼ 2Efrpeh;ruptj

D

Oliveira et al.108 f 0cc ¼ max

fcc1 ¼ f 0c ð1þ 0:25ðfl;a
f 0c
Þ0:7Þ

fcc2 ¼ f 0c ð0:94þ 0:59ðfl;a
f 0c
Þ0:7Þ

fccu ¼ f 0c ð0:35þ 3:79ðfl;a
f 0c
Þ0:7Þ

8>>><
>>>:

fl;a ¼ Eleh;rup

El ¼ 2tjEfrp

D
ke ¼ 0:861� 2:51 � 10�3f 0c
�0:606 � 10�6Efrp þ 2:7 � 10�5El
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Values of a1 and a2 in equation (8) and b1, c1, and k1
in equation (11) have been so calculated, using the opti-

mization GA, that the difference between the compres-

sion strength estimated by the analytical model

(equation (7)) and that obtained in the test will be the

lowest. Accordingly, a1, a2, b1, c1, and k1 can be so

calculated, using the GA, that the value of Z, calculat-

ed by equation (12), reaches its minimum. Therefore, in

the optimization algorithm, equation (12) was consid-

ered as the optimal function as follows

Z ¼ 1� R2 þ e (12)

etot ¼
X

ðf 0ccÞexp � ðf 0ccÞpre
��� ���X

ðf 0ccÞexp
��� ��� (13)

In equation (12), R2 is the correlation coefficient and

etot is the total error. In equation (13) exp and pre

suffixes represent the experimental results and those

estimated through the model in equation (7),

respectively.
Considering a range 0 to 6 for a1 and a2 and �3 to 3

for b1, c1 and k1, values of a1, a2, b1, c1 and k1 were

estimated to be 5.2812, 4.4537, 0.4748, �1.9181, and

�0.8035, respectively, through optimizing Z (equation

(12)) for the test results presented in Table 1. Based on

the above procedure, a value of Z¼ 0.5694 was calcu-

lated for the optimal function. According to the

obtained results, an increase in the effective stiffness

ratio increases the strain efficiency factor, meaning

that the latter is directly related to the former.

Considering the strain efficiency factor as a function

of the effective stiffness ratio (equation (11)), the per-

centage of increase in the compressive strength caused

by FRP for a concrete specimen with an unconfined

compressive strength less than 35MPa will be about

19% higher than that the same specimen with an

unconfined compressive strength greater than 35MPa.

Model II: FRP strain efficiency factor as a function

of strain ratio

As in previous case, the strain efficiency factor is con-

sidered as a function of strain ratio

ke ¼ fðqkÞ ¼ b2 þ c2q
k2
e (14)

In this study, the strain related to f 0c in an unconfined

concrete is calculated as follows95

eco ¼ f 0c
Ec

(15)

Ec ¼ 4700
ffiffiffiffi
f0c

p
(16)

For this model too, as mentioned in previous sec-

tion, values of a1 and a2 in equation (8) and b2, c2, and
k2 are calculated using the optimization GA. Values of

a1, a2, b2, c2, and k2 were calculated to be 3.8522,

3.5525, 0.8992, �0.0594, and 0.7936, respectively

through optimizing test specimens in Table 1 with an

initial population of 10,000 after 100 iterations and

considering a range 0 to 6 for a1 and a2, and �3 to 3

for b2, c2, and k2. The value of the optimal function

calculated using equation (12) for 662 specimens used

in optimization is equal to 0.5019. An increase in the

strain ratio increases the strain efficiency factor; there-

fore, the two are directly related. In this case, the per-

centage of increase in the confined compressive

strength for the concrete with an unconfined strength

less than 35MPa is 8% higher than that greater than

35MPa (11% less than model I). A comparison of the

optimal functions in models I and II showed that the

effect of strain ratio in the model II that estimates

the compressive strength of FRP-confined columns is

greater and reduces the optimal function by about 13%

compared to model I.

Model III: FRP strain efficiency factor as a

combinatory function of strain ratio (qe) and
effective stiffness ratio (qk)

Finally, the FRP strain efficiency factor is considered

as a combinatory function of the strain ratio and effec-

tive stiffness ratio as follows

ke ¼ fðqkÞ ¼ b3 þ c3q
k3
k þ d3q

u3
e þ h3q

g3
e q

f3
k (17)

For this model, values of a1 and a2 in equation (8)

and b3, c3, k3, d3, u3, h3, g3, and n3 are calculated

using the optimization GA as mentioned in previous

sections. Values of a1, a2, b3, c3, k3, d3, u3, h3, g3, and n3
were estimated to be 3.499, 3.0481, 0.2071, 1.4729,

�0.0815, �0.0305, 1.0841, 0.0045, 20, and �7.1945,

respectively through optimizing test specimens in

Table 1 with an initial population of 10,000 after 100

iterations and considering a range 0 to 6 for a1 and a2,
and �20 to 20 for b3, c3, k3, d3, u3, h3, g3, and n3.
The value of the optimal function calculated using

equation (12) for 662 specimens used in optimization

is equal to 0.4885 and results show that when the com-

bination of the two ratios is used, the optimal function

reduces by 17 and 3% compared to models I and II,

respectively.
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Evaluation of proposed models

To evaluate the proposed models, some additional

experimental data have been used from other studies

and presented in Table 3. As seen, the total number of

specimens used in this table is 70.
Based on equation (12), the total error, etot, for each

model has been calculated and presented in Table 4.

For a better comparison, the model performance is

evaluated through such statistical indices as: (1) mean

square error, (2) average absolute error, and (3) stan-

dard deviation determined by equations (18) to (20),

respectively. These indexes, calculated for both the

modeling specimens in Table 1, and the evaluating

specimens in Table 3, are outlined in Table 4.
As shown, considering the statistical results, the pro-

posed models have less error compared to other

models. Models I, II, and III have averagely reduced

the total error for all the specimens in Tables 1 and 3 by

21.9, 24.1 and 21.6%, respectively, compared to the

models proposed by Wu and Wei,100 Pham and

Hadi,101 Ozbakkaloglu and Lim,104 Fahmy and

Wu,102 Teng et al.,105 Youssef et al.,94 Kumutha

et al.,103 Guralnick and Gunawan,106 and Lam
and Teng.107

Figure 3(a) to (m) shows the performance of the
models proposed by Wu and Wei,100 Pham and
Hadi,101 Ozbakkaloglu and Lim,104 Fahmy and
Wu,102 Teng et al.,105 Youssef et al.,94 Kumutha
et al.,103 Guralnick and Gunawan,106 and Lam and
Teng,107 and proposed models I, II, and III for all
the specimens in Tables 1 and 3 (732 specimens). As
shown, the proposed models estimate the compressive
strength of the FRP-confined, circular section concrete
specimens better.

For more comparisons, the values of optimal func-
tions, that involve the effects of the total error and
correlation coefficient, are provided in Table 5 for all
the models studied in this research (732 specimens).
And to check the effects of the proposed models, per-
cent reductions created by all three models compared
to other mentioned models are given in Table 5.

In Table 5, a negative/positive sign indicates a
decrease/an increase in the value of the optimal func-
tion compared to other mentioned models. Results in
Table 5 show that models II and III perform better, but

Table 3. Details of the FRP-confined circular concrete specimens for evaluating procedure.

Reference

Total number

of database

Diameter

(mm)

Unconfined concrete

strength range (MPa) FRP type

Abdollahi et al.109 5 150 14.8–41.7 GFRP

Almusallam110 4 150 47.7–50.8 GFRP

Howie and Karbhari111 12 152 38.6 GFRP

Ilki et al.112 12 150 6.2 CFRP

Issa and Karam113 9 150 30.5 CFRP

Lin and Chen114 10 120 32.7 GFRP, HM-CFRP

Lin and Liao115 6 100 23.9 CFRP

Miyauchi et al.116 6 100–150 23.6–26.3 CFRP

Vincent and Ozbakkaloglu117 6 152 49.4 AFRP

Table 4. Statistical indicators for FRP-confined circular concrete specimens.

Theoretical models
Specimens of Table 1 Specimens of Table 3

MSE AAE SD etot MSE AAE SD etot

Wu and Wei100 8.06 17.15 28.26 17.37 1.66 10.17 12.99 9.35

Pham and Hadi101 5.58 16.9 23.67 17.14 2.29 11.96 15.16 11.84

Ozbakkaloglu and Lim104 6.52 17.43 25.66 17.62 2.21 11.62 15.03 11.86

Fahmy and Wu102 4.61 17.27 21.08 19.44 3.17 15.45 15.76 16.77

Teng et al.105 6.98 18.92 24.54 19.87 2.47 13.03 10.79 12.8

Youssef et al.94 12.94 19.47 35.81 20.3 5.76 18.79 24.15 19.8

Kumutha et al.103 10.17 28.27 18.05 31.49 12.65 32.59 15.12 34.61

Guralnick and Gunawan106 6 17.7 23.75 17.18 2.79 12.26 16.89 11.68

Lam and Teng107 6.31 17.35 25.18 18.6 1.83 11.61 12.26 11.53

Oliveira et al.108 8.71 17.79 28.72 17.85 2.05 11.02 14.2 10.39

Model I 7.89 16.01 28.14 16.2 1.79 11.27 13.52 11.33

Model II 6.36 15.48 25.27 15.8 2.47 12.5 14.66 12.38

Model III 5.8 15.5 24.15 15.72 5.19 16.73 21.28 16.71
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Figure 3. Performance of the selected models in comparison with experimental data: a) Ref. [100], b) Ref. [101], c) Ref. [104], d) Ref.
[102], e) Ref. [105], f) Ref. [94], g) Ref. [103], h) Ref. [106], i) Ref. [107], J) Ref. [108], k) the proposed model I, l) the proposed model
II and m) the proposed model III.
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Figure 3. Continued

Table 5. Comparison of optimal function for models.

Theoretical model Z

Percent increase/

decrease model I

Percent increase/

decrease model II

Percent increase/

decrease model III

Wu and Wei100 0.51 6.21 �5.24 �5.43

Pham and Hadi101 0.54 1.93 �10.03 �10.24

Ozbakkaloglu and Lim104 0.56 �2.01 �14.46 �14.67

Fahmy and Wu102 0.55 �0.63 �12.92 �13.13

Teng et al.105 0.55 �0.74 �13.04 �13.25

Youssef et al.94 0.68 �23.94 �39.07 �39.33

Kumutha et al.103 0.73 �32.52 �48.70 �48.98

Guralnick and Gunawan106 0.50 8.80 �2.33 �2.52

Lam and Teng107 0.54 0.50 �11.64 �11.84

Oliveira et al.108 0.50 9.76 �1.26 �1.44
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it should be noted that their accuracies do not differ

much. According to this table, models I, II, and III

averagely reduce the value of the optimum function

by 3.2, 15.9, and 16.1%, respectively, compared to

other models mentioned in this study.

Conclusions

In this study, three models have been proposed for esti-

mating the compressive strength of FRP-confined, cir-

cular-section columns. The strain efficiency factor of

FRP in these models has been considered as: (i) a func-

tion of the strain ratio, (ii) a function of the effective

stiffness ratio, and (iii) a function of the combination of

these ratios. Results from this research are shown

as follows:

1. Compared to the effective stiffness ratio, the

effect of the strain ratio for estimating the

compressive strength of confined circular columns

is greater.
2. Models proposed in this research estimate the com-

pressive strength of circular columns confined with

different types of FRP better; the three proposed

models averagely reduce the total error by 21.9,

24.1, and 21.6% and values of the optimal function

by 3.2, 15.9, and 16.1% compared to the models

mentioned in this study.
3. There is not much difference between the value of

the optimal function (which is a combination of

total error and correlation coefficient) of the model

wherein the FRP strain efficiency factor is a function

of the strain ratio and that of the one wherein FRP

strain efficiency factor is a function of the combina-

tion of the strain ratio and the effective stiffness

ratio. Therefore, considering the convenience of

the model wherein the FRP strain efficiency factor

is a function of the strain ratio, it can be selected as

the optimal model.
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