
Survival Analysis in R

David Diez

This document is intended to assist an individual who has familiarity with R and who is taking a
survival analysis course. Specifically, this was constructed for a biostatistics course at UCLA. Many
theoretical details have been intentionally omitted for brevity; it is assumed the reader is familiar
with the theory of the topics presented. Likewise, it is assumed the reader has basic understanding
of R including working with data frames, vectors, matrices, plotting, and linear model fitting and
interpretation.

Functions that are introduced will only have the key arguments mentioned and discussed. Most
functions have several other (optional) arguments, however, many of these will not be useful for
an introductory course. The functions, with the exception of those I wrote, have well-written
descriptions that specify each of the potential arguments and their use. The functions I have
written include documentation on the following web site:

<http://www.stat.ucla.edu/~david/teac/surv/>

Ideally, this survival analysis document would be printed front-to-back and bound like a book. No
topics run over two pages and those that are two pages would then be on opposing pages, making
a topic’s introduction available without the need to flip back and forth between pages (unless the
reader forgets a previous topic, then some flipping may be necessary). A more thorough look at
Cox PH models beyond what is discussed here is available in a guide constructed by John Fox,
which is listed in the References.

Table of Contents

Topic Page
Packages and data sets 2
Survival objects 3
Kaplan-Meier estimate 4-5
Confidence bands 6
Cumulative hazard function 7
Mean and median estimates 8
Tests for two or more samples 9
Cox PH models, contant covariates 10-11
Cox PH models, time-dependent covariates 12-13
Accelerated failure-time models 14-15
References 16

1

R packages :: survival & KMsurv :: The package survival is used in each example
in this document. Every data set used is found in the package KMsurv, which are the data sets
from Klein and Moeschberger’s book. To obtain one or both of these packages (if they were not
previously installed), use

> install.packages(’survival’)
> install.packages(’KMsurv’)

To load the libraries, use

> library(survival)
> library(KMsurv)

To view available data sets, use library(help=KMsurv). To load a data set, use the function
data():

> data(aids)
> aids

infect induct adult
1 0.00 5.00 1
2 0.25 6.75 1
...
294 7.00 0.75 0
295 7.25 0.25 0

The ’...’ denotes output omitted for brevity. Occasionally the ’...’ will itself be omitted. If
the packages survival and KMsurv are both loaded, typing in the sample code in this document’s
examples will allow the reader to reproduce the results. [[As mentioned, this assumes the libraries
are loaded. Also, any variables already in the workspace with names common with any commands,
variables, or column names in the examples must be removed using rm() to ensure the examples
will run.]]

To make columns available for use as variables, use attach():

> attach(aids)
> infect

[1] 0.00 0.25 0.75 0.75 0.75 1.00 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.50
...
[281] 5.25 5.25 5.50 5.50 5.50 5.75 6.00 6.00 6.25 6.25 6.50 6.75 6.75 7.00
[295] 7.25

Detaching the data set when done is a good habit and can prevent errors within R (since two data
sets may have common column names):

> detach(aids)

2

Survival object :: Surv(time, time2, event, type) :: Before complex func-
tions may be performed, the data has to be put into the proper format: a survival object. In
particular, the constructions that will be outlined here are based on the data that is right-censored
or left-truncated and right-censored, and the function Surv() will be used to construct these sur-
vival objects.

Right-censored :: For right-censored data, only the time and time2 arguments need be filled:

> data(tongue); attach(tongue) # the following will not affect computations

The following object(s) are masked from package:stats :

time

> # subset for just the first group by using [type==1]
> my.surv.object <- Surv(time[type==1], delta[type==1])
> my.surv.object
[1] 1 3 3 4 10 13 13 16 16 24 26 27 28 30
...
[43] 101+ 104+ 108+ 109+ 120+ 131+ 150+ 231+ 240+ 400+
> detach(tongue)

Provided the arguments of Surv() are filled in order, the argument labels need not be specified.
Here time is a vector of the event or censoring times (whichever occurs first) and delta is a vector
of {δi}, the indicator variable denoting if the event was observed (1) or censored (0). For this
indicator variable, 1 and 0 may be replaced with TRUE and FALSE, respectively, if that is preferable.

Left-truncated and right-censored :: For left-truncated and right-censored data, the first three
arguments in Surv() will be filled:

> data(psych); attach(psych)
> my.surv.object <- Surv(age, age+time, death)
> my.surv.object
[1] (51,52] (58,59] (55,57] (28,50] (21,51+] (19,47] (25,57]
...
[22] (29,63+] (35,65+] (32,67] (36,76] (32,71+]
> detach(psych)

The left-truncation time is entered first as the variable time; the event time (or censoring time) is
time2; the indicator variable for whether the event was observed, {δi}, is assigned to event.

Other options :: To do interval censoring, use time for the left ends of the intervals, time2 for
the right ends of the intervals, and type="interval2"; event is not used for interval censoring.
There are more types of survival data that may be transformed into a survival object, however, they
will not be discussed here. Note that not all functions will accept all types of data. For example,
interval-censored data will not be accepted by the majority of the functions in survival.

3

Kaplan-Meier estimate and pointwise bounds :: The Kaplan-Meier estimate
of the survival function, S(t), corresponds to the non-parametric MLE estimate of S(t). The
resulting estimate is a step function that has jumps at observed event times, ti. In general, it is
assumed the ti are ordered: 0 < t1 < t2 < · · · < tD. If the number of individuals with an observed
event time ti is di, and the number of individuals at risk (ie, who have not experienced the event)
at a time before ti is Yi, then the Kaplan-Meier estimate of the survival function and its estimated
variance is given by

Ŝ(t) =

{
1 if t < t1∏

ti≤t

[
1− di

Yi

]
if t1 ≤ t

V̂ [Ŝ(t)] =
[
Ŝ(t)

]2
σ̂2

S(t) =
[
Ŝ(t)

]2 ∑
ti≤t

di

Yi(Yi − di)

The pointwise confidence bounds (not the confidence bands) for the "plain" (linear) and "log-log"
options provided in R are given by(

Ŝ − Z1−α/2σ̂S(t)Ŝ(t), Ŝ − Z1+α/2σ̂S(t)Ŝ(t)
)

(
Ŝ1/θ(t), Ŝθ(t)

)
, where θ = exp

{
Z1−α/2σ̂S(t)

log Ŝ(t)

}

R code :: survfit(formula, conf.int = 0.95, conf.type = "log") :: The function
survfit() is used to find the Kaplan-Meier estimate of the survival function. There are three
arguments of particular interest: formula, conf.int, and conf.type. formula will be a survival
object (and can be made more complex), and it is the only required input:

> data(tongue); attach(tongue)
> my.surv <- Surv(time[type==1], delta[type==1])
> survfit(my.surv)
Call: survfit(formula = my.surv)

n events median 0.95LCL 0.95UCL
52 31 93 67 Inf

The argument conf.int is the confidence interval level and ranges between 0 and 1 with the default
0.95. conf.type is the type of confidence interval or, more accurately, the transformation used
to construct the confidence interval. The default is ’log’, which equates to the transformation
function g(t) = log(t), not g(t) = log(− log(t)), which is ’log-log’. A linear confidence interval
is created by using the argument conf.type=’plain’. At this time, there is not a simple way to
compute the confidence interval for the arcsine-squareroot transformation except by using output
from survfit(). [[Using the output information from survfit() (with any confidence interval
type), which is discussed below, and the formula provided in Klein and Moeschberger’s text should
make this computation rather straightforward.]]

The simple commands above would yield a survival function fit, which may be obtained either
by looking at summary(survfit(my.surv)) or by looking at the function’s hidden output. This

4

hidden information is where the Kaplan-Meier estimate, a 95% confidence bound, along with the
{ti}, {di}, and {Yi} are saved. All of this data will be output by looking at the summary. To get
the output in individual vectors, use the following commands (the actual outputs are omitted for
brevity):

> my.fit <- survfit(my.surv)
> summary(my.fit)$surv # outputs the Kaplan-Meier estimate at each t_i
> summary(my.fit)$time # {t_i}
> summary(my.fit)$n.risk # {Y_i}
> summary(my.fit)$n.event # {d_i}
> summary(my.fit)$std.err # standard error of the K-M estimate at {t_i}
> summary(my.fit)$lower # lower pointwise estimates (alternatively, $upper)

The Kaplan-Meier estimate may be plotted using plot(my.fit). Typical arguments in the plot
function may be used to improve the graphical aesthetics:

> plot(my.fit, main="Kaplan-Meier estimate with 95% confidence bounds",
+ xlab="time", ylab="survival function")

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier estimate with 95% confidence bounds

time

su
rv

iv
al

 fu
nc

tio
n

Figure 1: Sample output where only the title, x-axis and y-axis labels have been specified.

One potential issue is when different groups have their data mixed together with a separate vector
containing the ’key’ to which event times and censoring values correspond to which groups. There
are two good options; subset the data like in my.surv or specify groups in the formula argument:

> my.fit1 <- survfit(Surv(time, delta) ~ type)

If formula is made more complex in this way, the output vectors for each type are merged into one
and an output vector, summary(my.fit)$strata, is created and designates which components of
the output correspond to which types. This vector may be used to do manual computations within
a group via subsetting.

> detach(tongue)

5

Confidence bands :: The confidence intervals constructed on the previous pages are only
pointwise confidence intervals. Confidence bands, which are a bit more generalized, can also be
constructed. These bands would be bounds on an entire range of time. That is, for a 95% confidence
band, the probability that any part of the true curve is out of the confidence bands is 0.05. No
functions within the package survival will create confidence bands (in the sense that is being
discussed here), however, a function that will create the bands can be downloaded:

> source(’http://www.stat.ucla.edu/~david/teac/surv/conf-bands.R’)

The form of the function is given as

conf.bands(surv.object, conf.type=’plain’, type=’ep’, tL=NA, tU=NA)

Here, surv.object is a survival object, conf.type may be ’plain’, ’log-log’, or ’asin-sqrt’,
type may be either ’ep’ or ’hall’ (for Hall-Wellner bands), and finally tL and tU are optional
to limit the scope of the confidence bands’ meaning to hold from tL to tU. The appropriate value,
cα(aL, aU) for EP or kα(aL, aU) for Hall-Wellner, must be input when requested by conf.bands():

> data(bmt); attach(bmt)
> my.surv <- Surv(t2[group==1], d3[group==1])
> my.cb <- conf.bands(my.surv, type=’hall’, 100, 600)

a_L: 0.1052632 | a_U: 0.594237
Enter confidence coefficent: 1.3211

> plot(survfit(my.surv), xlim=c(100, 600), xlab=’time’,
+ ylab=’Estimated Survival Function’, main=’Reproducing
+ Confidence Bands for Example 4.2 in Klein/Moeschberger’)

100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reproducing Confidence Bands for Example 4.2 in Klein/Moeschberger

time

E
st

im
at

ed
 S

ur
vi

va
l F

un
ct

io
n

K−M survival estimate
pointwise intervals
confidence bands

Figure 2: Recall that the default for the pointwise confidence bands is a log transformation, so the
pointwise confidence intervals will not be symmetric.

> lines(my.cb$time, my.cb$lower, lty=3, type=’s’)
> lines(my.cb$time, my.cb$upper, lty=3, type=’s’)
> legend(locator(1), legend=c(’K-M survival estimate’,
+ ’pointwise intervals’,’confidence bands’), lty=1:3)
> detach(bmt)

6

Cumulative Hazard :: The cumulative hazard function and the survival function are
related in the following way for continuous data:

S(t) = exp {−H(t)}

This offers an immediate estimation method of H(t) by taking the negative of the log of Ŝ(t):
Ĥ(t) = − log Ŝ(t). A second method to estimate H(t) is using the Nelson-Aalen estimator and its
variance:

H̃(t) =
∑
ti≤t

di

Yi
(assuming t1 ≤ t, otherwise it is 0), σ2

H(t) =
∑
ti≤t

di

Y 2
i

R code :: There is not a function from survival that will automatically compute either form of
the cumulative hazard function, but this can be done by hand using output from survfit():

> data(tongue); attach(tongue)
> my.surv <- Surv(time[type==1], delta[type==1])
> my.fit <- summary(survfit(my.surv))
> H.hat <- -log(my.fit$surv); H.hat <- c(H.hat, H.hat[length(H.hat)])

Then, using H.hat with my.fit$time, a plot (or table) can be made. Alternatively, the Nelson-
Aalen estimator may be constructed nearly as easily:

> h.sort.of <- my.fit$n.event / my.fit$n.risk
> H.tilde <- vector()
> for(i in 1:length(h.sort.of)) H.tilde[i] <- sum(h.sort.of[1:i])
> H.tilde <- c(H.tilde, H.tilde[length(H.tilde)])
> plot(c(my.fit$time, 250), H.hat, xlab=’time’, ylab=’cumulative hazard’,
+ main=’comparing cumulative hazards’, ylim=range(c(H.hat, H.tilde)), type=’s’)
> points(c(my.fit$time, 250), H.tilde, lty=2, type=’s’)
> legend(locator(1), legend=c("H.hat","H.tilde"), lty=1:2)

Figure 3: Comparing the two cumulative hazard function estimates. 250 was appended to the time
and the hazard functions were extended for aesthetics.

> detach(tongue)

7

Mean and median estimates with bounds :: The median survival time is de-
fined to be the time t0.5 such that S(t0.5) = 0.5. Given an estimate of the survival function using
Kaplan-Meier, this may be obtained graphically by drawing a horizontal line at 0.5. The estimate
is where Ŝ(t) crosses 0.5, and the confidence bounds for t0.5 are given by the points at which this
horizontal line crosses over the confidence bounds of Ŝ(t).

The mean survival time (and its respective estimate) is given by

µ =
∫ ∞

0
S(t)dt, µ̂ =

∫ ∞

0
Ŝ(t)dt

Because S(t) (and/or Ŝ(t)) may not converge to zero, the estimate may diverge. A more commonly
used definition is µτ =

∫ τ
0 S(t)dt with the corresponding estimate µ̂τ =

∫ τ
0 Ŝ(t)dt, where τ is a

finite positive number. A possible choice of τ is the largest observed or censored time. Letting ti,
Yi, di, and D be as described in the Kaplan-Meier estimate, the estimated variance of µ̂τ is

V̂ (µ̂τ) =
D∑

i=1

[∫ τ

ti

Ŝ(t)dt

]2 di

Yi(Yi − di)

R code :: survfit(formula, conf.int = 0.95, conf.type = "log") :: The median and
its bounds may be estimated using survfit() in the same manner as finding Ŝ(t), however, this
time the immediate output is viewed instead of the summary output:

> data(drug6mp); attach(drug6mp)
> my.surv <- Surv(t1, rep(1, 21)) # all placebo patients observed
> survfit(my.surv)
Call: survfit(formula = my.surv)

n events median 0.95LCL 0.95UCL
21 21 8 4 12

Using survfit() in conjunction with print(), the mean survival time and its standard error may
be obtained:

> print(survfit(my.surv), show.rmean=TRUE)
Call: survfit(formula = my.surv)

n events rmean se(rmean) median 0.95LCL 0.95UCL
21.00 21.00 8.67 1.38 8.00 4.00 12.00

The show.rmean=TRUE argument is necessary to obtain the mean and its standard error. The
computed estimate automatically sets τ , the integral’s upper bound, as the largest observed or
censored time.

> detach(drug6mp)

8

Tests for two or more samples :: Given two or more samples, is there a difference
between the survival times? Setting up hypotheses for this problem,

• H0 : h1(t) = h2(t) = · · · = hn(t) for all t.

• HA : hi(t0) 6= hj(t0) for at least one pair i, j and time t0.

Let

• ti be times where events are observed (assume these are ordered and there are D such times),

• dik be the number of observed events from group k at time ti,

• Yik be the number of subjects in group k that are at risk at time ti,

• di =
∑n

j=1 dij ,

• Yi =
∑n

j=1 Yij , and

• W (ti) be the weight of the observations at time ti.

Then to test the hypothesis above, a vector Z is computed, where

Zk =
D∑

i=1

W (ti)
[
dik − Yik

di

Yi

]

The covariance matrix Σ̂ is also computed from the data (the formulas to compute this are found
on page 207 of Klein and Moeschberger’s book). Then the test statistic is given by X2 = Z ′Σ̂−1Z,
which, under the null hypothesis, is distributed as a χ2 distribution with n degrees of freedom.

R code :: survdiff(formula, rho=0) :: To check the null hypothesis, use survdiff(). The
first argument is a survival object against a categorical covariate variable that is typically a variable
designating which groups correspond to which survival times. The output directly from survdiff()
is of most use (summary() of a survdiff() object does not provide much information).

> data(btrial); attach(btrial)
> survdiff(Surv(time, death) ~ im) # output omitted

The second argument shown, rho, designates the weights according to Ŝ(t)ρ and may be any
numeric value. The default is rho=0, which corresponds to the log-rank test. When rho=1, this is
the ”Peto & Peto modification of the Gehan-Wilcoxon test”:

> survdiff(Surv(time, death) ~ im, rho=1) # output omitted

To give greater weight to the first part of the survival curves, use rho larger than 0. To give weight
to the later part of the survival curves, use rho smaller than 0. The output of survdiff is relatively
self-explanatory. A χ2 statistic is computed along with a p-value.

> detach(btrial)

9

Cox proportional hazards model, constant covariates :: The basic Cox
PH model attempts to fit survival data with covariates z to a hazard function of the form

h(t|z) = h0(t) exp
{
β′z

}
where β is an unknown vector. h0(t) is the baseline hazard, which is non-parametric. Primary
interest lies in finding the parameter β, which is found by solving the partial likelihood:

L(β) =
D∏

i=1

exp
[
β′z(i)

]∑
j∈R(ti)

exp {β′zj}
, R(ti) is the ’risk set’ at time ti

Given the estimate of β, β̂ (a vector), along with the covariance matrix of the estimates, Î−1,
β̂ ∼ AN(β, Î−1) holds approximately since Î → I as n → ∞. This approximation makes doing
”local tests” possible (a local test checks a null hypothesis that is not the global null). A local null
hypothesis can usually be put into matrix form, Cβ = d, where C is a q× p matrix of full rank and
d is a vector of length q. Under this setup, the test statistic is

X2
W =

(
Cβ̂ − d

)′ [
CÎ−1C ′

]−1 (
Cβ̂ − d

)
,

which under the null hypothesis follows χ2
q (this is the Wald test).

Beyond obtaining test p-values, there may be interest in the survival function for particular covari-
ates. If the estimate of the baseline survival function, Ŝ0(t), is provided, then the estimate of the
survival function for an individual with covariates zk may be obtained via

Ŝ(t|zk) =
[
Ŝ0(t)

]exp(β̂′zk)

R code :: coxph(formula, method) :: The function coxph() fits a Cox PH model to the
supplied data. The two arguments of particular interest are formula and method. formula will
be almost identical to fitting a linear model (via lm()) except that the response variable will be a
survival object instead of a vector. An example of a simple setup is the following:

> data(burn); attach(burn)
> my.surv <- Surv(T1, D1)
> coxph(my.surv ~ Z1 + as.factor(Z11), method=’breslow’) # output omitted

Two covariates have been used in this example. The second argument listed, method, is used to
specify how to handle ties. The default is ’efron’. Other options are ’breslow’ and ’exact’.

The bulk of useful information from coxph() comes from the summary, which includes

• estimates of the βk, including standard errors and p-values for each test H0 : βk = 0 with the
other βj = β̂j ,

• estimate of the risk ratio with confidence bounds, and

• p-values for likelihood ratio, Wald and score tests for the global null, H0 : βi = 0 for all i.

10

More complex hypotheses may be checked using other output from the model fit:

> coxph.fit <- coxph(my.surv ~ Z1 + as.factor(Z11), method=’breslow’)
> coxph.fit$coefficients # may use my.fit$coeff instead
> coxph.fit$var # I^(-1), estimated cov matrix of the estimates
> coxph.fit$loglik # log-likelihood for alt and null MLEs, resp.

A rudimentary function for doing local checks (using C and d) has been written and placed online.
It may be loaded using the following command:

> source(’http://www.stat.ucla.edu/~david/teac/surv/local-coxph-test.R’)

The function loaded is called local.coxph.test and its format is

local.coxph.test(coxph.fit, pos, C=NA, b=NA, sign.digits=3)

Here coxph.fit is an output from coxph(), pos is a vector of the coefficients (their positions)
to include in the local test, C and d are the matrices described on the previous page. The last
parameter is the number of significant figures to include in the output with the default set to 3.
This function may be convenient for determining whether a factor variable should be included in a
model. For example,

> coxph.fit
...

coef exp(coef) se(coef) z p
Z1 0.497 1.644 0.208 2.38 0.017
as.factor(Z11)2 -0.877 0.416 0.498 -1.76 0.078
as.factor(Z11)3 -1.650 0.192 0.802 -2.06 0.040
as.factor(Z11)4 -0.407 0.666 0.395 -1.03 0.300
...
> local.coxph.test(coxph.fit, 2:4)
[1] 0.103

In this example, Z11 was a factor variable. To check the p-value of whether it should be included,
a test on the second through fourth parameters that were fit in my.fit had to be checked (namely,
a global test on as.factor(Z11)2, as.factor(Z11)3, and as.factor(Z11)4). The p-value of
whether to include Z11 is then 0.103.

To obtain the baseline survival function from a Cox PH model, apply survfit() to coxph():

> my.survfit.object <- survfit(coxph.fit)

The output from survfit() are all the same as when it was applied to a survival object (and it
may be plotted, just like the previous survfit() objects).

> detach(burn)

11

Cox proportional hazards model, time-dependent covariates :: Time-
independent covariates are easy to work with in R, however, working with time-dependent covariates
is an exercise in organization. There is a way to work around the fact that there aren’t functions in
R that will directly accept time-dependent covariates: use left-truncation liberally. This works on
the basic principle that if there is one right-censored observation, say 45+, it is the same as having
two observations that are left-truncated right-censored, (0, 12+] and (12, 45+], where the choice of
splitting the observation at 12 was arbitrary. Furthermore, these intervals could be broken down
further. This is the workaround used in R to make time-dependent variables.

The documentation by John Fox listed in the references goes into greater depth than I will go into
here and I suggest reading his document (specifically, pages 7-11). Essentially, the reader is taking
each observation, cutting it up into many left-truncated observations, and then making the covari-
ates, both those that are time-dependent and time-independent, be appropriate for each interval.

Writing up code for this in R will likely consist of the following steps:

• For each individual, break their observation up at appropriate time points into ki intervals.
For each interval, note the start and stop times, whether the event was observed or not, and
the covariates (both time-independent and time-dependent). Ideally, each different variable
will be stored in a vector and position i in each vector will correspond to the same individual
and truncated/censored interval.

• Now the left-truncated data may be constructed by using the start, stop, and observation
vectors plus the model may be constructed using coxph().

This is a very brief discussion of how this may be done and a review of Fox’s description is highly
recommended. Fox is more thorough and his examples are certainly useful in working out how one
may consider approaching this type of problem.

One case of interest is creating a new time-dependent covariate, Zt
i , from another covariate, Zi.

This may be done by using a transformation on the time and multiply the result by Zi:

Zt
i = Zi ∗ transformation(t)

A common transformation is log but others may be used. A function to create a type of variable
of this form and also to run a Cox PH model with it is the following:

time.dep.coxph(d.f, col.time, col.delta, col.cov, td.cov, transform=log,
method=’efron’, output.model=TRUE, output.data.frame=FALSE, verbose=TRUE)

The function may be loaded using

> source(’http://www.stat.ucla.edu/~david/teac/surv/time-dep-coxph.R’)

Here,

• d.f is a data frame with all of the original data,

• col.time is the column number (or name) of the event/censoring times,

12

• col.delta is the column number/name indicating which events were observed,

• col.cov is a vector of the column numbers/names of the covariates to be considered in the
model, and

• td.cov is the column number/name of the covariate Zi to be used to create the time-
dependent covariate. Zi must be a vector with only 2 unique numerical values. (ex, Zi

is a vector of 0’s and 1’s).

The following arguments have defaults, as are specified above:

• transform is the type of transformation to be used on time,

• method is the argument to be given for method in coxph(),

• output.model indicates whether the Cox PH model should be included in the output,

• output.data.frame indicates whether the time-dependent data frame that was created should
be output (this may be useful if many closely related models are going to be checked), and

• verbose indicates whether the user should be notified at how far along the function is at
computing the data frame to be used in the Cox PH model (this is useful to see how fast the
function is running).

Below is an example of how to use this function:

> data(burn); attach(burn)
> source(’http://www.stat.ucla.edu/~david/teac/surv/time-dep-coxph.R’)
> td.coxph <- time.dep.coxph(burn, ’T1’, ’D1’, 2:4, ’Z1’, verbose=F)

The covariates in the output will be of the same order as specified in ’col.cov’.

> td.coxph # some model output is omitted for brevity
...

coef exp(coef) se(coef) z p
Z1 1.3569 3.884 0.719 1.886 0.0590
Z2 0.6899 1.994 0.231 2.981 0.0029
Z3 0.0496 1.051 0.302 0.164 0.8700
time.dep.cov -0.3383 0.713 0.312 -1.085 0.2800

The default output of time.dep.coxph() is the output of coxph(). It has all the usual outputs
of coxph(). For example, log-likelihood:

> td.coxph$loglik
[1] -420.4825 -411.8814
> detach(burn)

13

Accelerated failure-time models :: An accelerated failure-time (AFT) model is a
parametric model with covariates that takes the form S(t|z) = S0(t exp(γ′z)), where γ is a vector of
parameters and z is the vector of covariates. This model essentially puts individuals with different
covariates on different time scales. The model assumes the log of failure time, log X, is in a linear
relationship with a mean µ, the covariates and parameters γ′z, and an error term σW , where W
takes a particular distribution.

log X = µ + γ′z + σW

The main choice to be made is which distribution to use. The options discussed in Klein and
Moeschberger are shown in the table below:

distribution df included in survival?
exponential 1 yes
Weibull 2 yes
lognormal 2 yes
log logistic 2 yes
generalized gamma 3 no

R code :: survreg(formula, dist=’weibull’) :: The function survreg() is used for AFT
modeling. The first argument is formula, which is a typical formula argument. The argument
dist has several options (’weibull’, ’exponential’, ’gaussian’, ’logistic’, ’lognormal’,
and ’loglogistic’) and is the parametric model used. The example code below follows Example
12.2 in Klein and Moeschberger:

> data(larynx); attach(larynx) # output omitted
> sr.fit <- survreg(Surv(time, delta) ~ as.factor(stage) + age, dist=’weibull’)
> summary(sr.fit)
...

Value Std. Error z p
(Intercept) 3.5288 0.9041 3.903 9.50e-05
as.factor(stage)2 -0.1477 0.4076 -0.362 7.17e-01
as.factor(stage)3 -0.5866 0.3199 -1.833 6.68e-02
as.factor(stage)4 -1.5441 0.3633 -4.251 2.13e-05
age -0.0175 0.0128 -1.367 1.72e-01
Log(scale) -0.1223 0.1225 -0.999 3.18e-01

Scale= 0.885

Weibull distribution
Loglik(model)= -141.4 Loglik(intercept only)= -151.1
Chisq= 19.37 on 4 degrees of freedom, p= 0.00066
Number of Newton-Raphson Iterations: 5

Here (Intercept) corresponds to the estimate of µ, Log(scale) corresponds to the estimate of
log σ, and the other estimates correspond to covariate coefficient estimates. Also of significant
interest is the log-likelihood, which may be used to find the AIC:

AIC = −2 log L + 2p

14

In this case, the AIC is equal to 286.8 (p = 2). The AIC may be used for model selection (fit several
models and determine which has the lowest AIC). For example, we may fit an exponential model
on the same data to find the AIC of this model and compare:

> sr.fit.exp <- survreg(Surv(time, delta) ~ as.factor(stage) + age, dist=’exponential’)
> summary(sr.fit.exp)
...

Value Std. Error z p
(Intercept) 3.7550 0.9902 3.792 1.49e-04
as.factor(stage)2 -0.1456 0.4602 -0.316 7.52e-01
as.factor(stage)3 -0.6483 0.3552 -1.825 6.80e-02
as.factor(stage)4 -1.6350 0.3985 -4.103 4.08e-05
age -0.0197 0.0142 -1.388 1.65e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -141.9 Loglik(intercept only)= -151.1
Chisq= 18.44 on 4 degrees of freedom, p= 0.001
Number of Newton-Raphson Iterations: 4

The AIC for the exponential is 285.8 (p = 1), which is lower than the AIC for the Weibull, which
suggests the exponential model may be more appropriate.

Alternatively, it could have been noted that the exponential model is a special case of the Weibull
model; when σ = 1, the Weibull model is an exponential. This suggests two alternatives for model
selection:

• a likelihood ratio test could be run to check if the parameter σ is necessary, or

• it could have been noted that Log(scale) (ie, log σ̂) is not statistically significant relative to
0, again suggesting the exponential model may be more appropriate.

Some of the hidden output from a survreg() object:

> # the output is omitted from each command below
> sr.fit.exp$coeff # covariate coefficients
> sr.fit.exp$icoef # intercept and scale coefficients
> sr.fit.exp$var # variance-covariance matrix for coeff and icoef
> sr.fit.exp$loglik # log-likelihood
> sr.fit$scale # not using sr.fit.exp since that is, by default, 1

Detaching the data:

> detach(larynx)

15

References ::

[1] Lumley, Thomas, 2007. The Survival Package (R help guide).

[2] Fox, John 2002. Cox Proportional-Hazards Regression for Survival Data. Appendix to An R
and S-PLUS Companion to Applied Regression.

[3] Klein, John P., and Melvin L. Moeschberger. Survival Analysis: Techniques for Censored and
Truncated Data. New York: Springer, 2003.

16

