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Reliability analysis is used to evaluate the safety of engineering structures subject to uncertainties. Finite
element method (FEM) is a popular engineering tool used to evaluate the reliability of complex engineer-
ing structures. In general, FEM�based reliability analysis of engineering structures is influenced by the
mesh density of the model and the accuracy of the results requires the use of a very fine mesh density
in the analysis. However, it is often impractical for reliability analysis complex structures, especially
those with low failure probabilities. Hence, a new method is proposed to address this issue, which pro-
vides an accurate estimate of the failure probability at low computational cost. In this method, the control
variate technique is used in conjunction with the FEM-based reliability analysis, where the failure prob-
ability integral is broken down into two separate integral terms. The first term provides a low-cost esti-
mate of the failure probability using a model with coarse mesh density, whereas the second term
regulates the failure probability based on fewer finite element analyses with fine mesh density. The
adjusted correction factors are also presented in this paper in order to improve the efficiency of the pro-
posed approach. The proposed approach is used to estimate the reliability index of four engineering
structures and the results show that the method is efficient and practical for FEM-based reliability anal-
ysis of engineering structures.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental problem in structural reliability theory is
to compute the failure probability (Pf), which is a multifold
probability integral defined as:

Pf ¼ Prob½gðxÞ 6 0� ¼
Z
gðxÞ60

f ðxÞdx; ð1Þ

where x is a vector of random variables representing uncertain
structural quantities. The functions gðxÞ and f ðxÞ denote the limit
state function and the joint probability density function (PDF) of
x, respectively.

In most engineering applications, the multifold probability inte-
gral given by Eq. (1) is difficult to compute because it involves
multi-dimensional integration, where the dimension equals to
the number of basic random variables.
Various analytical and simulation methods have been devel-
oped over the years to solve the integral above. First order reliabil-
ity methods (FORMs) are typically used to estimate the failure
probability without incurring long computational processing time
[1–4]. However, the main disadvantage of these methods is that
they often do not yield accurate results for cases involving non-
normal distributions, limit state functions that are highly nonlin-
ear, multiple basic variables, and complex failure surfaces [5]. For
this reason, a number of simulation methods have been developed
to compute the failure probability with high accuracy [5–7]. One of
these methods is Monte Carlo simulation (MCS), which involves
generating random samples based on the mean value of the vari-
ables [6].

For small failure probabilities, the MCS method is a rather time-
consuming approach due to the large number of samples required
[6–8]. This disadvantage may be eliminated by using an instru-
mental PDF, hðxÞ, to generate more samples within the failure
region:

Pf ¼
Z
gðxÞ60

f xðxÞ
hxðxÞ
� �

hxðxÞdx; ð2Þ
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This method is known as importance sampling (IS). The impor-
tance sampling estimator is given by [9,10]:

Pf ¼ 1
N

XN
i¼1

I½gðxiÞ� f ðxiÞhðxiÞ ; ð3Þ

The weighted average simulation method (WASM) is also an
efficient simulation method to compute the failure probability
and determine the most probable point (MPP) [2,6–8]. In this
method, random numbers are first generated based on the initial
assumption of the failure probability. Next, a weight index is
assigned to the generated samples based on their competency
and the failure probability is estimated using the following
equation:

Pf ¼

PN
i¼1I½gðxiÞ�ð

Ys
j¼1

f jðiÞÞ

PN
i¼1ð
Ys
j¼1

f jðiÞÞ
; ð4Þ

In addition, other methods such as line sampling (LS), subset
simulation (SS), metamodel line sampling, and unbiased meta-
model method have been developed to overcome the limitations
of MCS for various engineering problems [11–14].

However, these methods may not be feasible in practice when
the performance function needs to be solved using a time-
consuming approach such as finite element method (FEM).

In deterministic analyses, mesh convergence analysis [15,16]
and grid convergence index (GCI) [17–20] are used to select
the suitable finite element (FE) model and the simulation results
are compared with those obtained from analytical functions or
experiments [21–24]. Once mesh convergence is achieved, the
differences in the FE results obtained from different mesh den-
sities will be small and these small errors are considered as
acceptable. Several researchers have assessed the effects of
mesh density in deterministic analyses [25,26]. For example,
Waide et al. [27] investigated the load transfer characteristics
of two types of cemented hip replacements with fibrous tissue
layer using FEM and they compared the results with those
obtained from experiments. The results showed that the maxi-
mum difference between the FE and experimental results was
15%. In addition, one study on spinal segments showed that
the difference in the FE results was less than 5% once mesh con-
vergence was attained, which the researchers perceived as ade-
quate [28].

However, there are very few studies focused on the selection of
a suitable FE model for probabilistic reliability analysis [29].

This study shows that the errors considered as acceptable in
deterministic analysis (errors arising from inadequate mesh
density) have a significant effect on the evaluating the safety
of engineering structures and very fine mesh densities are
required to estimate the failure probability with reasonable
accuracy. Owing to the fact that it is impractical and time-
consuming to use models with very fine mesh densities in reli-
ability analysis, a new FEM-based reliability analysis method is
proposed in this study to compute the reliability index in a sim-
ple, efficient manner with a high degree of accuracy and low
computational cost.

2. Development of the adjusted control variate technique
(ACVAT) for FEM-based reliability analysis of engineering
structures

When the performance evaluation of an engineering structure
requires the use of FEM, Eq. (1) which is used to compute the
failure probability can be written as:
Pf ¼
Z
g60

f ðxÞdx ffi
Z
GFEA60

f ðxÞdx; ð5Þ

where GFEA 6 0 is the failure region. The performance of the struc-
ture in this domain is evaluated by FEM.

Even though it is possible to determine errors due to inade-
quacy of mesh density in deterministic analysis, it is challenging
to determine errors inherent in FEM-based reliability analysis.
Thus, the control variate technique (CVT) is adopted in this study
to tackle this issue.

Suppose that the objective is to estimate the following failure
probability integral:

EðpÞ ¼
Z

pðxÞf ðxÞdx; ð6Þ

where pðxÞ is the function of interest and f ðxÞ is the PDF of the input
x. When the function pðxÞ is not known or complex, estimation of
the failure probability integral becomes difficult. Hence, in the
CVT, it is assumed that there is another function gðxÞ, which is cor-
related with pðxÞ with a known mean. Hence, Eq. (6) can be approx-
imated as [30]:

EðpÞ ¼
Z

gðxÞf ðxÞdxþ
Z

ðpðxÞ � gðxÞÞf ðxÞdx: ð7Þ

In this formulation, gðxÞ is known as the control variate for pðxÞ.
Since the mean of the first term is known (or estimating its expec-
tation is easier than pðxÞ), the method transfers the difficulty of the
estimation to the second term. Indeed, pðxÞ effects on the total esti-
mation are reduced.

For FEM-based reliability problems, Eq. (1) can be written as:

Pf ¼
Z
g60

f ðxÞdx ffi
Z þ1

�1
p GFEA

fine

� �
f ðxÞdx; ð8Þ

where

p GFEA
fine

� �
¼ 1; GFEA

fine 6 0

0; GFEA
fine > 0

(
ð9Þ

In this equation, GFEA
fine represents the performance function

evaluated by the FE model with a very fine mesh density. Solving
reliability problems with this specification is impractical for
complex engineering problems. Hence, in the proposed approach
(i.e., ACVAT), the results obtained from the FE model with coarse
mesh density are used as the control variates of the FE model with
fine mesh density. Hence, the failure probability integral given by
Eq. (7) can be rewritten as:

Pf ¼
Z

g GFEA
coarse

� �
f ðxÞdxþ

Z
p GFEA

fine

� �
� g GFEA

coarse

� �� �
f ðxÞdx;

p GFEA
coarse

� �
¼ 1; GFEA

coarse 6 0

0; GFEA
coarse > 0

( ð10Þ

where GFEA
Coarse represents the performance function evaluated by the

FE model with coarse mesh density. It shall be noted that g GFEA
Coarse

� �
is the control variate of p GFEA

fine

� �
. Hence, Eq. (10) is rewritten as:

Pf ¼
Z

gðGFEA
coarseÞf ðxÞdxþ

P
pðGFEA

fineÞ � gðGFEA
coarseÞ

� �
N

; ð11Þ

where the sampling for estimation of the second term is performed
based on f ðxÞ and N represents the sample size. The first term is the
failure probability of the given problem, which is solved using the

FE model with coarse mesh density, i.e.,
R
g GFEA

Coarse

� �
f ðxÞdx ¼

Eðg GFEA
Coarse

� �
Þ ¼ PCoarse

f . Estimating the first term requires lower
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computational cost compared with estimating an accurate Pf .
Accordingly, Eq. (11) may be written in the following form:

Pf ¼ Pcoarse
f þ

P
p GFEA

fine

� �
� g GFEA

coarse

� �� �
N

; ð12Þ

with the following variance:

VarðPf Þ¼Var PCoarse
f

� �
þVar

Pn
i¼1 p GFEA

fine

� �
�g GFEA

Coarse

� �� �
N

0
@

1
A

� 1
N2

Xn
i¼1

Var p GFEA
fine

� �
�g GFEA

Coarse

� �� �
¼ 1
N
Var p GFEA

fine

� �
�g GFEA

Coarse

� �� �

¼ 1
N

Var pðGFEA
fineÞ

� �
þVar gðGFEA

CoarseÞ
� �

�2 �Cov p GFEA
fine

� �
;g GFEA

Coarse

� �� �h i
¼Var E GFEA

fine

� �� �
þ 1
N

Var g GFEA
Coarse

� �� �
�2 �Cov pðGFEA

fineÞ;gðGFEA
CoarseÞ

� �h i
ð13Þ

To ensure efficiency and accuracy of the ACVAT, the coarse
mesh density model needs to satisfy the following criterion:

Var g GFEA
Coarse

� �� �
< 2 � Cov p GFEA

fine

� �
; g GFEA

Coarse

� �� �
.

It is relatively easy to determine the FE models with coarse and
fine mesh densities using the proposed specification for linear and
mildly nonlinear problems. However, it shall be noted that it will
be rather arduous to determine the FE models with coarse and fine
mesh densities for highly nonlinear FE problems due to the fact
that in some cases, FE model with coarse mesh density is unable
to fully capture the relevant physics.

In order to estimate Pf in a more efficient manner, the results
obtained from the first term can be used to estimate the second
term, which is made possible by IS. For this purpose, one can use
the MPP and regions with high failure probabilities obtained from
the first-term approximation. Let qðxÞ be the new PDF for IS, where
the MPP of the first term may be used as the mean. Hence, Eq. (10)
can be written as:

Pf ¼ Pcoarse
f þ

Z pðGFEA
fineÞf ðxÞ
qðxÞ � gðGFEA

coarseÞf ðxÞ
qðxÞ

 !
qðxÞdx; ð14Þ

where the first term is an approximation of the failure probability
using the FE model with coarse mesh density and the second term
is used to evaluate the sampling results based on qðxÞ. The second
term shows the differences between the coarse and fine mesh den-
sities in the critical domains. In practice, the second term regulates
the errors resulting from inadequacy of mesh density in estimating
the failure probability given by the first term.

It is possible to improve the efficiency of the estimation by
applying linear regression on the ACVAT. Without a loss of gener-
ality, Eq. (7) may be written as follows:

EðpÞ ¼ 1
N

XN
k¼1

pðxÞ � a � 1
N

XN
k¼1

gðxÞ �
Z

gðxÞf ðxÞdx
 !

¼ a � EðgðxÞÞ þ 1
N

XN
k¼1

pðxÞ � agðxÞð Þ
 ! ð15Þ

The equation above is rewritten in the following generic form
for FEM-based reliability analysis:

Pf ¼ a � Pcoarse
f þ

Z p GFEA
fine

� �
f ðxÞ

qðxÞ � a �
g GFEA

coarse

� �
f ðxÞ

qðxÞ

0
@

1
AqðxÞdx

ffi a � Pcoarse
f þ 1

N

XN
k¼1

p GFEA
fine

� �
ðxÞ � a � g GFEA

coarse

� �
ðxÞ

� � ! ð16Þ

where a is a correction factor, which is a constant. The sampling is
performed by qðxÞ around the MPP, which is obtained from the
coarse mesh FE analysis. If a is defined appropriately, Eq. (16) will
have a lower variance than Eq. (14). There are two ways to estimate
the values of a [30–33], which are presented as follows:

2.1. Correction factor #1 (a1)

In this approach, the optimum value of a is determined by min-
imizing the variance of the estimation (Eq. (15)) with respect to a
[32]:

@VarðEðpÞÞ
@a

¼ 2a � VarðgðxÞÞ þ 2CovðgðxÞ;pðxÞÞ ¼ 0;) a

¼ �CovðgðxÞ;pðxÞÞ
VarðgðxÞÞ : ð17Þ

The adjusted form of a1 for FEM-based reliability analysis is
given by:

a1 ¼ �CovðpðGFEA
fineÞ; gðGFEA

coarseÞÞ
VarðgðGFEA

coarseÞÞ
: ð18Þ
2.2. Correction factor #2 (a2)

This correction factor was introduced in [33]. The adjusted form
of a2 used in this study is given by:

a2 ¼ �CovðgðGFEA
coarseÞ � gðGFEA

coarseÞ;pðGFEA
fineÞÞ

VarðgðGFEA
coarseÞ � gðGFEA

coarseÞÞ þ b2
g

; ð19Þ

where

bg ¼ E g GFEA
coarse

� �
� ĝ GFEA

coarse

� �h i
: ð20Þ

Both of these correction factors improve the efficiency of the
simulations and yields results with low variances, as delineated
in the references. Hence, it is desirable to apply these correction
factors to the ACVAT developed in this study. However, it shall
be highlighted that in estimating the second integral term (Eq.
(14)) and evaluating the performance (reliability) of the engineer-
ing structure, these correction factors may lead to problems in
attaining a converged solution when the results of the coarse and
fine mesh FE analyses are equal. For this reason, an alternative
approach is used to determine the correction factor. The idea here
is to remove the second term of Eq. (14) as follows:

Z pðGFEA
fineÞf ðxÞ
qðxÞ � a � gðG

FEA
coarseÞf ðxÞ
qðxÞ

 !
qðxÞdx ¼ 0;

Z pðGFEA
fineÞf ðxÞ
qðxÞ qðxÞ � a �

Z
gðGFEA

coarseÞf ðxÞ
qðxÞ qðxÞ ¼ 0; ð21Þ

a ¼
R pðGFEA

fineÞf ðxÞ
qðxÞ qðxÞR gðGFEA

coarseÞf ðxÞ
qðxÞ qðxÞ

¼
P pðGFEA

fineÞf ðxÞ
qðxÞP gðGFEA

coarseÞf ðxÞ
qðxÞ

:

This correction factor, named a3, removes the second term of
Eq. (14) and calibrates the initial failure probability estimated by
the FE model with coarse mesh density:

Pf ¼ a3 � Pcoarse
f ;

a3 ¼
P pðGFEA

fineÞf ðxÞ
qðxÞP gðGFEA

coarseÞf ðxÞ
qðxÞ

:
ð22Þ

The steps involved to solve FEM-based reliability problems
using the proposed ACVAT are presented as follows:
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Step 1: Perform mesh convergence analysis based on a deter-
ministic point of view.
Step 2: Evaluate the computational cost and accuracy of each FE
model. Select a FE model with a reasonably coarse mesh density
to determine the failure probability of the engineering structure
and select a FE model with fine mesh density (error: �1%) to
minimize errors due to mesh density inadequacy.
Step 3: Estimate the initial failure probability (PCoarse

f ), which is
the first term of Eq. (14), using the FE model with coarse mesh
density and determine the MPP. In simulation methods, the
MPP can be simply be determined as the sample with the max-
imum PDF in the failure region [9].
Step 4: Determine qðxÞ for sampling based on IS. Use the MPP as
the mean of qðxÞ and generate a few samples.
Step 5: Perform FE analysis with coarse and fine mesh densities
for the generated samples in order to determine the correction
factors (a1, a2, and a3) and the second term of Eq. (14).
Step 6: Estimate the failure probability of the engineering struc-
ture using Eq. (14).
Step 7: Check the convergence of the solution against the

desired accuracy using the following formula:
Pcurrent step
f

�Pprevious step
f

Pcurrent step
f

.

If the solution has converged, stop the simulation. Otherwise,
generate a new sample based on qðxÞ and repeat Steps 5–7.

3. Illustrative examples

3.1. Plate on elastic foundation

In order to demonstrate the applicability of the ACVAT, the reli-
ability of a plate (length �width � thickness: 300 in. � 300 in. � 1
in.) on an elastic foundation is evaluated as the first example. A
point load (50 kips) is applied at the center of the plate, as shown
in Fig. 1. The performance function of the problem is defined as
follows:

G ¼ Dallowable � DPlate; ð23Þ
where Dallowable is the maximum allowable deflection and DPlate is the
maximum deflection of the plate. The analytical function used to
compute the exact value of the maximum deflection (DExact) for a
plate on elastic foundation is given by [34]:

DExact ¼ Pk2

8K
; ð24Þ

where

k4 ¼ K
D
;

D ¼ Et3

12ð1� m2Þ
ð25Þ

where D is the flexural rigidity of the plate, K is the subgrade mod-
ulus, t is the plate thickness, E is the modulus of elasticity, and m is
the Poisson’s ratio. In this study, the maximum allowable deflection
P 

(A) (B)

K 
t 

Fig. 1. Plate on elastic foundation with applied point load: (A) Basic model; (B) FE
model.
is assumed to be Dallowable ¼ 0:25 in: an explicit performance func-
tion of the following form:

G ¼ 0:25� P
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� m2Þ

KEt3

s
: ð26Þ

The descriptive statistics of the basic random variables for the
plate on elastic foundation are presented in Table 1. In order to ver-
ify the accuracy of the proposed approach, MCS is used to compute
the reliability of the plate on elastic foundation using the proposed
explicit performance function and the reliability index is found to
be b ¼ 2:98.

In order to investigate the effect of mesh density on the FEM-
based reliability results, the plate is modeled with different mesh
densities (50 � 50, 70 � 70, 90 � 90, and 100 � 100 elements).
The performance function of the problem is given by:

G ¼ 0:25� DFEM; ð27Þ

where DFEM represents the maximum deflection of the plate com-
puted by the FE model. The reliability problem is solved for each
FE model independently and the results are presented in Table 2.
In this table, eModel ¼ j DExact�DPlate

DExact
j � 100 represents the error of the

FE model as the mean value of the random variables and ePF repre-
sents the error of the FE model in evaluating the reliability of the
structure. The scaled central processing unit (CPU) time is also pre-
sented for each FE model.

It can be seen from Table 2 that mesh density has a significant
effect on the reliability index estimations and a very fine mesh
density is required to minimize the error of FEM-based reliability
analysis. However, it is undesirable to use a FE model with very
fine mesh density for reliability analysis because this will increase
the computational processing time by up to 400%.

Hence, the ACVAT is developed in this study to address this
issue. Here, the FE model with coarse mesh density (50 � 50 ele-
ments) is used as the control variate for the FE model with fine
mesh density (100 � 100 elements). The failure probability is
approximated by using Eq. (14) and applying the correction factors
a1;a2 and a3. A total of 5000 analyses are performed using the FE
model with coarse mesh density to compute the initial failure
probability (PCoarse

f ) whereas 70 analyses are performed using the
FE model with fine mesh density to estimate the second term of
Eq. (14). With the ACVAT, the initial reliability index obtained
using FE model with coarse mesh density is found to be
bCoarse ¼ 4:12. By carrying out fewer analyses using the FE model
with fine mesh density, the value of the failure probability is
refined and the initial reliability index (bCoarse ¼ 4:12) becomes
b ¼ 3:06. The results are summarized in Table 3. It can be seen that
the accuracy of the solution obtained from the ACVAT shows good
agreement with that obtained from 5000 analyses using the FE
model with fine mesh density while the computational processing
time is reduced by a factor of �0.25. In addition, 100 independent
reliability analysis are performed in order to examine the variance
of the ACVAT and the result is also shown in Table 3. It is found that
the variance in estimation of the reliability index using the pro-
posed approach is very small.
Table 1
Descriptive statistics of the basic random variables for the plate on elastic foundation.

Variable Mean Distribution C.O.V*

K (kip/ft3) 800 Normal 0.1 [35]
P (kips) 50 Normal 0.1 [36]
E (kip/in2) 29000 Normal 0.076 [37]

* C.O.V: Coefficient of variation.



Table 2
Effect of mesh density on the reliability index estimations for the plate on elastic foundation. Note that the results are presented at mean values.

FE model eModel b ePF Scaled CPU time

50 � 50 11.71% 4.12 98.68% 1
70 � 70 5.47% 3.48 82.46% 2.09
90 � 90 2.15% 3.17 46.69% 3.29
100 � 100 1.37% 3.05 18.69% 4.05
Analytical function 0.00 2.98 0.00 –

Table 3
FEM-based reliability results for the plate on elastic foundation.

Parameters Reliability results

5000 coarse mesh FE analyses 5000 fine mesh FE analyses ACVAT: Coarse mesh results + 70 fine mesh FE analyses

Adjusted by a1 Adjusted by a2 Adjusted by a3

�b 4.12 3.058 3.067 3.067 3.060
Variance 0.0085 0.0078 0.0170

�b: Mean of reliability index.
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The effects of IS parameters on the accuracy of the reliability
index estimations are also investigated by varying the variance of
instrumental sampling function (VIS). For each VIS, the 95% confi-
dence interval is computed from 100 independent reliability anal-
yses using the ACVAT and the results are shown in Fig. 2. It can be
observed that the reliability index estimation is quite sensitive to
the VIS for the ACVAT adjusted by a2, unlike the estimations
obtained for the ACVAT adjusted by other correction factors. More-
over, the variance in the estimations is higher for the ACVAT
adjusted by a3 compared with those obtained for the ACVAT
adjusted by a1 and a2. In addition, the accuracy of the reliability
index estimation for the ACVAT adjusted by a3 is not sensitive to
the VIS.

In addition, it is found that from the coarse mesh FE analyses
that there are variations in the location of the design point and
therefore, the effect of this error on the reliability index estimations
is investigated in this study. Thus, for this analysis, the location of
the design point is multiplied with a number within the interval
[0.95, 1.05] and the resulting point is used as themean in the instru-
mental sampling PDF. The results are shown in Fig. 3. It can be seen
that the proposed correction factors within this interval do not lead
to fluctuations in the reliability index estimations.

Fig. 4 shows the effect of sampling size on the reliability indices
estimated using Eq. (14). It can be seen that the ACVAT yields good
results with a smaller number of samples (about 50 samples). This
0.75 0.95 1.2
3

3.02

3.04

3.06

3.08

3.1

3.12

3.14

VIS

95% Confidence Interval
Mean

0.75 0.95
3

3.02

3.04

3.06

3.08

3.1

3.12

3.14

V

95% Co
Mean

ybdetsujdA Adjusted 

Fig. 2. Sensitivity of the reliability index estimation
is certainly advantageous for FEM-based reliability analysis of
engineering structures, which can be rather time-consuming and
costly.

3.2. Single edge notch test specimen

The reliability of a rectangular plate (dimensions: 60 mm � 30
mm) with a single edge notch (length: 15 mm) is also investigated
to demonstrate the applicability of the ACVAT, as shown in Fig. 5.
The analytical function used to determine the stress intensity fac-
tor is given by [38]:

KI ¼ t
ffiffiffiffiffiffi
pa

p
F

a
B

� �
; ð28Þ

for which the numerical value for F is given as follows:

F
a
B

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B
pa

tan
pa
2B

� �r
� 0:752þ 2:02 a

B

� �þ 0:37 1� sin pa
2B

� �� �3
cos pa

2B

� � :

ð29Þ
The single edge notch test specimen is modeled using FEM, as

shown in Fig. 6. The simulations are carried out for different mesh
densities in order to predict the stress intensity factors and the
results are compared with those determined from the analytical
function (Eq. (28)), as shown in Table 4. It can be seen that the
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Fig. 3. Sensitivity of the reliability index estimations to variations in the location of the design point for the plate on elastic foundation.
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Fig. 4. Effect of sampling size on the reliability index estimations for the plate on elastic foundation.
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Fig. 6. FE model of the single edge notch test specimen: (A) Initial model; (B) Model
showing deformation in the Y-direction.
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scaled CPU time differs between the FE models with the coarse
(10 � 20 elements) and fine (200 � 400 elements) mesh densities
by a factor of �3076. This significant difference in computational
cost makes the application of the FE model with the fine mesh
density (200 � 400 elements) impractical for reliability analysis.
The descriptive statistics of the basic random variables for the
single edge notch test specimen are presented in Table 5. The per-
formance function of the problem is given by:



Table 4
Effect of mesh density on the stress intensity factor estimations for the single edge
notch test specimen. Note that the results are presented at mean values.

FE model KI ðMPa mm1=2Þ eModel Scaled CPU time

10 � 20 1726.823 11% 1
50 � 100 1893.006 2.4% 10.2
100 � 200 1915.734 1.27% 131.8
200 � 400 1927.255 0.67% 3076.4
Analytical function 1940.358 0.00 –

Table 5
Descriptive statistics of the basic random variables for the single edge notch test
specimen.

Variable Mean Distribution Standard deviation

t (MPa) 100 Normal 10
a (mm) 15 Normal 0.5
KIC (MPa mm1/2) 3500 Normal 350
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G ¼ KIC � Keq; ð30Þ
H 
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Fig. 7. Three-point bend test specimen.
where KI is the critical stress intensity factor and Keq is the existing
stress intensity factor.

To evaluate the reliability of the single edge notch test
specimen using FEM, the FE model with the coarse mesh density
(10 � 20 elements) is selected to estimate PCoarse

f . The value of

PCoarse
f is then refined using the FE model with the fine mesh density

(200 � 400 elements) based on 70 samples and the results are
tabulated in Table 6. It can be observed that the ACVAT developed
in this study estimates the reliability index efficiently with high
accuracy and significant reduction in computational cost.

This problem is also solved for different C.O.Vs (0.1, 0.2, 0.3, 0.4,
0.5, and 0.6) and the results are presented in Table 7. The results of
the reliability analysis obtained from the ACVAT are compared
with those determined from MCS using the analytical functions
(Eqs. (28) and (29)).

Table 7 shows that the initial reliability index computed using
the FE model with the coarse mesh density is regulated properly
using the ACVAT. In general, there is good agreement between
the reliability indices computed using the ACVAT adjusted by dif-
ferent correction factors (a1, a2, and a3) and those determined from
analytical functions.
Table 6
FEM-based reliability results for the single edge notch test specimen.

Parameters Reliability results

5000 coarse mesh
FE analyses

5000 fine mesh
FE analyses

Analytical fu
(Eqs. {(28)–(

�b 4.317 Unfeasible 3.569
Variance

Table 7
Effect of C.O.V. of the random variables on the reliability index estimations for the single

C.O.V

0.1

Reliability index Coarse mesh FE analyses 4.317
Adjusted by a1 3.594
Adjusted by a2 3.586
Adjusted by a3 3.652
Analytical function 3.573
3.3. Three-point bend test specimen

The applicability of the ACVAT for FEM-based reliability analy-
sis is also demonstrated using a three-point bend test specimen.
The three-point bend test specimen consists of a rectangular plate
(length �width: 120 mm � 30 mm) with a crack (length: 15 mm),
as shown in Fig. 7. The plate is subjected to a point load at the cen-
ter. The stress intensity factor of the problem is given by [38]:

KI ¼ 6PH
4B2

ffiffiffiffiffiffi
pa

p
F

a
B

� �
; ð31Þ

where the numerical value for F is given by:

Fða
B
Þ ¼ 1ffiffiffiffi

p
p � 1:99� ðaBÞð1� ðaBÞÞð2:15� 3:93ðaBÞ þ 2:7ðaBÞ2Þ

ð1þ 2ðaBÞÞð1� ðaBÞÞ
3
2

: ð32Þ

Note that Eq. (32) is valid for H
B ¼ 4.

The three-point bend test specimen is modeled using FEM, as
shown in Fig. 8, and the results are compared with those computed
using the analytical function (Eq. (31)), as shown in Table 8. It can
be seen that the computational cost for the FE model with fine
mesh density (100 � 400 elements) is 924 times higher than the
computational cost of the FE model with coarse mesh density
(10 � 40 elements). The difference in stress intensity factor
between the FE model with coarse mesh density and the analytical
function at mean point is only 12%.

The descriptive statistics of the basic random variables for the
three-point bend test specimen are presented in Table 9. By using
Eq. (30) and the proposed ACVAT, the reliability results are
obtained and presented in Table 10.
nction
30)})

ACVAT: Coarse mesh results + 70 fine mesh FE analyses

Adjusted by a1 Adjusted by a2 Adjusted by a3

3.594 3.586 3.652
0.0079 0.0083 0.0161

edge notch test specimen.

0.2 0.3 0.4 0.5 0.6

2.381 1.454 1.199 1.037 0.675
1.907 1.268 0.933 0.739 0.685
1.923 1.235 0.994 0.797 0.635
1.986 1.222 1.013 0.808 0.633
1.902 1.282 0.966 0.776 0.646
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Fig. 8. FE model of the three-point bend test specimen: (A) Initial model; (B) Model showing deformation in the X-direction.

Table 8
Effect of mesh density on the stress intensity factor estimations for the three-point
bend test specimen. Note that the results are presented at mean values.

FE model KIðMPa mm1=2Þ eModel Scaled CPU time

10 � 40 342.098 12.03% 1
30 � 120 370.814 4.65% 10.1
50 � 200 376.837 3.10% 62.5
100 � 400 381.394 1.93% 923.8
Analytical function 388.883 0.00 –

Table 9
Descriptive statistics of the basic random variables for the three-point bend test
specimen.

Variable Mean Distribution Standard deviation

P (N) 200 Normal 15
a (mm) 15 Normal 1
KIC (MPa mm1/2) 700 Normal 90
T (mm) 1 Lognormal 0.05

T: Plate thickness.

q 

W 

L 

Fig. 9. Nonlinear simply supported beam.
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It can be seen that the results in Table 10 are similar to those for
the single edge notch test specimen (Table 6). This proves that the
ACVAT developed in this study (which is a combination of FE mod-
els with coarse and fine mesh densities) is capable of estimating
the reliability index with a high degree of accuracy while simulta-
neously reducing the computational cost of the FEM-based reliabil-
ity analysis by almost three orders of magnitude. In addition, the
low variance obtained after performing 100 independent analyses
using the proposed approach verifies that the ACVAT provides reli-
able estimations of the safety of the three-point bend test
specimen.
3.4. Nonlinear simply supported beam

In this example, the reliability of a nonlinear simply supported
beam is evaluated using the ACVAT, as shown in Fig. 9. It is
assumed that the simply supported beam is made from a hypoelas-
tic material that behaves according to the following stress-strain
relationship [39]:
Table 10
FEM-based reliability results for the three-point bend test specimen.

Parameters Reliability results

5000 coarse mesh
FE analyses

5000 fine mesh
FE analyses

Analytical fu
(Eqs. (30)–(3

�b 3.379 Unfeasible 2.961
Variance
re

r0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2

ðn�1Þ2 � ð n
n�1 � ee

e0
Þ2

q
� 1

n�1 ; ee 6 e0

ðeee0Þ
1=n

; ee P e0

8<
: ð33Þ

The stress-strain curve of the hypoelastic material is shown in
Fig. 10.

In order to evaluate the reliability of the nonlinear simply sup-
ported beam, the span (L), width (W), distributed load (q), and
parameters related to the stress-strain curve (r0, e0, n) are treated
as random variables. The performance function of the problem is
defined as follows:

G ¼ uallowable � um: ð34Þ
Here, uallowable is the allowable deflection and um is the maximum
deflection obtained from FE analysis. In this study, uallowable is
15 cm. The descriptive statistics of the random variables for the
nonlinear simply supported beam are tabulated in Table 11.

The effect of mesh density on the maximum deflection estima-
tions are presented in Table 12. The results show that the percent-
age difference in maximum deflection estimation between the FE
models with coarse (30 � 5 elements) and fine (60 � 10 elements)
mesh densities is 8.1%. However, the FE model with the fine mesh
density consumes more CPU time by a factor of 4.3.

The results of the FEM-based reliability analysis are presented
in Table 13. It can be seen that the reliability index estimated from
5000 fine mesh FE analyses is b = 3.36 whereas the reliability index
estimated from 5000 coarse mesh FE analyses is slightly higher,
where b = 3.91. It is evident that the ACVAT developed in this study
is capable of estimating the reliability index accurately with fewer
fine mesh FE analyses, which significantly reduces computational
cost. Based on the accuracy of the estimations and significant
reduction in computational cost, it can be deduced that the pro-
nction
2))

ACVAT: Coarse mesh results + 70 fine mesh FE analyses

Adjusted by a1 Adjusted by a2 Adjusted by a3

2.921 2.942 2.849
0.0525 0.0456 0.0684



Table 11
Descriptive statistics of the basic random variables for the nonlinear simply
supported beam.

Variable Mean Distribution C.O.V

L (m) 3 Normal 0.02
W (m) 0.5 Normal 0.02
q (kN/m) 100 Normal 0.20
r0 ðMPaÞ 250 Normal 0.05
e0 0.03 Normal 0.05
n 5 Normal 0.05

Table 12
Effect of mesh density on the maximum displacement estimations for the nonlinear
simply supported beam. Note that the results are presented at mean values.

FE model um ðcmÞ eModel Scaled CPU time

30 � 5 4.54 8.10% 1
42 � 7 4.71 4.65% 1.73
54 � 9 4.86 0.40% 2.88
60 � 10 4.94 0.00% 4.33

Table 13
FEM-based reliability results for the nonlinear simply supported beam.

Parameters Reliability results

5000 coarse
mesh FE
analyses

5000 fine
mesh FE
analyses

ACVAT: Coarse mesh results + 70
fine mesh FE analyses

Adjusted
by a1

Adjusted
by a2

Adjusted
by a3

b 3.91 3.36 3.31 3.33 3.30
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Fig. 10. Stress-strain curve of the hypoelastic material.
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posed approach is capable of estimating the reliability of nonlinear
engineering structures.
4. Conclusions

From a deterministic point of view, mesh convergence analysis
provides information regarding the model selected for reliability
analysis and the errors associated with the estimations. Based on
the results of the mesh convergence analysis, a suitable FE model
is selected to estimate the reliability of engineering structures
and small errors in the estimations are considered as acceptable.
In this study, it is shown that errors arising from mesh density
inadequacy have a significant effect on estimating the reliability
(and hence, safety) of engineering structures. Hence, in order to
estimate the reliability of engineering structures with a high
degree of accuracy, a mesh density with an error of �1% should
be used in FEM-based reliability analysis. However, it is impractical
to conduct FE simulations with very fine mesh densities to evalu-
ate the reliability of most engineering structures due to the large
computational cost incurred, especially when reliability analysis
is integrated with design optimization. Hence, a new method
(named ACVAT) is proposed in this study to address this issue,
where linear CVT is integrated with FEM for reliability analysis
and the capability of the method is enhanced by IS. In addition,
two known correction factors (a1 and a2) are adjusted to improve
the efficiency of the simulations and a new correction factor (a3) is
proposed in this study to achieve a converged solution efficiently
using the ACVAT. The proposed approach is used for FEM-based
reliability analysis of four engineering structures as illustrative
examples and the results show that there is significant reduction
in the computational cost using the ACVAT. The ACVAT requires
the combination of FE models with coarse and fine mesh densities
in order to estimate the reliability of engineering structures with
high accuracy and simultaneously reduce computational process-
ing time. Based on the illustrative examples presented in this
paper, the accuracy of the ACVAT is only guaranteed for linear
and mildly nonlinear problems and it may be impractical for highly
nonlinear FE problems.
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