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Utilize
» The conventional method ﬁ Total Internal Reflection (TIR)
Light Signal
N
Cable

Nearly all Fiber Optic Devices

» TIR fundamental Principle Operation

Planar Waveguide Devices




Introduction (2)

» Recently, for controlling the flow of light

Utilize some modifications on microstructure of the cladding region

W | |ight cannot propagate in there

The refractive index (n) varies periodically in space
with a repetition distance on the order of the wavelength of light
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1D, 2D, 3D Photonic crystals




— @ 1D Photonic Crystals { Step-Index Grating (1)} \\

: : ind :
% Bragg grating the simplest 1D PhC N indexn,
incident transmitted
light light
> —
<
reflected
- light | =
n, The refractive index of the slabs A
S 7
Ny The refractive index of the medium between slabs m
An= n, - nq The indexdifference L
— | A The center-to-center spacing of the slabs -
A/2 The thickness of each slab Lo ::/ /;/ g
L=NA | The total length of the photonic crystal s C 1] B
E;(x,t) The incident light wave’s electric field Briz £, - |
- NN = e
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— @ 1D Photonic Crystals { Step-Index Grating (3)}

» The Fresnel equations for the reflected and fransmitted E fields

> For p (parallel) polarization (TIV]) > For s polarization (TE)
(senkrecht German for perpendicular)

/ E. n, cos 6, —n, cos 6, \ (&) _ M cos 0, —n, cos 6, \
(E)| N n, cos 6, +n, cos 6, E. JL n cos b, +n,cos 6,
EN 2n, cos 6, (chap2.11) E\ 2n, cos 6, (chap 2.12)
(E) n, cos 6, + n, cos 6, (E;)l_n100391+n200562
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Incident from index n7 ~x;---___/ , .
: ~~. = The Fresnel equations at
> Reflections ~ .
.. normalincidence g _

Incident from index n2

)
I
|
I
[?
I
©

________________________________

8 Eiand Er are evaluated just before and after reflection
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Incident from index n7 e
> Reflections < 7>~_h
: : T

Incident from index n2 R T >
_________________________________ . ‘,—",i/ /;///; /;/ |
7 . --" /(’ 1 —
| obey the same relation, except ] ;:’/// ny|
: . |’// = /
. that n71 and n2 are interchanged B g 1 L L L
: : o -
SO0 T = ﬂnfzn ' ’ e
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5 — k(2a) — Zmn (24) — A4 na (5  Phasedelay due to propagation over the

| Ay Ay round-trip distance 2Za between slabs

~ An . . . : total reflected field
{EI‘QI = EAQ—IS/Z [1 + 8—13_|_ 8—123 + . .+ e—l(N—l)a] ':E} l of the
9

second type
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— () 1D Photonic Crystals { Step-Index Grating (5)}

~ An . - |
(EF,ZI = EAQ_IS/Z [1 + e_“S + 8_126 + ...+ e_l(N—l)S] ':E}

—

total reflected field
of the
second type

< Additional round-trip propagation distance 2 ("‘f 2) for each type 2 reflection

e

— p—p—p

v Adding the terms inside the square brackets

+ Visualize them as vectors

constructive interference

Bragg resonance, all vectors in phase

+» Each vector has the same magnitude

< 0,—4,—24,... are the angles from the real axis when | O = mn

— -

» First-Order Bragg diffraction (m = 1)

m /s an integer
giving the

order of diffraction

[ Ay =2na | (7) | Braggwavelength in free-space J
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> § =g Odisfles Bragg conditon ——> exp (-id/2) =-1 —— Emz — Enm

v" Total reflected complex amplitude from all interfaces

~ ~
E=E ,+E, v'N unity terms
| (8) 5= 2m N
A _ n
=__”A[l+€—i6+€—f26+____|_E—i{N—]}E] . { Er=_?‘,q” 1
R

v Power reflectivity x=0 > | p
e i'!i max

L=Nn\ R =££2= 2AnlL \2 / sl o 1
lﬂ =2]’h'|., fmax (ﬂ n ) ( ‘}‘B ) [1"'}} ﬁLRmuu — (HL)E {11} Jﬂﬂ Rmux « 1

— 1
n

peak reflectivity, weak grating

= 2An/AB
K H‘;, Attenuation factor of light as it propagates through the Bragg grating
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* The incident wavelength slightly detuned from &,

== phases progressively further apart

/.

ey i

E,=FE, ,+E.,, (8)

n _ _ .
——A[lte+e P+ +e VDI
n ==

[-———————————~ ———
|
L

< If the wavelength changes by Al ———> Ad = —AS

N Ad = 2mr —— | The grating reflectivity goes
from a maximum to zero
over a range of wavelengths AA

Ad  spectral half-width of the Bragg resonance
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Slightly off resonance
small difference in phase
between vectors

Er1
vectors add to zero
destructive interference
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O Evaluation of Ad

o~

2 4
5=k(2a) = —"(28) = =~

: dé 4nA\
Ay Ao (3)

Ap=-Ad=——-AL= AA
¢ 0 X (12)

2w 2mAg AN
Ap = 2HA N - A2
O Near the Bragg resonance Ay = Ag i / 0

TS Ap = 27N \ ;
N

/ N\

QO Quality factor —s ) = :_,1 > Q=N Ay N

J

spectral half-width
weak grating

Q If the incident wavelength is detuned from Ay by more than AA

Iy coONtinue to curl around in the complex plane

a secondary maximum NAd¢ = 37 .

(

)
13 another zero NAd = 4w
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Grating (9)}

This pattern continues with increasing detuning

Oscillatory dependence of reflectivity on wavelength

é 1.2 ——+ r . 17r <7 r 177
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» The refractive index (n

(3 1D Photonic Crystals { Sinusoidal Index Grati
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— (3) 1D Photonic Crystals { Sinusoidal Index Grati

s If pump intensity and exposure time is short enough

* Resulting index variation may be expressed by the sinusoidal form

o ‘ 21X
n[:i:} nn+ An -::1:15[7)

/
i

average index C spacing between index maxima

One small difference
Ay = Zna Bragg reflection wavelength attenuation constant
A
— A== Resonance half-width — : _ Tan
N sinusoidal grating —— Kk = e
. B
Ro.x = (kL)* Peakreflectivity
— step-indexgrating —> Kk = ZAn/A,
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— (3) 1D Photonic Crystals { Sinusoidal Index Grati

coupled mode theory R.... = tanh?(kL)
Arbitrary kL js of interest >

(peak reflectivity, arbitrary L)

In the limit &L « 1 —> R, .. = (kL)

In the limit &L > 1 —> R, — 1 A Efield atresonance decreases

E(x)
E(x) = Epe ™
N _ L [ Ap\(2n)\ _ 2n E L= 7k :
A A\ Ay An S L .
A
AX 1 An TR EEE
g Neg  2n ==L |
- .
AA B [)Lof(ZnL) for kL <1 reflected light < \_/___/_ -
/\.0 &n/(zn) for kL > 1 N layers interact
17 with light
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v’ Most important application of Bragg gratings --===zz2222272 ‘mirrors in a laser cavit{()

~

~ e
~ -

- -
N E_E— e e ————

v High reflectivity that is obtained for kL > 1 —— Selectivity for the laser output

Strain

v’ Fiber Bragg grating as a sensor —> physical parameters % Temperature change
Pressure change

18
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— () 1D Photonic Crystals {Photonic Band Gap (1)}

Q One of the important characteristics of a Bragg grating

— > Exponential attenuation of light for wavelengths close to Ay

——> Fora sufficiently long grating —— 100 % reflection

The range of wavelengths for which light is attenuated is referred to as the sfop band

[ Afrequency gap in the photon spectrum is known as a phofonic band gap ]

Bragg reflection

“ VA

19 k /A 2n/AN K
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F -
< Physical origin of two frequency ¢ intensity profiles BRREN

A
2 L [ -
E Intensity maxima

Bragg reflection

-~

X

higher ngg frequency
lower effective index relates <
= wave vector

E’ t ‘g; s C ¢ \m
€ |2 il — k — — 1 (23)
\ Mory LTI Y
lower n ¢
" ﬂﬂf == gap |
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v Calculating A

2mc 2 2mec AA

() = > Adiv=——77"A1= —— . —
T EF: Lo Ao
Ay Ad An
- !.. = =
i

y Ay 2n

AA Ao/(2nL) for kL <1
P [An/(Zn) for kL > 1

frequency gap 28w An

center frequency () n
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— (3) 1D Photonic Crystals { Localized Modes (1) }

v’ If we have some frequencies within the photonic band gap

Ly Lightwave's £ field are exponentially attenuated .-~ "=
localized modes
v If we create discontinuity or defect in the structure e e T

./‘ ."..
-

[ Light energy residing in optical mdﬁé confined to vicinity of the defect

edge
0 Simplest type of defect < of a photonic crystal
surface

begin point of grating
0 1D Bragg grating defects <

removing one or more of the high-index layers

22
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2D Photonic Crystals

2-D Triangular Lattice - Holes in a Substrate with higher n o000 . ® _ highern
0006
0000
0000
'K.‘“' y
¥
Two symmetry directions x and x’are shown. @000 T—»

X
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— (9 Planar Geometry (1) \ \

1- Propagation mostly in the x—y plane

o
Q For 2D photonic crystals <
2- Propagate mostly along the z axis

]q_‘
a

- 1~
.-"r .
-
o

H ]
—

[1) Propagationin the x—y p/ane and Square Lattice

> Propagating along +Xaxis —> refractive index spatially vary

[ )))) Like 1D Bragg grating J T::

i

O Bragg condition ¥V —— light will be strongly reflected, and gap opens in dispersion relation

s 2D Difference with 1D Bragg grating ||[_'/ 2D is periodic in 2 direction x , X’
25
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— (3 Planar Geometry (2)

|]:> 2 directions |]:> 2 Band gaps

o4 . o)
band gap j
for TM 1 , |
gi 2I >
X Ox kx
o 4 . " e
; . overlap
no | AN
band gap | '
for TE : .
| | >
Ox 29 k

X

|]:> Different position and width

A

%

N\

Icomp/efe photonic band gap

(a) ™
E || rods

v

>
29y kf

No over lap — no CPBG

] (b) TE
E L rods
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— (3 Planar Geometry (3)

N\

[ TM polarization E field along z (with B along —y and perpendicular fo the rods)]

» Physical origin of difference between TM and TE polarization

(a) T™
polarization

A

side view

27

SUME

higher-index rods

E field

O

9.

higher n,
lower o

lower n_
higher ®

)

Intensity peaks in the standing waves

(b) TE
polarization

top view

<

-

higher-index rods

higher n;
lower o

lower n,;
higher ©
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— (3 Planar Geometry (3) ‘\

confine light in two dimensions

band gaps for different directions and polarizations all overlap in some frequency range

1. A square lattice of dielectric rods There is PBG for both TE and TM polarization
|:> Does not overlap I:> No CPBG
2. A triangular lattice of air holes 0.8

I:> Overlap V/

Frequency (wa/Zxc)

28




— () 2D Photonic Crystals - Fiber Geometry

2. Light propagating mostly in the z direction

N\

L component perpendicular to the rods or air holes are Negligible J

[Usage: optical fiber J

» Guiding types in optical fibers <

—

29

Total internal reflection (TIR)

Photonic band gap (PBG)




— () Guiding by Effective Index (1)

Early photonic crystal fiber called holey fiber

Single missing air hole, allows confinement of light by TIR

0 Advantages < only one glass type

no doping Cladding region being “doped” with air holes

30




— () Guiding by Effective Index (2)
Single mode
¢ Light guidance of Photonic crystal fibers

Multi mode

% Single-mode guidance of light in conventional step-index fiber —

/ N
2mA [
F’:Ir_‘j.‘ = T n.f - nf: (-’1)

% Single-mode guidance for holey fiber —
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fo_‘_{.‘ < m

\ /
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- @ Guiding by Effective Index (3)

d "
— increases
* Boundaries between single-mode and multimode < A

A decreases

T
il P

05050/0

OOOWOOO

G2 By 50

G ) 0

05070/0

390 -

10! o Multimode |
-~ .‘A\"i( —hdlﬁ
S
=<

Single—~mode
=

0001 02 03 04 05 06 07 08

d/A :
\,aﬂge( high-power fiber lasers
This fibers can be scaled up
\y
07@// .
2 Frequency conversion
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g, > 7.2

— (3 Guiding by Photonic Band Gap (1)

» Condition of Photonic band-gap in Crystal type (triangular lattice of air holes)

=y substrate material <
n>4aLi

> (n) Silicaglass <1.5 —— geems no Photonic band-gap guiding for holey fiber

Q £ = 7.2 isonly for light propagating perpendicular to the air holes (TM)

O For propagation parallel to holes (TE) if one use proper geometry of air holes

— > Complete PBG

Hollow-core fiber

33
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— (3 Guiding by Photonic Band Gap (2)

An
* PBG 4 Photonic crystal structure

Propagating direction of light — fi axial wave vector

0 Modes with larger f ———  girected more nearly down the fiber axis < same @

4 photonic band gaps

o)
® C in cladding / slope = 1
air and \

| ' cladding
PBG | 2" | PBG
cladding 1°°" Icladding modes -1

no propagating
modes
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— (3 Guiding by Photonic Band Gap (3) D\
< Absorption and Rayleigh scattering in the fiber core =—=> much lower in hollow-core fiber

IIﬂ Less amplification for further distance

¢ Much higher optical powers

s Less dispersion:> Very short optical pulses propagate without significant spreading in time

All because light is propagating mostly in air, rather than in the glass
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SN 3D Photonic Crystals (1

» In 1987 The concept of the 3-D photonic crystal introduced independently

36

o

E. Yablonovitch

S.John

—

N\

Improving the efficiency of semiconductor laser devices

“Localizing” or confining light to a small region of space

i

a material with a complete photonic band gap

FCC cubic

Opal

diamond-type
Need n> 1.87

inverse opal
Need n>2.8
Narrow band gap

AN e
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» Creation Methods

v “Top-down” approach

Yablonovite

Lincoln log

Figure 8-21 Yablonovite is formed by
drilling holes into a dielectric at three

precise angles, and results in a diamond -
like structure. The holes can be created by
exposure to X-rays through a mask




— () 3D Photonic Crystals (3)

» Creation Methods

v “Top-down” approach

300 — — ———— —
n=360
f=028
g 200 B
Z Figure 8-22 (a) The “Lincoln log” or “woodpile”
E structure has a diamond-type lattice symmetry,
100 and exhibits a 3-D photonic band gap.
(b) Calculated density of states when nbars =
e | 3.6 and fill 28% of the space.
5 02 04
Frequency (cq/a)
38 densily of staltes (number of propagating modes per unit frequency interval)
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» Creation Methods

v “bottom-up” or “self-assembly” approaches
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self-assembling of SiO, Spheres with diameter of 100 to

1000 nm in the fcc structure
—

aaaaaaaa

Injecting a high-index material between the spheres

—

selective etching of the original SiO, material
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