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1.2.2 The Diamond Structure

The element semiconductors, silicon and germanium, have the diamond lattice structure

shown in Fig. 4a.

 This structure also belongs to the fcc crystal family and can be seen as two

interpenetrating( رفتنفرودرهم ) fcc sublattices with one sublattice displaced from the other by

one-quarter of the distance along the body diagonal of the cube.

 Although chemically identical, the two sets of atoms belonging to the two sublattices are

different in terms of the crystal structure.
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A unit cell of a diamond lattice consists of a tetrahedron( وجهیچهار ) in which each atom is

surrounded by four equidistant nearest neighbors that lie at the corners (the spheres connected

by darkened bars in Fig. 4a).

Most of the III-V compound semiconductors (e.g., GaAs) have a zincblende lattice, shown in

Fig. 4b, which is identical to a diamond lattice except that one fcc sublattice has Column III

atoms (Ga) and the other has Column V atoms (As).

Appendix F gives a summary of the lattice constants and other properties of important

element and binary compound semiconductors.
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EXAMPLE

At 300 K the lattice constant for silicon is 5.43 Å. Calculate the number of silicon atoms per

cubic centimeter and the density (mass of a unit volume)of silicon at room temperature.
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1.2.3 Crystal Planes and Miller Indices

In Fig. 3b we note that there are four atoms in the ABCD plane and five atoms in the ACEF

plane (four atoms from the corners and one from the center) and that the atomic spacing is

different in the two planes. Therefore, the crystal properties along different planes are

different, and the electrical and other device characteristics can be dependent on the crystal

orientation.

A convenient method of defining the various planes in a crystal is to use Miller indices.

 These indices are obtained using the following steps:
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1. Find the intercepts(تقاطع) of the plane on the three Cartesian coordinates in terms of the lattice

constant.

2. Take the reciprocals of these numbers and reduce them to the smallest three integers having

the same ratio.

3. Enclose the result in parentheses (hkl) as the Miller indices for a single plane.
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EXAMPLE

In Fig. 5, find the Miller indices for a specified plane.

SOLUTION

As shown in Fig. 5, the plane has intercepts at a, 3a, and 2a along the three

coordinates. Taking the reciprocals of these intercepts, we get 1, 1⁄3, and 1⁄2. The

smallest three integers having the same ratio are 6, 2, and 3 (obtained by multiplying

each fraction by 6). Thus, the plane is referred to as a (623)-plane.
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Figure 6 shows the Miller indices of important planes in a cubic crystal.§ Some other

conventions are the following:

§ In Chapter 5, we show that the <100> orientation is preferred for silicon metal-oxide- semiconductor

field-effect transistors (MOSFETs).
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1.3 VALENCE BONDS

As discussed in Section 1.2, each atom in a diamond lattice is surrounded by four nearest

neighbors.

 Figure 7a shows the tetrahedron bonds of a diamond lattice.

A simplified two-dimensional bonding diagram for the tetrahedron is shown in Fig. 7b.

 Each atom has four electrons in the outer orbit, and each atom shares these valence

electrons with its four neighbors. This sharing of electrons is known as covalent bonding;

each electron pair constitutes a covalent bond. 14





Covalent bonding occurs between atoms of the same element or between atoms of

different elements that have similar outer-shell electron configurations.

 Each electron spends an equal amount of time with each nucleus. However, both

electrons spend most of their time between the two nuclei.

The force of attraction for the electrons by both nuclei holds the two atoms together.

Gallium arsenide crystallizes in a zincblende lattice, which also has tetrahedron bonds.

 The major bonding force in GaAs is also due to the covalent bond.

16



However, gallium arsenide has a small ionic contribution that is an electrostatic attractive

force between each Ga+ ion and its four neighboring As– ions, or between each As– ion

and its four neighboring Ga+ ions.

 Electronically, this means that the paired bonding electrons spend slightly more time

in the As atom than in the Ga atom.

At low temperatures, the electrons are bound in their respective tetrahedron lattice;

consequently, they are not available for conduction.

17



At higher temperatures, thermal vibrations may break the covalent bonds (ionize one

electron from the bond).

When a bond is broken, a free electron results and can participate in current conduction.

Figure 8a shows the situation when a valence electron in silicon becomes a free electron.

An electron deficiency(کمبود) is left in the covalent bond. This deficiency may be filled

by one of the neighboring electrons, which results in a shift of the deficiency location, as

from location A to location B in Fig. 8b.
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We may, therefore, consider this deficiency as a particle similar to an electron.

 This fictitious ( خیالیساختگی، )particle is called a hole. It carries a positive charge and

moves, under the influence of an applied electric field, in the direction opposite to that of

an electron.

Therefore, both the electron and the hole contribute to the total electric current.

The concept of a hole is analogous to that of a bubble in a liquid: although it is actually

the liquid that moves, it is much easier to talk about the motion of the bubble in the

opposite direction.
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Animation showing formation of "free" electrons and holes when an electron can escape its bond.
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1.4 ENERGY BANDS

1.4.1 Energy Levels of Isolated Atoms

For an isolated atom, the electrons can have discrete energy levels. For example, the

energy levels for an isolated hydrogen atom are given by the Bohr model:

where m0 is the free-electron mass, q is the electronic charge, ε0 is the free-space permittivity, h is

the Planck constant, and n is a positive integer called the principal quantum number.
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The quantity eV (electron volt) is an energy unit corresponding to the energy gained by an electron

when its potential is increased by one volt. It is equal to the product of q (1.6 × 10–19 coulomb) and

one volt, or 1.6 × 10–19 J. The discrete energies are –13.6 eV for the ground- state energy level (n =

1), – 3.4 eV for the first excited-state energy level (n = 2), and so on. Detailed studies reveal that for

higher principle quantum numbers (n ≥ 2), energy levels are split according to their angular

momentum quantum number (ℓ = 0, 1, 2, …, n – 1).

23



We now consider two identical atoms.

When they are far apart, the allowed energy levels for a given principal quantum number

(e.g., n = 1) consist of one doubly degenerate level; that is, both atoms have exactly the

same energy.

When they are brought closer, the doubly degenerate energy levels will spilt into two

levels by the interaction between the atoms.

 The split occurs due to the Pauli exclusion principle, which states that no more than two

electrons in a given system can reside( شدنواقع ) in the same energy state at the same time.
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As N isolated atoms are brought together to form a solid, the orbits of the outer electrons

of different atoms overlap and interact with each other.

 This interaction, including those forces of attraction and repulsion between atoms, causes

a shift in the energy levels, as in the case of two interacting atoms. However, instead of

two levels, N separate but closely spaced levels are formed.

 When N is large, the result is an essentially continuous band of energy. This band of N

levels can extend over a few eV at the inter-atomic distance of the crystal.
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The electrons can no longer be treated as belonging to their parent atoms. They belong to

the crystal as a whole.

Figure 9 shows the effect, where the parameter a represents the equilibrium inter-atomic

distance of the crystal.
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The actual band splitting in a semiconductor is much more complicated.

 Figure 10 shows an isolated silicon atom that has 14 electrons.

 Of the 14 electrons, 10 occupy deep-lying energy levels whose orbital radius is much

smaller than the interatomic separation in the crystal.

The four remaining valence electrons are relatively weakly bound and can be involved in

chemical reactions.

Therefore, we only need to consider the outer shell (the n =3 level) for the valence

electrons, since the two inner shells are completely full and tightly bound to the nucleus. 28
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The 3s subshell (i.e., for n = 3 and ℓ = 0) has two allowed quantum states per atom. This

subshell will contain two valence electrons at T = 0 K.

 The 3p subshell (i.e., n = 3 and ℓ = 1) has six allowed quantum states per atom. This

subshell will contain the remaining two valence electrons of an individual silicon atom.

Figure 11 is a schematic diagram of the formation of a silicon crystal from N isolated

silicon atoms.

As the interatomic distance decreases, the 3s and 3p subshell of the N silicon atoms will

interact and overlap to form bands.
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As the 3s and 3p bands grow, they merge( شدنترکیب ) into a single band containing 8 N

states.

At the equilibrium interatomic distance determined by the condition of minimum total

energy, the bands will again split, with 4 N states in the lower band and 4 N states in the

upper band.

At a temperature of absolute zero, electrons occupy the lowest energy states, so that all

states in the lower band (the valence band) will be full and all states in the upper band

(the conduction band) will be empty.
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The bottom of the conduction band is called EC and the top of the valence band is called

EV.

The bandgap energy Eg between the bottom of the conduction band and the top of the

valence band (EC – EV) is the width of the forbidden energy gap, as shown at the far left

of Fig. 11.

 Physically, Eg is the energy required to break a bond in the semiconductor to free an

electron to the conduction band and leave a hole in the valence band.
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1.4.2 The Energy-Momentum Diagram

The energy E of a free electron is given by

where p is the momentum and m0 is the free-electron mass.

 If we plot E vs. p, we obtain a parabola as shown in Fig. 12.

In a semiconductor crystal, an electron in the conduction band is similar to a free electron in

being relatively free to move about in the crystal. However, because of the periodic potential

of the nuclei, Eq. 3 can no longer be valid. 34
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However, it turns out that we can still use Eq. 3 if we replace the free-electron mass in Eq. 3

by an effective mass mn (the subscript n refers to the negative charge on an electron), that is,

The electron effective mass depends on the properties of the semiconductor.

If we have an energy-momentum relationship described by Eq. 4, we can obtain the effective

mass from the second derivative of E with respect to p:

36



Therefore, the narrower the parabola, corresponding to a larger second derivative, the

smaller the effective mass.

A similar expression can be written for holes (with effective mass mp where the subscript

p refers to the positive charge on a hole).

 The effective-mass concept is very useful because it enables us to treat electrons and

holes essentially as classical charged particles.
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Figure 13 shows a simplified energy-momentum relationship of a special semiconductor

with an electron effective mass of mn= 0.25m0 in the conduction band (the upper

parabola) and a hole effective mass of mp= m0 in the valence band (the lower parabola).

 Note that the electron energy is measured upward and the hole energy is measured

downward.

The spacing at p = 0 between these two parabolas is the bandgap Eg, shown previously in

Fig. 11.
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The actual energy-momentum relationships (also called energy-band diagram) for silicon

and gallium arsenide are much more complex.

Visualized in three dimensions, the relationship between E and p is a complex surface.

 They are shown in Fig. 14 only for two crystal directions.

 Since the periodicity of most lattice is different in various directions, the energy-

momentum diagram is also different for different directions.

In the case of the diamond or zincblende lattice, the maximum in the valence band and

minimum in the conduction band occur at p = 0 or along one of these two directions. 40
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If the minimum of the conduction band occurs at p = 0, this means the effective mass of

the electrons in every direction in the crystal is the same. It also indicates that the electron

motion is independent of crystal direction.

 If the minimum of the conduction band occurs at p ≠ 0, this means that the electron

behavior in every direction is not the same in the crystal.

 In general, the minimum of conduction band of polar (with partly ionic binding)

semiconductors tend to be at p = 0, which is related to the lattice structure and the fraction

of ionicity in the bond.
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We note that the general features in Fig. 14 are similar to those in Fig. 13.

First of all, the valence bands are simpler than the conduction bands. They are

qualitatively similar for most semiconductors because the environments for holes moving

in the covalent bonds are similar due to the similar structures in diamond and zincblende.

 There is a bandgap Eg between the bottom of the conduction band and the top of the

valence band.

Near the minimum of the conduction band or the maximum of the valence band, the E-p

curves are essentially parabolic.
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For silicon (Fig. 14a) the maximum in the valence band occurs at p = 0, but the minimum

in the conduction band occurs along the [100] direction at p = pc. Therefore, in silicon,

when an electron makes a transition from the maximum point in the valence band to the

minimum point in the conduction band, not only an energy change (≥ Eg ) but also some

momentum change (≥ pc) is required.

For gallium arsenide (Fig. 14b) the maximum in the valence band and the minimum in

the conduction band occur at the same momentum (p = 0). Thus, an electron making a

transition from the valence band to the conduction band can do so without a change in

momentum.
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Gallium arsenide is called a direct semiconductor because it does not require a change in

momentum for an electron transition from the valence band to the conduction band.

 Silicon is called an indirect semiconductor because a change of momentum is required in

a transition.

This difference between direct and indirect band structures is very important for light-

emitting diodes and semiconductor lasers.

These devices require direct semiconductors to generate efficiently photons (see Chapters

9 and 10).
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We can obtain the effective mass from Fig. 14 using Eq. 5.

 For example, for gallium arsenide with a very narrow conduction–band parabola, the

electron effective mass is 0.063m0, while for silicon, with a wider conduction–band

parabola, the electron effective mass is 0.19m0.
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