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1. WHY HYDROINFORMATICS? 
The growing world water crisis is in part a failure of human society to be aware of the 
problem and its possible solutions.  This crisis is perceived in different ways.  For 
some it is the conflict between different interests or sectors for water resources, such 
as between environmentalists and agriculturalists.  For others it is learning how to 
deal with the problems of climate change, whether leading to drought and 
desertification or more frequent and severe flooding in rivers and from coastal waters.  
For yet others it is dealing with the problem of pollution of existing resources, 
whether from point sources such as industry and urban wastewater or from diffuse 
(non-point) sources such as agriculture and varying land uses.  The problems seem to 
be increasing and solutions in many cases are no longer simple to generate or 
implement.  As engineers and scientists, we have become aware that water 
management involves an integrated view of a number of distinct systems that would 
previously have been dealt with in isolation, and consequently there is a need for 
collaboration with experts from a number of other disciplines.  What is more, we need 
also to take into account the requirements of a range of stakeholders who have a direct 
interest in the performance of a given water-based system. 
 
Many of the integrated systems that we now deal with have very complex interactions 
that are not immediately apparent.  The normal way of trying to assimilate the 
complexity is to form a (single, integrated) model of the integrated systems.  What our 
minds are unable to do because of the complexity and the calculations involved, we 
give to the computer.  This is particularly important when we move from a steady 
state to an unsteady state analysis.  Simulation modelling has therefore become an 
important tool in order to understand the behaviour of complex systems and to enable 
predictions to be made of that behaviour under changes to various boundary 
conditions or internal conditions, such as parameters or even functional 
representations of different identified phenomena.  This approach to problem solving 
has pervaded a wide number of topic domains, not least the management of water-
based systems. 
 
Our ability to model and analyse complex water-based systems is due almost entirely 
to the development of digital technologies.  These have revolutionised the way in 
which we can reproduce the behaviour of such systems, especially in using graphics 
to analyse and present data, to track the building of models and to visualise output in 
ways that replicate images of the real world.  Such facilities are indicative of the way 
in which technology generally is pervading our lives and taking over the functions 
that we would normally have reserved for the activities of the human mind.  There are 
some interesting consequences here for the way in which we relate to the world 
around us.  It can be argued that our involvement with computers is a commitment to 
virtual reality.  Such an experience taunts us with the prospect of being ‘in the picture’ 
ourselves.  This is in contrast to our ‘traditional’, rational view where there is a 
rigorous separation between society and nature.  We regarded nature as a pool of 
resources for us to master and dominate.  Departmentalised knowledge became the 
ultimate power with which to reign over and to manage these resources.  Now 
however, we increasingly see ourselves as part of the system. All knowledge is 
situated in a given context and is itself a resource.  As such, it is subject to 
management itself.  We talk about knowledge producers and knowledge consumers.  
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However, knowledge is not a scarce resource in that it can be ‘sold, exchanged and 
renewed indefinitely, without depleting the original store of knowledge’ (Abbott and 
Jonoski 2001).  Access to knowledge is increasingly measured in terms of access to 
electronic networks.  This demarcates three ‘worlds’: the first world having access 
both to the ‘content’ and possibility to influence it, the second consisting of those with 
the possibility of access but not of influence, and the third world consisting of those 
who neither have access or influence.  ‘Knowledge circulation processes in the third 
world have positive potential for fighting poverty…. (through) new kinds of 
sociotechnical arrangements’ (Jonoski 2002).  Hydroinformatics is the discipline that 
can implement this new paradigm. 
 

2. WHAT IS HYDROINFORMATICS? 
Hydroinformatics uses simulation modelling and information and communication 
technology to help in solving problems of hydraulics, hydrology and environmental 
engineering for better management of water-based systems. It provides the computer-
based decision-support systems that now enter increasingly into the offices of 
engineers, water authorities and government agencies.  
 
Defining hydroinformatics, Abbott (1991) points out that it is essentially a 
technology, in the sense that it concerns human action in which a revealing of ‘truth’ 
about something occurs, and which in turn influences social structures and 
relationships. Hydroinformatics can therefore be called a ‘sociotechnology’.   
 
The emergence of hydroinformatics can be traced back to developments in 
computational hydraulics.  Again, Abbott (1991) has identified several generations of 
modelling.  The first generation was characterised by the use of (the first) computers 
as calculation devices of analytical expressions; in other words, as little more than 
superior slide rules.  As users recognised the value of the sequential, repetitive and 
recursive modes of operation of their digital machines they turned to finite differences 
in order to represent and then solve differential equations numerically.  This second 
generation of modelling resulted in one-off or customised models, which were 
imperfect approximations to (partial) differential equations that were regarded as ‘the 
ultimate and most perfect repositories of our belief systems’ (Abbott, 1993).  From 
about 1970 onwards, developers recognised the possibility and value of producing 
software packages such that a given modelling package (or system) could be applied 
to the instantiation of models for a wide class of similar problems.  This enabled 
resources to be invested on a system that could be used repetitively and refined in the 
light of experience.  In addition, standards could be developed for input and output, 
preceding future links to databases, GIS and graphical display tools.  Most 
importantly, the systems could be made available to a wide range of users.  In turn, 
the effectiveness of these third generation systems became heavily dependent on the 
skills and experience of the users.  It was at this stage that computational hydraulics 
became inevitably locked into the commercial side of the market. 
 
The success of the third generation systems depended on ‘main frame’ computers.  
However, in the early 1980s personal computers appeared as serious professional 
tools, and it was natural for the modelling software packages of the third generation to 
be ported to them.  In turn, the whole mode of operation of the systems aspect of the 
packages was rapidly improved.  This resulted in the modelling systems being used by 
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people who were not computational hydraulics specialists.  They demanded high 
standards of robustness, consistency and ease of use from the software providers, who 
adopted production means from software engineering and the IT industry.  It meant 
also that the focus of the developers was on the technology rather than scientific 
research.  The resulting fourth generation modelling systems have subsequently been 
transformed through close integration with databases, GIS and sophisticated graphics 
display tools that were foreseen in the third generation. 
 
The birth of hydroinformatics has been identified by Abbott (1996) to have occurred 
during the transition between the third and fourth generations of modelling.  He points 
out that the revealing offered by the technology has been made to many thousands of 
users of fourth generation modelling systems, even if the users are still predominantly 
specialists in hydraulics, hydrology and water resources employed by different 
organisations.  It is the range of these organisations: consultants, contractors, 
government ministries and agencies, contract laboratories, water companies, 
universities, investment and insurance companies, etc that indicates the social 
consequences of the modelling systems.  Indeed the social and employment structures 
of these organisations are changing as a consequence of their using the systems.    
 
At root, the fundamental key change that has distinguished hydroinformatics is a 
movement from representing knowledge in hydraulics and hydrology by symbols to 
signs.  Here symbols function in the minds of water engineers as tokens by replacing 
features and processes in the real world.  On the other hand signs point towards these 
features and processes.  The generic knowledge encapsulated in the modelling 
systems of today is now available to a large number of people outside the 
comparatively small group of developers.  This knowledge, operating on site-specific 
knowledge, enables new knowledge to ‘come to presence’ in the mind of the tool 
user, depending on their ability to interpret and assimilate that knowledge.  The 
importance of this communication of knowledge has been emphasised by the 
increasing proportional investment in interfaces and supporting tools, as evidenced by 
the stress placed on modelling environments rather than modelling engines.  Abbott 
(1992, 1993, 1994) highlights this view by referring to a model as a ‘collection of 
indicative signs that serves as an expressive sign’.  Therefore, a model is not just a 
‘simplified representation of reality’ or a ‘system for converting inputs into outputs’.  
Instead the emphasis is on ‘the choice, number and arrangement of the indicative 
signs in order to produce the expressive signs (that) determine the very expression that 
a certain model creates’.  ‘Models serve as devices for communicating knowledge’. 
 
Hydroinformatics therefore occupies the middle ground, not just between physical 
water sciences and ICT but including a third pillar or pole, namely ‘social’ (Fig. 2.1).  
Therefore, there is a real need to appreciate and understand the social context within 
which hydroinformatics operates. Jonoski (2002) states: ‘Because of its reliance on 
physical science, hydroinformatics has its strength, because of its employment of ICT 
it can become powerful, and because of its social awareness its applications provide 
value’. 
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Fig. 2.1. Position of hydroinformatics 

 
The fifth generation of modelling was foreseen by Abbott to come about through the 
introduction of artificial intelligence (AI) to support modelling and decision-making.  
Many attempts have been made to construct such fifth generation systems, but none 
has yet achieved the wide spread use of the existing fourth generation systems.  This 
is partly because of the now recognised inadequacy of rule-based (expert) systems 
heralded in the mid-1980s as the way forward for computing.  Since then there has 
been a wide diversification into alternative forms of AI, ranging from new forms of 
data driven modelling (artificial neural networks, genetic algorithms, chaos theory, 
model trees, fuzzy logic, etc) to intelligent agents, and emerging in different ways of 
providing decision support.  
 

3. THE ‘HOW’ OF HYDROINFORMATICS 

3.1. Modelling 
A model is a simplified description of reality. Hydroinformatics typically deals with 
computer-based models, where such a model is defined as a computer program that 
attempts to simulate an abstract model of a particular physical process or system. It 
can be said that modelling is at the heart of hydroinformatics.  
 
Modelling has two primary goals. The first is to improve understanding about the 
performance of the real world domain, such as a river catchment or reach, and aquifer, 
water distribution or drainage network, estuary, or coastal waters. This will involve 
reproducing past performances and understanding why they happened. The second 
goal is the ability to make predictions about the performance. There are two forms of 
prediction. One is to do with identifying the performance of the domain when it is 
physically altered through human intervention, such as building a dam in a river basin, 
rehabilitating an urban drainage network, or building embankments along a river to 
protect associated floodplains from inundation. The other form of prediction is to do 
with what happens to the future performance of the existing or modified domain. Such 
predictions may be used in real time to forecast flow variables for warning purposes 
or for action in operating structures such as barrages, gates, pumps or turbines. 
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There are three main modelling paradigms that are the focus of hydroinformatics: 
 
1. Physically based (process based) modelling (also called numerical, or simulation 
modelling), which is based on a scientific understanding of the physics of the flow of 
water, the chemistry of the associated substances and the biology of the ecology in the 
aquatic environment. An example is the 1D continuity and momentum equations for 
open channel flow (Saint Venant equations): 
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where Q=flow, h=depth, x=distance, t=time, A=cross-section, S0=bottom slope, and 
Sf=energy grade line slope. These equations cannot be solved analytically except 
under very limited conditions. The alternative is to solve them numerically using a 
discretisation of the solution space and generating appropriate numerical equations 
based on a finite difference, finite element or finite volume approach to the original 
algorithmic equations. Particular algorithms are then used to solve the resulting 
numerical equations. The algorithms are coded in a particular software language and 
executed on a computer. The discretisation and solution of the mathematical equations 
describing the motion of water in the natural or urban environments is known as 
computational hydraulics.  
 
2. Data-driven modelling (DDM), which is based on a direct the analysis of the data 
characterising the system under study. Such a model is defined on the connections 
between the system state variables (input, internal and output variables) with only a 
limited number of assumptions about the "physical" behaviour of the system. The 
contemporary methods go much further than those used in conventional empirical 
modelling in hydraulic engineering and hydrology. They allow for solving numerical 
prediction problems, reconstructing highly non-linear functions, performing 
classification, grouping data, and building rule-based systems. An example is a linear 
regression model, or a non-linear one (for example, an artificial neural network), 
linking past rainfall measurements and current river flow.  
 
3. Agent-based modelling, where entities (agents) interact dynamically according to 
relatively simple rule-based computational codes. An example is the behaviour of a 
school of fish in a water stream where each individual fish is modeled separately. This 
approach is still in its infancy and will not be covered further in this paper.  
 
Besides viewing a model as a description of the performance of a particular real world 
domain it is also important to be aware of the process by which a model is developed 
and instantiated. The process of modelling typically includes the following steps: 
• State the problem (why do the modelling?) 
• Specify the modelling methods and choose the tools 
• Carry out the modelling: 

• Collect, prepare and survey the data 
• Choose variables that reflect the physical processes  
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• Build the model 
• Calibrate the model parameters using the measured data 
• Evaluate the model uncertainty 
• Test (validate) the model using the “unseen” data sets 

• Apply the model 
• Evaluate results 
 
The development of software packages for physically-based models follows a number 
of well-defined steps (Dee, 1993): 
• Represent the (generic) physical laws in terms of mathematical algorithms 
• Replicate the resulting (conservation) equations in terms of a digital representation 

of the algorithms 
• Solve the resulting difference equations within particular boundary constraints and 

conditions 
• Design, code and test the numerical procedures 
• Design, produce and test the resulting software system that can be linked to other 

systems such as databases, GIS, CAD, 2D and 3D graphics, and so on.   
 
The resulting software tools are then used with the data for a particular instance of a 
water-based system to generate (or instantiate) a computational model of that system.  
 
The user would go on to identify and test scenarios, and to select the preferred 
scenario and carry out sensitivity tests as necessary. 
 
These models are constructed by the process of conceptualising the real world system 
into structural and process objects and abstracting the collection of objects into a 
feasible system.   A hydroinformatics model in Abbott’s sense has indicative signs 
that point to the structural and process objects and expressive signs that point to the 
output objects, such as graphics of the results. All these are designed by the developer 
who works from his/her own worldview, and particularly for the class of problems 
that the software package is supposed to address.  It does not follow that the user has 
the same point of view as the developer.  Consequently, there are big risks that the 
user will apply the software package outside the limits for which it was designed.  
Much is left up to the user concerning how to structure his/her model, what data to 
select, how to calibrate the model, how to interpret the results, etc.  The decision 
maker is usually yet a third person, who is even more remote from the modelling 
process, but intimately concerned with what the model produces in terms of data that 
will assist in the decision making process. 
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Fig 3.1 Relationship between developer, user and decision maker 

3.2. Application of physically-based models  
The application of modelling software tools has brought about radical improvements 
in our understanding of large-scale water-based systems, such as rivers, estuaries and 
coastal waters.  The tools have been extended to include the advection and dispersion 
of pollutants in the flow, the transport of sediment in suspension and as bed load, the 
consequences of the flow environment for different biological species, the interaction 
of flow with structures, and so on.  Better models for the closure problem in 
replicating turbulence, the possibility of feedback on flows from morphological 
changes whether in rivers or coastal waters, links between flow models and limited 
area atmospheric models, integration of detailed models of groundwater and surface 
flow, urban drainage, treatment and receiving waters, are changing the way in which 
modelling is being done.  More emphasis is now being given to what is a safe and 
reliable software modelling system or an instantiated model, because it is on the basis 
of the results generated by instantiated models that important and far reaching 
decision are being made. 
 
As Jonkers (2001) points out, models of complex systems reduce complexity.  
Structures and processes are conceptualised, and simultaneously decomposed.  The 
resulting concepts facilitate communication.  They enable the structures and processes 
of the real world (society as well as nature) to be explored and mapped.  The models 
themselves are valuable instruments for mining, refining and even formalising ‘tacit’ 
knowledge.  In addition, they provide a rational framework for archiving and 
retrieving formalised knowledge and information.  Finally, models are vital in 
supporting and governing the control of complex systems as well as in facilitating 
training and education. 
 
A particular feature of computational hydraulic modelling is that it is a vigorous 
commercial activity.  Organisations such as Danish Hydraulic Institute, Delft 
Hydraulics (Netherlands) and HR Wallingford (UK) have lead the way in making 
sophisticated modelling packages available.  For example, MIKE11 from DHI is 
probably the leading commercial package for river modelling in terms of the number 
of copies released, with more than 2000 copies in use worldwide.  There are however, 
many free, public domain products also available.  The difficulty is that the latter 
products rarely have guaranteed ongoing support, unless it is from a major supplier in 
the US such as the US Army Corps of Engineers.  There is growing need for better 
support in the process of modelling rather than just the modelling product.  This 
speaks of the need for better training in using modelling products, especially as they 
become more and more sophisticated when the chance of misusing the products 
becomes greater. 
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Models are therefore a means to an end.  At some stage, where models are used as 
tools in engineering design, decisions have to be made.  Decision-makers need safe 
and reliable information on which to make their decisions.  Yet there are inherent 
problems with the models themselves in terms of the uncertainties that are introduced 
through the development of the software tools and the art of collecting, selecting and 
implementing data from the real world with the modelling software to produce 
instantiated models.  What is more, the decision-makers are no longer a select body of 
people: decision-making is increasingly being shared within our communities, with a 
number of different stakeholders involved.  The more open the process of decision-
making, the more transparent the modelling results have to be.  It is with this in mind 
that Abbott and Jonoski (2001) have developed the dual concept of ‘fact’ and 
‘judgement’ engines within the context of an Internet-based decision support 
environment, designed for a range of stakeholders.  The emphasis therefore is turning 
more to the processes in which modelling systems are being used rather than the 
modelling systems themselves. 
 
Another discernible trend is the movement towards greater reliance and use of data 
from the real world.  Admittedly, many engineers have been sceptical about the value 
of modelling systems: they much prefer to deal with the real world at first hand.  Even 
though the collection of data carries with it its own inherent problems, they have 
greater trust in collected data than the models that utilise the data.  Having collected 
the data the engineer still has to analyse it in order to discover new information and 
knowledge about his or her system.  They go through a process of ‘knowledge 
discovery’, looking for patterns and anomalies in the data.  They may even attempt 
some form of statistical analysis on the data to deduce particular relationships.  This 
approach to data modelling is now being extended using a range of data-driven 
modelling techniques.  The idea is to look for connections between different 
categories or sets of data.  Particular connectionist techniques include artificial neural 
networks, fuzzy logic generators, model trees, and so on.  
 
As models are means to an end they are usually incorporated within engineering 
decision-making processes.  A good example of the latest state in the development of 
hydroinformatics is its role in conceiving, designing and implementing the bridge and 
tunnel connection between Denmark and Sweden.  The latest modelling tools were 
used to predict currents in conjunction with remote sensing and monitoring.  A 
particular communication system was devised to take into account and keep informed 
a number of active stakeholders in the construction process.  Eco-systems were 
preserved and costs were reduced.  See Thorkilsen and Dynesen (2001).  Similar 
developments are taking place in other areas such as urban water asset management 
such as for sewerage and water supply. An example of model development and 
application in river basin management is presented by Falconer et al., (2005) among 
others. 
 
The safe instantiation of models is prejudiced by several factors. The first is errors or 
missing values in the data measurements, or insufficient data, for example when 
calibrating a physically based model or training a data driven model. Another factor is 
missing modelling objects in a physically based model, such as not including an 
overflow in an urban drainage network. Then there are missing processes in a model, 
such as not including evaporation in a data driven model for a catchment where 
evaporation is important. An unfortunate consequence of having missing or 
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inadequate data is force fitting the model to the data. For example, this can result in 
model parameters, such as the boundary roughness in a physically based model of 
flow in a channel, calibrated to have a value outside the normal range. Again, due to 
the approximations and uncertainties in the input data, model structure and solution 
process, there is a need to be formally aware of the uncertainties in the model 
predictions. Finally we need to be assured that the model is ‘fit for purpose’. In other 
words, it can be used with confidence for decision making. 
 
Some “golden rules” of modelling can be formulated:  
• Try to ensure data is good 
• Follow appropriate modelling procedures 
• Be prepared to use models of various types (for example, complement physically 

based models by the data-driven ones) 
• Do not trust models blindly 
• Learn what is inside a model 

3.3. Data-driven modelling 
Physically based modelling depends on a knowledge of the physics (or chemistry and 
biology) being encapsulated within the software in some way.  The software then 
provides a direct link between the input to an instantiated model and the 
corresponding output.  Usually such models are deterministic in that there is a unique 
output for a given input (provided the input data is complete).  One of the advantages 
of such models is that following calibration and confirmation they can be applied with 
some degree of confidence within a range of input data covered by the calibration, and 
even for a limited degree of extrapolation due to the encapsulated physics.  Precisely 
how far the model can be extrapolated with confidence depends on the quality of the 
structural data and possibly on the definition of some of the critical (conceptualised) 
processes (such as the definition of conveyance across a section in 1D river 
modelling).  Physically based models can also generate a large amount of information 
on what happens away from the boundaries (where data is prescribed as input or 
output). In addition, modifications can be made to the structural objects in order to 
assess the performance of the system for different scenarios that involve structural 
change. 
 
Data-driven modelling is very different to physically based modelling, despite its 
similar purpose of connecting one set of data (the output) with another corresponding 
set (the input).  The basic idea is to work with data only on the ‘boundaries’ of the 
domain where data is given, and to find a form of relationship(s) that best connects 
the specific data sets.  The relationship can take a form that has little to do with the 
physical principles that might be used in, say, a physically based model.   
 
The main feature of data driven modelling is, in fact, learning from available data, 
which incorporates the so far unknown mappings (or dependencies) between a 
system's inputs and outputs (Mitchell 1997). By data we understand the known 
samples that are combinations of inputs and corresponding outputs. As such, a 
dependency (viz. mapping, or ‘model’) is discovered (induced), which can then be 
used to predict (or effectively deduce) the future system's outputs from known input 
values.  
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By data we usually understand it to be a set K of examples (or instances) represented 
by the duple <xk, yk>, where k = 1,…, K, vector xk = {x1,…,xn}k , vector yk = 
{y1,…,ym}k , n = number of inputs, m = number of outputs. The process of building a 
function (or ‘mapping’, or ‘model’) y = f (x) is called training. Often only one output 
is considered, so m = 1.  
 
In the context of water modelling the inputs and outputs are typically real numbers 
(xk, yk ∈ ℜn), so the main learning problem to be solved is numerical prediction 
(regression). Sometimes problems of clustering and classification are also solved.  
 
Consider an example where an attempt is made to build a data-driven model linking 
the input variable X and output Y (Fig. 2.1). A set of observations (xi, yi) is given 
(denoted by points). A data-driven model representing this data set could be a linear 
regression model Y =  a0 + a1 X (Model 1). Other, non-linear models can also be built: 
Models 2 and 3. We now ask: What is the best model? And how do we define “best”?  
 
If we look purely at the model error then the Model 3 would be the best – its plot goes 
through all the points so it has zero error on the training set. However in real life the 
data may be noisy so it should not be seen as a very accurate representation of the 
modelled system. So a model that is very accurate on the training data set, may have 
captured not only the general trend in data, but also the noise. It is said that such 
model “overfits” the data. Hence, if the purpose of modelling is to capture a general 
trend in the data, then Model 2 would be a better representative (approximator) of the 
data set (whereas linear Model 1 is too simple and inaccurate). Indeed it is said Model 
2 has a higher generalisation, since in a general case of encountering new unknown 
data it has a better chance of making a better prediction of the output. It is up to a 
modeller to judge the quality of the data and to decide what type of model is most 
adequate in a particular situation.  
 
There are many machine learning techniques that can be used to build non-linear data-
driven models. One of the most popular is an artificial neural network.  

 
Figure 2.1. Examples of linear and non-linear data-driven models. What is the “best” 
model? 
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3.3.1. Artificial Neural Networks 
An increasingly popular data driven modelling method is the artificial neural network 
(ANN).  This paradigm is inspired by the way, in which the human brain processes 
information.  This is done through a biological neural system that solves a specific 
task that it has been trained to do by handling a number of input signals, processing 
them, and outputting the result(s).  The brain is composed of a very large number of 
neurons that are massively interconnected.  Each neuron is a specialised cell that can 
propagate an electrochemical signal.  The neuron has a branching input structure (the 
dendrites), a cell body and a branching output structure (the axon).  The axons of one 
cell connect to the dendrites of another cell via a synapse.  When a neuron is 
activated, it fires an electrochemical signal along the axon.  This signal crosses the 
synapses to other neurons, which may in turn fire themselves.  A neuron only fires if 
the total signal received by the cell body exceeds a certain level called the firing 
threshold.  The strength of the signal received by a neuron depends critically on the 
nature of the synapse.  Each synapse consists of a gap across which neurotransmitter 
chemicals are poised to transmit the signal.  Learning consists essentially of altering 
the strength of the synaptic connections.  From a system consisting of a large number 
of very simple processing units, the brain appears able to carry out extremely complex 
tasks.  An ANN is a greatly simplified model of this perception of the human brain. 
 
So an ANN consists of a large number of processing elements called neurons.  Each 
neuron has an internal state called its activation or activity level.  This is a function of 
all the inputs it has received.  It then sends one signal at a time depending on its 
activation result to several other neurons.  Typically an ANN developed for modelling 
the connectivity between a time series input and a corresponding time series output 
will consist of three layers of neurons: an input layer with a number of specific inputs, 
a hidden layer containing again a (different) number of neurons, and an output layer 
with one or more neurons.   
 

 
 
Fig 2.2  The basic features of a biological neuron  

Dendrite of 
another neuron 

Synaptic gap 

Dendrite of 
another neuron 

Axon 

Soma 

Dendrite

Axon from 
another neuron 

Axon from 
another neuron 



Page 13 of 28 

 
 
Fig 2.3  Structure of a simple artificial neural network 
 
 
 
 
 
 
 
 
 
 
Fig 2.4  Schematic diagram of node j 
 
The inputs form an input vector X=(x1,…, xi,…., xn), and the corresponding weights 
leading to the node form a weight vector A=(a1,…, ai,…., an).  The output of node j is 
obtained by computing the value of the function f: 
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where the activation function f can be the sigmoid function: 
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which is well behaved between 0 and 1.  Note that -aoj is the threshold value such that 
the function f is zero for values less than zero.  Other activation functions can also be 
chosen such as the threshold function (a) and the linear or saturation function (b).  (c) 
is the sigmoid function. 
 
 
 
 
 
  (a)        (b)    (c) 
Fig 2.5   Alternative activation functions 
 
The combination of the outputs from each of the m nodes in the hidden layer feeding 
the output node gives 
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where B=(b1,…., bj,…., bm) is the weight vector on the outputs from the neurons in the 
hidden layer. 
 
The ANN generates an output vector Z=(z1,…, zk,…., zK) (for K output data values) 
that is as close as possible to the target vector T=(t1,…, tk,…., tK) of observed values.  
This is the training process, also called the learning process, during which the weights 
aij and bj are optimised.  Normally this is done through minimising a predetermined 
error function of the form: 
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A range of methods have been developed whereby the weights can be determined.  
Such methods are usually variants of a gradient-based techniques (like Levenberg-
Marquardt).  
 
This type of ANN is called a multi-layer perceptron.  It is a feed forward network in 
that information is fed through from the input to the output layer.  It learns through 
back propagation from the errors of the prescribed output data.  This is called 
supervised learning.   
 
Another popular form of ANN is the radial basis function (RBF) network (Haykin 
1999), which consists of  
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where 
( ) )exp( 2uuf λ−=  (3.6)

The output is given by 
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This form of ANN has a faster learning process than back propagation networks, 
though the accuracy of the solution is highly dependent on the data range and quality 
(Dibike, 1997). 
 
A successful implementation of an ANN depends on a number of unknowns.  For 
example, what input data should be used for a given output?  How many hidden layers 
should there be? How many neurons (nodes) should be used in a hidden layer? Can 
the number of nodes be reduced to limit the time taken in training the network? How 
can ‘overfitting’ be avoided?  
 
Generally, one hidden layer is sufficient to reproduce any non-linear function.  
Similarly, the number of nodes in the hidden layer is typically selected to be not more 
than twice the number of input nodes. Overfitting is a particular problem that can be 
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identified by dividing the data set into three parts: training set, validation set and test 
set.  The validation set is used during the training to check whether the error on this 
set starts to increase even when the error on the training set is decreasing. 
 
This is a very brief introduction to ANNs for time series analysis on input and 
corresponding output data sets.  ANNs can also be used very effectively for 
classification.  These facilities can be very important in complementing the time series 
analysis facility in modelling.  
 

3.3.2. Choice of relevant variables 
 
The choice of variables is an important subject, and some studies suffer from the lack 
of relevant analysis. Apart from the expert judgement and visual inspection, there are 
formal methods that help in justifying this choice, and the reader is directed to the 
paper by Bowden et al. (2005) for an overview of these methods. Note that the input 
data may require pre-processing (e.g. filtering to remove noise), and this may increase 
the total number of possible inputs (and their combinations) to consider (see e.g., 
Solomatine and Xue 2004). In case of a high number of inputs, methods such as 
principal component analysis (PCA) may help.  
 
Several main approaches to inputs selection can be distinguished. Of course, the 
initial set of candidate inputs is selected on the basis of expert judgement and a priori 
knowledge of the system being modelled. Further, stepwise selection of inputs can be 
employed. In forward selection we begin by finding the best single input, and in each 
subsequent step we add the input that improves the model performance most. 
Backward elimination starts with a set of all inputs, and sequentially removes the 
input that reduces performance the least. An optimal way would be to train many 
models on various sets of inputs and selecting the model with the lowest error; we 
may go for an exhaustive automated optimisation search across all possible 
combinations, or use a limited set of combinations. These methods need model runs 
for input selection. The so-called model-free approach is based either on statistical 
methods like cross-correlation, or information-theory based methods.  
 
The information-theory based approach is in determining the information content 
between, say, the time series input data (eg rainfall) and the corresponding output time 
series (eg discharge).  Our own experience using the Average Mutual Information 
(Abebe and Price, 2003; Solomatine and Dulal, 2003) shows that this simple and 
reliable method can help in selection of relevant input variables. The AMI is the 
measure of information in bits that can be learned about one data set in comparison 
with another known data set.  It is based on Shannon’s theory of entropy (Shannon, 
1948).  The AMI between two measurements, ai and bj, drawn from sets A and B 
respectively can be written as  
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where ),( jiAB baP  is the joint probability density for measurements A and B resulting 
in values ai and bj , )( iA aP  and )( jB bP  are the individual probability densities for the 
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measurements of A and B. If the measurement of a value from A resulting in ai is 
completely independent of the measurement of a value from B resulting in bi , then the 
mutual information ABI  is zero.  Compared to techniques such as linear correlation, 
the advantage of AMI is that it can be used to detect non-linear relationships as well 
as linear ones since it employs set theoretic principles and is not bound to any specific 
function.  However, for discrete measurements actual values depend on technicalities 
such as the number of class intervals used to calculate the probability densities.  The 
value of AMI in the case of rainfall-runoff modelling say, is that it clearly determines 
the lag time between the rainfall and the runoff, thus enabling a proper choice of input 
data for the input layer of the ANN. 
 

3.3.3. Other machine learning modelling techniques 
ANNs are one technique that can be used for data-driven modelling.  There is a range 
of other techniques that have become popular in recent years, including: 
 
Nearest neighbour Based on the assumption that nearby points are more likely to be 

given the same classification than distant ones.  The learning set 
{ }kv, is taken as a collection of known cases [ ]kv,  and a search is 
made for a given pattern v to be recognised for the best match 
among the precedents vj.  The class label k of the nearest 
neighbour vnearest is forwarded as a result of the classification 

Fuzzy rule based 
systems 

Consists of input-output membership functions, fuzzy rules and 
an inference engine.  Crisp inputs are fuzzified, the fuzzy rules 
are applied and the inference engine is used to recover a crisp 
output; see Bardossy and Duckstein (1995) 

Genetic 
programming 

A functional form is allowed to evolve according to prescribed 
evolutionary rules such that the resulting function most closely 
generates the output set given the input set. 

Decision/Model 
trees 

Instances are classified by sorting them up the ‘tree’ from the 
‘root’ to some ‘leaf’ node that provides a classification of the 
instance.  Each node in a tree specifies a test of some attribute of 
the instance, and each branch descending from a node 
corresponds to on of the possible values for this attribute.  An 
instance is classified by starting at the root node of the tree, 
testing the attribute specified by this node, then moving down the 
branch corresponding to the value of the attribute.  This process 
is repeated for the sub-tree root based at the new node (Witten an 
Frank 2000). 

Support vector 
machines 

The approximating function is chosen on how well it fits the 
verification set (minimising the structural risk) as well as the 
training set (minimising the empirical risk) using statistical 
learning theory; see Vapnik (1998) 

 

3.3.4. Chaos 
Besides the connectionist techniques above there are other techniques that consider 
the underlying structure of a time series.  The idea is that an apparently random time 
series may have an underlying deterministic structure that can be determined in an 
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appropriate state or phase space.  Data vectors are constructed from the time series 
{ })(ns such as 

[ ]))1((),....,2(),(),()( −+++= kTnsTnsTnsnsny  (3.9)
where sTτ  is the time lag k is the dimension of the space.  T is determined from the 
first minimum of the AMI for the series { })(ns  and { })( Tns + . 
 
d is the lowest (integer) dimension which unfolds the possible attractor (underlying 
structure) for the time series.  This is done using nearest neighbour techniques and by 
progressively increasing the dimension d.  Finally the stability of the system is 
determined by the Lyapunov exponents.  These are determined by studying the 
separation of two points, a0 and b0, on two trajectories after some number n iterations.  
The global Lyapunov exponent is formulated as 

nnban
a ba

ba
n −

−
=

∞→−∞→

00
2log1

limlim
00

λ  
 

(3.10)

If one or more of the Lyapunov exponents is positive, which indicates that the 
neighbouring points are diverging, then this implies the existence of chaos.  A zero 
exponent means that the neighbouring points will remain at the same distance from 
each other and the system can be modelled by a set of differential equations.  
Negative Lyapunov exponents indicate that the neighbouring points are converging 
and the system is dissipative.  The largest Lyapunov exponents can also be used to 
establish a window of predicatability, Tp, of a system in time: 
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(5.11)
Chaos is used extensively now to forecast ahead, given the time series alone.  For a 
good introduction to chaos theory; see Ararbanel (1996).  See also Solomatine et al 
(2000) for an example of the application of chaos theory to the prediction of surge 
water level in the North Sea close to Hoek van Holland. 

3.3.5. Applications of data driven modelling 
An obvious use of ANNs is in modelling the rainfall-runoff process, or in routing 
flows from one point to another along a river.  Other uses include prediction of 
currents in the sea from meteorological conditions, the interpretation of cone 
penetration tests, the estimation of sedimentation in dredged channels, forecasts of 
demand in water distribution networks, prediction of intermittent overflows in 
drainage networks, and so on.  Such modelling can be done without the support of any 
physically based modelling.  However, there is increasing use of ANNs (and other 
data driven modelling techniques) to complement physically based models.  This is 
done by arranging for an ANN to model the error of a physically based model, that is, 
the difference or the ratio between the observed and predicted values of the output.  
This is a particularly simple form of data assimilation.  
 
For example applications of various data modelling methods see the following: 
• modelling rainfall-runoff processes using ANNs: Hsu et al. (1995); Minns and 

Hall (1996); Dawson and Wilby (1998); Dibike et al. (1999); Abrahart and See 
(2000); a collection of papers edited by Govindaraju and Ramachandra Rao 
(2000); Hu et al. (2007); Abrahart and See (2007).  

• modelling river stage-discharge relationships with ANNs (Sudheer and Jain, 2003; 
Bhattacharya and Solomatine, 2005);  
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• Moradkhani et al. (2004) used RBF ANNs for predicting hourly streamflow 
hydrograph for the daily flow for a river in USA as a case study, and demonstrated 
their accuracy if compared to other numerical prediction models. In this study 
RBF was combined with the self organising feature maps used to identify the 
clusters of data;  

• using a fuzzy rule-based system for the prediction of precipitation events (Abebe, 
Solomatine and Venneker, 1999); 

• using fuzzy logic in the analysis of groundwater model uncertainty (Abebe, 
Guinot and Solomatine, 2000); 

• using ANNs and fuzzy rule-based system to build an intelligent controller for 
water management in polder areas (Lobbrecht and Solomatine, 1999)  

• modeling a channel network using ANN (Price et al. 1998); 
• surge water level prediction in the problem of ship guidance using ANN and chaos 

theory (Solomatine et al., 2000); 
• using M5 model trees to predict discharge in a river (Solomatine and Dulal, 2003); 
• using support vector machines (SVM) in prediction of water flows for flood 

management (Dibike, Velickov, Solomatine & Abbott, 2001). 
 
One of the applications of data-driven models is to replicate physically-based models. 
A number of such studies have been reported: 
• replicating the behaviour of hydrodynamic and hydrological models of the Apure 

river basin (Venezuela), where ANNs are used in model-based optimal control of 
a reservoir (Solomatine and Torres, 1996);  

• building an assisting surrogate model in calibration of a rainfall-runoff model 
(Khu et al., 2004); 

• emulating by an MLP network and replacing the hydrologic simulation 
component of multiobjective decision support model for watershed management 
(Muleta and Nicklow, 2004). In this study an alternative to the back propagation 
training was used – a direct search method (evolutionary algorithm) that 
reportedly allowed for avoiding local minima during training. 

 
There is little doubt that the variety of data driven modelling techniques offers 
considerable scope for analysing time series data and deducing appropriate ‘black-
box’ models.  Such models are normally considerably easier to set up than physically 
based models.  They are particularly powerful in situations where it is difficult to 
determine the physical processes, or when accurate forecasts are needed based on 
what is known of the system up to time now.  There are however, obvious limitations 
in that these modelling techniques rely on there being no change in the structural 
(physical) domain that can change the assumed functional relationship between the 
input and output data sets.  These could include modifications to a catchment land 
use, river training works, or alterations to control structures.  Furthermore, ANNs, for 
example, are well known to have difficulty in extrapolating outside the range of the 
training data.  There are ways of reducing this difficulty, but users should be aware of 
the problem. 
 
On the latest trends and applications of DDM see, for example, Solomatine and 
Ostfeld (2008).  
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3.4. Uncertainty in modelling 
A huge issue in modelling is the confidence that the decision-maker can put in the 
results from an (instantiated) model.  Every model is, by definition, an approximation 
to reality.  The decision-maker needs to know therefore how safe and reliable the 
results from a model are in affecting the decision made.  Bearing in mind that 
measurements, particularly of flows, can have an uncertainty of 20% or more, then the 
models that are built (calibrated, confirmed) using such data will have uncertainties of 
at least a similar order.  As seen above, considerable effort is now put into trying to 
reduce the model error by complementing a physically based model with a data-
driven model of the ‘errors’ of the physically based model.  However, the fact is that 
decision-makers still have to live with uncertainty.  This means that they have to 
consider such uncertainties when making decisions.  The whole area therefore of 
decision-making in civil engineering (risk analysis etc) needs ongoing attention; see 
Maskey (2001).  
 
An excellent paper by Pappenberger and Beven (2006) presents some reasons why 
uncertainty estimation is still rarely used. They state: “a significant part of the 
community is still reluctant to embrace the estimation of uncertainty in hydrological 
and hydraulic modelling. … we summarize and explore seven common arguments: 
uncertainty analysis is not necessary given physically realistic models; uncertainty 
analysis cannot be used in hydrological and hydraulic hypothesis testing; uncertainty 
(probability) distributions cannot be understood by policy makers and the public; 
uncertainty analysis cannot be incorporated into the decision-making process; 
uncertainty analysis is too subjective; uncertainty analysis is too difficult to perform; 
uncertainty does not really matter in making the final decision”.   
 
There are two main types of uncertainty: 
• epistemic uncertainty that is due to imperfection of our knowledge – it can be 

reduced by more research or acquiring more data; 
• variability uncertainty which is due to inherent variability (randomness) in 

behaviour of natural or human systems. 
 
The main sources of uncertainty in modelling have three main sources: 
• input data uncertainty 
• model uncertainty consisting of structural uncertainty, and parametric uncertainty; 
• output data uncertainty, which influences the calibration procedure and leads to 

uncertainty in the model output. 
 
In relation to water-related issues, there were many studies done where the model 
uncertainty was estimated. Several main approaches can be identified.  
 
The first approach is to forecast the model outputs probabilistically and it is often 
used in hydrological modeling (like Bayesian Forecasting System of Krzysztofowicz, 
2000). The second approach is to estimate uncertainty by analyzing the statistical 
properties of the model errors that occurred in reproducing the observed historical 
data. This approach has been widely used in statistical (Wonnacott and Wonnacott, 
1996) and machine learning communities (Nix and Weigend, 1994). For time series 
forecasting; uncertainty is estimated in terms of confidence interval or prediction 
interval. A method that can be also attributed to this group (meta-Gaussian model) 
was developed by Montanari and Brath (2004). The third approach is to use sampling 
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based techniques, generally referred to as a Monte Carlo method. This method is used, 
for example, in a generalized likelihood uncertainty estimator, GLUE (Beven and 
Binely, 1992) that is popular in hydrologic modelling. Monte Carlo methods are 
typically used to estimate the models’ output uncertainty due to the uncertainty of 
model parameters (parametric uncertainty). The fourth approach is based on fuzzy 
theory based method (Maskey et al., 2004). This provides a non-probabilistic 
approach for modelling the kind of uncertainty associated with vagueness and 
imprecision. 
 
The first and the third approaches mentioned above require the prior distributions of 
the uncertain input parameters or data to be propagated through the model to the 
outputs. In contrast, the second approach requires certain assumptions about the data 
and the errors, and obviously the relevancy and accuracy of such approach depends on 
the validity of these assumptions. The last approach requires knowledge of the 
membership function of the quantity subject to the uncertainty. 
 
Recently Shrestha and Solomatine (2006) presented an approach termed UNcertainty 
Estimation based on local model Errors (UNEEC). It is based on an idea to build local 
data-driven models predicting the properties of the error distribution for particular 
(hydrometeorological) situations. Further, it uses a scheme based on fuzzy clustering 
to aggregate the outputs of these models and to train an overall uncertainty prediction 
model. This is a distribution free, non parametric method to model the propagation of 
integral uncertainty through the models, and it was tested in forecasting river flows in 
a flood context.  
 
This discussion leads us to reflect on decision support environments. 

3.5. Integrated water modelling 
However, why stop at integration of models in the physical sphere alone?  In fact, a 
hierarchy of modelling is done in most water engineering organisations.  For example, 
an urban water supply or wastewater disposal organisation has to model not only its 
water networks but also to model (in comparatively simple terms) the economics of 
making choices between one scenario or option and another.  This points to a 
hierarchy of models in a similar manner to the integrated modelling of a river basin 
referred to above. 
 
One way of exploring the concept of such a hierarchy is to adopt Jonker’s (2001) 
classification of the physical, biological and social spheres.  He postulates a three-
dimensional knowledge space of systems (geo-, bio- and socio-spheres), processes 
(plan, design, construct, manage) and tools (data sets, technologies, models, 
courseware, people, etc).  This is intended to be all encompassing.  As such it runs the 
danger that it becomes unwieldy due to its complexity such that we cannot grasp its 
implications.  Nevertheless, the hierarchy of models needs to work with this 
knowledge space in a way that we can retain some form of control on its complexity.   
 
One way of doing this is to address the hierarchy of the models in terms of model 
complexity.  For example, if we were considering a river basin then at the top level 
the (systems) model would integrate the inter-related knowledge domains on the 
systems axis, as well as specific processes and associated tools.  Such a model would 
follow the parsimony principle, and at the same time be capable of answering the key 
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questions/objectives that are raised; that is, the model should be ‘fit for purpose’. It 
would probably be based on cybernetics principles.  In order to make the model 
tractable it would also consist of a number of sub-models.  This is way of saying that 
at the next level down there will be models defined separately for each system 
domain.  They will necessarily introduce an order of magnitude increase in 
complexity, but they should still be tractable. There will in addition be models below 
these intermediate models that address yet finer details of the problem.  In the river 
basin, for example, the second layer would include models of the economics of 
particular branches of industry or city development, integrated water resources, or 
recreation development.   
 
Examples of these sorts of models exist at IHE for ‘role play’ in water resources 
management.  At the bottom layer (and we can of course envisage other intermediate 
layers) there will be detailed models such as MIKE-SHE (from DHI) for integrated 
surface and groundwater modelling, and InfoWorks (from Wallingford Software) for 
integrated water supply/distribution, wastewater and storm water collection, 
wastewater treatment, and pollution impact on receiving streams.  The models at each 
layer would be visualised in and make use of a suitable GIS.  What is going to be 
extremely important is that there is consistency between the models at each layer, for 
example, between the MIKE-SHE and InfoWorks models and the integrated water 
resources model above them.  There exists the possibility of training a cruder, higher-
level model on a more detailed, lower level model to achieve consistency.  This points 
to a ‘bottom-up’ model development that works from greater to lesser complexity.  
This is not the usual way in which computational hydraulics has developed.  In 
general there has been a striving for the models to become more detailed with the 
assumption that as detail is achieved so the latest model will include everything that a 
less detailed model will encompass (and more besides).  Whereas this is undoubtedly 
the case, in going to higher levels there is much less interest in the details: attention is 
focussed more on global or boundary conditions.  This is where ‘conceptual’ or data-
driven models trained on (to replicate) the more detailed models come into their own. 
 
Apart from conceptual integration, the models need to be integrated in terms of 
software and hardware, and the development of tools that make such integration easier 
and more effective is very much needed. Recently various research and development 
groups are reporting interesting approaches to such integration using flexible 
straightforward protocols like file exchange and XML descriptors used in Delft-
FEWS system (Werner, 2008), web services (Donchyts, 2007; Horak et al., 2007) and 
object-oriented framework OpenMI , which allows a tight connection between two 
computational processes (Fortune, 2008). The latter approach is a result of a joint 
effort between several major competing suppliers of hydraulic and hydrologic 
modelling software (DHI, Delft Hydraulics and Wallingford Software), see 
www.OpenMI.org.  

3.6. Optimization 
Optimization can be defined is a process of finding such values of the variables 
characterizing some system that would bring a particular function to a minimum (or 
maximum). This would mean that the system is in a certain sense “optimal”. The 
variables are called the decision variables, and the function – an objective function. 
Examples of water-related issues that require solving an optimization problem follow:  
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1) Find such release of the reservoir(s) with a hydropower dam that would lead to the 
maximum yearly production of the electrical power, and satisfy the water consumers 
downstream (Labadie, 2002).  
 
2) Identify and present to a decision maker several rehabilitation plans for a drainage 
(or combined sewer) system that would a) lead to smaller (ideally, minimum) flood 
damages in case of heavy rainfalls, and b) be within budget constraints (the lower the 
costs the better) (Barreto et al., 2010). This is an example of a multi-objective 
optimization problem.  
 
3) Find an optimal groundwater remediation strategy leading to a smallest possible 
concentration of a pollutant (or concentration below a certain limit) in a given time 
(smaller the better) (see Maskey et al., 2002).  
 
3) For a hydrologic model, find the values of the parameters (which cannot be 
measured) that would lead to the smallest possible error of this model (Solomatine et 
al., 1999).  
 
4) Find a combination of models, knowledge sources and human experts that would 
solve a particular water management problem in an optimal way.  
 
Optimization techniques and tools complement the arsenal of the modelling tools, and 
play an important role in Hydroinformatics.  

3.7. Decision support environments for local and distributed decision 
making 

Hydroinformatics incorporates computational hydraulics, but as has been stressed by 
many authors following Abbott it is more than simply modelling.  This is because a 
modelling software product is primarily a tool.  Like all tools it is created to be ‘fit for 
purpose’ within specific contexts.  There are safe and reliable ways of applying a 
software tool just as there are unsafe and unreliable ways.  The (engineering) user is 
therefore a critical component in the application of the software.   Too often the 
interaction of the engineer with the modelling product is viewed as being ‘outside the 
picture’, and therefore not part of the application.  This view can no longer be 
sustained.  He (or she) has to make many decisions involving personal judgement 
based on experience.  In other words, what the user does in implementing the 
modelling software product is as important as the final instantiated model.   
 
And the user does not work alone.  He is dependent on the situation in which he is 
working, and on his relationship to clients, stakeholders and personnel with different 
contributing functions within the organisation in which he works.  The flow of the 
right information at the right time and in the right place becomes important for the 
success of the project involving the software.  This is illustrated in the case of 
sewerage rehabilitation projects.  There are, for example, many thousands of sewerage 
systems in Europe that at some stage will need rehabilitation for one reason or 
another.  It follows that there can be considerable cost savings by transferring and 
disseminating as widely as possible knowledge on best practices in sewerage 
rehabilitation.  The traditional way of doing this in engineering terms is to detail 
specific procedures that highlight the ‘lessons learned’ at each phase.  Usually there is 
a hierarchy of phases or tasks that are implemented in particular sequences.  Each task 
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has its own attributes, including explicit information or knowledge on the execution of 
the task acquired from experts.  An example of such a procedure or best management 
practice is the Sewerage Rehabilitation Manual (WRc).   
 
It is recognised that such engineering procedures are most effective where there are 
many repetitions of a similar process.  This is more likely to be the case with urban 
water-based systems, which have very well defined characteristics (even if there can 
be significant cultural differences between national practices).  The application to 
natural systems, such as rivers, or coastal waters is much more dependent on the 
peculiarities of each situation, and therefore it is more difficult to define a suitable 
procedure for each type of goal or objective.  Nevertheless, there is considerable 
scope for compiling ‘lessons learned’ on an encyclopaedic basis in support of 
applications.  This has yet to be done effectively, although some expert systems have 
been developed for a few specific cases.  In general, these expert systems have proved 
to be too simplistic or unwieldy, and a more open, unstructured access to information 
and knowledge is preferred.   

3.8. Development issues in hydroinformatics 
Hydroinformatics is a comparatively young subject that has attracted vigorous 
attention from a number of researchers world-wide.  For example, new departments of 
hydroinformatics are being set up in different universities (such as Technical 
University of Delft, Newcastle, Bristol, Singapore, Iowa, among others).  The 
diversity of the research specialisations of these departments, even within 
hydroinformatics, is growing.  This is partly adding to a certain initial confusion 
surrounding the subject, which is still defined in alternative ways by different people, 
and this offers interesting possibilities to enterprising developers. 
 
There are a number of key development areas in hydroinformatics.  For example, 
there is still the need to develop more efficient and accurate difference schemes and 
solvers for computational hydraulics, to improve the data mining and knowledge 
discovery techniques, and to explore new and more versatile data modelling methods. 
There is a clear need to develop procedures making it possible to integrate physically-
based and data-driven methods, thus building hybrid models.  
 
Experience in developing and applying computational hydraulic models is now very 
extensive.  Nevertheless, researchers and practising engineers have gained such 
experience by focussing on specific types of application.  So, for example, drainage 
and sewerage engineers have become proficient in modelling wastewater and storm 
drainage collection systems.  Other public health engineers have a corresponding but 
very different experience of modelling processes in treatment works.  Yet other, river 
engineers have developed techniques and experience for modelling pollutant impact 
on the water quality of receiving streams.  The modelling experience in each case is 
similar but sufficiently different that when it comes to integrating the different models 
there are problems of interfacing.  This has been tackled successfully in this particular 
area, and others are working to bring together water, structure and groundwater 
modelling.  The benefits for dealing holistically with complex situations, such as 
high-speed rail tunnels, off-shore structures, and other infrastructure projects are 
considerable.  
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Hydroinformatics integrates various data sources (remote sensing, gorund 
measurements etc.), various types of models, and management and decision support 
processes, and therefore serves the various stakeholders. Further development of 
software tools making this whole process effective and efficient is of great 
importance.  
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5. SOME USEFUL WEB SITES 
Additional material can be found at the following web site 
 
Universal locator of knowledge 
 
www.google.com  (typically finds everything you are searching for) 
 
Commercial software suppliers 
 
www.wldelft.nl 
www.dhisoftware.com 
www.wallingfordsoftware.co.uk 
www.haestad.com  
www.bossintl.com   
 
Free hydraulic and hydrologic software 
 
www.hec.usace.army.mil  (HEC-RAS, HEC-HMS, etc.) 
www.epa.gov/nrmrl/wswrd/dw/epanet.html  (EPANET) 
www.epa.gov/ednnrmrl/models/swmm/index.htm  (SWMM) 
 
Journals 
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www.iwaponline.com/jh/toc.htm  (Journal of Hydroinformatics) 
www.hydrology-and-earth-system-sciences.net (Hydrology and Earth Systems 
Sciences) 
www.hydrologicalprocesses.com  (Hydrological Processes) 
www.elsevier.com/locate/jhydrol  (Journal of Hydrology) 
www.journalhydraulicresearch.com  (Journal of Hydraulic Research) 
www.agu.org/journals/wr  (Water Resources Research) 
 
Other sites 
 
http://www.sahra.arizona.edu/software/index_main.html  (SAHRA – Software 
archive, University of Arizona) 
www.datamining.ihe.nl  (Introduction to the use of data-driven models in civil 
engineering, UNESCO-IHE) 
www.kdnuggets.com  (Guide to data mining and machine learning software) 


