In the name of God Thermodynamics I Course outline and study Guide

Textbook: Fundamentals of Thermodynamics (8th edition) by Claus Borgnakke, and Richard E. Sonntag.

Other References:

• Fundamental of Engineering Thermodynamics by M. J. Moran, and H. N. Shapiro

Week	Contents	Chapter
1	Introduction and Preliminaries	Chapter 1
2	The Pure Substance, The Phase Boundaries, The P–v–T Surface, Tables of Thermodynamic Properties, The Two-Phase States, The Liquid and Solid States, The Superheated Vapor States,	Chapter 2
3	The Ideal Gas States, The Compressibility Factor, Equations of State, Computerized Tables, Engineering Applications	
4	The Energy Equation, The First Law of Thermodynamics, The Definition of Work, Work Done at the Moving Boundary,	Chapter 3
5	Definition of Heat, Heat Transfer Modes, Internal Energy, The Thermodynamic Property Enthalpy, Specific Heats,	
6	Ideal Gases, General Systems That Involve Work, Conservation of Mass, Engineering Applications	
7	Conservation of Mass and the Control Volume, The Energy Equation for a Control Volume, The Steady-State Process, Examples of Steady-State Processes	Chapter 4
8	Multiple Flow Devices, The Transient Process, Engineering Applications	
9	Mid-term	
10	Heat Engines and Refrigerators, The Second Law of Thermodynamics, The Reversible Process,	Chapter 5
11	Irreversible Processes, The Carnot Cycle, Efficiency of a Carnot Cycle, The Thermodynamic Temperature Scale,	
12	The Ideal-Gas Temperature Scale, Ideal versus Real Machines, Engineering Applications	
13	The Inequality of Clausius, Entropy, Entropy Change in Reversible Processes, The Thermodynamic Property Relation, Entropy Change of a Solid or Liquid, Entropy Change of an Ideal Gas,	Chapter 6
14	Polytropic Process, Entropy Change of a Control Mass During an Irreversible Process, Entropy Generation, Principle of the Increase of Entropy, Entropy as a Rate Equation, Entropy and Chaos,	Chapter 0
15	The Second Law of Thermodynamics for a Control Volume, The Steady-State Process and the Transient Process,	Chapter 7
16	Principle of the Increase of Entropy, Engineering Applications; Efficiency,	

Course outline

Marks:

- Homework (10%)
- Quiz (10%)
- Term-Exam (20%)
- Final Exam (60%)