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Abstract
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grammeApplied Mechanicsat Chalmers. The two courses areTME225 Mechan-
ics of fluids, andMTF270 Turbulence Modeling. MSc students who follow these
courses are supposed to have taken one basic course in fluid mechanics.
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http://www.chalmers.se/en/education/programmes/mast ers-info/Pages/Applied-Mechanics.
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1. Motion, flow 9

Xi

T (x1
i , t1)

T (x2
i , t2)

T (Xi, t1)

T (Xi, t2)

Figure 1.1: The temperature of a fluid particle described in Lagrangian,T (Xi, t), or
Eulerian,T (xi, t), approach.

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative

See also [2], Chapt. 3.2.

Assume a fluid particle is moving along the line in Fig.1.1. We can choose to study
its motion in two ways: Lagrangian or Eulerian.

In the Lagrangian approach we keep track of its original position (Xi) and follow
its path which is described byxi(Xi, t). For example, at timet1 the temperature of
the particle isT (Xi, t1), and at timet2 its temperature isT (Xi, t2), see Fig.1.1. This
approach is not used for fluids because it is very tricky to define and follow a fluid
particle. It is however used when simulating movement of particles in fluids (for ex-
ample soot particles in gasoline-air mixtures in combustion applications). The speed
of the particle is then expressed as a function of time and itsposition at time zero, i.e.
vi = vi(Xi, t).

In the Eulerian approach we pick a position, e.g.x1
i , and watch the particle pass

by. This approach is used for fluids. The temperature of the fluid, T , for example, is
expressed as a function of the position, i.e.T = T (xi), see Fig.1.1. It may be that the
temperature at positionxi, for example, varies in time,t, and thenT = T (xi, t).

Now we want to express how the temperature of a fluid particle varies. In the
Lagrangian approach we first pick the particle (this gives its starting position,Xi).
Once we have chosen a particle its starting position is fixed,and temperature varies
only with time, i.e.T (t) and the temperature gradient can be writtendT/dt.

In the Eulerian approach it is a little bit more difficult. We are looking for the
temperature gradient,dT/dt, but since we are looking at fixed points in space we
need to express the temperature as a function of both time andspace. From classical
mechanics, we know that the velocity of a fluid particle is thetime derivative of its
space location, i.e.vi = dxi/dt. The chain-rule now gives

dT

dt
=
∂T

∂t
+
dxj

dt

∂T

∂xj
=
∂T

∂t
+ vj

∂T

∂xj
(1.1)

Note that we have to use partial derivative onT since it is a function of more than one
(independent) variable. The first term on the right side is the local rate of change; by local rate

of changethis we mean that it describes the variation ofT in timeat positionxi. The second term
on the right side is called theconvective rate of change, which means that it describesConv. rate

of change
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x1

x2

σ11

σ12

σ13

(a) Stress components on a surface.

x1

x2

fi

(b) Volume force,fi = (0,−g, 0), acting in
the middle of the fluid element.

Figure 1.2: Stress tensor and volume (gravitation) force.

the variation ofT in spacewhen is passes the pointxi. The left side in Eq.1.1is called
thematerial derivative and is in this text denoted bydT/dt. Material

derivativeEquation1.1can be illustrated as follows. Put your finger out in the blowing wind.
The temperature gradient you’re finger experiences is∂T/∂t. Imagine that you’re a
fluid particle and that you ride on a bike. The temperature gradient you experience is
the material derivative,dT/dt.

Exercise 1 Write out Eq.1.1, term-by-term.

1.2 Viscous stress, pressure

See also [2], Chapts. 6.3 and 8.1.

We have in Part I [3] derived the balance equation for linear momentum which
reads

ρv̇i − σji,j − ρfi = 0 (1.2)

Switch notation for the material derivative and derivatives so that

ρ
dvi

dt
=
∂σji

∂xj
+ ρfi (1.3)

where the first and the second term on the right side represents, respectively, the net
force due to surface and volume forces (σij denotes the stress tensor). Stress is force
per unit area. The first term includes the viscous stress tensor, τij . As you have learnt
earlier, the first index relates to the surface at which the stress acts and the second
index is related to the stress component. For example, on a surface whose normal is
ni = (1, 0, 0) act the three stress componentsσ11, σ12 andσ13, see Fig.1.2a; the
volume force acts in the middle of the fluid element, see Fig.1.2b.

In the present notation we denote the velocity vector byv = vi = (v1, v2, v3)
and the coordinate byx = xi = (x1, x2, x3). In the literature, you may find other
notations of the velocity vector such asui = (u1, u2, u3). If no tensor notation is used
the velocity vector is usually denoted as(u, v, w) and the coordinates as(x, y, z).
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The diagonal components ofσij represent normal stresses and the off-diagonal
components ofσij represent the shear stresses. In Part I [3] you learnt that the pressure
is defined as minus the sum of the normal stress, i.e.

p = −σkk/3 (1.4)

The pressure,p, acts as a normal stress. In general, pressure is a thermodynamic prop-
erty,pt, which can be obtained – for example – from the ideal gas law. In that case the
thermodynamics pressure,pt, and the mechanical pressure,p, may not be the same but
Eq. 1.4 is nevertheless used. Theviscousstress tensor,τij , is obtained by subtracting
the trace,σkk/3 = −p, fromσij ; the stress tensor can then be written as

σij = −pδij + τij (1.5)

τij is the deviator ofσij . The expression for the viscous stress tensor is found in Eq.2.4
at p.21. The minus-sign in front ofp appears because the pressure actsinto the surface.
When there’s no movement, the viscous stresses are zero and then of course the normal
stresses are the same as the pressure. In general, however, the normal stresses are the
sum of the pressure and the viscous stresses, i.e.

σ11 = −p+ τ11, σ22 = −p+ τ22, σ33 = −p+ τ33, (1.6)

Exercise 2 Consider Fig.1.2. Show howσ21, σ22, σ23 act on a surface with normal
vectorni = (0, 1, 0). Show also howσ31, σ32, σ33 act on a surface with normal vector
ni = (0, 0, 1).

Exercise 3 Write out Eq.1.5on matrix form.

1.3 Strain rate tensor, vorticity

See also [2], Chapt. 3.5.3, 3.6.

We need an expression for the viscous stresses,τij . They will be expressed in the
velocity gradients,∂vi

∂xj
. Hence we will now discuss the velocity gradients.

The velocity gradient tensor can be split into two parts as

∂vi

∂xj
=

1

2




∂vi

∂xj
+
∂vi

∂xj

2∂vi/∂xj

+
∂vj

∂xi
− ∂vj

∂xi

=0





=
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
+

1

2

(
∂vi

∂xj
− ∂vj

∂xi

)
= Sij + Ωij

(1.7)

where

Sij is asymmetrictensor called thestrain-rate tensor Strain-rate
tensor

Ωij is aanti-symmetrictensor called thevorticity tensor vorticity ten-
sorThe vorticity tensor is related to the familiarvorticity vector which is the curl of

the velocity vector, i.e.ω = ∇ × v, or in tensor notation

ωi = ǫijk
∂vk

∂xj
(1.8)
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If we set, for example,i = 3 we get

ω3 = ∂v2/∂x1 − ∂v1/∂x2. (1.9)

The vorticity represents rotation of a fluid particle. Inserting Eq.1.7 into Eq.1.8
gives

ωi = ǫijk(Skj + Ωkj) = ǫijkΩkj (1.10)

since ǫijkSkj = 0 because the product of a symmetric tensor (Skj) and an anti-
symmetric tensor (εijk) is zero. Let us show this fori = 1 by writing out the full
equation. Recall thatSij = Sji (i.e. S12 = S21, S13 = S31, S23 = S32) and
ǫijk = −ǫikj = ǫjki etc (i.e.ε123 = −ε132 = ε231 . . . , ε113 = ε221 = . . . ε331 = 0)

ε1jkSkj = ε111S11 + ε112S21 + ε113S31

+ ε121S12 + ε122S22 + ε123S32

+ ε131S13 + ε132S23 + ε133S33

= 0 · S11 + 0 · S21 + 0 · S31

+ 0 · S12 + 0 · S22 + 1 · S32

+ 0 · S13 − 1 · S23 + 0 · S33

= S32 − S23 = 0

(1.11)

Now let us invert Eq.1.10. We start by multiplying it withεiℓm so that

εiℓmωi = εiℓmǫijkΩkj (1.12)

Theε-δ-identity gives (see TableA.1 at p.A.1)

εiℓmǫijkΩkj = (δℓjδmk − δℓkδmj)Ωkj = Ωmℓ − Ωℓm = 2Ωmℓ (1.13)

This can easily be proved by writing all the components, see TableA.1 at p.A.1. Hence
we get with Eq.1.8

Ωmℓ =
1

2
εiℓmωi =

1

2
εℓmiωi = −1

2
εmℓiωi (1.14)

or, switching indices

Ωij = −1

2
εijkωk (1.15)

A much easier way to go from Eq.1.10to Eq.1.15is to write out the components of
Eq.1.10. Here we do it fori = 1

ω1 = ε123Ω32 + ε132Ω23 = Ω32 − Ω23 = −2Ω23 (1.16)

and we get

Ω23 = −1

2
ω1 (1.17)

which indeed is identical to Eq.1.15.

Exercise 4 Write out the second and third component of the vorticity vector given in
Eq.1.8(i.e. ω2 andω3).

Exercise 5 Complete the proof of Eq.1.11for i = 2 andi = 3.
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Exercise 6 Write out Eq.1.16also fori = 2 andi = 3 and find an expression forΩ12

andΩ13 (cf. Eq.1.17). Show that you get the same result as in Eq.1.15.

Exercise 7 In Eq.1.17we proved the relation betweenΩij andωi for the off-diagonal
components. What about the diagonal components ofΩij? What do you get from
Eq.1.7?

Exercise 8 From you course in linear algebra, you should remember how tocompute
a vector product using Sarrus’ rule. Use it to compute the vector product

ω = ∇× v =




ê1 ê2 ê3

∂
∂x1

∂
∂x2

∂
∂x3

v1 v2 v3





Verify that this agrees with the expression in tensor notation in Eq.1.8.

1.4 Product of a symmetric and antisymmetric tensor

In this section we show the proof that the product of a symmetric and antisymmetric
tensor is zero. First, we have the definitions:

• A tensoraij is symmetric ifaij = aji;

• A tensorbij is antisymmetric ifbij = −bji.

It follows that for an antisymmetric tensor that all diagonal components must be
zero; for example,b11 = −b11 can only be satisfied ifb11 = 0.

The (inner) product of a symmetric and antisymmetric tensoris always zero. This
can be shown as follows

aijbij = ajibij = −aijbji,

where we first used the fact thataij = aji (symmetric), and then thatbij = −bji

(antisymmetric). Since the indicesi andj are both dummy indices we can interchange
them, so that

aijbij = −ajibij = −aijbij ,

and thus the product must be zero.
This can of course also be shown be writing outaijbij on component form, i.e.

aijbij = a11b11 + a12b12
I

+ a13b13
II

+ a21b21
I

+a22b22 + a23b23
III

+ a31b31
II

+ a32b32
III

+a33b33 = 0

The underlined terms are zero; terms I cancel each other as doterms II and III.
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x1

x2

− ∂v1
∂x2

∆x2∆t

∂v2
∂x1

∆x1∆t

∆x1

∆x2

α

α

Figure 1.3: Rotation of a fluid particle during time∆t. Here∂v1/∂x2 = −∂v2/∂x1

so that−Ω12 = ω3/2 = ∂v2/∂x1 > 0.

1.5 Deformation, rotation

See also [2], Chapt. 3.3.

The velocity gradient can, as shown above, be divided into two parts:Sij andΩij .
We have shown that the latter is connected torotationof a fluid particle. During rotation rotation
the fluid particle is not deformed. This movement can be illustrated by Fig.1.3. The
vertical movement (v2) of the lower-right corner (x1 + ∆x1) of the particle in Fig.1.3
is estimated as follows. The velocity at the lower-left corner isv2(x1). Now we need
the velocity at the lower-right corner which is located atx1 + ∆x1. It is computed
using the first term in the Taylor series as1

v2(x1 + ∆x1) = v2(x1) + ∆x1
∂v2
∂x1

It is assumed that the fluid particle in Fig.1.3is rotated the angleα during the time
∆t. The vorticity during this rotation isω3 = ∂v2/∂x1 − ∂v1/∂x2 = −2Ω12. The
vorticity ω3 should be interpreted as twice the average rotation of the horizontal edge
(∂v2/∂x1) and vertical edge (−∂v1/∂x2).

Next let us have a look at the deformation caused bySij . It can be divided into two
parts, namely shear and elongation (also called extension or dilatation). The deforma-
tion due to shear is caused by the off-diagonal terms ofSij . In Fig.1.4, a pure shear de-
formation byS12 = (∂v1/∂x2 + ∂v2/∂x1)/2 is shown. The deformation due to elon-
gation is caused by the diagonal terms ofSij . Elongation caused byS11 = ∂v1/∂x1 is
illustrated in Fig.1.5.

1this corresponds to the equation for a straight liney = kx+ ℓ wherek is the slope which is equal to the
derivative ofy, i.e. dy/dx
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x1

x2

∂v1
∂x2

∆x2∆t

∂v2
∂x1

∆x1∆t

∆x1

∆x2

α

α

Figure 1.4: Deformation of a fluid particle by shear during time∆t. Here∂v1/∂x2 =
∂v2/∂x1 so thatS12 = ∂v1/∂x2 > 0.

x1

x2

∂v1
∂x1

∆x1∆t

∆x1

∆x2

Figure 1.5: Deformation of a fluid particle by elongation during time∆t.

In general, a fluid particle experiences a combination of rotation, deformation and
elongation as indeed is given by Eq.1.7.

Exercise 9 Consider Fig.1.3. Show and formulate the rotation byω1.
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x1

S

x2

tidℓ

Figure 1.6: The surface,S, is enclosing by the lineℓ. The vector,ti, denotes the unit
tangential vector of the enclosing line,ℓ.

Exercise 10 Consider Fig.1.4. Show and formulate the deformation byS23.

Exercise 11 Consider Fig.1.5. Show and formulate the elongation byS22.

1.6 Irrotational and rotational flow

In the previous subsection we introduced different types ofmovement of a fluid parti-
cle. One type of movement was rotation, see Fig.1.3. Flows are often classified based
on rotation: they arerotational (ωi 6= 0) or irrotational (ωi = 0); the latter type is also
called inviscid flow or potential flow. We’ll talk more about that later on. In this sub-
section we will give examples of one irrotational and one rotational flow. In potential
flow, there exists a potential,Φ, from which the velocity components can be obtained
as

vk =
∂Φ

∂xk
(1.18)

Before we talk about the ideal vortex line in the next section, we need to introduce
the conceptcirculation . Consider a closed line on a surface in thex1 − x2 plane, see
Fig. 1.6. When the velocity is integrated along this line and projected onto the line we
obtain the circulation

Γ =

∮
vmtmdℓ (1.19)

Using Stokes’s theorem we can relate the circulation to the vorticity as

Γ =

∫

ℓ

vmtmdℓ =

∫

S

εijk
∂vk

∂xj
nidS =

∫

S

ω3dS (1.20)

whereni = (0, 0, 1) is the unit normal vector of the surfaceS. Equation1.20reads in
vector notation

Γ =

∫

ℓ

v · tdℓ =

∫

S

(∇× v) · ndS =

∫

S

ω3dS (1.21)

The circulation is useful in aeronautics and windpower engineering where the lift
of an airfoil or a rotorblade is expressed in the circulationfor a 2D section. The lift
force is computed as

L = ρV Γ (1.22)
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a

b

Figure 1.7: Ideal vortex. The fluid particle (i.e. its diagonal, see Fig.1.3) does not
rotate.

whereV is the velocity around the airfoil (for a rotorblade it is therelative velocity,
since the rotorblade is rotating). In a recent MSc thesis project, an inviscid simula-
tion method (based on the circulation and vorticity sources) was used to compute the
aerodynamic loads for windturbines [4].

Exercise 12 In potential flowωi = εijk∂vk/∂xj = 0. Multiply Eq.1.18by εijk and
derivate with respect toxk (i.e. take the curl of) and show that the right side becomes
zero as it should, i.e.εijk∂

2Φ/(∂xk∂xj) = 0.

1.6.1 Ideal vortex line

The ideal vortex line is an irrotational (potential) flow where the fluid moves along
circular paths, see Fig.1.7. The velocity field in polar coordinates reads

vθ =
Γ

2πr
, vr = 0 (1.23)

whereΓ is the circulation. Its potential reads

Φ =
Γθ

2π
(1.24)

The velocity,vθ, is then obtained as

vθ =
1

r

∂Φ

∂θ
=

Γ

2πr

To transform Eq.1.23 into Cartesian velocity components, consider Fig.1.8. The
Cartesian velocity vectors are expressed as

v1 = −vθ sin(θ) = −vθ
x2

r
= −vθ

x2

(x2
1 + x2

2)
1/2

v2 = vθ cos(θ) = vθ
x1

r
= vθ

x1

(x2
1 + x2

2)
1/2

(1.25)

Inserting Eq.1.25into Eq.1.23we get

v1 = − Γx2

2π(x2
1 + x2

2)
, v2 =

Γx1

2π(x2
1 + x2

2)
. (1.26)
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x1

x2

r

θ

θ

vθ

Figure 1.8: Transformation ofvθ into Cartesian components.

To verify that this flow is a potential flow, we need to show thatthe vorticity,ωi =
εijk∂vk/∂xj is zero. Since it is a two-dimensional flow (v3 = ∂/∂x3 = 0), ω1 =
ω2 = 0, we only need to computeω3 = ∂v2/∂x1 − ∂v1/∂x2. The velocity derivatives
are obtained as

∂v1
∂x2

= − Γ

2π

x2
1 − x2

2

(x2
1 + x2

2)
2 ,

∂v2
∂x1

=
Γ

2π

x2
2 − x2

1

(x2
1 + x2

2)
2 (1.27)

and we get

ω3 =
Γ

2π

1

(x2
1 + x2

2)
2 (x2

2 − x2
1 + x2

1 − x2
2) = 0 (1.28)

which shows that the flow is indeed a potential flow, i.e.irrotational (ωi ≡ 0). Note
that the deformation is not zero, i.e.

S12 =
1

2

(
∂v1
∂x2

+
∂v2
∂x1

)
=

Γ

2π

x2
2

(x2
1 + x2

2)
2 (1.29)

Hence a fluid particle in an ideal vortex does deform but it does not rotate (i.e. its
diagonal does not rotate, see Fig.1.7).

It may be little confusing that the flow path forms avortexbut the flow itself has no
vorticity. Thus one must be very careful when using the words “vortex” and ”vorticity”. vortex vs.

vorticityBy vortex we usually mean a recirculation region of the mean flow. That the flow has
no vorticity (i.e. no rotation) means that a fluid particle moves as illustrated in Fig.1.7.
As a fluid particle moves from positiona to b – on its counter-clockwise-rotating path
– the particle itself is not rotating. This is true for the whole flow field, except at the
center where the fluid particle does rotate. This is a singular point as is seen from
Eq.1.23for whichω3 → ∞.

Note that generally a vortex has vorticity, see Section4.2. The ideal vortex is a very
special flow case.

1.6.2 Shear flow

Another example – which is rotational – is a shear flow in which

v1 = cx2
2, v2 = 0 (1.30)
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a

a
b c

v1v1

x1

x2

x3

Figure 1.9: A shear flow. The fluid particle rotates.v1 = cx2
2.

σ11

σ12

σ21

σ23

x1

x2
x1′x2′

α

v̂1
v̂2

λ1

λ2

Figure 1.10: A two-dimensional fluid element. Left: in original state; right: rotated to
principal coordinate directions.λ1 andλ2 denote eigenvalues;̂v1 andv̂2 denote unit
eigenvectors.

with c, x2 > 0, see Fig.1.9. The vorticity vector for this flow reads

ω1 = ω2 = 0, ω3 =
∂v2
∂x1

− ∂v1
∂x2

= −2cx2 (1.31)

When the fluid particle is moving from positiona, via b to positionc it is indeed
rotating. It is rotating in clockwise direction. Note that the positive rotating direction
is defined as the counter-clockwise direction, indicated byα in Fig. 1.9. This is why
the vorticity,ω3, is negative (= −2cx2).

1.7 Eigenvalues and and eigenvectors: physical interpretation

See also [2], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.10. In the left figure
it is oriented along thex1 − x2 coordinate system. On the surfaces act normal stresses
(σ11, σ22) and shear stresses (σ12, σ21). The stresses form a tensor,σij . Any tensor has
eigenvectors and eigenvalues (also called principal vectors and principal values). Since
σij is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are
obtained from the characteristic equation, see [2], Chapt. 2.5.5 or Eq.13.5at p.115.
When the eigenvalues have been obtained, the eigenvectors can be computed. Given
the eigenvectors, the fluid element is rotatedα degrees so that its edges are aligned
with the eigenvectors,̂v1 = x̂1′ andv̂2 = x̂2′ , see right part of Fig.1.10. Note that the
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sign of the eigenvectors is not defined, which means that the eigenvectors can equally
well be chosen as−v̂1 and/or−v̂2. In the principal coordinatesx1′ − x2′ (right part
of Fig. 1.10), there are no shear stresses on the surfaces of the fluid element. There
are only normal stresses. This is the very definition of eigenvectors. Furthermore, the
eigenvalues are the normal stresses in the principal coordinates, i.e.λ1 = σ1′1′ and
λ2 = σ2′2′ .
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2 Governing flow equations

See also [2], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation

2.1.1 The continuity equation

The first equation is the continuity equation (the balance equation for mass) which
reads [3]

ρ̇+ ρvi,i = 0 (2.1)

Change of notation gives
dρ

dt
+ ρ

∂vi

∂xi
= 0 (2.2)

For incompressible flow (ρ = const) we get

∂vi

∂xi
= 0 (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have formulated the constitutive law
for Newtonian viscous fluids [3]

σij = −pδij + 2µSij −
2

3
µSkkδij (2.4)

Inserting Eq.2.4into the balance equations, Eq.1.3, we get

ρ
dvi

dt
= − ∂p

∂xi
+
∂τji

∂xj
+ ρfi = − ∂p

∂xi
+

∂

∂xj

(
2µSij −

2

3
µ
∂vk

∂xk
δij

)
+ ρfi (2.5)

whereµ denotes the dynamic viscosity. This is theNavier-Stokesequations (sometimes
the continuity equation is also included in the name “Navier-Stokes”). It is also called
the transport equation for momentum. If the viscosity,µ, is constant it can be moved
outside the derivative. Furthermore, if the flow is incompressible the second term in
the parenthesis on the right side is zero because of the continuity equation. If these two
requirements are satisfied we can also re-write the first termin the parenthesis as

∂

∂xj
(2µSij) = µ

∂

∂xj

(
∂vi

∂xj
+
∂vj

∂xi

)
= µ

∂2vi

∂xj∂xj
(2.6)

because of the continuity equation. Equation2.5can now – for constantµ and incom-
pressible flow – be written

ρ
dvi

dt
= − ∂p

∂xi
+ µ

∂2vi

∂xj∂xj
+ ρfi (2.7)

In inviscid (potential) flow, there are no viscous (friction) forces. In this case, the
Navier-Stokes equation reduces to theEuler equations Euler

equations
ρ
dvi

dt
= − ∂p

∂xi
+ ρfi (2.8)
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Exercise 13 Equation1.3 states that mass times acceleration is equal to the sum of
forces forces (per unit volume). Write out the momentum equation (without using the
summation rule) for thex1 direction and show the surface forces and the volume force
on a small, square fluid element (see lecture notes of Toll & Ekh [3]). Now repeat it for
thex2 direction.

Exercise 14 Formulate the Navier-Stokes equation for incompressible flow but non-
constant viscosity.

2.2 The energy equation

See also [2], Chapts. 6.4 and 8.1.

We have in Part I [3] derived the energy equation which reads

ρu̇− vi,jσji + qi,i = ρz (2.9)

whereu denotes internal energy.qi denotes the conductive heat flux andz the net
radiative heat source. The latter can also be seen as a vector, zi,rad; for simplicity, we
neglect the radiation from here on. Change of notation gives

ρ
du

dt
= σji

∂vi

∂xj
− ∂qi
∂xi

(2.10)

In Part I [3] we formulated the constitutive law for the heat flux vector (Fourier’s
law)

qi = −k ∂T
∂xi

(2.11)

Inserting the constitutive laws, Eqs.2.4and2.11, into Eq.2.10gives

ρ
du

dt
= −p ∂vi

∂xi
+ 2µSijSij −

2

3
µSkkSii

Φ

+
∂

∂xi

(
k
∂T

∂xi

)
(2.12)

where we have usedSij∂vi/∂xj = Sij(Sij + Ωij) = SijSij because the product of a
symmetric tensor,Sij , and an anti-symmetric tensor,Ωij , is zero. Two of the viscous
terms (denoted byΦ) represent irreversible viscous heating (i.e. transformation of
kinetic energy into thermal energy); these terms are important at high-speed flow2 (for
example re-entry from outer space) and for highly viscous flows (lubricants). The first
term on the right side represents reversible heating and cooling due to compression and
expansion of the fluid. Equation2.12is thetransport equation for (internal) energy,u.

Now we assume that the flow is incompressible (i.e. the velocity should be smaller
than approximately1/3 of the speed of sound) for which

du = cpdT (2.13)

wherecp is the heat capacity (see Part I) [3] so that Eq.2.12gives (cp is assumed to be
constant)

ρcp
dT

dt
= Φ +

∂

∂xi

(
k
∂T

∂xi

)
(2.14)

2High-speed flows relevant for aeronautics will be treated indetail in the course “Compressible flow” in
the MSc programme.
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The dissipation term is simplified toΦ = 2µSijSij becauseSii = ∂vi/∂xi = 0. If we
furthermore assume that the heat conductivity coefficient is constant and that the fluid
is a gas or a common liquid (i.e. not an lubricant oil), we get

dT

dt
= α

∂2T

∂xi∂xi
(2.15)

whereα = k/(ρcp) is thethermal diffusivity. thermal
diffusivity

Pr =
ν

α
(2.16)

is defined whereν = µ/ρ is the kinematic viscosity. The physical meaning of the
Prandtl number is the ratio of how well the fluid diffuses momentum to the how well it
diffuses internal energy (i.e. temperature).

The dissipation term,Φ, is neglected in Eq.2.15because one of two assumptions
are valid:

1. The fluid is a gas with low velocity (lower than1/3 of the speed of sound); this
assumption was made when we assumed that the fluid is incompressible

2. The fluid is a common liquid (i.e. not an lubricant oil). In lubricant oils the
viscous heating (i.e. the dissipation,Φ) is large. One example is the oil flow in a
gearbox in a car where the temperature usually is more than100oC higher when
the car is running compared to when it is idle.

Exercise 15 Write out and simplify the dissipation term,Φ, in Eq.2.12. The first term
is positive and the second term is negative; are you sure thatΦ > 0?

2.3 Transformation of energy

Now we will derive the equation for the kinetic energy,k = vivi/2. Multiply Eq. 1.3
with vi

ρvi
dvi

dt
− vi

∂σji

∂xj
− viρfi = 0 (2.17)

Using the product rule backwards (Trick 2, see Eq.8.4), the first term on the left side
can be re-written

ρvi
dvi

dt
=

1

2
ρ
d(vivi)

dt
= ρ

dk

dt
(2.18)

(vivi/2 = k) so that

ρ
dk

dt
= vi

∂σji

∂xj
+ ρvifi (2.19)

Re-write the stress-velocity term so that

ρ
dk

dt
=
∂viσji

∂xj
− σji

∂vi

∂xj
+ ρvifi (2.20)

This is thetransport equation for kinetic energy,k. Adding Eq.2.20to Eq.2.10gives

ρ
d(u+ k)

dt
=
∂σjivi

∂xj
− ∂qi
∂xi

+ ρvifi (2.21)

This is an equation for the sum of internal and kinetic energy, u + k. This is the
transport equation for total energy,u+ k.
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Let us take a closer look at Eqs.2.10, 2.20and2.21. First we separate the term
σji∂vi/∂xj in Eqs.2.10and2.20into work related to the pressure and viscous stresses
respectively (see Eq.1.5), i.e.

σji
∂vi

∂xj
= −p ∂vi

∂xi

a

+ τji
∂vi

∂xj

b=Φ

(2.22)

The following things should be noted.

• The physical meaning of thea-term in Eq.2.22– which include the pressure,p
– is heating/cooling by compression/expansion. This is a reversible process, i.e.
no loss of energy but only transformation of energy.

• The physical meaning of theb-term in Eq.2.22– which include the viscous stress
tensor,τij – is a dissipation, which means that kinetic energy is transformed to
thermal energy. It is denotedΦ, see Eq.2.12, and is called viscous dissipation.
It is always positive and represents irreversible heating.

• The dissipation,Φ, appears as a sink term in the equation for the kinetic energy,
k (Eq.2.20) and it appears a source term in the equation for the internalenergy,u
(Eq.2.10). The transformation of kinetic energy into internal energy takes place
through this source term.

• Φ does not appear in the equation for the total energyu+k (Eq.2.21); this makes
sense sinceΦ represents a energy transfer betweenu andk and does not affect
their sum,u+ k.

Dissipation is very important in turbulence where transferof energy takes place at
several levels. First energy is transferred from the mean flow to the turbulent fluctua-
tions. The physical process is called production of turbulent kinetic energy. Then we
have transformation of kinetic energy from turbulence kinetic energy to thermal en-
ergy; this is turbulence dissipation (or heating). At the same time we have the usual
viscous dissipation from the mean flow to thermal energy, butthis is much smaller than
that from the turbulence kinetic energy. For more detail, see section2.4 in [5]3.

2.4 Left side of the transport equations

So far, the left side in transport equations have been formulated using the material
derivative,d/dt. Let Ψ denote a transported quantity (i.e.Ψ = vi, u, T . . .); the left
side of the equation for momentum, thermal energy, total energy, temperature etc reads

ρ
dΨ

dt
= ρ

∂Ψ

∂t
+ ρvj

∂Ψ

∂xj
(2.23)

This is often called thenon-conservativeform. Using the continuity equation, Eq.2.2, non-
conser-
vative

it can be re-written as

ρ
dΨ

dt
= ρ

∂Ψ

∂t
+ ρvj

∂Ψ

∂xj
+ Ψ

(
dρ

dt
+ ρ

∂vj

∂xj

)

=0

=

ρ
∂Ψ

∂t
+ ρvj

∂Ψ

∂xj
+ Ψ

(
∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vj

∂xj

) (2.24)

3can be downloaded from http://www.tfd.chalmers.se/˜lada
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The two underlined terms will form a time derivative term, and the other three terms
can be collected into a convective term, i.e.

ρ
dΨ

dt
=
∂ρΨ

∂t
+
∂ρvjΨ

∂xj
(2.25)

Thus, left sided of the temperature equation and the Navier-Stokes, for example, can
be written in three different ways (by use of the chain-rule and the continuity equation)

ρ
dvi

dt
= ρ

∂vi

∂t
+ ρvj

∂vi

∂xj
=
∂ρvi

∂t
+
∂ρvjvi

∂xj

ρ
dT

dt
= ρ

∂T

∂t
+ ρvj

∂T

∂xj
=
∂ρvi

∂t
+
∂ρvjT

∂xj

(2.26)

The continuity equation can also be written in three ways (byuse of the chain-rule)

dρ

dt
+ ρ

∂vi

∂xi
=
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi
=
∂ρ

∂t
+
∂ρvi

∂xi
(2.27)

The forms on the right sides of Eqs.2.26and2.27are called theconservativeform. conser-
vativeWhen solving transport equations (such as the Navier-Stokes) numerically using finite

volume methods, the left sides in the transport equation arealways written as the ex-
pressions on the right side of Eqs.2.26and2.27; in this way Gauss law can be used
to transform the equations from a volume integral to a surface integral and thus ensur-
ing that the transported quantities areconserved. The results may be inaccurate due
to too coarse a numerical grid, but no mass, momentum, energyetc is lost (provided a
transport equation for the quantity is solved): “what comesin goes out”.

2.5 Material particle vs. control volume (Reynolds Transport The-
orem)

See also lecture notes of Toll & Ekh [3] and [2], Chapt. 5.2.

In Part I [3] we initially derived all balance equations (mass, momentum and en-
ergy) for a collection ofmaterial particles. The conservation of mass,d/dt

∫
ρdV = 0,

Newton’s second law,d/dt
∫
ρvi = Fi etc were derived for a collection of particles in

the volumeVpart, whereVpart is a volume that includes the same fluid particles all the
time. This means that the volume,Vpart, must be moving and it may expand or contract
(if the density is non-constant), otherwise particles would move across its boundaries.
The equations we have looked at so far (the continuity equation2.3, the Navier-Stokes
equation2.7, the energy equations2.12and2.20) are all given for a fixed control vol-
ume. How come? The answer is the Reynolds transport theorem,which converts the
equations from being valid for a moving volume with a collection,Vpart, to being valid
for a fixed volume,V . The Reynolds transport theorem reads

d

dt

∫

Vpart

ΦdV =

∫

V

(
dΦ

dt
+ Φ

∂vi

∂xi

)
dV

=

∫

V

(
∂Φ

∂t
+ vi

∂Φ

∂xi
+ Φ

∂vi

∂xi

)
dV =

∫

V

(
∂Φ

∂t
+
∂viΦ

∂xi

)
dV

=

∫

V

∂Φ

∂t
dV +

∫

S

viniΦdS

(2.28)
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whereV denotes a fixed non-deformable volume in space. The divergence theorem
was used to obtain the last line andS denotes the bounding surface of volumeV . The
last term on the last line represents the net flow ofΦ across the fixed non-deformable
volume,V . Φ in the equation above can beρ (mass),ρvi (momentum) orρu (energy).
This equation applies toanyvolume ateveryinstant and the restriction to a collection
of a material particles is no longer necessary. Hence, in fluid mechanics the transport
equations (Eqs.2.2, 2.5, 2.10, . . . ) are valid both for a material collection of particles
as well as for avolume; the latter is usually fixed (this is not necessary).
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Figure 3.1: The plate moves to the right with speedV0 for t > 0.
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Figure 3.2: Thev1 velocity at three different times.t3 > t2 > t1.

3 Exact solutions to the Navier-Stokes equation: two
examples

3.1 The Rayleigh problem

Imagine the sudden motion of an infinitely long flat plate. Fortime greater than zero
the plate is moving with the speedV0, see Fig.3.1.

Because the plate is infinitely long, there is nox1 dependency. Hence the flow
depends only onx2 and t, i.e. v1 = v1(x2, t) and p = p(x2, t). Furthermore,
∂v1/∂x1 = ∂v3/∂x3 = 0 so that the continuity equation gives∂v2/∂x2 = 0. At
the lower boundary (x2 = 0) and at the upper boundary (x2 → ∞) the velocity com-
ponentv2 = 0, which means thatv2 = 0 in the entire domain. So, Eq.2.7 gives (no
body forces, i.e.f1 = 0) for thev1 velocity component

ρ
∂v1
∂t

= µ
∂2v1
∂x2

2

(3.1)

We will find that the diffusion process depends on the kinematic viscosity,ν = µ/ρ,
rather than the dynamic one,µ. The boundary conditions for Eq.3.1are

v1(x2, t = 0) = 0, v1(x2 = 0, t) = V0, v1(x2 → ∞, t) = 0 (3.2)

The solution to Eq.3.1 is shown in Fig.3.2. For increasing time (t3 > t2 > t1), the
moving plate affects the fluid further and further away from the plate.

It turns out that the solution to Eq.3.1 is asimilarity solution; this means that the similarity
solutionnumber of independent variables is reduced by one, in this case from two (x2 andt) to

one (η). The similarity variable,η, is related tox2 andt as

η =
x2

2
√
νt

(3.3)
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If the solution of Eq.3.1depends only onη, it means that the solution for a given fluid
will be the same (“similar”) for many (infinite) values ofx2 andt as long as the ratio
x2/

√
νt is constant. Now we need to transform the derivatives in Eq.3.1 from ∂/∂t

and∂/∂x2 to d/dη so that it becomes a function ofη only. We get

∂v1
∂t

=
dv1
dη

∂η

∂t
= −x2t

−3/2

4
√
ν

dv1
dη

= −1

2

η

t

dv1
dη

∂v1
∂x2

=
dv1
dη

∂η

∂x2
=

1

2
√
νt

dv1
dη

∂2v1
∂x2

2

=
∂

∂x2

(
∂v1
∂x2

)
=

∂

∂x2

(
1

2
√
νt

dv1
dη

)
=

1

2
√
νt

∂

∂x2

(
dv1
dη

)
=

1

4νt

d2v1
dη2

(3.4)

We introduce a non-dimensional velocity

f =
v1
V0

(3.5)

Inserting Eqs.3.4and3.5 in Eq.3.1gives

d2f

dη2
+ 2η

df

dη
= 0 (3.6)

We have now successfully transformed Eq.3.1and reduced the number of independent
variables from two to one. Now let us find out if the boundary conditions, Eq.3.2, also
can be transformed in a physically meaningful way; we get

v1(x2, t = 0) = 0 ⇒ f(η → ∞) = 0

v1(x2 = 0, t) = V0 ⇒ f(η = 0) = 1

v1(x2 → ∞, t) = 0 ⇒ f(η → ∞) = 0

(3.7)

Since we managed to transform both the equation (Eq.3.1) and the boundary conditions
(Eq.3.7) we conclude that the transformation is suitable.

Now let us solve Eq.3.6. Integration once gives

df

dη
= C1 exp(−η2) (3.8)

Integration a second time gives

f = C1

∫ η

0

exp(−η′2)dη′ + C2 (3.9)

The integral above is the error function

erf(η) ≡ 2√
π

∫ η

0

exp(−η2) (3.10)

At the limits, the error function takes the values0 and1, i.e. erf(0) = 0 and erf(η →
∞) = 1. Taking into account the boundary conditions, Eq.3.7, the final solution to
Eq.3.9is (withC2 = 1 andC1 = −2/

√
π)

f(η) = 1 − erf(η) (3.11)
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Figure 3.3: The velocity,f = v1/V0, given by Eq.3.11.
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Figure 3.4: The shear stress for water (ν = 10−6) obtained from Eq.3.12 at time
t = 100 000.

The solution is presented in Fig.3.3. Compare this figure with Fig.3.2 at p.27; all
graphs in that figure collapse into one graph in Fig.3.3. To compute the velocity,v1,
we pick a timet and insertx2 andt in Eq.3.3. Thenf is obtained from Eq.3.11and
the velocity,v1, is computed from Eq.3.5. This is how the graphs in Fig.3.2 were
obtained.

From the velocity profile we can get the shear stress as

τ21 = µ
∂v1
∂x2

=
µV0

2
√
νt

df

dη
= − µV0√

πνt
exp

(
−η2

)
(3.12)

where we usedν = µ/ρ. Figure3.4 presents the shear stress,τ21. The solid line is
obtained from Eq.3.12and circles are obtained by evaluating the derivative,df/dη,
numerically using central differences(fj+1 − fj−1)/(ηj+1 − ηj−1).

As can be seen from Fig.3.4, the magnitude of the shear stress increases for de-
creasingη and it is largest at the wall,τw = −ρV0/

√
πt

The vorticity,ω3, across the boundary layer is computed from its definition (Eq.1.31)

ω3 = − ∂v1
∂x2

= − V0

2
√
νt

df

dη
=

V0√
πνt

exp(−η2) (3.13)

From Fig.3.2at p.27 it is seen that for large times, the moving plate is felt further
and further out in the flow, i.e. the thickness of the boundarylayer,δ, increases. Often
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Figure 3.5: Flow in a horizontal channel. The inlet part of the channel is shown.

the boundary layer thickness is defined by the position wherethe local velocity,v1(x2),
reaches 99% of the freestream velocity. In our case, this corresponds to the point where
v1 = 0.01V0. From Fig.3.3and Eq.3.11we find that this occurs at

η = 1.8 =
δ

2
√
νt

⇒ δ = 3.6
√
νt (3.14)

It can be seen that the boundary layer thickness increases with t1/2. Equation3.14can
also be used to estimate thediffusion length. After, say,10 minutes the diffusion length diffusion

lengthfor air and water, respectively, are

δair = 10.8cm

δwater = 2.8cm
(3.15)

As mentioned in the beginning of this section, note that the diffusion length is deter-
mined by the kinematic viscosity,ν = µ/ρ rather than by dynamic one,µ.

The diffusion length can also be used to estimate the thickness of a developing
boundary layer, see Section4.3.1.

Exercise 16 Consider the graphs in Fig.3.3. Create this graph with Matlab.

Exercise 17 Consider the graphs in Fig.3.2. Note that no scale is used on thex2 axis
and that no numbers are given fort1, t2 andt3. Create this graph with Matlab for both
air and engine oil. Choose suitable values ont1, t2 andt3.

Exercise 18 Repeat the exercise above for the shear stress,τ21, see Fig.3.4.

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensional channel, see Fig.3.5, with
constant physical properties (i.e.µ = const).

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the velocity near the walls is larger
than in the center, see Fig.3.5. The reason is that the flow (with velocityV ) following
the curved wall must change its direction. The physical agent which accomplish this
is the pressure gradient which forces the flow to follow the wall as closely as possible
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Figure 3.6: Flow in a channel bend.

(if the wall is not sufficiently curved a separation will takeplace). Hence the pressure
in the center of the channel,P2, is higher than the pressure near the wall,P1. It is thus
easier (i.e. less opposing pressure) for the fluid to enter the channel near the walls than
in the center. This explains the high velocity near the walls.

The same phenomenon occurs in a channel bend, see Fig.3.6. The flowV ap-
proaches the bend and the flow feels that it is approaching a bend through an increased
pressure. The pressure near the outer wall,P2, must be higher than that near the inner
wall, P1, in order to force the flow to turn. Hence, it is easier for the flow to sneak
along the inner wall where the opposing pressure is smaller than near the outer wall:
the result is a higher velocity near the inner wall than near the outer wall. In a three-
dimensional duct or in a pipe, the pressure differenceP2 − P1 creates secondary flow
downstream the bend (i.e. a swirling motion in thex2 − x3 plane).

3.2.2 Flat plates

The flow in the inlet section (Fig.3.5) is two dimensional. Near the inlet the velocity is
largest near the wall and further downstream the velocity isretarded near the walls due
to the large viscous shear stresses there. The flow is accelerated in the center because
the mass flow at eachx1 must be constant because of continuity. The acceleration and
retardation of the flow in the inlet region is “paid for ” by a pressure loss which is rather
high in the inlet region; if a separation occurs because of sharp corners at the inlet, the
pressure loss will be even higher. For largex1 the flow will be fully developed; the
region until this occurs is called theentrance region, and the entrance length can, for
moderately disturbed inflow, be estimated as [6]

x1,e

Dh
= 0.016ReDh

≡ 0.016
VDh

ν
(3.16)

whereV denotes the bulk (i.e. the mean) velocity, andDh = 4A/Sp whereDh,
A andSp denote the hydraulic diameter, the cross-sectional area and the perimeter,
respectively. For flow between two plates we getDh = 2h.

Let us find the governing equations for the fully developed flow region; in this
region the flow does not change with respect to the streamwisecoordinate,x1 (i.e.
∂v1/∂x1 = ∂v2/∂x1 = 0). Since the flow is two-dimensional, it does not depend
on the third coordinate direction,x3 (i.e. ∂/∂x3), and the velocity in this direction is
zero, i.e.v3 = 0. Taking these restrictions into account the continuity equation can be
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simplified as (see Eq.2.3)
∂v2
∂x2

= 0 (3.17)

Integration givesv2 = C1 and sincev2 = 0 at the walls, it means that

v2 = 0 (3.18)

across the entire channel (recall that we are dealing with the part of the channel where
the flow is fully developed; in the inlet sectionv2 6= 0, see Fig.3.5).

Now let us turn our attention to the momentum equation forv2. This is the vertical
direction (x2 is positive upwards, see Fig.3.5). The gravity acts in the negativex2

direction, i.e.fi = (0,−ρg, 0). The momentum equation can be written (see Eq.2.7
at p.21)

ρ
dv2
dt

≡ ρv1
∂v2
∂x1

+ ρv2
∂v2
∂x2

= − ∂p

∂x2
+ µ

∂2v2
∂x2

2

− ρg (3.19)

Sincev2 = 0 we get
∂p

∂x2
= −ρg (3.20)

Integration gives
p = −ρgx2 + C1(x1) (3.21)

where the integration “constant”C1 may be a function ofx1 but not ofx2. If we denote
the pressure at the lower wall (i.e. atx2 = 0) asP we get

p = −ρgx2 + P (x1) (3.22)

Hence the pressure,p, decreases with vertical height. This agrees with our experience
that the pressure decreases at high altitudes in the atmosphere and increases the deeper
we dive into the sea. Usually thehydrostatic pressure, P , is used in incompressiblehydrostatic

pressureflow. This pressure is zero when the flow isstatic, i.e. when the velocity field is zero.
However, when you want thephysicalpressure, theρgx2 as well as the surrounding
atmospheric pressure must be added.

We can now formulate the momentum equation in the streamwisedirection

ρ
dv1
dt

≡ ρv1
∂v1
∂x1

+ ρv2
∂v1
∂x2

= − dP

dx1
+ µ

∂2v1
∂x2

2

(3.23)

wherep was replaced byP using Eq.3.22. Sincev2 = ∂v1/∂x1 = 0 the left side is
zero so

µ
∂2v1
∂x2

2

=
dP

dx1
(3.24)

Since the left side is a function ofx2 and the right side is a function ofx1, we conclude
that they both are equal to a constant. The velocity,v1, is zero at the walls, i.e.

v1(0) = v1(h) = 0 (3.25)

whereh denotes the height of the channel, see Eq.3.5. Integrating Eq.3.24twice and
using Eq.3.25gives

v1 = − h

2µ

dP

dx1
x2

(
1 − x2

h

)
(3.26)
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Figure 3.7: The velocity profile in fully developed channel flow, Eq.3.28.

The minus sign on the right side appears because the pressuregradient is decreasing
for increasingx1; the pressure isdriving the flow. The negative pressure gradient is
constant (see Eq.3.24) and can be written as−dP/dx1 = ∆P/L.

The velocity takes its maximum in the center, i.e. forx2 = h/2, and reads

v1,max =
h

2µ

∆P

L

h

2

(
1 − 1

2

)
=
h2

8µ

∆P

L
(3.27)

We often write Eq.3.26on the form

v1
v1,max

=
4x2

h

(
1 − x2

h

)
(3.28)

The mean velocity (often called the bulk velocity) is obtained by integrating Eq.3.28
across the channel, i.e.

v1,mean =
v1,max

h

∫ h

0

4x2

(
1 − x2

h

)
dx2 =

2

3
v1,max (3.29)

The velocity profile is shown in Fig.3.7
Since we know the velocity profile, we can compute the wall shear stress. Equa-

tion 3.26gives

τw = µ
∂v1
∂x2

= −h
2

dP

dx1
=
h

2

∆P

L
(3.30)

Actually, this result could have been obtained by simply taking a force balance of a
slice of the flow far downstream.

3.2.3 Force balance

To formulate a force balance in thex1 direction, we start with Eq.1.3which reads for
i = 1

ρ
dv1
dt

=
∂σj1

∂xj
(3.31)

The left hand side is zero since the flow is fully developed. Forces act on a volume and
its bounding surface. Hence we integrate Eq.3.31over the volume of a slice (length



3.2. Flow between two plates 34

x1

x2

τw,U

τw,L

P2P1
V h

L

walls

Figure 3.8: Force balance of the flow between two plates.

L), see Fig.3.8

0 =

∫

V

∂σj1

∂xj
dV (3.32)

Recall that this is the form on which we originally derived the momentum balance
(Newton’s second law) in Part I. [3] Now use Gauss divergence theorem

0 =

∫

V

∂σj1

∂xj
dV =

∫

S

σj1njdS (3.33)

The bounding surface consists in our case of four surfaces (lower, upper, left and right)
so that

0 =

∫

Sleft

σj1njdS+

∫

Sright

σj1njdS+

∫

Slower

σj1njdS+

∫

Supper

σj1njdS (3.34)

The normal vector on the lower, upper, left and right areni,lower = (0,−1, 0),ni,upper =
(0, 1, 0), ni,left = (−1, 0, 0), ni,right = (1, 0, 0). Inserting the normal vectors and us-
ing Eq.1.5give

0 = −
∫

Sleft

(−p+ τ11)dS +

∫

Sright

(−p+ τ11)dS −
∫

Slower

τ21dS +

∫

Supper

τ21dS

(3.35)
τ11 = 0 because∂v1/∂x1 = 0 (fully developed flow). The shear stress at the upper and
lower surfaces have opposite sign becauseτw = µ(∂v1/∂x2)lower = −µ(∂v1/∂x2)upper .
Using this and Eq.3.22give (the gravitation term on the left and right surface cancels
andP andτw are constants and can thus be taken out in front of the integration)

0 = P1Wh− P2Wh− 2τwLW (3.36)

whereW is the width (inx3 direction) of the two plates (for convenience we setW =
1). With ∆P = P1 − P2 we get Eq.3.30.

3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic energy, Eq.2.20. Let us integrate
this equation in the same way as we did for the force balance. The left side of Eq.2.20
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is zero because we assume that the flow is fully developed; using Eq.1.5gives

0 =
∂viσji

∂xj
− σji

∂vi

∂xj
+ ρvifi

=0

= −∂vjp

∂xj
+
∂viτji

∂xj
+ pδij

∂vi

∂xj
− τji

∂vi

∂xj

Φ

(3.37)

On the first linevifi = v1f1 + v2f2 = 0 becausev2 = f1 = 0. The third term on
the second linepδij∂vi/∂xj = p∂vi/∂xi = 0 because of continuity. The last term
corresponds to the viscous dissipation term,Φ (i.e. loss due to friction), see Eq.2.22
(termb). Now we integrate the equation over a volume

0 =

∫

V

(
−∂pvj

∂xj
+
∂τjivi

∂xj
− Φ

)
dV (3.38)

Gauss divergence theorem on the two first terms gives

0 =

∫

S

(−pvj + τjivi)njdS −
∫

V

ΦdV (3.39)

whereS is the surface bounding the volume. The unit normal vector isdenoted bynj

which pointsout from the volume. For example, on the right surface in Fig.3.8 it is
nj = (1, 0, 0) and on the lower surface it isnj = (0,−1, 0). Now we apply Eq.3.39
to the fluid enclosed by the flat plates in Fig.3.8. The second term is zero on all
four surfaces and the first term is zero on the lower and upper surfaces (see Exercises
below). We replace the pressurep with P using Eq.3.22so that

∫

Sleft&Sright

(−Pv1 + ρgx2v1)n1dS = −(P2 − P1)

∫

Sleft&Sright

v1n1dS

= ∆Pv1,meanWh

becauseρgx2n1v1 on the left and right surfaces cancels;P can be taken out of the
integral as it does not depend onx2. Finally we get

∆P =
1

Whv1,mean

∫

V

ΦdV (3.40)

Exercise 19 For the fully developed flow, compute the vorticity,ωi, using the exact
solution (Eq.3.28).

Exercise 20 Show that the first and second terms in Eq.3.39are zero on the upper and
the lower surfaces in Fig.3.8.

Exercise 21 Show that the second term in Eq.3.39is zero also on the left and right
surfaces in Fig.3.8(assume fully developed flow).

Exercise 22 Using the exact solution, compute the dissipation,Φ, for the fully devel-
oped flow.

Exercise 23 From the dissipation, compute the pressure drop. Is it the same as that
obtained from the force balance (if not, find the error; it should be!).
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v1(x2)

x1

x2

(x1, x2)

τ12(x1 − 0.5∆x1)

τ12(x1 + 0.5∆x1)

τ21(x2 − 0.5∆x2)

τ21(x2 + 0.5∆x2)

p(x1 − 0.5∆x1) p(x1 + 0.5∆x1)

Figure 4.1: Surface forces in thex1 direction acting on a fluid particle (assumingτ11 =
τ22 = 0). v1 = cx2

2 andv2 = 0. ∂τ12/∂x1 = 0, ∂τ21/∂x2 > 0. v1 velocity field
indicated by dashed vectors.

4 Vorticity equation and potential flow

4.1 Vorticity and rotation

Vorticity, ωi, was introduced in Eq.1.8at p.11. As shown in Fig.1.3at p.14, vorticity
is connected to rotation of a fluid particle. Figure4.1 shows the surface forces in the
x1 momentum equation acting on a fluid particle in a shear flow. Looking at Fig.4.1it
is obvious that only the shear stresses are able to rotate thefluid particle; the pressure
acts through the center of the fluid particle and is thus not able to affect rotation of the
fluid particle.

Let us have a look at the momentum equations in order to show that the viscous
terms indeed can be formulated with the vorticity vector,ωi. In incompressible flow
the viscous terms read (see Eqs.2.4, 2.5and2.6)

∂τji

∂xj
= µ

∂2vi

∂xj∂xj
(4.1)

The right side can be re-written using the tensor identity

∂2vi

∂xj∂xj
=

∂2vj

∂xj∂xi
−
(

∂2vj

∂xj∂xi
− ∂2vi

∂xj∂xj

)
=

∂2vj

∂xj∂xi
− εinmεmjk

∂2vk

∂xj∂xn

(4.2)

Let’s verify that
(

∂2vj

∂xj∂xi
− ∂2vi

∂xj∂xj

)
= εinmεmjk

∂2vk

∂xj∂xn
(4.3)

Use theε− δ-identity (see TableA.1 at p. 38

εinmεmjk
∂2vk

∂xj∂xn
= (δijδnk − δikδnj)

∂2vk

∂xj∂xn
=

∂2vk

∂xi∂xk
− ∂2vi

∂xj∂xj
(4.4)



4.2. The vorticity transport equation in three dimensions 37

The first term on the right side is zero because of continuity and hence we find that
Eq.4.2can indeed be written as

∂2vi

∂xj∂xj
=

∂2vj

∂xj∂xi
− εinmεmjk

∂2vk

∂xj∂xn
(4.5)

At the right side we recognize the vorticity,ωm = εmjk∂vk/∂xj, so that

∂2vi

∂xj∂xj
=

∂2vj

∂xj∂xi
− εinm

∂ωm

∂xn
(4.6)

where the first on the right side is zero because of continuity, so that

∂2vi

∂xj∂xj
= −εinm

∂ωm

∂xn
(4.7)

In vector notation the identity Eq.4.6reads

∇2v = ∇(∇ · v) −∇×∇× v = −∇× ω (4.8)

Using Eq.4.7, Eq.4.1reads

∂τji

∂xj
= −µεinm

∂ωm

∂xn
(4.9)

Thus, there is a one-to-one relation between the viscous term and vorticity: no viscous
terms means no vorticity and vice versa. An imbalance in shear stresses (left side of
Eq. 4.9) causes a change in vorticity, i.e. generates vorticity (right side of Eq.4.9).
Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception is when
vorticity is transportedinto an inviscid region, but also in that case no vorticity is
generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called
irrotational flow (i.e. no rotation) orpotentialflow. The vorticity is always created atpotential
boundaries, see Section4.3.1.

The main points that we have learnt in this section are:

1. The viscous terms are responsible for creating vorticity; this means that the vor-
ticity can’t be created or destroyed in inviscid (friction-less) flow

2. The viscous terms in the momentum equations can be expressed inωi; consider-
ing Item 1 this was to be expected.

Exercise 24 Prove the first equality of Eq.4.7using theε-δ-identity.

Exercise 25 Write out Eq.4.9for i = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We have learnt that physically
it means rotation of a fluid particle and that it is only the viscous terms that can cause
rotation of a fluid particle. The terms inviscid, irrotational and potential flow all denote
frictionless flowwhich is equivalent to zero vorticity. There is a small difference be- friction-

lesstween the three terms because there may be vorticity in inviscid flow that is convected
into the flow at the inlet(s); but also in this case the vorticity is not affected once it has
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entered the inviscid flow region. However, mostly no distinction is made between the
three terms.

In this section we will derive the transport equation for vorticity in incompressible
flow. As usual we start with the Navier-Stokes equation, Eq.2.7 at p.21. First, we
re-write the convective term of the incompressible momentum equation (Eq.2.7) as

vj
∂vi

∂xj
= vj(Sij + Ωij) = vj

(
Sij −

1

2
εijkωk

)
(4.10)

where Eq.1.15 on p. 12 was used. InsertingSij = (∂vi/∂xj + ∂vj/∂xi)/2 and
multiplying by two gives

2vj
∂vi

∂xj
= vj

(
∂vi

∂xj
+
∂vj

∂xi

)
− εijkvjωk (4.11)

The second term on the right side can be written as

vj
∂vj

∂xi
=

1

2

∂(vjvj)

∂xi
=

∂k

∂xi
(4.12)

wherek = vjvj/2. Equation4.11can now be written as

vj
∂vi

∂xj
=

∂k

∂xi

no rotation

− εijkvjωk

rotation

(4.13)

The last term on the right side is the vector product ofv andω, i.e.v × ω.
The trick we have achieved is to split the convective term into one term without

rotation (first term on the right side of Eq.4.13) and one term including rotation (second
term on the right side). Inserting Eq.4.13into the incompressible momentum equation
(Eq.2.7) yields

∂vi

∂t
+

∂k

∂xi

no rotation

− εijkvjωk

rotation

= −1

ρ

∂p

∂xi
+ ν

∂2vi

∂xj∂xj
+ fi (4.14)

The volume source is in most engineering flows represented bythe gravity which, i.e.
fi = gi. Since the vorticity vector is defined by the cross productεpqi∂vi/∂xq (∇× v

in vector notation, see Exercise8), we start by applying the operatorεpqi∂/∂xq to the
Navier-Stokes equation (Eq.4.14) so that

εpqi
∂2vi

∂t∂xq
+ εpqi

∂2k

∂xi∂xq
− εpqiεijk

∂vjωk

∂xq

= −εpqi
1

ρ

∂2p

∂xi∂xq
+ νεpqi

∂3vi

∂xj∂xj∂xq
+ εpqi

∂gi

∂xq

(4.15)

where the body forcefi was replaced bygi. We know thatεijk is anti-symmetric in
all indices, and hence the second term on line 1 and the first term on line 2 are zero
(product of a symmetric and an anti-symmetric tensor). The last term on line 2 is zero
because the gravitation vector,gi, is constant. The last term on line 1 is re-written using
theε-δ identity (see TableA.1 at p.A.1)

εpqiεijk
∂vjωk

∂xq
= (δpjδqk − δpkδqj)

∂vjωk

∂xq
=
∂vpωk

∂xk
− ∂vqωp

∂xq

= vp
∂ωk

∂xk
+ ωk

∂vp

∂xk
− vq

∂ωp

∂xq
− ωp

∂vq

∂xq

(4.16)
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Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching.
∂v1
∂x1

> 0.

Using the definition ofωi we find that its divergence

∂ωi

∂xi
=

∂

∂xi

(
εijk

∂vk

∂xj

)
= εijk

∂2vk

∂xj∂xi
= 0 (4.17)

is zero (product of a symmetric and an anti-symmetric tensor). Using the continuity
equation (∂vq/∂xq = 0) and Eq.4.17, Eq.4.16can be written

εpqiεijk
∂vjωk

∂xq
= ωk

∂vp

∂xk
− vk

∂ωp

∂xk
(4.18)

The second term on line 2 in Eq.4.15can be written as

νεpqi
∂3vi

∂xj∂xj∂xq
= ν

∂2

∂xj∂xj

(
εpqi

∂vi

∂xq

)
= ν

∂2ωp

∂xj∂xj
(4.19)

Inserting Eqs.4.18and4.19into Eq.4.15gives finally

dωp

dt
≡ ∂ωp

∂t
+ vk

∂ωp

∂xk
= ωk

∂vp

∂xk
+ ν

∂2ωp

∂xj∂xj
(4.20)

We recognize the usual unsteady term, the convective term and the diffusive term.
Furthermore, we have got rid of the pressure gradient term. That makes sense, because
as mentioned in connection to Fig.4.1, the pressure cannot affect the rotation (i.e. the
vorticity) of a fluid particle since the pressure acts through its center. Equation4.20has
a new term on the right-hand side which represents amplification and rotation/tilting of
the vorticity lines. If we write it term-by-term it reads

ωk
∂vp

∂xk
=






ω1
∂v1
∂x1

+ω2
∂v1
∂x2

+ ω3
∂v1
∂x3

, p = 1

ω1
∂v2
∂x1

+ω2
∂v2
∂x2

+ ω3
∂v2
∂x3

, p = 2

ω1
∂v3
∂x1

+ω2
∂v3
∂x2

+ ω3
∂v3
∂x3

, p = 3

(4.21)

The diagonal terms in this matrix representvortex stretching. Imagine a slender, Vortex
stretchingcylindrical fluid particle with vorticityωi and introduce a cylindrical coordinate system

with thex1-axis as the cylinder axis andr2 as the radial coordinate (see Fig.4.2) so
thatωi = (ω1, 0, 0). We assume that a positive∂v1/∂x1 is acting on the fluid cylinder;
it will act as a source in Eq.4.20increasingω1 and it will stretch the cylinder. The vol-
ume of the fluid element must stay constant during the stretching (the incompressible
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Figure 4.3: Vortex tilting.

continuity equation), which means that the radius of the cylinder will decrease. Hence
vortex stretching will either make a fluid element longer andthinner (as in the example
above) or shorter and thicker (when∂v1/∂x1 < 0).

The off-diagonal terms in Eq.4.21representvortex tilting. Again, take a slender Vortex
tiltingfluid particle, but this time with its axis aligned with thex2 axis, see Fig.4.3. The

velocity gradient∂v1/∂x2 will tilt the fluid particle so that it rotates in clock-wise
direction. The second termω2∂v1/∂x2 in line one in Eq.4.21gives a contribution to
ω1. This means that vorticity in thex2 direction, through the source termω2∂v1/∂x2,
creates vorticity in thex1 direction..

Vortex stretching and tilting are physical phenomena whichact in three dimensions:
fluid which initially is two dimensional becomes quickly three dimensional through
these phenomena. Vorticity is useful when explaining why turbulence must be three-
dimensional, see Section5.4.

4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no influence in two dimensions; in
this case the vortex stretching/tilting term vanishes because the vorticity vector is or-
thogonal to the velocity vector (for a 2D flow the velocity vector readsvi = (v1, v2, 0)
and the vorticity vector readsωi = (0, 0, ω3) so that the vectorωk∂vp/∂xk = 0). Thus
in two dimensions the vorticity equation reads

dω3

dt
= ν

∂2ω3

∂xα∂xα
(4.22)

(Greek indices are used to indicate that they take values1 or 2). This equation is
exactly the same as the transport equation for temperature in incompressible flow, see
Eq. 2.15. This means that vorticity diffuses in the same way as temperature does. In
fully developed channel flow, for example, the vorticity andthe temperature equations
reduce to

0 = ν
∂2ω3

∂x2
2

(4.23a)

0 = k
∂2T

∂x2
2

(4.23b)
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For the temperature equation the heat flux is given byq2 = −∂T/∂x2; with a hot
lower wall and a cold upper wall (constant wall temperatures) the heat flux is constant
and goes from the lower wall to the upper wall. We have the samesituation for the
vorticity. Its gradient, i.e. the vorticity flux,γ2 = −∂ω3/∂x2, is constant across the
channel. You have plotted this quantity in TME225 Assignment 1.

If wall-normal temperature derivative∂T/∂x2 = 0 at both walls (adiabaticwalls),
the heat flux is zero at the walls and the temperature will be equal to an arbitrary
constant in the entire domain. It is only when the wall-normal temperature derivative
at the walls are non-zero that a temperature field is created in the domain. The same is
true forω3: if ∂ω3/∂x2 = 0 at the walls, the flow will not include any vorticity. Hence,
vorticity is – in the same way as temperature – generated at the walls.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section3.1we studied the Rayleigh problem (unsteady diffusion). As shown above,
the two-dimensional unsteady temperature equation is identical to the two-dimensional
unsteady equation for vorticity. The diffusion time,t, or the diffusion length,δ, in
Eq. 3.14 can now be used to estimate the thickness of a developing boundary layer
(recall that the limit between the boundary layer and the outer free-stream region can
be defined by vorticity: inside the vorticity is non-zero andoutside it is zero).

In a boundary layer the streamwise pressure gradient is zero. This means that

µ
∂2v1
∂x2

2

∣∣∣∣
wall

= 0

because, at the wall, the only non-zero terms in the Navier-Stokes equation are the
streamwise pressure gradient and the wall-normal diffusion term (see, for example,
Eqs.2.7and3.23). Hence, the flux of vorticity

γ2 = −∂ω3

∂x2

∣∣∣∣
wall

=
∂2v1
∂x2

2

∣∣∣∣
wall

= 0

(recall that(∂v2/∂x1)wall = 0) along the wall which means that no vorticity is created
along the boundary. The vorticity in a developing boundary layer is created at the
leading edge of the plate (note that in channel flow, vorticity is indeed created along the
walls because in this case the streamwise pressure gradientis not zero). The vorticity
generated at the leading edge is transported along the wall by convection and at the
same time it is transported by diffusion away from the wall.

Below we will estimate the boundary layer thickness using the expression derived
for the Rayleigh problem. In a boundary layer there is vorticity and outside the bound-
ary layer it is zero (in this flow, the vorticity is created at time t = 0+ when the plate
instantaneously accelerates from rest to velocityV0). Hence, if we can estimate how
far from the wall the vorticity diffuses, this gives us an estimation of the boundary layer
thickness.

Consider the boundary layer in Fig.4.4. At the end of the plate the boundary
thickness isδ(L). The time it takes for a fluid particle to travel from the leading edge
of the plate tox = L isL/V0. During this time vorticity will be transported by diffusion
in thex2 direction the lengthδ according Eq.3.14. If we assume that the fluid is air
with the speedV0 = 3m/s and that the length of the plateL = 2m we get from
Eq.3.14thatδ(L) = 1.2cm.
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Figure 4.4: Boundary layer. The boundary layer thickness,δ, increases for increasing
streamwise distance from leading edge (x1 = 0).

Exercise 26 Note that the estimate above is not quite accurate because inthe Rayleigh
problem we assumed that the convective terms are zero, but ina developing boundary
layer, as in Fig.4.4, they are not (v2 6= 0 and∂v1/∂x1 6= 0). The proper way to solve
the problem is to use Blasius solution (you have probably learnt about this in your first
fluid mechanics course; if not, you should go and find out). Blasius solution gives

δ

L
=

5

Re
1/2
L

, ReL =
V0L

ν
(4.24)

Compute whatδ(L) you get from Eq.4.24.

Exercise 27 Assume that we have a developing flow in a pipe (radiusR) or between
two flat plates (separation distanceh). We want to find out how long distance it takes
for the the boundary layers to merge. Equation3.14can be used withδ = R or h.
Make a comparison with this and Eq.3.16.
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5 Turbulence

5.1 Introduction

Almost all fluid flow which we encounter in daily life is turbulent. Typical examples
are flow around (as well asin) cars, aeroplanes and buildings. The boundary layers
and the wakes around and after bluff bodies such as cars, aeroplanes and buildings are
turbulent. Also the flow and combustion in engines, both in piston engines and gas
turbines and combustors, are highly turbulent. Air movements in rooms are turbulent,
at least along the walls where wall-jets are formed. Hence, when we compute fluid
flow it will most likely be turbulent.

In turbulent flow we usually divide the velocities in one time-averaged part̄vi,
which is independent of time (when the mean flow is steady), and one fluctuating part
v′i so thatvi = v̄i + v′i.

There is no definition on turbulent flow, but it has a number of characteristic fea-
tures (see Pope [7] and Tennekes & Lumley [8]) such as:

I. Irregularity . Turbulent flow is irregular and chaotic (they may seem random,
but they are governed by Navier-Stokes equation, Eq.2.7). The flow consists of a
spectrum of different scales (eddy sizes). We do not have anyexact definition of an
turbulent eddy, but we suppose that it exists in a certain region in space fora certain turbulent

eddytime and that it is subsequently destroyed (by the cascade process or by dissipation, see
below). It has a characteristic velocity and length (calleda velocity and length scale).
The region covered by a large eddy may well enclose also smaller eddies. The largest
eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet width,
etc). At the other end of the spectra we have the smallest eddies which are dissipated by
viscous forces (stresses) into thermal energy resulting ina temperature increase. Even
though turbulence is chaotic it is deterministic and is described by the Navier-Stokes
equations.

II. Diffusivity . In turbulent flow the diffusivity increases. The turbulence increases
the exchange of momentum in e.g. boundary layers, and reduces or delays thereby
separation at bluff bodies such as cylinders, airfoils and cars. The increased diffusivity
also increases the resistance (wall friction) and heat transfer in internal flows such as
in channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.
For example, the transition to turbulent flow in pipes occursthatReD ≃ 2300, and in
boundary layers atRex ≃ 500 000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.
However, when the equations are time averaged, we can treat the flow as two-dimensional
(if the geometry is two-dimensional).

V. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in
the small (dissipative) eddies are transformed into thermal energy. The small eddies
receive the kinetic energy from slightly larger eddies. Theslightly larger eddies receive
their energy from even larger eddies and so on. The largest eddies extract their energy
from the mean flow. This process of transferring energy from the largest turbulent
scales (eddies) to the smallest is called thecascade process. cascade

processVI. Continuum . Even though we have small turbulent scales in the flow they are
much larger than the molecular scale and we can treat the flow as a continuum.
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Figure 5.1: Cascade process with a spectrum of eddies. The energy-containing eddies
are denoted byv0; ℓ1 andℓ2 denotes the size of the eddies in the inertial subrange such
thatℓ2 < ℓ1 < ℓ0; ℓη is the size of the dissipative eddies.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (the boundary layer thickness,
for example), with length scaleℓ0 and velocity scalev0. These scales extract kinetic
energy from the mean flow which has a time scale comparable to the large scales, i.e.

∂v̄1
∂x2

= O(t−1
0 ) = O(v0/ℓ0) (5.1)

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which
the large scales interact. Through thecascade process, kinetic energy is in this way
transferred from the largest scale to the smallest scales. At the smallest scales the
frictional forces (viscous stresses) become large and the kinetic energy is transformed
(dissipated) into thermal energy. The kinetic energy transferred from eddy-to-eddy
(from an eddy to a slightsly smaller eddy) is the sameper unit timefor each eddy size.

The dissipation is denoted byε which is energy per unit time and unit mass (ε =
[m2/s3]). The dissipation is proportional to the kinematic viscosity, ν, times the fluc-
tuating velocity gradient up to the power of two (see Section8.1). The friction forces
exist of course at all scales, but they are largest at the smallest eddies. In reality a small
fraction is dissipated at all scales. However it is assumed that most of the energy that
goes into the large scales per unit time (say 90%) is finally dissipated at the smallest
(dissipative) scales.

The smallest scales where dissipation occurs are called theKolmogorov scales
whose velocity scale is denoted byvη, length scale byℓη and time scale byτη. We
assume that these scales are determined by viscosity,ν, and dissipation,ε. The argu-
ment is as follows.
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viscosity: Since the kinetic energy is destroyed by viscous forces it isnatural to assume
that viscosity plays a part in determining these scales; thelarger viscosity, the
larger scales.

dissipation: The amount of energy that is to be dissipated isε. The more energy that
is to be transformed from kinetic energy to thermal energy, the larger the velocity
gradients must be.

Having assumed that the dissipative scales are determined by viscosity and dissipation,
we can expressvη, ℓη andτη in ν andε using dimensional analysis. We write

vη = νa εb

[m/s] = [m2/s] [m2/s3]
(5.2)

where below each variable its dimensions are given. The dimensions of the left and the
right side must be the same. We get two equations, one for meters [m]

1 = 2a+ 2b, (5.3)

and one for seconds[s]

− 1 = −a− 3b, (5.4)

which givea = b = 1/4. In the same way we obtain the expressions forℓη andτη so
that

vη = (νε)1/4 , ℓη =

(
ν3

ε

)1/4

, τη =
(ν
ε

)1/2

(5.5)

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are composed of a wide range of
scales. We can think of them as eddies, see Fig.5.1. It turns out that it is often conve-
nient to use Fourier series to analyze turbulence. In general, any periodic function,g,
with a period of2L (i.e. g(x) = g(x+ 2L)), can be expressed as a Fourier series, i.e.

g(x) =
1

2
a0 +

∞∑

n=1

(an cos(κnx) + bn sin(κnx)) (5.6)

wherex is a spatial coordinate and

κn =
nπ

L
or κ =

2π

L
(5.7)

Variableκn is called the wavenumber. The Fourier coeffients are given by

an =
1

L

∫ L

−L

g(x) cos(κnx)dx

bn =
1

L

∫ L

−L

g(x) sin(κnx)dx

Parseval’s formula states that
∫ L

−L

g2(x)dx =
L

2
a2
0 + L

∞∑

n=1

(a2
n + b2n) (5.8)
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Figure 5.2: Spectrum for turbulent kinetic energy,k. I: Range for the large, energy
containing eddies. II: the inertial subrange. III: Range for small, isotropic scales. For
a discussion ofεκ vs. ε, see Section8.1.1. The wavenumber,κ, is proportional to the
inverse of the length scale of a turbulent eddy,ℓκ, i.e. κ ∝ ℓ−1

κ . For a discussion ofεκ

vs. ε, see Section8.1.1.

For readers not familiar to Fourier series, a brief introduction is given in SectionC.
An example of a fourier series and spectra are given in Section D. Let now g be
a fluctuating velocity component, sayv′1. The left side of Eq.5.8 expressesv′21 in
physical space (vs.x) and the right sidev′21 in wavenumber space (vs.κn). The
reader who is not familiar to the term “wavenumber”, is probably more familiar to
“frequency”. In that case, expressg in Eq.5.6as a series intime rather than inspace.
In this case the left side of Eq.5.8expressesv′21 as a function of time and the right side
expressesv′21 as a function of frequency.

The turbulent scales are distributed over a range of scales which extends from the
largest scales which interact with the mean flow to the smallest scales where dissipation
occurs, see Fig.5.1. Now let us think about how the kinetic energy of the eddies varies
with eddy size. Intuitively we assume that large eddies havelarge fluctuating velocities
which implies large kinetic energy,v′iv

′
i/2. It is now convenient to study the kinetic

energy of each eddy size in wavenumber space. In wavenumber space the energy of
eddies can be expressed as

E(κ)dκ (5.9)

where Eq.5.9expresses the contribution from the scales with wavenumberbetweenκ
andκ+ dκ to the turbulent kinetic energyk. The energy,E(κ), corresponds tog2(κ)
in Eq. 5.8. The dimension of wavenumber is one over length; thus we can think of
wavenumber as proportional to the inverse of an eddy’s diameter, i.eκ ∝ 1/d. The
total turbulent kinetic energy is obtained by integrating over the whole wavenumber
space i.e.

k =

∫ ∞

0

E(κ)dκ = L
∑

g2(κn) (5.10)

Think of this equation as a way to compute the kinetic energy by first sorting all eddies
by size (i.e. wavenumber), then computing the kinetic energy of each eddy size (i.e.
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E(κ)dκ), and finally summing the kinetic energy of all eddy sizes (i.e. carrying out
the integration). Note that the physical meaning ofE is kinetic energyper unit waven-
numberf eddies of sizeℓκ ∝ κ−1. Hence the dimension ofE is v2/ℓ, see Eq.5.10; for
a discussion on the dimension ofE, see AppendixD.

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity
components, i.e.

k =
1

2

(
v′21 + v′22 + v′23

)
=

1

2
v′iv

′
i (5.11)

The spectrum ofE is shown in Fig.5.2. We find region I, II and III which corre-
spond to:

I. In this region we have the large eddies which carry most of the energy. These
eddies interact with the mean flow and extract energy from themean flow. This
energy transfer takes places via the production term,P k, in the transport equation
for turbulent kinetic energy, see Eq.8.14. The energy extracted per unit time by
the largest eddies is transferred (per unit time) to slightly smaller scales. The
eddies’ velocity and length scales arev0 andℓ0, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here that the
dissipation occurs. The energy transfer from turbulent kinetic energy to thermal
energy (increased temperature) is governed byε in the transport equation for
turbulent kinetic energy, see Eq.8.14. The scales of the eddies are described by
the Kolmogorov scales (see Eq.5.5)

II. Inertial subrange. The existence of this region requires that the Reynolds number
is high (fully turbulent flow). The eddies in this region represent the mid-region.
This region is a “transport region” (i.e. in wavenumber space) in the cascade pro-
cess. The “transport” in wavenumber space is calledspectral transfer. Energy spectral

transferper time unit,P k = ε, is coming from the large eddies at the lower part of this
range and is transferred per unit time to the dissipation range at the higher part.
Note that the relationP k = {dissipation at small scales}, see Fig.5.2, is given
by the assumption of the cascade process, i.e. that the energy transfer per unit
time from eddy-size–to–eddy-size is the same for all eddy sizes.
The kinetic energy,kκ = v′κ,iv

′
κ,i/2, of an eddy of size (lengthscale),1/κ, repre-

sents the kinetic energy of all eddies of this size. The kinetic energy of all eddies
(of all size) is computed by Eq.5.11. The eddies in this region are indepen-
dent of both the large, energy-containing eddies and the eddies in the dissipation
range. One can argue that the eddies in this region should be characterized by
the spectral transfer of energy per unit time (ε) and the size of the eddies,1/κ.
Dimensional analysis gives

E = κa εb

[m3/s2] = [1/m] [m2/s3]
(5.12)

We get two equations, one for meters[m]

3 = −a+ 2b,

and one for seconds[s]
−2 = −3b,
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so thatb = 2/3 anda = −5/3. Inserted in Eq.5.12we get

E(κ) = CKε
2

3 κ−
5

3 (5.13)

where the Kolmogorov constantCK ≃ 1.5. This is a very important law (Kol-
mogorov spectrum law or the−5/3 law) which states that, if the flow is fully
turbulent (high Reynolds number), the energy spectra should exhibit a−5/3-
decay in the inertial region (region II, Fig.5.2).

Above we state that the small eddies areisotropic. This means that – in average
– the eddies have no preferred direction, i.e. the fluctuations in all directions are the
same so thatv′21 = v′22 = v′23 . Note that is not true instantaneously, i.e. in general
v′1 6= v′2 6= v′3. Furthermore, isotropic turbulence implies that if a coordinate direction isotropic

turbulenceis switched, nothing should be changed. For example if thex1 coordinate direction is
rotated180o the v′1v

′
2 should remain the same, i.e.v′1v

′
2 = −v′1v′2. This is possible

only if v′1v
′
2 = 0. Hence, all shear stresses are zero in isotropic turbulence. Using

our knowledge in tensor notation, we know that an isotropic tensor can be written as
const.δij . Hence, the Reynolds stress tensor for small scales can be written asv′iv

′
j =

const.δij which, again, shows us that the shear stresses are zero in isotropic turbulence.
As discussed on p.44, the concept of the cascade process assumes that the energy

extracted per unit time by the large turbulent eddies is transferred (per unit time) by
non-linear interactions through the inertial range to the dissipative range where the
kinetic energy is transformed (per unit time) to thermal energy (increased temperature).
The spectral transfer rate of kinetic energy from eddies of size 1/κ to slightly smaller
eddies can be estimated as follows. An eddy loses (part of) its kinetic energy during
one revolution. The kinetic energy of the eddy is proportional to v2

κ and the time for
one revolution is proportional toℓκ/vκ. Hence, the energy spectral transfer rate,εκ,
for an eddy of length scale1/κ can be estimated as (see Fig.5.2)

εκ = O
(

v2
κ

ℓκ
/
vκ

)
= O

(
v3

κ

ℓκ

)
(5.14)

Kinetic energy is transferred per unit time to smaller and smaller eddies until the trans-
fer takes place by dissipation (i.e. increased temperature) at the Kolmogorov scales. In
the inertial subrange, the cascade process assumes thatεκ = ε. Applying Eq.5.14for
the large energy-containing eddies gives

ε0 = O
(

v2
0

ℓ0
/
v0

)
= O

(
v3
0

ℓ0

)
= εκ = ε (5.15)

The dissipation at small scales (large wavenumbers) is determined by how much energy
per unit time enters the cascade process at the large scales (small wavenumbers). We
can now estimate the ratio between the large eddies (withv0 andℓ0) to the Kolmogorov
eddies (vη andℓη). Equations5.5and5.15give

v0
vη

= (νε)−1/4v0 =
(
νv3

0/ℓ0
)−1/4

v0 = (v0ℓ0/ν)
1/4 = Re1/4

ℓ0
ℓη

=

(
ν3

ε

)−1/4

ℓ0 =

(
ν3ℓ0
v3
0

)−1/4

ℓ0 =

(
ν3

v3
0ℓ

3
0

)−1/4

= Re3/4

τo
τη

=

(
νℓ0
v3
0

)−1/2

τ0 =

(
v3
0

νℓ0

)1/2
ℓ0
v0

=

(
v0ℓ0
ν

)1/2

= Re1/2

(5.16)
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Figure 5.3: Family tree of turbulent eddies (see also Table5.1). Five generations. The
large original eddy, with axis aligned in thex1 direction, is1st generation. Adapted
from [9]

whereRe = v0ℓ0/ν. We find that the ratio of the velocity, length and time scales
of the energy-containing eddies to the Kolmogorov eddies increases with increasing
Reynolds number. This means that the eddy range (wavenumberrange) of the in-
termediate region, (region II, the inertial region), increases with increasing Reynolds
number. Hence, the larger the Reynolds number, the larger the wavenumber range of
the intermediate range where the eddies are independent of both the large scales and
the viscosity.

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradients is an essential ingredient to
create and maintain turbulence. Disturbances are amplifiedby interaction between the
vorticity vector and the velocity gradients; the disturbances are turned into chaotic,
three-dimensional fluctuations, i.e. into turbulence. Twoidealized phenomena in this
interaction process can be identified: vortex stretching and vortex tilting.

The equation for the instantaneous vorticity (ωi = ω̄i + ω′
i) reads (see Eq.4.20)

∂ωi

∂t
+ vj

∂ωi

∂xj
= ωj

∂vi

∂xj
+ ν

∂2ωi

∂xj∂xj

ωi = ǫijk
∂vk

∂xj

(5.17)

As we learnt in Section4.2this equation is not an ordinary convection-diffusion equa-
tion: it has an additional term on the right side which represents amplification and
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generation x1 x2 x3

1st 1 0 0
2nd 0 1 1
3rd 2 1 1
4th 2 3 3
5th 6 5 5
6th 10 11 11
7th 22 21 21

Table 5.1: Number of eddies at each generation with their axis aligned in thex1, x2 or
x3 direction, see Fig.5.3.

rotation/tilting of the vorticity lines (the first term on the right side). Thei = j compo-
nents of this term represent (see Eq.4.21) vortex stretching. A positive∂v1/∂x1 will Vortex

stretchingstretch the cylinder, see Fig.4.2 and from the requirement that the volume must not
change (incompressible continuity equation) we find that the radius of the cylinder will
decrease. We have neglected the viscosity since viscous diffusion at high Reynolds
number is much smaller than the turbulent one and since viscous dissipation occurs at
small scales (see p.44). Thus we can assume that there are no viscous stresses acting
on the cylindrical fluid element surface which means that theangular momentum

r2ω1 = const. (5.18)

remains constant as the radius of the fluid element decreases. Note that also the cir-
culation,Γ – which is the integral of the tangential velocity round the perimeter, see
Eq. 1.19– is constant. Equation5.18shows that the vorticity increases if the radius
decreases (and vice versa). As was mentioned above, the continuity equation shows
that stretching results in a decrease of the radius of a slender fluid element and an in-
crease of the vorticity component (i.e. the tangential velocity component) aligned with
the element. For example, an extension of a fluid element in one direction (x1 direc-
tion) decreases the length scales in thex2 direction and increasesω′

1, see Fig.5.4. The
increasedω′

1 means that the velocity scale in thex2 direction is increased, see Fig.5.5.
The increasedv′2 velocity component will stretch smaller fluid elements aligned in the
x2 direction, see Fig.5.5. This will increase their vorticityω′

2 and decrease its radius,
r2. In the same way will the increasedω′

1 also stretch a fluid element aligned in the
x3 direction and increaseω′

3 and decreaser3. At each stage, the length scale of the
eddies – whose velocity scale are increased – decreases. Figure 5.3 illustrates how a
large eddy whose axis is oriented in thex1 axis in a few generations creates – through
vortex stretching – smaller and smaller eddies with larger and larger velocity gradi-
ents. Here a generation is related to a wavenumber in the energy spectrum (Fig.5.2);
young generations correspond to high wavenumbers. The smaller the eddies, the less
the original orientation of the large eddy is recalled. In other words, the small eddies
“don’t remember” the characteristics of their original ancestor. The small eddies have
no preferred direction. They areisotropic. The creation of multiple eddies by vortex
stretching from one original eddies is illustrated in Fig.5.3 and Table5.1 The large
original eddy (1st generation) is aligned in thex1 direction. It creates eddies in thex2

andx3 direction (2nd generation), which in turn each create new eddies in thex1 and
x3 (3rd generation) and so on. For each generation the eddies becomemore and more
isotropic as they get smaller.
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Figure 5.5: The rotation rate of the fluid element (black circles) in Fig.5.4 increases

and its radius decreases. This creates a positive
∂v′2
∂x2

> 0 which stretches the small red

fluid element aligned in thex2 direction and increasesω′
2. The radius of the red fluid

element decreases.



5.4. The cascade process created by vorticity 52

Thei 6= j components in the first term on the right side in Eq.4.21representvortex Vortex
tiltingtilting. Again, take a slender fluid element, now with its axis aligned with thex2 axis,

Fig.4.2. The velocity gradient∂v1/∂x2 will tilt the fluid element so that it rotates in the
clock-wise direction. As a result, the second termω2∂v1/∂x2 in line one in Eq.4.21
gives a contribution toω1. This shows how vorticity in one direction is transferred to
the other two directions through vortex tilting.

Vortex stretching and vortex tilting qualitatively explain how interaction between
vorticity and velocity gradient create vorticity in all three coordinate directions from
a disturbance which initially was well defined in one coordinate direction. Once this
process has started it continues, because vorticity generated by vortex stretching and
vortex tilting interacts with the velocity field and createsfurther vorticity and so on.
The vorticity and velocity field becomes chaotic and three-dimensional: turbulence has
been created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence always must be
three-dimensional (Item IV on p.43). If the instantaneous flow is two-dimensional
(x1 − x2 plane) we find that the vortex-stretching/tilting term on the right side of
Eq. 5.17vanishes because the vorticity vector and the velocity vector are orthogonal.
The only non-zero component of vorticity vector isω3 because

ω1 =
∂v3
∂x2

− ∂v2
∂x3

≡ 0

ω2 =
∂v1
∂x3

− ∂v3
∂x1

≡ 0.

Sincev3 = 0, we getωj∂vi/∂xj = 0.
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6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

When the flow is turbulent it is preferable to decompose the instantaneous variables (for
example the velocity components and the pressure) into a mean value and a fluctuating
value, i.e.

vi = v̄i + v′i

p = p̄+ p′
(6.1)

where the bar,̄·, denotes the time averaged value. One reason why we decompose the
variables is that when we measure flow quantities we are usually interested in their
mean values rather than their time histories. Another reason is that when we want
to solve the Navier-Stokes equation numerically it would require a very fine grid to
resolve all turbulent scales and it would also require a fine resolution in time (turbulent
flow is always unsteady).

The continuity equation and the Navier-Stokes equation forincompressible flow
with constant viscosity read

∂vi

∂xi
= 0 (6.2)

ρ
∂vi

∂t
+ ρ

∂vivj

∂xj
= − ∂p

∂xi
+ µ

∂2vi

∂xj∂xj
(6.3)

The gravitation term,−ρgi, has been omitted which means that thep is thehy-
drostaticpressure (i.e. whenvi ≡ 0, thenp ≡ 0, see p.32). Inserting Eq.6.1 into
the continuity equation (6.2) and the Navier-Stokes equation (6.3) we obtain thetime
averagedcontinuity equation and Navier-Stokes equation

∂v̄i

∂xi
= 0 (6.4)

ρ
∂v̄iv̄j

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

(
µ
∂v̄i

∂xj
− ρv′iv

′
j

)
(6.5)

It is assumed that the mean flow is steady. This equation is thetime-averaged
Navier-Stokes equation and it is often called theReynolds equation. A new termρv′iv

′
j Reynolds

equationsappears on the right side of Eq.6.5 which is called theReynolds stress tensor. The
tensor is symmetric (for examplev′1v

′
2 = v′2v

′
1). It represents correlations between

fluctuating velocities. It is an additional stress term due to turbulence (fluctuating ve-
locities) and it is unknown. We need a model forv′iv

′
j to close the equation system in

Eq.6.5. This is called theclosure problem: the number of unknowns (ten: three veloc-closure
problemity components, pressure, six stresses) is larger than the number of equations (four: the

continuity equation and three components of the Navier-Stokes equations).
The continuity equation applies both for the instantaneousvelocity, vi (Eq. 6.2),

and for the time-averaged velocity,v̄i (Eq.6.4); hence it applies also for the fluctuating
velocity,v′i, i.e.

∂v′i
∂xi

= 0 (6.6)
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Figure 6.1: Flow between two infinite parallel plates. The width (i.e. length in thex3

direction) of the plates,Zmax, is much larger that the separation between the plates,
i.e.Zmax ≫ δ.

6.1.1 Boundary-layer approximation

For steady (∂/∂t = 0), two-dimensional (̄v3 = ∂/∂x3 = 0) boundary-layer type of
flow (i.e. boundary layers along a flat plate, channel flow, pipe flow, jet and wake flow,
etc.) where

v̄2 ≪ v̄1,
∂v̄1
∂x1

≪ ∂v̄1
∂x2

, (6.7)

First we re-write the left side of Eq.6.5using the continuity equation

ρ
∂v̄iv̄j

∂xj
= ρv̄j

∂v̄i

∂xj
+ ρv̄i

∂v̄j

∂xj

=0

= ρv̄j
∂v̄i

∂xj
(6.8)

Using Eq.6.8. Eq.6.5can be written

ρv̄1
∂v̄1
∂x1

+ ρv̄2
∂v̄1
∂x2

= − ∂p̄

∂x1
+

∂

∂x2

[
µ
∂v̄1
∂x2

− ρv′1v
′
2

]

τ12,tot

(6.9)

x1 andx2 denote the streamwise and wall-normal coordinate, respectively, see Fig.6.1.
Note that the two terms on the left side are of the same order, because they both include
the product of one large (v̄1 or ∂/∂x2) and one small (̄v2 or ∂/∂x1) part.

In addition to the viscous shear stress,µ∂v̄1/∂x2, an additionalturbulentone – a shear
stressReynolds shear stress – appears on the right side of Eq.6.9. The total shear stress is

thus

τ12,tot = µ
∂v̄1
∂x2

− ρv′1v
′
2 (6.10)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velocitygradient is largest as
the velocity drops down to zero at the wall over a very short distance. One important
quantity is the wall shear stress which is defined as

τw = µ
∂v̄1
∂x2

∣∣∣∣
w

(6.11)



6.2. Wall region in fully developed channel flow 55

From the wall shear stress, we can define awall friction velocity, uτ , as wall
friction
velocity

τw = ρu2
τ ⇒ uτ =

(
τw
ρ

)1/2

(6.12)

In order to take a closer look at the near-wall region, let us,again, consider fully
developed channel flow between two infinite plates, see Fig.6.1. In fully developed
channel flow, the streamwise derivative of the streamwise velocity component is zero
(this is the definition of fully developed flow), i.e.∂v̄1/∂x1 = 0. The continuity
equation gives now̄v2 = 0, see Eq.3.18at p.32. The first term on the left side of
Eq.6.9 is zero because we have fully developed flow (∂v̄1/∂x1 = 0) and the last term
is zero becausēv2 ≡ 0. The streamwise momentum equation, Eq.6.9, can now be
written

0 = − ∂p̄

∂x1
+

∂

∂x2

(
µ
∂v̄1
∂x2

− ρv′1v
′
2

)
(6.13)

We know that the first term is a function only ofx1 and the two terms in parenthesis
are functions ofx2 only; hence they must be constant (see Eq.3.24and the text related
to this equation), i.e.

− ∂p̄

∂x1
= -constant

∂

∂x2

(
µ
∂v̄1
∂x2

− ρv′1v
′
2

)
=
∂τ12,tot

∂x2
= constant

(6.14)

where the total stress,τ12,tot, is given by Eq.6.10. Integrating Eq.6.13from x2 = 0
to x2

τ12,tot(x2) − τw =
∂p̄

∂x1
x2 ⇒ τ12,tot = τw +

∂p̄

∂x1
x2 = τw

(
1 − x2

δ

)
(6.15)

At the last step we used the fact that the pressure gradient balances the wall shear stress,
i.e.−∂p̄/∂x1 = τw/δ, see Eq.3.30(note thath = 2δ) and Eq.6.31.

The wall region can be divided into one outer and one inner region, see Fig.6.2.
The inner region includes the viscous region (dominated by the viscous diffusion) and
the logarithmic region (dominated by turbulent diffusion); the logarithmic region is
sometimes called theinertial region, because the turbulent stresses stem from the in-
ertial (i.e. the non-linear convection) term. The buffer region acts as a transition re-
gion between these two regions where viscous diffusion of streamwise momentum is
gradually replaced by turbulent diffusion. In the inner region, the total shear stress is
approximately constant and equal to the wall shear stressτw, see Fig.6.3. Note that the
total shear stress is constant only close to the wall (Fig.6.3b); further away from the
wall it decreases (in fully developed channel flow it decreases linearly with the distance
from the wall, see Eq.6.15and Fig.6.3a). The Reynolds shear stress vanishes at the
wall becausev′1 = v′2 = 0, and the viscous shear stress attains its wall-stress value
τw = ρu2

τ . As we go away from the wall the viscous stress decreases and the turbulent
one increases and atx+

2 ≃ 11 they are approximately equal. In the logarithmic layer
the viscous stress is negligible compared to the Reynolds stress.

At the wall, the velocity gradient is directly related to thewall shear stress, i.e. (see
Eq.6.11and6.12)

∂v̄1
∂x2

∣∣∣∣
w

=
τw
µ

=
ρ

µ
u2

τ =
1

ν
u2

τ (6.16)
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Figure 6.2: The wall region (adapted from Ch.7 in [7]) for Reτ = 10 000. δ denotes
half width of the channel, see Fig.6.1andx+

2 = x2uτ/ν denotes the normalized wall
distance.

Integration gives (recall that bothν andu2
τ are constant)

v̄1 =
1

ν
u2

τx2 + C1

Since the velocity,̄v1, is zero at the wall, the integration constantC1 = 0 so that

v̄1
uτ

=
uτx2

ν
(6.17)

Equation6.17is expressed ininner scaling(or wall scaling) which means thatv̄1 and
x2 are normalized with quantities related to the wall, i.e. thefriction velocity stemming
from the wall shear stress and the viscosity (here we regard viscosity as a quantity
related to the wall, since the flow is dominated by viscosity). Often the plus-sign (‘+ ‘)
is used to denote inner scaling and equation Eq.6.17can then be written

v̄+
1 = x+

2 (6.18)

Further away from the wall at30 . x+
2 . 3000 (or 0.003 . x2/δ . 0.3), we

encounter thelog-law region, see Fig.6.2. In this region the flow is assumed to be
independent of viscosity. The Reynolds shear stress,ρv′1v

′
2, is in the regionx+

2 . 200
(i.e. x2/δ . 0.1) fairly constant and approximately equal toτw, see Fig.6.3b. Hence
the friction velocity,uτ , is a suitable velocity scale in the inner logarithmic region; it
is used in the entire region.

What about the length scale? Near the wall, an eddy cannot be larger than the
distance to the wall and it is the distance to the wall that sets an upper limit on the
eddy-size. Hence it seems reasonable to take the wall distance as the characteristic
length scale; a constant is added so that

ℓ = κx2. (6.19)

The velocity gradient can now be estimated as

∂v̄1
∂x2

=
uτ

κx2
(6.20)
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Figure 6.3: Reynolds shear stress.Reτ = 2000. a) lower half of the channel; b) zoom
near the wall. DNS data [10, 11]. : −ρv′1v′2/τw; : µ(∂v̄1/∂x2)/τw.
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Figure 6.4: Velocity profiles in fully developed channel flow. Reτ = 2000. : DNS
data [10, 11]; : v̄1/uτ = (ln x+
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based on the velocity scale,uτ , and the length scaleκx2. Another way of deriving the
expression in Eq.6.20is to use the Boussinesq assumption (see Eq.11.30) in which a
turbulent Reynolds stress is assumed to be equal to the product between the turbulent
viscosity and the velocity gradient as

−v′1v′2 = νt
∂v̄1
∂x2

(6.21)

The turbulent viscosity,νt, represents the turbulence and has the same dimension asν,
i.e. [m2/s]. Henceνt can be expressed as a product of a turbulent velocity scale and a
turbulent length scale, and in the log-law region that gives

νt = uτκx2 (6.22)

so that Eq.6.21gives (inserting−v′1v′2 = u2
τ )

u2
τ = κuτx2

∂v̄1
∂x2

⇒ ∂v̄1
∂x2

=
uτ

κx2
(6.23)

In non-dimensional form Eqs.6.20and6.23read

∂v̄+
1

∂x+
2

=
1

κx+
2

(6.24)
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Integration gives now

v̄+
1 =

1

κ
ln
(
x+

2

)
+B or

v̄1
uτ

=
1

κ
ln
(x2uτ

ν

)
+B

(6.25)

whereB is an integration constant. From Eq.6.25we can define theviscous length
scale, ℓν , as

x+
2 = x2/ℓν ⇒ ℓν =

ν

uτ
(6.26)

Equation6.25is the logarithmic law due to von Kármán [12]. The constant,κ, is called log-law
the von Kármán constant. The constants in the log-law are usually set toκ = 0.41 and
B = 5.2.

As can be seen in Fig.6.2 the log-law applies forx+
2 . 3000 (x2/δ . 0.3).

Figure 6.4 – where the Reynolds number is lower than in Fig.6.2 – show that the
log-law fit the DNS up tox+

2 . 500 (x2/δ . 0.25).
In the outer region of the boundary layer, the relevant length scale is the boundary

layer thickness. The resulting velocity law is thedefect law

v̄1,c − v̄1
uτ

= FD

(x2

δ

)
(6.27)

wherec denotes centerline.

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensional (̄v3 = 0 and∂/∂x3 = 0). Consider thex2 − x3 plane,
see Fig.6.5. Since nothing changes in thex3 direction, the viscous shear stress

τ32 = µ

(
∂v̄3
∂x2

+
∂v̄2
∂x3

)
= 0 (6.28)

becausēv3 = ∂v̄2/∂x3 = 0. The turbulent part shear stress,v′2v
′
3, can be expressed

using the Boussinesq assumption (see Eq.11.30)

−ρv′2v′3 = µt

(
∂v̄3
∂x2

+
∂v̄2
∂x3

)
= 0 (6.29)
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Figure 6.6: Fully developed channel flow.Reτ = 2000. Forces in thēv1 equation,
see Eq.6.13. a) near the lower wall of the channel; b) lower half of the channel ex-
cluding the near-wall region. DNS data [10, 11]. : −ρ(∂v′1v′2/∂x2)/τw; :
µ(∂2v̄1/∂x

2
2)/τw; : −(∂p̄/∂x1)/τw.

and it is also zero sincēv3 = ∂v̄2/∂x3 = 0. With the same argument,v′1v
′
3 = 0.

However note thatv′23 = v2
3 6= 0. The reason is that although thetime-averagedflow

is two-dimensional (i.e.v̄3 = 0), the instantaneous turbulent flow is always three-
dimensional and unsteady. Hencev3 6= 0 andv′3 6= 0 so thatv′23 6= 0. Consider, for
example, the time seriesv3 = v′3 = (−0.25, 0.125, 0.125,−0.2, 0.2). This gives

v̄3 = (−0.25 + 0.125 + 0.125− 0.2 + 0.2)/5 = 0

but

v′23 = v2
3 =

[
(−0.25)2 + 0.1252 + 0.1252 + (−0.2)2 + 0.22

]
/5 = 0.03475 6= 0.

Figure 6.3 presents the Reynolds and viscous shear stresses for fully developed
flow. As can be seen, the viscous shear stress is negligible except very near the wall. It
is equal to one near the wall and decreases rapidly for increasing wall distance. On the
other hand, the Reynolds shear stress is zero at the wall (because the fluctuating veloc-
ities are zero at the wall) and increases for increasing walldistance. The intersection
of the two shear stresses takes place atx+

2 ≃ 11.
Looking at Eq.6.13we find that it is not really the shear stress that is interesting,

but its gradient. The gradient of the shear stress,−∂(ρv′1v
′
2)/∂x2 andµ∂2v̄1/∂x

2
2

represent, together with the pressure gradient,−∂p̄/∂x1, theforcesacting on the fluid.
Figure6.6presents the forces. Start by looking at Fig.6.6b which shows the forces in
the region away from the wall. The pressure gradient is constant and equal to one: this
is the forcedriving the flow. This agrees – fortunately – with our intuition. We can
imagine that the fluid (air, for example) is driven by a fan. Another way to describe
the behaviour of the pressure is to say that there is a pressure drop. The pressure must
decrease in the streamwise direction so that the pressure gradient term,−∂p̄/∂x1, in
Eq. 6.13takes a positive value which pushes the flow in thex1 direction. The force
that balances the pressure gradient is the gradient of the Reynolds shear stress. This is
the forceopposingthe movement of the fluid. This opposing force has its origin at the
walls due to the viscous wall force (viscous shear stress multiplied by area).

Now let’s have a look at the forces in the near-wall region, see Fig.6.6a. Here the
forces are two orders of magnitude larger than in Fig.6.6b but they act over a very
thin region (x+

2 ≤ 40 or x2/δ < 0.02). In this region the shear stress gradient term is
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Figure 6.7: Normal Reynolds stresses and turbulent kineticenergy.Reτ = 2000. DNS
data [10, 11]. : ρv′21 /τw; : ρv′22 /τw; : ρv′23 /τw; ◦: k/u2

τ .

driving the flow and the opposing force is the viscous force. We can of course make a
force balance for a section of the channel, as we did for laminar flow, see Eq.3.36at
p. 34and Fig.3.8at p.34which reads

0 = p̄1Zmax2δ − p̄2Zmax2δ − 2τwLZmax (6.30)

whereL is the length of the section. We get

∆p̄

L
= − ∂p̄

∂x1
=
τw
δ

(6.31)

As can be seen the pressure drop is directly related to the wall shear stress. In turbulent
flow the velocity profile in the center region is much flatter than in laminar flow (cf.
Fig. 6.4 and Fig.3.7 at p. 33). This makes the velocity gradient near the wall (and
the wall shear stress,τw) much larger in turbulent flow than in laminar flow: Eq.6.31
shows why the pressure drop is larger in the former case compared to the latter; or —
in other words – why a larger fan is required to push the flow in turbulent flow than in
laminar flow.

Figure 6.7 presents the normal Reynolds stresses,ρv′21 , ρv′22 andρv′23 . As can
be seen, the streamwise stress is largest and the wall-normal stress is smallest. The
former is largest because the mean flow is in this direction; the latter is smallest because
the turbulent fluctuations are dampened by the wall. The turbulent kinetic energy,
k = v′iv

′
i/2, is also included. Note that this is smaller thanv′21 .

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel flow. What is the differ-
ence between that flow and a boundary layer flow? First, in a boundary layer flow the
convective terms are not zero (or negligible), i.e. the leftside of Eq.6.9 is not zero.
The flow in a boundary layer is continuously developing, i.e.its thickness,δ, increases
continuously for increasingx1. The flow in a boundary layer is described by Eq.6.9.
Second, in a boundary layer flow the wall shear stress is not determined by the pressure
drop; the convective terms must also be taken into account. Third, the outer part of the
boundary layer is highly intermittent, consisting of turbulent/non-turbulent motion.

However, the inner region of a boundary layer (x2/δ < 0.1) is principally the same
as for the fully developed channel flow, see Fig.6.8: the linear and the log-law regions
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are very similar for the two flows. However, in boundary layerflow the log-law is
valid only up to approximatelyx2/δ ≃ 0.1 (compared to approximatelyx2/δ ≃ 0.3 in
channel flow)
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Figure 7.1: Time history ofv′. Horizontal red lines show±vrms.

7 Probability density functions

Some statistical information is obtained by forming the mean and second moments, for
examplev̄ andv′22 , as was done in Section6. The root-mean-square(RMS) can be root-mean-

square
RMS

defined from the second moment as

vrms =
(
v′2
)1/2

(7.1)

The RMS is the same as thestandard deviationwhich is equal to the square-root of thestandard
deviationvariance. In order to extract more information, probability densityfunction is a useful
variancestatistical tool to analyze turbulence. From the velocity signals we can compute the

probability densities (sometimes calledhistograms). With a probability density,fv, of
thev velocity, the mean velocity is computed as

v̄ =

∫ ∞

−∞

vfv(v)dv (7.2)

Normalize the probability functions, so that
∫ ∞

−∞

fv(v)dv = 1 (7.3)

Here we integrate overv. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time average, (see Eq.6.1at p.53),
i.e.

v̄ =
1

2T

∫ T

−T

vdt (7.4)

whereT is “sufficiently” large.
Consider the probability density functions of the fluctuations. The second moment

corresponds to the variance of the fluctuations (or the square of the RMS, see Eq.7.1),
i.e.

v′2 =

∫ ∞

−∞

v′2fv′(v′)dv′ (7.5)

As in Eq.7.4, v′2 is usually computed by integrating in time, i.e.

v′2 =
1

2T

∫ T

−T

v′2(t)dt

A probability density function is symmetric if positive values are as frequent and
large as the negative values. Figure7.1 presents the time history of thev′ history at
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Figure 7.2: Probability density functions av time histories in Fig. 7.1. Vertical red
lines show±vrms. The skewness,S, and the flatness,F , are given for the three time
histories.

three different points in a flow (note thatv′ = 0). The red horizontal lines indicate the
RMS value ofv′. The resulting probability densities functions are shown in Fig. 7.2.
The red vertical lines show plus and minus RMS ofv′. Let us analyze the data at the
three points.

Point 1. The time history of the velocity fluctuation (Fig.7.1a) shows that there ex-
ists large positive values but no large negative values. Thepositive values are
often larger than+vrms (the peak is actually close to8vrms) but the negative
values are seldom smaller than−vrms. This indicates that the distribution ofv′

is skewed towards the positive side. This is confirmed in the PDF distribution,
see Fig.7.2a.

Point 2. The fluctuations at this point are much smaller and the positive values are as
large the negative values; this means that the PDF should be symmetric which is
confirmed in Fig.7.2b. The extreme values ofv′ are approximately±1.5vrms,
see Figs.7.1b and7.2b.

Point 3. At this point the time history (Fig.7.1c) shows that the fluctuations are clus-
tered around zero and much values are within±vrms. The time history shows
that the positive and the negative values have the same magnitude. The PDF
function in Fig.7.2c confirms that there are many value around zero, that the ex-
treme value are small and that positive and negative values are equally frequent
(i.e. the PDF is symmetric).

In Fig. 7.2we can judge whether the PDF is symmetric, but instead of “looking” at
the probability density functions, we should use a definition of the degree of symmetry,
which is theskewness. It is defined as skewness

v′3 =

∫ ∞

−∞

v′3fv′(v′)dv′

and is commonly normalized byv3
rms, so that the skewness,Sv′ , of v′ is defined as

Sv′ =
1

v3
rms

∫ ∞

−∞

v′3fv′(v′)dv′ =
1

2v3
rmsT

∫ T

−T

v′3(t)dt

Note thatf must be normalized (see Eq.7.3).
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There is yet another statistical quantity which sometimes is used for describing
turbulent fluctuations, namely theflatness. The variance (the square of RMS) tells us flatness
how large the fluctuations are in average, but it does not tellus if the time history
includes few very large fluctuations or if all are rather close tovrms. The flatness gives
this information, and it is defined computed fromv′4 and normalized byv4

rms, i.e.

F =
1

v4
rms

∫ ∞

−∞

v′4fv′(v)dv

The fluctuations at Point 1 (see Fig.7.1a) includes some samples which are very large
and hence its flatness is large (see caption in Fig.7.2a), whereas the fluctuation for
Point 3 all mostly clustered within±2vrms giving a small flatness, see Fig.7.1c and
the caption in Fig.7.2c. For a Gaussian distribution

f(v′) =
1

vrms
exp

(
−v

′ − vrms

2v2
rms

)

for whichF = 3.
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8 Transport equations for kinetic energy

In this section and Section9 we will derive various transport equations. There are two
tricks which often will be used. Both tricks simply use the product rule for derivative
backwards.

Trick 1: Using the product rule we get

∂AiBj

∂xk
= Ai

∂Bj

∂xk
+Bj

∂Ai

∂xk
(8.1)

This expression can be re-written as

Ai
∂Bj

∂xk
=
∂AiBj

∂xk
−Bj

∂Ai

∂xk
(8.2)

and then we call it the “product rule backwards”.

Trick 2: Using the product rule we get

1

2

∂AiAi

∂xj
=

1

2

(
Ai
∂Ai

∂xj
+Ai

∂Ai

∂xj

)
= Ai

∂Ai

∂xj
(8.3)

This trick is usually used backwards, i.e.

Ai
∂Ai

∂xj
=

1

2

∂AiAi

∂xj
(8.4)

8.1 The Exactk Equation

The equation for turbulent kinetic energy,k = 1
2v

′
iv

′
i, is derived from the Navier-Stokes

equation. Again, we assume incompressible flow (constant density) and constant vis-
cosity (cf. Eq.6.3). We subtract Eq.6.5 from Eq.6.3and divide by density, multiply
by v′i and time average which gives

v′i
∂

∂xj
[vivj − v̄iv̄j ] =

−1

ρ
v′i

∂

∂xi
[p− p̄] + νv′i

∂2

∂xj∂xj
[vi − v̄i] +

∂v′iv
′
j

∂xj
v′i

(8.5)

Usingvj = v̄j + v′j , the left side can be rewritten as

v′i
∂

∂xj

[
(v̄i + v′i)(v̄j + v′j) − v̄iv̄j

]
= v′i

∂

∂xj

[
v̄iv′j + v′iv̄j + v′iv

′
j

]
. (8.6)

Using the continuity equation∂v′j/∂xj = 0 (see Eq.6.6), the first term is rewritten as

v′i
∂

∂xj

(
v̄iv′j

)
= v′iv

′
j

∂v̄i

∂xj
. (8.7)

For the second term in Eq.8.6we start using∂v̄j/∂xj = 0

v′i
∂

∂xj
(v′iv̄j) = v̄jv′i

∂v′i
∂xj

(8.8)
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Next, we useTrick 2

v̄j

(
v′i
∂v′i
∂xj

)
= v̄j

∂

∂xj

(
1

2
v′iv

′
i

)
= v̄j

∂

∂xj
(k) =

∂

∂xj
(v̄jk) (8.9)

The third term in Eq.8.6can be written as (replacēvj by v′j and use the same technique
as in Eq.8.9)

1

2

∂

∂xj

(
v′jv

′
iv

′
i

)
. (8.10)

The first term on the right side of Eq.8.5is re-written using the continuity equation
as

− 1

ρ
v′i
∂p′

∂xi
= −1

ρ

∂p′v′i
∂xi

(8.11)

The second term on the right side of Eq.8.5can be written

νv′i
∂2v′i
∂xj∂xj

= ν
∂

∂xj

(
∂v′i
∂xj

v′i

)
− ν

∂v′i
∂xj

∂v′i
∂xj

(8.12)

applyingTrick 1 (if we apply the product rule on the first term on the right sideof
Eq. 8.12we get the left side and the second term on the right side). Forthe first term
in Eq.8.12we use the same trick as in Eq.8.9so that

ν
∂

∂xj

(
∂v′i
∂xj

v′i

)
= ν

∂

∂xj

(
1

2

(
∂v′i
∂xj

v′i +
∂v′i
∂xj

v′i

))
=

ν
∂

∂xj

(
1

2

(
∂v′iv

′
i

∂xj

))
= ν

1

2

∂2v′iv
′
i

∂xj∂xj
= ν

∂2k

∂xj∂xj

(8.13)

The last term on the right side of Eq.8.5 is zero because it is time averaging of a
fluctuation, i.e.āb′ = āb̄′ = 0. Now we can assemble the transport equation for the
turbulent kinetic energy. Equations8.7, 8.9, 8.11, 8.12and8.13give

∂v̄jk

∂xj

I

= −v′iv′j
∂v̄i

∂xj

II

− ∂

∂xj

[
1

ρ
v′jp

′ +
1

2
v′jv

′
iv

′
i − ν

∂k

∂xj

]

III

− ν
∂v′i
∂xj

∂v′i
∂xj

IV

(8.14)

The terms in Eq.8.14have the following meaning.

I. Convection.

II. Production , P k. The large turbulent scales extract energy from the mean flow.
This term (including the minus sign) is almost always positive. It is largest for
the energy-containing eddies, i.e. for small wavenumbers,see Fig.5.2.

III. The two first terms representturbulent diffusion by pressure-velocity fluctua-
tions, and velocity fluctuations, respectively. The last term is viscous diffusion.

IV. Dissipation, ε. This term is responsible for transformation of kinetic energy
at small scales to thermal energy. The term (excluding the minus sign) is al-
ways positive (it consists of velocity gradients squared).It is largest for large
wavenumbers, see Fig.5.2
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Figure 8.1: Zoom of the energy spectrum for a wavenumber located in Region II or III,
see Fig.5.2.

The transport equation fork can also be written in a simplified easy-to-read sym-
bolic form as

Ck = P k +Dk − ε (8.15)

whereCk, P k,Dk andε correspond to terms I-IV in Eq.8.14.
Above, it is stated that the production takes place at the large energy-containing

eddies, i.e. we assume that the large eddies contribute muchmore to the production
term more than the small eddies. There are two arguments for this:

1. The Reynolds stresses (which appear inP k) are larger for large eddies than for
small eddies

2. In order to extract energy from the mean flow, the time scaleof the eddy and
the mean velocity gradient,∂v̄i/∂xj , must be of the same magnitude. This re-
quirement is best satisfied by the large scales. In the fully turbulent region of a
boundary layer, for example, both time scales are proportional toκx2/uτ . The
magnitude of the velocity gradient is given by Eq.6.20and the time scale of a
large eddy is given byℓ0/v0 = κx2/uτ . Actually, in the cascade process we
argue that the smaller the eddies, the less they remember thecharacteristic of
mean flow gradient (i.e. its magnitude, direction, time scale etc)

In the cascade process (see Section5.3) we assume that the viscous dissipation,ε,
takes places at the smallest scales. How do we know that the majority of the dissi-
pation takes place at the smallest scales? First, let us investigate how the time scale
varies with eddy size. Consider the inertial subrange. The energy that is transferred in
spectral space per unit time,εκ, is equal to the viscous dissipation,ε. How large isε
at wavenumberκ (denoted byεκ)? Recall that the viscous dissipation,ε, is expressed
as the viscosity times the square of the velocity gradient, see Eq.8.14. The velocity
gradient for an eddy characterized by velocityvκ and lengthscaleℓκ can be estimated
as (

∂v

∂x

)

κ

∝ vκ

ℓκ
∝
(
v2

κ

)1/2
κ (8.16)



8.2. The Exactk Equation: 2D Boundary Layers 68

sinceℓκ ∝ κ−1. Now we know that the energy spectrumE ∝ v2
κ/κ ∝ κ−5/3 in the

inertial region which gives
(
∂v

∂x

)

κ

∝
(
κ−2/3

)1/2

κ ∝ κ−1/3κ ∝ κ2/3 (8.17)

Thus the viscous dissipation at wavenumberκ can be estimated as

ε(κ) ∝
(
∂v

∂x

)2

κ

∝ κ4/3, (8.18)

i.e. ε(κ) does indeed increase for increasing wavenumber.
The energy transferred from eddy-to-eddy in spectral spacecan also be used for

estimating the velocity gradient of an eddy. The cascade process assumes that this
energy transfer is the same for each eddy, i.e.εκ = ε = v3

κ/ℓκ = ℓ2κ/τ
3
κ = ℓ20/τ

3
0 , see

Eq.5.14. We find fromℓ2κ/τ
3
κ = ℓ20/τ

3
0 that for decreasing eddy size (decreasingℓκ),

the time scale,τκ, also decreases, i.e.

τκ =

(
ℓκ
ℓ0

)2/3

τ0 (8.19)

whereτ0 andℓ0 are constants (we have chosen the large scales,τ0 andℓ0). Hence
(
∂v

∂x

)

κ

= τ−1
κ ∝ ℓ−2/3

κ ∝ κ2/3, (8.20)

which is the same as Eq.8.17.

8.1.1 Spectral transfer dissipationεκ vs. “true” viscous dissipation,ε

As a final note to the discussion in the previous section, it may be useful to look at the
difference between the spectral transfer dissipationεκ, and the “true” viscous dissipa-
tion, ε; the former is the energy transferred from eddy to eddy per unit time, and the
latter is the energy transformed per unit time to internal energy for the entire spectrum
(occurring mainly at the small, dissipative scales), see Fig. 5.2. Now consider Fig.8.1
which shows a zoom of the energy spectrum. We assume that no mean flow energy
production occurs betweenκ andκ+ dκ, i.e. the region may be in the−5/3 region or
in the dissipation region. Turbulent kinetic per unit time energy enters at wavenumber
κ at a rate ofεκ and leaves at wavenumberκ+dκ a rate ofεκ+dεκ . If κ andκ+dκ are
located in the inertial region (i.e. the−5/3 region), then the usual assumption is that
εκ ≃ εκ+dκ and that there is no viscous dissipation to internal energy,i.e. ε(κ) ≃ 0. If
there is viscous dissipation at wavenumberκ (which indeed is the case if the zoomed
region is located in the dissipative region), thenε(κ) is simply obtained through an
energy balance, i.e.

ε(κ) = εκ+dκ − εκ (8.21)

8.2 The Exactk Equation: 2D Boundary Layers

In 2D boundary-layer flow, for which∂/∂x2 ≫ ∂/∂x1 and v̄2 ≪ v̄1, the exactk
equation reads

∂v̄1k

∂x1
+
∂v̄2k

∂x2
= −v′1v′2

∂v̄1
∂x2

− ∂

∂x2

[
1

ρ
p′v′2 +

1

2
v′2v

′
iv

′
i − ν

∂k

∂x2

]
− ν

∂v′i
∂xj

∂v′i
∂xj

(8.22)
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Figure 8.2: Channel flow atReτ = 2000. Terms in thek equation scaled byu4
τ/ν.

Reτ = 2000. a) Zoom near the wall; b) Outer region. DNS data [10, 11]. : P k;
: −ε; ▽: −∂v′p′/∂x2; +: −∂v′2v′iv′i/2/∂x2; ◦: ν∂2k/∂x2
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Figure 8.3: Channel flow atReτ = 2000. DNS data [10, 11].

Note that the dissipation includes all derivatives. This isbecause the dissipation term
is at its largest for small, isotropic scales for which all derivatives are of the same order
and hence the usual boundary-layer approximation∂/∂x1 ≪ ∂/∂x2 does not apply
for these scales.

Figure8.2presents the terms in Eq.8.22for fully developed channel flow. The left
side is – since the flow is fully developed – zero. In the outer region (Fig.8.2b) all
terms are negligible except the production term and the dissipation term which balance
each other. Closer to the wall (Fig.8.2a) the other terms do also play a role. Note that
the production and the dissipation terms close to the wall are two orders of magnitude
larger than in the logarithmic region (Fig.8.2b). At the wall the turbulent fluctuations
are zero which means that the production term is zero. Since the region near the wall
is dominated by viscosity the turbulent diffusion terms dueto pressure and velocity
are also small. The dissipation term and the viscous diffusion term attain their largest
value at the wall and they much be equal to each other since allother terms are zero or
negligible.

The turbulence kinetic energy is produced by its main sourceterm, the production
term,P k = −v′1v′2∂v̄1/∂x2. The velocity gradient is largest at the wall (see Fig.8.3a)
where the shear stress is zero (see Fig.8.3b)); the former decreases and the magnitude
of the latter increases with wall distance and their producttakes its maximum atx+

2 ≃
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11. SinceP k is largest here so is alsok, see Fig.6.7. k is transported in thex2 direction
by viscous and turbulent diffusion and it is destroyed (i.e.dissipated) byε.

8.3 Spatial vs. spectral energy transfer

In Section5.3 we discussedspectraltransfer of turbulent kinetic energy from large
eddies to small eddies (which also applies to the transport of the Reynolds stresses).
In Section8.1we derived the equation forspatialtransport of turbulent kinetic energy.
How are the spectral transfer and the spatial transport related? The reason that we
in Section5.3 only talked about spectral transfer was that we assumed homogeneous
turbulence in which the spatial derivatives of the time-averaged turbulent quantities arehomogeneous

turbulencezero, for example∂v′21 /∂xi = 0, ∂k/∂xi = 0 etc. (Note that the derivatives of the
instantaneousturbulent fluctuations are non-zero even in homogeneous turbulence, i.e.
∂v′1/∂xi 6= 0; the instantaneous flow field in turbulent flow is – as we mentioned at
the very beginning at p.43– alwaysthree-dimensional and unsteady). In homogeneous
turbulence the spatial transport terms (i.e. the convective term, termI , and the diffusion
terms, termIII in Eq. 8.14) are zero. Hence, in homogeneous turbulence there is no
time-averaged spatial transport. However, there isspectral transferof turbulent kinetic
energy which takes place in wavenumber space, from large eddies to small eddies.
The production term (termII in Eq. 8.14) corresponds to the process in which large
energy-containing eddies extract energy from the mean flow.The dissipation term
(term IV in Eq.8.14) corresponds to transformation of the turbulent kinetic energy at
the small eddies to thermal energy. However, real flows are hardly ever homogeneous.
Some flows may have one or two homogeneous directions. Consider, for example,
fully developed channel turbulent flow. If the channel wallsare very long and wide
compared to the distance between the walls,2δ, then the turbulence (and the flow) is
homogeneous in the streamwise direction and the spanwise direction, i.e.∂v̄1/∂x1 =

0, ∂v′2i /∂x1 = 0, ∂v′2i /∂x3 = 0 etc.
In non-homogeneous turbulence, the cascade process is not valid. Consider a large,

turbulent eddy at a positionxA
2 (see Fig.6.1) in fully developed channel flow. The

instantaneous turbulent kinetic energy,kκ = v′κ,iv
′
κ,i/2, of this eddy may either be

transferred in wavenumber space or transported in physical(spatial) space, or both. It
may first be transported in physical space towards the center, and there lose its kinetic
energy to smaller eddies. This should be kept in mind when thinking in terms of the
cascade process. Large eddies which extract their energy from the mean flow may not
give their energy to the slightly smaller eddies as assumed in Figs.5.2and5.1, butkκ

may first be transported in physical space and then transferred in spectral space.
In the inertial range (Region II), however, the cascade process is still a good ap-

proximation even in non-homogeneous turbulence. The reason is that the transfer of
turbulent kinetic energy,kκ, from eddy-to-eddy, occurs at a much faster rate than the
spatial transport by convection and diffusion. In other words, the time scale of the cas-
cade process is much smaller than that of convection and diffusion which have no time
to transportkκ in space before it is passed on to a smaller eddy by the cascadeprocess.
We say that the turbulence at these scales is inlocal equilibrium. local

equilibriumIn summary, care should be taken in non-homogeneous turbulence, regarding the
validity of the cascade process for the large scales (RegionI).
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8.4 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the production term is to increasek, i.e. if we
integrate the production term over the entire domain,V , we get

∫

V

PkdV > 0 (8.23)

Similarly, the net effect of the dissipation term is a negative contribution, i.e.
∫

V

−εdV < 0 (8.24)

What about thetransportterms, i.e. convection and diffusion? Integration of the con-
vection term over the entire volume,V , gives, using Gauss divergence law,

∫

V

∂v̄jk

∂xj
dV =

∫

S

v̄jknjdS (8.25)

whereS is the bounding surface ofV . This shows that the net effect of the convection
term occurs only at the boundaries. Inside the domain, the convection merely transports
k with out adding or subtracting anything to the integral ofk,

∫
V kdV ; the convection

acts as a source term in part of the domain, but in the remaining part of the domain it
acts as an equally large sink term. Similarly for the diffusion term, we get

−
∫

V

∂

∂xj

(
1

2
v′jv

′

kv
′

k +
1

ρ
p′v′j − ν

∂k

∂xj

)
V

= −
∫

S

(
1

2
v′jv

′

kv
′

k +
1

ρ
p′v′j − ν

∂k

∂xj

)
njdS

(8.26)

The only net contribution occurs at the boundaries. Hence, Eqs.8.25and8.26show
that the transport terms only – as the word implies –transportsk without giving any
net effect except at the boundaries. Mathematically these terms are calleddivergence
terms, i.e. they can both be written as the divergence of a vectorAj , divergence

terms
∂Aj

∂xj
(8.27)

whereAj for the convection and the diffusion term reads

Aj =






v̄jk convection term

−
(

1

2
v′jv

′

kv
′

k +
1

ρ
p′v′j − ν

∂k

∂xj

)
diffusion term

(8.28)

8.5 The transport equation for v̄iv̄i/2

The equation forK = v̄iv̄i/2 is derived in the same way as that forv′iv
′
i/2. Multiply

the time-averaged Navier-Stokes equations, Eq.6.5, by v̄i so that

v̄i
∂v̄iv̄j

∂xj
= −1

ρ
v̄i
∂p̄

∂xi
+ νv̄i

∂2v̄i

∂xj∂xj
− v̄i

∂v′iv
′
j

∂xj
. (8.29)

Using the continuity equation andTrick 2 the term on the left side can be rewritten as

v̄i
∂v̄iv̄j

∂xj
= v̄j v̄i

∂v̄i

∂xj
=

1

2
v̄j
∂v̄iv̄i

∂xj
=
∂v̄jK

∂xj
(8.30)
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Figure 8.4: Channel flow atReτ = 2000. Comparison of mean and fluctuating
dissipation terms. Both terms are normalized byu4

τ/ν. DNS data [10, 11]. :
ν(∂v̄1/∂x2)

2; : ε.

Using the continuity equation, the first term on the right side of Eq.8.29can be written
as

−v̄i
∂p̄

∂xi
= −∂v̄ip̄

∂xi
. (8.31)

The viscous term in Eq.8.29is rewritten in the same way as the viscous term in Sec-
tion 8.1, see Eqs.8.12and8.13, i.e.

νv̄i
∂2v̄i

∂xj∂xj
= ν

∂K

∂xj∂xj
− ν

∂v̄i

∂xj

∂v̄i

∂xj
. (8.32)

Equations8.30, 8.31and8.32inserted in Eq.8.29gives

∂v̄jK

∂xj
= ν

∂2K

∂xj∂xj
− 1

ρ

∂v̄ip̄

∂xi
− ν

∂v̄i

∂xj

∂v̄i

∂xj
− v̄i

∂v′iv
′
j

∂xj
. (8.33)

The last term is rewritten usingTrick 1 as

−v̄i

∂v′iv
′
j

∂xj
= −

∂v̄iv′iv
′
j

∂xj
+ v′iv

′
j

∂v̄i

∂xj
. (8.34)

Note that the first term on the right side differs to the corresponding term in Eq.8.14
by a factor of two since “Trick 2” cannot be used becausev̄i 6= v′i. Inserted in Eq.8.33
gives (cf. Eq.8.14)

∂v̄jK

∂xj
= v′iv

′
j

∂v̄i

∂xj

−P k, sink

− ∂

∂xj

(
1

ρ
v̄j p̄+ v̄iv′iv

′
j − ν

∂K

∂xj

)
−ν ∂v̄i

∂xj

∂v̄i

∂xj

εmean, sink

(8.35)

On the left side we have the usual convective term. On the right side we find:

• loss of energy tok due to the production term

• diffusion by pressure-velocity interaction

• diffusion by velocity-stress interaction

• viscous diffusion
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• viscous dissipation,εmean

Note that the first term in Eq.8.35 is the same as the first term in Eq.8.14but with
opposite sign: here we clearly can see that the main source term in thek equation (the
production term) appears as a sink term in theK equation.

In theK equation the dissipation term and the negative production term (represent-
ing loss of kinetic energy to thek field) read

−ν ∂v̄i

∂xj

∂v̄i

∂xj
+ v′iv

′
j

∂v̄i

∂xj
, (8.36)

and in thek equation the production and the dissipation terms read

−v′iv′j
∂v̄i

∂xj
− ν

∂v′i
∂xj

∂v′i
∂xj

(8.37)

The gradient of the time-averaged velocity field,v̄i, is much smoother than that of the
fluctuating velocity field,v′i. In fully turbulent flow, the dissipation by the fluctuations,
ε, is much larger than the dissipation by the mean flow (left side of Eq.8.36). This is
seen in Fig.8.4. The energy flow from the mean flow to internal energy is illustrated in
Fig. 8.5. The major part of the energy flow goes fromK to k and then to dissipation.

In the viscous-dominated wall region, the mean dissipation, ν(∂v̄1/∂x2)
2, is much

larger thanε. At the wall, the mean dissipation takes the valueν = 1/2000 (normalized
by u4

τ/ν).
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9 Transport equations for Reynolds stresses

In Section8 we derived transport equations for kinetic turbulent energy, k, which is the
trace of the Reynolds stress tensorv′iv

′
j divided by two, i.e.k = v′iv

′
i/2. This means

thatk is equal to twice the sum of the diagonal components ofv′iv
′
j , i.e. k = 0.5(v′21 +

v′22 +v′23 ). Here we will now derive the transport equation for the Reynolds stress tensor.
This is an unknown in the time-averaged Navier-Stokes equations, Eq.6.5, which must
be known before Eq.6.5 can be solved. The most accurate way to findv′iv

′
j is, of

course, to solve a transport equation for it. This is computationally expensive since
we then need to solve six additional transport equations (recall thatv′iv

′
j is symmetric,

i.e. v′1v
′
2 = v′2v

′
1 etc.) Often, some simplifications are introduced, in whichv′iv

′
j

is modelledby expressing it in a turbulent viscosity and a velocity gradient. Two-
equations models are commonly used in these simplified models; no transport equation
for v′iv

′
j is solved. This is the subject ofTurbulence Modellingwhich you will learn

about in other courses in the MSc programme.
Now let’s start to derive the transport equation forv′iv

′
j . This approach is very simi-

lar to that we used when deriving thek equation in Section8.1. Steady, incompressible
flow with constant density and viscosity is assumed. Subtract Eq.6.5from Eq.6.3and
divide by density, multiply byv′j and time average and we obtain

v′j
∂

∂xk
[vivk − v̄iv̄k] =

−1

ρ
v′j

∂

∂xi
p′ + νv′j

∂2v′i
∂xk∂xk

+
∂v′iv

′

k

∂xk
v′j

(9.1)

Equation6.5 is written with the indexi as free index, i.e.i = 1, 2 or 3 so that the
equation is an equation forv1, v2 or v3. Now write Eq.6.5 as an equation forvj and
multiply this equation byv′i. We get

v′i
∂

∂xk
[vjvk − v̄j v̄k] =

−1

ρ
v′i

∂

∂xj
p′ + νv′i

∂2v′j
∂xk∂xk

+
∂v′jv

′

k

∂xk
v′i

(9.2)

It may be noted that Eq.9.2is conveniently obtained from Eq.9.1by simply switching
indicesi andj. Adding Eqs.9.1and9.2together gives

v′j
∂

∂xk
[vivk − v̄iv̄k] + v′i

∂

∂xk
[vjvk − v̄j v̄k] =

−1

ρ
v′i
∂p′

∂xj
− 1

ρ
v′j
∂p′

∂xi

+νv′i
∂2v′j

∂xk∂xk
+ νv′j

∂2v′i
∂xk∂xk

+
∂v′jv

′

k

∂xk
v′i +

∂v′iv
′

k

∂xk
v′j

(9.3)

Note that each line in the equation issymmetric: if you switch indicesi andj in any
of the terms nothing changes. This is important since the tensor v′iv

′
j is symmetric.
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Furthermore, you can check that the equation is correct according to the tensor notation
rules. Indicesi andj appear once in each term (not more and not less) and indexk (the
dummy index) appears exactly twice in each term (implying summation). Note that it
is correct to use any other index thank in some terms (but you must not usei andj).
You could, for example, replacek with m in the first term and withq in the second
term; it is permissible, but usually we use the same dummy index in every term.

Usingvi = v̄i + v′i, the first line can be rewritten as

v′j
∂

∂xk
[v̄iv′k + v′iv̄k + v′iv

′

k] + v′i
∂

∂xk

[
v̄jv′k + v′j v̄k + v′jv

′

k

]
(9.4)

Using the continuity equation the first terms in the two groups are rewritten as

v′jv
′

k

∂v̄i

∂xk
+ v′iv

′

k

∂v̄j

∂xk
(9.5)

We merge the second terms in the two groups in Eq.9.4.

v′j
∂v′iv̄k

∂xk
+ v′i

∂v′j v̄k

∂xk
= v̄kv′j

∂v′i
∂xk

+ v̄kv′i
∂v′j
∂xk

= v̄k

∂v′iv
′
j

∂xk
=
∂v′iv

′
j v̄k

∂xk

(9.6)

The continuity equation was used twice (to get the right sideon the first line and to get
the final expression) and the product rule was used backwardsto get the second line.
Re-writing also the third terms in the two groups in Eq.9.4in the same way, the second
and the third terms in Eq.9.4can be written

∂v′iv
′
j v̄k

∂xk
+
∂v′iv

′
jv

′

k

∂xk
(9.7)

The second line in Eq.9.3 is also re-written usingTrick 1

−1

ρ

∂

∂xj
v′ip

′ − 1

ρ

∂

∂xi
v′jp

′ +
1

ρ
p′
∂v′i
∂xj

+
1

ρ
p′
∂v′j
∂xi

(9.8)

It will later turn out that it is convenient to express all derivatives as∂/∂xk. Therefore
we re-write the derivative in the two first terms as

∂

∂xj
= δjk

∂

∂xk
and

∂

∂xi
= δik

∂

∂xk
(9.9)

so that

−δjk
1

ρ

∂

∂xk
v′ip

′ − δik
1

ρ

∂

∂xk
v′jp

′ +
1

ρ
p′
∂v′i
∂xj

+
1

ρ
p′
∂v′j
∂xi

(9.10)

The third line in Eq.9.3is also re-written usingTrick 1

ν
∂

∂xk

(
v′i
∂v′j
∂xk

)
+ ν

∂

∂xk

(
v′j
∂v′i
∂xk

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk
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Trick 1 is used – again – to merge the two first terms so that the third line in Eq.9.3
reads

ν
∂

∂xk

(
v′i
∂v′j
∂xk

+ v′j
∂v′i
∂xk

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk

= ν
∂

∂xx

(
∂v′iv

′
j

∂xk

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk

= ν
∂2v′iv

′
j

∂xk∂xk
− 2ν

∂v′i
∂xk

∂v′j
∂xk

(9.11)

The terms on the fourth line in Eq.9.3 are zero becausēab′ = āb̄′ = 0. We can now
put everything together. Put the first term in Eq.9.7 on the left side and the second
term on the right side together with Eqs.9.5, 9.10and9.11so that

∂

∂xk
(v̄kv′iv

′
j)

I

= −v′jv′k
∂v̄i

∂xk
− v′iv

′

k

∂v̄j

∂xk

II

− ∂

∂xk

(
v′iv

′
jv

′

k +
1

ρ
δjkv′ip

′ +
1

ρ
δikv′jp

′ − ν
∂v′iv

′
j

∂xk

)

III

+
1

ρ
p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)

V

− 2ν
∂v′i
∂xk

∂v′j
∂xk

IV

(9.12)

Note that the manipulation in Eq.9.9allows the diffusion (term III) to be written on a
more compact form. After a derivation, it is always useful tocheck that the equation is
correct according to the tensor notation rules.

• Every term – or group of terms – should include the free indices i andj (only
once);

• Every term – or group of terms – should be symmetric ini andj;

• A dummy index (in this case indexk) must appear exactly twice (=summation)
in every term

Equation9.12can also be written in a simplified easy-to-read symbolic form as

Cij = Pij +Dij + Πij − εij (9.13)

whereΠij denotes the pressure-strain term

Πij =
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
(9.14)

Equation9.12is the (exact) transport equation of the Reynolds stress,v′iv
′
j . It is called

the Reynolds stress equations. Since it is an equation for a second-order tensor, itReynolds
stress
equations

consists of nine equations, but since it is symmetric we onlyneed to consider six of
them. Compare Eq.9.12with the equation for turbulent kinetic energy, Eq.8.14. An
alternative – and maybe easier – way to derive Eq.8.14 is to first derive Eq.9.12
and then take the trace (settingi = j) and dividing by two. In both thek and the
v′iv

′
j equations there is a convection term (I), a production term (II), a diffusion term
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Figure 9.1: Channel flow atReτ = 2000. Terms in thev′21 equation scaled byu4
τ/ν.

a) Zoom near the wall; b) Outer region. DNS data [10, 11]. : P11; : −ε11; :
Π11; +: −∂(v′2v

′2
1 )/∂x2; ◦: ν∂2v′21 /∂x

2
2.

(III) and a dissipation term (IV). In thev′iv
′
j equation there is a fifth term (V), see

Eq.9.14, which is called the pressure strain term. The physical meaning of this term is pressure
strainto redistribute energy between the normal stress components (if we transform Eq.9.12

to the principal coordinates ofv′iv
′
j there are no shear stresses, only normal stresses).

The average of the normal stresses isv′2av = v′iv
′
i/3. For a normal stress that is larger

thanv′2av, the pressure-strain term is negative and vice-versa. It isoften called theRobin
Hood term because it – as Robin Hood – “takes from the rich and givesto the poor”. Robin Hood
Note that the trace of the pressure-strain term is zero, i.e.

Πii =
1

ρ
p′
(
∂v′i
∂xi

+
∂v′i
∂xi

)
= 0 (9.15)

because of the continuity equation and this is the reason whythis term does not appear
in thek equation.

For 2D boundary layer flow, Eq.9.12reads

∂

∂x1
(v̄1v′iv

′
j) +

∂

∂x2
(v̄2v′iv

′
j) = −v′jv′2

∂v̄i

∂x2
− v′iv

′
2

∂v̄j

∂x2

− ∂

∂x2

(
v′iv

′
jv

′
2 +

1

ρ
δj2v′ip

′ +
1

ρ
δi2v′jp

′ − ν
∂v′iv

′
j

∂x2

)

+
1

ρ
p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk

(9.16)

Now let’s look at this equation for fully developed channel flow for which

v̄2 = v̄3 = 0

∂(·)
∂x1

=
∂(·)
∂x3

= 0
(9.17)

The second line shows that it is the streamwise and spanwise derivative that operate on
time-averagedquantities that are zero, not those that operate on instantaneous quanti-
ties such as inεij andΠij .

The production term in Eq.9.16reads

Pij = −v′jv′2
∂v̄i

∂x2
− v′iv

′
2

∂v̄j

∂x2
(9.18)
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For thev′21 (i = j = 1), v′22 (i = j = 2), v′23 (i = j = 3) andv′1v
′
2 (i = 1, j = 2)

equations we get

P11 = −2v′1v
′
2

∂v̄1
∂x2

(9.19a)

P22 = −2v′2v
′
2

∂v̄2
∂x2

= 0 (9.19b)

P33 = −2v′3v
′
2

∂v̄3
∂x2

= 0 (9.19c)

P12 = −v′2v′2
∂v̄1
∂x2

− v′1v
′
2

∂v̄2
∂x2

= −v′22
∂v̄1
∂x2

(9.19d)

using Eq.9.17.
Figure9.1 presents the terms in thev′21 equation (Eq.9.16with i = j = 1). As

we saw for thek equation, the production term,P11, reaches its maximum atx2 ≃ 11

where alsov′21 takes its maximum (Fig.6.7). The pressure-strain term,Π11, and the
dissipation term act as sink terms. In the outer region (Fig.9.1b) the production term
balances the pressure-strain term and the dissipation term.

The terms in the wall-normal stress equation,v′22 , are shown in Fig.9.2. Here we
find – as expected – that the pressure-strain term,Π22, acts as the main source term.
As mentioned previously,Π22 – the “Robin Hood” term – takes from the “rich”v′21
equation and gives to the “poor”v′22 equation energy becausev′21 is large andv′22 is
small.

Figure9.3 presents the terms in thev′1v
′
2 equation. The production term – which

should be a source term – is here negative. Indeed it should be. Recall thatv′1v
′
2 is

here negative and hence its source must be negative; or, rather, the other way around:
v′1v

′
2 is negative because its production term,P12 = −v′22 ∂v̄1/∂x2, is negative since

∂v̄1/∂x2 > 0. Note that in the upper half of the channel∂v̄1/∂x2 < 0 and henceP12

andv′1v
′
2 are positive. Furthermore, note that the dissipation,ε12, is zero. This is be-

cause dissipation takes place at the smallest scales and they are isotropic. That implies
there is no correlation between two fluctuating velocity components, e.g.v′1v

′
2 = 0 (in

general, fori 6= j, the stressesv′iv
′
j in isotropic turbulence are zero). Hence, also their

gradients are zero so that

ε12 = 2ν
∂v′1
∂xk

∂v′2
∂xk

= 0 (9.20)

However, very close to the wall,x+
2 ≤ 10, ε12 6= 0 because here the wall affects

the dissipative scales making them non-isotropic;ε12 is positive sincev′1v
′
2 < 0, see

Fig. 9.3.
If you want to learn more how to derive transport equations ofturbulent quantities,

see [14] which can be downloadedhere
http://www.tfd.chalmers.se/˜lada/allpaper.html

9.1 Reynolds shear stress vs. the velocity gradient

In boundary-layer type of flow, the Reynolds shear stress andthe velocity gradient
∂v̄1/∂x2 have nearly always opposite signs. For channel flow, for example, Eq.9.19
shows thatP12 is negative (and hence alsov′1v

′
2) in the lower half because∂v̄1/∂x2 > 0

and it is positive in the upper half because∂v̄1/∂x2 < 0. This can also be shown by
physical argumentation. Consider the flow in a boundary layer, see Fig.9.4. A fluid

http://www.tfd.chalmers.se/~lada/allpaper.html
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Figure 9.2: Channel flow atReτ = 2000. Terms in thev′22 equation scaled byu4
τ/ν.

a) Zoom near the wall; b) Outer region. DNS data [10, 11]. : P22; : −ε22;
▽ : −2∂v′2p

′/∂x2; : Π22; +: −∂(v′2v
′2
2 )/∂x2; ◦: ν∂2v′22 /∂x
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Figure 9.3: Channel flow atReτ = 2000. Terms in thev′1v
′
2 equation scaled byu4

τ/ν.
a) Zoom near the wall; b) Outer region. DNS data [10, 11]. : P12; : −ε12;
▽ : −∂v′2p′/∂x2; : Π12; +: −∂(v′1v
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particle is moving downwards (particle drawn with solid line) fromx2,B to x2,A with
(the turbulent fluctuating) velocityv′2. At its new location thev1 velocity is in average
smaller than at its old, i.e.̄v1(x2,A) < v̄1(x2,B). This means that when the particle
at x2,B (which has streamwise velocityv1(x2,B)) comes down tox2,A (where the
streamwise velocity isv1(x2,A)) it has an excess of streamwise velocity compared to
its new environment atx2.A. Thus the streamwise fluctuation is positive, i.e.v′1 > 0
and the correlation betweenv′1 andv′2 is in average negative (v′1v

′
2 < 0).

If we look at the other particle (dashed line in Fig.9.4) we reach the same con-
clusion. The particle is moving upwards (v′2 > 0), and it is bringing a deficit inv1
so thatv′1 < 0. Thus, again,v′1v

′
2 < 0. If we study this flow for a long time and

average over time we getv′1v
′
2 < 0. If we change the sign of the velocity gradient so

that∂v̄1/∂x2 < 0 we will find that the sign ofv′1v
′
2 also changes.

In cases where the shear stress and the velocity gradient have the same sign (for
example, in a wall jet) the reason is that the other terms (usually the transport terms)
are more important than the production term.
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Figure 9.4: Sign of the Reynolds shear stress−ρv′1v′2 in a boundary layer.
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Figure 10.1: Two-point correlation.

10 Correlations

10.1 Two-point correlations

Two-point correlations are useful when describing some characteristics of the turbu-
lence. Pick two points along thex1 axis, sayxA

1 andxC
1 , and sample the fluctuating

velocity in, for example, thex1 direction. We can then form the correlation ofv′1 at
these two points as

B11(x
A
1 , x

C
1 ) = v′1(x

A
1 )v′1(x

C
1 ) (10.1)

Often, it is expressed as

B11(x
A
1 , x̂1) = v′1(x

A
1 )v′1(x

A
1 + x̂1) (10.2)

wherex̂1 = xC
1 − xA

1 is the separation distance between pointA andC.
It is obvious that if we move pointA andC closer to each other,B11 increases;

when the two points are moved so close that they merge, thenB11 = v′2(xA
1 ). If,

on the other hand, we move pointC further and further away from pointA, thenB11

will go to zero. Furthermore, we expect that the two-point correlation function will be
related to the largest eddies. It is convenient to normalizeB11 so that it varies between
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Figure 10.2: Schematic relation between the two-point correlation, the largest eddies
(thick lines) and the integral length scale,Lint.
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−1 and+1. The normalized two-point correlation reads

Bnorm
11 (xA

1 , x̂1) =
1

v1,rms(xA
1 )v1,rms(xA

1 + x̂1)
v′1(x

A
1 )v′1(x

A
1 + x̂1) (10.3)

where subscriptrms denotes root-mean-square, which forv′1, for example, is defined
as

v1,rms =
(
v′21

)1/2

(10.4)

RMS is the same asstandard deviation(Matlab commandstd ) which is the square-
root of thevariance(Matlab commandvar ).

Consider a flow where the largest eddies have an eddy scale (length scale) ofLint,
see Fig.10.2. We expect that the two point correlation,B11, approaches zero for sepa-
ration distance,|xA

1 −xC
1 | > Lint because for separation distances larger than|xA

1 −xB
1 |

there is no correlation betweenv′1(x
A
1 ) andv′1(x

C
1 ). Hence, flows with large eddies will

have a two-point correlation function which decreases slowly with separation distance.
For flows with small eddies, the two-point correlation,B11, decreases rapidly witĥx1.

If the flow is homogeneous (see p.70) in thex1 direction, the two-point correlation
does not depend on the location ofxA

1 , i.e. it is only dependent on the separation of the
two points,x̂1.

From the two-point correlation,B11, an integral length scale,Lint, can be com- integral
length scaleputed which is defined as the integral ofB11 over the separation distance, i.e.

Lint(x1) =

∫ ∞

0

B11(x1, x̂1)

vA
1,rmsv

C
1,rms

dx̂1 (10.5)

If the flow is homogeneous in thex1 direction thenLint does not depend onx1.

10.2 Auto correlation

Auto correlation is a “two-point correlation” in time, i.e.the correlation of a turbulent
fluctuation with a separation in time. If we again choose thev′1 fluctuation, the auto
correlation reads

B11(t
A, t̂ ) = v′1(t

A)v′1(t
A + t̂ ) (10.6)

wheret̂ = tC − tA, is the time separation distance between timeA andC. If the mean
flow is steady, the “time direction” is homogeneous andB11 is independent ontA; in
this case the auto-correlation depends only on time separation, t̂, i.e.

B11(t̂ ) = v′1(t)v
′
1(t+ t̂ ) (10.7)

where the right side is time-averaged overt.
The normalized auto-correlation reads

Bnorm
11 (t̂ ) =

1

v2
1,rms

v′1(t)v
′
1(t+ t̂ ) (10.8)

In analogy to the integral length scale,Lint, theintegral time scale, Tint, is defined integral
time scaleas (assuming steady flow)

Tint =

∫ ∞

0

Bnorm
11 (t̂)dt̂ (10.9)
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations

11.1.1 Flow equations

For incompressible turbulent flow, all variables are divided into a mean part (time av-
eraged) and fluctuating part. For the velocity vector this means thatvi is divided into
a mean part̄vi and a fluctuating partv′i so thatvi = v̄i + v′i. Time average and we get
(see Eq.6.4at. p.53):

∂v̄i

∂xj
= 0 (11.1)

∂ρ0v̄i

∂t
+

∂

∂xj
(ρ0v̄iv̄j) = − ∂p̄

∂xi
+ µ

∂2v̄i

∂xj∂xj
− ∂τij
∂xj

− βρ0(θ̄ − θ0)gi (11.2)

(note thatθ denotes temperature) whereρ0 is a constant reference density andfi =
−β(θ̄ − θ0)gi and the turbulent stress tensor (also calledReynolds stress tensor) is Reynolds

stress
tensor

written as:
τij = ρ0v′iv

′
j

The pressure,̄p, denotes the hydro-static pressure, see Eq.3.22, which means that
when the flow is still (i.e.̄vi ≡ 0), then the pressure is zero (i.e.p̄ ≡ 0).

The body forcefi – which was omitted for convenience in Eq.6.4– has here been
re-introduced. The body force in Eq.11.2is due to buoyancy, i.e. density differences.
The basic form of the buoyancy force isfi = gi wheregi denotes gravitational accel-
eration. Since the pressure,p̄, is defined as the hydro-static pressure we must rewrite
the buoyancy source as

ρ0fi = (ρ− ρ0)gi (11.3)

so thatp̄ ≡ 0 when v̄i ≡ 0 (note that the true pressure decreases upwards asρg∆h
where∆h denotes change in height). If we let density depend on pressure and temper-
ature, differentiation gives

dρ =

(
∂ρ

∂θ

)

p

dθ +

(
∂ρ

∂p

)

θ

dp (11.4)

Our flow is incompressible, which means that the density doesnot depend on pressure,
i.e. ∂ρ/∂p = 0; it may, however, depend on temperature and mixture composition.
Hence the last term in Eq.11.4is zero and we introduce the volumetric thermal expan-
sion,β, so that

β = − 1

ρ0

(
∂ρ

∂θ

)

p

⇒

dρ = −ρ0βdθ ⇒ ρ− ρ0 = −βρ0(θ − θ0)

(11.5)

whereβ is a physical property which is tabulated in physical handbooks. For a perfekt
gas it is simplyβ = θ−1 (with θ in degrees Kelvin). Now we can re-write the buoyancy
source as

ρ0fi = (ρ− ρ0)gi = −ρ0β(θ̄ − θ0)gi (11.6)

which is the last term in Eq.11.2. Consider the case wherex3 is vertically upwards.
Thengi = (0, 0,−g) and a large temperature in Eq.11.6results in a force vertically
upwards, which agrees well with our intuition.



11.2. The exactv′iv
′
j equation 85

11.1.2 Temperature equation

The instantaneous temperature,θ, is also decomposed into a mean and a fluctuating
component asθ = θ̄ + θ′. The transport equation forθ reads (see Eq.2.15 where
temperature was denoted byT )

∂θ

∂t
+
∂viθ

∂xi
= α

∂2θ

∂xi∂xi
(11.7)

whereα = k/(ρcp), see Eq.2.15on p.23. Introducingθ = θ̄ + θ′ we get

∂θ̄

∂t
+
∂v̄iθ̄

∂xi
= α

∂2θ̄

∂xi∂xi
− ∂v′iθ

′

∂xi
(11.8)

The last term on the right side is an additional term whose physical meaning is turbulent
heat flux vector. This is similar to the Reynolds stress tensor on the right side of the
time-averaged momentum equation, Eq.11.2. The total heat flux vector – viscous plus
turbulent – in Eq.11.8reads (cf. Eq.2.11)

qi,tot

ρcp
=

qi
ρcp

+
qi,turb

ρcp
= −α ∂θ̄

∂xi
− v′iθ

′ (11.9)

11.2 The exactv′

iv
′

j equation

Now we want to solve the time-averaged continuity equation (Eq. 11.1) and the three
momentum equations (Eq.11.2). Unfortunately there are ten unknowns; the four usual
ones (̄vi, p̄) plus six turbulent stresses,v′iv

′
j . We mustclosethis equation system; it is

called theclosure problem. We must find some new equations for the turbulent stresses.closure
problemWe need a turbulence model.

The most comprehensive turbulence model is to derive exact transport equations
for the turbulent stresses. An exact equation for the Reynolds stresses can be derived
from the Navies-Stokes equation. It is emphasized that thisequation is exact; or, rather,
as exact as the Navier-Stokes equations. The derivation follows the steps below.

• Set up the momentum equation for the instantaneous velocityvi = v̄i + v′i →
Eq. (A)

• Time average→ equation for̄vi, Eq. (B)

• Subtract Eq. (B) from Eq. (A)→ equation forv′i, Eq. (C)

• Do the same procedure forvj → equation forv′j , Eq. (D)

• Multiply Eq. (C) withv′j and Eq. (D) withv′i, time average and add them together

→ equation forv′iv
′
j

In Section9 at p.74 these steps are given in some detail. More details can also be
found in [14] (set the SGS tensor to zero, i.e.τa

ij = 0).
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The finalv′iv
′
j-equation (Reynolds Stress equation) reads (see Eq.9.12)

∂v′iv
′
j

∂t
+ v̄k

∂v′iv
′
j

∂xk

Cij

= −v′iv′k
∂v̄j

∂xk
− v′jv

′

k

∂v̄i

∂xk

Pij

+
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)

Πij

− ∂

∂xk

[
v′iv

′
jv

′

k +
p′v′j
ρ
δik +

p′v′i
ρ
δjk

]

Dij,t

+ ν
∂2v′iv

′
j

∂xk∂xk

Dij,ν

−giβv′jθ
′ − gjβv′iθ

′

Gij

− 2ν
∂v′i
∂xk

∂v′j
∂xk

εij

(11.10)

whereDij,t andDij,ν denote turbulent and viscous diffusion, respectively. Thetotal
diffusion readsDij = Dij,t + Dij,ν . This is analogous to the momentum equation
where we have gradients of viscous and turbulent stresses which correspond to viscous
and turbulent diffusion. Equation11.10can symbolically be written

Cij = Pij + Πij +Dij +Gij − εij

where

Cij Convection

Pij Production

Πij Pressure-strain

Dij Diffusion

Gij Buoyancy production

εij Dissipation

11.3 The exactv′

iθ
′ equation

If temperature variations occurs we must solve for the mean temperature field, see
Eq.11.8. To obtain the equation for the fluctuating temperature, subtract Eq.11.8from
Eq.11.7

∂θ′

∂t
+

∂

∂xk
(v′k θ̄ + v̄kθ

′ + v′kθ
′) = α

∂2θ′

∂xk∂xk
+
∂v′kθ

′

∂xk

(11.11)

To get the equation for the fluctuating velocity,v′i, subtract the equation for the mean
velocity v̄i (Eq.11.2) from the equation for the instantaneous velocity,vi (Eq.6.3) so
that

∂v′i
∂t

+
∂

∂xk
(v′kv̄i + v̄kv

′

i + v′kv
′

i) = −1

ρ

∂p′

∂xi
+ ν

∂2v′i
∂xk∂xk

+
∂v′iv

′

k

∂xk
− giβθ

′ (11.12)
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Multiply Eq. 11.11with v′i and multiply Eq.11.12with θ′, add them together and
time average

∂v′iθ
′

∂t
+ v′i

∂

∂xk
(v′k θ̄ + v̄kθ′ + v′kθ

′) + θ′
∂

∂xk
(v̄iv′k + v̄kv′i + v′iv

′

k)

= −θ
′

ρ

∂p′

∂xi
+ αv′i

∂2θ′

∂xk∂xk
+ νθ′

∂2v′i
∂xk∂xk

− giβθ′θ′
(11.13)

The Reynolds stress term in Eq.11.12multiplied byθ′ and time averaged is zero, i.e.

∂v′iv
′
j

∂xk
θ′ =

∂v′iv
′
j

∂xk
θ′ = 0

The first term in the two parentheses on line 1 in Eq.11.13are combined into two
production terms (using the continuity equation,∂v′k/∂xk = 0)

v′iv
′

k

∂θ̄

∂xk
+ v′kθ

′
∂v̄

∂xk
(11.14)

The second term in the two parenthesis on the first line of Eq.11.13are re-written using
the continuity equation

v′i
∂v̄kθ′

∂xk
+ θ′

∂v̄kv′i
∂xk

= v̄k

(
v′i
∂θ′

∂xk
+ θ′

∂v′i
∂xk

)
(11.15)

Now the two terms can be merged (product rule backwards)

v̄k
∂v′iθ

′

∂xk
=
∂v̄kv′iθ

′

∂xk
(11.16)

where we used the continuity equation to obtain the right side. The last two terms
in Eq. 11.13are re-cast into turbulent diffusion terms using the same procedure as in
Eqs.11.15and11.16

∂v′iv
′

kθ
′

∂xk
(11.17)

The viscos diffusion terms on the right side are re-written using the product rule back-
wards (Trick 1, see p.65)

αv′i
∂2θ′

∂xk∂xk
= αv′i

∂

∂xk

(
∂θ′

∂xk

)
= α

∂

∂xk

(
v′i
∂θ′

∂xk

)
− α

∂θ′

∂xk

∂v′k
∂xk

νθ′
∂2v′i

∂xk∂xk
= νθ′

∂

∂xk

(
∂v′i
∂xk

)
= ν

∂

∂xk

(
θ′
∂v′i
∂xk

)
− ν

∂θ′

∂xk

∂v′k
∂xk

(11.18)

Inserting Eqs.11.14, 11.16, 11.17and 11.18 into Eq. 11.13gives the transport
equation for the heat flux vectorv′iθ

′

∂v′iθ
′

∂t
+

∂

∂xk
v̄kv′iθ

′ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′
∂v̄i

∂xk

Piθ

−θ
′

ρ

∂p′

∂xi

Πiθ

− ∂

∂xk
v′kv

′
iθ

′

Diθ,t

+α
∂

∂xk

(
v′i
∂θ′

∂xk

)
+ ν

∂

∂xk

(
θ′
∂v′i
∂xk

)

Diθ,ν

− (ν + α)
∂v′i
∂xk

∂θ′

∂xk

εiθ

−giβθ′2

Giθ

(11.19)
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wherePiθ, Πiθ andDiθ,t denote the production, scramble and turbulent diffusion term,
respectively. The production term include one term with themean velocity gradient
and one term with the mean temperature gradient. On the last line,Diθ,ν, εiθ andGiθ

denote viscous diffusion, dissipation and buoyancy term, respectively. The unknown
terms –Πiθ, Diθ , εiθ, Giθ – have to be modelled as usual; this is out of the scope of
the present course but the interested reader is referred to [15].

It can be noted that there is no usual viscous diffusion term in Eq. 11.19. The
reason is that the viscous diffusion coefficients are different in thevi equation and
the θ equation (ν in the former case andα in the latter). However, ifν ≃ α (which
corresponds to a Prandtl number of unity, i.e.Pr = ν/α ≃ 1, see Eq.2.16), the
diffusion term in Eq.11.19assumes the familiar form

α
∂

∂xk

(
v′i
∂θ′

∂xk

)
+ ν

∂

∂xk

(
θ′
∂v′i
∂xk

)

= α
∂2v′iθ

′

∂xk∂xk
− α

∂

∂xk

(
θ′
∂v′i
∂xk

)
+ ν

∂2v′iθ
′

∂xk∂xk
− ν

∂

∂xk

(
v′i
∂θ′

∂xk

)

≃2ν
∂2v′iθ

′

∂xk∂xk
− ν

∂

∂xk

(
θ′
∂v′i
∂xk

)
− ν

∂

∂xk

(
v′i
∂θ′

∂xk

)

= 2ν
∂2v′iθ

′

∂xk∂xk
=
(
ν +

ν

Pr

) ∂2v′iθ
′

∂xk∂xk

(11.20)

Often the viscous diffusion is simplified in this way.

11.4 Thek equation

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e.

k =
1

2

(
v′21 + v′22 + v′23

)
≡ 1

2
v′iv

′
i

By taking the trace (setting indicesi = j) of the equation forv′iv
′
j and dividing by two

we get the equation for the turbulent kinetic energy:

∂k

∂t
+ v̄j

∂k

∂xj

Ck

= − v′iv
′
j

∂v̄i

∂xj

P k

− ν
∂v′i
∂xj

∂v′i
∂xj

ε

− ∂

∂xj

{
v′j

(
p′

ρ
+

1

2
v′iv

′
i

)}

Dk
t

+ ν
∂2k

∂xj∂xj

Dk
ν

−giβv′iθ
′

Gk

(11.21)

where – as in thev′iv
′
j equation –Dk

t andDk
ν denotes turbulent and viscous diffusion,

respectively. The total diffusion readsDk = Dk
t +Dk

ν . Equation11.21can symboli-
cally be written:

Ck = P k +Dk +Gk − ε (11.22)
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11.5 Theε equation

Two quantities are usually used in eddy-viscosity model to express the turbulent vis-
cosity. In thek − ε model,k andε are used. The turbulent viscosity is then computed
as

νt = Cµ
k2

ε

whereCµ = 0.09. An exact equation for the transport equation for the dissipation

ε = ν
∂v′i
∂xj

∂v′i
∂xj

can be derived (see, e.g., [16]), but it is very complicated and in the end many terms
are found negligible. It is much easier to look at thek equation, Eq.11.22, and to setup
a similar equation forε. The transport equation should include a convective term,Cε,
a diffusion term,Dε, a production term,P ε, a production term due to buoyancy,Gε,
and a destruction term,Ψε, i.e.

Cε = P ε +Dε +Gε − Ψε (11.23)

The production and destruction terms,P k andε, in thek equation are used to formu-
late the corresponding terms in theε equation. The terms in thek equation have the
dimension∂k/∂t = [m2/s3] whereas the terms in theε equation have the dimension
∂ε/∂t = [m2/s4]. Hence, we must multiplyP k andε by a quantity which has the
dimension[1/s]. One quantity with this dimension is the mean velocity gradient which
might be relevant for the production term, but not for the destruction. A better choice
should beε/k = [1/s]. Hence, we get

P ε +Gε − Ψε =
ε

k

(
cε1P

k + cε1G
k − cε2ε

)
(11.24)

where we have added new unknown coefficients in front of each term. The turbulent
diffusion term is expressed in the same way as that in thek equation (see Eq.11.36)
but with its own turbulent Prandtl number,σε (see Eq.11.33), i.e.

Dε =
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
(11.25)

The final form of theε transport equation reads

∂ε

∂t
+ v̄j

∂ε

∂xj
=
ε

k
(cε1P

k + cε1G
k − cε2ε) +

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
(11.26)

Note that this is amodelledequation since we have modelled the production, destruc-
tion and turbulent diffusion terms.

11.6 The Boussinesq assumption

In the Boussinesq assumption an eddy (i.e. aturbulent) viscosity is introduced to model
the unknown Reynolds stresses in Eq.11.2. Consider the diffusion terms in the incom-
pressible momentum equation in the case of non-constant viscosity (see Eq.2.5)

∂

∂xj

{
ν

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
− v′iv

′
j

}
(11.27)
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Now we want to replace the Reynolds stress tensor,v′iv
′
j , by a turbulent viscosity,νt,

so that the the diffusion terms can be written

∂

∂xj

{
(ν + νt)

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)}
(11.28)

Identification of Eqs.11.27and11.28gives

v′iv
′
j = −νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
(11.29)

This equation is not valid upon contraction (the left side will be zero, but not the right
side). Hence we add the trace of the left side to the right sideso that

v′iv
′
j = −νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
+

2

3
δijk = −2νts̄ij +

2

3
δijk (11.30)

Now the equation valid also when it is contracted (i.e takingthe trace); after contrac-
tion both left and right side are equal (as they must be) and equal tov′iv

′
i = 2k. When

Eq. 11.30is included in Eq.11.2we replace six turbulent stresses with one new un-
known (the turbulent viscosity,νt). This is of course a drastic simplification.

If the mean temperature equation is solved for we need an equation for the heat
flux vector,v′iθ

′. One option is to solve its transport equation, Eq.11.19. If an eddy-
viscosity model (i.e. Eq.11.30) is used for the Reynolds stresses, an eddy-viscosity
model is commonly used also for the heat flux vector. The Boussinesq assumption
reads

v′iθ
′ = −αt

∂θ̄

∂xi
(11.31)

whereαt denotes the turbulent thermal diffusivity. It is usually obtained from the
turbulent viscosity as

αt =
νt

σθ
(11.32)

whereσθ is the turbulent Prandtl number; it is an empirical constantwhich is usually
set to0.7 ≤ σθ ≤ 0.9. The physical meaning of the turbulent Prandtl number,σθ,
is analogous to the physical meaning of the usual Prandtl number, see Eq.2.16; it
defines how efficient the turbulence transports (by diffusion) momentum compared to
how efficient it transports thermal energy, i.e.

σθ =
νt

αt
(11.33)

It is important to recognize that the viscosity (ν), the Prandtl number (Pr), the
thermal diffusivity (α) arephysicalparameters which depend on the fluid (e.g. water
or air) and its conditions (e.g. temperature). However, theturbulent viscosity (νt), the
turbulent thermal diffusivity (αt) and the turbulent Prandtl number (σθ) depend on the
flow (e.g. mean flow gradients and turbulence).

11.7 Modelling assumptions

Now we will compare the modelling assumptions for the unknown terms in thev′iv
′
j ,

v′iθ
′, k andε equations and formulate modelling assumptions for the remaining terms in

the Reynolds stress equation. This will give us the Reynolds Stress Model [RSM] (also
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called the Reynolds Stress underline Transport Model [RSTM]) where a (modelled)
transport equation is solved for each stress. Later on, we will introduce a simplified
algebraicmodel, which is called the Algebraic Stress Model [ASM] (this model is also
called Algebraic Reynolds Stress Model, ARSM)

Summary of physical meaning:

Pij , Piθ andP k are production terms ofv′iv
′
j , v′iθ

′ andk

Gij ,Giθ andGk are production terms ofv′iv
′
j , v′iθ

′ andk due to buoyancy

Dij,t,Diθ,t,Dk
t are the turbulent diffusion terms ofv′iv

′
j , v′iθ

′ andk

Πiθ is the pressure-scramble terms ofv′iθ
′

Πij is the pressure-strain correlation term, which promotes isotropy of the tur-
bulence

εij , εiθ andε are dissipation ofv′iv
′
j , v′iθ

′ andk, respectively. The dissipation
takes place at the small-scale turbulence.

11.7.1 Production terms

In RSM and ASM the production terms are computed exactly

Pij = −v′iv′k
∂v̄j

∂xk
− v′jv

′

k

∂v̄i

∂xk
, P k =

1

2
Pii = −v′iv′j

∂v̄i

∂xj

Piθ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′
∂v̄i

∂xk

(11.34)

The k is usually not solved for in RSM but a length-scale equation (i.e. ε or ω) is
always part of an RSM and that equation includesP k.

In the k − ε model, the Reynolds stresses in the production term are computed
using the Boussinesq assumption, which gives

−v′iv′j = νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
− 2

3
δijk

P k = νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj
= νt2s̄ij(s̄ij + Ωij) = 2νts̄ij s̄ij

s̄ij =
1

2

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
, Ωij =

1

2

(
∂v̄i

∂xj
− ∂v̄j

∂xi

)
(11.35)

where on the second line we used the fact thats̄ijΩij = 0 because the product between
a symmetric tensor (̄sij) and an asymmetric tensor (Ωij) is zero.

11.7.2 Diffusion terms

The diffusion terms in thek andε-equations in thek − ε model are modelled using the
standard gradient hypothesis which reads

Dk =
∂

∂xj

[(
ν +

νt

σk

)
∂k

∂xj

]

Dε =
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

] (11.36)
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The gradient hypothesis simply assumes that turbulent diffusion acts as to even out
all inhomogeneities. In other words, it assumes that the turbulent diffusion term,Dk

t ,
transportsk from regions wherek is large to regions wherek is small. The turbulent
diffusion flux ofk is expressed as

dk
j,t =

1

2
v′jv

′
iv

′
i = − νt

σk

∂k

∂xj
(11.37)

Only the triple correlations are included since the pressure diffusion usually is negli-
gible (see Fig.8.2 at p.69). Taking the divergence of Eq.11.37(including the minus
sign in Eq.11.21) gives the turbulent diffusion term in Eq.11.36.

Solving the equations for the Reynolds stresses,v′iv
′
j , opens possibilities for a more

advanced model of the turbulent diffusion terms. Equation11.37assumes that if the
gradient is zero inxi direction, then there is no diffusion flux in that direction.A more
general gradient hypothesis can be formulated without thislimitation, e.g.

dk
j,t,G ∝ v′jv

′

k

∂k

∂xk
(11.38)

which is called the general gradient diffusion hypothesis (GGDH). It was derived in
[17] from the transport equation of the triple correlationv′jv

′
iv

′
i. In GGDH the turbulent

flux dk
1,t,G, for example, is computed as

dk
1,t,G ∝ v′1v

′
1

∂k

∂x1
+ v′1v

′
2

∂k

∂x2
+ v′1v

′
3

∂k

∂x3
(11.39)

Hence, even if∂k/∂x1 = 0 the diffusion fluxdk
1,t,G may be non-zero. A quantity of

dimension[s] must be added to get the correct dimension, and as in Eq.11.24we take
k/ε so that

dk
j,t,G = ck

k

ε
v′jv

′

k

∂k

∂xk
(11.40)

The diffusion term,Dk
t , in thek equation is obtained by taking the divergence of this

equation

Dk
t =

∂dk
j,t,G

∂xj
=

∂

∂xj

(
ck
k

ε
v′jv

′

k

∂k

∂xk

)
(11.41)

This diffusion model may be used when thek equation is solved in an RSM or an ASM.
The corresponding diffusion terms for theε andv′iv

′
j equations read

Dε
t =

∂

∂xj

(
cε v′jv

′

k

k

ε

∂ε

∂xk

)

Dij,t =
∂

∂xk

(
ck v′kv

′
m

k

ε

∂v′iv
′
j

∂xm

) (11.42)

Equation11.42often causes numerical problems. A more stable alternativeis to model
the diffusion terms as in11.36which forv′iv

′
j reads

Dij,t =
∂

∂xm

(
νt

σk

∂v′iv
′
j

∂xm

)
(11.43)
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11.7.3 Dissipation term,εij

The dissipation termεij (see Eq.11.10) is active for the small-scale turbulence. Be-
cause of the cascade process and vortex stretching (see Figs. 5.2 and5.3) the small-
scale turbulence is isotropic. This means that the velocityfluctuations of the small-
scale turbulence have no preferred direction, see p.48. This gives:

1. v′21 = v′22 = v′23 .

2. All shear stresses are zero, i.e.

v′iv
′
j = 0 if i 6= j

because the fluctuations in two different coordinate directions are not correlated.

What applies for the small-scale fluctuations (Items 1 and 2,above) must also apply
to the gradients of the fluctuations, i.e.

∂v′1
∂xk

∂v′1
∂xk

=
∂v′2
∂xk

∂v′2
∂xk

=
∂v′3
∂xk

∂v′3
∂xk

∂v′i
∂xk

∂v′j
∂xk

= 0 if i 6= j

(11.44)

The relations in Eq.11.44are conveniently expressed in tensor notation as

εij =
2

3
εδij (11.45)

where the factor2/3 is included so thatε = 1
2εii is satisfied, see Eqs.11.10and11.21.

11.7.4 Slow pressure-strain term

The pressure-strain term,Πij , makes a large contribution to thev′iv
′
j equation. In

Section9 it was shown that for channel flow it is negative for the streamwise equation,
v′21 , and positive for the wall-normal,v′22 , and spanwise,v′23 , equations. Furthermore,
it acts as a sink term for the shear stress equation. In summary, it was shown that the
term acts as to make the turbulence moreisotropic, i.e. decreasing the large normal
stresses and the magnitude of the shear stress and increasing the small normal stresses.
The pressure-strain term is often called theRobin Hoodterms, because it “takes from
the rich and gives to the poor”.

The role of the pressure strain can be described in physical terms as follows. As-
sume that two fluid particles with fluctuating velocitiesv′1 bounce into each other atO
so that∂v′1/∂x1 < 0, see Fig.11.1. As a result the fluctuating pressurep′ increases at
O so that

p′
∂v′1
∂x1

< 0

The fluid in thex1 direction is performing work, moving fluid particles against the
pressure gradient. The kinetic energy lost in thex1 direction is transferred to thex2

andx3 directions and we assume that the collision makes fluid particles move in the
other two directions, i.e.

∂v′2
∂x2

> 0,
∂v′3
∂x3

> 0 (11.46)
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O

v′1
v′1

x1

x2

Figure 11.1: Physical illustration of the pressure-strainterm.

Indeed, if∂v′1/∂x1 < 0, the continuity equation gives∂v′2/∂x2 + ∂v′3/∂x3 > 0.
However, in Eq.11.46we assume that not only their sum is positive but also that they
both are positive. If this is to happen the kinetic energy in thex1 direction must be
larger than that in thex2 andx3 direction, i.e.v′21 > v′22 andv′21 > v′23 . If this were not
true, the fluctuationv′1 would not be able to create an acceleration of bothv′2 andv′3.

The amount of kinetic energy transferred from thex1 direction to thex2 andx3

directions, should be proportional to the difference of their energy, i.e.

1

ρ
p′
∂v′1
∂x1

∝ −1

2

[(
v′21 − v′22

)
+
(
v′21 − v′23

)]
= −

[
v′21 − 1

2

(
v′22 + v′23

)]

= −
[
3

2
v′21 − 1

2

(
v′21 + v′22 + v′23

)]
= −

(
3

2
v′21 − k

) (11.47)

The expression in Eq.11.47applies only to the normal stresses, i.e. the principal axis
of v′iv

′
j . By transforming to a coordinate system which is rotatedπ/4 it is shown

that the sign ofp′(∂v′i/∂xj + ∂v′j/∂xi) andv′iv
′
j are opposite. Assume that we ex-

press Eq.11.47in principal coordinates,(x1∗, x2∗), and then transform the equation to
(x1, x2) by rotating it angleα = π/4, see AppendixP. Replacingu12 in Eq. P.6bby
v′1v

′
2 we get

v′1v
′
2 = 0.5

(
v′21∗ − v′22∗

)
(11.48)

sincev′1∗v
′
2∗ = v′2∗v

′
1∗. Now we have transformed the right side of Eq.11.47. Next

step is to transform the left side, i.e. the velocity gradients. We use Eqs.P.6bandP.6c:
replacingu12 andu21 by ∂v′1/∂x2 and∂v′2/∂x1, respectively, and adding them gives

∂v′2
∂x1

+
∂v′1
∂x2

=
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

(11.49)

the pressure-strain term in Eqs.11.10and11.47can be written

p′
(
∂v′2
∂x1

+
∂v′1
∂x2

)
= p′

(
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

)
(11.50)
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v̄1

x1

x2

b) x3

x2

Figure 11.2: Decaying grid turbulence. The circles (a) and the thin rectangles (b)
illustrates past of the grid which consists of a mesh of circular cylinders.

Now we apply Eq.11.47using the right side of Eq.11.50

p′
(
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

)
∝ −

(
v′21∗ − v′22∗

)
(11.51)

Inserting Eqs.11.48and11.50into Eq.11.51gives finally

p′
(
∂v′2
∂x1

+
∂v′1
∂x2

)
= −ρv′1v′2 (11.52)

This shows that the pressure-strain term acts as a sink term in the shear stress equation.
Thus, Eqs.11.47and11.52lead as to write

Φij,1 ≡ p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)
= −c1ρ

ε

k

(
v′iv

′
j −

2

3
δijk

)
(11.53)

whereΦ denotes themodelledpressure-strain term and subscript1 means the slow part;
the concept “slow” and “rapid” is discussed at p.96. We have introduced the turbulent
time scalek/ε. This pressure-strain model for the slow part was proposed by Rotta in
1951 [18].

Let us investigate how Eq.11.53behaves for decaying grid turbulence, see Fig.11.2.
Flow from left with velocityv̄1 passes through a grid. The grid creates velocity gradi-
ents behind the grid which generate turbulence. Further downstream the velocity gradi-
ents are smoothed out and the mean flow becomes constant. Fromthis point and further
downstream the flow represents homogeneous turbulence which is slowly approaching
isotropic turbulence; furthermore the turbulence is slowly dying (i.e. decaying) due
to dissipation. The exactv′iv

′
j equation for this flow reads (no production or diffusion

because of homogeneity)

v̄1
∂v′iv

′
j

∂x1
=
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
− εij (11.54)
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Rotta’s pressure-strain model is supposed to reduce anisotropy. Thus it should be in-
teresting to re-write Eq.11.54expressed in the normalized anisotropy Reynolds stress
tensor which is defined as

bij =
v′iv

′
j

2k
− 1

3
δij (11.55)

Note that when the turbulence is isotropic, thenbij = 0. We introducebij (Eq.11.55),
Rotta’s model (Eq.11.53) and the model for the dissipation tensor (11.45) into Eq.11.54
so that

2v̄1

(
∂(kbij)

∂x1
+ δij

1

3

∂k

∂x1

)
= −2c1εbij −

2

3
δijε (11.56)

Analogously to Eq,11.54, thek equation in decaying grid turbulence reads

v̄1
∂k

∂x1
= −ε (11.57)

Inserting Eq.11.57in Eq.11.56and dividing by2k we obtain

v̄1
∂bij
∂x1

= −c1
ε

k
bij −

1

3
δij

ε

k
+
ε

k
bij +

1

3
δij

ε

k
=
ε

k
bij(1 − c1) (11.58)

Provided thatc1 > 1 Rotta’s model does indeed reduce non-isotropy as it should.
The model of the slow pressure-strain term in Eq.11.53can be extended by in-

cluding terms which are non-linear inv′iv
′
j . To make it general it is enough to include

terms which are quadratic inv′iv
′
j , since according to the Cayley-Hamilton theorem, a

second-order tensor satisfies its own characteristic equation (see Section 1.20 in [19]);
this means that terms cubic inv′iv

′
j can be expressed in terms linear and quadratic in

v′iv
′
j . The most general form ofΦij,1 can be formulated as [20]

Φij,1 = −c1ρ
[
εaij + c′1

(
aikakj −

1

3
δijakℓaℓk

)]

aij =
v′iv

′
j

k
− 2

3
δij

(11.59)

aij is the anisotropy tensor whose trace is zero. In isotropic flow all its components
are zero. Note that the right side is trace-less (i.e. the trace is zero). This should be so
since the exact form ofΦij is trace-less, i.e.Φii = 2p′∂v′i/∂xi = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain term was developed using phys-
ical arguments. Here we will carry out a mathematical derivation of a model for the
rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in turbulence called the rapid
distortion problem, where a very strong velocity gradient∂v̄i/∂xj is imposed so that
initially the second term (the slow term) can be neglected, see Eq.11.61. It is assumed
that the effect of the mean gradients is much larger than the effect of the turbulence,
i.e. ∣∣∣∣

∂v̄i

∂xj

∣∣∣∣

/
(ε/k) → ∞ (11.60)
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x1, y1

x2, y2

V

x

y

Figure 11.3: The exact solution to Eq.11.62. The integral is carried out for all points,
y, in volumeV .

Thus in this case it is the first term in Eq.11.61which gives the most “rapid”
response inp′. The second “slow” term becomes important first at a later stage when
turbulence has been generated.

Now we want to derive an exact equation for the pressure-strain term,Πij . Since
it includes the fluctuating pressure,p′, we start by deriving an exact equation forp′

starting from Navier-Stokes equations.

1. Take the divergence of incompressible Navier-Stokes equation assuming con-

stant viscosity (see Eq.6.3) i.e.
∂

∂xi

(
vj
∂vi

∂xj

)
= . . .⇒ EquationA.

2. Take the divergence of incompressible time-averaged Navier-Stokes equation as-

suming constant viscosity (see Eq.6.5) i.e.
∂

∂xi

(
v̄j
∂v̄i

∂xj

)
= . . . ⇒ Equation

B.

Subtracting of EquationB from EquationA gives a Poisson equation for the fluc-
tuating pressurep′

1

ρ

∂2p′

∂xj∂xj
= − 2

∂v̄i

∂xj

∂v′j
∂xi

rapid term

− ∂2

∂xi∂xj

(
v′iv

′

j − v′iv
′
j

)

slow term

(11.61)

For a Poisson equation
∂2ϕ

∂xj∂xj
= f (11.62)

there exists an exact analytical solution given by Green’s formula, see AppendixQ (it
is derived from Gauss divergence law)

ϕ(x) = − 1

4π

∫

V

f(y)dy1dy2dy3
|y − x| (11.63)
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where the integrals at the boundaries vanish because it is assumed thatf → 0 at the
boundaries, see Fig.11.3. Applying Eq.11.63on Eq.11.61gives

p′(x) =
ρ

4π

∫

V



2
∂v̄i(y)

∂yj

∂v′j(y)

∂yi

rapid term

+
∂2

∂yi∂yj

(
v′i(y)v′j(y) − v′i(y)v′j(y)

)

slow term




dy3

|y − x|
(11.64)

wheredy3 = dy1dy2dy3. Now make two assumptions in Eq.11.64:

i) the turbulence is homogeneous (i.e. the spatial derivative of all time-averaged
fluctuating quantities is zero). This requirement is not as drastic as it may sound
(very few turbulent flows are homogeneous). This term is indeed very small
compared to the second derivative of the instantaneous fluctuations,v′i(y)v′j(y.

ii) the variation of∂v̄i/∂xj in space is small. The same argument can be used as
above: the mean gradient∂v̄i/∂xj varies indeed much more slowly than the
instantaneous velocity gradient,∂v′j(y)/∂yi

Assumptioni) means that the last term in the integral in Eq.11.64is zero, i.e.

∂2v′iv
′
j

∂yi∂yj
= 0

Assumptionii) means that the mean velocity gradient can be taken outside the integral.
Now multiply Eq.11.64with ∂v′i/∂xj + ∂v′j/∂xi. Since this term is not a function of
y it can be moved in under the integral. We obtain after time averaging

1

ρ
p′(x)

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)

=
∂v̄k(x)

∂xℓ

1

2π

∫

V

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)
∂v′ℓ(y)

∂yk

dy3

|y − x|
Mijkℓ

+
1

4π

∫

V

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)
∂2

∂yk∂yℓ
(v′k(y)v′ℓ(y))

dy3

|y − x|
Aij

(11.65)

Note that the mean velocity gradient,∂v̄/∂xℓ, is taken at pointx because it has been
moved out of the integral. In order to understand this better, consider the integral

f(x) =

∫ L

0

g(ξ)dξ

|x− ξ| (11.66)

Note thatx andξ are coordinates along the same axis (think of them as two different
points along thex axis). If the two points,x andξ, are far from each other, then the
denominator is large and the contribution to the integral issmall. Hence, we only need
to considerξ points which are close tox. If we assume thatg(ξ) varies slowly withξ,
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g(ξ) can be moved out of the integral and sincex is close toξ, Eq.11.66can be written
as

f(x) = g(x)

∫ L

0

dξ

|x− ξ| (11.67)

Going from Eq.11.66to Eq.11.67corresponds to moving the mean velocity gradient
out of the integral. Equation11.65can be written on shorter form as

p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
= Aij +Mijkℓ

∂v̄k

∂xℓ
= Φij,1 + Φij,2 (11.68)

where the first term represents the slow term,Φij,1 (see Eq.11.53), and second term
the rapid term,Φij,2 (index2 denotes the rapid part).

Now we will take a closer look at rapid part (i.e. the second term) of Mijkℓ. The
second term ofMijkℓ in the integral in Eq.11.65can be rewritten as

∂v′j(x)

∂xi

∂v′ℓ(y)

∂yk
=

∂

∂yk

(
v′ℓ(y)

∂v′j(x)

∂xi

)
− v′ℓ(y)

∂2v′j(x)

∂yk∂xi

=
∂2

∂yk∂xi

(
v′ℓ(y)v′j(x)

)
− ∂

∂yk

(
v′j(x)

∂v′ℓ(y)

∂xi

)

=
∂2

∂yk∂xi

(
v′ℓ(y)v′j(x)

)

(11.69)

∂2v′j(x)/∂yk∂xi on line 1 is zero becausev′j(x) is not a function ofy. For the same
reason the last term on line 2 is zero.

Note that the terms above as well as in Eq.11.65are two-point correlations, the
two points beingx andy. Introduce the distance vector between the two points

ri = yi − xi (11.70)

Differentiating Eq.11.70gives

∂

∂ri
=

∂

∂yi
− ∂

∂xi
(11.71)

Equation11.70is a coordinate transformation where we replacexi andyi with

I. xi andri, or

II. yi andri.

Assumptioni) at p.98 gives that∂/∂xi = 0 (Item I) or∂/∂yi = 0 (Item II). In other
words, the two-point correlations are independent of wherein space the two points are
located; they are only dependent on the distance between thetwo points (i.e.ri). Hence
we can replace the spatial derivative by the distance derivative, i.e.

∂

∂xi
= − ∂

∂ri
∂

∂yi
=

∂

∂ri

(11.72)
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We can now writeMijkℓ in Eq.11.65, using Eqs.11.69and11.72, as

Mijkℓ = − 1

2π

∫

V

[
∂2

∂rk∂ri

(
v′ℓv

′
j

)
+

∂2

∂rk∂rj

(
v′ℓv

′
i

)] dr3

|r|
= aijkℓ + ajikℓ

(11.73)

It can be shown thataijkℓ is symmetric with respect to indexj andℓ (recall thatv′ℓ and
v′j are not at the same point but separated byri), i.e.

aijkℓ = aiℓkj (11.74)

see AppendixG on p.220. Furthermore, Eq.11.73is independent of in which order
the two derivatives are taken, so thataijkℓ is symmetric with respect toi andk, i.e.

aijkℓ = akjiℓ (11.75)

Now let us formulate a general expression ofaijkℓ which is linear inv′iv
′
j and

symmetric in(j, ℓ) and(i, k). We get

aijkℓ = c1δikv′jv
′

ℓ

+ c2δjℓv′iv
′

k

+ c3(δijv′kv
′

ℓ + δkjv′iv
′

ℓ + δiℓv′kv
′
j + δkℓv′iv

′
j)

+ c4δjℓδikk

+ c5(δijδkℓ + δjkδiℓ)k

(11.76)

Each line is symmetric in(j, ℓ) and(i, k). For example, on line 3, term 1 & term 3 and
term 2 & term 4 are symmetric with respect toj andℓ and term 1 & term 2 and term 3
& term 4 are symmetric with respect toi andk.

Consider Eq.11.65. Here it is seen that ifi = j thenMijkℓ = 0 due to the
continuity equation; looking at Eq.11.73we get

aiikℓ = 0 (11.77)

Applying this condition to Eq.11.76gives

0 = c1δikv′iv
′

ℓ + c2δiℓv′iv
′

k + c3(3v′kv
′

ℓ + δkiv′iv
′

ℓ + δiℓv′kv
′
i + δkℓv′iv

′
i)

+ c4δiℓδikk + c5(3δkℓ + δikδiℓ)k

= c1v′kv
′

ℓ + c2v′ℓv
′

k + c3(3v′kv
′

ℓ + v′kv
′

ℓ + v′kv
′

ℓ + 2δkℓk)

+ c4δkℓk + c5(3δkℓ + δkℓ)k

= v′kv
′

ℓ(c1 + c2 + 5c3) + kδkℓ(c4 + 2c3 + 4c5)

(11.78)

Green’s third formula reads (see AppendixG on p.220)

aijiℓ = 2v′jv
′

ℓ (11.79)

Using Eq.11.79in Eq.11.76gives

2v′jv
′

ℓ = 3c1v′jv
′

ℓ + c2δjℓv′iv
′
i + c3(δijv′iv

′

ℓ + δijv′iv
′

ℓ + δiℓv′iv
′
j + δiℓv′iv

′
j)

+ (3c4δjℓ + c5(δijδiℓ + δjiδiℓ))k

= 3c1v′jv
′

ℓ + 2c2δjℓk + 4c3v′jv
′

ℓ + (3c4 + 2c5)δjℓ)k

= v′jv
′

ℓ(3c1 + 4c3) + δjℓk(2c2 + 3c4 + 2c5)

(11.80)
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Equations11.78and11.80give four equations

c1 + c2 + 5c3 = 0, c4 + 2c3 + 4c5 = 0

3c1 + 4c3 − 2 = 0, 2c2 + 3c4 + 2c5 = 0
(11.81)

for the five unknown constants. Let us express all constants in c2 which gives

c1 =
4c2 + 10

11
, c3 = −3c2 + 2

11
, c4 = −50c2 + 4

55
, c5 =

20c2 + 6

55
(11.82)

Inserting Eq.11.82into Eq.11.76and11.68gives

φij,2 = Mijkℓ
∂v̄k

∂xℓ
= (aijkℓ + ajikℓ)

∂v̄k

∂xℓ

= c1

(
v′jv

′

ℓ

∂v̄i

∂xℓ
+ v′iv

′

ℓ

∂v̄j

∂xℓ

)
+ c2

(
v′iv

′

k

∂v̄k

∂xj
+ v′jv

′

k

∂v̄k

∂xi

)

+c3

(
2δijv′kv

′

ℓ

∂v̄k

∂xℓ
+ v′iv

′

ℓ

∂v̄j

∂xℓ
+ v′jv

′

ℓ

∂v̄i

∂xℓ
+ v′kv

′
j

∂v̄k

∂xi
+ v′kv

′
i

∂v̄k

∂xj

)

+c4k

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
+ c5k

(
∂v̄j

∂xi
+
∂v̄i

∂xj

)

(11.83)

We find that thec1 term and the second and third part of thec3 term can be merged.
Furthermore, thec2 term and the third and fourth part of thec3 term can be merged as
well as thec4 andc5 terms; using Eq.11.81we get

φij,2 = −c2 + 8

11
Pij −

8c2 − 2

11
Dij +

6c2 + 4

11
P k +

4 − 60c2
55

ks̄ij

Dij = −v′iv′k
∂v̄k

∂xj
− v′jv

′

k

∂v̄k

∂xi

(11.84)

Finally we re-write this equation so that it is expressed in trace-less tensors

Φij,2 = −ρc2 + 8

11

(
Pij −

2

3
δijP

k

)

− ρ
8c2 − 2

11

(
Dij −

2

3
δijP

k

)
− 60c2 − 4

55
ρks̄ij

(11.85)

wherec2 = 0.4. Note thatΦii = 0 as we required in Eq.11.77. This pressure-strain
model is called the LRR model and it was proposed in [21].

All three terms in Eq.11.85satisfy continuity and symmetry conditions. It might
be possible to use a simpler pressure-strain model using oneor any two terms. Since
the first term is the most important one, a simpler model has been proposed [21, 22]

Φij,2 = −c2ρ
(
Pij −

2

3
δijP

k

)
(11.86)

It can be noted that there is a close similarity between the Rotta model and Eq.11.86:
both models represent “return-to-isotropy”, the first expressed inv′iv

′
j and the second

in Pij . The model in Eq.11.86is commonly called the IP model (IP=Isotropization
by Production) . Since two terms are omitted we should expect that the best value of
γ should be different than(c2 + 8)/11; a value ofγ = 0.6 was (c2 = −1.4) found to
give good agreement with experimental data. Since Eq.11.86is a truncated form of
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LRR model LRR-IP model
c1 (Eq.11.53 1.5 1.5
c2 (Eq.11.85) 0.4 −
c2 (Eq.11.86) − 0.6

Table 11.1: Constants in the LRR and LRR-IP pressure-strainmodels.

x1

x2

Figure 11.4: Modelling of wall correction in pressure-strain terms.

Eq. 11.85it does not satisfy all requirements that Eq.11.85do. Equation11.86does
satisfy symmetry condition and continuity but it does not satisfy the integral condition
in Eq. 11.79. Although Eq.11.86is a simpler, truncated version of Eq.11.85, it is
often found to give more accurate results [23]. Since the IP model is both simpler and
seems to be more accurate than Eq.11.85, it is one of the most popular models of the
rapid pressure-strain term. The coefficients for the slow and rapid terms in the LRR
and LRR-IP models are summarized in Table11.1

11.7.6 Wall model of the pressure-strain term

When we derived the rapid pressure-strain model using Green’s function in Eq.11.64
we neglected the influence of any boundaries. In wall-bounded domains it turns out
that the effect of the walls must be taken into account. Both the rapid term in the LRR
model and the IP model must be modified to include wall modelling.

The effect of the wall is to dampen turbulence. There are two main effects whose
underlying physics are entirely different.

1. Viscosity. Close to the wall the viscous processes (viscous diffusionand dissi-
pation) dominate over the turbulent ones (production and turbulent diffusion).

2. Pressure. When a fluid particle approaches a wall, the presence of the wall is felt
by the fluid particle over a long distance. This is true for a fluid particle carried
by the wind approaching a building as well as for a fluid particle carried by a
fluctuating velocity approaching the wall in a turbulent boundary layer. In both
cases it is the pressure that informs the fluid particle of thepresence of the wall.

Since the pressure-strain term includes the fluctuating pressure, it is obviously the
second of these two processes that we want to include in the wall model. Up to now
we have introduced two terms for modelling the pressure-strain term, the slow and the
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fast term. It is suitable to include a slow and a fastwall model term, i.e.

Φij = Φij,1 + Φij,2 + Φij,1w + Φij,2w (11.87)

where subscriptw denotes wall modelling.
Consider a wall, see Fig.11.4. The pressure fluctuations dampens the wall-normal

fluctuations. Furthermore, the damping effect of the wall should decrease for increasing
wall distance. We need to scale the wall-normal distance with a relevant quantity and
the turbulent length scale,k3/2/ε, seems to be a good candidate. For the wall-normal
fluctuations, the IP wall model reads [24]

Φ22,1w = −2c1w
ε

k
v′22 f

f =
k

3

2

2.55|ni,w(xi − xi,w|)ε
(11.88)

wherexi − xi,w andni,w denotes the distance vector to the wall and the unit wall-
normal vector, respectively. As explained above, this damping is inviscid (due to pres-
sure) and affects the turbulent fluctuations well into the log-region. It has nothing to do
with viscous damping. Away from the wall, in the fully turbulent region, the damping
function goes to zero since the distance to the wall (|xi − xi,w |) increases faster than
the turbulence length scale,k3/2/ε. In the viscous region the wall model term,Φ22,1w,
is not relevant and should be zero since it should account only for inviscid damping.
Moreover, functionf should not exceed one.

The IP wall model for the wall-parallel fluctuations reads

Φ11,1w = Φ33,1w = c1w
ε

k
v′22 f (11.89)

The requirement that the sum of the pressure strain term should be zero. i.e.Φii,1w =
0, is now satisfied sinceΦ11,1w + Φ22,1w + Φ33,1w = 0.

The wall model for the shear stress is set as

Φ12,1w = −3

2
c1w

ε

k
v′1v

′
2f (11.90)

The factor3/2 is needed to ensure thatΦii,1w = 0 is satisfied when the coordinate sys-
tem is rotated. You can prove this by rotating the matrix[Φ11,1w,Φ12,1w; Φ21,1w,Φ22,1w]
and taking the trace ofΦ in the principal coordinates system (i.e. taking the sum of the
eigenvalues).

The general formula for a wall that is not aligned with a Cartesian coordinate axis
reads [24]

Φij,1w = c1w
ε

k

(
v′kv

′
mnk,wnm,wδij −

3

2
v′kv

′
ink,wnj,w − 3

2
v′kv

′
jni,wnk,w

)
f

(11.91)
An analogous wall model is used for the rapid part which reads

Φij,2w = c2w

(
Φkm,2nk,wnm,wδij −

3

2
Φki,2nk,wnj,w − 3

2
Φkj,2ni,wnk,w

)
f

(11.92)
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11.8 Thek − ε model

The exactk equation is given by Eq.11.21. By inserting the model assumptions for
the turbulent diffusion (Eq.11.36), the production (Eq.11.35) and the buoyancy term
(Eqs.11.31and11.32) we get themodelledequation fork

∂k

∂t
+ v̄j

∂k

∂xj
= νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj
+ giβ

νt

σθ

∂θ̄

∂xi

−ε+
∂

∂xj

[(
ν +

νt

σk

)
∂k

∂xj

] (11.93)

In the same way, the modelledε equation is obtained from Eq.11.26

∂ε

∂t
+ v̄j

∂ε

∂xj
=
ε

k
cε1νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj

+ cε1gi
ε

k

νt

σθ

∂θ̄

∂xi
− cε2

ε2

k
+

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

] (11.94)

The turbulent viscosity is computed as

νt = cµ
k2

ε
(11.95)

The standard values for the coefficients read

(cµ, cε1, cε2, σk, σε) = (0.09, 1.44, 1.92, 1, 1.3) (11.96)
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11.9 The modelledv′

iv
′

j equation with IP model

With the models for diffusion, pressure-strain and dissipation we get

v̄k

∂v′iv
′
j

∂xk
= (convection)

−v′iv′k
∂v̄j

∂xk
− v′jv

′

k

∂v̄i

∂xk
(production)

−c1
ε

k

(
v′iv

′
j −

2

3
δijk

)
(slow part)

−c2
(
Pij −

2

3
δijP

k

)
(rapid part)

+c1wρ
ε

k
[ v′kv

′
mnknmδij −

3

2
v′iv

′

knknj

−3

2
v′jv

′

knkni ]f (wall, slowpart)

+c2w [ Φkm,2nknmδij −
3

2
Φik,2nknj

−3

2
Φjk,2nkni ]f (wall, rapid part)

+ν
∂2v′iv

′
j

∂xk∂xk
(viscous diffusion)

+
∂

∂xk

[
ck v′kv

′
m

k

ε

∂v′iv
′
j

∂xm

]
(turbulent diffusion)

−giβv′jθ
′ − gjβv′iθ

′ (buoyancyproduction)

−2

3
εδij (dissipation)

(11.97)

11.10 Algebraic Reynolds Stress Model (ASM)

The Algebraic Reynolds Stress Model is a simplified Reynolds Stress Model. The
RSM andk − ε models are written in symbolic form (see p.86& 88) as:

RSM : Cij −Dij = Pij + Φij − εij

k − ε : Ck −Dk = P k − ε
(11.98)

In ASM we assume that the transport (convective and diffusive) of v′iv
′
j is related to

that ofk, i.e.

Cij −Dij =
v′iv

′
j

k

(
Ck −Dk

)

Inserting Eq.11.98into the equation above gives

Pij + Φij − εij =
v′iv

′
j

k

(
P k − ε

)
(11.99)

Thus the transport equation (PDE) forv′iv
′
j has been transformed into analgebraic

equation based on the assumption in Eq.11.98.
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Now we want to re-write this equation as an equation forv′iv
′
j . Insert the IP models

for Φij,1 (Eq.11.53) andΦij,2 (Eq.11.86) and the isotropic model forεij (Eq.11.45)
in Eq.11.99and multiply byk/ε so that

k

ε
Pij − c1

(
v′iv

′
j −

2

3
δijk

)
− c2

k

ε

(
Pij −

2

3
δijP

k

)
− 2

3
δijk

+
k

ε
(Φij,1w + Φij,2w) =

v′iv
′
j

ε

(
P k − ε

)

Collect allv′iv
′
j terms so that

v′iv
′
j

(
P k

ε
− 1 + c1

)
=

k

ε

[
Pij − c2

(
Pij −

2

3
δijP

k

)
+ Φij,1w + Φij,2w

]
+

2

3
δijk(−1 + c1)

=
k

ε

[
Pij −δij

2

3
P k − c2

(
Pij −

2

3
δijP

k

)
+ Φij,1w + Φij,2w

]
+

2

3
δijk(P

k/ε − 1 + c1)

where(2/3)δijP
kk/ε was added and subtracted at the last line (shown in boxes). Di-

viding both sides byP k/ε− 1 + c1 gives finally

v′iv
′
j =

2

3
δijk +

k

ε

(1 − c2)
(
Pij − 2

3δijP
k
)

+ Φij,1w + Φij,2w

c1 + P k/ε− 1
(11.100)

In boundary layer flow Eq.11.100reads

−v′1v′2 =
2

3
(1 − c2)

c1 − 1 + c2P
k/ε

(c1 − 1 + P k/ε)
cµ

k2

ε

∂v̄

∂y

As can be seen, this model can be seen as an extension of an eddy-viscosity model
where thecµ constant is made a function of the ratioP k/ε.

11.11 Explicit ASM (EASM or EARSM)

Equation11.100is animplicit equation forv′iv
′
j , i.e. the Reynolds stresses appear both

on the left and the right side of the equation. It would of course be advantageous to
be able to get anexplicit expression for the Reynolds stresses. Pope [25] managed
to derive an explicitexpression for ASM in two dimensions. He assumed that the
Reynolds stress tensor can expressed in the strain-rate tensor, s̄ij , and the vorticity
tensor,Ωij . Furthermore, he showed that the coefficients,G(n), in that expression can
be a function of not more than the following five invariants

(k2/ε2)s̄ij s̄ji, (k2/ε2)Ω̄ijΩ̄ji, (k3/ε3)s̄ij s̄jks̄ki

(k3/ε3)Ω̄ijΩ̄jk s̄ki, (k4/ε4)Ω̄ijΩ̄jks̄kms̄mi

(11.101)

In two dimension the expression reads

v′iv
′
j =

2

3
kδij +G(1) k

2

ε
s̄ij + +G(2) k

3

ε2
(s̄ikΩ̄kj − Ω̄iks̄kj) (11.102)
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x2 v̄1(x2)

Figure 11.5: Boundary layer flow.

In general three-dimensional flow, the Reynolds stress tensor depends on 10 ten-
sors,T n

ij [25], i.e.

v′iv
′
j − kδij =

10∑

n=1

G(n)T n
ij

T 1
ij = s̄ij , T 2

ij = s̄ikΩ̄kj − s̄jkΩ̄ki, T 3
ij = s̄iks̄kj −

1

3
δij s̄iks̄ki

T 4
ij = Ω̄ikΩ̄kj −

1

3
δijΩ̄ikΩ̄ki, T 5

ij = Ω̄iks̄kms̄mj − s̄ims̄mkΩ̄kj

T 6
ij = Ω̄imΩ̄mks̄kj + s̄ikΩ̄kmΩ̄mj −

2

3
δijΩ̄pmΩ̄mks̄kp

T 7
ij = Ω̄ims̄mkΩ̄knΩ̄nj − Ω̄imΩ̄mks̄knΩ̄nj , T 8

ij = s̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄kns̄nj

T 9
ij = Ω̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄knΩ̄nj −

2

3
δijΩ̄pmΩ̄mks̄kns̄np

T 10
ij = Ω̄ims̄mks̄knΩ̄npΩ̄pj − Ω̄imΩ̄mks̄kns̄npΩ̄pj

(11.103)

whereT n
ij may depend on the five invariants in Eq.11.101. Equation11.103is a general

form of a non-linear eddy-viscosity model. Any ASM may be written on the form of
Eq.11.103.

It may be noted that Eq.11.103includes only linear and quadratic terms ofs̄ij

and Ω̄ij . That is because of Cayley-Hamilton theorem which states that a second-
order tensor satisfies its own characteristic equation (seeSection 1.20 in [19]); hence
cubic terms or higher can recursively be expressed in linear(s̄ij) and quadratic tensors
(s̄iks̄kj ). Furthermore, note that all terms in Eq.11.103are symmetric and traceless as
required by the left side,v′iv

′
j − 2δijk/3.

11.12 Boundary layer flow

Let us study boundary layer flow (Fig.11.5) wherev̄2 = 0, v̄1 = v̄1(x2). In general
the productionPij has the form:

Pij = −v′iv′k
∂v̄j

∂xk
− v′jv

′

k

∂v̄i

∂xk
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In this special case we get:

P11 = −2v′1v
′
2

∂v̄1
∂x2

P12 = −v′22
∂v̄1
∂x2

P22 = 0

Is v′22 zero because its production termP22 is zero? No! The sympathetic termΦij

which takes from the rich (i.e.v′21 ) and gives to the poor (i.e.v′22 ) saves the unfair
situation! The IP model forΦij,1 andΦij,2 gives

Φ22,1 = c1
ε

k

(
2

3
k − v′22

)
> 0

Φ22,2 = c2
1

3
P11 = −c2

2

3
v′1v

′
2

∂v̄1
∂x2

> 0

Note also that the dissipation term for thev′1v
′
2 is zero, but it takes the value23ε for the

v′21 andv′22 equations (see p.93). Since the modelledv′1v
′
2 does not have any dissipation

term, the question arises: what is the main sink term in thev′1v
′
2 equation? The answer

is, again, the pressure strain termΦij,1 andΦij,2.
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0
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∂θ̄/∂x3 > 0
∂ρ/∂x3 < 0

θ̄2 > θ̄0

θ̄1 < θ̄0

F

F

ρ2 < ρ0

ρ1 > ρ0

x3

Figure 12.1: Stable stratification due to positive temperature gradient∂θ̄/∂x3 > 0.

12 Reynolds stress models vs. eddy-viscosity models

In this section we present three fundamental physical processes which Reynolds stress
models are able to handle whereas eddy-viscosity models fail. The reason for the
superiority of the former model is in all cases that the production term is treated exactly,
whereas it in eddy-viscosity models is modelled.

12.1 Stable and unstable stratification

In flows where buoyancy is dominating, the temperature has a large effect on the tur-
bulence through the buoyancy termGij , see Eq.11.10. If the temperature increases
upwards (i.e.∂θ̄/∂x3 > 0), then the flow isstably stratified. This is illustrated in
Fig. 12.1. Consider∂θ̄/∂x3 > 0. This means that the density decreases with increas-
ing vertical height, i.e.∂ρ/∂x3 < 0. If a fluid particle is displaced from its equilibrium
level 0 up to level2, see Fig.12.1, it is heavier then the surrounding at this new level
(ρ0 > ρ2). Hence, the buoyancy forces the particle back to its original position0. In
this way the vertical turbulent fluctuations are dampened. Similarly if a particle origi-
nating at level0, is moved down to level1. Here it is lighter than its new environment,
and hence buoyancy makes it to move make to its original level0.

For the case ofunstable stratification, the situation is reversed. Cold fluid is
located on top of hot fluid, i.e.∂θ̄/∂x3 < 0 and∂ρ/∂x3 > 0. In Fig. 12.1we would
then haveρ2 > ρ0. If a fluid particle at level0 is displaced upwards to level2, it is
at this location lighter than its new environment; hence it continues to move upwards.
If it is moved down to level1 it is heavier than its new environments and it will then
continue downwards. Hence, turbulent fluctuations are enhanced. This flow situation
is calledunstable stratification.

The production term due to buoyancy reads (see Eq.11.10)

G33 = 2gβv′3θ
′ (12.1)

sincegi = (0, 0,−g). From the equation for the turbulent heat flux,v′3θ
′ (i.e. Eq.11.19
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with i = 3), we find the production term forv′3θ′

P3θ = −v′3v′k
∂θ̄

∂xk
− v′kθ

′
∂v̄3
∂xk

(12.2)

In the case illustrated in Fig.12.1, the production term due to temperature gradient
readsP3θ = −v′23 ∂θ̄/∂x3 < 0 (recall that we assume that buoyancy dominates so that
the first term in Eq.12.2is much larger than the second one). Since the main source
term in thev′3θ′ equation,P3θ, is negative, it makesv′3θ′ < 0 so thatG33 < 0 (see
Eq.12.1). Thus, for the case illustrated in Fig.12.1, we find that the production term,
G33, due to buoyancy yields a damping of the vertical fluctuations as it should.

Note that the horizontal turbulent fluctuations are not affected by the buoyancy
term,Gij , sinceG11 = G22 = 0 because the gravity is in thex3 direction (i.e.g1 =
g2 = 0).

If the situation in Fig.12.1is reversed so that∂θ̄/∂x3 < 0 the vertical fluctuations
are instead augmented. This is calledunstably stratified conditions.

When eddy-viscosity models are used, transport equations are usually not solved
for v′iθ

′. Instead the heat flux tensor is modelled with an eddy-viscosity assumption
using the Boussinesq assumption, see Eq.11.31. The buoyancy term,Gk, in thek
equation reads, see Eq.11.10(take the trace ofGij and divide by two)

Gk = 0.5Gii = −giβv′iθ
′ (12.3)

Forgi = (0, 0,−g), it readsGk = gβv′3θ
′ which with Eq.11.31gives

Gk = −gβ νt

σθ

∂θ̄

∂x3
(12.4)

Hence it is seen that in stably stratified conditions,Gk < 0 as required. The differ-
ence between an eddy-viscosity model and a Reynolds stress model, is that the former
reducesk whereas the latter reduces only the vertical fluctuations.

12.2 Curvature effects

When the streamlines in boundary layer flow have a convex curvature, the turbulence
is stabilized. This dampens the turbulence [26, 27], especially the shear stress and
the Reynolds stress normal to the wall. Concave curvature destabilizes the turbu-
lence. The ratio of boundary layer thicknessδ to curvature radiusR is a common
parameter for quantifying the curvature effects on the turbulence. The work reviewed
by Bradshaw [26] demonstrates that even such small amounts of convex curvature as
δ/R = 0.01 can have a significant effect on the turbulence. In [28] they carried out an
experimental investigation on a configuration simulating the flow near a trailing edge
of an airfoil, where they measuredδ/R ≃ 0.03. They reported a 50 percent decrease
of ρv′22 (Reynolds stress in the normal direction to the wall) owing to curvature. The
reduction ofρv′21 and−ρv′1v′2 was also substantial. In addition they reported significant
damping of the turbulence in the shear layer in the outer partof the separation region.

An illustrative model case is curved boundary layer flow, seeFig. 12.2. A polar
coordinate systemr − θ with θ̂ locally aligned with the streamline is introduced. As
vθ = vθ(r) (with ∂vθ/∂r > 0 andvr = 0), the radial inviscid momentum equation
degenerates to

ρv2
θ

r
− ∂p

∂r
= 0 (12.5)
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Figure 12.2: Flow in a polar coordinate system illustratingstreamline curvature. The
streamline is aligned with theθ axis.

r

v̄1
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x2

θ

streamline

Figure 12.3: Streamline curvature occurring when the flow approaches, for example, a
separation region or an obstacle.
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∂Vθ/∂r > 0 ∂Vθ/∂r < 0

convex curvature stabilizing destabilizing
concave curvature destabilizing stabilizing

Table 12.1: Effect of streamline curvature on turbulence.

Here the variables are instantaneous or laminar. The centrifugal force exerts a force in
the normal direction (outward) on a fluid following the streamline, which is balanced
by the pressure gradient. Since we have assumed that∂vθ/∂r > 0, Eq.12.5shows that
the pressure gradient increases withr. If the fluid is displaced by some disturbance
(e.g. turbulent fluctuation) outwards to level A, it encounters a pressure gradient larger
than that to which it was accustomed atr = r0, as(vθ)A > (vθ)0, which from Eq.12.5
gives(∂p/∂r)A > (∂p/∂r)0. Hence the fluid is forced back tor = r0. Similarly, if
the fluid is displaced inwards to level B, the pressure gradient is smaller here than at
r = r0 and cannot keep the fluid at level B. Instead the centrifugal force drives it back
to its original level.

It is clear from the model problem above that convex curvature, when∂vθ/∂r > 0,
has a stabilizing effect on (turbulent) fluctuations, at least in the radial direction. It is
discussed below how the Reynolds stress model responds to streamline curvature.

Assume that there is a flat-plate boundary layer flow, see Fig.12.3. The ratio of
the normal stressesρv′21 to ρv′22 is typically 5. At onex1 station, the flow is deflected
upwards. How will this affect turbulence? Let us study the effect of concave streamline
curvature. The production termsPij owing to rotational strains (∂v̄1/∂x2, ∂v̄2/∂x1)
can be written as (see Eq.11.10):

RSM, v′21 − eq. : P11 = −2v′1v
′
2

∂v̄1
∂x2

(12.6a)

RSM, v′1v
′
2 − eq. : P12 = −v′21

∂v̄2
∂x1

− v′22
∂v̄1
∂x2

(12.6b)

RSM, v′22 − eq. : P22 = −2v′1v
′
2

∂v̄2
∂x1

(12.6c)

k − ε P k = νt

(
∂v̄1
∂x2

+
∂v̄2
∂x1

)2

(12.6d)

The terms in boxes appear because of the streamline curvature.
As long as the streamlines are parallel to the wall, all production is a result of

∂v̄1/∂x2. However as soon as the streamlines are deflected, there are more terms
resulting from∂v̄2/∂x1. Even if ∂v̄2/∂x1 is much smaller than∂v̄1/∂x2 it will still
contribute non-negligibly toP12 asρv′21 is much larger thanρv′22 . Thus the magnitude
of P12 will increase (P12 is negative) as∂v̄2/∂x1 > 0. An increase in the magnitude of
P12 will increase−v′1v′2, which in turn will increaseP11 andP22. This means thatρv′21
andρv′22 will be larger and the magnitude ofP12 will be further increased, and so on.
It is seen that there is a positive feedback, which continuously increases the Reynolds
stresses. The turbulence isdestabilizedowing to concave curvature of the streamlines.
Note than eddy-viscosity models such ask − ε andk − ω models cannot account for
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v̄1(x2)
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Figure 12.4: The velocity profile for a wall jet.

x1

x2x1
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Figure 12.5: The flow pattern for stagnation flow.

streamline curvature since the two rotational strains,∂v̄1/∂x2 and∂v̄2/∂x1, in the
production term are multiplied by the same coefficient (the turbulent viscosity).

If the flow (concave curvature) is a wall jet flow where∂v̄1/∂x2 < 0 in the outer
part (see Fig.12.4) the situation will be reversed: the turbulence will bestabilized. If
the streamline (and the wall) is deflected downwards, the situation will be as follows:
the turbulence is stabilizing when∂v̄1/∂x2 > 0, and destabilizing for∂v̄1/∂x2 < 0.

The stabilizing or destabilizing effect of streamline curvature is thus dependent on
the type of curvature (convex or concave), and whether thereis an increase or decrease
in momentum in the tangential direction with radial distance from its origin (i.e. the
sign of∂Vθ/∂r). For convenience, these cases are summarised in Table12.1. It should
be noted that concave or convex depends on from which the streamline is viewed. The
streamline in Fig.12.3, for example, is concave when viewed from the wall but convex
when viewed from the orig of the circle with radiusr.

It should be mentioned that one part of the effect of curved streamlines in Eq.12.6
is due to the transformation of the advective term of thev′iv

′
j -equation (cf. polar coordi-

nates where additional terms appear both in the momentum equations and the transport
equation forv′iv

′
j ). In [29] they proposed a correction term to take this effect into

account.

12.3 Stagnation flow

Thek − ε model does not model the normal stresses properly, whereas ASM/RSM do.
The production term in thek equations for RSM/ASM andk − ε model in stagnation
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flow (see Fig.12.5) due to∂v̄1/∂x1 and∂v̄2/∂x2 is:

RSM : 0.5 (P11 + P22) = −v′21
∂v̄1
∂x1

− v′22
∂v̄2
∂x2

= − ∂v̄1
∂x1

(v′21 − v′22 ) (12.7)

k − ε : P k = 2νt

{(
∂v̄1
∂x1

)2

+

(
∂v̄2
∂x2

)2
}

(12.8)

where continuity∂v̄1/∂x1 = −∂v̄2/∂x2 has been employed. In RSM, the two terms
are added with sign. In thek − ε model, however, the production will be large because
the difference in sign of the two terms is not taken into account.

12.4 RSM/ASM versusk − ε models

• Advantages withk − ε models (or eddy viscosity models):

i) simple due to the use of an isotropic eddy (turbulent) viscosity

ii) stable via stability-promoting second-ordergradients inthe mean-flow equa-
tions

iii) work reasonably well for a large number of engineering flows

• Disadvantages:

i) isotropic, and thus not good in predicting normal stresses (v′21 , v
′2
2 , v

′2
3 )

ii) as a consequence ofi) it is unable to account for curvature effects

iii) as a consequence ofi) it is unable to account for irrotational strains (stag-
nation flow)

iv) in boundary layers approaching separation, the productiondue to normal
stresses is of the same magnitude as that due to shear stresses [30].

• Advantages with ASM/RSM:

i) the production terms do not need to be modelled

ii) thanks toi) it can selectively augment or damp the stresses due to cur-
vature effects (RSM is better than ASM because the convective terms are
accounted for), boundary layers approaching separation, buoyancy etc.

• Disadvantages with ASM/RSM:

i) RSM is complex and difficult to implement, especially implicit ASM

ii) numerically unstable because small stabilizing second-order derivatives in
the momentum equations (only laminardiffusion)

iii) CPU time consuming
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13 Realizability

There are a number of realizability constraints. The usual two ones are that all normal
stresses should stay positive and that the correlation coefficient for the shear stress
should not exceed one, i.e.

v′2i ≥ 0 for all i

v′iv
′
j

(
v′2i v′2j

)1/2
≤ 1 no summation overi andj, i 6= j

(13.1)

These criteria are seldom used in RSMs. However, satisfyingthe first criteria is actually
of importance for eddy-viscosity models in stagnation flow [31]. Assume that the flow
is in thex1 direction and that it approaches the wall (see Fig.12.5). The Boussinesq
assumption for the normal stressv′21 reads (cf. Eq.12.7)

v′21 =
2

3
k − 2νt

∂v̄1
∂x1

=
2

3
k − 2νts̄11 (13.2)

It is seen that if̄s11 gets too large thenv′21 < 0 which is unphysical, i.e. non-realizable.
Let’s now briefly repeat the concept “invariants”. This means something that is

independent of the coordinate system. Here we mean independent of rotation of the
coordinate system. If a tensor is symmetric, then we know that it has real eigenvalues
which means that we can rotate the coordinate system so that the off-diagonal com-
ponents vanish (see, e.g., [19]). For the strain tensor this means that the off-diagonal
components of̄sij vanish and this is the coordinate system where the diagonal com-
ponents become largest (e.g.s̄11 in Eq. 13.2). Thus this is the coordinate system in
which the danger of negativev′21 from Eq.13.2is largest. The equation for finding the
eigenvalues of a tensorCij is (see e.g. [19] or [32])

|Cij − δijλ| = 0 (13.3)

which gives, in 2D, ∣∣∣∣
C11 − λ C12

C21 C22 − λ

∣∣∣∣ = 0 (13.4)

The resulting equation is

λ2 − I2D
1 λ+ I2D

2 = 0

I2D
1 = Cii

I2D
2 =

1

2
(CiiCjj − CijCij) = det(Cij)

(13.5)

Since the above equation is the same irrespectively of how the coordinate system is
rotated, it follows that its coefficientsI2D

1 andI2D
2 are invariants.

In 3D Eq.13.3gives
∣∣∣∣∣∣

C11 − λ C12 C13

C21 C22 − λ C23

C31 C32 C33 − λ

∣∣∣∣∣∣
= 0 (13.6)
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which gives

λ3 − I3D
1 λ2 + I3D

2 λ− I3D
3 = 0

I3D
1 = Cii

I3D
2 =

1

2
(CiiCjj − CijCij)

I3D
3 =

1

6
(2CijCjkCki − 3CijCjiCkk + CiiCjjCkk) = det(Cij)

(13.7)

The invariants areI3D
1 , I3D

2 andI3D
2 .

Let’s go back to Eq.13.2and assume incompressible 2D flow. The first invariant
reads (cf. Eq.13.5)

I2D
1 = s̄ii = s̄11 + s̄22 = λ1 + λ2 = 0 (13.8)

It is zero due to the continuity equation. The second invariant of s̄ij reads

I2D
2 = −s̄ij s̄ij/2, (13.9)

(see Eq.13.5) which is the same in all coordinate systems (hence the name ”invariant”).
The solution to Eq.13.5, using Eq.13.8, is

λ1,2 = ±
(
−I2D

2

)1/2
= ±

( s̄ij s̄ij

2

)1/2

(13.10)

The eigenvalues of̄sij correspond to the strains in the principal axis. As discussed
above, we apply Eq.13.2in the principal coordinate directions ofs̄ij . Hence,̄s11 in
Eq.13.2is replaced by the largest eigenvalue so that

v′21 =
2

3
k − 2νtλ1 (13.11)

The requirementv′21 ≥ 0 gives now together with Eq.13.11

νt ≤
k

3|λ1|
=
k

3

(
2

s̄ij s̄ij

)1/2

(13.12)

In 3D, Eq.13.7instead of Eq.13.5is used, and Eq.13.10is replaced by [31]

|λk| = k

(
2s̄ij s̄ij

3

)1/2

(13.13)

This is a simple modification of an eddy-viscosity model, andit ensure that the normal
stresses stay positive.

13.1 Two-component limit

Another realizability constraint is to require that whenv′2i approaches zero near walls,
it should do so smoothly. One way to ensure this is to require that the derivative ofv′2i
should go to zero asv′2i goes to zero, i.e.

v′2i → 0 ⇒ dv′2i
dt

→ 0 (13.14)
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whered/dt denotes the material derivative (think of Eq.13.14in Lagrangian coordi-
nates, i.e. we follow a fluid particle as it approaches the wall). Equation13.14requires
that whenv′2i approaches zero, the left side (and thus also the right side)of the trans-
port equation ofv′2i should also do so too. Since we are here concerned about the
pressure-strain term, we’ll take a look at how it behaves near walls whenv′2i → 0. This
is of some relevance in near-wall turbulence where the wall-normal stress goes to zero
faster than the wall-parallel ones: this state of turbulence is called the two-component
limit [ 33]. Neither the form ofΦij,2 in Eq.11.86nor Eq.11.85satisfy the requirement
thatΦ22,2 = 0 whenv′22 = 0 [20]. In Eq.11.86, for example,

Φ22,2 → γ
2

3
δijP

k 6= 0 (13.15)

Very complex forms ofΦij,2 have been proposed [34] [CL96] which include terms cu-
bic in v′iv

′
j . The CL96 model does satisfy the two-component limit. Another advantage

of the CL96 model is that it does not need any wall distances, which is valuable in
complex geometries.

The models of the slow pressure-strain in Eq.11.53(linear model) and Eq.11.59
(non-linear model) do also not satisfy the two-component limit. The Rotta model, for
example, gives

Φ22,1 → c1ρ
2ε

3
6= 0 (13.16)

The only way to ensure this is to makec1 → 0 when the wall is approached. A
convenient parameter proposed in [33] is A which is an expression ofA2 andA3 (the
second and third invariant ofaij , respectively), i.e.

A2 = aijaji, A3 = aijajkaki, A = 1 − 9

8
(A2 −A3) (13.17)

The parameterA = 0 in the two-component limit andA = 1 in isotropic turbulence.
ThusA is a suitable parameter to use when damping the constantc1 as the wall is
approached.
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14 Non-linear Eddy-viscosity Models

In traditional eddy-viscosity models the turbulent stressv′iv
′
j is formulated from the

Boussinesq assumption, i.e.

aij = −2νt
s̄ij

k

s̄ij =
1

2

(
∂v̄i

∂xj
+
∂v̄j

∂xi

) (14.1)

where the anisotropy tensor is defined as

aij ≡
v′iv

′
j

k
− 2

3
δij (14.2)

The relation between the stressv′iv
′
j and the velocity gradient in Eq.14.1 is, as can

be seen, linear. One way to make eddy-viscosity models more general is to include
non-linear terms of the strain-rate (i.e. the velocity gradient) [25]. A subset of the most
general form reads [35]

aij = −2cµτ s̄ij

+ c1τ
2

(
s̄iks̄kj −

1

3
s̄ℓks̄ℓkδij

)
+ c2τ

2
(
Ω̄iks̄kj − s̄ikΩ̄kj

)

+ c3τ
2

(
Ω̄ikΩ̄jk − 1

3
Ω̄ℓkΩ̄ℓkδij

)
+ c4τ

3
(
s̄iks̄kℓΩ̄ℓj − Ω̄iℓs̄ℓks̄kj

)

+ c5τ
3

(
Ω̄iℓΩ̄ℓms̄mj + s̄iℓΩ̄ℓmΩ̄mj −

2

3
Ω̄mnΩ̄nℓs̄ℓmδij

)

+ c6τ
3s̄kℓs̄kℓs̄ij + c7τ

3Ω̄kℓΩ̄kℓs̄ij

Ω̄ij =
1

2

(
∂v̄i

∂xj
− ∂v̄j

∂xi

)

(14.3)

whereτ is a turbulent time scale; for a non-lineark − ε modelτ = k/ε, and for a non-
lineark − ω modelτ = 1/ω. The tensor groups correspond to a subset of Eq.11.103:

Line 1: T 1
ij ,

Line 2: T 3
ij andT 2

ij

Line 3: T 4
ij andT 5

ij

Line 4: T 6
ij

Line 5: T 1
ij multiplied by the invariants̄skℓs̄kℓ andΩ̄kℓΩ̄kℓ

The expression in Eq.14.3 is cubic in ∂v̄i/∂xj . However, note that it is only
quadratic ins̄ij andΩ̄ij . This is due to Cayley-Hamilton theorem which states that a
tensor is only linearly independent up to quadratic terms, see p.96; this means that, for
example,̄s3ij = s̄iks̄kℓs̄ℓj can be expressed as a linear combination ofs̄2ij = s̄iks̄kj and
s̄ij .

aij is symmetric and its trace is zero; it is easily verified that the right side of
Eq. 14.3 also has these properties. Examples of non-linear models (sometimes also
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calledexplicitalgebraic Reynolds stress models, EARSM) in the literatureare the mod-
els presented in [36, 37, 35, 38]. EARSMs are very popular — especially the model in
[38] — in the aeronautical community where explicit time-marching solvers are used.
They are computationally cheap, more accurate than linear eddy-viscosity models and
they don’t give rise to any numerical instabilities as in implicit solvers (like SIMPLE).
In implicit solvers a large turbulent viscosity in the diffusion term of the momentum
equations is needed to stabilize the solution procedure.

Let’s take a closer look on Eq.14.3 in fully developed channel flow (̄v2 = v̄3 =
∂/∂x1 = ∂/∂x3 ≡ 0); we obtain

a11 =
1

12
τ2

(
∂v̄1
∂x2

)2

(c1 + 6c2 + c3)

a22 =
1

12
τ2

(
∂v̄1
∂x2

)2

(c1 − 6c2 + c3)

a33 = −1

6
τ2

(
∂v̄1
∂x2

)2

(c1 + c3)

a12 = −cµτ
∂v̄1
∂x2

+
1

4
τ3

(
∂v̄1
∂x2

)3

(−c5 + c6 + c7)

(14.4)

Using values on the constants as in [35], i.e c1 = −0.05, c2 = 0.11, c3 = 0.21,
c4 = −0.8 c5 = 0, c6 = −0.5 andc7 = 0.5 we get

a11 =
0.82

12
τ2

(
∂v̄1
∂x2

)2

⇒ v′21 =
2

3
k +

0.82

12
kτ2

(
∂v̄1
∂x2

)2

a22 =
−0.5

12
τ2

(
∂ū1

∂x2

)2

⇒ v′22 =
2

3
k − 0.5

12
kτ2

(
∂v̄1
∂x2

)2

a33 =
−0.16

12
τ2

(
∂v̄1
∂x2

)2

⇒ v′23 =
2

3
k − 0.16

12
kτ2

(
∂v̄1
∂x2

)2

a12 = −cµ
k

ε

∂v̄1
∂x2

(14.5)

We find that indeed the non-linear model gives anisotropic normal Reynolds stresses.
In Eqs.14.4 and14.5 we have assumed that the only strain is∂v̄1/∂x2. When

we discussed streamline curvature effects at p.113 we found that it is important to
investigate the effect of secondary strains such as∂v̄2/∂x1. Let’s write down Eq.14.3
for the strain∂v̄2/∂x1

a11 =
1

12
τ2

(
∂v̄2
∂x1

)2

(c1 − 6c2 + c3)

a22 =
1

12
τ2

(
∂v̄2
∂x1

)2

(c1 + 6c2 + c3)

a33 = −1

6
τ2

(
∂v̄2
∂x1

)2

(c1 + c3)

a12 = −1

4
τ3

(
∂v̄2
∂x1

)3

(c5 + c6 + c7)

(14.6)



14. Non-linear Eddy-viscosity Models 120

Inserting with values on the constants from [35] (see above) we obtain

a11 = −0.5

12
τ2

(
∂v̄2
∂x1

)2

a22 =
0.82

12
τ2

(
∂v̄2
∂x1

)2

a33 = −0.16

12
τ2

(
∂v̄2
∂x1

)2

, a12 = 0

(14.7)

As can be seen the coefficient fora22 is larger than that in Eq.14.5, and hence the
model is slightly more sensitive to the secondary strain∂v̄2/∂x1 than to the primary
one∂v̄1/∂x2. Thus, the non-linear models are able to account for streamline curvature,
but due to the choice of constants so thatc5 + c6 + c7 = 0 this effect is weak.
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15 The V2F Model

In the V2F model of [39, 40, 31] two additional equations, apart from thek andε-
equations, are solved: the wall-normal stressv′22 and a functionf . This is a model
which is aimed at improving modelling of wall effects on the turbulence.

Walls affect the fluctuations in the wall-normal direction,v′22 , in two ways. The wall
damping ofv′22 is felt by the turbulence fairly far from the wall (x+

2 . 200) through the
pressure field (i.e. the pressure-strain term) whereas the viscous damping takes place
within the viscous and buffer layer (x+

2 . 10). In usual eddy-viscosity models both
these effects are accounted for through damping functions.The damping ofv′22 is in
the RSM accounted for through the modelled pressure-straintermsΦ22,1w andΦ22,2w

(see Eqs.11.91and Eq.11.92). They go to zero far away from the wall (x+
2 & 10).

In the V2F model the problem of accounting for the wall damping of v′22 is simply
resolved by solving its transport equation. Thev′22 equation in boundary-layer form
reads (see Eq.9.16at p.77)

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
− 2v′2

∂p′

∂x2
− ρε22 (15.1)

in which the diffusion term has been modelled with an eddy-viscosity assumption, see
Eq. 11.43at p.92. Note that the production termP22 = 0 because in boundary-layer
approximation̄v2 ≪ v̄1 and∂/∂x1 ≪ ∂/∂x2. The model for the dissipationε22 is
taken as in RSM (see Eq.11.45)

εmodel
22 =

v′22
k
ε

Add and subtractεmodel
22 on the right side of Eq.15.1yields

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=

∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
− 2v′2

∂p′

∂x2
− ρε22 + ρ

v′22
k
ε− ρ

v′22
k
ε

(15.2)

In the V2F modelP is now defined as

P = −2

ρ
v′2
∂p′

∂x2
− ε22 +

v′22
k
ε (15.3)

so that Eq.15.2can be written as

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
+ ρP − ρ

v′22
k
ε (15.4)

P is the source term in thev′22 -equation above, and it includes the velocity-pressure
gradient term and the difference between the exact and the modelled dissipation. Note
that this term is commonly split into the pressure-strain term and a diffusion term as

v′2
∂p′

∂x2
=
∂v′2p

′

∂x2
− p′

∂v′2
∂x2



15. The V2F Model 122

Physically, the main agent for generating wall-normal stress is indeed the pressure-
strain term via re-distribution, see example in Section11.12.

A new variablef = P/k is defined and a relaxation equation is formulated forf
as

L2 ∂
2f

∂x2
2

− f = −Φ22

k
− 1

T

(
v′22
k

− 2

3

)

T = max

{
k

ε
, CT

(ν
ε

)1/2
}

Φ22

k
=
C1

T

(
2

3
− v′22

k

)
+ C2

νt

k

(
∂v̄1
∂x2

)2

L = CL max

{
k3/2

ε
, Cη

(
ν3

ε

)1/4
}

(15.5)

whereΦ22 is the IP model of the pressure-strain term, see Eqs.11.53and11.86, the
first term being the slow term, and the second the rapid term. The constants are given
the following values:cµ = 0.23, CT = 6, ce1 = 1.44, cε2 = 1.9, σk = 0.9, σε =
1.3, C1 = 1.3, C2 = 0.3, CL = 0.2, Cη = 90.

The boundary condition forf is obtained fromv′22 equation. Near the wall, thev′22
equation reads

0 = ν
∂2v′22
∂x2

2

+ fk − v′22
k
ε (15.6)

The first and the last term behave asO(x2
2) asx2 → 0 because Taylor analysis gives

v′22 = O(x4
2), ε = O(x0

2) andk = O(x2
2), see [5]. Furthermore,ε = 2νk/x2

2 [5] ;
using this expression to replacek in Eq.15.6gives

0 =
∂2v′22
∂x2

2

+
fεx2

2

2ν2
− 2v′22

x2
2

(15.7)

Assuming thatf andε are constant very close to the wall, this equation turns intoan
ordinary second-order differential equation with the solution

v′22 = Ax2
2 +

B

x2
− εf

x4
2

20ν2

Sincev′22 = O(x4
2) asx2 → 0, both constants must be zero, i.e.A = B = 0, so we get

f = −20ν2

ε

v′22
x4

2

(15.8)

For more details, see [41].
Above we have derived thev′22 equation in boundary layer form assuming thatx2

is the wall-normal coordinate. In general, three-dimensional flow it reads

∂ρv̄jv
2

∂xj
=

∂

∂xj

[
(µ+ µt)

∂v2

∂xj

]
+ ρfk − ρ

v2

k
ε (15.9)

In the V2F model a transport equation for the normal stress normal to walls is solved
for. If the wall lies in thex1 − x3 plane, thenv2 = v′22 . However, if a wall lies in
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Figure 15.1: Illustration of Eq.15.12

thex2 − x3 plane, for example, this means that the transport equation for v′22 is turned
into an equation forv′21 , i.e. v2 = v′21 . This is done automatically since in the general
formulation in Eq.15.9, ∂v̄1/∂x2 in the expression forΦ22 is replaced byP k. If the
wall lies in thex2−x3 plane the largest velocity gradient will be∂v̄2/∂x1 or∂v̄3/∂x1.

Why does the right side of Eq.15.5 has the form it has? Far from the wall,
the source term in thev′22 -equation simplifies toΦ22 plus isotropic dissipation (see
Eq. 15.1). This is what happens, because far from the wall when∂2f/∂x2

2 ≃ 0, and
Eq.15.5yields (T = k/ε)

kf ≡ P → Φ22 + ε(v′22 /k − 2/3) (15.10)

When this expression is inserted in Eq.15.4we get

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
+ ρΦ22 −

2

3
ρε (15.11)

which is the usual form of the modelledv′22 -equation with isotropic dissipation. Thus
thef equation acts so as to letf go from the value of its source term to its (negative)
wall value (see Eq.15.8) over lengthscaleL. This is how the reduction of the source
termP in Eq.15.4is achieved as the wall is approached. The behavior of the equation
for f (Eq.15.5) for different right sides is illustrated in the Fig.15.1where the equation

L2 ∂
2f

∂x2
2

− f + S = 0 (15.12)

has been solved withf = 0 at the wall and with differentL andS.
As can be seen,f is, as required, reduced as the wall is approached. Furthermore,

f approaches the value of the source term asx2 > L. The influence of the lengthscale
L is nicely illustrated: the largerL, the further away from the wall doesf go to its
far-field value.

In the V2F model the turbulent viscosity is computed from

νt = Cµv′22 T (15.13)
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The k andε-equations are also solved (without damping functions). For conve-
nience, the boundary conditions are given again

k = 0, v′22 = 0

ε = 2νk/x2
2

f = −20ν2v′22
εx4

2

(15.14)

The boundary condition forf makes the equation system numerically unstable.
One way to get around that problem is to solve both thek, ε andv′22 , f equations
coupled [41]. An alternative is to use theζ − f model [42] which is more stable. In
this model they solve for the ratiov′22 /k instead of forv′22 which gives a simpler wall
boundary condition forf , namelyf = 0.

15.1 Modified V2F model

In [43] they proposed a modification of the V2F model allowing the simple explicit
boundary conditionf = 0 at walls. They introduced a new variable

f∗ = f − 5εv2/k2

and they neglected the term

−5L2 ∂2

∂xj∂xj

(
εv2

k2

)

The resultingv′22 andf∗-equation read [43]

∂v̄jv
2

∂xj
=

∂

∂xj

[
(ν + νt)

∂v2

∂xj

]
+ kf∗ − 6

v2

k
ε (15.15)

−L2 ∂2f∗

∂xj∂xj
+ f∗ = − 1

T

[
(C1 − 6)

v2

k
− 2

3
(C1 − 1)

]
+ C2

P k

k

P k = νt

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj

T = max

{
k

ε
, 6
(ν
ε

)1/2
}

L = CL max

{
k3/2

ε
, Cη

(
ν3

ε

)1/4
}

(15.16)

Boundary conditions at the walls are

k = 0, v2 = 0

ε = 2νk/x2
2

f∗ = 0

This modified model is numerically much more stable. Note that the modified model
is identical to the original model far from the wall.
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15.2 Realizable V2F model

The realizable condition for stagnation flow (see p.115) is used also for the V2F model,
and they read [43]

T = min

[
k

ε
,

0.6k
√

6Cµv2 (s̄ij s̄ij)
1/2

]

L = min

[
k3/2

ε
,

k3/2

√
6Cµv2 (2s̄ij s̄ij)

1/2

] (15.17)

These realizable conditions have been further investigated by Sveningsson [41, 44, 45,
46, 47], and it was found that the limitation onT is indeed important, whereas that for
L is not. Furthermore, it was found that it is important to impose the limitation onT
in a consistent manner. For instance, if the limit is used in thef equation, it must for
consistency also be used forε/k in Eq.15.15.

15.3 To ensure thatv2 ≤ 2k/3 [1]

In the V2F model,v2 denotes the generic wall-normal stress. Thus it should be the
smallest one. This is not ensured in the V2F models presentedabove. Below the
simple modification proposed by [1] is presented.

The source termkf in thev2-equation (Eq.15.15) includes the modelled velocity-
pressure gradient term which is dampened near walls asf goes to zero. Sincev2

represents the wall-normal normal stress, it should be the smallest normal stress, i.e.
v′22 ≤ v′21 andv′22 ≤ v′23 , and thusv′22 should be smaller than or equal to23k. In
the homogeneous region far away from the wall, the Laplace term is assumed to be
negligible i.e.∂2f/∂xj∂xj → 0. Then Eq.15.16reduces tof = right side.

It turns out that in the region far away from the wall, the Laplace term is not negli-
gible, and as a consequencev2 gets too large so thatv2 > 2

3k. A simple modification
is to use the right side of Eq.15.16as an upper bound on the source termkf in the
v2-equation, i.e.

v2
source = min

{
kf,− ε

k

[
(C1 − 6)v2 − 2k

3
(C1 − 1)

]
+ C2P

k

}
(15.18)

This modification ensures thatv2 ≤ 2k/3. For more details, see [1].
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Figure 16.1: Flow around an airfoil. Pressure contours. Red: high pressure; blue: low
pressure

16 The SST Model

The SST (Shear Stress Transport) model of [48] is an eddy-viscosity model which
includes two main novelties:

1. It is combination of ak−ω model (in the inner boundary layer) andk − εmodel
(in the outer region of the boundary layer as well as outside of it);

2. A limitation of the shear stress in adverse pressure gradient regions.

The k − ε model has two main weaknesses: it over-predicts the shear stress in
adverse pressure gradient flows because of too large length scale (due to too low dis-
sipation) and it requires near-wall modification (i.e. low-Re number damping func-
tions/terms)

One example of adverse pressure gradient is the flow along thesurface of an airfoil,
see Fig.16.1. Consider the upper surface (suction side). Starting from the leading edge,
the pressure decreases because the velocity increases. At the crest (atx/c ≃ 0.15)
the pressure reaches its minimum and increases further downstream as the velocity
decreases. This region is called theadverse pressure gradient(APG) region.

The k − ω model is better than thek − ε model at predicting adverse pressure
gradient flow and the standard model of [49] does not use any damping functions.
However, the disadvantage of the standardk − ω model is that it is dependent on the
free-stream value ofω [50].

In order to improve both thek − ε and thek − ω model, it was suggested in [48]
to combine the two models. Before doing this, it is convenient to transform thek − ε
model into ak − ω model using the relationω = ε/(β∗k), whereβ∗ = cµ. The left-
hand side of theω equation will consist of the convection term,dω/dt, which denotes
the material derivative assuming steady flow, see Eq.2.23. Let us express the left-
hand side of theω equation as a combination of the left-hand sides of theε and thek
equations by using the chain rule, i.e.

dω

dt
=

d

dt

(
ε

β∗k

)
=

1

β∗k

dε

dt
+

ε

β∗

d(1/k)

dt

=
1

β∗k

dε

dt
− ε

β∗k2

dk

dt
=

1

β∗k

dε

dt
− ω

k

dk

dt

(16.1)
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Now we have transformed the left side of theω equation. The right side should be
transformed in the same manner. For example, the productionof theω equation will
consist of two terms, one term from theε equation

1

β∗k
Pε (the first term at the right side in Eq.16.1) (16.2)

and one from thek equation

−ω
k
P k (the second term at the right side in Eq.16.1) (16.3)

In the same way we transform the entire right side inserting the modelled equations for
k andε so that

Dω

Dt
=

[
1

β∗k
Pε −

ω

k
P k

]

Production, Pω

−
[

1

β∗k
Ψε −

ω

k
Ψk

]

Destruction, Ψω

+

[
1

β∗k
DT

ε − ω

k
DT

k

]

Turbulent diffusion, DT
ω

+

[
ν

β∗k

∂2ε

∂x2
j

− νω

k

∂2k

∂x2
j

]

Viscous diffusion, Dν
ω

(16.4)

• Production term

Pω =
1

β∗k
Pε −

ω

k
P k = Cε1

ε

β∗k2
P k − ω

k
P k

= (Cε1 − 1)
ω

k
P k

(16.5)

• Destruction term

Ψω =
1

β∗k
Ψε −

ω

k
Ψk = Cε2

ε2

k
− ω

k
ε

= (Cε2 − 1)β∗ω2

(16.6)

• Viscous diffusion term

Dν
ω =

ν

β∗k

∂2ε

∂x2
j

− νω

k

∂2k

∂x2
j

=
ν

k

∂2ωk

∂x2
j

− νω

k

∂2k

∂x2
j

=
ν

k

[
∂

∂xj

(
ω
∂k

∂xj
+ k

∂ω

∂xj

)]
− ν

ω

k

∂2k

∂x2
j

=
ν

k

[
∂ω

∂xj

∂k

∂xj
+ ω

∂2k

∂x2
j

+
∂k

∂xj

∂ω

∂xj
+ k

∂2ω

∂x2
j

]
− ν

ω

k

∂2k

∂x2
j

=
2ν

k

∂ω

∂xj

∂k

∂xj
+

∂

∂xj

(
ν
∂ω

∂xj

)

(16.7)

The turbulent diffusion term is obtained as (the derivationis found in [51] which
can be downloaded fromwww.tfd.chalmers.se/˜lada )

DT
ω =

2νt

σεk

∂k

∂xj

∂ω

∂xj
+
ω

k

(
νt

σε
− νt

σk

)
∂2k

∂x2
j

+

+
ω

k

(
1

σε
− 1

σk

)
∂νt

∂xj

∂k

∂xj
+

∂

∂xj

(
νt

σε

∂ω

∂xj

) (16.8)
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In the standardk − ε model we haveσk = 1 andσε = 1.3. If we assume thatσk = σε

in the second and third term of the right-hand side, we can considerably simplify the
turbulence diffusion so that

DT
ω =

2νt

σεk

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

(
νt

σε

∂ω

∂xj

)
(16.9)

We can now finally write theε equation formulated as an equation forω

∂

∂xj
(v̄jω) =

∂

∂xj

[(
ν +

νt

σε

)
∂ω

∂xj

]
+ α

ω

k
P k − βω2

+
2

k

(
ν +

νt

σε

)
∂k

∂xi

∂ω

∂xi

α = Cε1 − 1 = 0.44, β = (Cε2 − 1)β∗ = 0.0828

(16.10)

Since thek − ε model will be used for the outer part of the boundary layer, the viscous
part of the cross-diffusion term (second line) is usually neglected (the viscous term are
negligible in the outer region).

In the SST model the coefficients are smoothly switched fromk − ω values in the
inner region of the boundary layer tok − ε values in the outer region. Functions of the
form

F1 = tanh(ξ4), ξ = min

[
max

{ √
k

β∗ωy
,
500ν

y2ω

}
,

4σω2k

CDωy2

]
(16.11)

are used.F1 = 1 in the near-wall region andF1 = 0 in the outer region. Theβ-
coefficient, for example, is computed as

βSST = F1βk−ω + (1 − F1)βk−ε (16.12)

whereβk−ω = 0.075 andβk−ε = 0.0828. Since the standardk − ω model does
not include any cross-diffusion term, the last term in theω equation (second line in
Eq.16.10) should only be active in thek − ε region; hence it is multiplied by(1−F1).

At p. 126 it was mentioned that thek − ω model is better than thek − ε model
in predicting adverse pressure-gradient flows because it predicts a smaller shear stress.
Still, the predicted shear stress is too large. This brings us to the second modification
(see p.126). When introducing this second modification, the author in [48] noted that
a model (the Johnson - King model [JK]) which is based on transport of the main shear
stressv′1v

′
2, predicts adverse pressure gradient flows much better than thek−ω model.

In the JK model, thev′1v
′
2 transport equation is built on Bradshaw’s assumption [52]

−v′1v′2 = a1k (16.13)

wherea1 = c
1/2
µ = β∗1/2. In boundary layer flow, the Boussinesq assumption can be

written as

−v′1v′2 =
k

ω
νt,k−ω

∂v̄1
∂x2

=
cµk

2

ε
νt,k−ε

∂v̄1
∂x2

= c1/2
µ k

[
cµk

2

ε2

(
∂v̄1
∂x2

)2
]1/2

= c1/2
µ k

(
P k

ε

)1/2

(16.14)

It is found from experiments that in boundary layers of adverse pressure gradient flows
the production is much larger than the dissipation (P k ≫ ε) and−v′1v′2 ≃ c

1/2
µ k, which
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explains why Eq.16.14over-predicts the shear stress and works poorly in this typeof
flow. To reduce|v′1v′2| in Eq.16.14in adverse pressure gradient flow, [48] proposed to
re-define the turbulent eddy viscosity including the expression in Eq.16.13. We have
two expressions for the turbulent viscosity

νt =
−v′1v′2

Ω̄
=
c
1/2
µ k

Ω̄
(16.15a)

νt =
k

ω
=
c
1/2
µ k

c
1/2
µ ω

(16.15b)

whereΩ̄ is the absolute vorticity (in boundary layer flow̄Ω = ∂v̄1/∂x2); in (a) the
Boussinesq assumption together with Eq.16.13were used and (b) is taken from the
k − ω model. We want (a) to apply only in the boundary layer and hence we multiply
it with a functionF2 (similar toF1) which is 1 near walls and zero elsewhere. Then we
take the minimum of (a) and (b) so that

νt =
c
1/2
µ k

max(c
1/2
µ ω, F2Ω̄)

(16.16)

When the production is large (i.e. when̄Ω is large), Eq.16.16reducesνt according to
the Johnson - King model, i.e. Eq.16.15a. It is important to ensure that this limitation
is not active in usual boundary layer flows whereP k ≃ ε. It can be seen thatνt is
reduced only in regions whereP k > ε, because ifP k < ε thenΩ̄ < c

1/2
µ ω since

Ω̄2 =
1

νt
νtΩ̄

2 =
ω

k
P k <

ωε

k
= cµω

2 (16.17)

Hence, in regions whereP k < ε, Eq.16.16returns toνt = k/ω as it should.
To summarize the SST modification:

• the second part,c1/2
µ k/Ω in Eq.16.16(which mimics the Johnson-King model),

should be used in APG flow

• the first part,k/ω in Eq. 16.16 (which corresponds to the usual Boussinesq
model), should be in the remaining of the flow. Equation16.17shows that (it
is likely that) the second part is only used in APG regions andnot elsewhere.

Today, the SST model has been slightly further developed. Two modifications have
been introduced [53]. The first modification is that the absolute vorticityΩ̄ in Eq.16.16
has been replaced by|s̄| = (2s̄ij s̄ij)

1/2 which comes from the production term using
the Boussinesq assumption (see Eq.11.35), i.e.

|s̄|2 =

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj
= 2s̄ij(s̄ij + Ω̄ij) = 2s̄ij s̄ij

Ω̄ij =
1

2

(
∂v̄i

∂xj
− ∂v̄j

∂xi

) (16.18)

wheres̄ijΩ̄ij = 0 becausēsij is symmetric and̄Ωij is anti-symmetric. Equation16.16
with |s̄| limits νt in stagnation regions similar to Eq.13.12. The second modification
in the SST model is that the production term in the new SST model is limited by 10ε,
i.e.

Pk,new = min
(
P k, 10ε

)
(16.19)

The final form of the SST model is given in Eq.19.4at p.158.
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Figure 17.1: Filtering the velocity.

17 Large Eddy Simulations

17.1 Time averaging and filtering

In CFD we time average our equations to get the equations in steadyform. This is
called Reynolds time averaging:

〈Φ〉 =
1

2T

∫ T

−T

Φ(t)dt, Φ = 〈Φ〉 + Φ′ (17.1)

(note that we use the notation〈.〉 for time averaging). In LES we filter(volume average)
the equations. In 1D we get (see Fig.17.1)

Φ̄(x, t) =
1

∆x

∫ x+0.5∆x

x−0.5∆x

Φ(ξ, t)dξ

Φ = Φ̄ + Φ′′

Since in LES we do not average in time, the filtered variables are functions of space
andtime. The equations for the filtered variables have the same form as Navier-Stokes,
i.e.

∂v̄i

∂t
+

∂

∂xj
(v̄iv̄j) = −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i

∂xj∂xj
− ∂τij
∂xj

∂v̄i

∂xi
= 0

(17.2)

where the subgrid stresses are given by

τij = vivj − v̄iv̄j (17.3)

Contrary to Reynolds time averaging where〈v′i〉 = 0, we have here

v′′i 6= 0

v̄i 6= v̄i
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This is true for box filters. Note that for the spectral cut-off filter v̄i = v̄i, see
p. 133. However, in finite volume methods, box filters are always used. In this course
we use box filters, if not otherwise stated.

Let’s look at the filtering of Eq.17.2in more detail. The pressure gradient term, for
example, reads

∂p

∂xi
=

1

V

∫

V

∂p

∂xi
dV

Now we want to move the derivative out of the integral. When isthat allowed? The
answer is “if the integration region is not a function ofxi”, i.e. if V is constant. In finite
volume methods, the filtering volume,V , is (almost always) identical to the control
volume. In general, the size of the control volume varies in space. Fortunately, it can
be shown that ifV is a function ofxi, the error we do when moving the derivative out
of the integral is proportional toV 2 [54], i.e. it is an error of second order. Since this
is the order of accuracy of our finite volume method anyway, wecan accept this error.
Now let’s move the derivative out of the integral, i.e.

∂p

∂xi
=

∂

∂xi

(
1

V

∫

V

pdV

)
+ O

(
V 2
)

=
∂p̄

∂xi
+ O

(
V 2
)

All linear terms are treated in the same way.
Now we take a look at the non-linear term in Eq.17.2, i.e. the convective term.

First we filter the term and move the derivative out of the integral, i.e.

∂vivj

∂xj
=

∂

∂xj

(
1

V

∫

V

vivjdV

)
+ O

(
V 2
)

=
∂

∂xj
(vivj) + O

(
V 2
)

There is still a problem with the formulation of this term: itincludes an integral of a
product, i.e.vivj ; we want it to appear like a product of integrals, i.e.v̄iv̄j . To achieve
this we simple add the term we want (v̄iv̄j) and subtract the one we don’t want (vivj )
on both the right and left side. This is how we end up with the convective term and the
SGS term in Eq.17.2.

17.2 Differences between time-averaging (RANS) and space filter-
ing (LES)

In RANS, if a variable is time averaged twice (〈〈v〉〉), it is the same as time averaging
once (〈v〉). This is because〈v〉 is not dependent on time. From Eq.17.1we get

〈〈v〉〉 =
1

2T

∫ T

−T

〈v〉dt =
1

2T
〈v〉2T = 〈v〉

This is obvious if the flow is steady, i.e.∂〈v〉/∂t = 0. If the flow is unsteady, we must
assume a separation in time scales so that the variation of〈v〉 during the time interval
T is negligible, i.e.∂/∂t≪ 1/T . In practice this requirement is rarely satisfied.

In LES, v̄ 6= v̄ (and sincev = v̄ + v′′ we getv′′ 6= 0).
Let’s filter v̄I once more (filter size∆x, see Fig.17.2. For simplicity we do it in

1D. (Note that subscriptI denotes node number.)

v̄I =
1

∆x

∫ ∆x/2

−∆x/2

v̄(ξ)dξ =
1

∆x

(∫ 0

−∆x/2

v̄(ξ)dξ +

∫ ∆x/2

0

v̄(ξ)dξ

)
=

=
1

∆x

(
∆x

2
v̄A +

∆x

2
v̄B

)
.



17.3. Resolved & SGS scales 132

I I + 1I − 1

x

xx

A B

∆x

Figure 17.2: Box filter illustrated for a control volume.
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Figure 17.3: Spectrum of velocity.

The trapezoidal rule, which is second-order accurate, was used to estimate the integrals.
v̄ at locationsA andB (see Fig.17.2) is estimated by linear interpolation, which gives

v̄I =
1

2

[(
1

4
v̄I−1 +

3

4
v̄I

)
+

(
3

4
v̄I +

1

4
v̄I+1

)]

=
1

8
(v̄I−1 + 6v̄I + v̄I+1) 6= v̄I

(17.4)

17.3 Resolved & SGS scales

The basic idea in LES is to resolve (large) grid scales (GS), and to model (small)
subgrid-scales (SGS).

The limit (cut-off) between GS and SGS is supposed to take place in the inertial
subrange (II), see Fig.17.3.
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I: large, energy-containing scales
II: inertial subrange (Kolmogorov−5/3-range)
III: dissipation subrange

17.4 The box-filter and the cut-off filter

The filtering is formally defined as (1D)

v̄(x) =

∫ ∞

−∞

GB(r)v(x − r)dr

GB(r) =

{
1/∆, if r ≤ ∆/2
0, if r > ∆
∫ ∞

−∞

GB(r)dr = 1

(17.5)

It is often convenient to study the filtering process in the spectral space. The filter in
spectral space is particular simple: we simply set the contribution from wavenumbers
larger than cut-off to zero. Hence the cut-off filter filters out all scales with wavenumber
larger than the cut-off wavenumberκc = π/∆. It is defined as

ĜC(κ) =

{
1/∆ if κ ≤ κc

0 otherwise
(17.6)

The Fourier transform is defined as (see SectionC)

v̂(κ) =
1

2π

∫ ∞

0

v(r) exp(−ıκr)dr (17.7)

and its inverse

v(r) =

∫ ∞

0

v̂(κ) exp(ıκr)dκ (17.8)

whereκ denotes the wavenumber andı =
√
−1. Note that it is physically mean-

ingful to use Fourier transforms only in a homogeneous coordinate direction; in non-
homogeneous directions the Fourier coefficients – which arenot a function of space
– have no meaning. Using the convolution theorem (saying that the integrated prod-
uct of two functions is equal to the product of their Fourier transforms) the filtering in
Eq.17.5is conveniently written

v̂(κ) = ̂̄v(κ) =

∫ ∞

0

v̄(η) exp(−ıκη)dη

=

∫ ∞

0

∫ ∞

0

exp(−ıκη)GC(ρ)v(η − ρ)dρdη

=

∫ ∞

0

∫ ∞

0

exp(−ıκρ) exp(−ıκ(η − ρ))GC(ρ)v(η − ρ)dρdη

=

∫ ∞

0

∫ ∞

0

exp(−ıκρ) exp(−ıκξ)GC(ρ)v(ξ)dξdρ = ĜC(κ)v̂(κ)

(17.9)

If we filter twice with the cut-off filter we get (see Eq.17.9)

v̂ = ĜCĜv̂ = ĜC v̂ = v̂ (17.10)
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Figure 17.4: Physical and wavenumber space. Sinus curves with different wavenum-
bers illustrated in physical space.

using Eqs.17.9and17.6. Thus, contrary to the box-filter (see Eq.17.4), nothing hap-
pens when we filter twice in spectral space. The box filter is sharp in physical space
but not in wavenumber space; for the cut-off filter it is vice versa.

In finite volume methods box filtering is always used. Furthermoreimplicit filtering
is employed. This means that the filtering is the same as the discretization (=integration
over the control volume which is equal to the filter volume, see Eq.17.14).

17.5 Highest resolved wavenumbers

Any function can be expressed as a Fourier series such as Eq.17.8(see Section5.3,
Eq.C.28and SectionD) provided that the coordinate direction is homogeneous. Let’s
choose the fluctuating velocity in thex1 direction, i.e.v′1, and let it be a function ofx1.
We require it to be homogeneous, i.e. its RMS,v1,rms, does not vary withx1. Now we
ask the question: on a given grid, what is the highest wavenumber that is resolved? Or,
in other words, what is the cut-off wavenumber?

The wave shown in Fig.17.4a reads

v′1 = 0.25 [1 + 0.8 sin(κ1x1)] , κ1 = 2π/L (17.11)

and it covers two cells (∆x1/L = 0.5). If we define this as the cut-off wavenumber we
getκ1,cL = κ1,c2∆x1 = 2π so that

κ1,c = 2π/(2∆x1) = π/∆x1 (17.12)

It is of course questionable ifv′1 in Fig. 17.4a really is resolved since the sinus wave
covers only two cells. However this is the usual definition ofthe cut-off wavenumber.

If we require that the highest resolved wavenumber should becovered by four cells
(∆x1/L = 0.25), as in Fig.17.4b, then the cut-off wavenumber is given byκ1,c =
2π/(4∆x1) = π/(2∆x1).

17.6 Subgrid model

We need a subgrid model to model the turbulent scales which cannot be resolved by
the grid and the discretization scheme.

The simplest model is the Smagorinsky model [55]:

τij −
1

3
δijτkk = −νsgs

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
= −2νsgss̄ij

νsgs = (CS∆)
2√

2s̄ij s̄ij ≡ (CS∆)
2 |s̄|

(17.13)
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and the filter-width is taken as the local grid size

∆ = (∆VIJK)
1/3 (17.14)

The scalar|s̄| is the norm (i.e. the “length”) of∂v̄i/∂xj + ∂v̄j/∂xi in the Boussinesq
assumption, see Eq.16.18.

Near the wall, the SGS viscosity becomes quite large since the velocity gradient is
very large at the wall. However, because the SGS turbulent fluctuations near a wall go
to zero, so must the SGS viscosity. A damping functionfµ is added to ensure this

fµ = 1 − exp(−x+
2 /26) (17.15)

A more convenient way to dampen the SGS viscosity near the wall is simply to use
the RANS length scale as an upper limit, i.e.

∆ = min
{

(∆VIJK)
1/3

, κn
}

(17.16)

wheren is the distance to the nearest wall.
Disadvantage of Smagorinsky model: the “constant”CS is not constant, but it is

flow-dependent. It is found to vary in the range fromCS = 0.065 [56] to CS =
0.25 [57].

17.7 Smagorinsky model vs. mixing-length model

The eddy viscosity according to the mixing length theory reads in boundary-layer
flow [58, 59]

νt = ℓ2
∣∣∣∣
∂v̄1
∂x2

∣∣∣∣ .

Generalized to three dimensions, we have

νt = ℓ2
[(

∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj

]1/2

= ℓ2 (2s̄ij s̄ij)
1/2 ≡ ℓ2|s̄|.

In the Smagorinsky model the SGS turbulent length scale corresponds toℓ = CS∆ so
that

νsgs = (CS∆)2|s̄|
which is the same as Eq.17.13

17.8 Energy path

The path of kinetic energy is illustrated in Fig.17.5. At cut-off, SGS kinetic energy is
dissipated

εsgs = −τij s̄ij = 2νsgss̄ij s̄ij (17.17)

from the resolved turbulence. This energy is transferred tothe SGS scales and act as
production term (Pksgs ) in the ksgs equation. The SGS kinetic energy is then trans-
ferred to higher wave-numbers via the cascade effect and thekinetic energy is finally
dissipated (ε=physical dissipation) in the dissipation range. It shouldbe mentioned
that this process is an idealized one. We assume that ALL dissipation takes place in the
dissipation range. This is a good approximation, but in reality dissipation (i.e. transfer
of energy from kinetic energy to internal energy, i.e. increase in temperature) takes
place at all wave numbers, and the dissipation increases forincreasing wave number.
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Figure 17.5: Energy spectrum.

17.9 SGS kinetic energy

The SGS kinetic energyksgs can be estimated from the Kolmogorov−5/3 law. The
total turbulent kinetic energy is obtained from the energy spectrum as

k =

∫ ∞

0

E(κ)dκ

Changing the lower integration limit to wavenumbers largerthan cut-off (i.e.κc) gives
the SGS kinetic energy

ksgs =

∫ ∞

κc

E(κ)dκ (17.18)

The Kolmogorov−5/3 law now gives

ksgs =

∫ ∞

κc

Cκ−5/3ε2/3dκ

(Note that for these high wavenumbers, the Kolmogorov spectrum ought to be replaced
by the Kolmogorov-Pau spectrum in which an exponential decaying function is added
for high wavenumbers [58, Chapter 3]). Carrying out the integration and replacingκc

with π/∆ we get

ksgs =
3

2
C

(
∆ε

π

)2/3

(17.19)

In the same way asksgs can be computed from Eq.17.18, the resolved turbulent kinetic
energy,kres, is obtained from

kres =

∫ κc

0

E(κ)dκ

17.10 LES vs. RANS

LES can handle many flows which RANS (Reynolds Averaged Navier Stokes) cannot;
the reason is that in LES large, turbulent scales are resolved. Examples are:
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Figure 17.6: Energy spectrum with grid and test filter.

o Flows with large separation

o Bluff-body flows (e.g. flow around a car); the wake often includes large, un-
steady, turbulent structures

o Transition

• In RANS all turbulent scales are modelled⇒ inaccurate

• In LES only small, isotropic turbulent scales are modelled⇒ accurate

• LES isverymuch more expensive than RANS.

17.11 The dynamic model

In this model of [60] the constantC is not arbitrarily chosen (or optimized), but it is
computed.

If we apply two filters to Navier-Stokes [grid filter and a second, coarser filter (test

filter, denoted by︷︷. )] where
︷︷
∆ = 2∆ we get

∂
︷︷
v̄ i

∂t
+

∂

∂xj

(︷︷
v̄ i

︷︷
v̄ j

)
= −1

ρ

∂
︷︷
p̄

∂xi
+ ν

∂2
︷︷
v̄ i

∂xj∂xj
− ∂Tij

∂xj
(17.20)

where the subgrid stresses on the test level now are given by

Tij =
︷ ︷
vivj −

︷︷
v̄ i

︷︷
v̄ j (17.21)

∂
︷︷
v̄ i

∂t
+

∂

∂xj

(︷︷
v̄ i

︷︷
v̄ j

)
= −1

ρ

∂
︷︷
p̄

∂xi
+ ν

∂2
︷︷
v̄ i

∂xj∂xj
− ∂

︷︷
τ ij

∂xj

− ∂

∂xj

(︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j

) (17.22)



17.12. The test filter 138
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Figure 17.7: Control volume for grid and test filter.

Identification of Eqs.17.20and17.22gives

︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j +

︷︷
τ ij = Tij (17.23)

ThedynamicLeonard stresses are now defined as

Lij ≡
︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j = Tij −

︷︷
τ ij (17.24)

The trace of this relation reads

Lii ≡ Tii −
︷︷
τ ii

With this expression we can re-formulate Eq.17.24as

Lij −
1

3
δijLkk = Tij −

1

3
δijTkk −

(︷︷
τ ij −

1

3
δij
︷︷
τ kk

)
(17.25)

In the energy spectrum, the test filter is located at lower wave number than the grid
filter, see Fig.17.6.

17.12 The test filter

The test filter is twice the size of the grid filter, i.e.
︷︷
∆ = 2∆.

The test-filtered variables are computed by integration over the test filter. For ex-

ample, the 1D example in Fig.17.7
︷︷
v̄ is computed as (

︷ ︷
∆x = 2∆x)

︷︷
v̄ =

1

2∆x

∫ E

W

v̄dx =
1

2∆x

(∫ P

W

v̄dx+

∫ E

P

v̄dx

)

=
1

2∆x
(v̄w∆x+ v̄e∆x) =

1

2

(
v̄W + v̄P

2
+
v̄P + v̄E

2

)

=
1

4
(v̄W + 2v̄P + v̄E)

(17.26)

For 3D, filtering at the test level is carried out in the same way by integrating over
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Figure 17.8: A 2D test filter control volume.

the test cell assuming linear variation of the variables [61], i.e. (see Fig.17.8)

︷︷
v̄ I,J,K =

1

8
(v̄I−1/2,J−1/2,K−1/2 + v̄I+1/2,J−1/2,K−1/2

+v̄I−1/2,J+1/2,K−1/2 + v̄I+1/2,J+1/2,K−1/2

+v̄I−1/2,J−1/2,K+1/2 + v̄I+1/2,J−1/2,K+1/2

+v̄I−1/2,J+1/2,K+1/2 + v̄I+1/2,J+1/2,K+1/2)

(17.27)

17.13 Stresses on grid, test and intermediate level

The stresses on the grid level, test level and intermediate level (dynamic Leonard
stresses) have the form

τij = vivj − v̄iv̄j stresseswith ℓ < ∆

Tij =
︷ ︷
vivj −

︷︷
v̄ i

︷︷
v̄ j stresseswith ℓ <

︷︷
∆

Lij = Tij −
︷︷
τ ij stresseswith ∆ < ℓ <

︷︷
∆

Thus the dynamic Leonard stresses represent the stresses with lengthscale,ℓ, in the

range between∆ and
︷︷
∆.

Assume now that the same functional form for the subgrid stresses that is used at the
grid level (τij ) also can be used at the test filter level (Tij). If we use the Smagorinsky
model we get

τij −
1

3
δijτkk = −2C∆2|s̄|s̄ij (17.28)

Tij −
1

3
δijTkk = −2C

︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij (17.29)

where
︷︷
s̄ ij =

1

2



∂
︷︷
v̄ i

∂xj
+
∂
︷︷
v̄ j

∂xi



 , |
︷︷
s̄ | =

(
2
︷︷
s̄ ij

︷︷
s̄ ij

)1/2
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Note thatC in Eq. 17.28is not squared (cf. the Smagorinsky model, Eq.17.13at
p.134). Hence,C should be compared withC2

S . Applying the test filter to Eq.17.28
(assuming thatC varies slowly), substituting this equation and Eq.17.29into Eq.17.25
gives

Lij −
1

3
δijLkk = −2C

(
︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij − ∆2

︷ ︷
|s̄|s̄ij

)
(17.30)

Note that the “constant”C really is a function of both space and time, i.e.C =
C(xi, t).

Equation17.30is a tensor equation, and we have five (s̄ij is symmetric and trace-
less) equations forC. Lilly [ 62] suggested to satisfy Eq.17.30in a least-square sense.
Let us define the error as the difference between the left-hand side and the right-hand
side of Eq.17.30raised to the power of two, i.e.

Q =

(
Lij −

1

3
δijLkk + 2CMij

)2

(17.31a)

Mij =

(
︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij − ∆2

︷ ︷
|s̄|s̄ij

)
(17.31b)

The error,Q, has a minimum (or maximum) when∂Q/∂C = 0. Carrying out the
derivation of17.31a gives

∂Q

∂C
= 4Mij

(
Lij −

1

3
δijLkk + 2CMij

)
= 0 (17.32)

Since∂2Q/∂C2 = 8MijMij > 0 it is a minimum. Equation17.31is re-written so
that

C = − LijMij

2MijMij
(17.33)

It turns out that the dynamic coefficientC fluctuates wildly both in space and time.
This causes numerical problems, and it has been found necessary to averageC in homo-
geneous direction(s). Furthermore,C must be clipped to ensure that the total viscosity
stays positive (ν + νsgs ≥ 0).

In real 3D flows, there is no homogeneous direction. Usually local averaging and
clipping (i.e. requiring thatC stays within pre-defined limits) of the dynamic coeffi-
cient is used.

Use of one-equation models solve these numerical problems (see p.148).

17.14 Numerical dissipation

The main function of an SGS model is to dissipate (i.e. to dampen) resolved turbulent
fluctuations. The SGS model is – hopefully – designed to give aproper amount of dis-
sipation. This is the reason why in LES we should use a centraldifferencing scheme,
because this class of schemes does not give anynumericaldissipation. All upwind
schemes give numerical dissipation in addition to the modelled SGS dissipation. In-
deed, there are LES-methods in which upwind schemes are usedto create dissipation
and where no SGS model is used at all (e.g. MILES [63]). However, here we focus
on ensuring proper dissipation through an SGS model rather than via upwind differ-
encing. It can be shown using Neumann stability analysis that all upwind schemes are
dissipative (seeFurther readingat



17.15. Scale-similarity Models 141

I − 1 I
I + 1

v̄I

Figure 17.9: Numerical dissipation.

http://www.tfd.chalmers.se/˜lada/comp turb model/ ). Below it is
shown that first-order upwind schemes are dissipative.

The first-derivative in the convective term is estimated by first-order upwind differ-
encing as (finite difference, see Fig.17.9)

v̄I

(
∂v̄

∂x

)
= v̄I

(
v̄I − v̄I−1

∆x
+ O (∆x)

)
(17.34)

where we have assumedv̄I > 0. Taylor expansion gives

v̄I−1 = v̄I − ∆x

(
∂v̄

∂x

)

I

+
1

2
(∆x)2

(
∂2v̄

∂x2

)

I

+ O
(
(∆x)3

)

so that
v̄I − v̄I−1

∆x
=

(
∂v̄

∂x

)

I

− 1

2
∆x

(
∂2v̄

∂x2

)

I

+ O
(
(∆x)2

)

Insert this into Eq.17.34

v̄

(
∂v̄

∂x

)
= v̄I





(
∂v̄

∂x

)

I

− 1

2
∆x

(
∂2v̄

∂x2

)

I

O(∆x)

+O
(
(∆x)2

)





where the second term on the right side corresponds to the error term in Eq.17.34.
When this expression is inserted into the LES momentum equations, the second term
on the right-hand side will act as an additional (numerical)diffusion term. The total
diffusion term will have the form

diffusion term =
∂

∂x

{
(ν + νsgs + νnum)

∂v̄

∂x

}
(17.35)

where the additional numerical viscosity,νnum ≃ 0.5|v̄I |∆x. This means that the total
dissipation due to SGS viscosity and numerical viscosity is(cf. Eq.17.17)

εsgs+num = 2(νsgs + νnum)s̄ij s̄ij

For more details on derivation of equations transport equations of turbulent kinetic
energies, see [14].

17.15 Scale-similarity Models

In the models presented in the previous sections (the Smagorinsky and the dynamic
models) the total SGS stressτij = vivj − v̄iv̄j was modelled with an eddy-viscosity
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hypothesis. In scale-similarity models the total stress issplit up as

τij = vivj − v̄iv̄j = (v̄i + v′′i )(v̄j + v′′j ) − v̄iv̄j

= v̄iv̄j + v̄iv′′j + v̄jv′′i + v′′i v
′′
j − v̄iv̄j

= (v̄iv̄j − v̄iv̄j) +
[
v̄iv′′j + v̄jv′′i

]
+ v′′i v

′′
j

where the term in brackets is denoted the Leonard stresses, the term in square brackets
is denoted cross terms, and the last term is denoted the Reynolds SGS stress. Thus

τij = Lij + Cij +Rij

Lij = v̄iv̄j − v̄iv̄j

Cij = v̄iv′′j + v̄jv′′i

Rij = v′′i v
′′
j .

(17.36)

Note that the Leonard stressesLij arecomputable, i.e. they are exact and don’t need
to be modelled.

In scale-similarity models the main idea is that the turbulent scales just above cut-
off wavenumber,κc, (smaller than∆) are similar to the ones just belowκc (larger than
∆); hence the word ”scale-similar”. Looking at Eq.17.36it seems natural to assume
that the cross term is responsible for the interaction between resolved scales (v̄i) and
modelled scales (v′′i ), sinceCij includes both scales.

17.16 The Bardina Model

In the Bardina model the Leonard stressesLij are computed explicitly, and the sum of
the cross termCij and the Reynolds term is modelled as [64, 65]

CM
ij = cr(v̄iv̄j − v̄iv̄j) (17.37)

andRM
ij = 0 (superscriptM denotes Modelled). It was found that this model was not

sufficiently dissipative, and thus a Smagorinsky model was added

CM
ij = cr(v̄iv̄j − v̄iv̄j)

RM
ij = −2C2

S∆2|s̄|s̄ij

(17.38)

17.17 Redefined terms in the Bardina Model

The stresses in the Bardina model can be redefined to make themGalilean invariant for
any valuecr (see AppendixH). A modified Leonard stress tensorLm

ij is defined as [66]

τm
ij = τij = Cm

ij + Lm
ij +Rm

ij

Lm
ij = cr (v̄iv̄j − v̄iv̄j)

Cm
ij = 0

Rm
ij = Rij = v′′i v

′′
j

(17.39)

Note that the modified Leonard stresses is the same as the “unmodified” one plus
the modelled cross termCij in the Bardina model withcr = 1 (right-hand side of
Eq.17.37), i.e.

Lm
ij = Lij + CM

ij
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Figure 17.10: Dissipation terms and production term from DNS data.963 mesh data
filtered onto a483 mesh.Reτ = 500. : −ε+SGS; : −ε−SGS; +: −εSGS.

In order to make the model sufficiently dissipative a Smagorinsky model is added,
and the total SGS stressτij is modelled as

τij = v̄iv̄j − v̄iv̄j − 2(CS∆)2|s̄|s̄ij (17.40)

Below we verify that the modified Leonard stress is Galilean invariant.

1

cr
Lm∗

ij = v̄∗i v̄
∗
j − v̄

∗

i v̄
∗

j = (v̄i + Vi)(v̄j + Vj) − (v̄i + Vi) (v̄j + Vj)

= v̄iv̄j + v̄iVj + v̄jVi − v̄iv̄j − v̄iVj − Viv̄j

= v̄iv̄j − v̄iv̄j =
1

cr
Lm

ij

(17.41)

17.18 A dissipative scale-similarity model.

Above it was mentioned that when the first scale-similarity model was proposed it
was found that it is not sufficiently dissipative [64]. An eddy-viscosity model has
to be added to make the model sufficiently dissipative; thesemodels are calledmixed
models. [67] (can be downloaded fromwww.tfd.chalmers.se/˜lada ) presents
and evaluates a dissipative scale-similarity model.

The filtered Navier-Stokes read

dv̄i

dt
+

1

ρ

∂p̄

∂xi
= ν

∂2v̄i

∂xk∂xk
− ∂τik
∂xk

(17.42)

whered/dt andτik denote the material derivative and the SGS stress tensor, respec-
tively.

The SGS stress tensor is given by

τik = vivk − v̄iv̄k. (17.43)

When it is modelled with the standard scale-similarity model, it is not sufficiently dis-
sipative. Let us take a closer look at the equation for the resolved, turbulent kinetic
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energy,k = 〈v′iv′i〉/2, which reads

dk

dt
+ 〈v̄′kv̄′i〉

∂〈v̄i〉
∂xk

+
∂〈p̄′v̄′i〉
∂xi

+
1

2

∂〈v̄′kv̄′iv̄′i〉
∂xk

= ν

〈
∂2v̄′i

∂xk∂xk
v̄′i

〉
−

〈(
∂τik
∂xk

−
〈
∂τik
∂xk

〉)
v̄′i

〉
= ν

〈
∂2v̄′i

∂xk∂xk
v̄′i

〉
−
〈
∂τik
∂xk

v̄′i

〉
=

ν
∂2k

∂xk∂xk
− ν

〈
∂v̄′i
∂xk

∂v̄′i
∂xk

〉

ε

−
〈
∂τik
∂xk

v̄′i

〉

εSGS

(17.44)

The first term on the last line is the viscous diffusion term and the second term,ε, is
the viscous dissipation term which is always positive. The last term,εSGS , is a source
term arising from the SGS stress tensor, which can be positive or negative. When it is
positive, forward scattering takes place (i.e. it acts as a dissipation term); when it is
negative, back scattering occurs.

Figure17.10presents SGS dissipation,εSGS in Eq.17.44, computed from filtered
DNS data. The forward scatter,ε+SGS, and back scatter,ε−SGS , SGS dissipation are
defined as the sum of all instants whenεSGS is positive and negative, respectively. As
can be seen, the scale-similarity model is slightly dissipative (i.e. εSGS > 0) , but the
forward and back scatter dissipation are both much larger thanεSGS .

One way to make the SGS stress tensor strictly dissipative isto set the back scatter
to zero, i.e.max(εSGS , 0). This could be achieved by setting∂τik/∂xk = 0 when its
sign is different from that of̄v′i (see the last term in Eq.17.44). This would work if we
were solving fork. Usually we do not, and the equations that we do solve (the filtered
Navier-Stokes equations) are not directly affected by the dissipation term,εSGS.

Instead we have to modify the SGS stress tensor as it appears in the filtered Navier-
Stokes equations, Eq.17.42. The second derivative on the right side is usually called a
diffusionterm because it acts like a diffusion transport term. When analyzing the sta-
bility properties of discretized equations to an imposed disturbance,̄v′, using Neumann
analysis (see, for example, Chapter 8 in [68]), this term is referred to as adissipation
term. In stability analysis the concern is to dampen numerical oscillations; in connec-
tion with SGS models, the aim is to dampen turbulent resolvedfluctuations. It is shown
in Neumann analysis that the diffusion term in the Navier-Stokes equations is dissipa-
tive, i.e. it dampens numerical oscillations. However, since it is the resolvedturbulent
fluctuations, i.e. k in Eq.17.44, that we want to dissipate, we must consider the filtered
Navier-Stokes equations for the fluctuating velocity,v̄′i. It is the diffusion term in this
equation which appears in the first term on the right side (first line) in Eq.17.44. To
ensure thatεSGS > 0, we set−∂τik/∂xk to zero when its sign is different from that of
the viscous diffusion term (cf. the two last terms on the second line in Eq.17.44). This
is achieved by defining a sign function; for details, see [67].

17.19 Forcing

An alternative way to modify the scale-similarity model is to omit theforward scatter,
i.e. to include instants when the subgrid stresses act ascounter-gradientdiffusion. In
hybrid LES-RANS, the stresses can then be used as forcing at the interface between
URANS and LES. This new approach is the focus of [69].
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17.20 Numerical method

A numerical method based on an implicit, finite volume methodwith collocated grid
arrangement, central differencing in space, and Crank-Nicolson (α = 0.5) in time is
briefly described below. The discretized momentum equations read

v̄
n+1/2
i = v̄n

i + ∆tH
(
v̄n, v̄

n+1/2
i

)

−α∆t
∂p̄n+1/2

∂xi
− (1 − α)∆t

∂p̄n

∂xi

(17.45)

whereH includes convective, viscous and SGS terms. In SIMPLE notation this equa-
tion reads

aP v̄
n+1/2
i =

∑

nb

anbv̄
n+1/2 + SU − α∆t

∂p̄n+1/2

∂xi
∆V

whereSU includes all source terms except the implicit pressure. Theface velocities
v̄

n+1/2
f,i = 0.5(v̄

n+1/2
i,j + v̄

n+1/2
i,j−1 ) (note thatj denotes node number andi is a tensor

index) do not satisfy continuity. Create an intermediate velocity field by subtracting
the implicit pressure gradient from Eq.17.45, i.e.

v̄∗i = v̄n
i + ∆tH

(
v̄n, v̄

n+1/2
i

)
− (1 − α)∆t

∂p̄n

∂xi
(17.46a)

⇒ v̄∗i = v̄
n+1/2
i + α∆t

∂p̄n+1/2

∂xi
(17.46b)

Take the divergence of Eq.17.46b and require that∂v̄n+1/2
f,i /∂xi = 0 so that

∂2p̄n+1

∂xi∂xi
=

1

∆tα

∂v̄∗f,i

∂xi
(17.47)

The Poisson equation for̄pn+1 is solved with an efficient multigrid method [70]. In the
3D MG we use a plane-by-plane 2D MG. The face velocities are corrected as

v̄n+1
f,i = v̄∗f,i − α∆t

∂p̄n+1

∂xi
(17.48)

A few iterations (typically two) solving the momentum equations and the Poisson pres-
sure equation are required each time step to obtain convergence. More details can be
found [71]

1. Solve the discretized filtered Navier-Stokes equation, Eq. 17.46a, for v̄1, v̄2 and
v̄3.

2. Create an intermediate velocity fieldv̄∗i from Eq.17.46b.

3. The Poisson equation (Eq.17.47) is solved with an efficient multigrid method [70].

4. Compute the face velocities (which satisfy continuity) from the pressure and the
intermediate face velocity from Eq.17.48

5. Step 1 to 4 is performed till convergence (normally two or three iterations) is
reached.
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RANS LES
Domain 2D or 3D always 3D
Time domain steady or unsteady always unsteady
Space discretization 2nd order upwind central differencing
Time discretization 1st order 2nd order (e.g. C-N)
Turbulence model more than two-equations zero- or one-equation

Table 17.1: Differences between a finite volume RANS and LES code.

t
t1: start t2: end

v̄1

Figure 17.11: Time averaging in LES.

6. The turbulent viscosity is computed.

7. Next time step.

Since the Poisson solver in [70] is a nested MG solver, it is difficult to parallelize
with MPI (Message Passing Interface) on large Linux clusters. Hence, when we do
large simulations (> 20M cells) we use a traditional SIMPLE method.

17.20.1 RANS vs. LES

Above a numerical procedure suitable for LES was described.However, in general, any
numerical procedure used for RANS can also be used for LES; for example pressure-
correction methods such as SIMPLE [72, 73] are often used for LES. What are the
specific requirements to carry out LES with a finite volume code? If you have a RANS
finite volume code, it is very simple to transform that into anLES code. An LES code
is actually simpler than a RANS code. Both the discretization scheme and and the
turbulence model are simpler in LES and RANS, see Table17.1.

It is important to use a non-dissipative discretization scheme which does not intro-
duce any additional numerical dissipation, see Section17.14; hence a second-order (or
higher) central differencing scheme should be employed.

The time discretization should also be non-dissipative. The Crank-Nicolson scheme
is suitable.

As mentioned above, turbulence models in LES are simple. There are two reasons:
first, only the small-scale turbulence is modelled and, second, no equation for the tur-
bulent length scale is required since the turbulent length scale can be taken as the filter
width, ∆.
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In LES we are doing unsteady simulations. The question then arises, when can we
start to time average and for how long? This is exactly the same question we must
ask our self whenever doing an experiment in, for example, a windtunnel. We start the
windtunnel: when has the flow (and turbulence) reached fullydeveloped conditions so
that we can start the measure the flow. Next question: for how long should we carry
out the measurements.

Both in LES and the windtunnel, the recorded time history of the v̄1 velocity at
a point may look like in Fig.17.11. Time averaging can start at timet1 when the
flow seems to have reached fully developed conditions. It is difficult to judge for how
long one should carry out time averaging. Usually it is a goodidea to form a non-
dimensional time scale from a velocity,V (free-stream or bulk velocity), and a length
scale,L (width of a wake, width or length of a recirculation region),and use this to
estimate the required averaging time;100 time units, i.e.100L/V , may be a suitable
averaging time.

17.21 One-equationksgs model

A one-equation model can be used to model the SGS turbulent kinetic energy. The
equation can be written on the same form as the RANSk-equation, i.e.

∂ksgs

∂t
+

∂

∂xj
(v̄jksgs) =

∂

∂xj

[
(ν + νsgs)

∂ksgs

∂xj

]
+ Pksgs − ε

νsgs = ck∆k1/2
sgs , Pksgs = 2νsgss̄ij s̄ij , ε = Cε

k
3/2
sgs

∆

(17.49)

Note that the production term,Pksgs , is equivalent to the SGS dissipation in the equa-
tion for the resolved turbulent kinetic energy (look at the flow of kinetic energy dis-
cussed at the end of [74]).

17.22 Smagorinsky model derived from theksgs equation

We can use the one-equation model to derive the Smagorinsky model, Eq.17.13. The
length scale in the Smagorinsky model is the filter width,∆ ∝ κII , see Fig.17.12. The
cut-off takes place in the inertial subrange where diffusion and convection in theksgs

equation are negligible (their time scales are too large so they have no time to adapt
to rapid changes in the velocity gradients,s̄ij ). Hence, production and dissipation in
Eq.17.49are in balance so that

Pksgs = 2νsgss̄ij s̄ij = ε (17.50)

Let us replaceε by SGS viscosity and∆. We can write the SGS viscosity as

νsgs = εa(CS∆)b (17.51)

Dimensional analysis yieldsa = 1/3, b = 4/3 so that

νsgs = (CS∆)4/3ε1/3. (17.52)

Eq.17.50substituted into Eq.17.52gives

ν3
sgs = (CS∆)4ε = (CS∆)4νsgs(2s̄ij s̄ij)

⇒ νsgs = (CS∆)2|s̄|
|s̄| = (2s̄ij s̄ij)

1/2

(17.53)

which is the Smagorinsky model.
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Figure 17.12: Spectrum fork. I: Range for the large, energy containing eddies; II:
the inertial subrange for isotropic scales, independent ofthe large scales (ℓ) and the
dissipative scales (ν); III: Range for small, isotropic, dissipative scales.

17.23 A dynamic one-equation model

One of the drawbacks of the dynamic model of [60] (see p.137) is the numerical
instability associated with the negative values and large variation of theC coefficient.
Usually this problem is fixed by averaging the coefficient in some homogeneous flow
direction. In real applications ad-hoc local smoothing andclipping is used. Below
a dynamic one-equation model is presented. The main object when developing this
model was that it should be applicable to real industrial flows. Furthermore, being a
dynamic model, it has the great advantage that the coefficients arecomputedrather than
being prescribed.

The equation for the subgrid kinetic energy reads [75, 76] (see also [77, 78])

∂ksgs

∂t
+

∂

∂xj
(v̄jksgs) = Pksgs +

∂

∂xj

(
νeff

∂ksgs

∂xj

)
− C∗

k
3/2
sgs

∆

Pksgs = −τa
ij v̄i,j , τ

a
ij = −2C∆k

1

2

sgss̄ij

(17.54)

with νeff = ν + 2Chom∆k
1

2

sgs. TheC in the production termPksgs is computed
dynamically (cf. Eq.17.33). To ensure numerical stability, aconstantvalue (in space)
ofC (Chom) is used in the diffusion term in Eq.17.54and in the momentum equations.
Chom is computed by requiring thatChom should yield the same total production of
ksgs asC, i.e.

〈2C∆k
1

2

sgss̄ij s̄ij〉xyz = 2Chom〈∆k
1

2

sgss̄ij s̄ij〉xyz

The dissipation termεksgs is estimated as:

εksgs ≡ νTf (vi,j , vi,j) = C∗

k
3/2
sgs

∆
. (17.55)

Now we want to find a dynamic equation forC∗. The equations forksgs andK read in
symbolic form

T (ksgs) ≡ Cksgs −Dksgs = Pksgs − C∗

k
3/2
sgs

∆

T (K) ≡ CK −DK = PK − C∗

K3/2

︷︷
∆

(17.56)
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Since the turbulence on both the grid level and the test levelshould be in local equilib-
rium (in the inertial−5/3 region), the left-hand side of the two equations in Eq.17.56
should be close to zero. An even better approximation shouldbe to assumeT (ksgs) =
T (K), i.e.

︷︷
P ksgs −

1

∆

︷ ︷
C∗ksgs

3/2

= PK − C∗

K3/2

︷︷
∆

,

so that

Cn+1
∗ =

(
PK −

︷︷
P ksgs +

1

∆

︷ ︷
Cn

∗ k
3/2
sgs

) ︷︷
∆

K
3

2

. (17.57)

The idea is to put the local dynamic coefficients in the sourceterms, i.e. in the produc-
tion and the dissipation terms of theksgs equation (Eq.17.54). In this way the dynamic
coefficientsC andC∗ don’t need to be clipped or averaged in any way. This is a big
advantage compared to the standard dynamic model of Germano(see discussion on
p. 140).

17.24 A Mixed Model Based on a One-Eq. Model

Recently a new dynamic scale-similarity model was presented by [79]. In this model a
dynamic one-equation SGS model is solved, and the scale-similarity part is estimated
in a similar way as in Eq.17.40.

17.25 Applied LES

At the Department we used LES for applied flows such as flow around a cube [80, 81],
the flow and heat transfer in a square rotating duct [82, 83], the flow around a simplified
bus [84, 81], a simplified car [85, 86, 87] and the flow around an airfoil [88, 89],
detailed SUV [90], trains and buses subjected to sidewinds and wind gusts [91, 92, 93].
We have also done some work on buoyancy-affected flows [94, 95, 96, 97, 98, 99, 100].

17.26 Resolution requirements

The near-wall grid spacing should be about one wall unit in the wall-normal direction.
This is similar to the requirement in RANS (Reynolds-Averaged Navier-Stokes) using
low-Re number models. The resolution requirements in wall-parallel planes for a well-
resolved LES in the near-wall region expressed in wall unitsare approximately100
(streamwise) and30 (spanwise). This enables resolution of the near-wall turbulent
structures in the viscous sub-layer and the buffer layer consisting of high-speed in-
rushes and low-speed ejections [101], often called the streak process. At low to medium
Reynolds numbers the streak process is responsible for the major part of the turbulence
production. These structures must be resolved in an LES in order to achieve accurate
results. Then the spectra of the resolved turbulence will exhibit −5/3 range, see figure
on p.46.

In applied LES, this kind of resolution can hardly ever be afforded. In outer scaling
(i.e. comparing the resolution to the boundary layer thickness,δ), we can affordδ/∆x1

andδ/∆x3 in the region of10− 20 and20− 40, respectively. In this case, the spectra
in the boundary layer will look something like that shown in Fig. 17.13[102]. Energy
spectra are actually not very reliable to judge if a LES simulation is well resolved or not.
In [102, 103] different ways to estimate the resolution of an LES were investigated. The
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Figure 17.14: Onera bump. Computational domain (not to scale).

suggestion in these works was that two-point correlations is the best way to estimate if
an LES is sufficiently resolved or not.

Even if the turbulence in boundary layer seldom can be resolved, the flow in re-
circulation regions and shear layer can. In [104] the flow (Re ≃ 106) over a bump
was computed. The geometry is shown in Fig.17.14. The turbulence in the bound-
ary layer on the bump was very poorly resolved:∆x1/δin = 0.33, ∆x3/δin = 0.44,
∆x+

1 = 1300 and∆x+
3 = 1800. Nevertheless, the turbulence in the recirculation re-

gion and in the shear layer downstream the bump turned out to be well resolved, see
Fig. 17.15.

Thus, for wall-bounded flows at high Reynolds numbers of engineering interest,
the computational resource requirement of accurate LES is prohibitively large. Indeed,
the requirement of near-wall grid resolution is the main reason why LES is too ex-
pensive for engineering flows, which was one of the lessons learned in the LESFOIL
project [105, 106].
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18 Unsteady RANS

To perform an accurate LES, a very fine mesh must be used. This causes problems, for
example, near walls. LES is very good for wake flow, where the flow is governed by
large, turbulent structures, which can be captured by a fairly coarse mesh. However,
if attached boundary layers are important, LES will probably give poor predictions in
these regions, unless fine grids are used.

An alternative to LES for industrial flows can then beunsteadyRANS (Reynolds-
Averaged Navier-Stokes), often denotedURANS (Unsteady RANS) orTRANS (Transient
RANS).

In URANS the usual Reynolds decomposition is employed, i.e.

v̄(t) =
1

2T

∫ t+T

t−T

v(t)dt, v = v̄ + v′′ (18.1)

The URANS equations are the usual RANS equations, but with the transient (unsteady)
term retained, i.e. (on incompressible form)

∂v̄i

∂t
+

∂

∂xj
(v̄iv̄j) = −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i

∂xj∂xj
−
∂v′′i v

′′
j

∂xj

∂v̄i

∂xi
= 0

(18.2)

Note that the dependent variables are now not only function of the space coordinates,
but also function of time, i.e.̄vi = v̄i(x1, x2, x3, t), p̄ = p̄(x1, x2, x3, t) and v′′i v

′′
j =

v′′i v
′′
j (x1, x2, x3, t).
Even if the results from URANS are unsteady, one is often interested only in the

time-averaged flow. We denote here the time-averaged velocity as〈v̄〉, which means
that we can decompose the results from an URANS as a time-averaged part,〈v̄〉, a
resolved fluctuation,̄v′, and the modelled, turbulent fluctuation,v′′, i.e.

v = v̄ + v′′ = 〈v̄〉 + v̄′ + v′′ (18.3)
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see Fig.18.1. The modelled turbulent fluctuation,v′′, is not shown in the figure; if this
is added to〈v̄〉 + v̄′ we obtainv.

What type of turbulence model should be used in URANS? That depends on type
of flow. If the flow has strong vortex shedding, the standard high-Re numberk − ε
model can be used, i.e.

∂ρk

∂t
+
∂ρv̄jk

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ P k − ρε (18.4)

∂ρε

∂t
+
∂ρv̄jε

∂xj
=

∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+
ε

k

(
c1εP

k − cε2ρε
)

(18.5)

µt = cµρ
k2

ε
(18.6)

With an eddy-viscosity, the URANS equations read

∂ρv̄i

∂t
+
∂ρv̄iv̄k

∂xk
= −1

ρ

∂p̄

∂xi
+

∂

∂xk

[
(µ+ µt)

∂v̄i

∂xk

]
(18.7)

So we are doing unsteady simulations, but still we time average the equations. How
is this possible? The theoretical answer is that the time,T , in Eq.18.1should be much
smaller than the resolved time scale, i.e. the modelled turbulent fluctuations,v′′, should
have a much smaller time scale than the resolved ones,v̄′. This is calledscale separa-
tion. In practice this requirement is often not satisfied [71]. On the other hand, how do
the momentum equation, Eq.18.7, know how they were time averaged? Or if they were
volume filtered? The answer is that they don’t. The URANS momentum equation and
the LES momentum equation are exactly the same, except that we denote the turbulent
viscosity in the former case byνt and in the latter case byνsgs. In URANS, much
more of the turbulence is modelled than in LES, and, hence, the turbulent viscosity,νt,
is much larger than the SGS viscosity,νsgs.

The common definition of URANS is that the turbulent length scale is not deter-
mined by the grid, whereas in LES it is. In URANS we do usually not care about scale

v̄, 〈v̄〉

t

〈v̄〉

v̄

v̄′

Figure 18.1: Decomposition of velocities in URANS.
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Figure 18.2: Configuration of the flow past a triangular flameholder. Flow from left to
right

Figure 18.3: 2D URANSk − ε simulations [107]. One cycle of thēv2 velocity in a
cell near the upper-right corner of the flameholder.

separation. What we care about is that the turbulence model and the discretization
scheme should not be too dissipative, i.e. they should not kill the resolved fluctuations,
v̄′.

The standardk − ε model (Eq.18.4and18.5) was used in [107] for URANS simu-
lations computing the flow around a triangular flame-holder in a channel, see Fig.18.2.
This flow has a very regular vortex shedding. and the flow actually has a scale separa-
tion. In Fig.18.3the v̄2 velocity in a point above the flame-holder is shown and it can
be seen that the velocity varies with time in a sinusoidal manner.

When we’re doing URANS, the question arises how the results should be time
averaged, i.e. when should we start to average and for how long. This issue is the same
when doing LES, and this was discussed in connection to Fig.17.11.
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Figure 18.4: 2D URANSk − ε simulations compared with experiment [107]. Solid
lines: total turbulent kinetic energy; dashed lines: resolved turbulent kinetic energy:
∗: experimental data. Left figure:x = 0.43H ; right figure:x = 1.1H (x = 0 at the
downstream vertical plane of the flame-holder).

18.1 Turbulence Modelling

In URANS, part of the turbulence is modelled (v′′) and part of the turbulence is re-
solved (̄v′). If we want to compare computed turbulence with experimental turbulence,
we must add these two parts together. Profiles downstream theflameholder are shown
in Fig. 18.4. It can be seen that here the resolved and the modelled turbulence are of
the same magnitude.

If the turbulence model in URANS generates ”too much” eddy viscosity, the flow
may not become unsteady at all, because the unsteadiness is dampened out; the reason
for this is that the turbulence model is too dissipative. It was found in [108, 109] when
using URANS for the flow around a surface-mounted cube and around a car, that the
standardk − ε model was too dissipative. Non-linear models like that of [110] was
found to be less dissipative, and was successfully applied in URANS-simulations for
these two flows.

18.2 Discretization

In LES it is well-known that non-dissipative discretization schemes should be used.
The reason is that we don’t want to dampen out resolved, turbulent fluctuations. The
same is to some extent true also for URANS. In the predictionson the flame-holder
presented above, the hybrid discretization scheme for the convective terms was used
together with fully implicit first-order discretization intime; this gives first-order ac-
curacy in both space and time. The turbulence model that was used was the standard
k − ε model. Thus, both the discretization and the turbulence model have high dissi-
pation. The reason why the unsteadiness in these computations was not dampened out
is that the vortex shedding in this flow is very strong.

In general a discretization scheme which has little numerical dissipation should be
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Figure 18.5: URANS simulations of the flow around a surface-mounted cube.

used. How dissipative a scheme needs to be in order to be stable is flow dependent; for
some simple flows, it may work with no dissipation at all (i.e.central differencing),
whereas for industrially complex flows maybe a bounded second-order scheme must
be used. For time discretization, the second-order accurate Crank-Nicolson works in
most cases.

In [108] LES and URANS simulations were carried out of the flow arounda surface-
mounted cube (Fig.18.5) with a coarse mesh using wall-functions. Two different dis-
cretization schemes were used: the central scheme and the Mars scheme (a blend be-
tween central differencing and a bounded upwind scheme of second-order accuracy).
In Fig. 18.6 the time-averaged velocity profile upstream of the cube (x1 = −0.6H)
using URANS and LES with central differencing are shown together with URANS
and Mars scheme. It is seen that with LES and central differencing unphysical oscilla-
tions are present (this was also found by [80]). However, LES with the Mars scheme
(in which some numerical dissipation is present) and URANS with the central scheme
(where the modelling dissipation is larger than in LES) no such unphysical oscillations
are present. The main reason to the unphysical oscillationsis that the predicted flow
in this region does not have any resolved fluctuations. If turbulent unsteady inlet fluc-
tuations are used, the unphysical oscillations do usually not appear, even if a central
differencing scheme is used. In this case the turbulent, resolved fluctuations dominate
over any numerical oscillations.
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Figure 18.6: URANS simulations of the flow around a surface-mounted cube. Velocity
profiles upstream the cube [108].

19 DES

DES (Detached Eddy Simulation) is a mix of LES and URANS. The aim is to treat
the boundary layer with RANS and capture the outer detached eddies with LES. The
model was originally developed for wings at very high anglesof attack.

The RANS model that was originally used was the one-equationmodel by [111].
It can be written [111, 105, Sect. 4.6]

∂ρν̃t

∂t
+
∂ρv̄j ν̃t

∂xj
=

∂

∂xj

(
µ+ µt

σν̃t

∂ν̃t

∂xj

)
+
Cb2ρ

σν̃t

∂ν̃t

∂xj

∂ν̃t

∂xj
+ P − Ψ

νt = ν̃tf1

(19.1)

The production termP and the destruction termΨ have the form

P = Cb1ρ

(
s̄+

ν̃t

κ2d2
f2

)
ν̃t

s̄ = (2s̄ij s̄ij)
1/2

, Ψ = Cw1ρfw

(
ν̃t

d

)2 (19.2)

d in the RANS SA model is equal to the distance to the nearest wall.
In [112] the DES model was proposed in whichd is taken as the minimum of the

RANS turbulent length scaled and the cell length∆ = max(∆xξ ,∆xη,∆xζ), i.e.

d̃ = min(d, Cdes∆) (19.3)

∆xξ, ∆xη and∆xζ denote the cell length in the three grid directionsξ, η andζ. The
constantCdes is usually set to0.65.

In the boundary layerd < Cdes∆ and thus the model operates in RANS mode.
Outside the turbulent boundary layerd > Cdes∆ so that the model operates in LES
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mode. The modelled length scale is reduced and the consequence is that the destruction
termΨ increases, which gives a reduction in the turbulent viscosity ν̃t. A reducedν̃t

gives a smaller production termP so that the turbulent viscosity is further reduced.
At first sight it may seem that as the model switches from RANS mode to LES

mode thus reducingd, this would give rise to an increased production termP through
the second term (see Eq.19.2). However, this second term is a viscous term and is
active only close to the wall. This term is sometimes neglected [113]

19.1 DES based on two-equation models

The model described above is a one-equation model. In RANS mode it takes its
length scale from the wall distance, which in many situations is not a relevant tur-
bulent length scale. Recently, DES models based on two-equation models were pro-
posed [114, 115, 116]. In these models the turbulent length scale is either obtained
from the two turbulent quantities (e.g.k3/2/ε or k1/2/ω) or the filter width∆. A
model based on thek − ε model can read

∂k
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∂xj
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∂k
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P k = 2νts̄ij s̄ij , νt = k1/2ℓt

The turbulent length scale,ℓt, and the turbulent dissipation,εT , are computed as [116,
117]

ℓt = min

(
Cµ

k3/2

ε
, Ck∆

)

εT = max

(
ε, Cε

k3/2

∆

)

In other models [114, 53] only the dissipation term,εT is modified. When the grid
is sufficiently fine, the length scale is taken as∆. The result is that the dissipation in the
k equation increases so thatk decreases which gives a reducedνt. A third alternative is
to modify only the turbulent length scale appearing in the turbulent viscosity [117]. In
regions where the turbulent length scales are taken from∆ (LES mode) theε-equation
is still solved, butε is not used. However,ε is needed as soon as the model switches to
RANS model again.

A rather new approach is to reduce the destruction term in theε equation as in
PANS [118, 119] (Partially Averaged Navier-Stokes) and PITM [120] (Partially Integrated
Transport Modelling). In these modelsε increases because of its reduced destruc-
tion term which decreases bothk and νt. A low-Reynolds number PANS was re-
cently proposed [119] in which the near-wall modififications were taken from the AKN
model [121].

In the RANS mode the major part of the turbulence is modelled.When the model
switches to LES mode, the turbulence is supposed to be represented by resolved tur-
bulence. This poses a major problem with this type of models.If the switch occurs at
locationx1, say, it will take some distanceL before the momentum equations start to
resolve any turbulence. This is exactly what happens at an inlet in an LES simulation
if no real turbulence is given as inlet boundary conditions.One way to get around this
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is to impose turbulence fluctuations as forcing conditions [122, 123, 74, 124, 125, ] at
the location where the model switches from RANS mode to LES mode. The forcing is
added in the form of a source term (per unit volume) in the momentum equations.

19.2 DES based on thek − ω SST model

The standardk − ω model SST reads [48, 53]
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(19.4)

whered is the distance to the closest wall node. The SST model behaves as ak − ω
model near the wall whereF1 = 1 and ak − ε model far from walls (F1 = 0). All
coefficients are blended between thek− ω and thek− ε model using the functionF1.

In DES the dissipation term in thek equation is modified as [53]

β∗kω → β∗kωFDES, FDES = max

{
Lt

CDES∆
, 1

}

∆ = max {∆x1,∆x2,∆x3} , Lt =
k1/2

β∗ω

Again, the DES modification is meant to switch the turbulent length scale from a
RANS length scale (∝ k1/2/ω) to a LES length scale (∝ ∆) when the grid is suf-
ficiently fine. WhenFDES is larger than one, the dissipation term in thek equation
increases which in turn decreasesk and thereby also the turbulent viscosity. With a
smaller turbulent viscosity in the momentum equations, themodelled dissipation (i.e
the damping) is reduced and the flow is induced to go unsteady.The result is, hopefully,
that a large part of the turbulence is resolved rather than being modelled.

In some flows it may occur that theFDES term switches to DES in the boundary
layer because∆z is too small (smaller than the boundary layer thickness,δ). Different
proposals have been made [126, 127] to protectthe boundary layer from the LES mode

FDES = max

{
Lt

CDES∆
(1 − FS), 1

}

whereFS is taken asF1 orF2 (see Eq.19.4) of the SST model.
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20 Hybrid LES-RANS

When simulating bluff body flows, LES (Large Eddy Simulation) is the ideal method.
Bluff body flows are dominated by large turbulent scales thatcan be resolved by LES
without too fine a resolution and accurate results can thus beobtained at an affordable
cost. On the other hand, it is a challenging task to make accurate predictions of wall-
bounded flows with LES. The near-wall grid spacing should be about one wall unit in
the wall-normal direction. This is similar to the requirement in RANS using low-Re
number models. The resolution requirements in wall-parallel planes for a well-resolved
LES in the near-wall region expressed in wall units are approximately100 (streamwise)
and30 (spanwise). This enables resolution of the near-wall turbulent structures in the
viscous sub-layer and the buffer layer consisting of high-speed in-rushes and low-speed
ejections [101], often called the streak process.

An event of a high-speed in-rush is illustrated in Fig.20.1. In the lower part of
the figure the spanwise vortex line is shown. Initially it is astraight line, but due to a
disturbance – e.g. a turbulent fluctuation – the mid-part of the vortex line is somewhat
lifted up away from the wall. The mid-part of the vortex line experiences now a higher
v̄1 velocity (denoted byU in the figure) than the remaining part of the vortex line. As
a result the mid-part is lifted up even more and a tip of a hairpin vortex is formed.
The vorticity of the legs lift each other through self-induction which helps lifting the
tip even more. In thex1 − x2 plane (upper part of Fig..20.1) the instantaneous and
mean velocity profiles (denoted byU and Ū in the figure, respectively) are shown
as the hairpin vortex is created. It can be seen that an inflexion point is created in the
instantaneous velocity profile,U , and the momentum deficit in the inner layer increases
for increasingx1. Eventually the momentum deficit becomes too large and the high-
speed fluid rushes in compensating for the momentum deficit. The in-rush event is also
called asweep. There are also events which occurs in the other direction, i.e. low-
speed fluid is ejected away from the wall. These events are called burstsor ejections.
The spanwise separation between sweeps and bursts is very small (approximately100
viscous units, see Fig.20.1). This is the main reason why the grid must be very fine
in the spanwise direction. The streamwise distance betweenthe events is related to
the boundary layer thickness (4δ, see Fig.20.1). The process by which the events are
formed is similar to the later stage in the transition process from laminar to turbulent
flow. Figure20.2presents the instantaneous field of the streamwise velocityfluctuation,
v′1 in the viscous wall region. As can be seen, the turbulent structures very elongated
in the streamwise direction.

At low to medium Reynolds numbers the streak process is responsible for the major
part of the turbulence production. These structures must beresolved in an LES in order
to achieve accurate results. Thus, for wall-bounded flows athigh Reynolds numbers
of engineering interest, the computational resource requirement of accurate LES is
prohibitively large. Indeed, the requirement of near-wallgrid resolution is the main
reason why LES is too expensive for engineering flows, which was one of the lessons
learned in the LESFOIL project [105, 106].

The object of hybrid LES-RANS (and of DES) is to eliminate therequirement of
high near-wall resolution in wall-parallel planes. In the near-wall region (the URANS
region), a low-Re number RANS turbulence model (usually an eddy-viscosity model)
is used. In the outer region (the LES region), the usual LES isused, see Fig.20.3.
The idea is that the effect of the near-wall turbulent structures should be modelled by
the RANS turbulence model rather than being resolved. In theLES region, coarser
grid spacing in wall-parallel planes can be used. The grid resolution in this region is
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Figure 20.1: Illustration of near-wall turbulence (taken from [58]).
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Figure 20.2: Fluctuating streamwise velocity in a wall-parallel plane atx+
2 = 5. DNS

of channel flow [74].
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Figure 20.3: The LES and URANS region.
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Figure 20.5: Using forcing at the interface between the LES and URANS region.

presumably dictated by the requirement of resolving the largest turbulent scales in the
flow (which are related to the outer length scales, e.g. the boundary layer thickness)
rather than the near-wall turbulent processes. The unsteady momentum equations are
solved throughout the computational domain. The turbulentRANS viscosity is used in
the URANS region, and the turbulent SGS viscosity is used in the LES region.

Much work on hybrid LES-RANS has been carried out. In [128, 71, 129] two-
equation models were used in the URANS region and a one-equation SGS model
was employed in the LES region. One-equation models were used in both regions
in [130, 131]. The locations of the matching planes were determined in different ways.
In some work [71, 129] it was chosen along a pre-selected grid plane. In [130] it was
determined by comparing the URANS and the LES turbulent length scales or was com-
puted from turbulence/physics requirements. In [128] they used a two-equation model
in the URANS region and blended it into a one-equation model in the LES region. Dif-
ferent partial differential equations for automatically finding the matching plane were
investigated in [131]. A one-equation model was used in both regions in [132], and the
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(subscriptf = S) or taken from channel DNS (subscriptf = DNS).

cµ coefficient at the interface was computed dynamically to yield a smoother transi-
tion between the URANS and LES regions. In [133] they proposed ak − ε turbulence
model, later also used by [134], in which thecε2 is made into a function of the ratio of
the RANS and LES length scales. On a fine mesh the model switches smoothly to LES
and in the limitcε1 = cε2 so that a pure DNS solution is obtained.

Hybrid LES-RANS is similar to DES (Detached Eddy Simulations) [112, 135,
127]. The main difference is that the original DES aims at covering the whole attached
boundary layer with URANS, whereas hybrid LES-RANS aims at covering only the
inner part of the boundary layer with URANS. In later work DEShas been used as a
wall model [136, 123], and, in this form, DES is similar hybrid LES-RANS.

Figure20.4a presents comparison of LES and hybrid LES-RANS in channel flow at
Reτ = 2000 on a very coarse mesh. The momentum equations are solved in the entire
domain and the turbulent viscosity is in both regions obtained from a one-equations
ksgs equation and an algebraic length scale (see Sections20.1and20.2). The resolution
in the wall-parallel plane is comparable to what can be afforded for boundary layer in
real, industrial flows, at least in terms of viscous units (∆x+

1 and∆x+
3 ). The LES

cannot resolve the flow at all. Hybrid LES-RANS gives much improved results, still
not very good however. The normalized streamwise two-pointcorrelation is shown in
Fig. 20.4b. As can be seen, the streamwise lengthscale predicted withhybrid LES-
RANS is extremely large. It should be mentioned that standard hybrid LES-RANS
does – of course – give better results on finer grids [102], but these finer grids are
rarely affordable in industrial flows.

Although the results obtained with hybrid LES-RANS are better than those ob-
tained with LES, it has been found that the treatment of the interface between the
URANS region and the LES region is crucial for the success of the method. The re-
solved turbulence supplied by the URANS region to the LES region has no reasonable
turbulent characteristics and is not appropriate for triggering the LES equations to re-
solve turbulence. This results in too poorly resolved stresses in the interface region
and thereby gives a ramp – also referred to as a shift – in the velocity profile approx-
imately at the location of the matching plane [71, 136, 124, 129, 137, 130, 123]. The
overly small resolved stresses in the LES region are translated into too small a wall
shear stress. Several modifications have been proposed to remove this deficiency. In
[137, 132], they suggested dampening the modelled stresses in the URANS region to
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reduce the total (i.e. resolved plus modelled) shear stressin the URANS region and
thereby reduce the jump in shear stress across the matching plane. Numerical smooth-
ing was used at the interface in [130]. [129] proposed a modification of the discretized
streamwise equation at the interface in order to avoid filtering out any resolved fluctu-
ations at the interface. In [123] backscatter was introduced in the interface region with
the object of generating resolved fluctuations.

One way to improve hybrid LES-RANS is to add fluctuations to the momentum
equations at the interface [124, 74], see Figs.20.5and20.6. The object is to trigger the
equations to resolve turbulence. Adding fluctuations in order to trigger the equations
to resolve turbulence is actually very similar to prescribing fluctuating turbulent inlet
boundary conditions for DNS or LES (or hybrid LES-RANS). If no triggering inlet
boundary conditions are prescribed in DNS or LES, the resolved turbulence near the
inlet will be too small and a large streamwise distance is required before the equations
trigger themselves into describing turbulent flow. This is also the case in hybrid LES-
RANS: if no triggering (forcing) is applied at the interfacebetween the LES region and
the URANS region, the resolved turbulence in the LES region near the URANS region
will be too small.

20.1 Momentum equations in hybrid LES-RANS

The incompressible Navier-Stokes equations with an added turbulent/SGS viscosity
read

∂v̄i

∂t
+

∂

∂xj
(v̄iv̄j) = −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
(ν + νT )

∂v̄i

∂xj

]
(20.1)

whereνT = νt (νt denotes the turbulent RANS viscosity) forx2 ≤ x2,ml (see Fig.20.3)
and, forx2 > x2,ml, νT = νsgs. The turbulent viscosity,νT , is computed from an al-
gebraic turbulent length scale (see Table20.1) andkT ; the latter is obtained by solving
its transport equation, see Eq.20.2.

20.2 The equation for turbulent kinetic energy in hybrid LES-RANS

A one-equation model is employed in both the URANS region andthe LES region,
which reads

∂kT

∂t
+

∂

∂xj
(v̄jkT ) =

∂

∂xj

[
(ν + νT )

∂kT

∂xj

]
+ PkT − Cε

k
3/2
T

ℓ

PkT = −τij s̄ij , τij = −2νT s̄ij

(20.2)

In the inner region (x2 ≤ x2,ml) kT corresponds to the RANS turbulent kinetic energy,
k; in the outer region (x2 > x2,ml) it corresponds to the subgrid-scale kinetic turbulent
energy (ksgs). No special treatment is used in the equations at the matching plane ex-
cept that the form of the turbulent viscosity and the turbulent length scale are different
in the two regions, see Table20.1. At the walls,kT = 0.

20.3 Results

Fully developed channel flow atReτ = uτδ/ν = 2000 (δ denotes the channel half
width) is used as a test case to evaluate the effect of different forcing conditions. This
flow may seem to be an easy test case, but it is not. In attempts to improve the perfor-
mance of LES in wall-bounded flows, the Achilles’ heel is the near-wall flow region.
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URANS region LES region

ℓ κc
−3/4
µ n[1 − exp(−0.2k1/2n/ν)] ℓ = ∆

νT κc
1/4
µ k1/2n[1 − exp(−0.014k1/2n/ν)] 0.07k1/2ℓ

Cε 1.0 1.05

Table 20.1: Turbulent viscosity and turbulent length scales in the URANS and LES
regions. n andκ denote the distance to the nearest wall and von Kármán constant
(= 0.41), respectively.∆ = (δV )1/3
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Figure 20.7: Streamwise velocities [74]. 〈v̄〉 profiles.◦: 2.5 ln(x+
2 ) + 5.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x2

〈−
v
′ 1
v
′ 2
〉/
u

2 ∗
,w
,

〈τ
ν

+
τ 1

2
〉/
u

2 ∗
,w

(a) Shear stresses.τν denotes viscous stress.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

x2

〈0
.5
v
′ iv

′ i〉/
u

2 ∗
,w
,

〈k
T
〉/
u

2 ∗
,w

(b) Turbulent kinetic energy.

Figure 20.8: Shear stress and turbulent kinetic energy [74]. Solid lines: no forcing;
dashed lines: forcing with isotropic fluctuations withMS = 0.25; ◦: present963 DNS.
Thick lines: resolved; thin lines: modelled.

The bulk velocity in fully developed channel flow with periodic boundary conditions
(see Eq.20.1) is entirely determined by the wall shear stress; consequently the flow is
extremely sensitive to the turbulence in the near-wall region.
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The streamwise velocity profiles obtained with and without forcing are compared
in Fig. 20.7 with the present DNS and the log-law. It can be seen that the center-
line velocity is strongly over-predicted when no forcing isused, whereas forcing with
MS = MDNS = 0.25 gives excellent agreement with the log-law (MS andMDNS

denote forcing with synthetic and DNS fluctuations, respectively). The reason for the
overly large velocities without forcing is that the resolved shear is too small. It can be
seen in Fig.20.8a that it is the resolved shear stress that increases when forcing is intro-
duced, indicating that the resolved shear stress without forcing is too small. This was
also observed by [123]: when forcing is introduced, the resolved shear stress increases,
which reduces the bulk and centerline velocity.

Recently a novel way for generating fluctuations to be used asforcing at the in-
terface was presented [102]. In this work backscatter obtained from a scale-similarity
model was used.



21. The SAS model 166

21 The SAS model

21.1 Resolved motions in unsteady

When doing URANS or DES, the momentum equations are triggered through instabil-
ities to go unsteady in regions where the grid is fine enough. In URANS or in DES op-
erating in RANS mode, high turbulent viscosity often dampens out these instabilities.
In many cases this is an undesired feature, because if the flowwants to go unsteady, it
is usually a bad idea to force the equations to stay steady. One reason is that there may
not be any steady solution. Hence, the equations will not converge. Another reason
is that if the numerical solution wants to go unsteady, the large turbulent scales — i.e.
part of the turbulent spectrum — will be resolved instead of being modelled. This leads
to a more accurate prediction of the flow.

One way to improve a RANS model’s ability to resolve large-scale motions is to
use the SAS (Scale- Adaptive Simulation) model

21.2 The von Ḱarmán length scale

The von Kármán length scale

LvK,1D = κ

∣∣∣∣
∂〈v̄〉/∂x2

∂2〈v̄〉/∂x2
2

∣∣∣∣ (21.1)

which includes the second velocity gradient is a suitable length scale for detecting
unsteadiness. The von Kármán length scale is smaller for an instantaneous velocity
profile than for a time averaged velocity, see Fig.21.1. This is interesting because, as
noted in [138], the von Kármán length scale decreases when the momentumequations
resolve (part of) the turbulence spectrum.

The first and second derivatives in Eq.21.1are given in boundary layer form. We
want to extend this expression to a general one, applicable in three dimensions. In the
same way as in, for example, the Smagorinsky model, we take the first derivative as
|s̄| = (2s̄ij s̄ij)

1/2. The second derivative can be generalized in a number of ways. In
the SAS model it is taken as

U ′′ =

(
∂2v̄i

∂xj∂xj

∂2v̄i

∂xk∂xk

)0.5

(21.2)

Hence, the general three-dimensional expression for the von Kármán length scale reads

LvK,3D = κ
|s̄|
|U ′′| (21.3)

In [139] they derived a one-equationνt turbulence model where the von Kármán
length scale was used. The model was called the SAS model. Later, based on the
k− k1/2L model of Rotta [140], Menter & Egorov [138] derived a newk− kL model
using the von Kármán length scale. Finally, in [141] they modified thek − ω-SST
model to include the SAS features; they called this model theSST-SAS model. This
model is described in more detail below.

The SST-SAS model

Thek − ω SST model is given in Eq.19.4at p.158 (see also the section starting at
p. 126) Now, Menter & Egorov [141] introduced a SAS-term in theω equation. The
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Figure 21.1: Velocity profiles from a DNS of channel flow. Solid line: time-averaged
velocity with length scaleLx,1D, Eq.21.1; dashed line: instantaneous velocity with
length scaleLvK,3D, Eq.21.3.

object of this term is to decrease the turbulent viscosity when unsteadiness is detected,
i.e. when the von Kármán length scale becomes small. The production term in theω
equation in thek−ω-SST model readsPω = αP k/νt ∝ |s̄|2. To decrease the turbulent
viscosity we should increaseω. Thus it seems reasonable to add a new production term
proportional toPωLt/LvK,3D whereLt denotes a RANS length scale. The additional
term reads

ζ̃2κ|s̄|2
Lt

LvK,3D
, Lt =

k1/2

ωc
1/4
µ

(21.4)

When unsteadiness occurs — i.e. when the momentum equationsattempt to resolve
part of the turbulence spectrum — , this term reacts as follows:

• Local unsteadiness will create velocity gradients which decrease the turbulent
length scale, see Fig.21.1

• This results in a decrease in the von Kármán length scale,LvK,3D

• As a consequence the additional source, Eq.21.4, in theω equation increases

• This gives an increase inω and hence a decrease inνt

• The decreased turbulent viscosity will allow the unsteadiness to stay alive and,
perhaps, grow.

The last item in the list above is the main object of the SAS model. The reaction
to local unsteadiness in a eddy-viscosity model without theSAS feature is as follows:
the increased local velocity gradients will create additional production of turbulent ki-
netic energy and give an increased turbulent viscosity which will dampen/kill the local
unsteadiness. As mentioned in the introduction to this chapter, this is an undesirable
feature.
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When incorporating the additional production term (Eq.21.4) in the k − ω-SST
model, the last term in theω equation is replaced by (for further details, see [141])

PSAS = FSAS max (T1 − T2, 0)

T1 = ζ̃2κS
2 L

LvK,3D

T2 =
2k

σΦ
max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,

1

k2

∂k

∂xj

∂k

∂xj

)

L =
k1/2

ωc
1/4
µ

(21.5)

Note that the termT1 is the “real” additional SAS term;T2 is included to make sure
that the model in steady flow works as ak − ω SST model.

21.3 The second derivative of the velocity

To computeU ′′ in Eq.21.2, we need to compute the second velocity gradients. In finite
volume methods there are two main options for computing second derivatives.

Option I: compute the first derivatives at the faces
(
∂v

∂x2

)

j+1/2

=
vj+1 − vj

∆x2
,

(
∂v

∂x2

)

j−1/2

=
vj − vj−1

∆x2

and then

⇒
(
∂2v

∂x2
2

)

j

=
vj+1 − 2vj + vj−1

(∆x2)2
+

(∆x2)
2

12

∂4v

∂x4
2

Option II: compute the first derivatives at the center
(
∂v

∂x2

)

j+1

=
vj+2 − vj

2∆x2
,

(
∂v

∂x2

)

j−1

=
vj − vj−2

2∆x2

and then

⇒
(
∂2v

∂x2
2

)

j

=
vj+2 − 2vj + vj−2

4(∆x2)2
+

(∆x2)
2

3

∂4v

∂x4
2

In [142], Option I was used unless otherwise stated.

21.4 Evaluation of the von Ḱarmán length scale in channel flow

In Fig. 21.2the turbulent length scale,〈LvK,3D〉, is evaluated using DNS data of fully
developed channel flow. When using DNS data only viscous dissipation of resolved tur-
bulence affects the equations. This implies that the smallest scales that can be resolved
are related to the grid scale. The von Kármán length scale based on instantaneous ve-
locities, 〈LvK,3D〉, is presented in Fig.21.2. Forx2 > 0.2, its magnitude is close to
∆x2 which confirms that the von Kármán length scale is related to the smallest resolv-
able scales. Closer to the wall,〈LvK,3D〉 increases slightly whereas∆x2 continues to
decrease.

The von Kármán length scale,LvK,1D, based on the averaged velocity profile
〈v̄1〉 = 〈v̄1〉(x2) is also included in Fig.21.2, and as can be seen it is much larger than
〈LvK,3D〉. Near the wallLvK,1D increases because the time-average second derivative,
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1/3; ◦: ∆x2; +: ℓk−ω = k0.5/(c

1/4
µ ω).

∂2〈v̄1〉/∂x2
2, goes to zero as the wall is approached. No such behavior is seen for the

three-dimensional formulation,〈LvK,3D〉.
In Fig. 21.3, data from hybrid LES-RANS are used (taken from [74]). When using

hybrid LES-RANS, part of the turbulence is resolved and partof the turbulence is mod-
elled. The resolved turbulence is dissipated by a modelled dissipation,−2〈νT s̄ij s̄ij〉
(νT denotes SGS or RANS turbulent viscosity), andνT ≫ ν. As a result, the length
scale of the smallest resolved turbulence is larger in hybrid LES-RANS than in DNS.
Close to the wall in the URANS region (x2 < 0.031δ), the resolved turbulence is
dampened by the high turbulent viscosity, and as a results〈LvK,3D〉 follows closely
LvK,1D.

The RANS turbulent length scale,ℓk−ω, from a 1D RANS simulation atReτ =
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2000 with the k − ω SST model is also included in Fig.21.3. In the inner region
(x2 < 0.5δ), its behavior is close to that of the von Kármán length scale,LvK,1D. In the
center region the RANS turbulent length scale continues to increase which is physically
correct. However, the von Kármán length scale,LvK,1D, goes to zero because the
velocity derivative goes to zero.

Two filter scales are included in Figs.21.2 and 21.3. In the DNS-simulations,
∆x2 < (∆x1∆x2∆x3)

1/3 near the wall, whereas far from the wall∆x2 > (∆x1∆x2∆x3)
1/3

because of the stretching in thex2 direction and because of small∆x1 and∆x3. In the
hybrid simulations, it can be noted that the three-dimensional filter width is more that
twice as large as the three-dimensional formulation of the von Kármán length scale,
i.e. (∆x1∆x3∆x3)

1/3 > 2〈LvK,3D〉.
In [142], the SST-SAS model has been evaluated in channel flow, flow inan asym-

metric diffuser and flow over an axi-symmetric hill.
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22 The PANS Model

The PANS method uses the so-called “partial averaging”concept, which corresponds
to a filtering operation for a portion of the fluctuating scales [143].

For an instantaneous flow variable,F , we usef̄ to denote the partially-averaged
part, namelyf̄ = P(F ), whereP denotes the partial-averaging operator. We consider
incompressible flows. Applying the partial averaging to thegoverning equations gives

∂v̄i

∂xi
= 0 (22.1)

∂v̄i

∂t
+
∂(v̄iv̄j)

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂v̄i

∂xj
− τij

)
(22.2)

whereτij is the central second moment resulting from the partial averaging for the
nonlinear terms, that isτij = (P(vivj) − v̄iv̄j), wherevi indicates instantaneous ve-
locity components. This term is similar to the Reynolds stress tensor resulting from the
Reynolds averaging in RANS or to the subgrid-scale (SGS) stress tensor after the spa-
tial filtering in LES. For simplicity, we also use the terminology of Reynolds stresses
for the termτij in Eq.22.2.

To close the system of the partially-averaged Navier-Stokes equations, as in RANS
and LES, a model is needed forτij . In [143] they proposed using the conventional
eddy viscosity concept so thatτij = −2νus̄ij , wheres̄ij is the strain-rate tensor of the
computed flow andνu is the PANS eddy viscosity.

In order to formulate the PANS eddy viscosity, they defined in[143] another two
quantities, the partially-averaged turbulent kinetic energy,ku and its dissipation rateεu,
so thatνu = Cµk

2
u/εu. In the derivation of the transport equations forku andεu, two

parameters,fk andfε, have been introduced, relating the unresolved to the resolved
fluctuating scales. Parameterfk defines the ratio of unresolved (partially-averaged)
turbulent kinetic energy (ku) to the total kinetic energy (k), andfε is the ratio between
the unresolved (εu) and the total (ε) dissipation rates. These give

k =
ku

fk
and ε =

εu

fε
(22.3)

The extent of the resolved part is now determined byfk andfε. In [144, 143] they
employed the standardk − ε model as the base model.

Theku equation is derived by multiplying the RANSk equation (Eq.11.93) in the
k − ε model byfk, i.e. (for simplicity we omit the buoyancy term)

fk

{
∂k

∂t
+ V̄j

∂k

∂xj

}
= fk

{
P k − ε+

∂

∂xj

[(
ν +

νt

σk

)
∂k

∂xj

]}
(22.4)

whereVi denotes the RANS velocity. The left side can be re-written

fk

{
∂k

∂t
+ V̄j

∂k

∂xj

}
=
∂ku

∂t
+ V̄j

∂ku

∂xj
=
∂ku

∂t
+ v̄j

∂ku

∂xj
+ (V̄j − v̄j)

∂ku

∂xj
(22.5)

The convective term must be expressed inv̄j (the PANS averaged velocity) rather than
in V̄j (the RANS averaged velocity), because it isv̄j that transportsku becausēvj

represents the PANS resolved part ofvj . The last term on the right side in Eq.22.5is
usually neglected.
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The diffusion term is re-written using Eq.22.3

fk

{
∂

∂xj

[(
ν +

νt

σk

)
∂k

∂xj

]}
=

∂

∂xj

[(
ν +

νt

σk

)
∂ku

∂xj

]

=
∂

∂xj

[(
ν +

νu

σku

)
∂ku

∂xj

] (22.6)

where

σku = σk
f2

k

fε
(22.7)

The sum of the source terms in Eq.22.4must be equal to the sum of the source terms
of theku equation, i.e.

fk

(
P k − ε

)
= Pu − εu (22.8)

This relation implies

P k =
1

fk
(Pu − εu) +

εu

fε
(22.9)

Using Eqs.22.5, 22.6and22.8the final transport equation forku can now be written
as

∂ku

∂t
+
∂(kuv̄j)

∂xj
=

∂

∂xj

[(
ν +

νu

σku

)
∂ku

∂xj

]
+ Pu − εu (22.10)

where the production term,Pu, is expressed in terms of the PANS eddy viscosity,νu,
and the strain rate of PANS-resolved flow field, i.e.

Pu = νu

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj
(22.11)

where

νu = cµ
k2

u

ε
(22.12)

Theεu equation is derived by multiplying the RANSε equation byfε, i.e.

∂εu

∂t
+
∂(εuv̄j)

∂xj
= fε

[
∂ε

∂t
+
∂(εV̄j)

∂xj

]

= fε

{
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
+ Cε1Pk

ε

k
− Cε2

ε2

k

} (22.13)

The diffusion term is re-written using Eq.22.3

fε

{
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]}
=

∂

∂xj

[(
ν +

νt

σε

)
∂εu

∂xj

]

=
∂

∂xj

[(
ν +

νu

σεu

)
∂εu

∂xj

] (22.14)

where

σεku = σεk
f2

k

fε
(22.15)
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In the same way, the production and destruction terms are re-formulated as (using
Eqs.22.3and22.9)

fε

{
Cε1Pk

ε

k
− Cε2

ε2

k

}
= Cε1

εufk

ku

(
1

fk
(Pu − εu) +

εu

fε

)
− Cε2

ε2ufk

fεku

= Cε1
εu

ku
Pu − Cε1

ε2u
ku

+ Cε1
ε2ufk

kufε
− Cε2

ε2ufk

fεku
(22.16)

= Cε1
εu

ku
Pu − C∗

ε2

ε2u
ku

where

C∗

ε2 = Cε1 +
fk

fε
(Cε2 − Cε1) (22.17)

Theεu equation in the PANS model now takes the following form

∂εu

∂t
+
∂(εuv̄j)

∂xj
=

∂

∂xj

[(
ν +

νu

σεu

)
∂εu

∂xj

]
+ Cε1Pu

εu

ku
− C∗

ε2

ε2u
ku

(22.18)

As in theku equation, the the additional term(V̄j−v̄j)∂εu/∂xj has been neglected.
The PANS equation forku, Eq.22.10, was derived by multiplying the RANS equa-

tion for k by fk which was assumed to be constant in space and in time. By referring
to Eqs.22.6, 22.12and22.7, the turbulent diffusion term was obtained as

fk
∂

∂xj

(
νt

σk

∂k

∂xj

)
=

∂

∂xj

(
νt

σk

∂ku

∂xj

)
(22.19a)

=
∂

∂xj

(
νu

σku

∂ku

∂xj

)
(22.19b)

The expression on the right-hand side of Eq.22.19(a) suggests that the turbulent trans-
port for the PANS-modelled turbulent kinetic energy,ku, is actually formulated in
terms of the RANS turbulent viscosity from the base model. This is different from
the turbulent diffusion in subgrid scale (SGS) modelling ofLES with a one-equation
ksgs model, which reads

∂

∂xj

(
νsgs

σk

∂ksgs

∂xj

)
(22.20)

In Eq. 22.20theSGSturbulent viscosity is invoked for the transport ofksgs, whereas
on the right-hand side of Eq.22.19(a) thetotal (i.e. the RANS) turbulent viscosity has
been used forku. Equation22.19(a) suggests that, when used as an SGS model, the
modelled turbulent diffusion in the PANS formulation is a factor of σk/σku = fε/f

2
k

larger than in Eq.22.20, see Eqs.22.10and22.19(b). With fε = 1 andfk = 0.4, for
example, this factor is larger than six. The modification of the diffusion coefficient,
σku, is a unique property of the PANS model. In other models, suchas DES [145],
X-LES [116] and PITM [120], the sink term in thek, ε or ω equation is modified, but
not the diffusion term.

A Low Reynolds number PANS model was presented in [146]. A recently devel-
oped LRN PANS model is employed, for improved modelling of near-wall turbulence,
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which reads [119]

∂ku

∂t
+
∂(kuv̄j)
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νu = Cµfµ
k2

u

εu
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ε2 = Cε1 +
fk

fε
(Cε2f2 − Cε1)

σku ≡ σk
f2

k

fε
, σεu ≡ σε

f2
k

fε

(22.21)

The modification introduced by the PANS modelling as compared to its parent
RANS model is highlighted by boxes. The model constants takethe same values as in
the LRN model [121], i.e.

Cε1 = 1.5, Cε2 = 1.9, σk = 1.4, σε = 1.4, Cµ = 0.09 (22.22)
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23 Hybrid LES/RANS for Dummies

23.1 Introduction

Fluid flow problems are governed by the Navier-Stokes equations

∂vi

∂t
+
∂vivj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2vi

∂xj∂xj
(23.1)

wherevi denotes the velocity vector,p is the pressure andν andρ are the viscosity and
density of the fluid, respectively. In turbulent flow, the velocity and pressure are un-
steady andvi andp include all turbulent motions, often called eddies. The spatial scale
of these eddies vary widely in magnitude where the largest eddies are proportional to
the size of the largest physical length (for example the boundary layer thickness,δ, in
case of a boundary layer). The smallest scales are related tothe eddies where dissipa-
tion takes place, i.e. where the kinetic energy of the eddiesis transformed into internal
energy causing increased temperature. The ratio of the largest to the smallest eddies
increases with Reynolds number,Re = |vi|δ/ν. This has the unfortunate consequence
– unless one is a fan of huge computer centers – that it is computationally extremely
expensive to solve the Navier-Stokes equations for large Reynolds numbers.

23.1.1 Reynolds-Averaging Navier-Stokes equations: RANS

In order to be able to solve the Navier-Stokes equations witha reasonable computa-
tional cost, the velocity vector and the pressure are split into a time-averaged part (Vi

andP ) and a fluctuating part (v′i andp′), i.e. Vi = vi + v′i, p = P + p′. The resulting
equation is called the RANS (Reynolds-Averaging Navier-Stokes) equations

∂ViVj

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Vi

∂xj∂xj
−
∂v′iv

′
j

∂xj
= −1

ρ

∂P

∂xi
+

∂

∂xj

(
(ν + νt)

∂Vi

∂xj

)
(23.2)

The term in front of the second equal sign is called the Reynolds stress and it is un-
known and must be modelled. All turbulent fluctuation are modelled with a turbulence
model and the results when solving Eq.23.2are highly dependent on the accuracy of
the turbulence model. On the right side of Eq.23.2the unknown Reynolds stresses are
expressed by a turbulence model in which a new unknown variable is introduced which
is called the turbulent viscosity,νt. The ratio ofνt to ν may be of the order of1000
or larger. In industry today, CFD (Computationally Fluid Dynamics) based on finite
volume methods is used extensively to solve the RANS equations, Eq.23.2.

23.1.2 Large Eddy Simulations: LES

A method more accurate than RANS is LES (Large Eddy Simulations) in which only
the small eddies (fluctuations whose eddies are smaller thanthe computational cell) are
modelled with a turbulence model. The LES equations read

∂v̄i

∂t
+
∂v̄iv̄j

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i

∂xj∂xj
− ∂τij
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
(ν + νsgs)

∂v̄i

∂xj

)

(23.3)
Note that the time dependence term (the first term on the left side) has been retained,
because the large, time dependent turbulent (i.e. the resolved) fluctuations are part
of v̄i and p̄ and are not modelled with the turbulence model. The term in front of
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the second equal sign includes the Reynolds stresses of the small eddies, which are
called SGS (sub-grid stresses). This term must also – as in Eq. 23.2– be modelled,
and at the right side it has been modelled with a SGS turbulentviscosity,νsgs. The
difference ofνsgs compared toνt in Eq. 23.2is that it includes only the effect of the
smalleddies. The ratio ofνsgs to ν is of the order of1 to 100. However, the ratio of
the resolved to the modelled turbulence,|v̄′iv̄′j |/|τij | (see Eqs.23.2and23.3) is much
smaller than one. Hence, LES is much more accurate than RANS because only a small
part of the turbulence is modelled with the turbulence SGS model whereas in RANS
all turbulence is modelled. The disadvantage of LES is that it is muchmore expensive
than RANS because a finer mesh must be used and because the equations are solved
in four dimensions (time and three spatial directions) whereas RANS can be solved in
steady state (no time dependence).

When the flow near walls is of importance, is turns out that LESis prohibitively
expensive because very fine cells must be used there. The reason is entirely due to
physics: near the walls, the spatial scales of the “large” turbulent eddies which should
be resolved by LES are in reality rather small. Furthermore,their spatial scales get
smaller for increasing Reynolds number. Much research has the last ten years been
carried out to circumvent this problem. All proposed methods combines RANS and
LES where RANS is used near walls and LES is used some distanceaway from the
walls, see Fig.23.1. These methods are called Detached Eddy Simulation (DES), hy-
brid LES/RANS or zonal LES/RANS. The focus of this report is zonal LES/RANS.

23.1.3 Zonal LES/RANS

Equations23.2and23.3can be written in a same form as

∂v̄i

∂t
+
∂v̄iv̄j

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
(ν + νT )

∂v̄i

∂xj

)
(23.4)

Near the walls, a RANS turbulence model is used for the turbulent viscosity, i.e.νT =
νt and away from the walls an LES turbulence model is employed, i.e. νT = νsgs.
Note that the time dependence term is now retained also in theRANS region: near the
wall we are using anunsteady RANS, i.e. URANS.

Above, we have describe how to use the zonal LES/RANS method for flows near
walls. Another form of zonal LES/RANS isembeddedLES, in which an LES mode is
embedded in a RANS region. One example is prediction of aeroacoustic noise created
by the turbulence around an external mirror on a vehicle [90]. The flow around the ve-
hicle can be computed with RANS, but in order to predict the noise in the region of the
external mirror we must predict the large turbulence fluctuations and hence LES must
be used in this region. In Section23.4we will present simulations using embedded
LES in a simplified configuration represented by the flow in a channel in which RANS
is used upstream of the interface and LES is used downstream of it, see Fig.23.4.

23.2 The PANSk − ε turbulence model

In the present work, the PANSk − ε model is used to simulate wall-bounded flow at
high Reynolds number as well as embedded LES. The turbulencemodel reads [118,
119], see Eq.22.21(here in a slightly simplified form to enhance readability)

∂k

∂t
+
∂kv̄j

∂xj
=

∂

∂xj

[(
ν +

νT

σk

)
∂k

∂xj

]
+ Pk − ε (23.5)



23.3. Zonal LES/RANS: wall modeling 177

interface

interface
2

3.2

x2

x1

LES,fk = 0.4

URANS,fk = 1.0

URANS,fk = 1.0

Figure 23.1: The LES and URANS regions. Fully developed channel flow. Periodic
boundary conditions are applied at the left and right boundaries.

∂ε

∂t
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∂εv̄j

∂xj
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∂

∂xj
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νT

σε

)
∂ε

∂xj

]
+ Cε1Pk

ε

k
− C∗

ε2

ε2

k
(23.6)

C∗

ε2 = Cε1 + fk(Cε2 − Cε1), Cε1 = 1.5, Cε2 = 1.9 (23.7)

νT = Cµ
k2

ε
, Cµ = 0.09 (23.8)

Note thatk andε are always positive. The key elements in the present use of the PANS
k − ε model are highlighted in red. Whenfk in Eq. 23.7 is equal to one, the model
acts as a standardk − ε RANS model giving a large turbulent viscosity. Whenfk is
decreased (to0.4 in the present study),C∗

ε2 in Eq.23.7decreases. As a result

• ε increases because the destruction term (last term in Eq.23.6which is the main
sink term) in theε equation decreases,

• k decreases becauseε (last term in Eq.23.5) is the main sink term in thek
equation increases, and

• νT in Eq.23.8decreases becausek decreases andε increase.

Hence, the turbulence model in Eqs.23.5–23.8acts as a RANS turbulence model
(large turbulent viscosity) whenfk = 1 and it acts as an LES SGS turbulence model
(small turbulent viscosity) whenfk = 0.4.

23.3 Zonal LES/RANS: wall modeling

23.3.1 The interface conditions

The interface plane (see Fig.23.1) separates the URANS regions near the walls and the
LES region in the core region. In the LES regionfk = 0.4 and in the URANS region
fk = 1. In the former region, the turbulent viscosityνT should be an SGS viscosity and
in the latter region it should be an RANS viscosity. HenceνT must decrease rapidly
when going from the URANS region to the LES region. This is achieved by setting
the usual convection and diffusion fluxes ofk at the interface to zero. New fluxes are
introduced using smaller SGS values [147].
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Figure 23.2: Velocities and resolved shear stresses.(Nx × Nz) = (64 × 64) :
Reτ = 4 000; : Reτ = 8 000; : Reτ = 16 000; ////: Reτ = 32 000.

23.3.2 Results

Fully developed channel flow is computed for Reynolds numbersReτ = uτδ/ν =
4 000, 8 000, 16 000 and32 000. The baseline mesh has64×64 cells in the streamwise
(x1) and spanwise (x3) directions, respectively. The size of the domain isx1,max =
3.2, x2,max = 2 andx3,max = 1.6 (δ = uτ = 1). The grid in thex2 direction
varies between80 and128 cells depending on Reynolds number. The interface is set
to x+

2 ≃ 500 for all grids.
The velocity profiles and the resolved shear stresses are presented in Fig.23.2. As

can be seen, the predicted velocity profiles are in good agreement with the log-law
which represents experiments. Figure23.2b presents the resolved shear stresses. The
interface is shown by thick dashed lines and it moves towardsthe wall for increasing
Reynolds number since it is located atx+

2 ≃ 500 for all Reynolds numbers.
The turbulent viscosity profiles are shown in Fig.23.3for three different resolutions

in thex1 − x3 plane. It is interesting to note that the turbulent viscosity is not affected
by the grid resolution. Hence, the model yieldsgrid independentresults contrary to
other LES/RANS models.

The turbulent viscosity (Fig.23.3) is sharply reduced when going across the in-
terface from the URANS region to the LES region and the resolved fluctuations (the
Reynolds shear stress in Fig.23.2b) increase. This shows that the model is switching
from RANS mode to LES mode as it should. More detailed resultscan be found in
[147].

23.4 Zonal LES/RANS: embedded LES

23.4.1 The interface conditions

The interface plane is now vertical, see Fig.23.4. The interface conditions fork and
ε are treated in the same way as in Section23.3.1. The difference is now that “inlet”
turbulent fluctuations must be added to the LESv̄i equations (Eq.23.3) to trigger the
flow into turbulence-resolving mode. Anisotropic synthetic turbulent fluctuations are
used [148, 149].
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Figure 23.3: Turbulent viscosity.
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23.4.2 Results

The Reynolds number for the channel flow isReτ = 950. With a3.2×2×1.6 domain,
a mesh with64 × 80 × 64 cells is used in, respectively, the streamwise (x1), the wall-
normal (x2) and the spanwise (x3) direction, see Fig.23.4. Inlet conditions atx = 0
are created by computing fully developed channel flow with the PANSk − ε model in
RANS mode (i.e. withfk = 1).

Figure23.5a presents the mean velocity and the resolved shear stressesat three
streamwise locations,x1 = 0.19, 1.25 and3 (recall that the interface is located at
x1 = 1). At x1 = 3, the predicted velocity agrees very well with the experimental
log-law profile.

The resolved streamwise velocity fluctuations are zero in the RANS region, as they
should (Fig.23.5b), and the maximum resolved values increase sharply over the in-
terface thanks to the imposed synthetic turbulent “inlet” fluctuations. The turbulent
viscosity is reduced at the interface from its peak RANS value of approximately80 to
a small LES value of approximately one (these values are bothfairly low because of the
low Reynolds number). Hence, it is seen that the present model successfully switches
from RANS to LES across the interface. The results will be presented in more detail in
[147].
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24 Inlet boundary conditions

In RANS it is sufficient to supply profiles of the mean quantities such as velocity and
temperature plus the turbulent quantities (e.g.k andε). However, in unsteady simula-
tions (LES, URANS, DES . . . ) the time history of the velocity and temperature need to
be prescribed; the time history corresponds to turbulent, resolved fluctuations. In some
flows it is critical to prescribe reasonable turbulent fluctuations, but in many flows it
seems to be sufficient to prescribe constant (in time) profiles [104, 150].

There are different ways to create turbulent inlet boundaryconditions. One way is
to use a pre-cursor DNS or well resolved LES of channel flow. This method is limited
to fairly low Reynolds numbers and it is difficult (or impossible) to re-scale the DNS
fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuations is the vortex method [151].
It is based on a superposition of coherent eddies where each eddy is described by a
shape function that is localized in space. The eddies are generated randomly in the
inflow plane and then convected through it. The method is ableto reproduce first and
second-order statistics as well as two-point correlations.

A third method is to take resolved fluctuations at a plane downstream of the inlet
plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlet fluctuations.

24.1 Synthesized turbulence

The method described below was developed in [152, 153, 74] for creating turbulence
for generating noise. It was later further developed for inlet boundary conditions [154,
155, 148].

A turbulent fluctuating velocity fluctuating field (whose average is zero) can be
expressed using a Fourier series, see Section5.3 and Eq.C.17. Let us re-write this
formula as

an cos(nx) + bn sin(nx) =

cn cos(αn) cos(nx) + cn sin(αn) sin(nx) = cn cos(nx− αn)
(24.1)

wherean = cn cos(α) , bn = cn sin(αn). The new coefficient,cn, and the phase angle,
αn, are related toan andbn as

cn =
(
a2

n + b2n
)1/2

αn = arctan

(
bn
an

)
(24.2)

A general form for a turbulent velocity field can thus be written as

v′(x) = 2
N∑

n=1

ûn cos(κn · x + ψn)σn (24.3)

whereûn, ψn andσn
i are the amplitude, phase and direction of Fourier moden. The

synthesized turbulence at one time step is generated as follows.

24.2 Random angles

The anglesϕn andθn determine the direction of the wavenumber vectorκ, see Eq.24.3
and Eq.24.1; αn denotes the direction of the velocity vector,v′. For more details, see
AppendixI.
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Figure 24.1: The wave-number vector,κn
i , and the velocity unit vector,σn

i , are orthog-
onal (in physical space) for each wave numbern.

24.3 Highest wave number

Define the highest wave number based on mesh resolutionκmax = 2π/(2∆), where
∆ is the grid spacing. The fluctuations are generated on a grid with equidistant spacing
(or on a weakly stretched mesh),∆η = x2,max/N2, ∆x3 = x3,max/N3, whereη
denotes the wall-normal direction andN2 andN3 denote the number of cells in thex2

andx3 direction, respectively. The fluctuations are set to zero atthe wall and are then
interpolated to the inlet plane of the CFD grid (thex2 − x3 plane).

24.4 Smallest wave number

Define the smallest wave number fromκ1 = κe/p, whereκe = α9π/(55Lt), α =
1.453. The turbulent length scale,Lt, may be estimated in the same way as in RANS
simulations, i.e.Lt ∝ δ whereδ denotes the inlet boundary layer thickness. In [154,
155, 148] it was found thatLt ≃ 0.1δin is suitable.

Factorp should be larger than one to make the largest scales larger than those
corresponding toκe. A valuep = 2 is suitable.

24.5 Divide the wave number range

Divide the wavenumber space,κmax − κ1, intoN modes, equally large, of size∆κ.
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24.6 von Kármán spectrum

A modified von Kármán spectrum is chosen, see Eq.24.4and Fig.24.2. The amplitude
ûn of each mode in Eq.24.3is then obtained from

ûn = (E(κ)∆κ)1/2

E(κ) = cE
u2

rms

κe

(κ/κe)
4

[1 + (κ/κe)2]17/6
e[−2(κ/κη)2]

κ = (κiκi)
1/2, κη = ε1/4ν−3/4

(24.4)

The coefficientcE is obtained by integrating the energy spectrum over all wavenumbers
to get the turbulent kinetic energy, i.e.

k =

∫ ∞

0

E(κ)dκ (24.5)

which gives [58]

cE =
4√
π

Γ(17/6)

Γ(1/3)
≃ 1.453 (24.6)

where

Γ(z) =

∫ ∞

0

e−z′

xz−1dz′ (24.7)

24.7 Computing the fluctuations

Havingûn, κn
j , σn

i andψn, allows the expression in Eq.24.3to be computed, i.e.

v′1 = 2

N∑

n=1

ûn cos(βn)σ1

v′2 = 2
N∑

n=1

ûn cos(βn)σ2

v′3 = 2

N∑

n=1

ûn cos(βn)σ3

βn = kn
1 x1 + kn

2 x2 + kn
3 x3 + ψn

(24.8)

whereûn is computed from Eq.24.4.
In this way inlet fluctuating velocity fields (v′1, v

′
2, v

′
3) are created at the inletx2−x3

plane.
The code for generating the isotropic fluctuations can be downloadedhere

http://www.tfd.chalmers.se/˜lada/projects/inlet-bou ndary-conditions/proright.html

24.8 Introducing time correlation

A fluctuating velocity field is generated each time step as described above. They are in-
dependent of each other and their time correlation will thusbe zero. This is unphysical.

http://www.tfd.chalmers.se/~lada/projects/inlet-boundary-conditions/proright.html
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Figure 24.2: Modified von Kármán spectrum

To create correlation in time, new fluctuating velocity fields,V ′
1, V ′

2, V ′
3, are computed

based on an asymmetric time filter

(V ′

1)
m = a(V ′

1)
m−1 + b(v′1)

m

(V ′

2)
m = a(V ′

2)
m−1 + b(v′2)

m

(V ′

3)
m = a(V ′

3)
m−1 + b(v′3)

m

(24.9)

wherem denotes the time step number anda = exp(−∆t/T ).
The second coefficient is taken asb = (1−a2)0.5 which ensures that〈V ′2

1 〉 = 〈v′21 〉
(〈·〉 denotes averaging). The time correlation of will be equal to

exp(−τ/T ) (24.10)

whereτ is the time separation and thus Eq.24.9is a convenient way to prescribe the
turbulent time scale of the fluctuations. The inlet boundaryconditions are prescribed
as (we assume that the inlet is located atx1 = 0 and that the mean velocity is constant
in the spanwise direction,x3)

v̄1(0, x2, x3, t) = V1,in(x2) + u′1,in(x2, x3, t)

v̄2(0, x2, x3, t) = V2,in(x2) + v′2,in(x2, x3, t)

v̄3(0, x2, x3, t) = V3,in(x2) + v′3,in(x2, x3, t)

(24.11)

wherev′1,in = (V ′
1)

m, v′2,in = (V ′
2)

m andv′3,in = (V ′
3)

m (see Eq.24.9). The mean
inlet profiles,V1,in, V2,in, V3,in, are either taken from experimental data, a RANS
solution or from the law of the wall; for example, ifV2,in = V3,in = 0 we can estimate
V1,in as [156]

V +
1,in =






x+
2 x+

2 ≤ 5
−3.05 + 5 ln(x+

2 ) 5 < x+
2 < 30

1
κ ln(x+

2 ) +B x+
2 ≥ 30

(24.12)
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Figure 24.3: Auto correlation,B(τ) = 〈v′1(t)v′1(t− τ)t (averaged over time,t). :
Eq.24.10; : computed from synthetic data,(V ′

1)
m, see Eq.24.9.

whereκ = 0.4 andB = 5.2.
The method to prescribed fluctuating inlet boundary conditions have been used for

channel flow [148], for diffuser flow [150] as well as for the flow over a bump and an
axisymmetric hill [157].
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25 Best practice guidelines (BPG)

In the early days of CFD, different CFD codes used to give different results. Even
if the same grid and the same turbulence model were used, there could be substantial
differences between the results. The reasons to these differences could be that the
turbulence model was not implemented in exactly the same wayin the two codes, or
that the discretization scheme in one code was more diffusive than in the other. There
could be small differences in the implementation of the boundary conditions in the two
codes.

Today the situation is much improved. Two different CFD codes usually give the
same results on the same grid. The main reason for this improved situation is because
of workshops and EU projects where academics, engineers from industry and CFD
software vendors regularly meet and discuss different aspects of CFD. Test cases with
mandatory grids, boundary conditions, turbulence models etc are defined and the par-
ticipants in the workshops and EU projects carry out CFD simulations for these test
cases. Then they compare and discuss their results.

25.1 EU projects

Four EU projects in which the author has taken part can be mentioned

LESFOIL: Large Eddy Simulation of Flow Around Airfoils
http://www.tfd.chalmers.se/˜lada/projects/lesfoil/proright.html

FLOMANIA: Flow Physics Modelling: An Integrated Approach
http://cfd.mace.manchester.ac.uk/flomania/

DESIDER: Detached Eddy Simulation for Industrial Aerodynamics
http://cfd.mace.manchester.ac.uk/desider

ATAAC: Advanced Turbulence Simulation for Aerodynamic Application Challenges
http://cfd.mace.manchester.ac.uk/ATAAC/WebHome

25.2 Ercoftac workshops

Workshops are organized by Ercoftac (EuropeanResearchCommunityOnFlow, Turbulence
And Combustion). The Special Interest Group Sig15 is focused on evaluating turbu-
lence models. The outcome from all workshop are presented

here
http://www.ercoftac.org/fileadmin/userupload/bigfiles/sig15/database/index.html

Ercoftac also organizes workshops and courses on Best Practice Guidelines. The
publicationIndustrial Computational Fluid Dynamics of Single-Phase Flows can be
ordered on

Ercoftac www page
http://www.ercoftac.org/publications/ercoftacbestpracticeguidelines/single-phaseflows spf/

http://www.tfd.chalmers.se/~lada/projects/lesfoil/proright.html
http://cfd.mace.manchester.ac.uk/flomania/
http://cfd.mace.manchester.ac.uk/desider//
http://cfd.mace.manchester.ac.uk/ATAAC/WebHome
http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/index.html
http://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/single-phase_flows_spf/
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25.3 Ercoftac Classical Database

A Classical Database, which includes some 100 experimental investigations, canbe
found at

Ercoftac’s www page
http://www.ercoftac.org/productsandservices/classiccollectiondatabase

25.4 ERCOFTAC QNET Knowledge Base Wiki

The QNET is also the responsibility of Ercoftac. Here you finddescriptions of how
CFD simulations of more than 60 different flows were carried out. The flows are di-
vided into

Application Areas. These are sector disciplines such as Built Environment, Chemical
and Process Engineering, External Aerodynamics, Turbomachinery, Combustion
and Heat Transfer etc. Each Application Area is comprised ofApplication Chal-
lenges. These are realistic industrial test cases which canbe used to judge the
competency and limitations of CFD for a given Application Area.

Underlying Flow Regimes. These are generic, well-studied test cases capturing im-
portant elements of the key flow physics encountered across the Application Ar-
eas.

For more information, visit

ERCOFTAC QNET Knowledge Base Wiki
http://www.ercoftac.org/productsandservices/wiki/

http://www.ercoftac.org/products_and_services/classic_collection_database//
http://www.ercoftac.org/products_and_services/wiki/
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A TME225: ε − δ identity

Theε− δ identity reads

εinmεmjk = εminεmjk = εnmiεmjk = δijδnk − δikδnj

In TableA.1 the components of theε− δ identity are given.

i n j k εinmεmjk δijδnk − δikδnj

1 2 1 2 ε12mεm12 = ε123ε312 = 1 · 1 = 1 1 − 0 = 1
2 1 1 2 ε21mεm12 = ε213ε312 = −1 · 1 = −1 0 − 1 = −1
1 2 2 1 ε12mεm21 = ε123ε321 = 1 · −1 = −1 0 − 1 = −1

1 3 1 3 ε13mεm13 = ε132ε213 = −1 · −1 = 1 1 − 0 = 1
3 1 1 3 ε31mεm13 = ε312ε213 = 1 · −1 = −1 0 − 1 = −1
1 3 3 1 ε13mεm31 = ε132ε231 = −1 · 1 = −1 0 − 1 = −1

2 3 2 3 ε23mεm23 = ε231ε123 = 1 · 1 = 1 1 − 0 = 1
3 2 2 3 ε32mεm23 = ε321ε123 = −1 · 1 = −1 0 − 1 = −1
2 3 3 2 ε23mεm32 = ε231ε132 = 1 · −1 = −1 0 − 1 = −1

Table A.1: The components of theε− δ identity which are non-zero.
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Figure B.1: Flow between two plates (not to scale).

B TME225 Assignment 1: laminar flow

You will get results of a developing two-dimensional channel flow (i.e. flow between
two parallel plates), see Fig.B.1. The flow is steady and incompressible. The simula-
tions have been done with Calc-BFC [158]. The inlet boundary condition (left bound-
ary) isv1 = Vin = 0.7. The height of the channel ish = 0.011m andL = 0.6385m;
the fluid is air of20oC. You will use Matlab to analyze the data. You can also use
Octave on Linux/Ubuntu. Octave is a Matlab clone which can bedownloaded for free.

• First, find out and write down the governing equations (N.B:.you cannot assume
that the flow is fully developed).

From the course www pagehttp://www.tfd.chalmers.se/˜lada/MoF/ ,
download the data filechannel flow data.dat and the m-filechannel flow.m
which reads the data and plot some results. Open Matlab and executechannel flow .

Openchannel flow.m in an editor and make sure that you understand it. There
are three field variables,v1, v2 andp; the corresponding Matlab arrays arev1 2d ,
v2 2d andp 2d . The grid is199 × 22, i.e. ni = 199 grid points in thex1 direction
andnj = 22 grid points in thex2 direction. The field variables are stored at these grid
points. We denote the first index asi and the second index asj, i.e. v1 2d(i,j) .
Hence in

v1 2d(:,1) are thev1 values at the lower wall;

v1 2d(:,nj) are thev1 values at the upper wall;

v1 2d(1,:) are thev1 values at the inlet;

v1 2d(ni,:) are thev1 values at the outlet;

The work should be carried out in groups of two (you may also doit on your
own, but we don’t recommend it). At the end of this Assignmentthe group should
write and submit a report (in English). Divide the report into sections corresponding
to the sectionsB.1 – B.9. In some sections you need to make derivations; these should
clearly be described and presented. Present the results in each section with a figure
(or a numerical value). The results should also be discussedand – as far as you can –
explained.

http://www.tfd.chalmers.se/~lada/MoF/
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B.1 Fully developed region

Fully developed conditions mean that the flow does not changein the streamwise di-
rection, i.e.∂v1/∂x1 = 0. If we define “fully developed” as the location where the
velocity gradient in the center becomes smaller than0.01, i.e. |∂v1/∂x1| < 0.01, how
long distance from the inlet does the flow become fully developed?

Another way to define fully developed conditions can be thex1 position where the
centerline velocity has reached, for example,99% of its final value. Whatx1 value do
you get?

In Section3.2.2, a distance taken from the literature is given. How well doesthis
agree with your values?

In the fully developed region, compare the velocity profile with the analytical pro-
file (see Section3.2.2).

Look at the vertical velocity component,v2. What value should it take in the fully
developed region (see Section3.2.2)? What value does it take (atx2 = h/4, for
example)?

B.2 Wall shear stress

On the lower wall, the wall shear stress,τw,L (indexL denotes Lower), is computed as

τw,L ≡ τ21,w,L = µ
∂v1
∂x2

∣∣∣∣
L

(B.1)

Recall thatτ12 = µ(∂v1/∂x2 + ∂v2/∂x1) (see Eqs.2.4 and 1.5) but at the wall
∂v2/∂x1 = 0; Skk = 0 because of the continuity equation, Eq.2.3. Plot τw,L ver-
susx1. Why does it behave as it does?

Now we will compute the wall shear stress at the upper wall,τw,U . If you use
Eq.B.1, you get the incorrect sign. Instead, use Cauchy’s formula (see [2], Chapt. 4.2)

t
(n̂)
i = τjinj (B.2)

which is a general way to compute the stress vector on a surface whose (outward point-
ing) normal vector iŝn = nj . The expression forτij can be found in Eqs.1.5 and
2.4; recall that the flow in incompressible. On the top wall, the normal vector points
out from the surface (i.e.nj = (0,−1, 0)). Use Eq.B.2 to compute the wall shear
stress at the upper wall. Plot the two wall shear stresses in the same figure. How do
they compare? In the fully developed region, compare with the analytical value (see
Eq.3.30).

B.3 Inlet region

In the inlet region the flow is developing from its inlet profile (v1 = V = 0.7) to
the fully developed profile somewhere downstream. Thev1 velocity is decelerated
in the near-wall regions, and hence thev1 velocity in the center must increase due
to continuity. Plotv1 in the center and near the wall as a function ofx1. Plot also
∂v1/∂x1. If you, for a fixedx1, integratev1, i.e.

ξ(x1) =

∫ h

0

v1(x1, x2)dx2

what do you get? How doesξ(x1) vary in thex1 direction? How should it vary?
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B.4 Wall-normal velocity in the developing region

In SectionB.3 we found that, in the developing region,v1 near the walls decreases for
increasingx1. What aboutv2? How do you explain the behaviour ofv2?

B.5 Vorticity

Do you expect the flow to beirrotational anywhere? Let’s find out by computing the
vorticity, see Section1.3. Plot it in the fully developed region asω3 vs.x2. Where is it
largest? Plot the vorticity also in the inlet and developingregions; what happens with
the vorticity in the inlet region? Now,is the flow rotational anywhere? Why? Why
not?

B.6 Deformation

In Section1.5, we divided the velocity gradient into a strain-rate tensor, Sij , and a vor-
ticity tensor,Ωij . Since the flow is two-dimensional, we have only two off-diagonal
terms (which ones?). Plot and compare one of the off-diagonal term of Sij andΩij .
Where are they largest? Why? What is the physical meaning ofSij andΩij , respec-
tively? CompareΩij with the vorticity you plotted in SectionB.5. Are they similar?
Any comment?

B.7 Dissipation

Compute and plot the dissipation,Φ = τji∂vi/∂xj . What is the physical meaning
of the dissipation? Where do you expect it to be largest? Where is it largest? Any
difference it its behaviour in the inlet region compared to in the fully developed region?

The dissipation appears as a source term in the equation for internal energy, see
Eq.2.9. This means that dissipation increases the internal energy, i.e. the temperature.
This is discussed in some detail at p.24.

Use Eq.2.14to compute the temperature increase that is created by the flow (i.e. by
dissipation). Start by integrating the dissipation over the entire computational domain.
Next, re-write the left side on conservative form and then apply the Gauss divergence
theorem. Assume that the upper and lower walls are adiabatic; furthermore we can
neglect the heat flux by conduction,q1, (see Eq.2.11) at the inlet and outlet. Now
you can compute the increase in bulk temperature,Tb, from inlet to outlet. The bulk
temperature is defined at

Tb =

∫ h

0 v1Tdx2
∫ h

0
v1dx2

B.8 Eigenvalues

Compute and plot the eigenvalues of the viscous stress tensor, τij . Use the Matlab
commandeig . If you have computed the four elements of theτij matrix you can use
the following commands:

tau=[tau_11 tau_12; tau_21 tau_22];
[n,lambda]=eig(tau);
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wheren and lambda denote eigenvalues and eigenvectors, respectively. Note that
tau 11, tau 12, tau 21, tau 22 are scalars and hence the coding above must
be inserted infor loops.

What is the physical meaning of the eigenvalues (see Chapter1.7)? Pick anx1 loca-
tion where the flow is fully developed. Plot one eigenvalue asax−y graph (eigenvalue
versusx2). Plot also the four stress components,τij , versusx2. Is (Are) anyone(s) neg-
ligible? How does the largest component ofτij compare with the largest eigenvalue?
Any thoughts? And again:what is the physical meaning of the eigenvalues?

B.9 Eigenvectors

Compute and plot the eigenvectors ofτij . Recall that at each point you will get two
eigenvectors, perpendicular to each other. It is enough to plot one of them. An eigen-
vector is, of course, a vector. Use the Matlab commandquiver to plot the field of the
eigenvectors. Recall that the sign of the eigenvector is notdefined (for example, both
v̂1 and−v̂1 in Fig.1.10at p.19are eigenvectors). Try to analyze why the eigenvectors
behave as they do.
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Figure C.1: Scalar product.

C TME225: Fourier series

Here a brief introduction to Fourier series extracted from [159] is given.

C.1 Orthogonal functions

Consider three vectors,V1, V2, V3, in physical space which form an orthogonal base
in R3 (i.e. their scalar products are zero). Let us call thembasis functions. Any vector,
T, in R3 can now be expressed in these three vectors, i.e.

T = c1V1 + c2V2 + c3V3 (C.1)

see Fig.C.1. Now define the scalar product of two vectors,a andb, asa · b = (a|b).
The coordinates,ci, can be determined by making a scalar product of Eq.C.1 andVi

which gives

(T|Vi) = (c1V1|Vi) + (c2V2|Vi) + (c3V3|Vi)

= (c1V1|V1) + (c2V2|V2) + (c3V3|V3)

= c1|V1|2 + c2|V2|2 + c3|V3|2 = ci|Vi|2
(C.2)

where|Vi| denotes the length ofVi; the second line follows because of the orthogo-
nality of Vi. Hence the coordinates,ci, are determined by

ci = (T|Vi)/|Vi|2 (C.3)
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Now let us define an infinite (∞-dimensional) functional space,B, with orthogonal
basis functions{g}∞1 . The “scalar product” of two functions,f andgn, is defined as

(f |gn) =

∫ b

a

f(x)gn(x)dx (C.4)

Then, in a similar way to Eq.C.1, any function can, over the interval[a, b], be expressed
as

f =

∞∑

n=1

cngn (C.5)

As above, we must now find the “coordinates” (cf. the coordinates,ci, in Eq. C.1).
Multiply, as in Eq.C.2, f with the basis functions,gi, i.e.

(f |gi) =

∞∑

n=1

cn(gn|gi) (C.6)

Since we know that allgn are orthogonal, Eq.C.6 is non-zero only ifi = n, i.e.

(f |gi) = (c1g1|gi) + (c2g2|gi) . . . ci(gi|gi) . . . ci+1(gi+1|gi) . . . =

= ci(gi|gi) = ci||gi||2
(C.7)

Similar to Eq.C.3, the “coordinates” can be found from (switch from indexi to n)

cn = (f |gn)/||gn||2 (C.8)

The “coordinates”,cn, are called theFourier coefficients tof in system{g}∞1 and
||gn|| is the “length” ofgn (cf. |Vi| which is the length ofVi in Eq.C.3), i.e.

||gn|| = (gn|gn)1/2 =

(∫ b

a

gn(x)gn(x)dx

)1/2

(C.9)

Let us now summarize and compare the basis functions in physical space and the
basis functions in functional space.

1. Any vector inR3 can be expressed in
the orthogonal basis vectorsVi

1. Any function in [a, b] can be ex-
pressed in the orthogonal basis func-
tionsgn

2. The length of the basis vector,Vi, is
|Vi|

2. The length of the basis function,gn,
is ||gn||

3. The coordinates ofVi are computed
asci = (T|Vi)/|Vi|2

3. The coordinates ofgn are computed
ascn = (f |gn)/||gn||2

C.2 Trigonometric functions

Here we choosegn as trigonometric functions which are periodic in[−π, π]. The
question is now how to choose the orthogonal function system{g}∞1 on the interval
[−π, π]. In mathematics, we usually start by doing an intelligent “guess”, and then we
prove that it is correct. So let us “guess” that the trigonometric series

[1, sinx, cosx, sin(2x), . . . , sin(nx), cos(nx), . . .] (C.10)
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is an orthogonal system. The function system in Eq.C.10can be defined as

gn(x) =

{
φk(x), for n = 2k = 2, 4, . . .
ψk(x), for n = 2k + 1 = 1, 3, . . .

(C.11)

whereφk(x) = sin(kx) (k = 1, 2, . . .) andψk(x) = cos(kx) (k = 0, 1, . . .). Now we
need to show that they are orthogonal, i.e. that the integralof the product of any two
functionsφk andψk is zero onB[−π, π] and we need to compute their “length” (i.e.
their norm).

Orthogonality of ψn andψk

(ψn|ψk) =

∫ π

−π

cos(nx) cos(kx)dx =
1

2

∫ π

−π

[cos((n+ k)x) + cos((n− k)x)] dx

=
1

2

[
1

n+ k
sin((n+ k)x) +

1

n− k
sin((n− k)x)

]π

−π

= 0 for k 6= n

(C.12)

“Length” of ψk

(ψk|ψk) = ||ψk||2 =

∫ π

−π

cos2(kx)dx =

[
x

2
+

1

4
sin(2x)

]π

−π

= π for k > 0

(ψ0|ψ0) = ||ψ0||2 =

∫ π

−π

1 · dx = 2π

(C.13)

Orthogonality of φn andψk

(φn|ψk) =

∫ π

−π

sin(nx) cos(kx)dx =
1

2

∫ π

−π

[sin((n+ k)x) + sin((n− k)x)] dx =

− 1

2

[
1

n+ k
cos((n+ k)x) +

1

n− k
cos((n− k)x)

]π

−π

= 0

(C.14)

Orthogonality of φn and φk

(φn|φk) =

∫ π

−π

sin(nx) sin(kx)dx =
1

2

∫ π

−π

[cos((n− k)x) − cos((n+ k)x)] dx

=
1

2

[
1

n− k
sin((n− k)x) − 1

n+ k
sin((n+ k)x)

]π

−π

= 0 for k 6= n

(C.15)

“Length” of φk

(φk|φk) = ||φk||2 =

∫ π

−π

sin2(kx)dx =

[
x

2
− 1

4
sin(2x)

]π

−π

= π for k ≥ 1

(C.16)
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C.3 Fourier series of a function

Now that we have proved that{g}∞1 in Eq.C.11forms an orthogonal system of func-
tions, we know that we can express any periodic function,f (with a period of2π) in
{g}∞1 as

f(x) = c+
∞∑

n=1

(an cos(nx) + bn sin(nx)) (C.17)

wherex is a spatial coordinate. The Fourier coeffients are given by

bn = (f |φn)/||φn||2 =
1

π

∫ π

−π

f(x) sin(nx)dx (C.18a)

an = (f |ψn)/||ψn||2 =
1

π

∫ π

−π

f(x) cos(nx)dx, n > 0 (C.18b)

c = (f |ψ0)/||ψ0||2 =
1

2π

∫ π

−π

f(x)dx (C.18c)

If we setc = a0/2, thena0 is obtained from Eq.C.18b, i.e.

f(x) =
a0

2
+

∞∑

n=1

(an cos(nx) + bn sin(nx)) (C.19a)

bn = (f |φn)/||φn||2 =
1

π

∫ π

−π

f(x) sin(nx)dx (C.19b)

an = (f |ψn)/||ψn||2 =
1

π

∫ π

−π

f(x) cos(nx)dx (C.19c)

Note thata0 corresponds to the average off . Taking the average off (i.e. integrat-
ing f from−π to π) gives (see Eq.C.19a)

f̄ =

∫ π

−π

f(x)dx = πa0 (C.20)

Hence, iff̄ = 0 thena0 = 0.

C.4 Derivation of Parseval’s formula

Parseval’s formula reads
∫ π

−π

(f(x))2dx =
π

2
a2
0 + π

∞∑

n=1

(a2
n + b2n) (C.21)

We will try to prove this formula. Assume that we want to approximate the function
f as well as possible with an orthogonal series

∞∑

n=1

angn (C.22)

Now we want to prove that the Fourier coefficients are the bestchoice to minimize the
difference

||f −
N∑

n=1

angn|| (C.23)



C.4. Derivation of Parseval’s formula 197

Later we will letN → ∞. Using the definition of the norm and the laws of scalar
product we can write

||f −
N∑

n=1

angn||2 =

(
f −

N∑

n=1

angn

∣∣∣∣∣f −
N∑

k=1

akgk

)

= (f |f) −
N∑

n=1

an(f |gn) −
N∑

k=1

ak(f |gk) +

N∑

n=1

N∑

k=1

anak(gn|gk) =

= (f |f) − 2
N∑

n=1

an(f |gn) +
N∑

n=1

a2
n(gn|gn)

(C.24)

because of the orthogonality of the function system,{g}N
1 . Expressf in the second

term using the Fourier coefficientscn (see Eqs.C.5andC.8) gives

(f |f) − 2

N∑

n=1

ancn(gn|gn) +

N∑

n=1

a2
n(gn|gn)

= ||f ||2 +

N∑

n=1

||gn||2
(
a2

n − 2ancn
)

= ||f ||2 +

N∑

n=1

||gn||2 (an − cn)
2 −

N∑

n=1

||gn||2c2n

(C.25)

The left side of Eq.C.24 is thus minimized if the coefficientsan are chosen as the
Fourier coefficients,cn so that

||f −
N∑

n=1

angn||2 = ||f ||2 −
N∑

n=1

||gn||2c2n (C.26)

The left side must always be positive and hence

N∑

n=1

||gn||2c2n ≤ ||f ||2 =

∫ π

−π

(f(x))2dx for all N (C.27)

As N is made larger, the magnitude of the left side increases, andits magnitude gets
closer and closer to that of the right side, but it will alwaysstay smaller than||f ||2.
This means that the series on the left side isconvergent. Using the Fourier coefficients
in Eq. C.19and lettingN → ∞ it can be shown that we get equality of the left and
right side, which gives Parseval’s formula,

||f ||2 ≡
∫ π

−π

(f(x))2dx =
π

2
a2
0 + π

∞∑

n=1

(a2
n + b2n)

Note thatπ/2 andπ on the right side correspond to the “length” of||gn||, i.e. ||ψ0||,
||ψn|| and||φn||, respectively.

AppendixM describes in detail how to create energy spectra from two-point corre-
lations.
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C.5 Complex Fourier series

EquationC.19 gives the Fourier series of a real function. It is more convenient to
express a Fourier series in complex variables even if the function f itself is real. On
complex form it reads

f(x) =

∞∑

n=−∞

cn exp(ınx)) (C.28a)

cn =
1

2π

∫ π

−π

f(x) exp(−ınx)dx (C.28b)

where the Fourier coefficients,cn, are complex. Below we verify that iff is real, then
Eq.C.28is equivalent to Eq.C.19. The Fourier coefficients,cn, read – assuming that
f is real – according to Eq.C.28

cn =
1

2π

∫ π

−π

f(x)(cos(nx) − ı sin(nx))dx =
1

2
(an − ıbn), n > 0 (C.29)

wherean andbn are given by Eq.C.19. For negativen in Eq.C.28we get

c−n = c∗n =
1

2π

∫ π

−π

f(x)(cos(nx) + ı sin(nx))dx =
1

2
(an + ıbn), n > 0 (C.30)

wherec∗n denotes the complex conjugate. Forn = 0, Eq.C.28reads

c0 =
1

2π

∫ π

−π

f(x)dx =
1

2
a0 (C.31)

see Eq.C.19. Inserting Eqs.C.29, C.30andC.31into Eq.C.28gives

f(x) =
1

2
a0 +

1

2

∞∑

n=1

(an − ıbn) exp(ınx) + (an + ıbn) exp(−ınx)

=
1

2
a0 +

1

2

∞∑

n=1

(an − ıbn)(cos(nx) + ı sin(nx)) + (an + ıbn)(cos(nx) − ı sin(nx))

=
1

2
a0 +

∞∑

n=1

an cos(nx) − ı2bn sin(nx) =
1

2
a0 +

∞∑

n=1

an cos(nx) + bn sin(nx)

(C.32)

which verifies that the complex Fourier series for a real function f is indeed identical
to the usual formulation in Eq.C.19although the Fourier coefficients,cn, are complex.
One advantage of Eq.C.28over the formulation in Eq.C.19is that we don’t need any
special definition for the first Fourier coefficient,a0. The trick in the formulation in
Eq. C.28is that the imaginary coefficients for negative and positiven cancel whereas
the real coefficients add. This means that the real coefficients are multiplied by a factor
two except the first coefficient,a0, which makes up for the factor12 in front of a0 in
Eq.C.19.
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D TME225: Why has the energy spectrum,E, such
strange dimensions?

The energy spectrum,E, has the strange dimensionv2/ℓ. The reason is that it is a
spectraldensityso that the kinetic energy,k = v′iv

′
i, is computed by integrating over

all wavenumbers, see Eq.5.10. The energy spectrum is a spectral density function in
a similar way asfv(v) in Eq. 7.2; the difference is thatfv(v) in Eq. 7.2 is the first
moment. Equation7.5defines the second moment. The dimension offv(v) in Eq.7.2
andfv′(v′) in Eq.7.5 is one over velocity squared.

Since we have chosen to express the energy spectrum as a function of the wavenum-
ber, dimension analysis givesE ∝ κ−5/3, see Eqs.5.12and5.13. A similar dimension
analysis for the kinetic energy ofv′ givesv′2κ ∝ κ−2/3. However, integratingv′2κ over
all wavenumbers does not give any useful integral quantity.

The integral of the energy spectrum in the inertial region can be estimated as (see
Eqs.5.10and5.13)

k = CKε
2

3

∫ κ2

κ1

κ−
5

3 dκ (D.1)

We could also expressE as a function of the turbulent length scale of the eddies,ℓκ
(κ = 2π/ℓκ, see Eq.5.7). The energy spectrum is then integrated as

k =

∫ κ2

κ1

E(κ)

κ−5/3

dκ = CKε
2

3

∫ κ2

κ1

κ−
5

3 dκ
κ−2/3

= CKε
2

3

∫ κ2

κ1

κ−
5

3

dκ

dℓκ
dℓκ = −CK2πε

2

3

∫ ℓ2

ℓ1

κ−
5

3 ℓ−2
κ dℓκ

= CK

( ε

2π

) 2

3

∫ ℓ1

ℓ2

ℓ
−

1

3

κ dℓκ

ℓ
2/3

κ

=

∫ ℓ1

ℓ2

Eℓ(ℓκ)

κ−1/3

dℓκ

(D.2)

As can be seen, the energy spectrumEℓ(ℓκ) obeys the−1/3 law andE(κ) obeys the
−5/3 law. However, as mentioned above, the kinetic energy ofv′κ decays asκ−2/3.
The reason whyEℓ decays slower thanv′2κ is that asdℓκ in the last line of Eq.D.2
increases, the size of the eddies increases; large eddies have larger kinetic energy and
henceEℓ(ℓκ) decreases slower. In the same way,E(κ) decays faster thanv′2κ because
dκ in the first line of Eq.D.2 encompasses smaller and smaller eddies asκ increases.

D.1 An example

Let’s generate a fluctuating velocity,v′, using a Fourier series. For simplicity we make
it symmetric so that only the cosine part needs to be used. We make it with four terms.
It reads then (see Eq.C.19)

v′ = a0.5
1 cos

(
2π

L/1
x

)
+ a0.5

2 cos

(
2π

L/2
x

)

+ a0.5
3 cos

(
2π

L/3
x

)
+ a0.5

4 cos

(
2π

L/4
x

) (D.3)

where the wavenumbern in Eq. C.19corresponds to2π/(L/k) with k = (1, 2, 3, 4).
The first coefficient,a0 = 0, in Eq.C.19because the mean of the fluctuationv′ is zero,
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Figure D.1:v′ in Eq.D.5 vs. x/L. : term 1 (k = 1); : term 2 (k = 2); :
term 3 (k = 3); ◦: term 4 (k = 4); thick line: v′. Matlab code is given in SectionD.2.

i.e. ∫ L

0

v′dx = 0 (D.4)

Equation Eq.D.3 is continuous, i.e. it is given for anyx/L = [0, 1]. In unsteady
CFD simulations we are always dealing with discrete points,i.e. a computational grid.
Hence, let’s express Eq.D.3 forN = 16 discrete points with∆x = 1/(N − 1) as

v′ = a0.5
1 cos

(
2π(n− 1))

N/1

)
+ a0.5

2 cos

(
2π(n− 1))

N/2

)

+ a0.5
3 cos

(
2π(n− 1))

N/3

)
+ a0.5

4 cos

(
2π(n− 1))

N/4

) (D.5)

where(n− 1)/N = x/L andn = [1, N ].
Now we wantv′ in Eq. D.5 to have an energy spectrum of−5/3. Parseval’s for-

mula, Eq.C.21, tells us that the kinetic energy of an eddy of wavenumberκ is simply
the square of its Fourier coefficient. Hence we let the ratio of the ak coefficients in
Eq.D.5 decrease ask−5/3, i.e.

a1 = 1, a2 = 2−5/3, a3 = 3−5/3, a4 = 4−5/3 (D.6)

FigureD.1 shows howv′ varies overx/L. The four terms in E.D.5 shown in Fig.D.1
can be regarded as the velocity fluctuations at one time instant of four eddies of length-
scaleL, L/2, L/3 andL/4. The period of the four terms isL, L/2, L/3, andL/4
corresponding to wavenumber2π/L, 2 · 2π/L, 3 · 3π/L and4 · 2π/L.

Now let’s make a DFT of thev′ to get the energy spectrum (see Matlab code in
SectionD.2). In DFT, the integral in Eq.C.18

ak =
1

π

∫ π

−π

v′(x) cos(κx)dx =
1

π

∫ π

−π

v′(x) cos

(
2πkx

L

)
dx (D.7)

is replaced by a summation over discrete points, i.e.

Ak =
1

N

N∑

1

v′(x) cos

(
2πk(n− 1)

N

)
(D.8)
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Figure D.2: Energy spectrum ofv′. ◦: Evv = A2
k. Matlab code is given in SectionD.2.

where(n− 1)/N = x/L (note thatk = 0 corresponds to the mean, which is zero, see
Eq.D.4).

Now plot the energy spectrum,Evv = A2
k versus wavenumber, see Fig.D.2a.

It can be seen that it decays asκ−5/3 as expected (recall that we chose the Fourier
coefficients,ak, to achieve this). The total energy is now computed as

〈v′2〉x =

N∑

k=1

A2
k =

N∑

k=1

Evv(k) (D.9)

where〈·〉x denotes averaging overx. Note that Eq.D.9 does not involve the wavenum-
ber, ∆κ, contrary to the continuous formulation in Eq.D.2. How come, then, that
Evv still decays asκ−5/3 and not asκ−2/3 as dimensional analysis of Eq.D.9 would
give? The reason, as indicated at the end of SectionD, is thatEvv is plotted versus
the wavenumber which includes smaller and smaller eddies asit increases. This is best
seen in Fig.D.1; asκ (indicated byk in Fig. D.1) increases, the turbulent length scale
of the four eddies decreases asL, L/2, L/3, L/4. Hence,Evv in Eq. D.9 decreases
by one order of magnitude faster than expected (−5/3 instead of−2/3) because it is
plotted versus a quantity (κ) that includes smaller and smaller eddies as it increases.

FigureD.2b shows the computed energy spectrum,Eℓ(ℓκ), versus eddy size, see

Matlab code in SectionD.2. It decays asℓ−1/3
κ as it should, see Eq.D.2.

D.2 An example: Matlab code

close all
clear all

% number of cells
N=16;
L=1;

n=1:1:N;
x_over_L=(n-1)/N;
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% E_vv=kˆ(-5/3)
a1=1;
a2=2ˆ(-5/3);
a3=3ˆ(-5/3);
a4=4ˆ(-5/3);

for i=1:N
arg2(i)=2 * pi * (i-1)/N;
arg2(i)=2 * pi * x_over_L(i);
v(i)=a1ˆ0.5 * cos(arg2(i))+a2ˆ0.5 * cos(2 * arg2(i))+a3ˆ0.5 * cos(3 * arg2(i))+a4ˆ0.5 * cos(4

end

% take DFT
W_cos=zeros(1,N);
W_sin=zeros(1,N);
for k=1:N
for i=1:N

a=v(i);
arg1=2 * pi * (k-1) * (i-1)/N;
W_cos(k)=W_cos(k)+a * cos(arg1)/N;
W_sin(k)=W_sin(k)+a * sin(arg1)/N;

end
end

% Note that all elements of W_sin are zero since v(i) is symmet ric

%*************************************************** ****************
figure(1)
f1=a1ˆ0.5 * cos(arg2);
f2=a2ˆ0.5 * cos(2 * arg2);
f3=a3ˆ0.5 * cos(3 * arg2);
f4=a4ˆ0.5 * cos(4 * arg2);
plot(x_over_L,f1,’linew’,2)
hold
plot(x_over_L,f2,’r--’,’linew’,2)
plot(x_over_L,f3,’k-.’,’linew’,2)
plot(x_over_L,f4,’o’,’linew’,2)
plot(x_over_L,w,’k-’,’linew’,4)

h=gca
set(h,’fontsi’,[20])
xlabel(’x’)
ylabel(’y’)
axis([0 1 -1 3])
print vprim_vs_L.ps -depsc2

%
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%*************************************************** ****************
%
figure(2)
%
% the power spectrum is equal to W * conj(W) = W_cosˆ2+W_sinˆ2
PW=W_cos.ˆ2+W_sin.ˆ2;

kx=2 * pi * (n-1)/L;

% plot power spectrum; plot only one side of the symmetric spe ctrum and
% multiply by two so that all energy is accounted for
plot(kx(1:N/2),2 * PW(1:N/2),’bo’,’linew’,2)
hold
h=gca
set(h,’xscale’,’log’)
set(h,’yscale’,’log’)
axis([0 100 0.01 1])

% plot -5/3 line
xxx=[5 50];
yynoll=1;
yyy(1)=yynoll;
yyy(2)=yyy(1) * (xxx(2)/xxx(1))ˆ(-5/3);
plot(xxx,yyy,’r--’,’linew’,4)

% compute the average of energy in physical space
int_phys=0;
for i=1:N

int_phys=int_phys+v(i).ˆ2/N;
end

% compute the average of energy in wavenumber space
int_wave=0;
for i=1:N

int_wave=int_wave+PW(i);
end

set(h,’fontsi’,[20])
xlabel(’x’)
ylabel(’y’)
print spectra_vs_kappa.ps -depsc2
%
%*************************************************** ****************
%
figure(3)

% compute the length corresponding the wavenumber
lx=2 * pi./kx;
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% multiply PW by lxˆ(-2) to get the energy spectrum E(lx)
PW_L=PW.* lx.ˆ(-2);

% plot power spectrum
plot(lx(1:N/2),2 * PW_L(1:N/2),’bo’,’linew’,2)
hold
h=gca
set(h,’xscale’,’log’)
set(h,’yscale’,’log’)

axis([0.1 3 .3 1])

% plot -1/3 line
xxx=[0.1 1]
yynoll=0.9;
yyy(1)=yynoll;
yyy(2)=yyy(1) * (xxx(2)/xxx(1))ˆ(-1/3);
plot(xxx,yyy,’r--’,’linew’,4);

set(h,’fontsi’,[20])
xlabel(’x’)
ylabel(’y’)
print spectra_vs_L.ps -depsc2
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E TME225 Assignment 2: turbulent flow

In this exercise you will use data from a Direct Numerical Simulation (DNS) for fully
developed channel flow. In DNS the unsteady, three-dimensional Navier-Stokes equa-
tions are solved numerically. TheRe number based on the friction velocity and the
half channel width isReτ = uτh/ν = 500 (h = ρ = uτ = 1 so thatν = 1/Reτ ).

A 96 × 96 × 96 mesh has been used. The streamwise, wall-normal and spanwise
directions are denoted byx (x1), y (x2) andz (x3) respectively. The cell size inx and
z directions are∆x = 0.0654 and∆z = 0.0164. Periodic boundary conditions were
applied in thex andz direction (homogeneous directions). All data have been made
non-dimensional byuτ andρ.

You can do the assignment on your own or in a group of two. You should write a re-
port where you analyze the results following the headingE.1–E.11. It is recommended
(but the not required) that you use LATEX(an example of how to write in LATEXis avail-
able on the course www page). It is available on Linux. On Windows you can use, for
example,MikTex (www.miktex.org ) which is free to download.

E.1 Time history

At the course home pagehttp://www.tfd.chalmers.se/˜lada/MoF/ you
find a file u v time 4nodes.dat with the time history ofv1 and v2. The file
has eight columns ofv1 and v2 at four nodes:x2/δ = 0.0039, x2/δ = 0.0176,
x2/δ = 0.107 andx2/δ = 0.47. With uτ = 1 andν = 1/Reτ = 1/500 this cor-
respond tox+

2 = 1.95, x+
2 = 8.8, x+

2 = 53.5 andx+
2 = 235. The sampling time step

is ∆t = 0.0033 (every second time step). The four points are located in the viscous
sublayer, the buffer layer and in the logarithmic layer, seeFig. 6.2at p.56.

Use the Matlab. You can also use Octave on Linux/Ubuntu. Octave is a Matlab
clone which can be downloaded for free. Start the programpl time.m which loads
and plots the time history ofv1. Start Matlab and run the programpl time . Recall
that the velocities have been scaled with the friction velocity uτ , and thus what you see
is reallyv1/uτ . The time history ofv1 atx2/δ = 0.0176 andx2/δ = 0.107 are shown.
Study the time history of the blue line (x2/δ = 0.0176) more in detail. Make a zoom
between, for example,t = 10 andt = 11 andv1,min = 3 andv1,min = 21. This is
conveniently done with the command

axis([10 11 3 21])

In order to see the value at each sampling time step, change the plot command to

plot(t,u2,’b-’,t,u2,’bo’)

Use this technique to zoom, to look at the details of the time history. Alternatively,
you can use the zoom buttons above the figure.

Plot v1 for all four nodes. How does the time variation ofv1 vary for different
positions? Plot alsov2 at the four different positions. What is the differences between
v1 andv2?

E.2 Time averaging

Compute the average of thev1 velocity at node 2. Add the following code (before the
plotting section)

http://www.miktex.org/
http://www.tfd.chalmers.se/~lada/MoF/


E.3. Mean flow 206

umean=mean(u2)

Here the number of samples isn = 5000 (the entireu2 array). Find out how many
samples must be used to get a correct mean value. Start by trying with100 samples as

umean_100=mean(u2(1:100))

What is the maximum and minimum value ofv1? Compare those to the mean.
Do the same exercise for the other three nodes.
Compute and plot also the instantaneous fluctuations;v′1 at node 1, for example, is

computed as

u1_mean=mean(u1);
u1_fluct=u1-u1_mean;

E.3 Mean flow

All data in the data files below have been stored every10th time step.
Download the fileuvw inst small.mat , y.dat and the Matlab filepl vel.m

which reads the data files. The data file includesv1, v2 andv3 from the same DNS as
above, but now you are given the time history of allx2 nodes at one chosenx1 andx3

node. There arenj = 98 nodes in thex2 direction; node1 andnj are located at the
lower and upper wall, respectively.

Your data are instantaneous. Compute the mean velocity. Plot it both as linear-
linear plot and a log-linear plot (cf. Fig.6.4).

In the log-linear plot, usex+
2 for the wall distance. Include the linear law,v+

1 = x+
2 ,

and the log law,v+
1 = κ−1 lnx+

2 + B (κ = 0.41 is the von Kármán constant and
B = 5.2). How far out from the wall does the velocity profile follow the linear law?
At whatx+

2 does it start to follow the log-law?
Compute the bulk velocity

V1,b =
1

2h

∫ 2h

0

v̄1dx2 (E.1)

(recall thath denote half the channel width) What is the Reynolds number based on
V1,b and centerline velocity,V1,c, respectively?

E.4 The time-averaged momentum equation

Let us time average the streamwise momentum equation. Sincethe flow is fully devel-
oped and two dimensional we get

0 = −1

ρ

∂p̄

∂x1
+ ν

∂2v̄1
∂x2

2

− ∂v′1v
′
2

∂x2
(E.2)

This equation is very similar to fully developed laminar flowwhich you studied in
Assignment 1, see Eq.3.24; the difference is that we now have an additional term
which is the derivative of the Reynolds shear stress. Recallthat all terms in the equa-
tion above representforces (per unit volume). Let us investigate how these forces
(the pressure gradient, the viscous term and the Reynolds stress term) affect fluid par-
ticles located at differentx2 locations. Compute and plot the three terms. (the file
uvw inst small.mat does not includēp; set∂p̄/∂x = −1.)
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If a term is positive it means that it pushes the fluid particlein the positivex1

direction. What about the viscous term? Is it always negative? Where is it largest? At
that point? which term balances it? How large is the third term? The pressure term
should be adriving force. Where is the Reynolds shear stress positive and whereis it
negative?

E.5 Wall shear stress

Compute the wall shear stress at both walls. They should be equal. Are they?

E.6 Resolved stresses

In SectionE.3you computed the mean velocities. From the instantaneous and the mean
velocity, you can compute the fluctuations as

v′i = vi − v̄i (E.3)

Now you can easily compute all stressesv′iv
′
j . Plot the normal stresses in one figure

and the shear stresses in one figure (plot the stresses over the entire channel, i.e. from
x2 = 0 to x2 = 2h). Which shear stresses are zero?

E.7 Fluctuating wall shear stress

In the same way as the velocity, the wall shear stress can be decomposed into a mean
value and a fluctuation. In general, any fluctuating variable, φ, can be decomposed into
a mean and fluctuation asφ = φ̄+φ′. The root-mean-square (RMS) is then defined as

φrms =
(
φ′2
)1/2

(E.4)

Compute the RMS of the wall shear stress. This is a measure of the fluctuating tan-
gential force on the wall due to turbulence. If heat transferis involved, the fluctuating
temperature at the wall inducing fluctuating heat transfer may be damaging to the ma-
terial of the walls causing material fatigue. This is probably the most common form of
fluid-solid interaction.

E.8 Production terms

In order to understand why a stress is large, it is useful to look at its transport equation,
see Eq.9.12. Usually, a stress is large when its production term,Pij , is large (there
may be exceptions when other terms, such as the diffusion term, are largest). Plot the
production terms for all non-zero stresses across the entire channel. Which ones are
zero (or close to)? Does any production term change sign at the centerline? If so, what
about the sign of the corresponding shear stress plotted in SectionE.6?

E.9 Pressure-strain terms

The pressure-strain term reads (see Eq.9.14)

Πij =
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
(E.5)
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Our data are obtained from incompressible simulations, in which the pressure may
vary unphysically in time (∂p/∂t does not appear in the equations). Hence, we prefer
to compute the velocity-pressure gradient term

Πp
ij = −v

′
i

ρ

∂p′

∂xj
−
v′j
ρ

∂p′

∂xi
, (E.6)

see the second line in Eq.9.3. The pressure diffusion term in thev′22 equation – which
is the difference between Eqs.E.5 andE.6 (the two first terms in Eq.9.8) – is small
except very close to the wall (see Figs.9.2and9.3). Hence, the difference betweenΠp

ij

andΠij is small.
Download the data filep inst small.mat and the Matlab filepl press strain.m

which reads the data file. The time histories of the pressure along fivex2 lines [(x1, x2, x3),
(x1 ± ∆x1, x2, x3) and(x1, x2, x3 ± ∆x3)] are stored in this file. This allows you to
compute all the three spatial derivatives ofp′. Using the velocities stored inuvw inst small.mat
(see SectionE.3), you can compute all the terms in Eq.E.6.

Plot the pressure strain,Πp
ij , for the three normal stresses and the shear stress across

the channel. For which stresses is it negative and positive?Why?
Which termΠp

ij is the largest source and sink term, respectively?

E.10 Dissipation

The physical meaning of dissipation,ε, is transformation of turbulent kinetic energy
into internal energy, i.e. increased temperature.

Download the filesy half.dat , diss inst.mat and the Matlab filepl diss.m
which reads it. The data file includes the time history of the velocities along fivex2

lines [(x1, x2, x3), (x1±∆x1, x2, x3) and(x1, x2, x3±∆x3)] so that you can compute
all spatial derivatives. The data cover only the lower half of the channel. Compute and
plot

ε = ν
∂v′i
∂xk

∂v′i
∂xk

(E.7)

see Eq.8.14. Where is it largest? In which equation does this quantity appear?
Let us now consider the equations for the mean kinetic energy,K = v̄iv̄i/2 (Eq.8.35)

and turbulent kinetic energy,k = v′iv
′
i/2 (Eq.8.14). The dissipation in theK equation

reads

εmean = ν
∂v̄i

∂xk

∂v̄i

∂xk
(E.8)

The flow of kinetic energy betweenK, k and∆T is illustrated in Fig.8.5 The dissi-
pations,ε andεmean, are defined in Eqs.E.7andE.8, respectively. Compute and plot
alsoεmean andP k. Which is large and which is small? How is the major part of the
kinetic energy transformed fromK to ∆T? Is it transformed viak or directly fromK
to ∆T?

E.11 Do something fun!

You have been provided with a lot of data which you have analyzed in many ways.
Now think of some other way to analyze the data. There are manyinteresting things
yet to be analyzed!
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F TME225 Learning outcomes 2012

TME225 Learning outcomes 2012: week 1

1. Explain the difference between Lagrangian and Eulerian description

2. Watch the on-line lectureEulerian and Lagrangian Description, part 1 – 3at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Part 1 describes the difference between Lagrangian and Eulerian points and
velocities.

ii. The formula
∂T

∂t
+ vi

∂T

∂xi
is nicely explained in Part 2

3. Show which stress components,σij , that act on the Cartesian surfaces of a quad-
rant (two dimensions). Show also the stress vector,tn̂i . (see Fig.1.2 and the
Lecture notes of Toll & Ekh [3])

4. Show the relation between the stress tensor,σij , and the stress vector,tn̂i . (see
the Lecture notes of Toll & Ekh [3])

5. Show that the product of a symmetric and an antisymmetric tensor is zero.

6. Explain the physical meaning of diagonal and off-diagonal components ofSij

7. Explain the physical meaning ofΩij

8. What is the definition of irrotational flow?

9. What is the physical meaning of irrotational flow?

10. Derive the relation between the vorticity vector and thevorticity tensor

11. Explain the physical meaning of the eigenvectors and theeigenvalues of the
stress tensor (see Section1.7and the Lecture notes of Toll & Ekh [3])

http://www.tfd.chalmers.se/~lada/flow_viz.html
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TME225 Learning outcomes 2012: week 2

1. Equation1.3states that mass times acceleration is equal to the sum of forces (per
unit volume). Write out the momentum equation (without using the summation
rule) for thex1 direction and show the surface forces and the volume force ona
small, square fluid element (see lecture notes of Toll & Ekh [3]). Now repeat it
for thex2 direction.

2. Derive the Navier-Stokes equation, Eq.2.5 (use the formulas in the Formula
sheet (it can be found on the course www page))

3. Simplify the Navier-Stokes equation for incompressibleflow and constant vis-
cosity (Eq.2.7)

4. Derive the transport equation for the inner energy,u, Eq. 2.12(again, use the
Formula sheet). What is the physical meaning of the different terms?

5. Simplify the the transport equation for inner energy to the case when the flow is
incompressible (Eq.2.15).
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TME225 Learning outcomes 2012: week 3

1. Derive the transport equation for kinetic energy,vivi/2, Eq.2.20. What is the
physical meaning of the different terms?

2. Explain the energy transfer between kinetic energy and inner energy

3. Show how the left side of the transport equations can be written on conservative
and non-conservative form

4. Starting from the Navier-Stokes equations (see Formula sheet), derive the flow
equation governing the Rayleigh problem expressed inf andη; what are the
boundary conditions in time (t) and space (x2); how are they expressed in the
similarity variableη?

5. Show how the boundary layer thickness can be estimated from the Rayleigh
problem usingf andη (Fig. 3.3)

6. Explain the flow physics at the entrance (smooth curved walls) to a plane channel

7. Explain the flow physics in a channel bend

8. Derive the flow equations for fully developed flow between two parallel plates,
i.e. fully developed channel flow (Eqs.3.18, 3.22and3.26)

9. Explain (using words and a figure) why vorticity can be created only by an im-
balance (i.e. gradient) of shear stresses. Explain why pressure cannot create
vorticity.

10. The Navier-Stokes equation can be re-written on the form

∂vi

∂t
+

∂k

∂xi︸︷︷︸
no rotation

− εijkvjωk︸ ︷︷ ︸
rotation

= −1

ρ

∂p

∂xi
+ ν

∂2vi

∂xj∂xj
+ fi

Derive the transport equation (3D) for the vorticity vector, Eq.4.20

11. Show that the divergence of the vorticity vector,ωi, is zero

12. Explain vortex stretching and vortex tilting

13. Show that the vortex stretching/tilting term is zero in two-dimensional flow

14. Derive the 2D equation transport equation for the vorticity vector from the 3D
transport equation, Eq.4.22

15. Show the similarities between the vorticity and temperature transport equations
in fully developed flow between two parallel plates

16. Use the diffusion of vorticity to show that
δ

ℓ
∝
√

ν

Uℓ
=

√
1

Re
(see also

Eq.3.14).

17. Watch the on-line lectureBoundary layers parts 1at
http://www.tfd.chalmers.se/˜lada/flow viz.html

http://www.tfd.chalmers.se/~lada/flow_viz.html
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i. Consider the flow over the flat plate. How does the boundary layer thickness
change when we move downstream?

ii. What value does the fluid velocity take at the surface? What is this boundary
conditions called: slip or no-slip? How do they define the boundary layer
thickness?

iii. How is the wall shear stress defined? How does it change when we move
downstream? (how does this compare with the channel flow in TME075
Assignment 1?

iv. How is the circulation,Γ, defined? (cf. with Eq.1.19) How is it related to
vorticity? How do they computeΓ for a unit length (> δ) of the boundary
layer? How large is it? How does it change when we move downstream on
the plate?

v. Where is the circulation (i.e. the vorticity) created? Where is the vortic-
ity created in “your” channel flow (TME225 Assignment 1)? Thevorticity
is created at different locations in the flat-plate boundarylayer and in the
channel flow: can you explain why? (hint: in the former case

∂p

∂x1
= µ

∂2v1
∂x2

2

∣∣∣∣
wall

= 0,

but not in the latter; this has an implication forγ2,wall [see Section4.3])

vi. How do they estimate the boundary layer thickness? (cf. Section.4.3.1)

18. Watch the on-line lectureBoundary layers part 2at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. How does the boundary layer thickness change at a givenx when we in-
crease the velocity? Explain why.

ii. Consider the flow in a contraction: what happens with the boundary layer
thickness after the contraction?

iii. Why is the vorticity level higher after the contraction?

iv. Is the wall shear stress lower or higher after the contraction? Why?

v. Consider the flow in a divergent channel (a diffuser): whathappens with the
boundary layer thickness and the wall shear stress?

vi. What happens when the angle of the diffuser increases?

vii. What do we mean by a “separated boundary layer”? How large is the wall
shear stress at the separation point?

viii. The second part of the movie deals with turbulent flow: we’ll talk about that
in the next lecture (and the remaining ones).

http://www.tfd.chalmers.se/~lada/flow_viz.html
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TME225 Learning outcomes 2012: week 4

1. Watch the on-line lectureBoundary layers parts 2 (second half) & 3at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. The flow is “tripped” into turbulence. How?

ii. When the flow along the lower wall of the diffuser is tripped into turbulent
flow, the separation region is suppressed. Try to explain why.

iii. Two boundary layers – one on each side of the plate – are shown. The upper
one is turbulent and the lower one is laminar. What is the difference in the
two velocity profiles? (cf. my figures in the ’summary of lectures’) Explain
the differences.

iv. Why is the turbulent wall shear stress larger for the turbulent boundary
layer? What about the amount of circulation (and vorticity)in the laminar
and turbulent boundary layer? How are they distributed?

v. Consider the airfoil: when the boundary layer on the upper(suction) side
is turbulent, stall occurs at a higher angle of incidence compared when the
boundary layer is laminar. Why?

vi. Vortex generator are place on the suction side in order prevent or delay sep-
aration. Try to explain why separation is delayed.

2. What characterizes turbulence? Explain the characteristics. What is a turbulent
eddy?

3. Explain the cascade process. How large are the largest scales? What is dissi-
pation? What dimensions does it have? Which eddies extract energy from the
mean flow? Why are these these eddies “best” at extracting energy from the
mean flow?

4. What are the Kolmogorov scales? Use dimensional analysisto derive the expres-
sion for the velocity scale,vη, the length scale,ℓη and the time scale,τη.

5. Make a figure of the energy spectrum. The energy spectrum consists of thee
subregions: which? describe their characteristics. Show the flow of turbulent
kinetic energy in the energy spectrum. Given the energy spectrum,E(κ), how
is the turbulent kinetic energy,k, computed? Use dimensional analysis to derive
the−5/3 Kolmogorov law.

6. What does isotropic turbulence mean?

7. How is the energy transfer from eddy-to-eddy,εκ, estimated? Show how the ratio
of the large eddies to the dissipative eddies depend on the Reynolds number.

8. Describe the cascade process created by vorticity. Writethe vortex stretch-
ing/tilting term in tensor notation. What is its physical meaning? Describe the
physical process of vortex stretching which creates smaller and smaller eddies.
Show and discuss the family tree of turbulence eddies and their vorticity. Show
that in 2D flow the vortex stretching/tilting term vanishes.

9. Watch the on-line lectureTurbulence part 1at
http://www.tfd.chalmers.se/˜lada/flow viz.html

http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
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i. Why does the irregular motion of wave on the sea not qualifyas turbulence?

ii. How is the turbulence syndrome defined?

iii. The movie laminar shows flow in a pipe. The viscosity is decreased, and the
pressure drop (i.e. the resistance, the drag, the loss) increases. Why? The
viscosity is further decreased, and the pressure drop increases. Why? How
does the characteristics of the water flow coming out of the pipe change due
to the second decrease of viscosity?

iv. It is usually said that the flow in a pipe gets turbulent at aReynolds number
of 2300. In the movie they show that the flowcan remain laminar up to
8 000. How do they achieve that?

v. Dye is introduced into the pipe. For laminar flow, the dye does not mix with
the water; in turbulent flow it does. When the mixing occurs, what happens
with the pressure drop?

10. Watch the on-line lectureTurbulence part 2at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Draw a laminar and turbulent velocity profile for pipe flow.What is the

main difference? In which flow is the wall shear stressτw = µ
∂v̄1
∂x2

largest,

laminar or turbulent?

ii. In turbulent flow, the velocity near the wall is larger than in laminar flow.
Why?

iii. Discuss the connection between mixing and the cross-stream (i.e.v′2) fluc-
tuations.

iv. Try to explain the increased pressure drop in turbulent flow with the in-
creased mixing.

v. The center part of the pipe is colored with blue dye and the wall region is
colored with red dye: by looking at this flow, try to explain how turbulence
creates aReynolds shear stress.

vi. Two turbulent jet flows are shown, one at low Reynolds number and one at
high Reynolds number. They look very similar in one way and very different
in another way. Which scales are similar and which are different?

vii. The two turbulent jet flows have the same energy input andhence the same
dissipation. Use this fact to explain why the smallest scales in the high
Reynolds number jet must be smaller that those in the low Reynolds number
jet.

viii. At the end of the presentation of the jet flow, they explain thecascade pro-
cess.

ix. Explain the analogy of a water fall (cascade of water, thewater passes down
the cascade) and the turbulent cascade process.

11. Use the decompositionvi = v̄i + v′i to derive the time-averaged Navier-Stokes
equation. A new terms appears: what is it called? Simplify the time-averaged
Navier-Stokes equation for boundary layer. What is the total shear stress?

http://www.tfd.chalmers.se/~lada/flow_viz.html
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TME225 Learning outcomes 2012: week 5 November 21, 2012

1. How is the friction velocity,uτ , defined? Definex+
2 andv̄+.

2. The wall region is divided into an inner and outer region. The inner region is
furthermore divided into a viscous sublayer, buffer layer and log-layer. Make a
figure and show where these regions are valid (Fig.6.2)

3. What are the relevant velocity and length scales in the viscous-dominated region?
Derive the linear velocity law in this region (Eq.6.17). What are the suitable
velocity and length scales in the inertial region? Derive the log-law.

4. In fully developed channel flow, the time-averaged Navier-Stokes consists only
of three terms. Make a figure and show how the velocity and shear stress vary
across the channel. After that, show how the three terms (i.e. their gradients
plus the pressure gradient) vary across the channel. Which two terms balance
each other in the outer region? Which terms drives (“pushes”) the flow in thex1

direction? Which two terms are large in the inner region? Which term drives the
flow?

5. Consider fully developed channel flow. In which region (viscous sublayer, buffer
layer or log-layer) does the viscous stress dominate? In which region is the
turbulent shear stress large? Integrate the boundary layerequations and show
that the total shear stress varies as1 − x2/δ (Eq.6.15).

6. Derive the exact transport equation for turbulent kinetic energy,k. Discuss the
physical meaning of the different terms in thek equation. Which terms do only
transportk? Which is the main source term? Main sink (i.e. negative source)
term?

7. In the cascade process, we assume that the dissipation is largest at the smallest
scales, i.e.ε(κ) ∝ κ1/3, see Eq.8.18at p.68. Show this. For which eddies is
the production largest? Why?

8. Watch the on-line lectureTurbulence part 3at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. The film says that there is a similarity of the small scales in a channel flow
and in a jet flow. What do they mean?

ii. What happens with the small scales when the Reynolds number is increased?
What happens with the large scales? Hence, how does the ratioof the large
scales to the small scales change when the Reynolds number increases (see
Eq.5.16)

iii. In decaying turbulence, which scales dies first? The scenes of the clouds
show this in a nice way.

iv. Even though the Reynolds number may be large, there are a couple of phys-
ical phenomena which may inhibit turbulence and keep the flowlaminar:
mention three.

v. Consider the flow in the channel where the fluid on the top (red) and the
bottom (yellow) are separated by a horizontal partition. Study how the two
fluids mix downstream of the partition. In the next example, the fluid on

http://www.tfd.chalmers.se/~lada/flow_viz.html
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the top is hot (yellow)and light, and the one at the bottom (dark blue) is
cold (heavy); how do the fluids mix downstream of the partition, better or
worse than in the previous example? This flow situation is called stable
stratification. In the last example, the situation is reversed: cold,heavyfluid
(dark blue) is moving on top of hot,light fluid (yellow). How is the mix-
ing affected? This flow situation is calledunstable stratification. Compare
in meteorology where heating of the ground may cause unstable stratifi-
cation or wheninversioncauses stable stratification. You can read about
stable/unstable stratification in Section12.1at p.109.

9. Given the exactk equation, give the equation for boundary-layer flow (Eq.8.22).
All spatial derivatives are kept in the dissipation term: why? In the turbulent
region of the boundary layer, thek equation is dominated by two terms. Which
ones? Which terms are non-zero at the wall?

10. Where is the production term,P k = −v′1v′2∂v̄1/∂x2, largest? In order to explain
this, show how−v′1v′2 and∂v̄1/∂x2 vary near the wall.
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TME225 Learning outcomes 2012: week 6 November 21, 2012

1. Discuss the difference of spatial transport ofk and spectral transfer ofk. Give
an example of how they are combined in non-homogeneous turbulence. How is
homogeneous turbulence defined?

2. Derive the exact transport equation for mean kinetic energy, K. Discuss the
physical meaning of the different terms. One term appears inboth thek and
theK equations: which one? Consider the dissipation terms in thek and the
K equations: which is largest? Why? Show where they appear in the energy
spectrum.

3. Derive the exact transport equation for turbulent Reynolds stress,v′iv
′
j . Take the

trace of thev′iv
′
j equation to obtain thek equation.

4. Show that the role of the convection and diffusion terms ispurely to transport the
quantity (k for example) and that they give no net effect except at the boundaries
(use the Gauss divergence theorem)

5. Discuss the physical meaning of the different terms in thev′iv
′
j equation.

6. Consider the pressure-strain term in thev′iv
′
j equation. Themeannormal stress

can be defined asv′2av = v′iv
′
i/3; what sign will the pressure-strain term have for

normal stresses, respectively, larger and smaller thanv′2av? What role doesΠ12

has? What sign? Why do we call the pressure-strain term theRobin Hoodterm?

7. Consider the dissipation term,ε12, for the shear stress: how large is it?

8. Consider fully developed channel flow: how are the expressions for the produc-
tion terms simplified? Which production terms are zero and non-zero, respec-
tively? Consider the production term forv′1v

′
2: which sign does it have in the

lower and upper part of the channel, respectively? Why is there no pressure-
strain term in thek equation?

9. Consider the fully turbulent region in fully developed channel flow: which are
the main source and sink terms in thev′21 , v′22 , v′23 andv′1v

′
2 equations? Which

are the largest terms at the wall? Which terms are zero at the wall?

10. Consider channel flow and use physical reasoning to show that v′1v
′
2 must be

negative and positive in the lower and upper half of the channel, respectively. Is
this consistent with the sign ofP12?

11. Define the two-point correlation. How is it normalized? What is the physical
meaning of the two-point correlation? How is it related to the largest eddies?
How is the integral length scale defined?

12. Define the auto correlation. How is it normalized? What physical meaning does
it have? The integral time scale is defined in analogy to the integral length scale:
show how it is defined.



F. TME225 Learning outcomes 2012 218

TME225 Learning outcomes 2012: just for fun!

1. Watch the on-line lecturePressure field and acceleration part 1at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. The water flow goes through the contraction. What happens with the veloc-
ity and pressure. Try to explain.

ii. Fluid particles become thinner and elongated in the contraction. Explain
why.

iii. In the movie they show that the acceleration alongs, i.e.Vs
dVs

ds
, is related to

the pressure gradient
dp

ds
. Compare this relation with the three-dimensional

form of Navier-Stokes equations for incompressible flow, Eq. 2.7

2. Watch the on-line lecturePressure field and acceleration part 2at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Water flow in a manifold (a pipe with many outlets) is presented. The pres-
sure decreases slowly downstream. Why?

ii. The bleeders (outlets) are opened. The pressure now increases in the down-
stream direction. Why?

iii. What is the stagnation pressure? How large is the velocity at a stagnation
point?

iv. What is the static pressure? How can it be measured? What is the difference
between the stagnation and the static pressures?

v. A venturi meter is a pipe that consists of a contraction andan expansion (i.e.
a diffuser). The bulk velocities at the inlet and outlet are equal, but still the
pressure at the outlet is lower than that at the inlet. There is a pressure drop.
Why?

vi. What happens with the pressure drop when there is a separation in the dif-
fuser?

vii. They increase the speed in the venturi meter. The pressure difference in
the contraction region and the outlet increases. Since there is atmospheric
pressure at the outlet, this means that the pressure in the contraction region
must decrease as we increase the velocity of the water. Finally the water
starts to boil, although the water temperature may be around10oC. This is
called cavitation (this causes large damages in water turbines).

viii. Explain how suction can be created by blowing in a pipe.

3. Watch the on-line lecturePressure field and acceleration part 3at
http://www.tfd.chalmers.se/˜lada/flow viz.html

i. What is the Coanda effect?

ii. The water from the tap which impinges on the horizontal pipe attaches to the
surface of the pipe because of the Coanda effect. How large isthe pressure
at the surface of the pipe relative to the surrounding pressure?

iii. Explain the relation between streamline curvature andpressure (cf. Sec-
tion 3.2.1).

http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
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iv. At the end of the contraction, there is an adverse pressure gradient (∂p/∂x >
0). Explain why.
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G MTF270: Some properties of the pressure-strain term

In this Appendix we will investigate some properties ofaijkℓ in Eq. 11.73at p.100.
Introduce the two-point correlation function

Bjℓ(r) = v′j(x)v′ℓ(x + r)

Define the pointx′ = x + r so that

Bjℓ(r) = v′j(x
′ − r)v′ℓ(x

′) = v′ℓ(x
′)v′j(x

′ − r) = Bℓj(−r)

We get
∂Bjℓ(r)

∂ri
= −∂Bℓj(−r)

∂ri
⇒ ∂2Bjℓ(r)

∂rk∂ri
=
∂2Bℓj(−r)

∂rk∂ri
(G.1)

Since Eq.G.1in the definition ofaijkℓ in Eq.11.73is integrated overr3 covering both
r and−r (recall thatv′ℓ andv′j are separated byr), aijkℓ is symmetric with respect to
indexj andℓ, i.e.

aijkℓ = aiℓkj (G.2)

Green’s third formula (it is derived from Gauss divergence law) reads

ϕ(x) = − 1

4π

∫

V

∇2ϕ

|y − x|dy
3 (G.3)

where the boundary integrals have been omitted. Settingϕ = v′ℓv
′
j in Eq.G.3gives

v′jv
′

ℓ = − 1

4π

∫

V

∂2v′ℓv
′
j

∂xi∂xi

dy3

|y − x| =
1

2
aijiℓ (G.4)

where the last equality is given by Equation11.73.
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H MTF270: Galilean invariance

In [65] he found that the Leonard termLij and the cross termCij are not Galilean
invariant by themselves, but only the sumLij + Cij is. As a consequence, if the cross
term is neglected, the Leonard stresses must not be computedexplicitly, because then
the modelled momentum equations do not satisfy Galilean invariance.

Below we repeat some of the details of the derivation given in[65]. Galilean invari-
ance means that the equations do not change if the coordinatesystem is moving with a
constant speedVk. Let’s denote the moving coordinate system by∗, i.e.

x∗k = xk + Vkt, t
∗ = t, v̄∗k = v̄k + Vk (H.1)

By differentiating a variableφ = φ(t∗, x∗i ) we get

∂φ(xi, t)

∂xk
=
∂x∗j
∂xk

∂φ

∂x∗j
+
∂t∗

∂xk

∂φ

∂t∗
=

∂φ

∂x∗k

∂φ(xi, t)

∂t
=
∂x∗k
∂t

∂φ

∂x∗k
+
∂t∗

∂t

∂φ

∂t∗
= Vk

∂φ

∂x∗k
+
∂φ

∂t∗
.

(H.2)

From Eq.H.2 is it easy to show that the Navier-Stokes (both with and without filter)
is Galilean invariant [65, 160]. Transforming the material derivative from the(t, xi)-
coordinate system to the(t∗, x∗i )-coordinate system gives

∂φ

∂t
+ vk

∂φ

∂xk
=
∂φ

∂t∗
+ Vk

∂φ

∂x∗k
+ (v∗k − Vk)

∂φ

∂x∗k

=
∂φ

∂t∗
+ v∗k

∂φ

∂x∗k
,

It shows that the left hand side does not depend on whether thecoordinate system
moves or not, i.e. it is Galilean invariant.

Now, let’s look at the Leonard term and the cross term. Since the filtering operation
is Galilean invariant [65], we havēv∗k = v̄k + Vk and consequently alsov′′∗k = v′′k . For

the Leonard and the cross term we get (note that sinceVi is constantVi = V̄i = V̄i)

L∗

ij = v̄∗i v̄
∗
j − v̄∗i v̄

∗

j = (v̄i + Vi)(v̄j + Vj) − (v̄i + Vi)(v̄j + Vj)

= v̄iv̄j + v̄iVj + v̄jVi − v̄iv̄j − v̄iVj − Viv̄j

= v̄iv̄j − v̄iv̄j + Vj(v̄i − v̄i) + Vi(v̄j − v̄j)

= Lij − Vjv′′i − Viv′′j

C∗

ij = v̄∗i v
′′∗
j + v̄∗j v

′′∗
i = (v̄i + Vi)v′′j + (v̄j + Vj)v′′i =

= v̄iv′′j + v′′j Vi + v̄jv′′i + v′′i Vj = Cij + v′′j Vi + v′′i Vj

(H.3)

From Eq.H.3 we find that the Leonard term and the cross term are different in the two
coordinate systems, and thus the terms are not Galilean invariant. However, note that
the sum is, i.e.

L∗

ij + C∗

ij = Lij + Cij . (H.4)

The requirement for the Bardina model to be Galilean invariant is that the constant
must be one,cr = 1 (see Eq.17.38). This is shown by transforming both the exact
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Cij (Eq. 17.36) and the modelled one,CM
ij (i.e. Eq.17.37). The exact form ofCij

transforms as in Eq.H.3. The Bardina term transforms as

C∗M
ij = cr(v̄

∗

i v̄
∗

j − v̄
∗

i v̄
∗

j )

= cr

[
(v̄i + Vi)(v̄j + Vj) − (v̄i + Vi)(v̄j + Vj)

]

= cr [v̄iv̄j − v̄iv̄j − (v̄i − v̄i)Vj − (v̄j − v̄j)Vi]

= CM
ij + cr

[
v′′iVj + v′′jVi

]
.

(H.5)

As is seen,C∗M
ij 6= CM

ij , but here this does not matter, because providedcr = 1 the
modelled stress,CM

ij , transforms in the same way as the exact one,Cij . Thus, as for the
exact stress,Cij (see Eq.H.4), we haveC∗M

ij + L∗
ij = CM

ij + Lij . Note that in order
to make the Bardina model Galilean invariant the Leonard stressmustbe computed
explicitly.
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I MTF270: Computation of wavenumber vector and
angles

For each moden, create random anglesϕn, αn andθn (see Figs.I.1 and24.1) and
random phaseψn. The probability distributions are given in TableI.1. They are cho-
sen so as to give a uniform distribution over a spherical shell of the direction of the
wavenumber vector, see Fig.I.1.

I.1 The wavenumber vector,κn
j

x1

x2

x3

θn

ϕn

κn
i

dAi

Figure I.1: The probability of a randomly selected direction of a wave in wave-space
is the same for alldAi on the shell of a sphere.

Compute the wavenumber vector,κn
j , using the angles in SectionI according to

Fig. I.1, i.e.

κn
1 = sin(θn) cos(ϕn)

κn
2 = sin(θn) sin(ϕn)

κn
3 = cos(θn)

(I.1)

p(ϕn) = 1/(2π) 0 ≤ ϕn ≤ 2π
p(ψn) = 1/(2π) 0 ≤ ψn ≤ 2π
p(θn) = 1/2 sin(θ) 0 ≤ θn ≤ π
p(αn) = 1/(2π) 0 ≤ αn ≤ 2π

Table I.1: Probability distributions of the random variables.
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κ
n

i
σ

n

i
α

n

(1, 0, 0) (0, 0,−1) 0
(1, 0, 0) (0, 1, 0) 90

(0, 1, 0) (0, 0,−1) 0
(0, 1, 0) (−1, 0, 0) 90

(0, 0, 1) (0, 1, 0) 0
(0, 0, 1) (−1, 0, 0) 90

Table I.2: Examples of value ofκn
i , σn

i andαn from Eqs.I.1 andI.3.

I.2 Unit vector σn
i

Continuity requires that the unit vector,σn
i , andκn

j are orthogonal. This can be seen
by taking the divergence of Eq.24.3which gives

∇ · v′ = 2

N∑

n=1

ûn cos(κn · x + ψn)σn · κn (I.2)

i.e. σn
i κ

n
i = 0 (superscriptn denotes Fourier moden). Hence,σn

i will lie in a plane
normal to the vectorκn

i , see Fig.24.1. This gives

σn
1 = cos(ϕn) cos(θn) cos(αn) − sin(ϕn) sin(αn)

σn
2 = sin(ϕn) cos(θn) cos(αn) + cos(ϕn) sin(αn)

σn
3 = − sin(θn) cos(αn)

(I.3)

The direction ofσn
i in this plane (theξn

1 − ξn
2 plane) is randomly chosen throughαn.

TableI.2 gives the direction of the two vectors in the case thatκi is along one coordinate
direction andα = 0 andα = 90o.
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J MTF270: 1D and 3D energy spectra

The general two-point correlationBij of v′i andv′j (see Eq.10.2) can be expressed by
the energy spectrum tensor as [58, Chapter 3] (cf. Eq.17.8)

Bij(x1, x2, x3)) =

∫ +∞

−∞

Ψij(κ) exp(ıκmx̂m)dκ1dκ2dκ3 (J.1)

wherex̂m andκm are the separation vector the two points and the wavenumber vector,
respectively. The complex Fourier transformexp(ıκmx̂m) is defined in AppendixC.
The two-point correlation,Bij , and the energy spectrum tensor,Ψij , form a Fourier-
transform pair

Ψij(κ) =
1

(2π)3

∫ +∞

−∞

Bij(x̂) exp(−ıκmrm)dx̂1dx̂2dx̂3 (J.2)

The separation between the two points is described by a general three-dimensional
vector,x̂m. Both in experiments and in LES it is usually sufficient to study the two-
point correlation and the energy spectra along a line. Hence, one-dimensional energy
spectra,Eij(κ), which are a function ofscalarwavenumber,κ (κ1, κ2 orκ3), are often
used. They are formed by integrating over a wavenumber plane; the energy spectrum
for the wavenumberκ1, for example, reads

Eij(κ1) =
1

2

∫ +∞

−∞

Ψij(κ)dκ2dκ3 (J.3)

A factor of two is included becauseE ∝ Ψii/2 is used to define a energy spectrum
for the turbulent kinetic energyk = v′iv

′
i/2, see Eqs.J.8 and J.10. Note that the

maximum magnitude of the wavenumber vector contributing toEij(κ1) is very large
since it includes allκ2 andκ3, i.e. −∞ < κ2 < ∞ and−∞ < κ3 < +∞. The
one-dimensional two-point correlation,Bij(x̂1), for example, and the one-dimensional
spectrum,Eij(κ1), form a Fourier-transform pair, i.e.

Bij(x̂1) =
1

2

∫ +∞

−∞

Eij(κ1) exp(ıκ1x̂1)dκ1 (J.4)

Eij(κ1) =
2

2π

∫ +∞

−∞

Bij(x̂1) exp(−ıκ1x̂1)dx̂1 (J.5)

whereEij is twice the Fourier transform ofBij because of the factor two in Eq.J.3.
The diagonal components of the two-point correlation tensor are real and symmetric
and hence the antisymmetric part ofexp(−ıκ1x̂1) – i.e. the sinus part – is zero and
Eqs.J.4andJ.5are simplified as

Bij(x̂1) =
1

2

∫ +∞

−∞

Eij(κ1) cos(κ1x̂1)dκ1 =

∫ ∞

0

Eij(κ1) cos(κ1x̂1)dκ1

Eij(κ1) =
1

π

∫ +∞

−∞

Bij(x̂1) cos(κ1x̂1)dx̂1 =
2

π

∫ +∞

0

Bij(x̂1) cos(κ1x̂1)dx̂1

(J.6)

The Reynolds stressρv′21 , for example, is equal to the two-point correlation tensor
ρBij with with zero separation distance. Thev′21 can be computed both from the three-



J.1. Energy spectra from two-point correlations 226

dimensional spectrum (Eq.J.1) and one-dimensional spectrum (Eq.J.6)

v′21 = B11(x1, 0, 0) =

∫ +∞

−∞

Ψii(κ)dκ1dκ2dκ3

v′21 = B11(0) =

∫ ∞

0

E11(κ1)dκ1

(J.7)

Hence the turbulent kinetic energy,k = v′iv
′
i/2, an be written as

k =
1

2

∫ +∞

−∞

Ψii(κ)dκ1dκ2dκ3 (J.8)

k =
1

2

∫ ∞

0

E11(κ1)κ1 +
1

2

∫ ∞

0

E22(κ2)κ2 +
1

2

∫ ∞

0

E33(κ3)dκ3 (J.9)

The integral in Eq.J.8has no directional dependence: it results in a scalar,k. Instead
of integrating overdκ1dκ2dκ3 we can integrate over a shell with radiusκ and letting
the radius go from zero to infinity, i.e.

k =
1

2

∫ ∞

0

4πκ2Ψiidκ (J.10)

where4πκ2 is the surface area of the shell. We now define an energy spectrum,E(κ) =
4πκ2Ψii so that

k =

∫ κ

0

E(κ)dκ (J.11)

whereE(κ) = 2πκ2Ψii(κ).
The energy spectraE11(κ1) andE(κ), for example, correspond to the square of

the Fourier coefficient of the velocity fluctuation (see Parseval’s formula, Eq.C.4), i.e.

E11(κ1) = v̂2
1(κ1)

E(κ) =
1

2

(
v̂2
1(κ) + v̂2

3(κ) + v̂2
3(κ)

) (J.12)

Below the properties of the three energy spectra are summarized.

• The three-dimensional spectrum tensor,Ψij(κ), is a tensor which is a function
of the wavenumber vector.

• The one-dimensional spectrum,Eij(κ1), is a tensor which is a function of a
scalar (one component ofκm).

• The energy spectrum,E(κ), is a scalar which is a function of the length of the
wavenumber vector,|κ| ≡ κ.

J.1 Energy spectra from two-point correlations

In connection to Eqs.J.4, J.5andJ.6we stated that the one-dimensional energy spectra
and the two-point correlations form Fourier-transform pairs. The proof is given in this
section. The energy spectrum is given by the square of the Fourier coefficients, see
Parseval’s formula, Eq.C.4. Let û be the Fourier coefficient of the velocity fluctuation
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u′ in thex direction which is periodic with periodL. Take the covariance of the Fourier
coefficients,̂u(κ′) andû(κ) whereκ andκ′ denote two different wavenumbers andx
andx′ denote two points separated in thex directions so that

〈û(κ)û(κ′)〉 =

〈
1

L

∫ L

−L

u(x) exp(−ıκx)dx 1

L

∫ L

−L

u(x′) exp(−ıκ′x′)dx′

=
1

L2

∫ L

−L

∫ L

−L

u(x)u(x′) exp(−ı(κx+ κ′x′)dxdx′

〉 (J.13)

where〈·〉 denotes averaging over time; this equation corresponds to Eq. J.4except the
factor of two. Since we are performing a Fourier transform inx we must assume that
this direction is homogeneous, i.e. all averaged turbulence quantities are independent
of x and the two-point correlation is not dependent onx (or x′) but only on the separa-
tion distancex− x′, see discussion in connection to Eq.10.5. Hence we replacex′ by
y + x′′ so that

〈û(κ)û(κ′)〉 =

〈
1

L2

∫ L

−L

(∫ L−x

−L−x

u(x)u(x+ x′′) exp(−ı(κx+ κ′(x+ x′′))dx′′

)
dx

〉

=

〈
1

L

∫ L

−L

exp(−ı(κ+ κ′)x)

(
1

L

∫ L−x

−L−x

B11(x
′′) exp(−ıκ′x′′))dx′′

)
dx

〉

(J.14)

The second integral (in parenthesis) is the Fourier transform of the two-point correla-
tionB11, i.e.

〈û(κ)û(κ′)〉 =

〈
B̂11(x

′′)
1

L

∫ L

−L

exp(−ı(κ+ κ′)x))dx

〉
(J.15)

whereB̂11 denotes the Fourier transform ofB11 (cf. J.12) and since it does not depends
on the spatial coordinate it has been moved out of the integral. Furthermore,B̂11 is
real and symmetric sinceB11 is real and symmetric. The remaining integral includes
trigonometric function with wavelengthsκ andκ′. They are orthogonal functions, see
AppendixC, and the integral of these functions is zero unlessκ = κ′. This integral in
Eq.J.15for κ = κ′ is evaluated as (see “length of ofψk” in AppendixC, Eq.C.13, and
useψ1 = cos(2πx/L))

(ψ1|ψ1) = ||ψ1||2 =

∫ L

−L

cos2
(

2πx

L

)
dx

=

[
x

2
+

L

8π
sin

(
4πx

L

)]L

−L

= L

(J.16)

EquationJ.15can now be written

〈û(κ)û(κ)〉 = 〈B̂11(x)〉 (J.17)

Hence, it is seen that the Fourier transform of a two-point correlation (in this example
〈B11(x1)〉) indeed gives the corresponding one-dimensional energy spectrum (in this
exampleE11(κ1) = 〈(û(κ))2〉).
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K MTF270, Assignment 1: Reynolds averaged Navier-
Stokes

K.1 Two-dimensional flow

You can do the assignment on your own or in a group of two. It is recommended (but
the not required) that you use LATEX(an example of how to write in LATEXis available
on the course www page). It is available on Linux. On Windows you can use, for
example, Lyx (www.lyx.org ) or MikTex (www.miktex.org ) which are both free
to download.

You’ll use data from a coarse DNS. Although some of the data are probably not
fully accurate, in this exercise we consider the data to be exact. You will use Matlab.
You can also use Octave on Linux/Ubuntu. Octave is a Matlab clone which can be
downloaded for free. Use Matlab or Octave to read data files ofthe mean flow (̄v1, v̄2,
p̄) and turbulent quantities. (v′21 , v′22 , v′23 , v′1v

′
2, andε). You will analyze one of the

following flows:

Case 1: Flow over a 2D hill.Re = 10 595 (ν = 9.44 · 10−5, ρ = 1) based on the bulk
velocity in the channel and the hill height.

Case 2: Flow over two small hills.Re = 10 595 (ν = 9.44 · 10−5, ρ = 1) based on the
bulk velocity bulk velocity in the channel and the height of the hill at the lower
wall.

Case 3: Flow in a diverging/converging sectionRe = 18 000 (ν = 5.56 · 10−5, ρ = 1)
based on the bulk velocity in the channel and the width of the the channel.

Periodic boundary conditions are imposed in streamwise (x1) and spanwise (x3)
directions in all flows.

The work should be carried out in groups of two (if you want to work on you own
that is also possible) . Contact the teacher to get a Case No. Download the data from
http://www.tfd.chalmers.se/˜lada/comp turb model . At the www-
page you can download a M-file (pl vect.m ) which reads the data and plots the vec-
tor field and the pressure contours. You must also download the functiondphidx dy.m
which computes the gradients. Make sure you put this function in the directory where
you executepl vect.m .

The report, along with the Matlab files(s), should be submitted electronically at
the Student Portalwww.student.portal.se ; the deadline can be found at the
Student Portal.

K.2 Analysis

Study the flow. In which regions do you expect the turbulence to be important?
Now let’s find out. The two-dimensional time-averaged Navier-Stokes for thex1

momentum reads (the density is set to one, i.e.ρ = 1)

∂v̄1v̄1
∂x1

+
∂v̄1v̄2
∂x2

= − ∂p̄

∂x1
+ ν

∂2v̄1
∂x2

1

− ∂v′21
∂x1

+ ν
∂2v̄1
∂x2

2

− ∂v′1v
′
2

∂x2
(K.1)

Recall that all the terms on the right-hand side representx components of forces per
unit volume.
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K.2.1 The momentum equations

The filepl vect.m loads the data file and plots the profiles ofv′21 at somex stations,
the velocity vector field and a contour plot of velocity gradient ∂v̄1/∂x2. Compute
all terms in Eq.K.1. You will need to compute the derivatives of e.g.v̄1 and p̄. In
pl vect.m the functiondphidx dy.m is used to compute∂v̄1/∂x1 and∂v̄1/∂x2.
Use this function to compute all derivatives that you need. Find two (or more)x1

locations (vertical grid lines) where thev′21 stress is large and small, respectively. One
way to find these locations is to use the Matlabsurf command.

Assignment 1.1. Plot the stresses along vertical grid linesat these two locations using the Matlab
commandplot(x,y) . Please make sure that in your report the numbering on
the axis and the text in the legend is large enough; you can usethe command

h1=gca;
set(h1,’fontsize’,[20]) %the number ’20’ gives the fontsi ze

The size of the labels and the title is similarly controlled by

xlabel(’x/H’,’fontsize’,[20])
ylabel(’y/H’,’fontsize’,[20])
title(’velocity’,’fontsize’,[20])

Assignment 1.2. Plot also all terms in Eq.K.1. To enhance readability you may omit the small
terms or use two plots per vertical grid line. Make also a zoomnear the walls.
For example, for ax− y plot

plot(u,y,’linew’,2) % linewidth=2

you may want to zoom in ony=[0 0.01] andu=[-0.1 0.4] ; this is achieved
by

axis([-0.1 0.4 0 0.01])

The ’axis’ command can be used together with any plot, e.g. with ’surf’ and
’quiver’.

Which terms are negligible? Can you explain why they are negligible?

What about the viscous terms: where do they play an importantrole? Which terms
are non-zeroat the wall? (you can show that on paper).

So far we have looked at thēv1-momentum equation. The database corresponds to
a two-dimensional flow. Now let’s think of the forces as vectors. The gradient of the
normal stresses in thex1 − x2 plane represent the force vector

FN =

(
−∂v

′2
1

∂x1
,−∂v

′2
2

∂x2

)
(K.2)

and the corresponding force vector due to the shear stressesreads

FS =

(
−∂v

′
1v

′
2

∂x2
,−∂v

′
1v

′
2

∂x1

)
(K.3)
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Identify the first term in Eqs.K.2 andK.3 in the momentum equation forv1, Eq.K.1.
Write out the momentume equation also forv̄2 and identify the other two terms in
Eqs.K.2 andK.3. Note thatFN andFS are forces per unit volume ([N/m3]).

Assignment 1.3. Plot the vector fieldτN to find out some features. Zoom-in on interesting re-
gions.

Assignment 1.4. Plot also vector fields of the shear stress,τS (see Eq.K.3), the pressure gradient
and the viscous terms. Zoom up in interesting regions. Anything interesting?
Whenv′22 reaches a maximum or a minimum along a grid line normal to the
wall, what happens with the vector field? Zoom-in on interesting regions.

K.2.2 The turbulent kinetic energy equation

The exact transport equation for for the turbulent kinetic energy,k, reads

∂

∂xj
(v̄jk) = ν

∂2k

∂xj∂xj
+ Pk +Dk − ε

Pk = −v′iv′j
∂v̄i

∂xj

(K.4)

Assignment 1.5. Plot the production term along the two grid lines. Explain why it is large at some
locations and small at others. The production term consistsof the sum of four
terms, two of which involve the shear stress while the other include the normal
stresses. Compare the contributions due the shear stress and the normal stresses.

Assignment 1.6. Plot the dissipation and compare it with theproduction. Do you have local equi-
librium (i.e. P k ≃ ε) anywhere?

K.2.3 The Reynolds stress equations

The modelled transport equation for the Reynolds stresses can be written as

∂

∂xk

(
v̄kv′iv

′
j

)
= ν

∂2v′iv
′
j

∂xk∂xk
+ Pij + Φij +Dij − εij

Pij = −v′iv′k
∂v̄j

∂xk
− v′jv

′

k

∂v̄i

∂xk

(K.5)

The pressure-strain term,Φij , and the diffusion term,Dij , need to be modelled. Here
we use the models in Eqs.11.87, 11.53, 11.86, 11.91and11.92.

1. In the damping function,f (see Eq.11.88), xn denotes the distance to the nearest
wall. If, for example, the lower wall is the closest wall to node(I, J), then

xn =
{
(x(I, J) − x(I, 1))2 + (y(I, J) − y(I, 1))2

}1/2
(K.6)

2. ni,w denotes the unit normal vector of the wall to which the distancexn is com-
puted. If we assume, again, that the lower wall is the closestwall to cell (I, J)
and that the lower wall is horizontal, thenni,w = (0, 1). The computeni,w for
the general case, compute first the vector which is parallel to the wall,si,w, and
compute thenni,w from si,w (see Eq.K.11)
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3. The diffusion termsDij andDε can be modelled using the Generalized Gradient
Diffusion Hypothesis GGDH of [161]

Dij =
∂

∂xm

(
cukum

k

ε

∂v′iv
′
j

∂xk

)
(K.7)

This diffusion model can cause numerical problems, and the GGDH is then re-
placed by a simple eddy viscosity model

Dij =
∂

∂xm

(
νt

σk

∂v′iv
′
j

∂xm

)
, νt = Cµk

2/ε (K.8)

The following constants should be used:

(cµ, c1, c2, c1w, c2w, σk) = (0.09, 1.5, 0.6, 0.5, 0.3, 1)

Assignment 1.7. Choose two stresses. Plot the different terms in the equations for one vertical
grid line fairly close to the inlet (not too close!). Use the simple eddy viscosity
model for the turbulent diffusion term. If the figure becomestoo crowdy, use
two plots per vertical grid line or simply omit terms that arenegligible. Try to
explain why some terms are large and vice versa. Usually, a stress is large in
locations where its production (or pressure-strain) term is large. Is that the case
for you?

Assignment 1.8. Compute the stresses using the Boussinesq assumption, i.ev′iv
′
j = −2νts̄ij +

(2k/3)δij whereνt = cµk
2/ε. Compare the eddy-viscosity stresses with two of

the Reynolds stresses from the database. Make also a zoom-innear walls.

When using the Boussinesq assumption the production of turbulent kinetic energy

P k = 2νts̄ij s̄ij (K.9)

is always positive. The exact production of turbulent kinetic energy (see Eq.K.4) is
usually positive. It can however become negative.

Assignment 1.9. Compute the exact production in Eq.K.4 in the entire domain to investigate if
the production is negative anywhere. If so, explain why.

The reason why the eddy-viscosity production in Eq.K.9 must be positive is of
course that neitherνt nor s̄ij s̄ij can go negative. Another way to explain this fact is
that the modelled Reynolds stress,v′iv

′
j , and the strain rate tensor,∂v̄i/∂xj are parallel.

To find out to what degree the exact Reynolds stress and the strain rate are parallel, one
can compute the eigenvectors.

Assignment 1.10. Compute the eigenvalues and eigenvectorsof the strain tensor,̄sij . The eigen-
values correspond to the normal strain in the direction of the eigenvectors (see
Section13). If the shear strains (i.e. the off-diagonal components) dominate,
you will get eigenvectors in the direction±π/4 ± π/2 and if the normal strains
(i.e. the diagonal components) dominate the direction of the eigenvectors will
be along thex1 andx2 axes (explain why!). Plot the eigenvectors as a vector
field. Our flow is 2D; thus we get two eigenvectors and two eigenvalues. Since
the two eigenvectors are perpendicular to each other it is sufficient to plot one of
them ( for example, the eigenvectors(π/4, π/4), (−π/4, π/4), (−π/4,−π/4)
and(π/4,−π/4), all represent the same principal coordinate system). Zoomin
on interesting regions.
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Figure K.1: Control volume. The velocityv1 is stored at the corners (ne, nw, . . . ).
Coordinatesx1, x2 are given at the corners (ne, nw, ...).

Assignment 1.11. Compute the eigenvalues and eigenvectorsof the Reynolds stresses,v′iv
′
j . The

eigenvalues correspond to the normal stresses in the direction of the eigenvectors.
Zoom in on interesting regions. In which regions are the eigenvectors of the
Reynolds stress tensor and those of the strain tensor not parallel? This should
indicate regions in which an eddy-viscosity model would perform poorly. Zoom
in on interesting regions.

K.3 Compute derivatives on a curvi-linear mesh

In this appendix we describe how the derivatives on a curvi-linear grid are computed
in the provided Matlab functiondphidx dy.m . On a Cartesian grid it is more con-
venient to use the built-in Matlab functiongradient , but the approach used below
works for all meshes, including Cartesian ones.

The data you have been given,x1 andx2 and all variables are stored at the grid
points, i.e. at(x1,sw , x2,sw), (x1,se, x2,se), (x1,nw, x2,nw) and(x1,ne, x2,ne). When
you need a variable, sayv1, at the center of the cell, compute it as

v1,P =
1

4
(v1,sw + v1,se + v1,nw + v1,ne) (K.10)

Let’s compute∂v1/∂x1. In order to do that we use Gauss’ law over a control
volume centered at facee (dashed control volume in Fig.K.1). The divergence theorem
for a scalar,φ, reads ∫

V

∂φ

∂xi
dV =

∫

A

φnidA

To compute∂v1/∂x1 we setφ = v1 andi = 1 which gives
∫

V

∂v1
∂x1

dV =

∫

A

v1n1dA

Assuming that∂v1/∂x1 is constant in the volumeV we obtain

∂v1
∂x1

=
1

V

∫

A

v1n1dA
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In discrete form we can write (see Fig.K.1)
(
∂v1
∂x1

)
=

1

V

∑

i=e,n,w,w

(v1n1A)i =

1

V
{(v1An1)e + (v1An1)n + (v1An1)w + (v1An1)s}

K.3.1 Geometrical quantities

It is useful to first compute the unit vectorss along the control volume. For the east
face, for example, we get

s1e =
x1,ne − x1,se

de

s2e =
x2,ne − x2,se

de

de =
√

(x1,ne − x1,se)2 + (x2,ne − x2,se)2

(note that the area of the east faceAe is equal tode since∆z = 1). The relation
between the normal vectorn, s and the unit vector in thez-direction

s · n = 0

s× ẑ = n,

gives us the normal vector for the east face as

n1e = s2e

n2e = −s1e.
(K.11)
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L MTF270, Assignment 2: LES

You can do the assignment on your own or in a group of two. You will receive data
from a DNS of fully developed flow in a channel. It is recommended (but the not
required) that you use LATEX(an example of how to write in LATEXis available on the
course www page). It is available on Linux. On Windows you canuse, for exam-
ple, Lyx (www.lyx.org ) or MikTex (www.miktex.org ) which are both free to
download.

The equations that have been solved are

∂vi

∂xi
= 0

∂vi

∂t
+

∂

∂xj
(vivj) = δi1 −

∂p

∂xi
+

1

Reτ

∂2vi

∂xj∂xj

(L.1)

TheRe number based on the friction velocity and the half channel width isReτ =
uτh/ν = 500 (h = ρ = uτ = 1 so thatν = 1/Reτ ).

A 96 × 96 × 96 mesh has been used. The streamwise, wall-normal and spanwise
directions are denoted byx (x1), y (x2) andz (x3) respectively. The cell size inx and
z directions are∆x = 0.0654 and∆z = 0.0164. Periodic boundary conditions were
applied in thex andz direction (homogeneous directions). The size od the domainis
(L, h, Zmax) in (x, y, z), see Fig.L.1.

At the www-page (http://www.tfd.chalmers.se/˜lada/comp turb model )
you find data files with three instantaneous flow fields (statistically independent). The
data files include the instantaneous variablesu (v1), v (v2), w (v3)andp (made non-
dimensional byuτ andρ). Use Matlab to analyze the data. You can also use Octave on
Linux/Ubuntu. Octave is a Matlab clone which can be downloaded for free. You find a
Matlab/Octave program at the www-page which reads the data and computes the mean
velocity. The data files are Matlab binary files. Since the data files are rather large, it is
recommended that you do all tasks using only data files ’1’. When everything works,
then use also data files ’2’ and ’3’ averaging by use of the three files.

L.1 Task 2.1

We decompose the instantaneous variables in time-averagedand fluctuating quantities
as

vi = 〈vi〉 + v′i, p = 〈p〉 + p′

The symbol〈.〉 denotes averaging in the homogeneous directionsx andz. Note that
in reality 〈.〉 always denote time averaging. It is only in this special academic test case
where we havethreehomogeneous directions (x, z, t) where we can – in addition to
time averaging – also can usex andz averaging. Compute the six stresses of the stress
tensor,〈v′iv′j〉. Use the definition to compute the stresses, for example

〈v′1v′2〉 = 〈(v1 − 〈v1〉) (v2 − 〈v2〉)〉
= 〈v1v2〉 − 〈v1〈v2〉〉 − 〈v2〈v1〉〉 + 〈〈v1〉〈v2〉〉
= 〈v1v2〉 − 2〈v1〉〈v2〉 + 〈v1〉〈v2〉 = 〈v1v2〉 − 〈v1〉〈v2〉.

(L.2)

Wait with analysis of the results till you have done next part.
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x1 i

x2 j 〈v̄1〉

L

periodic b.c.

2h

(a) x1 − x2 plane.

x3 k

x2 j

X3,max

periodic b.c.

2h

(b) x2 − x3 plane.

Figure L.1: Channel domain.
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L.2 Task 2.2

Compute the production term and the pressure-strain terms

Pk = −〈v′1v′2〉
∂〈v1〉
∂y

P11 = −2〈v′1v′2〉
∂〈v1〉
∂y

P12 = −〈v′2v′2〉
∂〈v1〉
∂y

Φ11 = 2

〈
p′
∂v′1
∂x

〉

Φ12 =

〈
p′
∂v′1
∂y

〉
+

〈
p′
∂v′2
∂x

〉

Φ22 = 2

〈
p′
∂v′2
∂y

〉

Do the production terms and the pressure-strain term appearas you had expected? (see
the previous course MTF256)

Now analyze the fluctuations in the previous subsection. Which stresses do you
think are symmetric with respect to the centerline? or anti-symmetric? What’s the
reason?

When averaging, we use only three time steps (three files). Ifwe would use many
more time steps – or, in general, if we letT → ∞ when time averaging, e.g.

〈φ〉 = lim
T→∞

1

2T

∫ +T

−T

φdt

then some of the stresses would be zero: which ones? Why?

L.3 Task 2.3

Plotv1 andv2 alongx1 at two differentx2 values atx3 = x3,max/2.

1. Filter v1 andv2 to getv̄ andv̄2 using a 1D box-filter (in thex1 direction) with
filter width ∆ = 2∆x1 (this corresponds to a test filter, see Eq.17.26. Compare
v̄1 andv̄2 with v1 andv2.

2. Do the same thing again but with a filter width of∆ = 4∆x1 (now you must
derive the expression on your own!). Discuss the differences between no filter,
∆ = 2∆x1 and∆ = 4∆x1.

In LES we almost always assume that the filter width is equal tothe control volume
(i.e. we use animplicit filter). Above, in Item 1 and 2 you have just carried outexplicit
filtering.

Repeat Item 1, but now for a 2D filter (x1 andx3 direction); the formula for a 3D
filter is given in Eq.17.27. Compare the results along the same lines as in Item 1 and
2.
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Figure L.2: Spectrum with cut-off.

L.4 Task 2.4

Compute the SGS stressτ12 from the Smagorinsky model, which reads

τij = −2νsgss̄ij , νsgs = (Csfµ∆)
2√

2s̄ij s̄ij

s̄ij =
1

2

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)

fµ = 1 − exp(−x+
2 /26)

(L.3)

The filtered velocities,̄vi, are taken from Task 2.3 using the 2D filter (inx1 andx3);
we should really have used a 3D filter, but in order to keep it simple, we use the 2D
filter. Before doing the 2D filter, look in the Lecture Notes how a 3D filter is done. The
constantCs = 0.1.

Compare the SGS stress〈τ12〉 with the resolved stress〈u′v′〉 and compare the SGS
viscosity with the physical one. Plot them across the channel. Any thoughts?

As an alternative to the damping function,fµ, compute the filter length as

∆ = min{κn,∆} (L.4)

wheren is the distance to the nearest wall andκ = 0.4 (von Kàrmàn constant). In this
case you should setfµ = 1.
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L.5 Task 2.5

Repeat the Task 2.4, but now for the WALE model by [162], which reads

gij =
∂v̄i

∂xj
, g2

ij = gikgkj

s̄d
ij =

1

2

(
g2

ij + g2
ji

)
− 1

3
δijg

2
kk

νsgs = (Cm∆)
2

(
s̄d

ij s̄
d
ij

)3/2

(s̄ij s̄ij)
5/2

+
(
s̄d

ij s̄
d
ij

)5/4

(L.5)

with Cm = 0.325 which corresponds toCs = 0.1.

L.6 Task 2.6

Compute the dissipation

ε = ν

〈
∂v′i
∂xj

∂v′i
∂xj

〉

and plotε across the channel.
In LES we introduce a filter which is assumed to cut off the spectrum atκc in the in-

ertial region, see Fig.L.2. At cut-off, kinetic energy is extracted from the resolved flow
by the SGS dissipationεsgs. Since the cut-off is assumed to be located in the inertial
sub-range (II), the SGS dissipation is at highRe numbers equal to the dissipation.

Introduce a 2D filter (2∆x1 and2∆x3) as in Tasks 2.3 & 2.4 and filter all velocities
to obtainv̄1, v̄2 andv̄3. Compute the SGS stresses from the definition

τij = vivj − v̄iv̄j (L.6)

and compute the SGS dissipation

εsgs = −〈τij
∂v̄i

∂xj
〉 (L.7)

Now, what is the relation betweenεsgs andε? Considering the cascade process, what
did you expect?

Recall that when we do traditional Reynolds decomposition,the production term
in the equation for turbulent kinetic energy appears as a sink term in the equation for
the mean kinetic energy, see Eq.8.35. This is the case also in LES, but now we have
a decomposition into time-averaged filtered velocity,〈v̄i〉, resolved fluctuation,̄v′i, and
SGS fluctuation,v′′i , i.e.

vi = v̄i + v′′i = 〈v̄i〉 + v̄′i + v′′i (L.8)

Now we have three equations for kinetic energy:K̄ = 1
2 〈v̄i〉〈v̄i〉, k̄ = 1

2 〈v̄′iv̄′i〉 and
ksgs = 1

2 〈v′′i v′′i 〉. The flow of kinetic energy can be illustrated as in Fig.L.3 (cf. Fig.
20 in [74])

The transport equation for〈1
2 v̄

′
iv̄

′
i〉 is derived in [14]. (can be downloaded from

www.tfd.chalmers.se/˜lada ).
When deriving theksgs equation, no decomposition into time-averaged,〈v̄i〉, and

resolved fluctuations,̄v′i, is made. Hence the SGS dissipation in Eq.L.7 appears as an
instantaneous production term in the equation forksgs [75, 76, ] (can be downloaded
from www.tfd.chalmers.se/˜lada ).

Plot (alongx2), compare and discuss the four dissipations (see Fig.L.3)
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K̄ k̄

〈
v̄′iv̄

′

j

〉 ∂〈v̄i〉
∂xj

〈ksgs〉

≃ 2〈νsg
s〉〈s̄

ij
〉〈s̄ij

〉

∆T

ν ∂〈v̄
i 〉∂x

j
∂〈v̄

i 〉∂x
j

ε

ν

〈 ∂v̄
′
i

∂xj

∂v̄
′
i

∂xj

〉

ε ′
sgs

Figure L.3: Transfer of kinetic turbulent energy.̄K = 1
2 〈v̄i〉〈v̄i〉 and k̄ = 1

2 〈v̄′iv̄′i〉
denote time-averaged kinetic and resolved turbulent kinetic energy, respectively.∆T
denotes increase in internal energy, i.e. dissipation.

〈v̄′1v̄′2〉
∂〈v̄1〉
∂x2

: dissipation (which is equal to production with minus sign) by resolved

turbulence in thēK equation

ε′sgs =

〈(
νsgs

∂v̄i

∂xj

∂v̄i

∂xj

)′
〉

≃ 〈νsgs
∂v̄′i
∂xj

∂v̄′i
∂xj

〉: SGS dissipation term in thēk equa-

tion. This is themodelledSGS dissipation. The exact SGS dissipation is com-
puted as (sinceε′sgs is a product of two fluctuating quantities, we compute it with
the same formula as in Eq.L.2)

ε′sgs =

〈
−τ ′ij

∂v̄′i
∂xj

〉
= −

〈
τij

∂v̄i

∂xj

〉
+ 〈τij〉

∂〈v̄i〉
∂xj

(L.9)

Note thatε′sgs is defined using thefluctuatingvelocity gradient (see [14]4), con-
trary toεsgs = Pksgs in Eq.L.7.

ν

〈
∂v̄′i
∂xj

∂v̄′i
∂xj

〉
: viscous dissipation term in thēk equation

〈
νsgs

∂v̄1
∂x2

〉
∂〈v̄1〉
∂x2

≃ 〈νsgs〉
(
∂〈v̄1〉
∂x2

)2

: SGS dissipation term in thēK equation.

L.7 Task 2.7

Above the filtered velocities were computed using the filter width ∆ = 2∆x1. In

dynamic models, we often define the test filter as twice the usual filter, i.e.
︷︷
∆ = 2∆.

4can be downloaded from course home page
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Use this definition (1D filter, i.e.
︷︷
∆ = 4∆x1) to compute the dynamic Leonard stress

〈L12〉 from the definition

Lij =
︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j (L.10)

and compare it (across the channel) with the resolved stress〈v′1v′2〉 and the SGS stress
〈τ12〉 defined in Eq.L.6. Do you expect the magnitude of stresses to be similar?

L.8 Task 2.8

What is the near-wall behavior of〈v1〉, 〈v′21 〉 and〈v′22 〉 (i.e., forv1, what ism in 〈v1〉 =
O(xm

2 )). In order to estimatem, plot the quantities in log-log coordinates. Do the
quantities exhibit the near-wall behaviour that you expected?

L.9 Task 2.9

The two-point correlation foru′

B11(x2, ζm) =
1

96 × 96

96∑

I=1

96∑

K=1

v′1(x
I
1, x2, x

K
3 )v′1(x

I
1, x2, x

K
3 − ζm) (L.11)

wherexK
3 andζm are the spanwise locations of the two points. Take advantageof the

fact that the flow is periodic, but be careful when integrating the correlation above in
thex3 direction. We have96 cells in thex3 direction. If, for example,ζm = 2∆x3,
and one of the points (x1

3) is atK = 1 then the other (x1
3 − 2∆) is atK = 95.

Plot the two-point correlation at a couple ofx2 positions. When plotting two-point
correlations, it is no point showing both symmetric parts; show only half of it (cf. the
two-point correlations in Section10.1and Fig.M.1).

Compute and plot the integral length scale,L1, which is defined by

L1(x2) =
1

v2
1,rms

∫ ∞

0

B11(x2, ζ)dζ (L.12)

Compute alsoL3. What’s the difference betweenL1 andL3?

L.10 Task 2.10

The energy spectrum of any second moment can be obtained by taking the FFT of the
corresponding two-point correlation. The energy spectrumof any second moment can
be obtained by taking the FFT of the corresponding two-pointcorrelation. You can find
some details on how to use Matlab’s FFT in AppendixM.

If you have computed the Fourier coefficients properly, the sum of all coefficients
should give the energy. The reason is that the Fourier coefficients correspond to the
energy spectrum, and if we integrate the energy spectrum over all wave numbers we
get the total energy. When we take the FFT of Eq.L.11, for example, we get

B̂11(κz) = FFT (B11)

and summation gives

v2
1,rms =

N∑

1

B̂11/N (L.13)
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see AppendixM
Plot the energy spectra at a couple ofx2 locations. Confirm that Eq.L.13 is satis-

fied. When plotting two energy spectrum, it is no point showing both symmetric parts;
show only half of it (cf. the energy spectrum in Fig.M.5 b).

L.11 Task 2.11

Think of an interesting turbulent quantity and plot it and analyze it!
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M MTF270: Compute energy spectra from LES/DNS
data using Matlab

M.1 Introduction

When analyzing DNS or LES data, we are interested to look at the energy spectra.
From these we can find out in which turbulence scales (i.e. at which wave numbers)
the fluctuating kinetic turbulent energy reside. By taking the Fourier transform of the
time signal (a fluctuating turbulent velocity) and then taking the square of the Fourier
coefficients we obtain the energy spectrum versus frequency.

If we want to have the energy spectrum versus wavenumber, we Fourier transform
N instantaneous signals in space and then time average theN Fourier transforms.
An alternative way is to Fourier transform of a (time-averaged) two-point correlation,
B33(x̂3), which is defined as (see Eq.10.2)

B(x3, x̂3) = 〈v′3(x3 − x̂3)v
′

3(x3)〉 (M.1)

where x̂3 is the separation between the two points. Here we assume thatx3 is an
homogeneous direction so thatB33 is independent ofx3, i.e. B33 = B33(x̂3). The
two-point correlation for an infinite channel flow is shown inFig. M.1. On discrete
form the expression forB33 reads

B33(k∆z) =
1

M

M∑

m=1

v′3(x3 − k∆z)v′3(x3) (M.2)

wherem denotes summation in homogeneous directions (i.e. time plus spatial homo-
geneous directions).

In the following section we give a simple example how to use Matlab to Fourier
transform a signal where we know the answer. Then we show how to derive the energy
spectrum from a spatial two-point correlation. Finally, some comments are given on
how to create an energy spectrum versus frequency from an autocorrelation (i.e. from
a two-point correlation in time).

M.2 An example of using FFT

Here we will present a simple example. Consider the function

u = 1 + cos(2πx/L) = 1 + cos(2π(n− 1)/N) (M.3)

whereL is the length of the domain andN = 16 is the number of discrete points,
see Fig.M.2. Let’s use this function as input vector for the discrete Fourier transform
(DFT) using Matlab. The functionu is symmetric, so we expect the Fourier coefficients
to be real. In Matlab the DFT ofu is defined as (typehelp fft at the Matlab prompt)

U(k) =

N∑

n=1

un exp

{−ı2π(k − 1)(n− 1)

N

}

1 ≤ k ≤ N

(M.4)
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wherek is the non-dimensional wavenumber andı =
√
−1. The ratio(n − 1)/N

corresponds to the physical coordinate,x, in the the continuous FFT

U c(κ) =
1

L

∫ L

−L

u(x) exp(−ıκx)dx, κ = 2π/L (M.5)

Note that the discrete FourierU(k) coefficients in Eq.M.4 must be divided byN , i.e.
U(k)/N , in order to correspond to the Fourier coefficientsU c (N corresponds toL
in Eq. M.5). Furthermore, it can be noted that in Eq.M.4 the period[0, 2π] is used
whereas the formulation in Eq.M.5 is based on the interval[−π, π].

In Matlab, we generate the functionu in Eq.M.3 using the commands

N=16;
n=1:1:N;
u=1+cos(2 * pi * (n-1)/N);

Theu function is shown in Fig.M.2. 16 nodes are used; node 1 is located atx = 0
and node16 is located at15L/16.

Now we take the discrete Fourier transform ofu. Type

U=fft(u);

Instead of using the built-infft command in Matlab we can program Eq.M.4
directly in Matlab as

U=zeros(1,N);
for k=1:N
for n=1:N

arg1=2 * pi * (k-1) * (n-1)/N;
U(k)=U(k)+u(n) * cos(-arg1);

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B33(x̂3)

x̂3

Figure M.1: Two-point correlation,B(x̂3) = 〈v′3(x3 − x̂3)v
′
3(x3)〉, of DNS data in

channel flow taken from [74].
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Figure M.2: Theu function.

end
end

Note that sinceu is symmetric, we have only usedcos(−x) = cos(x) (the sym-
metric part ofexp(−ıx)).

The resulting Fourier coefficients are shown in Fig.M.3. Since the functionu
includes only one cosine function and a mean (which is equal to one) only three Fourier
coefficient are non-zero. Two of them,U(2)/N = 0.5,U(16)/N = 0.5, correspond to
the cosine functions (there must be two sinceU is symmetric)

cos(2π(n− 1)/N)

cos((N − 1)2π(n− 1)/N) = cos(−2π(n− 1)/N) = cos(2π(n− 1)/N)
(M.6)

which corresponds tocos(2πx/L) in Eq. M.3. It can be noted that the interval[k =
N/2 + 1, N = 9, 16] corresponds to the negative, symmetric part of the wavenumbers
in the physical formulation (cf. Eqs.M.4 andM.5). The first Fourier coefficient corre-
sponds – as always – to the mean ofu, i.e.U(1)/N = 〈u〉. This is easily verified from
Eq.M.4 by insertingk = 1. The remaining coefficients are zero.

In Fig. M.3, U/N is plotted versus non-dimensional wavenumber,k, and versus
wavenumberκ = 2π(n− 1)/L.

The energy,〈u2〉, of the signal in Fig.M.2 can be computed as

〈u2〉 =
1

L

∫ L

0

u2(x)dx =

N∑

n=1

u2
n/N = 1.5 (M.7)

In wavenumber space the energy is – according to Parseval’s formula, see Eq.C.4 –
equal to the integral of the square of the Fourier coefficients, i.e.

〈u2〉 =
1

L

∫ ∞

0

U2(κ)dκ =
1

N

N∑

n=1

U2
n/N = 1.5 (M.8)
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Figure M.3: TheU/N Fourier coefficients.
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Figure M.4: Periodic two-point correlation,B33(x̂3) = 〈v′3(x3)v
′
3(x3 + x̂3)〉, of DNS

data in channel flow taken from [74].

M.3 Energy spectrum from the two-point correlation

Now that we have learnt how to use the FFT command in Matlab, let’s use it on our
two-point correlation in Eq.M.1 and Fig.M.1. EquationM.4 reads

B̂33(k) =

N∑

n=1

B33(n) exp

{−ı2π(k − 1)(n− 1)

N

}
(M.9)

The simulations have been carried out with periodic boundary conditions inx3 direc-
tion (andx1), and henceB33(x̂3) is symmetric, see Fig.M.4. Thus, it is sufficient to
use the cosine part of Eq.M.9, i.e.

B̂33(k) =

N∑

n=1

B33(n) cos

{
2π(k − 1)(n− 1)

N

}
(M.10)

In Fig.M.5a the Fourier coefficientŝB33κ3 are presented versus wavenumberκ3 =
2π(n− 1)/x3,max, wherex3,max ≃ 1.55, see Fig.M.4. FigureM.5b shows the same
energy spectra in log-log scale (only half of the spectrum isincluded), which is the
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Figure M.5: The energy spectrum ofv′23 versus wavenumber,κ3. Dashed line in b)
show−5/3 slope.

common way to present energy spectra. The dashed line shows the−5/3 slope which
indicates that the energy spectra from the DNS follows the Kolmogorov−5/3 decay.

As usual, the Fourier coefficient for the first non-dimensional wavenumber, i.e.
B̂33(1)/N is equal to the mean ofB33, i.e.

〈B33〉 =
1

N

N∑

n=1

B33(n) ≡ 1

N
B̂33(1) (M.11)

compare with Eq.M.10. Note that this is almost the same expression as that for the
integral length scale which reads (see Eq.10.5)

Lint(x3) =
1

v′23

∫ ∞

0

B33(x3, x̂3)dx̂3 =
〈B33〉
v′23

(M.12)

Hence the integral length scale is related to the first Fourier mode as

Lint =
B̂33(1)

Nv′23
(M.13)

The two-point correlation for zero separation is equal tov′23 , i.e. B33(0) = v′23 =

1.51. Another way to obtainv′23 is to integrate the energy spectrum in Fig.M.5, i.e.

v′23 =

∫ ∞

0

B̂33(κ3)dκ3 =
1

N

N∑

n=1

B̂33(n) = 1.51 (M.14)

M.4 Energy spectra from the autocorrelation

When computing the energy spectra of thev′3 velocity, say, versus frequency, the time
series ofv′3(t) is commonly Fourier transformed and the energy spectrum is obtained
by plotting the square of the Fourier coefficients versus frequency,f . We can also split
the time signal into a number subsets, Fourier transform each subset and then average.
In Matlab, the commandpwelch is a convenient command which does all this.
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In the previous section we computed the energy spectrum versus wavenumber by
Fourier transforming the two-point correlation. We can usethe same approach in time.
First we create the autocorrelationB33(τ) = 〈v′3(t)v′3(t + τ)〉 (this can be seen as a
two-point correlation in time). ThenB33(τ) is Fourier transformed to get̂B33(f) in
the same way as in SectionM.3. The only difference is that̂B33(τ) is a function of
frequency whereaŝB33(κ3) is a function of wavenumber.
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N MTF270, Assignment 4: Hybrid LES-RANS

In this exercise you will use data from a Hybrid LES-RANS for fully developed channel
flow. The turbulence model is the same as in [74] (no forcing), but the domain and
Reynolds number is taken from [147]. TheRe number based on the friction velocity
and the half channel width isReτ = uτh/ν = 8000. 28 cells (29 nodes including the
boundary) are located in the URANS region at each wall. The matching line is located
atx+

2 ≃ 500, x2/δ = 0.06.
A 64 × 96 × 64 mesh has been used. The cell size inx1 andx3 directions are

∆x1 = 0.05 and∆x3 = 0.025. Periodic boundary conditions were applied in thex1

andx3 direction (homogeneous directions). All data have been made non-dimensional
by uτ andρ.

At the course www page you find data files with instantaneous flow fields (statisti-
cally independent) of The data files include the instantaneous variablesu, v, w andkT

(made non-dimensional byuτ andρ). Use Matlab or Octave on Linux/Ubuntu. Octave
is a Matlab clone which can be downloaded for free. Use one of these programs to
analyze the data. You find a Matlab/Octave program at the www page which reads the
data and computes the mean velocity. The data files are Matlabbinary files. Since the
data files are rather large, it is recommended that you do all tasks using only data files
’1’. When everything works, then use also data files ’2’, ’3’ and ’4’, averaging by use
of the four files.

You will also find a file with time history ofu.

N.1 Time history

At the www page you find a fileu v time 4nodes hybrid.dat with the time
history of v̄1 andv̄2. The file has nine columns of̄v1 andv̄2 at four nodes (and time):
x2/δ = 0.0028, x2/δ = 0.015, x2/δ = 0.099 andx2/δ = 0.35. Hence, two nodes
are located in the URANS region and two nodes in the LES region. With uτ = 1
andν = 1/Reτ = 1/8000, this correspond tox+

2 = 22, x+
2 = 120, x+

2 = 792 and
x+

2 = 2800, respectively. The sampling time step is6.250E− 4 (every time step). Use
the Matlab programpl time hybrid to load and plot the time history of̄v1 .

Recall that the velocities have been scaled with the friction velocityuτ , and thus
what you see is reallȳv1/uτ . The time history of̄v1 atx2/δ = 0.015 andx2/δ = 0.35
are shown. To study the profiles in closer detail, use theaxis -command in the same
way as when you studied the DNS data.

Plot v̄1 for all four nodes. How does the time variation ofv̄1 differ for different
positions? Recall that the two points closest the wall are located in the URANS region
and the other two are located in the LES region. In the URANS region the turbulent
viscosity is much larger than in the LES region. How do you expect that the difference
in νt affects the time history of̄v1. Does the time history of̄v1 behave as you expect?
What about̄v2?

Compute the autocorrelation of the four points

imax=500;
two_uu_1_mat=autocorr(u1,imax);

Above we See the maximum separation in time to500 samples. Then compute the
integral timescale
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dt=t(1);
int_T_1=trapz(two_uu_1_mat) * dt;

Plot the autocorrelation.

plot(t(1:imax),two_uu_1_mat(1:imax),’linew’,2)
xlabel(’t’)
ylabel(’B_{uu}’)
handle=gca
set(handle,’fontsi’,[20])

How does it compare to the integral timescale. Compute the autocorrelation and
integral timescale also for the other three points. Do you see any difference between
the points in the URANS region and the LES region?

N.2 Mean velocity profile

After having performed a hybrid LES-RANS, we want to look at the time-averaged re-
sults. Use the filepl uvw hybrid.m to look at the mean velocity profiles.pl uvw hybrid.m
reads the instantaneousv̄1 field and performs an averaging in the homogeneous direc-
tionsx1 andx3. The time averaged velocity profile is compared with the log profile
(markers). There are four files with instantaneous values ofv̄1. Use more than one file
to perform a better averaging.

N.3 Resolved stresses

We want to find out how much of the turbulence that has been resolved and how much
that has been modelled. Compute firstvmean (this quantity should be very small, but
if you use only one file this may not be the case due to too few samples). Now compute
〈v′1v′2〉. Here’s an example how to do:

uv=zeros(nj,1);
for k=1:nk
for j=1:nj
for i=1:ni

ufluct=u3d(i,j,k)-umean(j);
vfluct=v3d(i,j,k)-vmean(j);
uv(j)=uv(j)+ufluct * vfluct;

end
end
end
uv=uv/ni/nk;

Plot it in a new figure (a figure is created by the commandfigure(2) ).
Compute also the resolved turbulent kinetic energy

kres = 0.5
(
〈v′21 〉 + 〈v′22 〉 + 〈v′23 〉

)

and plot it in a new figure.
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URANS region LES region

ℓ 2.5n[1 − exp(−0.2k
1/2
T n/ν)] ℓ = ∆ = (δV )1/3

νT 0.09 · 2.5k1/2
T n[1 − exp(−0.014k

1/2
T n/ν)] 0.07k

1/2
T ℓ

Table N.1: Expressions forℓ andνT in the LES and URANS regions.n denotes the
distance from the wall.

N.4 Turbulent kinetic energy

Now plot and compare the resolved and modelled turbulent kinetic energies. Note that
the modelled turbulent kinetic energy,kT (te1 hybrid.mat , te2 hybrid.mat ,
. . . ), can be downloaded from the www page and loaded at the beginning ofpl uvw hybrid.m .
Which is largest? Which is largest in the URANS region and in the LES region, re-
spectively? What about the sum? The magnitude of resolved and modelled turbulent
kinetic energies is discussed in the last subsection in [74].

N.5 The modelled turbulent shear stress

We have computed the resolved shear stress. Let’s find the modelled shear stress.
The modelled turbulent kinetic energy,kT (file te1 hybrid.mat , . . . ), will be

used. Recall thatν = 1/8000. Compute the turbulent viscosity according to TableN.1
and do the usual averaging. When computing∆, you need the volume,δV , of the cells.
It is computed asδV = (∆x1∆x2∆x3); ∆x1 and∆x3 are constant and∆x2 is stored
in the arraydy(j) , look at the beginning of the m-file. Plot〈νT 〉/ν. Where is it large
and where is it small? (Recall that the URANS region is located in the first28 cells).
Is it smooth? Do you need more samples? If so, use more files.

Compute the modelled shear stress from the Boussinesq assumption

τ12 = −2νT s̄12 = −νT

(
∂v̄1
∂x2

+
∂v̄2
∂x1

)

Plot it and compare with the resolved shear stress (see Section N.3). Are they smooth
across the interface? (recall that forcing is used) Is the resolved shear stress large in the
URANS region? Should it be large? Why/why not?

N.6 Turbulent length scales

Compute and plot the turbulent length scales given in TableN.1. Plot theℓSGS and
ℓURANS length scales in both regions. Which is largest? Any surprises? Compare
them with∆x2 and(∆x1∆x2∆x3)

1/3. One would expect that(∆x1∆x2∆x3)
1/3 <

ℓURANS everywhere. Is this the case?

N.7 SAS turbulent length scales

Compute the 1D von Kármán length scale defined as

LvK,1D = κ

∣∣∣∣
∂〈v̄1〉/∂x2

∂2〈v̄1〉/∂x2
2

∣∣∣∣ (N.1)

Note that you should take the derivatives of theaveraged̄v1 velocity, i.e. of〈v̄1〉. Zoom
up near the wall. How does it behave (i.e. what isn in O(xn

2 )? What shouldn be?
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Compare that with the von Kármán length scale defined from instantaneous̄v1, i.e.

LvK,1D,inst = κ

∣∣∣∣

〈
∂v̄1/∂x2

∂2v̄1/∂x2
2

〉∣∣∣∣ (N.2)

How does it compare withLvK,1D?
When we’re doing real 3D simulations, the first and second derivative must be

defined in 3D. One way of defining the von Kármán length scalein 3D is [141, 142]

LvK,3D,inst = κ

∣∣∣∣
S

U ′′

∣∣∣∣

S = (2νts̄ij s̄ij)
0.5

U ′′ =

(
∂2v̄i

∂xj∂xj

∂2v̄i

∂xj∂xj

)0.5

(N.3)

The second derivative is then computed as

U ′′2 =

(
∂2v̄1
∂x2

1

+
∂2v̄1
∂x2

2

+
∂2v̄1
∂x2

3

)2

+

(
∂2v̄2
∂x2

1

+
∂2v̄2
∂x2

2

+
∂2v̄2
∂x2

3

)2

+

(
∂2w̄3

∂x2
1

+
∂2w̄3

∂x2
2

+
∂2w̄3

∂x2
3

)2

(N.4)

Plot the von Kármán length scale using Eqs.N.3andN.4. Compare them with Eq.N.1.
What’s the difference? What effect do the different length scales give forPSAS (i.e.
T1 in Eq.21.5) and what effect does it give toω?

Another way to compute the second derivative is

U ′′2 =

(
∂2v̄

∂x2

)2

+

(
∂2v̄

∂y2

)2

+

(
∂2v̄

∂z2

)2

+

(
∂2v̄

∂x2

)2

+

(
∂2v̄

∂y2

)2

+

(
∂2v̄

∂z2

)2

+

(
∂2w̄

∂x2

)2

+

(
∂2w̄

∂y2

)2

+

(
∂2w̄

∂z2

)2

(N.5)

Plot and compare the von Kármán length scales using the second derivatives defined in
Eqs.N.4 andN.5.
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O MTF270, Assignment 5: Embedded LES with PANS
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LES,fk = fLES
k < 1RANS,fk = 1.0
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Figure O.1: Channel flow configuration. The interface separates the RANS and the
LES regions.

In this exercise you will use data from an embedded PANS of channel flow. The
data are taken from [149]. The ku (Eq. 22.10) and theεu (Eq. 22.18) equations are
solved. The turbulent viscosity is computed from Eq.22.12. The PANS model is a
modifiedk − ε model which can operate both in RANS mode and LES mode.

The Reynolds number for the channel flow isReτ = 950 based on the friction
velocity, uτ , and half the channel width,δ. In the present simulations, we have set
ρ = 1, δ = 1 anduτ ≃ 1, see Fig.O.1. With a 3.2 × 2 × 1.6 domain, a mesh with
64 × 80 × 64 cells is used in, respectively, the streamwise (x), the wall-normal (y)
and the spanwise (z) direction, see Fig.O.1. The resolution is approximately (the wall
shear stress varies slightly along the wall)48× (0.6− 103)× 24 in viscous units. Inlet
conditions atx = 0 are created by computing fully developed channel flow with the
LRN PANS model in RANS mode (i.e. withfk = 1). The RANS part extends up to
x1 = 0.95; downstream the equations operate in LES mode ((i.e.fk = 0.4).

Anisotropic synthetic fluctuations are added at the interface. The interface condi-
tion for εu is computed with the baseline valueCs = 0.07, wherekRANS is taken at
x = 0.5, see Fig.O.1. The modelled dissipation,εinter, is set fromkinter and an SGS
length scale,ℓsgs, which is estimated from the Smagorinsky model as

ℓsgs = Cs∆ (O.1)

and the interface condition forku is computed as

kinter = fLES
k kRANS (O.2)

with fLES
k = 0.4. The interface conditions onku and εu will make the turbulent

viscosity steeply decrease from its large values in the RANSregion to much smaller
values appropriate for the LES region.

O.1 Time history

At the www-page you find a fileu time interior.dat with the time history of
v̄2. The file has eight columns of̄v2 along two lines:x2 = 0.0139 (x+

2 ≃ 13) and
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x2 = 0.24 (x+
2 ≃ 230); they are located atx1 = 0.775, 1.175, 1.675, 2.175. The

sampling time step is0.000625 (every time step). Use Matlab. You can also use Octave
on Linux/Ubuntu. Octave is a Matlab clone which can be downloaded for free. Use the
Matlab/Octave programpl time pans to load and plot the time history of̄v2.

The time history of̄v2 at x2 = 0.0139 atx1 = 0.775 andx1 = 1.675 are shown.
To study the profiles in closer detail, use theaxis -command in the same way as when
you studied the DNS data. Why is there such a big difference inthe fluctuations?

If you’re not interested in integral time scales, skip the rest of this section and
proceed to SectionO.2.

In Matlab figure 2, the autocorrelation is plotted. The autocorrelation is defined as

B(τ) =

∫ ∞

0

v(t)v(t − τ)dt (O.3)

Study the coding and try to understand it. When prescribing the time correlation of
the synthetic fluctuations, the integral timescaleT is used, see Eq. 11 in [149]. The
integral time scale is defined as

T =

∫ ∞

0

Bnorm(τ)dτ (O.4)

whereBnorm = B(τ)/B(0) so thatBnorm(0) = 1. The constanta is in [149] set to
0.954 and from Eq. 11 in [149] we can then compute the prescribed integral timescale.
In the Matlab file the integral timescale is computed from theautocorrelation. Try to
understand the coding.

Plot v̄2 for the other nodes and study the differences. Compute the autocorrelations
and the integral timescales.

O.2 Resolved stresses

Now we will look at the time-averaged results. Use the filepl uuvvww 2d.m to
look at the mean quantities such as velocity, resolved and modelled stresses, turbulent
viscosities etc.pl uuvvww 2d.m reads the fields and transforms them into 2D arrays
such asu 2d , uu 2d .

Runpl uuvvww 2d. . The resolved stresses〈v′21 〉 are plotted vsx2 (figure 1) and
vs.x1 (figure 2).

Two x1 stations are shown in figure 1,x1 = 1.175 andx1 = 2.925. Plot the
resolved stress also in the RANS region, i.e. forx1 < 0.95. The〈v′21 〉 profiles are very
different in the RANS region (x1 < 0.95) and in the LES (x1 > 0.95), aren’t they?
Why? This can also be seen in figure 2 where〈v′21 〉 is plotted vs.x1

Now plot the resolved shear stresses,〈v′1v′2〉, both in the RANS region and in the
LES region. You find the same difference between RANS and LES region as for〈v′21 〉,
don’t you?

O.3 Turbulent viscosity

Plot the turbulent viscosity vs.x2 in both regions. Normalize it with〈ν〉, i.e. plot
〈νu〉/ν. Where is it large and where is it small? Why? Now plot it also vs. x1.
Something drastically happens atx1 = 0.95, right?
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Figure O.2: Energy spectrum.

O.4 Modelled stresses

In SectionO.2 you looked at the resolved Reynolds stresses. Now let’s lookat the
modelledstresses. Computer the modelled Reynolds stresses from theBoussinesq as-
sumption

〈v′iv′jmod
〉 = −〈νu〉

(
∂〈v̄i〉
∂xj

+
∂〈v̄j〉
∂xi

)
+

2

3
δij〈ku〉 (O.5)

Compare the resolved and the modelled shear stress and streamwise normal stresses in
the RANS region and in the LES region.

O.5 Turbulent SGS dissipation

In an LES the resolved turbulent fluctuations can be represented by a energy spectrum
as in Fig.O.2. The resolved turbulence extracts kinetic energy via the production term,
P k, which represents a source term in thek equation (Eq.8.14) and a sink term in the
K̄ equation (Eq.8.35). The energy flow is visualized in Fig.L.3 where the energy in
K̄ mostly goes to resolved turbulence,k̄, then to modelled turbulence,ksgs (or ku) and
finally to internal energy via dissipation,εu.

In RANS mode, however, there is no resolved turbulence. Hence the kinetic energy
goes directly fromK̄ to the modelled turbulence,ku.

In the LES region, the production term in theku equation includes both mean and
fluctuating strain rates since

Pu = εsgs =

〈
νu

(
∂v̄i

∂xj
+
∂v̄j

∂xi

)
∂v̄i

∂xj

〉

which in the Matlab file is stored aspksgs 2d .
Now investigate the LES region the relation betweenPu = εsgs and the production,

P k, due to the resolved turbulence

P k = −〈v′iv′j〉
∂〈v̄i〉
∂xj
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Compare alsoP k in the LES region and in the RANS region.
In both the RANS and the LES region the process of viscous dissipation takes place

via εu. Hence, plot also this quantity. Is the turbulence in local equilibrium, i.e. does
the relationPu = εu hold?
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P MTF270: Transformation of a tensor

The rotation of a vector from thexi∗ coordinate system toxi reads (see, e.g., Chapter
1 in [19])

ui = bijuj∗ (P.1)

wherebij denotes the cosine between the axis

bij = cos (xi, xj∗) (P.2)

In Fig. P.1, thebij is given by

b11 = cosα, b12 = cosβ = − sinα

b21 = cos(π/2 − α) = sinα, b22 = cosα
(P.3)

The relationsbikbjk = bkibkj = δij are fulfilled as they should.
For a second-order tensor, the transformation reads

uij = bikbjmuk∗m∗ (P.4)

As an example, setα = π/4. EquationP.3gives

b11 = 1/
√

2, b12 = −1/
√

2, b21 = 1/
√

2, b22 = 1/
√

2 (P.5)

Inserting Eq.P.5into Eq.P.4gives

u11 = b11b11u1∗1∗ + b12b11u2∗1∗ + b11b12u1∗2∗ + b12b12u2∗2∗ (P.6a)

=
1

2
(u1∗1∗ − u2∗1∗ − u1∗2∗ + u2∗2∗)

u12 = b11b21u1∗1∗ + b12b21u2∗1∗ + b11b22u1∗2∗ + b12b22u2∗2∗ (P.6b)

=
1

2
(u1∗1∗ − u2∗1∗ + u1∗2∗ − u2∗2∗)

u21 = b21b11u1∗1∗ + b22b11u2∗1∗ + b21b12u1∗2∗ + b22b12u2∗2∗ (P.6c)

=
1

2
(u1∗1∗ + u2∗1∗ − u1∗2∗ − u2∗2∗)

u22 = b21b21u1∗1∗ + b22b21u2∗1∗ + b21b22u1∗2∗ + b22b22u2∗2∗ (P.6d)

=
1

2
(u1∗1∗ + u2∗1∗ + u1∗2∗ + u2∗2∗)

x1

x2

x1∗
x2∗

α

β

Figure P.1: Transformation between the coordinate systems(x1∗, x2∗) and(x1, x2).
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P.1 Rotation to principal directions

Consider fully developed flow in a channel, see AppendixB. The strain-rate tensor,
sij , reads

s11 = 0, s12 =
1

2

∂v1
∂x2

, s21 = s12, s22 = 0 (P.7)

Assume that thex1 andx2 coordinates in Fig.P.1correspond to the streamwise and
wall-normal directions, respectively. Let thex1∗ − x2∗ coordinate system denote the
eigenvectors. The transformation fromx1 − x2 to x1∗ − x2∗ reads

si∗j∗ = cikskm, cij = cos (xi∗, xj) (P.8)

where

c11 = cosα, c12 = cos(π/2 − α) = sinα

c21 = cosβ = − cosα, c22 = cosα
(P.9)

see Fig.P.1. It can be seen that the relationcji = bij is satisfied as it should. The
eigenvectors for Eq.P.7are any two orthogonal vectors with angles±π/4,±3π/4. Let
us chooseπ/4 and3π/4 for which the transformation in Eq.P.8reads (α = π/4)

s1∗1∗ = c11c11s11 + c12c11s21 + c11c12s12 + c12c12s22 (P.10a)

=
1

2
(s11 + s21 + s12 + s22)

s1∗2∗ = c11c21s11 + c12c21s21 + c11c22s12 + c12c22s22 (P.10b)

=
1

2
(−s11 − s21 + s12 + s22)

s2∗1∗ = c21c11s11 + c22c11s21 + c21c12s12 + c22c12s22 (P.10c)

=
1

2
(−s11 + s21 − s12 + s22)

s2∗2∗ = c21c21s11 + c22c21s21 + c21c22s12 + c22c22s22 (P.10d)

=
1

2
(−s11 − s21 − s12 + s22)

The fully developed channel flow is obtained by inserting Eq.P.7

s1∗1∗ = s12, s1∗2∗ = 0, s2∗1∗ = 0, s2∗2∗ = −s21 (P.11)

Since the diagonal elements are zero it confirms that the coordinate systemx1∗ − x2∗

with α = π/4 is indeed a principal coordinate system. The eigenvalues,λ(k), of sij

correspond to the diagonal elements in Eq.P.11, i.e.

λ(1) ≡ s1∗1∗ = s12 =
1

2

∂v1
∂x2

, λ(2) ≡ s2∗2∗ = −s12 = −1

2

∂v1
∂x2

(P.12)
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P.2 Transformation of a velocity gradient

Consider the velocity gradientAij = ∂vi/∂xj . Apply the transformation from the
x1 − x2 system to thex1∗ − x2∗ in Eqs.P.10a-P.10dwith α = π/4

A1∗1∗ =
1

2
(A11 +A21 +A12 +A22)

A1∗2∗ =
1

2
(−A11 −A21 +A12 +A22)

A2∗1∗ =
1

2
(−A11 +A21 −A12 +A22)

A2∗2∗ =
1

2
(−A11 −A21 −A12 +A22)

(P.13)

Insert Eq.P.9with α = π/4 and replaceAij by the velocity gradient

∂v1∗
∂x1∗

=
∂v1∗
∂x2∗

=
1

2

∂v1
∂x2

,
∂v2∗
∂x1∗

=
∂v2∗
∂x2∗

= −1

2

∂v1
∂x2

, (P.14)

It can be seen that∂v1∗/∂x1∗ = s1∗1∗ and∂v1∗/∂x2∗ + ∂v2∗/∂x1∗ = 2s1∗2∗ = 0
(see Eqs.P.12andP.14) as it should.
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Q MTF270: Green’s formulas

In this appendix we will derive Green’s three formulas from Gauss divergence law.
In the last section we will derive the analytical solution tothe Poisson equation. The
derivations below are partly taken from [163].

Q.1 Green’s first formula

Gauss divergence law reads
∫

V

∂Fi

∂xi
dV =

∫

S

FinidS (Q.1)

whereS is the bounding surface of the volume,V , andni is the normal vector ofS

pointing out ofV . ReplacingFi byϕ
∂ψ

∂xi
gives

∫

V

∂

∂xi

(
ϕ
∂ψ

∂xi

)
dV =

∫

S

ϕ
∂ψ

∂xi
nidS (Q.2)

The left side is re-written as

∂

∂xi

(
ϕ
∂ψ

∂xi

)
= ϕ

∂2ψ

∂xi∂xi
+
∂ψ

∂xi

∂ϕ

∂xi
(Q.3)

which inserted in Eq.Q.2gives
∫

V

ϕ
∂2ψ

∂xi∂xi
dV +

∫

V

∂ψ

∂xi

∂ϕ

∂xi
dV =

∫

S

ϕ
∂ψ

∂xi
nidS (Q.4)

This is Green’s first formula.

Q.2 Green’s second formula

Switchingϕ andψ in Eq.Q.4gives
∫

V

ψ
∂2ϕ

∂xi∂xi
dV +

∫

V

∂ϕ

∂xi

∂ψ

∂xi
dV =

∫

S

ψ
∂ϕ

∂xi
nidS (Q.5)

Subtract Eq.Q.5from Q.4gives
∫

V

(
ϕ

∂2ψ

∂xi∂xi
− ψ

∂2ϕ

∂xi∂xi

)
dV =

∫

S

(
ϕ
∂ψ

∂xi
− ψ

∂ϕ

∂xi

)
nidS (Q.6)

This is Green’s second formula.

Q.3 Green’s third formula

In Green’s second formula, Eq.Q.6, set

ψ(r) =
1

|r − rP |
(Q.7)

As usual we are considering a volumeV with bounding surfaceS and normal vectorni.
Since functionψ(r) is singular forr = rP , consider a small sphere inV , see Fig.Q.1.
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x1

x2

V

ni

nε
i

Sε

S

rP

r

Figure Q.1: Green’s third formula. A volumeV with bounding surfaceS with normal
vectorni. In V there is a small sphereSε located atrP with radiusε and normal vector
nε

i .

In Eq.Q.6we need the first and the second derivative ofψ. The first derivative of1/ri
is computed as

∂

∂xi

(
1

r

)
= −∂r/∂xi

r2
= − ri

r3
(Q.8)

since the derivative of a distanceX is a vector along the increment of the distance, i.e.
∂X/∂xi = Xi/X whereX = |Xi|. The second derivative is obtained as

∂2

∂xi∂xi

(
1

r

)
= − ∂

∂xi

( ri
r3

)
= − ∂ri

∂xi

(
1

r3

)
+

∂r

∂xi

(
3ri
r4

)

= −3

(
1

r3

)
+
ri
r

(
3ri
r4

)
= − 3

r3
+
r2

r

(
3

r4

)
= 0

(Q.9)

To get the right side on the second line we used the fact thatriri = r2. Now we replace
ri = r by r− rP = ri − rP,i in Eqs.Q.8andQ.9which gives

∂

∂xi

(
1

|r − rP |

)
= − ri − rP,i

|r − rP |3
∂2

∂xi∂xi

(
1

|r − rP |

)
= 0

(Q.10)

for ri 6= rP
i , i.e. forV excluding the sphereSε, see Fig.Q.1. Apply Green’s second

formula for this volume which has the bounding surfacesS andSε with normal vectors
ni (outwards) andnε

i (inwards), respectively. We get

−
∫

V −Sε

1

|r − rP |
∂2ϕ

∂xi∂xi
dV =

∫

S

(
−ϕ ri − rP

i

|r − rP |3
− 1

|r − rP |
∂ϕ

∂xi

)
nidS

+

∫

Sε

(
−ϕ ri − rP

i

|r − rP |3
− 1

|r − rP |
∂ϕ

∂xi

)
(−nε

i )dS

(Q.11)

where the volume integral is taken over the volumeV but excluding the sphereSε, i.e.
V − Sε. Note the minus sign in front of the normal vector in theSε integral; this is
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because the normal vector must pointout of the volumeV − Sε, i.e. into the sphere,
Sε. In the sphere the normal vector,nε

i , is the direction from pointrP , i.e.

−nε
i =

r− rP

|r− rP |
=

ri − rP,i

|ri − rP,i|
(Q.12)

where we have normalized the vectorri − rP,i in order to make its length equal to one.
The length of the vectorri − rP,i is the radius of sphereSε, i.e.

|r− rP | = ε (Q.13)

The surface area,dS, for sphereSε can be expressed in spherical coordinates as

dS = ε2Ω = ε2 sin θdθdα (Q.14)

whereΩ is the solid angle. Inserting Eqs.Q.12, Q.13andQ.14in the last integral in
Eq.Q.11gives

ISε =

∫

Sε

(
ϕ

ε2
+
ri − rP,i

ε2
∂ϕ

∂xi

)
ε2dΩ =

∫

Sε

(
ϕ+ (ri − rP,i)

∂ϕ

∂xi

)
dΩ (Q.15)

To re-write this integral we will use themean value theoremfor integrals. In one
dimension this theorem simply states that for the integral of a function,g(x), over the
interval[a, b], there exists (at least) on point for which the the relation

∫ b

a

g(x)dx = (a− b)g(xQ) (Q.16)

holds, wherexQ denotes a point on[a, b]. Applying this theorem to the integral in
Eq.Q.15gives

ISε = ϕ(rQ)

∫

Sε

dΩ +

[
rQ,i − rP,i)

∂ϕ

∂xi
(rQ)

]∫

Sε

dΩ (Q.17)

whererQ ≡ rQ,i denotes a point onSε. As we letQ→ P , the radius,ε, of sphereSε

goes to zero so that the integral in Eq.Q.17reads

lim
ε→0

ISε = 4πϕ(rQ) (Q.18)

since
∫

Sε dΩ = 4π. Inserted in Eq.Q.18gives

ϕ(rP ) = − 1

4π

∫

V

1

|r − rP |
∂2ϕ

∂xi∂xi
dV

+
1

4π

∫

S

ϕ
ri − rP

i

|r − rP |3
nidS +

1

4π

∫

S

1

|r − rP |
∂ϕ

∂xi
nidS

(Q.19)

This is Green’s third formula.
The singularity1/|r − rP | in the volume integral in Eq.Q.19 is not a problem.

Consider a small sphere with radiusr1 = |r − rP | centered at pointP . In spherical
coordinates the volume element can then be expressed as

dV = r21 sin θdr1dθdα = r21dr1dΩ (Q.20)

Hence it is seen that the volume elementdV goes to zero faster than the singularity
1/|r− rP |.
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Q.4 Analytical solution to Poisson’s equation

Poisson’s equation reads
∂2ϕ

∂xj∂xj
= f (Q.21)

where we assume thatϕ goes to zero at infinity and that the right side is limited.
Green’s third formula, Eq.Q.19, gives

ϕ(rP ) = − 1

4π

∫

V

f(r)

|r − rP |
dV

+
1

4π

∫

S

ϕ
ri − rP

i

|r − rP |3
nidS +

1

4π

∫

S

1

|r − rP |
∂ϕ

∂xi
nidS

(Q.22)

We choose the volume as a large sphere with radiusR. Using Eqs.Q.12, Q.13and
Q.14, the first surface integral can be written as

1

4π

∫

S

ϕ
ri − rP

i

|r − rP |3
nidS =

1

4πR2

∫

S

ϕninidS =
1

4π

∫

S

ϕdΩ (Q.23)

usingnini = 1. This integral goes to zero sinceϕ→ 0 asR→ ∞.
The second integral in Eq.Q.22can be re-written using Eq.Q.13, Gauss divergence

law and Eq.Q.21as

1

4π

∫

S

1

|r − rP |
∂ϕ

∂xi
nidS =

1

4πR

∫

S

∂ϕ

∂xi
nidS

=
1

4πR

∫

S

∂2ϕ

∂xi∂xi
dV =

1

4πR

∫

V

fdV

(Q.24)

This integral also goes to zero for largeR since we have assumed thatf is limited.
Hence the final form of Eq.Q.22reads

ϕ(rP ) = − 1

4π

∫

V

f(r)

|r − rP |
dV (Q.25)

This is the analytical solution to Poisson’s equation, Eq.Q.21.



R. MTF270: Learning outcomes for 2012 263

R MTF270: Learning outcomes for 2012

Week 1

1. How is the buoyancy term,ρgi, re-written in incompressible flow?

2. Given the transport equation for the temperature,θ, and the transport equation
for θ̄, Derive the transport equation forv′iθ

′ (Eq. 11.19). Discuss the physical
meaning of the different terms. Which terms need to be modelled?

3. What is the expression for the total heat flux that appear inthe θ̄ equation?

4. Which terms in thev′iv
′
j equation need to be modelled? Explain the physical

meaning of the different terms in thev′iv
′
j equation.

5. Derive the Boussinesq assumption.

6. Show how the turbulent diffusion (i.e. the term includingthe triple correlation)
in thek equation is modelled.

7. How is the production term modelled in thek − ε model (Boussinesq)? Show
how it can be expressed in̄sij

8. Given the modelledk equation, derive the modelledε equation.

9. Discuss and show how the dissipation term,εij , is modelled.
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Week 2

1. How are the Reynolds stress,v′iv
′
j , and the turbulent heat flux,v′iθ

′, modelled in
the Boussinesq approach?

2. Use physical reasoning to derive a model for the diagonal components of the
pressure-strain term (slow part).

3. Derive the exact Poisson equation for the pressure fluctuation, Eq.11.61.

4. For a Poisson equation
∂2ϕ

∂xj∂xj
= f

there exists an exact analytical solution

ϕ(x) = − 1

4π

∫

V

f(y)dy1dy2dy3
|y − x| (R.1)

Use Eqs.11.61andR.1 to derive the exact analytical solution for the pressure-
strain term. What are the “slow” and “rapid” terms?

5. Derive the algebraic stress model (ASM). What main assumption is made?

6. Describe the physical effect of the pressure-strain termin the near-wall region.
What sign must henceΦ22,1w have?

7. The modelled slow and rapid pressure strain term readΦij,1 = −c1ρ ε
k

(
v′iv

′
j − 2

3δijk
)

andΦij,2 = −c2
(
Pij − 2

3δijP
k
)
, respectively. Give the expression for the pro-

duction terms, modelled pressure-strain terms and modelled dissipation terms
for a simple shear flow (e.g. boundary layer, channel flow, jetflow . . . ). In some
stress equations there is no production terms nor any dissipation term. How
come? Which is the main source term (or sink term) in these equations?

8. Describe the physical effect of stable stratification andunstable stratification on
turbulence.

9. Consider buoyancy-dominated flow withx3 vertically upwards. The production
term for thev′iv

′
j and thev′iθ

′ equations read

Gij = −giβv′jθ
′ − gjβv′iθ

′, Piθ = −v′iv′k
∂θ̄

∂xk

respectively. Show that the Reynolds stress model dampens and increases the
vertical fluctuation in stable and unstable stratification,respectively, as it should.
Show also thatk in thek − ε model is affected in the same way.

10. Consider streamline curvature for a streamline formed as a circular arc (convex
curvature). Show that the turbulence is dampened if∂vθ/∂r > 0 and that it is
enhanced if the sign of∂vθ/∂r is negative.

11. Streamline curvature: now consider a boundary layer where the streamlines are
curved away from the wall (concave curvature). Show that theReynolds stress
model gives an enhanced turbulence production (as it should) because of posi-
tive feedback between the production terms. Show that the effect of streamline
curvature in thek − ε model is much smaller.
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12. Consider stagnation flow. Show that in the Reynolds stress model, there is only a
small production of turbulence whereas eddy-viscosity models (such as thek − ε
model) give a large production of turbulence.

13. What is a realizability constraint? There are two main realizability constraints
on the normal and the shear stresses: which ones?

14. Show that the Boussinesq assumption may give negative normal stresses. In
which coordinate system is the risk largest for negative normal stresses? De-
rive an expression (2D) how to avoid negative normal stresses by reducing the
turbulent viscosity (Eq.13.12).

15. What is the two-component limit? What requirement does it put on the pressure-
strain models? Show that the standard IP model and the Rotta model do not
satisfy this requirement.

16. What is a non-linear eddy-viscosity model? When formulating a non-linear
model, the anisotropy tensoraij = −2νts̄ij/k is often used. Show the three
first terms (S2,Ω2, SΩ) in the non-linear model in the lecture notes. Show that
each term has the same properties asaij , i.e. non-dimensional, traceless and
symmetric.
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Week 3

1. Which equations are solved in the V2F model?

2. The transport equation forv′22 reads (the turbulent diffusion terms are modelled)

∂ρv̄1v′22
∂x1

+
∂ρv̄v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
−2v′2∂p

′/∂x2︸ ︷︷ ︸
Φ22

−ρε22

Show how this equation is re-written in the V2F model.

3. Thef equation in the V2F model reads

L2∂
2f

∂x2
2

− f = −Φ22

k
− 1

T

(
v′22
k

− 2

3

)
, T ∝ k

ε
, L ∝ k3/2

ε

Show how the magnitude of the right side andL affectf . How doesf enter into
the v′22 equation? What is the physical meaning off? Show that far from the
walls, the V2F model (i.e. thef and thev′22 equation) returns to thev′22 equation
in the Reynolds stress model.

4. What does the acronym SST mean? The SST model is a combination of the
k − ε and thek− ω model. In which region is each model being used and why?
How isω expressed ink andε?
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Week 4

1. Derive a transport equation forω from thek andε transport equations.

2. Describe thek − ω SST model.

3. In the SST model, a blending functionF1 is used; what does this function do?
In which region is each model being used and why?

4. What is the purpose of the shear stress limiter in the SST model? Show that the
eddy-viscosity assumption gives too high shear stress in APG sinceP k/ε ≫ 1
(Eq.16.14).

5. Show the difference between volume averaging (filtering)in LES and time-
averaging in RANS.

6. Consider the spatial derivative of the pressure in the filtered Navier-Stokes: show
that the derivative can be moved outside the filtering integral (it gives an addi-
tional second-order term).

7. The filtered non-linear term has the form

∂vivj

∂xj

Show that it can be re-written as

∂v̄iv̄j

∂xj

giving an additional term

− ∂

∂xj
(vivj) +

∂

∂xj
(v̄iv̄j) = −∂τij

∂xj

on the right side.

8. Consider a 1D finite volume grid. Carry out a second filtering of v̄ at nodeI and
show that̄vI 6= v̄I .

9. Consider the energy spectrum. Show the three different regions (the large energy-
containing scales, the−5/3 range and the dissipating scales). Where should the
cut-off be located? What does cut-off mean? Show where the SGS scales, grid
(i.e resolved) scales and the cut-off,κc are located in the spectrum.

10. Show how a sinus wavesin(κcx) corresponding to cut-off is represented on a
grid with two and four nodes, respectively. How isκc related to the grid size∆x
for these cases? Using thesin wave, derive the relation betweenκc and∆.

11. Derive the one-equationksgs equation

12. Consider the energy spectrum and discuss the physical meaning ofPksgs and
εsgs.

13. Derive the Smagorinsky model in two different ways (Sections17.6and17.22)
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Week 5

1. Discuss the energy path in connection to the source and sink terms in thēk, K̄
and theksgs equations, see Fig.L.3. How arek̄ andksgs computed from the
energy spectrum?

2. What is a test filter? Grid and test filter Naiver-Stokes equation and derive the
relation ︷ ︷

v̄iv̄j −
︷︷
v̄ i

︷︷
v̄ j +

︷︷
τ ij = Tij (R.2)

Draw an energy spectrum and show which wavenumber rangek̄, ksgs, ksgs,test

cover.

3. Formulate the Smagorinsky model for the grid filter SGS stress,τij , and the test
filter SGS stress,Tij . Use Eq.R.2and derive the relation

Lij −
1

3
δijLkk = −2C

(
︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij − ∆2

︷ ︷
|s̄|s̄ij

)

This equation is a tensor equation forC. Use this relation and derive the final
expression for the dynamic coefficient,C, Eq.17.33.

4. Show that when a first-order upwind schemes is used for the convection term,
an additional diffusion term and dissipation terms appear because of a numerical
SGS viscosity.

5. We usually define the SGS stress tensor asτij = v′iv
′
j − v̄iv̄j . In scale-similarity

modelsτij is written as three different terms. Derive these three terms. What are
they called? What does the work “scale-similar” mean?

6. What are the five main differences between a RANS finite volume CFD code and
a LES finite volume CFD code? What do you need to consider in LESwhen you
want to compute time-averaged quantities? (see Fig.17.11)

7. When doing LES, how fine does the mesh need to be in the wall region be? Why
does it need to be that fine?

8. What is DES? The length scale in the RANS S-A model reads

(
ν̃t

d

)2

; how is it

computed in the corresponding DES model?

9. How is the length scale computed in ak − ε two-equation DES model? Where in
a boundary layer does the DES model switch from RANS to LES (see “Summary
of lectures”)

10. The modified (reduced) length scale in two-equation DES models can be intro-
duced in different equations. Which equations and which term? What is the
effect on the modelled, turbulent quantities?

11. Describe hybrid LES-RANS based on a one-equation model.

12. Describe URANS. How is the instantaneous velocity decomposed? What turbu-
lence models are used? What is scale separation?

13. Discuss the choice of discretization scheme and turbulence model in URANS
(see Sections18.1and18.2)
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Week 6

1. Describe the SAS model. How is the von Kármán length scale defined? An
additional source term is introduced in theω equation: what is the form of this
term? What is the object of this term? When is it large and small, respectively?

2. Describe the PANS model. What is the main modification compared to the stan-
dardk − ε model? What is the physical meaning offk? Describe what happens
to the equation system whenfk is reduced.

3. Give a short description of the method to generate synthetic turbulent inlet fluc-
tuations. What form on the spectrum is assumed? How are the maximum and
minimum wavelengths,κmax, κmin, determined. With this method, the gener-
ated shear stress is zero: why? How is the correlation in timeachieved?
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[99] D.G. Barhaghi, L. Davidson, and R. Karlsson. Large-eddy simulation of natural
convection boundary layer on a vertical cylinder.International Journal of Heat
and Fluid Flow, 27(5):811–820, 2006.

[100] D.G. Barhaghi and L. Davidson. Les of mixed convectionboundary layer be-
tween radiating parallel plates. In5th International Symposium on Turbulence,
Heat and Mass Transfer, September 25-29, 2006, Dubrovnik, Croatia, 2006.

[101] S.R. Robinson. Coherent motions in the turbulent boundary layer. Annual Re-
view of Fluid Mechanics, 23:601–639, 1991.

[102] L. Davidson. Large eddy simulations: how to evaluate resolution.International
Journal of Heat and Fluid Flow, 30(5):1016–1025, 2009.

[103] L. Davidson. How to estimate the resolution of an LES ofrecirculating flow.
In M. V. Salvetti, B. Geurts, J. Meyers, and P. Sagaut, editors, ERCOFTAC,
volume 16 ofQuality and Reliability of Large-Eddy Simulations II, pages 269–
286. Springer, 2010.

[104] L. Davidson. Inlet boundary conditions for embedded LES. In First CEAS
European Air and Space Conference, 10-13 September, Berlin, 2007.
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Tummers, editors,Turbulence Heat and Mass Transfer 4, pages 697–704, New
York, Wallingford (UK), 2003. begell house, inc.

[116] J.C. Kok, H.S. Dol, B. Oskam, and H. van der Ven. Extra-large eddy simulation
of massively separated flows. AIAA paper 2004-264, Reno, NV,2004.

[117] J. Yan, C. Mocket, and F. Thiele. Investigation of alternative length scale substi-
tutions in detached-eddy simulation.Flow, Turbulence and Combustion, 74:85–
102, 2005.

[118] S.S. Girimaji. Partially-Averaged Navier-Stokes model for turbulence: A
Reynolds-averaged Navier-Stokes to direct numerical simulation bridging
method.Journal of Fluids Engineering, 73(2):413–421, 2006.

[119] J. Ma, S.-H. Peng, L. Davidson, and F. Wang. A low Reynolds number variant of
Partially-Averaged Navier-Stokes model for turbulence.International Journal
of Heat and Fluid Flow, 32:652–669, 2011.

[120] R. Schiestel and A. Dejoan. Towards a new partially integrated transport model
for coarse grid and unsteady turbulent flow simulations.Theoretical and Com-
putational Fluid Dynamics, 18:443–468, 2005.

[121] K. Abe, T. Kondoh, and Y. Nagano. A new turbulence modelfor predicting
fluid flow and heat transfer in separating and reattaching flows - 1. Flow field
calculations.Int. J. Heat Mass Transfer, 37:139–151, 1994.

[122] P. Batten, U. Goldberg, and S. Chakravarthy. Interfacing statistical turbulence
closures with large-eddy simulation.AIAA Journal, 42(3):485–492, 2004.

[123] U. Piomelli, E. Balaras, H. Pasinato, K.D. Squire, andP.R. Spalart. The inner-
outer layer interface in large-eddy simulations with wall-layer models.Interna-
tional Journal of Heat and Fluid Flow, 24:538–550, 2003.



S. References 278

[124] L. Davidson and S. Dahlström. Hybrid LES-RANS: An approach to make LES
applicable at high Reynolds number.International Journal of Computational
Fluid Dynamics, 19(6):415–427, 2005.

[125] J. Larsson, F.S. Lien, and E. Yee. The artificial bufferlayer and the effects of
forcing in hybrid LES/RANS. International Journal of Heat and Fluid Flow,
28(6):1443–1459, 2007.

[126] F.R. Menter and M. Kuntz. Adaption of eddy-viscosity turbulence models to un-
steady separated flows behind vehicles. In Rose McCallen, Fred Browand, and
James Ross, editors,The Aerodynamics of Heavy Vehicles: Trucks, Buses, and
Trains, volume 19 ofLecture Notes in Applied and Computational Mechanics.
Springer Verlag, 2004.

[127] M. Strelets. Detached eddy simulation of massively separated flows. AIAA
paper 2001–0879, Reno, NV, 2001.

[128] X. Xiao, J.R. Edwards, and H.A. Hassan. Inflow boundaryconditions for
LES/RANS simulations with applications to shock wave boundary layer inter-
actions. AIAA paper 2003–0079, Reno, NV, 2003.

[129] F. Hamba. An approach to hybrid RANS/LES calculation of channel flow. In
W. Rodi and N. Fueyo, editors,Engineering Turbulence Modelling and Experi-
ments 5, pages 297–305. Elsevier, 2003.

[130] P. Tucker and L. Davidson. Zonal k-l based large eddy simulation. Computers
& Fluids, 33(2):267–287, 2004.

[131] P. Tucker. Differential equation based length scalesto improve DES and RANS
simulations. AIAA paper 2003-3968, 16th AIAA CFD Conference, 2003.
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