# Stress and Strain Measures

#### Goals - Stress & Strain Measures

- Definition of a nonlinear elastic problem
- Understand the deformation gradient?
- What are Lagrangian and Eulerian strains?
- What is polar decomposition and how to do it?
- How to express the deformation of an area and volume
- What are Piola-Kirchhoff and Cauchy stresses?

#### What Is a Nonlinear Elastic Problem?

- Elastic (same for linear and nonlinear problems)
  - Stress-strain relation is elastic
  - Deformation disappears when the applied load is removed
  - Deformation is history-independent
  - Potential energy exists (function of deformation)
- · Nonlinear
  - Stress-strain relation is nonlinear
  - Deformation is large
- Lagrangian or Material Stress/Strain: when the reference frame is undeformed configuration
- Eulerian or Spatial Stress/Strain:



when the reference frame is deformed configuration

### Deformation and Mapping

- · Initial domain  $\Omega_0$  is deformed to  $\Omega_{\mathsf{x}}$ 
  - We can think of this as a mapping from  $\Omega_{\rm 0}$  to  $\Omega_{\rm x}$
- X: material point in  $\Omega_0$  x: material point in  $\Omega_x$
- Material point P in  $\Omega_0$  is deformed to Q in  $\Omega_{\times}$



#### Deformation Gradient

- Infinitesimal length dX in  $\Omega_0$  deforms to dx in  $\Omega_x$
- · Remember that the mapping is continuously differentiable

$$dx = \frac{\partial x}{\partial x} dx \implies dx = FdX$$



Deformation gradient:

$$\textbf{F}_{ij} = \frac{\partial \textbf{x}_i}{\partial \textbf{X}_j} \hspace{1cm} \textbf{F} = \textbf{1} + \frac{\partial \textbf{u}}{\partial \textbf{X}} = \textbf{1} + \nabla_0 \textbf{u}$$

$$\mathbf{1} = [\delta_{ij}],$$

$$\nabla_0 = \frac{\partial}{\partial \mathbf{X}}, \ \nabla_{\mathbf{X}} = \frac{\partial}{\partial \mathbf{X}}$$

- gradient of mapping  $\Phi$
- Second-order tensor, Depend on both  $W_0$  and  $W_x$
- Due to one-to-one mapping:  $det \mathbf{F} \equiv \mathbf{J} > \mathbf{0}$ .  $d\mathbf{X} = \mathbf{F}^{-1} d\mathbf{X}$
- F includes both deformation and rigid-body rotation

## Example - Uniform Extension

· Uniform extension of a cube in all three directions

$$x_1 = \lambda_1 X_1$$
,  $x_2 = \lambda_2 X_2$ ,  $x_3 = \lambda_3 X_3$ 

- Continuity requirement:  $\lambda_i > 0$
- Deformation gradient:

$$\mathbf{F} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

- $\lambda_1 = \lambda_2 = \lambda_3$ : uniform expansion (dilatation) or contraction
- Volume change
  - Initial volume:  $dV_0 = dX_1 dX_2 dX_3$
  - Deformed volume:

$$dV_x = dx_1 dx_2 dx_3 = \lambda_1 \lambda_2 \lambda_3 dX_1 dX_2 dX_3 = \lambda_1 \lambda_2 \lambda_3 dV_0$$

### Green-Lagrange Strain

- Why different strains?
- Length change:  $\|d\mathbf{x}\|^2 \|d\mathbf{X}\|^2 = d\mathbf{x}^T d\mathbf{x} d\mathbf{X}^T d\mathbf{X}$   $= d\mathbf{X}^T \mathbf{F}^T \mathbf{F} d\mathbf{X} - d\mathbf{X}^T d\mathbf{X}$   $= d\mathbf{X}^T (\mathbf{F}^T \mathbf{F} - \mathbf{1}) d\mathbf{X}$ Ratio of length change
- · Right Cauchy-Green Deformation Tensor

$$C = F^T F$$

Green-Lagrange Strain Tensor

$$\mathsf{E} = \frac{1}{2}(\mathsf{C} - \mathsf{1})$$

 $d\mathbf{X}$ 

The effect of rotation is eliminated

To match with infinitesimal strain

### Green-Lagrange Strain cont.

#### Properties:

- E is symmetric: ET = E
- No deformation: F = 1, E = 0

$$\epsilon_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} \right)$$

$$\mathbf{E} = \frac{1}{2} \left( \frac{\partial \mathbf{u}}{\partial \mathbf{X}} + \frac{\partial \mathbf{u}^{\mathsf{T}}}{\partial \mathbf{X}} + \frac{\partial \mathbf{u}^{\mathsf{T}}}{\partial \mathbf{X}} \frac{\partial \mathbf{u}}{\partial \mathbf{X}} \right)$$

$$= \frac{1}{2} \left( \nabla_{0}^{\mathsf{V}} \mathbf{u} + \nabla_{0} \mathbf{u}^{\mathsf{T}} + \nabla_{0} \mathbf{u}^{\mathsf{T}} \nabla_{0} \mathbf{u} \right)$$
Higher-order term

- When  $\left|\nabla_0 \mathbf{u}\right| << 1$ ,  $\mathbf{E} \approx \frac{1}{2} \left(\nabla_0 \mathbf{u} + \nabla_0 \mathbf{u}^{\mathsf{T}}\right) = \epsilon$
- E = 0 for a rigid-body motion, but  $\epsilon \neq 0$

## Example - Rigid-Body Rotation

Rigid-body rotation

$$x_1 = X_1 \cos \alpha - X_2 \sin \alpha$$

$$x_2 = X_1 \sin \alpha + X_2 \cos \alpha$$

$$x_3 = X_3$$



Approach 1: using deformation gradient

$$\mathbf{F} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{F}^{\mathsf{T}} \mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{F}^{\mathsf{T}}\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathsf{E} = \tfrac{1}{2}(\mathsf{F}^\mathsf{T}\mathsf{F} - \mathsf{1}) = \mathsf{0}$$

Green-Lagrange strain removes rigid-body rotation from deformation

### Example - Rigid-Body Rotation cont.

· Approach 2: using displacement gradient

$$u_1 = x_1 - X_1 = X_1(\cos \alpha - 1) - X_2 \sin \alpha$$
  
 $u_2 = x_2 - X_2 = X_1 \sin \alpha + X_2(\cos \alpha - 1)$   
 $u_3 = x_3 - X_3 = 0$ 

$$\nabla_0 \mathbf{u} = \begin{bmatrix} \cos \alpha - 1 & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\nabla_0 \mathbf{u}^\mathsf{T} \nabla_0 \mathbf{u} = \begin{bmatrix} 2(1 - \cos \alpha) & 0 & 0 \\ 0 & 2(1 - \cos \alpha) & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{E} = \frac{1}{2} (\nabla_0 \mathbf{u} + \nabla_0 \mathbf{u}^\mathsf{T} + \nabla_0 \mathbf{u}^\mathsf{T} \nabla_0 \mathbf{u}) = \mathbf{0}$$

### Example - Rigid-Body Rotation cont.

What happens to engineering strain?

$$u_1 = x_1 - X_1 = X_1(\cos \alpha - 1) - X_2 \sin \alpha$$
 $u_2 = x_2 - X_2 = X_1 \sin \alpha + X_2(\cos \alpha - 1)$ 
 $u_3 = x_3 - X_3 = 0$ 

$$\mathbf{V} = \begin{bmatrix} \cos\alpha - 1 & 0 & 0 \\ 0 & \cos\alpha - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$



Engineering strain is unable to take care of rigid-body rotation

### Eulerian (Almansi) Strain Tensor

Length change: 
$$\|d\mathbf{x}\|^2 - \|d\mathbf{X}\|^2 = d\mathbf{x}^T d\mathbf{x} - d\mathbf{X}^T d\mathbf{X}$$
  

$$= d\mathbf{x}^T d\mathbf{x} - d\mathbf{x}^T \mathbf{F}^{-1} d\mathbf{x}$$

$$= d\mathbf{x}^T (\mathbf{1} - \mathbf{F}^{-T} \mathbf{F}^{-1}) d\mathbf{x}$$

$$= d\mathbf{x}^T (\mathbf{1} - \mathbf{b}^{-1}) d\mathbf{x}$$

· Left Cauchy-Green Deformation Tensor

$$b = FF^T$$

b<sup>-1</sup>: Finger tensor

· Eulerian (Almansi) Strain Tensor

$$e = \frac{1}{2}(1-b^{-1})$$

Reference is deformed (current) configuration

#### Eulerian Strain Tensor cont.

- Properties
  - Symmetric
  - Approach engineering strain when  $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} << 1$
  - In terms of displacement gradient

$$e = \frac{1}{2} \left( \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}^{\mathsf{T}}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}^{\mathsf{T}}}{\partial \mathbf{x}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)$$
$$= \frac{1}{2} \left( \nabla_{\mathbf{x}} \mathbf{u} + \nabla_{\mathbf{x}} \mathbf{u}^{\mathsf{T}} - \nabla_{\mathbf{x}} \mathbf{u}^{\mathsf{T}} \nabla_{\mathbf{x}} \mathbf{u} \right)$$

$$\nabla_{\mathbf{x}} = \frac{\partial}{\partial \mathbf{x}}$$

Spatial gradient

· Relation between E and e

$$\mathbf{E} = \mathbf{F}^{\mathsf{T}} \mathbf{e} \mathbf{F}$$

### Example - Lagrangian Strain

- Calculate F and E for deformation in the figure
- Mapping relation in  $\Omega_0$

$$\begin{cases} X = \frac{3}{4}(s+1) \\ Y = \frac{1}{2}(t+1) \end{cases}$$

• Mapping relation in  $\Omega_{\mathsf{x}}$ 

$$\begin{cases} x(s,t) = 0.35(1-t) \\ y(s,t) = s+1 \end{cases}$$



### Example - Lagrangian Strain cont.

Deformation gradient

$$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} = \frac{\partial \mathbf{x}}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{X}}$$

$$= \begin{bmatrix} 0 & -.35 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4/3 & 0 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -0.7 \\ 4/3 & 0 \end{bmatrix}$$



· Green-Lagrange Strain

$$\mathbf{E} = \frac{1}{2}(\mathbf{F}^{\mathsf{T}}\mathbf{F} - \mathbf{1}) = \begin{bmatrix} 0.389 & 0 \\ 0 & -0.255 \end{bmatrix}$$

### Example - Lagrangian Strain cont.

· Almansi Strain

$$\mathbf{b} = \mathbf{F} \cdot \mathbf{F}^{\mathsf{T}} = \begin{bmatrix} 0.49 & 0 \\ 0 & 1.78 \end{bmatrix}$$

$$e = \frac{1}{2} (1 - b^{-1}) = \begin{bmatrix} -0.52 & 0 \\ 0 & 0.22 \end{bmatrix}$$

· Engineering Strain

$$\nabla_0 \mathbf{u} = \mathbf{F} - \mathbf{1} = \begin{bmatrix} -1 & -0.7 \\ 1.33 & -1 \end{bmatrix}$$

$$V = \frac{1}{2} \left( \nabla_0 \mathbf{u} + \nabla_0 \mathbf{u}^\mathsf{T} \right) = \begin{bmatrix} -1 & 0.32 \\ 0.32 & -1 \end{bmatrix}$$

Which strain is consistent with actual deformation?

## Example - Uniaxial Tension

- Uniaxial tension of incompressible material  $(\lambda_1 = \lambda \mid \exists)$
- · From incompressibility

$$\lambda_1 \lambda_2 \lambda_3 = 1 \implies \lambda_2 = \lambda_3 = \lambda^{-1/2}$$

$$\mathbf{x}_1 = \lambda_1 \mathbf{X}_1$$

$$\mathbf{x}_2 = \lambda_2 \mathbf{X}_2$$

- Deformation gradient and deformation tensor  $x_3 = \lambda_3 X_3$

$$\mathbf{F} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1/2} & 0 \\ 0 & 0 & \lambda^{-1/2} \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & \lambda^{-1} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & \lambda^{-1} \end{bmatrix}$$

· G-L Strain

$$\mathbf{E} = \frac{1}{2} \begin{bmatrix} \lambda^2 - 1 & 0 & 0 \\ 0 & \lambda^{-1} - 1 & 0 \\ 0 & 0 & \lambda^{-1} - 1 \end{bmatrix}$$

### Example - Uniaxial Tension

Almansi Strain (b = C)

$$\mathbf{b}^{-1} = egin{bmatrix} \lambda^{-2} & 0 & 0 \ 0 & \lambda & 0 \ 0 & 0 & \lambda \end{bmatrix}$$

$$\mathbf{b}^{-1} = \begin{bmatrix} \lambda^{-2} & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \qquad \mathbf{e} = \frac{1}{2} \begin{bmatrix} 1 - \lambda^{-2} & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{bmatrix}$$

Engineering Strain

$$V = \begin{bmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda^{-1/2} - 1 & 0 \\ 0 & 0 & \lambda^{-1/2} - 1 \end{bmatrix} \begin{bmatrix} 0.1 \\ 0 \\ 0 \end{bmatrix}$$



Difference

$$E_{11} = \frac{1}{2}(\lambda^2 - 1)$$
  $e_{11} = \frac{1}{2}(1 - \lambda^{-2})$   $\epsilon_{11} = \lambda - 1$