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2.6.4.3 Analysis of non-degenerately doped semiconductors

Non-degenerate semiconductors are defined as semiconductors for which the Fermi

energy is at least 3kT away from either band edge.

The reason we restrict ourselves to non-degenerate semiconductors is that this

definition allows the Fermi function to be replaced with a simple exponential

function, i.e. the Maxwell-Boltzmann distribution function. The carrier density

integral can then be solved analytically yielding:
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The calculation of the electron density starts by assuming that the semiconductor is

neutral, so that there is no net charge in the material.

The charge density in a semiconductor depends on the free electron and hole

density and on the ionized impurity densities.

Ionized donors, which have given off an electron, are positively charged.

 Ionized acceptors, which have accepted an electron, are negatively charged.

The total charge density is therefore given by:
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The hole concentration in thermal equilibrium can be written as a function of the

electron density by using the mass action law( جرماثرقانون ) (2.6.23). This yields the

following relation between the electron density and the ionized impurity densities:

Solving this quadratic equation yields a solution for the electron density, namely:

6



The same derivation can be repeated for holes, yielding:

The above expressions provide the free carrier densities for compensated

semiconductors assuming that all donors and acceptors are ionized.

From the carrier densities, one then obtains the Fermi energies using equations

(2.6.28) and (2.6.29) which are repeated below:
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2.6.4.4 General analysis

A more general analysis takes also into account the fact that the ionization of the

impurities is not 100%, but instead is given by the impurity distribution functions

provided in section 2.5.3.
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The analysis again assumes that there is no net charge in the semiconductor (charge

neutrality). This also means that the total density of positively charged particles

(holes and ionized donors) must equals the total density of negatively charged

particles (electrons and ionized acceptors) yielding:
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2.6.5. Non-equilibrium carrier densities

Up until now, we have only considered the thermal equilibrium carrier densities, no

and po.

 However most devices of interest are not in thermal equilibrium. Keep in mind that

a constant ambient(محیطی) temperature is not a sufficient condition for thermal

equilibrium.

In fact, applying a non-zero voltage to a device or illuminating it with light will cause

a non-equilibrium condition, even if the temperature is constant. 10
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As a result the electron density can still be calculated using the Fermi-Dirac

distribution function, but with a different value for the Fermi energy. The total carrier

density for a non-degenerate semiconductor is then described by:

Where σn is the excess electron density and Fn is the quasi-Fermi energy for the

electrons. Similarly, the hole density can be expressed as:
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Where σp is the excess hole density and Fp is the quasi-Fermi energy for the holes.
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