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2.6.4.3 Analysis of nhon-degenerately doped semiconductors

!

INon-degenerate semiconductors are defined as semiconductors for which the Fermi

energy is at least 3kT away from either band edge.

IThe reason we restrict ourselves to non-degenerate semiconductors is that this
definition allows the Fermi function to be replaced with a simple exponential
function, i.e. the Maxwell-Boltzmann distribution function. The carrier density

integral can then be solved analytically yielding:
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where N, is the effective density of states in the conduction band. The Fermi energy, Eg, is obtained from:
E,=E, +kTh = (2.6.15)
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Fig. 23 Band diagram showing Fermi level E, and intrinsic Fermi level E. 4



The calculation of the electron density starts by assuming that the semiconductor is

neutral, so that there is no net charge in the material.

IThe charge density in a semiconductor depends on the free electron and hole

density and on the ionized impurity densities.
Jlonized donors, which have given off an electron, are positively charged.
) lonized acceptors, which have accepted an electron, are negatively charged.

IThe total charge density is therefore given by:

o=q(py —n, + N, -~Ny)=0 (2.6.35)



IThe hole concentration in thermal equilibrium can be written as a function of the
electron density by using the mass action law(s> ) O58) (2.6.23). This yields the

following relation between the electron density and the ionized impurity densities:

Mg - Po =N .\’I,Q(E-'—E-’ L rz;,-2 #(2.6.23)e
2

=2y N - N, 2.6.36

%o _?o d a (2.6.36)

Ny —Na +J(Nd _Na)z 2 (2.6.37)



IThe same derivation can be repeated for holes, yielding:

_Na =N, +J(Na "Nd)z 2 (2.6.38)

— + 20
4 2 2 ’
IThe above expressions provide the free carrier densities for compensated |

semiconductors assuming that all donors and acceptors are ionized.

IFrom the carrier densities, one then obtains the Fermi energies using equations

(2.6.28) and (2.6.29) which are repeated below:

b
Ep=F +kTh =2 (2.6.28)

ni

or

Ep=E -kTh 22 (2.6.29)

m!’
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Pa +N; =n, *N,

1

Example 2.6a |A germanium wafer is doped with a shallow donor density of 3n;/2. Calculate the electron and
hole density.

Example 2.6b  |A silicon wafer is doped with a shallow acceptor doping of 101® cm™3. Calculate the electron
and hole density.

2.6.4.4 General analysis

JA more general analysis takes also into account the fact that the ionization of the

impurities is not 100%, but instead is given by the impurity distribution functions

provided in section 2.5.3.

1

J donol Eg) = |+ L BB IRT (2.5.2)
2
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1
faccep!or(gn) N 1 +4E(E¢'EFJIH (253)

IThe analysis again assumes that there is no net charge in the semiconductor (charge
neutrality). This also means that the total density of positively charged particles
(holes and ionized donors) must equals the total density of negatively charged

particles (electrons and ionized acceptors) yielding:

po + N, =n, +N, (2.6.39)



2.6.5. Non-equilibrium carrier densities

JUp until now, we have only considered the thermal equilibrium carrier densities, n,

and p,.

) However most devices of interest are not in thermal equilibrium. Keep in mind that
a constant ambient(.>«) temperature is not a sufficient condition for thermal

equilibrium.

JIn fact, applying a non-zero voltage to a device or illuminating it with light will cause

a non-equilibrium condition, even if the temperature is constant. "
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JAs a result the electron density can still be calculated using the Fermi-Dirac
distribution function, but with a different value for the Fermi energy. The total carrier

density for a non-degenerate semiconductor is then described by:
Fn B Ez’
kT

n=mn,+ dn=nexp( ) (2.6.44)

JWhere on is the excess electron density and F is the quasi-Fermi energy for the

electrons. Similarly, the hole density can be expressed as:

— + A = (El'—FP
P =P, TP T % BEP T

) (2.6.45)



Where op is the excess hole density and F is the quasi-Fermi energy for the holes.

Example 2.7

A piece of germanium doped with 101 cm™3 shallow donors is illuminated with light generating

101° cm™3 excess electrons and holes. Calculate the quasi-Fermi energies relative to the
intrinsic energy and compare it to the Fermi energy in the absence of illumination.

Ep=E +kTh 22 *(2.6.28)e
."31'
_ ?o
Ep=E -kTh £2 *(2.6.29)e
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Solution

The carrier densities when illuminating the semiconductor are:

n=n,+dn=101° +10"° =1.1x10"° cm™

p=p, %t dp =10 cm™
and the quasi-Fermi energies are:

1.1x1010

B, -E =kTh 2 =00259%In =163meV
7y 2% 101
» 1x10"°

Fp - E ==kThh = =0.0259%In ———— = -101meV
7 2% 10!

For comparison, the Fermi energy in the absence of light equals

16
Ep-E =kThn e =0.0259 %1 —

=161meV
7 2x1013

which is very close to the quasi-Fermi energy of the majority carriers.




