Decolorization of Mineral Oils

Although the decolorization of mineral oils by porous materials is generally considered to be due to adsorption, it has not previously been shown whether the laws of adsorption are applicable. Decolorization experiments by Rogers et al. $(1926)^{\dagger}$, using a number of kinds of oils (straight-run kerosene, paraffin wax, and a naphtha solution) and several adsorbents (clays A and B), show that Freundlich's equation applies accurately, when amount of color removed is used as a measure of amount of material adsorbed.

- (a) Use the equilibrium data provided in the table below, show that the Freundlich's adsorption equation can satisfactorily be applied for these sets of data.
- (b) Obtain the Freundlich's equation parameters (k and n) for each set of data.

Adsorbent A		Adsorbent B	
kg adsorbent per	Equilibrium	kg adsorbent per	Equilibrium
100 kg solution	color	100 kg solution	color
0	263	0	260
5.0	219	5.0	204
10.0	189	10.0	154
20.0	131	20.0	84
22.8	120	25.0	60
33.3	86.5	33.3	37
46.8	56.5	50.0	13.6
50.0	53.3		
80.0	26.2		

[†] Rogers, T.H., Grimm, F.V. and Lemmon, N.E. (1926). Adsorption Studies on the Decolorization of Mineral Oils. *Industrial & Engineering Chemistry* **18**(2), 164–169.