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3-1 Waveguide Modes 6. = sin ! (n,/n)).

Because of diffraction, any light beam of finite width inside a waveguide that
starts out at a particular angle 6, will spread out into other angles, and the
angular distribution will change as the light propagates down the waveguide.
What we would like to find 1s a pattern of light distribution that remains
constant along the waveguide. Such a pattern is referred to as a mode.

Figure 3-1 A single ray propagating down a planar waveguide. Superposition of
two such rays with opposite k, constitutes a waveguide mode.
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3-1 Waveguide Modes

¢ The essential feature of a mode is that there is a pattern that is
stable m time.

» To find a mode for the waveguide:

If we let the vectors k=k,1 + k,'k and k,= — k"1 + k,’k be the
propagation vectors for these two waves, the total electric field
inside the waveguide can be written as:

E i = Egei@k1m) + F eil@rkom "
E. .. = Ejel@ ket 4 F pilerthxkz) -
Enmde — EOEH wr_ﬂpzzi[(?m-ﬂ- T 6’_’."{'-1‘1'] E mode — E 0&g (Jf . :r’)(—?f{ wi—f37)
E ode = 2E¢ cos(kx )E”“”_f"zz} (2) [: propagation constant

for the waveguide mode.
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3-1 Waveguide Modes

» In order for the waves to reinforce each other after many
reflections, the total round-trip phase change for propagation in the
transverse (x) direction must be an integer multiple of 2.

» For a waveguide of thickness d, the total roundtrip distance in
the x direction 1s 2d, resulting in a phase shift of —k (2d).

» If the phase shift upon reflection is @(r), there is an additional
contribution of 2d(r) to the total round-trip phase shift. The
condition for self-reinforcing ficlds then becomes

_kx(Zd) T 2’¢)f = tm2r (4)

m=0,1,2 3..., p label the different modes allowedin the waveguide.
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3-1 Waveguide Modes

kQ2d) +2b. = 2w &)
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From4,5: pmmm) | cos 0, = ( P
27nd

0., angle for mode numberm.

condition that total internal reflection be satisfied, 6,, > 0., sin 0. = ﬂz/ n

maximum mode number, 0, =6, cos 0, = V1 —sin? 6, = / | —
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3-1 Waveguide Modes

(j:mﬂ- T (ﬁ;')/\ﬂ
27nd

cos 6, =

1, \2
cos 0, = V1 —sin’ 6, = \/1 - (H—z)

ny

27rd
- | —

Ao

Vni—ni=pmw+ ¢, (7)

Maximum mode number P for a waveguide of given thickness and refractive index.

It is convenient to define:

27rd

2

Rl —ﬁ'z

dimensionless
parameter

(8)

‘ Maximum number of modes in a planar waveguide =p + 1

normalized film thickness g Ag
where p=mtl —
v

_ &

rF #
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3-1 Waveguide Modes

For the pth mode, the waveguide angle is near the critical angle, which results in

O(r) =0

number of modes=p + 1 = int( i ) + 1
T

For each of these modes, there
are two possible polarizations -

27rd

(10)

Total number of modes 1n the
planar waveguide 1s =2 Vp/7.

The allowed values of k, for the thick fr = mm (11)
waveguide modes can be approximated by: * d
5 = E B
™ (p) TE (s)
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EXAMPLE 3-1

¢ Assuming light of free-space wavelength 1 um, determine the number of modes

(a) in a microscope slide of thickness 1 mm, immersed in water, and
(b) in a soap film in air of thickness 2 pm.
Take the refractive index of glass as 1.5 and that of water as 1.33.

Solution: 2a(1 x 1073) : :
(a) The normalized film V;J_ [ x 106 \/(1-5) —(1.33)
thickness 1s:
v, =4.7 % 10}
27rd — N
Vp = A ny—nj number of modes =p + 1 —int(—**)Jr |
0 T

The number of waveguide modes 1s then =4700/7= 1500, not including different
polarizations. When including different polarizations, there are about 3000 modes.
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EXAMPLE 3-1

¢ (b) in a soap film in air of thickness 2 pm.

Solution:

(b) The soap film is mostly water, with refractive index 1.33, so

27m(2 % 107°)
Vo= V(1.33)2 - 12
y o= 2™ T A TET TR
P )‘0
V,=11

The number of waveguide modes is then int(11/n) + 1=1nt(3.5) + 1 =4,
not including different polarizations.

When including different polarizations, there are 8 modes.
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Effective Index

There is also the longitudinal wave vector component k, which is similarly
relatedto by

, 29mn,
k.=k, sin 0= Lsing  (12) k2 + k2= k2
k,k, 0 Ao
A fourth parameter that is often used to specify the mode is the effective index
of refraction, defined by

b= 2T s k= Qam)A
Ag

The guided wave propagates at the phase velocity given by wf — k., z = constant,
or

v,=— = = — 14
g ‘1{2 /\Okz Refr ( )

The propagation constant K, is commonly denoted as /3 in optical fibers, and
referred to as the axial wave vector.
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Mode Velocities (1)

For a planar waveguide, the effective index of refraction can be written as

N =N, SIN 6 (15)

phase velocity of the waveguide mode:

® 27c c (16) , ¢ Uy
v — . — — *fjl — - — -
P Ak ngy| TRy nysin@ sin @
phase velocity of a plane wave in medium 1: U= Cfﬁl
Since  sin@. <sinf®<1 and SN O, = n,/n,

—

Ny < Repr = N

(17) and | 27U U1 (18)
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Mode Velocities (2)

> The resolution of this apparent paradox can be found Vy >V, > V4
in the distinction between phase and group velocities, !

dw
UV, = E (19) B = k.. (ko) =ki+ B* (20
. "
Ny

2 B =Nk, sin 0
Figure 3-3 The wave vector for the ray of magnitude 11,k can be broken down
into its longitudinal and transverse components, [ and k..
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Mode Velocities (3)

| maiar
(n1ko)* = k3 + B2 ko=~
ky =nmbky=n27/Ay wmm) (ﬂ)z o = (%)2 +gr N
&
. o do [ c \2
w = ck — Taking the derivative o =
0 with respectto [ : 2w dB ( n, ) 2'8 (22)
, Q2T C dw . = 12
Pk, Nk, neg| and (Vg™ "“;,E = Yelp 1
) = C _ " —) 1 = SiI’l 9 (23) vV, <V
nysin®  sin @ g 1 i}
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Mode Velocities (4)

** What is the physical interpretation

of the phase velocity? intersection point
1 moves at v,

» Two wave fronts (1 and 2) propagating
down the +z axis to form a waveguide mode.

» Plane wave 1 1s propagating up and to the
right, and plane wave 2 1s propagating down
and to the right.

» The intersection point can move down the
waveguide faster than the speed of either f
wave individually. (v, > vy). 2 S

Figure 3-4 The motion of wave fronts for two component rays with opposite k,
1llustrates the difference between group and phase velocity.
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3-2. MODE CHART (1)

¢ A waveguide mode can be specified by any one of the parameters n,,, 0, k,,
ork, =.

¢ For a waveguide of given thickness d, an approximate expression for the
allowed mode angles 0, can be obtained :

; (Xma + &)\, mir = @, ; mig
cos 0, = (6) cos 6, = 24
" 27n,d E— T 2nd )
2 27 — +
kx=:cosﬂ= cos 0 |k, =k, sin 0= 2T Gng| | Mer= 111500
. 0 (12) (15)

(5)
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3-2. MODE CHART (1)

~ (Em At )N Solving Eq. (3-6) for @(r) and substituting
cos 0, = 2 7nyd ©)  into Eq. (2-23),
. Vsin? 6, — (ny/n,)?
for TE polarization: tan — = L~ (/) (2-23)
2 cos 6,
. (1 \2 Vsin? 0 — (no/n;)
for TM polarization: tan i = —1) L~ (/) (2-24)
ny cos 6,
for TE , T
.. / f o2
polarization: 1= — i —cost 9
) i d cos f T Y Iy, (25)
fan —m — | = ‘
Ay 2 cos A
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3-2. MODE CHART (2)

Figure 3-5 Graphical (LHS): Left-Hand Side and (RHS): Right-Hand Side
solution of Eq. (3-25) Ay |
for modes in a planar . 2n,d
. _ 0 10 :
waveguide, with g [
n =148, n, = 1.46, o 8r ’
W IrHs
and d/\, = 10. © 6
w M
These parameters lead L 4t
ol [
to five allowed modes, 2 5| LHS
© [
which correspond to the ) ; i . i
I 0 i 1 L Li ; 1 H
five line crossings. - 000 005 010 0.5
cos 6
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3-2. MODE CHART (3)

> As the waveguide thickness d is decreased, the modes become more widely
separatedand fewer in number, until at some point there 1s only one allowed
mode.

» The condition for such a Ag
' de is: > cos 0,
single-mode waveguide is: 2n,d ¢
715 A

sin .= — d < (26)
n m— 2V nt — n?

27rd —
> The condition for a single-mode V, = o ni{—ns
0
waveguide can also be written 1n terms
) 27
of the V,, parameter : Vp < =7
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3-2. MODE CHART (4)

» If cosO is taken as given, then the equation can be solved analytically for the

waveguide thickness d. After some manipulation, we find:

mA
thickness for mode number m : d,=dy+ ! (28)
2n; cos 6
A ~nycos 0
do — CUS_I 5 5 (29)
T cos 6 VAT —n3

Nep =11 SIN 0| ) py) cos = Vn? —n2s (30)
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3-2. MODE CHART (5)

Figure 3-6

Mode chart calculated
from Egs. 3-28 and 3-
29, using n; = 148
andn, = 1.46 as in Fig.
3-5. Values of n.x for
the various modes are
obtained by drawing
vertical  lines  and
looking  for  curve

crossings.
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Field Distribution in a Mode

¢ Inside the waveguide (in the higher index n,), the field is oscillatory both in x

and z, with the form 31)
E(x, z, t) = E, ., cos(k.x) cos(wt — B2)

E E E E B =k
» With mode number m, — - — —
there are m nodal lines _
: v, = W/
resulting in m + 7 lines of ", \ \ ) ) P P
maximum intensity. L / N ~
" < C > > propagation
> The lowest-order mode, _ > D q < —
with m = 0, has just a nodalline <\(>("’> }
single intensity maximum ( \ l -
and no nodal lines. ) / \ «

Figure 3-7 Transverse spatial distribution of the E field at one instant in time
for four positions along the z axis of a planar waveguide. Parameters are those
of Fig. 3-5, with mode number m = 4.

M. A. Mansouri-Birjandi Lecture 4: Planar Waveguides 22



3-3. DISPERSION (1) N

v = sin 0 The time it takes for a pulse of light L Ln,
Ve =¥y SIn to propagate a distance L down the L= . - ¢ sin 6
waveguide will then vary with 0 as: *
In./ 1 1 0. < 6<90°
) Ar=— ( , _— )
¢ \sméf,, Sin6, (33) 6. = n./n.
7B + Ln, L
— <sinf<1 (4 ) Ar= (ny —ny) = — (n; — n)
ny CHo> C
long fiber
short pulse in longer pulse out
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3-3. DISPERSION (2)

Lﬁ'l L
Ar = (ny—ny) = — (n; —ny)
Chy C

where we have assumed n; = n,, generally a good assumption for optical fibers.
This can also be written as

intermodal dispersion Af = E A (35)
C
f'i'l — Hz
fractional index difference A= (36)
n

» Note that the dispersion does not depend on the waveguide thickness.

» Since At is proportional to [, it is customary to specify the degree of
dispersionas At/L, in units of ns/km.
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EXAMPLE 3-2

J Determine the intermodal dispersion of an optical fiber with a

core index of 1.5 and a fractional index difference of 0.01.

L
Solution: with L = I km, we have Af = s A
C

103 1.5
Af— ( .m)( )
3% 10%m/s

(10%)=50ns

The intermodal dispersion 1s thus approximately 50 ns/km.
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3-3. DISPERSION (3)

The criterion for distinguishable pulses . T
is then _ e—>

T i ! T

T=> > + At i N
Ap— Lo ! | |
= — < — ] !

T 2A: " | e
where BR 1s the number of pulses T At
-+

per second or the bit rate. < =

The effect of dispersion can be
characterized by the
length x bit rate product (L X BR).

Figure 3-9 Pulses are broadened by At after propagating a distance L, which
limits the rate at which data can be transmitted down a long waveguide.

M. A. Mansouri-Birjandi Lecture 4: Planar Waveguides 26



M. A. Mansouri-Birjandi Lecture 4: Planar Waveguides 27



