

p–n Junction

- ► 3.1 THERMAL EQUILIBRIUM CONDITION
- **3.2 DEPLETION REGION**
- > 3.3 DEPLETION CAPACITANCE
- 3.4 CURRENT-VOLTAGE CHARACTERISTICS
- ► 3.5 CHARGE STORAGE AND TRANSIENT BEHAVIOR
- **3.6 JUNCTION BREAKDOWN**
- > 3.7 HETEROJUNCTION
- SUMMARY

3.2 DEPLETION REGION

 \geq To solve Poisson's equation (Eq. 13) we must know the impurity distribution.

In this section we consider two important cases—the abrupt junction(پیوند تیز) and the linearly graded (پیوند شیب دار خطی).

> For either deep diffusions or high-energy ion implantations, the impurity profiles may be approximated by linearly graded junctions: that is, the impurity distribution varies linearly across the junction.

> We consider the depletion regions of both types of junction.

(linearly graded junction: A pn junction in which the impurity concentration does not change abruptly from donors to acceptors, but varies smoothly across the junction, and is a linear function of position.) ³

3.2.1 Abrupt Junction

> The space charge distribution of an abrupt junction is shown in Fig. 6*a*.

> In the depletion region, free carriers are totally depleted so that Poisson's equation

Eq. 13) simplifies to

$$\frac{d^{2}\psi}{dx^{2}} = \frac{q}{\varepsilon_{s}}(N_{A} - N_{D})$$
(13)

$$\frac{d^{2}\psi}{dx^{2}} = +\frac{qN_{A}}{\varepsilon_{s}} \quad \text{for} \quad -x_{p} \le x < 0,$$
(14a)

$$\frac{d^{2}\psi}{dx^{2}} = -\frac{qN_{D}}{\varepsilon_{s}} \quad \text{for} \quad 0 < x \le x_{n}.$$
(14b)

Fig. 6 (*a*) Space charge distribution in the depletion region at thermal equilibrium. (*b*) Electric-field distribution. The shaded area corresponds to the built-in potential.

>The overall space charge neutrality of the semiconductor requires that the total

negative space charge per unit area in the p-side must precisely equal the total

positive space charge per unit area in the n-side:

$$I \quad N_A x_p = N_D x_n. \tag{15}$$

> The total depletion layer width W is given by

$$W = x_p + x_n. \tag{16}$$

> The electric field shown in Fig. 6b is obtained by integrating Eqs. 14a and 14b, which

$$V_{bi} = A + B = \frac{g_{NA}}{V_{E_{3}}} x_{T} \cdot x_{P} + \frac{g_{ND}}{V_{E_{3}}} x_{N} \cdot x_{n} = \frac{\mu}{\epsilon} [x + \tau + \epsilon_{F} \cdot x_{N} + \frac{1}{\tau} (A + A + e^{-\frac{1}{2}}) = \frac{1}{\epsilon} [W \times \frac{1}{\tau} (A + A + e^{-\frac{1}{2}}) = \frac{1}{\epsilon} [W \times \frac{1}{\tau} (A + A + e^{-\frac{1}{2}}) + e^{-\frac{1}{2}}] = \frac{1}{\epsilon} [E_{a} (x_{P} + x_{N}) = 1 + \epsilon_{F} W \times \frac{1}{\tau} (A + A + e^{-\frac{1}{2}}) + e^{-\frac{1}{2}}] = \frac{1}{\epsilon} [E_{a} (x_{P} + x_{N}) = 1 + \epsilon_{F} W \times \frac{1}{\tau} (A + A + e^{-\frac{1}{2}}) + e^{-\frac{1}{2}}] = \frac{1}{\epsilon} [E_{a} (X_{P} + x_{N}) = 1 + \epsilon_{F} W \times \frac{1}{\tau} (A + A + e^{-\frac{1}{2}}) + W = \frac{1}{\epsilon} [E_{a} (A + e^{$$

>When the impurity concentration on one side of an abrupt junction is much higher

than that on the other side, the junction is called a one-sided(يكطرفه) abrupt junction

(Fig. 7a).

Figure 7b shows the space charge distribution of a one-sided abrupt p^+-n junction, where $N_A >> N_D$.

> In this case, the depletion layer width of the p-side is much smaller than that of the

n-side (i.e., $x_p \ll x_n$), and the expression for W can be simplified to

Fig. 7 (a) One-sided abrupt junction (with $N_A >> N_D$) in thermal equilibrium. (b) Space charge distribution. (c) Electric-field distribution. (d) Potential distribution with distance, where V_{bi} is the built-in potential.

11

$$W \cong x_n = \sqrt{\frac{2\varepsilon_s V_{bi}}{qN_D}}.$$

> The expression for the electric-field distribution is the same as Eq. 17b:

$$\mathscr{E}(x) = -\mathscr{E}_m + \frac{qN_B x}{\varepsilon_s},\tag{22}$$

where N_B is the lightly doped bulk concentration (i.e., N_D for a p^+-n junction).

 \geq The field decreases to zero at x = W. Therefore,

$$\mathcal{E}_m = \frac{qN_BW}{\mathcal{E}_s}$$

12

(23)

(21)

and

$$\mathscr{E}(x) = \frac{qN_B}{\varepsilon_s}(-W + x) = -\mathscr{E}_m\left(1 - \frac{x}{W}\right),\tag{24}$$

as shown in Fig. 7c.

>Integrating Poisson's equation once more gives the potential distribution

$$\psi(x) = -\int_0^x \mathscr{E} dx = \mathscr{E}_m\left(x - \frac{x^2}{2W}\right)$$

(25)

> With zero potential in the neutral p-region as a reference, or $\psi(0) = 0$, and employing

Eq. 19, we have

$$\psi(x) = \frac{V_{bi}x}{W} \left(2 - \frac{x}{W}\right).$$

> The potential distribution is shown in Fig. 7d.

EXAMPLE 2

For a silicon one-sided abrupt junction with $N_A = 10^{19} \text{ cm}^{-3}$ and $N_D = 10^{16} \text{ cm}^{-3}$, calculate the depletion layer width and the maximum field at zero bias (T = 300 K).

SOLUTION: From Eqs. 12, 21, and 23, we obtain

$$V_{bi} = \psi_n - \psi_p = \frac{kT}{q} \ln\left(\frac{N_A N_D}{n_i^2}\right).$$

$$W \cong x_n = \sqrt{\frac{2\varepsilon_s V_{bi}}{qN_D}}.$$

$$\mathcal{E}_m = \frac{qN_BW}{\mathcal{E}_s}$$

(21)