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Introduction  

Selected problems in the book Quantum Mechanics for Scientists and Engineers (Cambridge 
University Press, 2008) are marked with an asterisk (*), and solutions to these problems are 
collected here so that students can have access to additional worked examples.  

 

David A. B. Miller 

Stanford, California 

March 2008 

 



2.6.1  

2.6.1 

The normalized wavefunctions for the various different levels in the potential well are 

 ( ) 2 sinn
z z

n zz
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

The lowest energy state is n = 1, and we are given zL = 1 nm. 

The probability of finding the electron between 0.1 and 0.2 nm from one side of the well is, using 
nanometer units for distance, 
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(Note: For computation purposes, remember that the argument of the sine is in radians and not 
degrees. For example, when we say sin(π ) = 0, it is implicit here that we mean π  radians.) 



2.8.1  

2.8.1 

The wave incident from the left on the infinite barrier will be reflected completely because of the 
boundary condition that the wavefunction must be zero at the edge of, and everywhere inside of, the 
infinite barrier. So if the barrier is located at x = 0 
 ( ) 0                                       ( 0)x xψ = >   

Now, for an electron of energy E, which here is 1 eV, we know that it will have a wavevector 

 9 -1
2

2 = 5.12 10  mom Ek = ×
=

 

The general solution for a wave on the left of the barrier is a sum of a forward and a backward wave 
each with this magnitude of wavevector, with amplitudes A and B, respectively; that is 
 ( ) exp( ) exp( )    ( 0)x A ikx B ikx xψ = + − <  

Knowing from our boundary condition that the wave must be zero at the boundary at 0x = ,  

 
0    

 ( ) (exp( ) exp( )) 2 sin( )     ( 0)
A B A B

x A ikx ikx iA ikx xψ
+ = ⇒ = −

⇒ = − − = <
 

Thus, the wave function on the left hand side of the infinite barrier is a standing wave. 

The probability density for finding the electron at any given position is 

 
2

2 2 2
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( ) 4 sin ( )         ( 0)

x x

x A kx x

ψ
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= >
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which has a period / kπ .  

The period of the standing wave shown in the graph is therefore ~ 6.1 Angstroms.  
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(The amplitude of the standing wave is 24 A , but A here has to remain as an arbitrary number. We 
cannot actually normalize such an infinite plane wave, though this problem can be resolved for any 
actual situation, for example by considering a wavepacket or pulse rather than just an idealized plane 
wave.) 



2.8.3  

2.8.3 

For E = 1.5 eV and Vo = 1 eV, the incoming particle/wave from the left will be partly reflected and 
partly transmitted at the barrier. We write the general form of the wavefunctions on both sides of the 
barrier 

 ( ) exp( ) exp( )left L Lz C ik z D ik zψ = + −   i.e., the sum of the incident and reflected waves 

 ( ) exp( )right Rz F ik zψ =   i.e., the transmitted wave 

(Note that we do not have a backward propagating wave on the right hand side because there is no 
reflection beyond the barrier.) 

Here 9 -1 9 -1
2 2

2 2 ( )6.27 10 m    and   3.62 10 mo
L R

mE m E Vk k −
= = × = = ×

= =
 

Now applying boundary conditions 

(a) the continuity of the wavefunction at z=0 (barrier edge):  ( )C D F+ =  

(b) continuity of the derivative of the wavefunction at z=0:  ( ) L RC D k k F− =  

Adding and subtracting, we get   2  and  
( )

L R L

L R L R

k k k CD C F
k k k k

−
= =

+ +
 

The absolute phase of any one of these wave components is arbitrary because it does not affect any 
measurable result, including the probability density (we are always free to choose such an overall 
phase factor). If we choose that phase such that C is real, then our algebra becomes particularly 
simple and, from the above equations, D and F are also real. The probability density on each side will 
thus be 

 2 2 2( ) 2 cos(2 )left Lz C D CD k zψ = + +               2 2( )right z Fψ =  

Taking C=1 and plotting the wave on both sides we see a standing wave on the left, which does not 
quite go down to zero because of the finite transmission over the barrier. 

 



2.8.7  

2.8.7 

(i) The solution in the left half of the well is of the form 

 ( )sin Lk z  with 
2

2 o S
L

m Ek =
=

  

Note that this has a zero at the left wall as required. 

The solution in the right half of the well is of the form 

 ( )( )sin R zk L z−  (or ( )( )sin R zk z L− ) with ( )
2

2 o S S
R

m E V
k

−
=

=
  

Note that this has a zero at the right wall, as required. 

Note that both of these solutions correspond to sine waves, not decaying exponentials, because SV  is 
substantially less than ( )( )22 / 2 /o zm Lπ= , which is the energy of the first state in a well without a 
step. Adding a step like this will only increase the eigenenergy, and so we can be quite sure that 

S SE V> . 

 
(ii) The lowest eigenstate we expect to have no zeros within the well. It will be sinusoidal in both 
halves, but will be more rapidly changing in the left half. This means that more than one quarter cycle 
will be in the left half, and less than one quarter cycle will be in the right half, hence the function as 
drawn in the figure. Note that the result should also have constant derivative as we pass from the left 
half to the right half because of the derivative boundary condition at the interface. 

The second eigenstate we expect to have one zero within the well, and because L Rk k> , we expect 
the zero to occur in the left half of the well. Again, the derivative should be constant across the 
interface, as in the figure. (One might make an intelligent (and correct) guess that the maximum 
amplitude is also larger in the right half, though this would be a very subtle point to realize here.)  



2.8.7  

(iii) Neither of these functions have definite parity. 

(iv)  

  
(Again, noticing that the amplitude of the probability density is higher on the right hand side for the 
second state would a rather subtle point to realize here.) 

(v) For the lowest state, obviously there will be more integrated squared amplitude on the left side, 
and so the electron is more likely to be found there. 

For the second state, there is a zero in the left half which is not present in the right half, and this 
reduces the relative average value of the probability density on the left side. As a result, the electron 
is actually more likely to be found on the right half of the well in this second state, which is quite a 
counter-intuitive conclusion. (It is also true that the amplitude on the right half will actually rise to a 
larger peak value as shown in the figure. It might be unreasonable to expect the reader to notice this 
particular point here, though it would be a satisfactory reason for coming to the correct conclusion.) 

(The particular curves on the graphs here are actual solutions of such a stepped well problem for an 
electron, with zL  = 1 nm and SV  = 0.35 eV. The energy of the first state of a simple well of the same 
total thickness is 1E  = 0.376 eV. The energies of the first two solutions are 0.531 eV and 1.695 eV 
(the graphs are not to scale for the energies). The relative probabilities of finding the electron on the 
left and the right are, for the first state, 61.3% on the left, 38.7% on the right, and for the second state, 
41.7% on the left, and 58.3% on the right.)  



2.9.1  

2.9.1 

(i) The sketch shows a standing wave pattern to the left of the barrier that does not go all the way 
down to zero (there is finite transmission through the barrier, so the reflected wave is weaker than the 
incident wave). Inside the barrier, there is a combination of exponential decay (to the right) from the 
wave entering from the left and also some contribution of exponential “growth” to the right (i.e., 
exponential decay to the left) from the wave reflected from the right hand side of the barrier,  though 
the exponential decay term is much stronger. To the right of the barrier, there is a constant, positive 
probability density corresponding to the fact that there is a right-propagating plane wave, but no left-
propagating plane wave, so there is no interference. (Remember that the modulus squared of a single 
complex plane wave is a constant.) 

 
(ii) One correct answer: By introducing a new barrier (identical to the old) to the left of the old barrier 
by a distance corresponding to roughly an integral number of half-wavelengths, one can create a 
resonant cavity, a Fabry-Perot-like structure, enhancing the transmission probability. (Perhaps 
surprisingly, for two identical barriers, one can actually get 100% transmission at the resonance of 
such a structure.) 



2.9.2  

2.9.2 
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In general, the wavefunction solution in the well is of the form 

 ( ) 1 1sin cosw z A k z B k zψ = +  

and in the barrier, because we can neglect the growing exponential solution as unphysical for an 
infinitely thick barrier, 

 ( ) ( )2expb z F zψ κ= −  

where  

 

1 0
1

1 1
2

2 ( )

2 ( )

m E V
k

m V E
κ

⎧ −
=⎪⎪

⎨
−⎪ =⎪⎩

=

=

  

with  
31 19

9
1 34

2*9.11*10 *1.3*1.6*10 5.84*10
1.055*10

k
− −

−
= =  m-1 

 
31 19

9
2 34

2*9.11*10 *0.2*1.6*10 2.29*10
1.055*10

κ
− −

−
= =  m-1 

Now these solutions have three constants altogether, and we need to reduce this to only one 
normalizing constant. We need to look at the boundary conditions. For simplicity, we will choose the 
origin at the position of the boundary between the well and the barrier on the “right”, so we have the 
following. 

Continuity of the wavefunction 
 B F=   
Continuity of the derivative of the wavefunction 

 2

1
A F

k
κ−

=   

So the general form, within the one normalizing constant F, is 



2.9.2  

a) within the well 

 ( ) 1
1 1

2
cos sinw z F k z k z

k
κψ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
  

b) in the barrier on the right hand side 

 ( ) ( )2expb z F zψ κ= −   



2.11.1  

2.11.1 

For this problem, we use the expression for the eigenenergies in a linear varying potential 

 ( )
1/ 32 2 / 3

2i iE e
m

ζ⎛ ⎞= −⎜ ⎟
⎝ ⎠

E=   

or, in electron-volts, dividing by the electronic charge, e,  

 
1/ 32

2 / 3

2i iE
me

ζ⎛ ⎞= −⎜ ⎟
⎝ ⎠

E= , 

and the first three zeros of the Ai Airy function, which are known to be 1 2.338ζ −� , 2 4.088ζ −� , 
and 3 5.521ζ −� .  

Calculating, we have 

 
1/ 32

73.366 10
2me

−⎛ ⎞ ×⎜ ⎟
⎝ ⎠

= �  

and for a field of 1 V/Å (1010 V/m), we have 

 2 / 3 64.642 10×E �  

so  

 (in eV) 1.562i iE ζ− ×�  

i.e., 

 1 3.65 eVE � , 2 6.39 eVE � , and 3 8.62 eVE �  



3.1.2  

3.1.2 

The time dependent Schrödinger equation with zero potential is  

 
2

2 ( , )( , )
2 o

r tr t i
m t

∂Ψ⎛ ⎞− ∇ Ψ =⎜ ⎟ ∂⎝ ⎠

= =   

  

(i) sin( )kz tω−  is not a solution. Substituting it in, we would require 

 
2 2

sin( - ) cos( )
2 o

k kz t i kz t
m

ω ω ω= − −
= =    

One reason why this is impossible for arbitrary z and t is that the left hand side is real while the right 
hand side is imaginary. (The problem with this wavefunction is that the wavefunction must be 
complex to satisfy Schrödinger’s time dependent equation because of the i on the right hand side.) 

(ii) exp( )ikz  is not a solution. Substituting it in, we would require 

  
2 2

            exp( ) 0
2 o

k ikz
m

=
=   

which is impossible for arbitrary z for a non-zero value of k. (The problem with this wavefunction is 
that it had no time dependence.)  

(iii) [ ]exp ( )i t kzω− +  is a solution. Substituting it in, we have   

  
2 2

exp[ ( )] ( ) exp[ ( )] exp[ ( )]
2 o

k i t kz i i i t kz i t kz
m

ω ω ω ω ω− + = − − + = − +
= = =  

which is possible for real positive values of k and ω provided 
2 2

2 o

k
m

ω=
= = . 

(iv) [ ]exp ( )i t kzω −  is not a solution. Substituting it in, we would require  

  
2 2

exp[ ( )] exp[ ( )]
2 o

k i t kz i t kz
m

ω ω ω− = − − +
= =  

which is impossible for positive, real values of k and ω. (The problem with this wavefunction is that 
the time dependence has to be exp(-iωt), not exp(iωt) for a solution of the time dependent 
Schrödinger equation with positive ω.) 



3.6.2  

3.6.2 

(i) We know that the frequency f of the oscillator in its classical limit (e.g., in a coherent state) is also 
the frequency that goes into the expression for the energy separation between two adjacent levels in 
the harmonic oscillator. So we can conclude that the energy separation between adjacent levels in this 
quantum mechanical harmonic oscillator is given by E hf= .  

(ii) The energy separation will decrease because the potential is now shallower or less sloped, and 
hence wider for a given energy. This is consistent with the behavior of an infinitely deep potential  
well where the eigen energies E are proportional to 1/L2, that is, a wider well corresponds to more 
closely spaced energy levels.  



3.7.1  

3.7.1 

We are given that 
2 2

2
kE
b

= −
= , where 0b > . This dispersion relation corresponds to a parabola with a 

peak at k = 0.  

k

E(k)

k

E(k)

 
The wavepacket motion is given by the group velocity 

  1
g

w E kv
k k b

∂ ∂
= = = −

∂ ∂
=

=
  

Hence we conclude 

(i) For k > 0,  vg < 0, so the wavepacket moves backward (i.e., to the “left”) 

(i) For k < 0,  vg > 0, so the wavepacket moves forward (i.e., to the “right”) 

 

  



3.12.1  

3.12.1 

(i) The system oscillates at a frequency corresponding to the difference between the energies of the 
two eigenstates. 

 
2 2 2

2 1 2 2
12 2

1 3(2 1 ) 3
2 2

E E E
mL mL
π πω −

= = − = =
= =

= =
 

(ii) Here one must work out the appropriate integral for the expectation value of the momentum 

 ( ) *

0

ˆ
zL

z zp t p dzψ ψ= ∫  

using the integral hints given. We note first that the wavefunction is 

 ( ) ( )1 2
1 2 2sin exp sin 2 exp
2 z z

kz i t kz i t
L L

ψ ω ω
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

- -  

We note next that 
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( ) ( )( )

1 2
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z
z

z
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L
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L

ψ ω ω

ω ω

⎛ ⎞
= − ∇ +⎜ ⎟⎜ ⎟

⎝ ⎠
−

= +

- -

- -

=

=
 

So 

 

( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( )

1 2 1 2
0

2 1 2 1
0

2 1 2 1

sin exp sin 2 exp cos exp 2cos 2 exp

2sin cos 2 exp ( ) cos sin 2 exp ( )
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3 3

z

z

z

L

z

L

z

z

p t

i k kz i t kz i t kz i t kz i t dz
L

i k kz kz i t kz kz i t dz
L

i t i t
iL

ω ω ω ω

ω ω ω ω

ω ω ω ω

⎛ ⎞−
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⎝ ⎠

⎛ ⎞−
= − + + −⎜ ⎟

⎝ ⎠
⎛ ⎛ ⎞ ⎛ ⎞= − − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝

∫

∫

=

=

=

+ + - -

-

- ( )2 1
8 sin ( )
3 z

t
L

ω ω⎞
= −⎜ ⎟

⎠

=

 

  

(iii) If the particle is in a superposition between the first and third states of the well, then all of the 
integrands are odd over the allowed region and the integrals are zero. Therefore, ( )zp t = 0. It is 
also possible to understand that these integrals must be zero using trigonometric identities. 

 
( )

[ ] [ ]0 0
0

1sin cos3 sin( 3 ) sin( 3 )
2

1 1 1sin cos3 cos 4 cos 2 0
2 4 2

z
z z

L L L

kz kz kz kz kz kz

k kz kz dz kz kz

= + + −

⎛ ⎞= − + =∫ ⎜ ⎟
⎝ ⎠

 



4.10.1  

4.10.1 

 (i) We find eigenvalues in the usual way by finding those conditions for which the determinant 
below is zero, i.e., 

 
( )

2

ˆ ˆdet 0

det 1 0 1

oldM mI

m i
m m

i m

− =

−⎛ ⎞
= − = ⇒ = ±⎜ ⎟− −⎝ ⎠

 

To find the eigenvectors, we just apply the matrix to a generalized vector and then solve the 
eigenvalue equation. 

 1

1

0
0

0 11
0 2

0 11
0 2

i a a
m

i b b

i a a ib a
i b b ia b i

i a a ib a
i b b ia b i

ψ

ψ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎡ ⎤
= ⇒ ⇒ =⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎣ ⎦

= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎡ ⎤
= − ⇒ ⇒ =⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎣ ⎦

 

The normalization of these eigenvectors has led to the 1/ 2  factors. Note that we could multiply 
either of these eigenvectors by any unit complex constant, and they would still be normalized 
eigenvectors. 

(ii) We want to find a matrix Û , such that it transforms the eigenvectors found above into the simple 
eigenvectors given in the statement of the problem. With the simple eigenvectors we desire in the end 
here, it is easiest to think of this particular problem backwards, constructing †Û , which is the matrix 

that turns the 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
0
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 vectors into the 
11

2 i
⎡ ⎤
⎢ ⎥−⎣ ⎦

 and 
11

2 i
⎡ ⎤
⎢ ⎥
⎣ ⎦

 vectors, respectively. That matrix 

simply has the vectors 
11

2 i
⎡ ⎤
⎢ ⎥−⎣ ⎦

 and 
11

2 i
⎡ ⎤
⎢ ⎥
⎣ ⎦

  as its columns, that is,  

 †
1 11

2
U

i i
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎣ ⎦

 

It is easily verified that, for example,  

 †
1 11ˆ
0 2

U
i

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

The Hermitian adjoint of this matrix is then the one that will transform the “old” eigenvectors into the 
new basis (and in general transforms from the old basis to the new one), that is, 

 ( )†† 1ˆ ˆ
1

i
U U

i
⎡ ⎤

= = ⎢ ⎥−⎣ ⎦
 

(iii) With our unitary matrices 



4.10.1  

 
11
12

i
U

i
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎣ ⎦

 and †
1 11

2
U

i i
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎣ ⎦

 

we can now formally transform our operator M̂ , obtaining 

 

†
1 0 1 11 1ˆ ˆ ˆ ˆ
1 02 2

1 1 1 2 0 1 01 1
1 0 2 0 12 2

new old
i i

M UM U
i i i i

i
i i i

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Hence, as desired, we have diagonalized this matrix by transforming it to the basis corresponding to 
its eigenvectors.  

Just to see what the matrix itself would be on its eigenvector basis is actually trivial, because on that 
basis a matrix will always just have its eigenvalues on the leading diagonal and all other entries zero.  



4.11.4  

4.11.4 

Let Â  be a Hermitian operator. Then †ˆ ˆA A=  by definition. Let † ˆˆ ˆ ˆB U AU= be the operator 
transformed by the unitary operator Û . Formally evaluating the Hermitian adjoint of B̂  

. ( ) ( ) ( ) ( )† †† †
† † † † † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆB U AU U A U U A U U AU B= = = = =   

Hence the transformed operator is still Hermitian. 



4.11.7  

4.11.7 

We want to show that  

 { }*
* ˆ ˆ( ) ( ) ( ) ( )g x Mf x dx Mg x f x dx=∫ ∫  

where in the integral form we are only allowed to have the operator operating to the right.  

We expand on the given basis, that is, 

 ( ) i i
i

g x g ψ= ∑  

and  

 ( ) j j
j

f x f ψ= ∑  

Then 

 

( ) ( )

( ) ( )

( ){ } ( )

( ){ } ( )

{ }

* * *

,

* * *

, ,

*
* *

,

*
*

,

*

ˆ ˆ( ) ( )

ˆ

ˆ

ˆ

ˆ ( ) ( )

i j i j
i j

i j ij i j ji
i j i j

i j j i
i j

i j i j
i j

i i j j
i j

g x Mf x dx g f x M x dx

g f M g f M

g f x M x dx

g f M x x dx

M g x f x dx

Mg x f x dx

ψ ψ

ψ ψ

ψ ψ

ψ ψ

= ∑∫ ∫

= =∑ ∑

⎡ ⎤= ∑ ∫⎣ ⎦

= ∑ ∫

= ∑ ∑∫

= ∫

 

as required. 



5.1.2  

5.1.2 

We consider two Hermitian operators; that is 

 † †,A A B B= =  

Now let us consider the operator formed from the product of these two, namely AB. The Hermitian 
adjoint of this operator is 

 ( )† † †AB B A BA= =  

The operator AB can only be Hermitian if it equals its adjoint. But from the above algebra we see that 
its adjoint equals BA. Therefore, it can only be Hermitian if AB = BA, which means they commute. 



5.2.1  

5.2.1 

We are given that ˆ / 0A t∂ ∂ = , and we know that the expectation value of Â  is given by 
ˆ ˆA Aψ ψ= . Consider the time derivative of the expectation value, which is  

 

ˆˆ ˆ ˆ

ˆ ˆ

AA A A
t t t t

A A
t t

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂⎛ ∂ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

  

since ˆ / 0A t∂ ∂ = . Also we know from the general form of Schrödinger’s equation that  

 Ĥ i
t

∂
≡

∂
=  

which implies that 

 1 Ĥ
t i

∂
=

∂ =
 

So 1 ˆ ˆA AH
t i

ψ ψ ψ ψ∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠ =
 

and 
†

†1 11ˆ ˆ ˆ ˆˆ ˆ ˆA H A H A H A
t i i i

ψ ψ ψ ψ ψ ψ ψ ψ⎛ ∂ ⎞ ⎛ ⎞= = = −⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠ = = =
 

Now using the fact that Ĥ  is Hermitian and Â  and Ĥ  commute 

 1ˆ ˆ ˆˆA HA A
t i t

ψ ψ ψ ψ ψ ψ∂⎛ ∂ ⎞ ⎛ ⎞= − = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ =
 

Hence ˆ / 0A t∂ ∂ =  
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5.4.2 

Consider first the commutator ˆˆ[ , ]zz p  operating on an arbitrary function f  in the position 
representation. We have 

 

[ ] ( ) ( ){ }
( ) ( ) ( )

ˆˆ, z
f z

z p f i z i zf z
z z

f z f z zi z i z i f z
z z z

i f

∂ ∂
= − +

∂ ∂
∂ ∂ ∂

= − + +
∂ ∂ ∂

=

= =

= = =

=

  

and so we can state  

 [ ]ˆˆ, zz p i= =   

Now consider the comparable result in the momentum representation for some arbitrary function g  
in the momentum representation, where we note that the value of the momentum is zp k= =  and that 
the position operator is  

 ẑ i
k
∂

=
∂

 

We have 

 

[ ] ( ){ } ( )

( ) ( ) ( )

ˆˆ, z
g k

z p g i kg k i k
k k

g k g kki k i g k i k
k k k

i g

∂∂
= −

∂ ∂
∂ ∂∂

= + −
∂ ∂ ∂

=

= =

= = =

=

  

and hence in this representation we obtain the identical result ˆˆ[ , ]zz p i= = . 



6.3.1  

6.3.1  

(i) The perturbing Hamiltonian here is 
2

z
p

LH eF z⎛ ⎞= −⎜ ⎟
⎝ ⎠

, where we have chosen the zero for the 

potential in the middle of the well. We consider level n in the potential well, and its shift with applied 
electric field. There will be no linear shift, by symmetry (or verified by first order perturbation 
theory, since 0n nzψ ψ = ). 

The second order shift is 

 
2

(2) q p n
n

q n n q

H
E

E E
ψ ψ

≠
∑

−
�  

The matrix elements are 

 
( )

( ) ( )
2

0 0

2 2
2 2sin sin sin sin

2 2
z

z z
q p n q n q n

L
z z

z z z z

L LH eF z eF z q n

qz L nz Lz dz q n d
L L L L

π

ψ ψ ψ ψ ψ ψ

π π πζ ζ ζ ζ
π

= − = − ≠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −∫ ∫⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

where 

 
z

z
L
πζ =  

Using the expression 

 
( ) ( )

( ) ( )2 2
0

4sin sin for n + q odd 
2

= 0 for  even

qnq n d
n q n q

n q

π πζ ζ ζ ζ⎛ ⎞− = −∫ ⎜ ⎟
⎝ ⎠ − +

+

 

we have 

 ( ) ( )2 22

8 for  odd

= 0 for  even

z
q n

L qnz n q
n q n q
n q

ψ ψ
π

= − +
− +

+

 

Hence, for n = 2, we have matrix elements 

1 2 2 2 2

8 2 16 1.778
1 9 9

z z zL L Lzψ ψ
π π π

= − = − = −
×

 

3 2 2 2 2

8 6 48 1.920
1 25 25

z z zL L Lzψ ψ
π π π

= − = − = −
×

 

4 2 0zψ ψ =  

5 2 2 2 2

8 10 80 0.181
9 49 9 49

z z z zL L Lzψ ψ
π π π

= − = − = −
× ×
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6 2 0zψ ψ =  

7 2 2 2 2 2

8 14 112 0.055
25 81 25 81

z z z zL L L Lzψ ψ
π π π π

= − = − = −
× ×

 

so, with E1 as the energy of the unperturbed first state, 

 

( ) ( ) ( ) ( )

[ ]

[ ]

2 2 2 22
(2)
2 2

1

2

2
1

2

2
1

1.778 1.92 0.181 0.0551 ...
3 5 21 45

1 1.053 0.737 0.002 0.000 ...

1 0.296

z

z

z

eFLE
E

eFL
E

eFL
E

π

π

π

⎡ ⎤⎛ ⎞ − − − +⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥⎣ ⎦

⎛ ⎞ − − − +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

�

�

�

 

where 

 
22 68 2

1 31 19 16

1.055 1.055 10 eV 53.76 meV
2 2 0.07 9.1095 10 1.602 10 10z

E
m L

π π−

− − −

× × ×⎛ ⎞= = =⎜ ⎟ × × × × × ×⎝ ⎠

=  

and where m is the appropriate mass (the electron mass for an electron in a potential well). Hence, 
writing out the entire expression, the shift with field, from second order perturbation theory, is 

 
( )

2
(2)
2 2

1
2

4
1

10.296

0.296

z

z

eFLE
E

eFL
E

π

π

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

�
 

(ii) Explicitly for the GaAs case, we therefore have, in electron volts 

 
2

(2)
2 4

0.296 (0.1) 0.565 meV
0.05376

E
π

= × =  

This energy is increasing (relative to the energy at the center of the well). 
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6.6.1 

The finite basis subset method will only ever give a solution that is a linear combination of the finite 
set of basis functions used. If that set includes, or can exactly represent, the energy eigenstate with 
the lowest energy eigenvalue, then it is possible that the finite basis subset method will return that 
state as the result, in which case we can have this method return the exact energy value for the lowest 
energy eigenstate. Otherwise, the method will return a larger answer because any other linear 
combination will have a larger value for its energy expectation value because of the variational 
principle.  

Formally, since the energy eigenfunctions for the problem of interest Emψ  form a complete set 
(with energy eigenvalues mE ), we can expand each of the members of the finite basis subset fbnψ  
in them; that is,  

 fbn nm Em
m

aψ ψ= ∑  

Consider, then, some normalized linear combination FBψ  of this finite set 

 FB n fbn n nm Em m Em
n n m m

b b a cψ ψ ψ ψ= = =∑ ∑ ∑ ∑   

where 

 m n nm
n

c b a= ∑  

and 

 2 1m
m

c =∑   

by normalization. 

Then, for the expectation value of the Hamiltonian Ĥ  in this state we have 

 2
1

,

ˆ ˆ
FB FB p m Ep Em m m

p m m
H c c H c E Eψ ψ ψ ψ∗= = ≥∑ ∑   

where 1E  is the lowest energy eigenvalue. This last step is the standard step in the variational 
argument; the smallest the last sum can be, given the normalization condition above, is if 2

1 1c = . 
Any other choice means that there is a finite amount of a higher energy in the sum, which makes the 
sum necessarily larger. 

In this argument, we have not really used the finiteness of the basis subset; we have only had to allow 
that this set may be a different set of functions from the actual energy eigenfunctions (though it does 
not have to be a different set). 



7.1.1  

7.1.1 

(i) Recall that, for a potential well with infinitely high walls and a particle of mass (or effective mass) 
meff, the energy and wavefunction for the nth level are given by, respectively, 

 
2 2 2

(0)
22n

eff z

nE
m L

π
=

=   and  (0) 2 sin( )n
z z

n z
L L

πψ =   

Because the electron is initially in the lowest state of this well, the unperturbed state is (0)
1ψ , i.e., in 

the expansion for the unperturbed wavefunction 

 (0) (0)
1 1   and  0   where 1 na a n= = >  (1) 

To find the probability of finding the electron in the second state, we need to know the coefficient of 
the second (unperturbed) wavefunction in the expansion representing the perturbed wavefunction. 
Here, we look at only the first order change in that coefficient. It can be found by integrating 

 ( ) ( ) ( ) ( ) ( )1 0
2 22

1 ˆexpn n p n
n

a t a i t H t
i

ω ψ ψ= ∑�
=

  

Using (1), we have 

 ( ) ( ) ( ) ( ) ( )1 0
21 2 12 1

1 ˆexp pa t a i t H t
i

ω ψ ψ=�
=

  

Now, using the usual electric dipole energy of an electron in an electric field of strength F, we have, 
using our given form of the electric field with time 

 ( ) ( ) ( )ˆ sin /
2 2

z z
p o

L LH t eF t z eF t t zπ⎛ ⎞ ⎛ ⎞= − = Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

where we have chosen the potential origin in the middle of the well. So 

 ( ) ( )2 1
0

2 2 2ˆ sin / sin( ) sin( )
2

zL
z

p o
z L zH t eF t t z dz

L L L Lz z z z
π πψ ψ π ⎛ ⎞= Δ −∫ ⎜ ⎟

⎝ ⎠
 

With a change of variable to / zz Lζ π=  

 
( ) ( )

2

0 0

2

2

2 2 2 2sin( ) sin( ) sin 2 sin
2 2

2 8 16
9 9

zL
z z

z

z z

z

z L z Lz dz d
L L L L Lz z z z

L L
L

ππ π πζ ζ ζ ζ
π

π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = −⎜ ⎟∫ ∫⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

−⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where we have used a standard result for the integral (see Appendix G of the book). That is,   

 ( ) ( )2 1 2

16ˆ sin /
9

z
p o

LH t eF t tψ ψ π
π

⎛ ⎞= Δ −⎜ ⎟
⎝ ⎠

  

Now integrating over time to get the desired coefficient 
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( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )( )

1 0
21 2 12 10

210 2

2102

2102

1 ˆexp

1 16exp sin /
9

1 16 exp sin /
9

1 16 exp exp / exp /
2 9

1 ex
1 16

9

t
p

t z
o

tz
o

tz
o

z
o

a t a i t dtH t
i

Li t eF t t dt
i

LeF i t t t dt
i

LeF i t i t t i t t dt

t
LeF

i

ω ψ ψ

ω π
π

ω π
π

ω π π
π

π

Δ

Δ

Δ

Δ

= ∫

⎛ ⎞= Δ −∫ ⎜ ⎟
⎝ ⎠

⎛ ⎞= − Δ∫⎜ ⎟
⎝ ⎠

− ⎛ ⎞= − Δ − − Δ∫⎜ ⎟
⎝ ⎠

Δ +
⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

=

=

=

=

(0)
1

2(0)
1 2

3p

3

Ei t

E t π

⎛ ⎞⎛ ⎞
Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟Δ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

=  

(There are several relatively straightforward algebraic steps between the last two lines.) The 
probability of finding the electron in the second level is therefore 

 ( ) ( )

(0)
12

221
2 22(0)

1 2

34cos
216

9 3

o z

E t
eF L ta t

E t
π

π

⎛ ⎞
Δ⎜ ⎟

Δ⎛ ⎞ ⎝ ⎠= ⎜ ⎟
⎝ ⎠ ⎛ ⎞⎛ ⎞⎜ ⎟Δ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=
=

=

  

where we used the identity ( )22cos / 2 1 cosθ θ= + . 

(ii) For a GaAs semiconductor structure with 0.07eff om m=  and width zL =  10 nm, we have 

 
(0) 2 34 2
1 13 -1

2 31 16

1.055 10 8.16 10 s
2 2 0.07 9.109 10 10eff z

E
m L

π π−

− −

× ×
= = = ×

× × × ×
=

=
 

so for tΔ = 100 fs, 
(0)
13 12.25

2
E tΔ �
=

 and hence 

 
(0)
13cos 0.950

2
E t

⎛ ⎞
Δ⎜ ⎟

⎝ ⎠
�

=
 and 

(0)
12 3cos 0.89

2
E t

⎛ ⎞
Δ⎜ ⎟

⎝ ⎠
�

=
 

Using the result above and substituting in 0.01 for the probability ( ) ( )
21

2a t , we have 
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( ) ( )

2(0)
1 2

21
2 (0)

1

34
7

19 8 13

3

9
1632 cos

2

589.4 9 1.055 100.1 3.67 10 V/m
1.87 16 1.602 10 10 10

o
z

E t

F a t
eL tE t

π
π

π −

− − −

⎛ ⎞⎛ ⎞⎜ ⎟Δ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
Δ⎛ ⎞

Δ⎜ ⎟
⎝ ⎠

× ×
= × × = ×

× × × ×

= =

=
 

which is therefore the minimum field required. 

(iii) For a full cycle pulse the only mathematical difference is  

 

( ) ( ) ( ) ( ) ( )( )1
212 02

(0)
1

2(0)
1 2

1 16 exp exp 2 / exp 2 /
2 9

31 exp
1 16

9 3

tz
o o

z
o

La t eF i t it t it t dt

Et i t
LeF

i E t

ω π π
π

π
π

Δ− ⎛ ⎞= − Δ − − Δ∫⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
Δ − Δ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠= ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎛ ⎞⎜ ⎟Δ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

=
=

=

  

so the probability of finding the electron in the second level is 

 ( ) ( )

(0)
12

221
2 22(0)

1 2

34sin
216

9 3

o z

E t
eF L ta t

E t
π

π

⎛ ⎞
Δ⎜ ⎟

Δ⎛ ⎞ ⎝ ⎠= ⎜ ⎟
⎝ ⎠ ⎛ ⎞⎛ ⎞⎜ ⎟Δ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=
=

=

  

so that the probability now varies as a 2 2sin  instead of cos . Note, however, that this sin2 term is now 
quite small for this particular value of tΔ , specifically ~ 0.097, compared to the ~ 0.89 for the cos2 
term we had for the half cycle pulse. So, for this particular pulse length, the full cycle pulse gives a 
much smaller probability of making the transition. 
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7.2.1 

 (i) We start with Fermi’s Golden Rule. 

 
2

0
ˆ

pW final H initial∝  

For the electric dipole transitions we are considering here, we therefore have 

 
2

W final z initial∝  

We can choose our position origin at the center of the well for this discussion.1 z is an odd function 
with respect to the center of the well. Since the initial (second) state is an odd state with respect to the 
center of the well, we can therefore only make transitions to states that are even with respect to the 
center of the well since otherwise final z initial  evaluates to zero. Hence, we can make transitions 
to the first state (which would be an emission transition), and to the third state (given an appropriate 
choice of frequency in each case).  

(ii) There is no qualitative difference. The parity arguments still hold. 

                                                 
1  It actually makes no difference where we choose the position origin, but this choice makes the mathematics simpler. If we chose it at 
some other point, say z = a, then we should have final z a initial−  instead of  final z initial . But 

0final a initial a final initial= =  because the initial and final states are orthogonal, being energy eigenstates corresponding to 
different energy eigenvalues. So final z a initial final z initial− = . 



8.6.1  

8.6.1 

We follow the derivation in the book of the effective mass Schrödinger equation, but instead of 
2 2

2 eff

kE V
m

= +k
= , we write 

 
22 2 2

2 2
o new

eff eff

kE V V
m m
−

= + = +k
k k= =   

and also write 

 ( ) ( ) ( ) ( ) ( ), exp exp exp /new new new
new

o newt i c u i iE tΨ = ⋅ ⋅ −∑ k k k
k

r k r r k r =   

instead of  

 ( ) ( ) ( ) ( ), exp . exp /t c u i iE tΨ = −∑ k k k
k

r r k r =   

Again, we approximate  

 ( ) ( )new ou uk r r�   

for the range of k of interest. Now we write 

 ( ) ( ) ( ) ( ), exp ,o o envnewt u i tΨ = ⋅ Ψr r k r r   

so that  

 ( ) ( ) ( ) ( )0, exp ,o envnewt u i tΨ = ⋅ Ψr r k r r   

as required. Then 

 ( ) ( ) ( ), exp exp /new new
new

envnew newt c i iE tΨ = ⋅ −∑ k k
k

r k r =   

We then follow the argument as before, obtaining 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
2

2
2

exp . exp /

exp . exp /
2

exp . exp /

exp . exp /
2

new new new
new

new new
new

new new
new

new new
new

envnew
new

new new
eff

new

new envnew
eff

i c E i iE t
t

c k i iE t
m

V c i iE t

c i iE t V
m

∂Ψ
= −∑

∂

= −∑

+ −∑

= − ∇ − + Ψ⎡ ⎤∑ ⎣ ⎦

k k k
k

k k
k

k k
k

k k
k

k r

k r

k r

k r

= =

= =

=

= =

  

so that, as required, 

 ( ) ( ) ( )
2

2 ( , ) , ,
2 envnew envnew envnew

eff
t V t i t

m t
∂

− ∇ Ψ + Ψ = Ψ
∂

r r r r= =  
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8.8.2 

For this case of a parabolic quantum well, the solutions for the eigenenergies for the z motion will 
just be the same as those of a harmonic oscillator, i.e., they will be evenly spaced by an “harmonic 
oscillator” quantum energy, with the first such level at half of that quantum above the bottom of the 
band. Associated with each such parabolic quantum well energy, there will be a sub-band, which will 
have the same density of states as other quantum well subbands, i.e., uniform with energy. Hence we 
will have a series of equally spaced steps. 
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2 3 2 2

2 2 2 2 2 2
3

2 2 2 2 2 2

2 2 2 2
3

2 2

ˆ, zL i x y x y
y x y x

i x y x y
x y z y x y x x y z

i x y x y
x y x y x y y x yd

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤∇ = − ∇ − − − ∇⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + + − − − + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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=

=

=
2

2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 3 3 3 2 2 3
3

2 3 3 2

3 3 3 3 3 3
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x z y x
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⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + − + − − −⎢∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣

∂ ∂ ∂ ∂ ∂ ∂
+ − − − − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

=

3 3
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⎤∂ ∂
+ + ⎥∂ ∂ ∂ ∂ ⎦

=
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10.5.1 

We are given 2∇  in cylindrical polars, which is 

 
2 2

2
2 2 2

1 1r
r r r r zφ

∂ ∂ ∂ ∂⎛ ⎞∇ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
  

We consider an electron in a cylindrical shell, with inner radius or  and thickness rL . We therefore 
have a Schrödinger equation in which the potential is a function of r  only 

 
2

2

0
( )

2
V r E

m
ψ ψ ψ− ∇ + =

=   

i.e., 

 0 02
2 2

2 2( )m m EV rψ ψ ψ∇ − = −
= =

  

We propose the solution 

 ( ) ( ) ( )R r Z zψ φ= Φ   

We multiply both sides by 2r , rearranging slightly 

 

( )

2 2
0
2 2

22 02
2 2

2 ( ) ( )( ) ( ) ( ) ( ) ( )

2 ( ) ( )( )( ) ( ) 0r

r m V rZ z r r R r R r Z z
r r

m E R r Z zZ zr R r
z

φφ
φ

φ
φ

∂ ∂ ∂ Φ⎡ ⎤Φ − +⎢ ⎥∂ ∂ ∂⎣ ⎦

Φ∂
+ Φ + =

∂

=

=

  

We divide by ψ  

 
2 2 2 2 2

0 0 2
2 2 2 2

1 2 ( ) 2 ( ) 1 ( )( )
( ) ( )

rr m V r m E r Z zr r R r m
R r r r Z z z

φ
φ

∂ ∂ ∂ ∂ Φ⎡ ⎤− + + = − =⎢ ⎥∂ ∂ ∂ Φ ∂⎣ ⎦= =
  

where 2m  is our separation constant, to be determined. Hence, we conclude that 

 ( ) ime φφΦ =   

which is the solution of the φ  part (or strictly, ( ) im imAe Beφ φφ −Φ = + , though, if we allow positive 
and negative m , and presume we will normalize the wavefunctions later, we can write exp( )imψ φ=  
as the (unnormalized) basis set). Continuity of the wavefunction and its derivative at 2φ π=  requires 
m  is an integer (positive, negative, or zero). Now we have, dividing by 2r  

 
2 2

0 2
2 2 2 2

1 1 2 ( ) 2 1 ( )( )
( ) ( ) z

m V r mE m Z zr R r k
R r r r r r Z z z

∂ ∂ ∂⎡ ⎤− + − = − =⎢ ⎥∂ ∂ ∂⎣ ⎦= =
  

where 2
zk  is a separation constant. Hence the solution for Z  is (unnormalized) 

 ( )( ) exp zZ z ik z=   

where zk  may take any real value. Finally, the radial equation is 



10.5.1  

 
2

0 2
2 2 2

1 1 2 2( ) ( )
( ) z

m mE mr V r R r k
R r r r r r

∂ ∂⎡ ⎤− = − + +⎢ ⎥∂ ∂⎣ ⎦= =
  

or 

 
2 2 2 2

2
2

0 0 0

1 ( ) ( ) ( ) ( )
2 2 2 z

mr R r V r R r E k R r
m r r r m r m

∂ ∂ ⎡ ⎤− + = − −⎢ ⎥∂ ∂ ⎣ ⎦

= = =   

Now, we are only interested in solving this over a very small range of r  near or . Therefore, we can 
approximate 2r  in the right-hand side by 2

0r  – the error introduced in the net number will be small. 
Hence, we can define the quantity 

 
2 2 2

2
2

0 002 2r z
mE E k

m r m
= − −

= =   

and obtain the simple approximate equation 

 
2

0

1 ( ) ( ) ( ) ( )
2 r

r R r V r R r E R r
m r r r

∂ ∂
− + =

∂ ∂
=   

Now, with 

 RR
r

∂′ ≡
∂

  

we have  

 ( )1 1 1r R r rR R R
r r r r r r

∂ ∂ ∂ ′ ′ ′′= = +
∂ ∂ ∂

  

We expect in the thin shell that the gradient R′  will change by ~ R′  over the thickness of the shell 
as the function R  goes from zero at one side of the shell to zero at the other side, i.e., we expect 

 
0

~
r

R R
R

L r

′ ′
′′ >>   

because 0 rr L>> . Hence, we can neglect the /R r′  term leaving, approximately 

 
2

2
0

( ) ( ) ( ) ( )
2 rR r V r R r E R r

m r
∂

− + =
∂

=   

Hence, the problem separates into 

a) A 1D infinite quantum well problem for a quantum well of thickness rL  (starting at radius or  and 
ending at radius o rr L+ ) 

b) a propagating wave in the z  direction. 

c) a circular wave in the φ  direction. 

Hence, we have (neglecting normalization) 

 ( ) ( )exp zZ z ik z=  , zk  any real value  



10.5.1  

 ( ) ( )exp imφ φΦ =  , m  any integer  

 ( ) ( )sin o

r

n r r
R r

L
π −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (for r  within the well), 1, 2, 3,n = …  

with associated energies  

 
22

02r
r

nE
m L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

=   

(i) Hence multiplying the part of the wavefunction together gives the required form. 

(ii) The restrictions are as above, 1, 2, 3,n = …, m  any integer, and zk  any real value. 

(iii) The resulting energies adding all the parts together are 

 
222

2

0 02nmk z
R

n mE k
m L r

π⎡ ⎤⎛ ⎞⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=   

  



10.5.2  

10.5.2 

The Schrödinger equation for a particle in a spherical potential is of the form 

 
2

2

0
( )

2
V r E

m
ψ ψ ψ− ∇ + =

=   

i.e., the potential is only a function of the radius from the center. This is true regardless of the detail 
of the form of the spherically-symmetric potential. This equation is therefore of the same 
mathematical form as the corresponding equation for the hydrogen atom and will have similar forms 
of solutions. 

Specifically, we can write 

 1( ) ( ) ( , )Y
r

ψ χ θ φ=r r   

and we will have an equation 

 
2 2

2 2
0 0

( ) ( 1)( ) ( ) ( )
2 2

d r V r r E r
m dr m r

χ χ χ+⎡ ⎤− + + =⎢ ⎥⎣ ⎦

= = A A   

The term 

 
2

2
0

( 1)
2m r

+= A A   

is an effective potential energy term that increases the energy of the system as l  becomes larger, so to 
get the lowest energy state we set 0l =  (its lowest allowed value, from the solution of the spherical 
harmonic equation), which by assumption anyway in the problem gives the lowest state. Hence, for 
the lowest energy state, we are looking for the lowest energy solution of the equation 

 
2 2

2
0

( ) ( ) ( ) ( )
2

d r V r r E r
m dr

χ χ χ− + =
=   

For the “infinite” potential well, we expect a boundary condition 0( ) 0rχ = , and we are reminded in 
the problem that (0) 0χ = . Hence, this problem is mathematically like a simple one-dimensional 
quantum well of thickness 0r  (at least for all 0l =  states), and so we conclude that the lowest energy 
is 

 
22

1
0 02

E
m r

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

=   



11.2.1  

11.2.1 

For this problem, one needs to set up an appropriate computer program for the transfer matrix 
method, using the formulae in the book. For example computer code, see the following Mathcad 
worksheet. 

The calculated transmission resulting from this model is as shown in the figure. 
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where by mfm we mean mfm and by mfm1 we mean mfm+1, i.e., the quantity in the layer m+1, 
and similarly for Vm and Vm1.

Δ E Vm, mfm, Vm1, mfm1,( ) k E Vm1, mfm1,( )
mfm

k E Vm, mfm,( ) mfm1⋅
⋅:=

and the quantity 
k E Vm, mfm,( ) s mfm⋅ E Vm−( )⋅:=

Using this scaling parameter, we can write the formula for the wavevector as a function of the 
appropriate 

s 26.22299=which givess
2q mo⋅ 10

18−
⋅

hbar2
:=

For a given layer m of potential energy Vm, mass mfm, and thickness dm, we can define the 
necessary quantities required by the algebra. To allow the use of  mass units of the free 
electron mass mo, thickness units of nanometers, and energy units of electron volts for 
inputting the parameter - namely the wavevector k, which may be real or imaginary - we 
define a units scaling parameter s by

q 1.602 10
19−

⋅:=mo 9.1095 10
31−

⋅:=hbar 1.055 10
34−

⋅:=

We first define the necessary fundamental constants.

Formal construction of matrices
ORIGIN 1:=

For future formal mathematical use, we formally choose the origin of all matrices and vectors at an 
index of 1 (rather than zero).

...
“entering”
material

“exiting”
material

...

N layers

layer 1 2 3 4 N+1N N+2

interface 1 2 3 4 N-1 N N+1

incident wave
reflected wave

transmitted
wave

This solutions is given here as a Mathcad worksheet, though it should be relatively obvious how the 
problem is being solved. (In Mathcad, the symbol ":=" means "is defined to be equal to". The equals sign
itself ("=") is used to give the current value of whatever variable is on the left of the equals sign.) 
Formally, we wish to calculate the transfer matrix for a structure with a series of steps of potential as 
shown in the figure.

Problem 11.2.1 Solution Mathcad worksheet



η E( ) 1
T E( )2 1,( )2

T E( )1 1,( )2
−:=

and we can define the transmission fraction by

T E( ) D E Vm1, mf1, Vm2, mf2,( )
2

N 1+

q

P E Vmq, mfq, dmq,( ) D E Vmq, mfq, Vm
q 1+, mf

q 1+,( )⋅∏
=

⋅:=

Now we can formally construct the overall transfer matrix by multiplying the various 
constituent matrices. (Note: Be careful in your program that the multiplication of the matrices is 
done in the correct order. The following does give the correct order for Mathcad's 
conventions.)

Vm5 0:=mf5 1:=

dm4 0.3:=Vm4 1:=mf4 1:=

dm3 1:=Vm3 0:=mf3 1:=

dm2 0.3:=Vm2 1:=mf2 1:=

Vm1 0:=mf1 1:=

Now we explicitly input the values of the parameters.
N 3:=

Now we choose the number N of layers in the structure (not including the "entering" and 
"exiting" layers)

Choice of parameters

For a given structure, we have to choose these parameters Vm, the mass will be mfm, and the 
thickness will be dm. We will use mass units of the free electron mass mo, thickness units of 
nanometers, and energy units of electron volts for inputting the parameters. 

P E Vm, mfm, dm,( )
exp i− k E Vm, mfm,( )⋅ dm⋅( )

0
0

exp i k E Vm, mfm,( )⋅ dm⋅( )
⎛
⎜
⎝

⎞
⎟
⎠

:=

relating the forward and backward amplitudes just inside the right side of layer m to those just 
inside the layer m+1, and a propagation matrix in layer m 

D E Vm, mfm, Vm1, mfm1,( )

1 Δ E Vm, mfm, Vm1, mfm1,( )+

1 Δ E Vm, mfm, Vm1, mfm1,( )−

1 Δ E Vm, mfm, Vm1, mfm1,( )−

1 Δ E Vm, mfm, Vm1, mfm1,( )+

⎛
⎜
⎝

⎞
⎟
⎠

2
:=

This leads to a boundary condition matrix



So that we can plot the results, we define a range variable. The following variable takes on the values 
0.005, 0.015, 0.025, and so on, all the way to 0.995. 

EE .005 .015, 0.995..:=

EE is used as the horizontal ordinate in the following graph, and η(EE) is used as the vertical value 
plotted, hence giving the following graph.
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12.4.1  

12.4.1 

For ( ) ( ) ( )cos / 2 exp sin / 2s iθ φ θ= ↑ + ↓  

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ){ }

cos / 20 1
ˆ cos / 2 exp sin / 2

exp sin / 21 0

exp sin / 2
cos / 2 exp sin / 2

cos / 2

cos / 2 sin / 2 exp exp

1 sin 2cos
2
sin cos

xs s i
i

i
i

i i

θ
σ θ φ θ

φ θ

φ θ
θ φ θ

θ

θ θ φ φ

θ φ

θ φ

⎡ ⎤⎡ ⎤
= −⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤

= −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

= + −

=

=

 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ){ }

cos / 20
ˆ cos / 2 exp sin / 2

exp sin / 20

exp sin / 2
cos / 2 exp sin / 2

cos / 2

cos / 2 sin / 2 exp exp

sin 2 sin sin sin
2

i
s s i

ii

i i
i

i

i i i

i i

θ
σ θ φ θ

φ θ

φ θ
θ φ θ

θ

θ θ φ φ

θ φ θ φ

⎡ ⎤−⎡ ⎤
= −⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
−⎡ ⎤

= −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

= − −

−
= =

y

 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )2 2

cos / 21 0
ˆ cos / 2 exp sin / 2

exp sin / 20 1

cos / 2
cos / 2 exp sin / 2

exp sin / 2

cos / 2 sin / 2
cos

s s i
i

i
i

θ
σ θ φ θ

φ θ

θ
θ φ θ

φ θ

θ θ
θ

⎡ ⎤⎡ ⎤
= −⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦

⎡ ⎤
= −⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦
= −

=

z

 

Hence 

 ˆ sin cos sin sin coss s s θ φ θ φ θ= = + +P i j kσ  



13.4.4  

13.4.4 

(i) The appropriately symmetrized input state will be 

 ( )1 1, 2, 1, 2,
2

in L B B Lψ = −   

(or minus this). The transformation rules remain the same as in the boson beamsplitter problem 
because the beamsplitter matrix is the same, that is, the effect of the beamsplitter on a given single 
particle incident state is the pair of transformations 

 ( )11, 1, 1,
2

L i T R→ +  

 ( )11, 1, 1,
2

B T i R→ +  

so we have 

 
( )( ) ( )( )

31 1, 1, 2, 2, 1, 1, 2, 2,
2

1 1, 2, 1, 2,
2

out i T R T i R T i R i T i R

R T T R

ψ ⎛ ⎞ ⎡ ⎤= + + − + +⎜ ⎟ ⎣ ⎦⎝ ⎠

= ⎡ − ⎤⎣ ⎦

  

(ii) The two electrons will always be found in different modes (single particle states). That is, if we 
measure the system and find an electron at the right port, we will always also find an electron on the 
top port; collapsing into either the first or second term in the above equation gives the same result in 
the measurement. (We know anyway that we cannot have two fermions in the same single particle 
states, and we see here that the action of the beamsplitter ensures this – the two input fermions always 
go into different output states.) 



14.3.1  

14.3.1 

We have the linear polarization state 

 1 Hψ ψ=   

and the elliptical polarization state 

 2
3 4
5 5H V

iψ ψ ψ= +   

with probabilities 1 20.2, 0.8P P= = . Hence, the density operator is, explicitly, in terms of Hψ  and 

Vψ  

 

1 1 1 2 2 2

1 2

1 2

3 4 3 4
5 5 5 5
9 12
25 25

12 16
25 25

H H H V H V

H H H H H V

V H V V

P P

i iP P

iP P

i

ρ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

= +

⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

+ +

  

so, writing the density operator on the horizontal and vertical polarization basis gives 

 

1 2

1

2

2

9 1 9 4 25 36 1
25 5 25 5 125 125

12 12
25 125

16 64
25 125
12 12
25 125

HH H H

HV H V

VV V V

VH V H

P P

i iP

P

i iP

ρ ψ ρ ψ

ρ ψ ρ ψ

ρ ψ ρ ψ

ρ ψ ρ ψ

+ 6
= = + = + × = =

= = = −

= = =

= = = +

  

Hence the density matrix is 

 

61 12
125 125
12 64
125 125

i

i
ρ

⎡ ⎤−⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

  

where HHρ  is the top left element in the matrix. (Note that this matrix is Hermitian, and does also 
have ( ) 1Tr ρ = . ) 



15.5.1  

15.5.1 

 

( )( ) ( )( ){ }
{ }

{ }
{ }

† † † †

† † † † † † † †

† † † †

† †

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆ

i a a a a a a a a

i a a a a a a a a a a a a a a a a

i a a a a a a a a

i a a a a

i

λ λ λ λ λ λλ λ λ λ

λ λ λ λ λ λ λ λλ λ λ λ λ λ λ λ

λ λ λ λλ λ λ λ

λ λλ λ

ξ π⎡ ⎤ = + − − − +⎣ ⎦

= − − + − + − +

= − − +

= −

=

 

where we used the commutation relation [ ]† † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a= − =  in the last step. 



15.6.2  

15.6.2 

The expected value of position is just the expectation value of the operator λ̂ξ , i.e.,  

 

( ) { }

( ) ( )

( ) ( ){ } ( )

† †1 1ˆ ˆ ˆ ˆ ˆ
2 2

exp exp
2 2

exp exp 2 cos
2

n n n n n n

n n n n

a a a a

n ni t i t

n i t i t n t

λ λ λ λ λ λ λ λ λ λλ λ

λ λ λ λ λ λ

λ λ λ

ξ ξ ψ ψ ψ ψ ψ ψ

ω ψ ψ ω ψ ψ

ω ω ω

≡ = + = +

= − +

= − + =

 

Hence, the expected value of position is oscillating (co)sinusoidally at angular frequency ωλ. 



16.1.1  

16.1.1 

Possible basis states are, in the order we will use them  

 

1 2

1 2

1 2

1 2

0 0 ,0 no particles in either state

1 ,0 one particle in state 1

0 ,1 one particle in state 2

1 ,1 one particle in state 1 and one in state 2

≡

 

We now proceed to evaluate the operator matrices examining the effect each one has on each basis 
state, allowing us to build up all the matrix elements. 

Creation operator 1  

We have the following results when this operator operates on each of the states 

 

1 21

1 21

1 2 1 21

ˆ 0 1 ,0
ˆ 1 ,0 0
ˆ 0 ,1 1 ,1

b

b

b

+

+

+

=

=

= −

  

because, with our definition of standard order, we have to swap past the row corresponding to state 2, 
and  

 1 21̂ 1 ,1 0b+ =   

Hence 

 1

0 0 0 0
1 0 0 0ˆ
0 0 0 0
0 0 1 0

b+

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥−⎣ ⎦

  

Annihilation operator 1 

 1

1 21

ˆ 0 0
ˆ 1 ,0 0

b

b

=

=
  

(there is only one "row" in the Slater determinant, so there is nothing to swap past) 

 
1 11

1 2 1 21

ˆ 0 ,1 0
ˆ 1 ,1 0 ,1

b

b

=

= −
  

we have to swap past the row corresponding to state 2. 

Hence 



16.1.1  

 1

0 1 0 0
0 0 0 0ˆ
0 0 0 1
0 0 0 0

b

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥−
⎢ ⎥
⎣ ⎦

  

We can verify the anticommutation relation for this pair 

 

1 1 1 1

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0ˆ ˆ ˆ ˆ
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0

0 0 0 0
1 0

b b b b+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=
0 0

0 0 0 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

as required. 

For the state 2 creation operator 

 

1 2 1 22

1 2 1 22

1 22

1 22

ˆ 0 ,0 0 ,1
ˆ 1 ,0 1 ,1 ( )
ˆ 0 ,1 0
ˆ 1 ,1 0

b

b no swapping required

b

b

+

+

+

+

=

=

=

=

  

For the state 2 annihilation operator 

 

1 22

1 22

1 2 1 22

1 2 1 22

ˆ 0 ,0 0 ( )
ˆ 1 ,0 0 ( )
ˆ 0 ,1 0 ,0
ˆ 1 ,1 1 ,0

b no swapping required

b no swapping required

b

b

=

=

=

=

  

Hence 

 2

0 0 0 0
0 0 0 0ˆ
1 0 0 0
0 1 0 0

b+

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

  



16.1.1  

 2

0 0 1 0
0 0 0 1ˆ
0 0 0 0
0 0 0 0

b

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

The anticommutation relation for this pair of operators is 

 

2 2 2 2

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0ˆ ˆ ˆ
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0

b b b b+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

as required. 

For other anticommutation relations, we have 

 

1 2 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0ˆ ˆ ˆ ˆ
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0

0 0 0 0
0 0 0

b b b b+ + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

=
0

0
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and similarly for 

 1 2 2 1
ˆ ˆ ˆ ˆ 0b b b b+ =   

Also 



16.1.1  

 1 1

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0ˆ
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0

b b+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

so 

 1 1 1 1
ˆ ˆ ˆ ˆ 0b b b b+ + + ++ =   

and similarly for 

 2 2 2 2
ˆ ˆ ˆ ˆ 0b b b b+ + + ++ =   

and also 

 
1 1 1 1

2 2 2 2

ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ 0

b b b b

b b b b

+ =

+ =

  



16.3.3  

16.3.3 

(i) To find the representation of the position operator r̂  for a fermion in terms of fermion creation 
and annihilation operators, we use the wavefunction operator ψ̂  in the single particle case, i.e., we 
write 

 ( ) ( )

† 3

* 3

,

,

ˆ
ˆ ˆ

ˆ ˆ

m n m n
m n

mn m n
m n

d

b b d

r b b

ψ ψ

φ φ+

+

= ∫

= ∑∫

= ∑

r r r

r r r r  (1) 

where 

( ) ( )* 3
mn m nr dφ φ= ∫ r r r r  

(ii) For the case of a particle in a one-dimensional box of width L, the wavefunctions are 

 2( ) sinm
m zz

L L
πφ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

so, if we are referring the position operator to the center of the well, we will have matrix elements for 
position relative to the center of the well of 

 
0

2 sin sin
2

L

mn
L m z n zr z dz

L L L
π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −∫ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Changing variables to z
L

πζ = , we have 

 

( )

( ) ( )

2

0

2 22

2 sin( )sin
2

8 for  odd

0 for  even

mn
Lr m n d

L
L nm n m

n m n m
n m

π πζ ζ ζ ζ
π

π

⎛ ⎞ ⎛ ⎞= −∫⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − +
− +

= +

 (2) 

which then becomes the mnr in formula (1) above, i.e., we have, for this one-dimensional position 
operator 

†

,

ˆ ˆˆ mn m n
m n

z r b b= ∑  

with mnr  given by formula (2) above. 

(We could have chosen the position operator relative to the position of the left of the well. In that 
case, we would just end up adding L/2 to all of the “diagonal” (i.e., m n= ) matrix elements.)  
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17.3.1 

We have 

 ˆ ˆˆ ˆCen Cjk kjH H b c b cλμ μλ
+

+= ∑   

and we can write 

 
ˆˆ; 0
ˆˆ; 0

fm bm

fq bq v

N N c b

N N c b

α μ

β

+ +

+ +

=

=
  

Then 

 
ˆ ˆˆ ˆ; ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0

fq bq fm bmj k

v uj k

M N N b c b c N N

b c b c b c c b

μλ

μ αβ λ

+ +

+ + + +

=

=
  

Now using the fact that the operators for different particles commute, we can rewrite this as 

 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0v uj kM b b c c c c b bμ αβ λ
+ + + +=   

Now we use the anticommutation relation for identical fermions 

 ˆ ˆ ˆ ˆ
r s s r rsb b b b δ+ ++ =   

i.e., 

 ˆ ˆ ˆ ˆ
r s rs s rb b b bδ+ += −  

and the commutation relation for identical bosons 

 ˆ ˆ ˆ ˆc c c cρ σ σ ρ ρσδ+ +− =   

i.e., 

 ˆ ˆ ˆ ˆc c c cρ σ ρσ σ ρδ+ += +   

to rewrite M, obtaining 

 ( )( )( )( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0vj v ku uj kM b b c c c c b bβλ μα α μλ βδ δ δ δ+ + ++= − + + −   

i.e., since we have annihilation operators to the right in each case 

 0 0vj ku vj kuM βλ μα βλ μαδ δ δ δ δ δ δ δ= =   

So 

 ; ;fq bq Cen fm bm CvuN N H N N H βα=  



18.3.3  

18.3.3 

From the definitions of the Bell states, we find 

 ( )1 2 12 12
1
2

+ −= Φ + ΦH H  

 ( )1 2 12 12
1
2

+ −= Φ − ΦV V  

 ( )1 2 12 12
1
2

+ −= Ψ + ΨH V  

 ( )1 2 12 12
1
2

+ −= Ψ − ΨV H  

Hence the general two-particle state where each particle has two available basis states H  and V  
can be written 

 

1 2 1 2 1 2 1 2

12 12 12 12

12 12 12 12

12 12 12 12

1
2

2 2 2 2

c c c c

c c

c c

c c c c c c c c

ψ

+ − + −

+ − + −

+ − + −

= + + +

⎧ ⎫⎡ ⎤ ⎡ ⎤Φ + Φ + Ψ + Ψ⎪ ⎣ ⎦ ⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤ ⎡ ⎤+ Ψ − Ψ + Φ − Φ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

+ − + −
= Φ + Φ + Ψ + Ψ

HH HV VH VV

HH HV

VH VV

HH VV HH VV HV VH HV VH

H H H V V H V V

 


	Introduction
	2.6.1 solution
	2.8.1 solution
	2.8.3 solution
	2.8.7 solution
	2.9.1 solution
	2.9.2 solution
	2.11.1 solution
	3.1.2 solution
	3.6.2 solution
	3.7.1 solution
	3.12.1 solution
	4.10.1 solution
	4.11.4 solution
	4.11.7 solution
	5.1.2 solution
	5.2.1 solution
	5.4.2 solution
	6.3.1 solution
	6.6.1 solution
	7.1.1 solution
	7.2.1 solution
	8.6.1 solution
	8.8.2 solution
	9.2.1 solution
	10.5.1 solution
	10.5.2 solution
	11.2.1 solution
	12.4.1 solution
	13.4.4 solution
	14.3.1 solution
	15.5.1 solution
	15.6.2 solution
	16.1.1 solution
	16.3.3 solution
	17.3.1 solution
	18.3.3 solution



