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Preface

This book develops a True Digital Control (TDC) design philosophy that encompasses data-
based (statistical) model identification, through to control algorithm design, robustness evalua-
tion and implementation. Treatment of both stochastic system identification and control design
under one cover highlights the important connections between these disciplines: for example,
in quantifying the model uncertainty for use in closed-loop stochastic sensitivity analysis.
More generally, the foundations of linear state space control theory that are laid down in early
chapters, with Non-Minimal State Space (NMSS) design as the central worked example, are
utilised subsequently to provide an introduction to other selected topics in modern control
theory. MATLAB R©1 functions for TDC design and MATLAB R© scripts for selected examples
are being made available online, which is important in making the book accessible to readers
from a range of academic backgrounds. Also, the CAPTAIN Toolbox for MATLAB R©, which
is used for the analysis of all the modelling examples in this book, is available for free down-
load. Together, these contain computational routines for many aspects of model identification
and estimation; for NMSS design based on these estimated models; and for offline signal
processing. For more information visit: http://www.wiley.com/go/taylor.

The book and associated software are intended for students, researchers and engineers who
would like to advance their knowledge of control theory and practice into the state space
domain; and control experts who are interested to learn more about the NMSS approach
promoted by the authors. Indeed, such non-minimal state feedback is utilised throughout this
book as a unifying framework for generalised digital control system design. This includes
the Proportional-Integral-Plus (PIP) control systems that are the most natural outcome of the
NMSS design strategy. As such, the book can also be considered as a primer for potentially
difficult topics in control, such as optimal, stochastic and multivariable control.

As indicated by the many articles on TDC that are cited in this book, numerous colleagues
and collaborators have contributed to the development of the methods outlined. We would like
to pay particular thanks to our good friend Dr Wlodek Tych of the Lancaster Environment
Centre, Lancaster University, UK, who has contributed to much of the underlying research
and in the development of the associated computer algorithms. The first author would also
like to thank Philip Leigh, Matthew Stables, Essam Shaban, Vasileios Exadaktylos, Eleni
Sidiropoulou, Kester Gunn, Philip Cross and David Robertson for their work on some of the
practical examples highlighted in this book, among other contributions and useful discussions
while they studied at Lancaster. Philip Leigh designed and constructed the Lancaster forced

1 MATLAB R©, The MathWorks Inc., Natick, MA, USA.



xiv Preface

ventilation test chamber alluded to in the text. Vasileios Exadaktylos made insightful sugges-
tions and corrections in relation to early draft chapters of the book. The second author is grateful
to a number of colleagues over many years including: Charles Yancey and Larry Levsen, who
worked with him on early research into NMSS control between 1968 and 1970; Jan Willems
who helped with initial theoretical studies on NMSS control in the early 1970s; and Tony
Jakeman who helped to develop the Refined Instrumental Variable (RIV) methods of model
identification and estimation in the late 1970s. We are also grateful to the various research
students at Lancaster who worked on PIP methods during the 1980s and 1990s, including
M.A. Behzadi, Changli Wang, Matthew Lees, Laura Price, Roger Dixon, Paul McKenna and
Andrew McCabe; to Zaid Chalabi, Bernard Bailey and Bill Day, who helped to investigate
the initial PIP controllers for the control of climate in agricultural glasshouses at the Silsoe
Research Institute; and to Daniel Berckmans and his colleagues at the University of Leuven,
who collaborated so much in later research on the PIP regulation of fans for the control of
temperature and humidity in their large experimental chambers at Leuven.

Finally, we would like to express our sincere gratitude to the UK Engineering and Phys-
ical Sciences, Biotechnology and Biological Sciences, and Natural Environmental Research
Councils for their considerable financial support for our research and development studies at
Lancaster University.

C. James Taylor, Peter C. Young and Arun Chotai
Lancaster, UK
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1
Introduction

Until the 1960s, most research on model identification and control system design was con-
centrated on continuous-time (or analogue) systems represented by a set of linear differential
equations. Subsequently, major developments in discrete-time model identification, coupled
with the extraordinary rise in importance of the digital computer, led to an explosion of research
on discrete-time, sampled data systems. In this case, a ‘real-world’ continuous-time system
is controlled or ‘regulated’ using a digital computer, by sampling the continuous-time output,
normally at regular sampling intervals, in order to obtain a discrete-time signal for sampled
data analysis, modelling and Direct Digital Control (DDC). While adaptive control systems,
based directly on such discrete-time models, are now relatively common, many practical con-
trol systems still rely on the ubiquitous ‘two-term’, Proportional-Integral (PI) or ‘three-term’,
Proportional-Integral-Derivative (PID) controllers, with their predominantly continuous-time
heritage. And when such systems, or their more complex relatives, are designed offline, rather
than ‘tuned’ online, the design procedure is often based on traditional continuous-time con-
cepts. The resultant control algorithm is then, rather artificially, ‘digitised’ into an approximate
digital form prior to implementation.
But does this ‘hybrid’ approach to control system design really make sense? Would it

not be both more intellectually satisfying and practically advantageous to evolve a unified,
truly digital approach, which would allow for the full exploitation of discrete-time theory and
digital implementation? In this book, we promote such a philosophy, which we term True
Digital Control (TDC), following from our initial development of the concept in the early
1990s (e.g. Young et al. 1991), as well as its further development and application (e.g. Taylor
et al. 1996a) since then. TDC encompasses the entire design process, from data collection,
data-based model identification and parameter estimation, through to control system design,
robustness evaluation and implementation. The TDC approach rejects the idea that a digital
control system should be initially designed in continuous-time terms. Rather it suggests that
the control systems analyst should consider the design from a digital, sampled-data standpoint
throughout. Of course this does not mean that a continuous-time model plays no part in TDC
design. We believe that an underlying and often physically meaningful continuous-time model
should still play a part in the TDC system synthesis. The designer needs to be assured that the

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 True Digital Control

discrete-time model provides a relevant description of the continuous-time system dynamics
and that the sampling interval is appropriate for control system design purposes. For this
reason, the TDC design procedure includes the data-based identification and estimation of
continuous-time models.
One of the key methodological tools for TDC system design is the idea of a Non-Minimal

State Space (NMSS) form. Indeed, throughout this book, the NMSS concept is utilised as
a unifying framework for generalised digital control system design, with the associated
Proportional-Integral-Plus (PIP) control structure providing the basis for the implementa-
tion of the designs that emanate from NMSS models. The generic foundations of linear state
space control theory that are laid down in early chapters, with NMSS design as the central
worked example, are utilised subsequently to provide a wide ranging introduction to other
selected topics in modern control theory.
We also consider the subject of stochastic system identification, i.e. the estimation of control

models suitable for NMSS design from noisy measured input–output data. Although the cov-
erage of both system identification and control design in this unified manner is rather unusual
in a book such as this, we feel it is essential in order to fully satisfy the TDC design philos-
ophy, as outlined later in this chapter. Furthermore, there are valuable connections between
these disciplines: for example, in identifying a parametrically efficient (or parsimonious)
‘dominant mode’ model of the kind required for control system design; and in quantify-
ing the uncertainty associated with the estimated model for use in closed-loop stochastic
uncertainty and sensitivity analysis, based on procedures such as Monte Carlo Simulation
(MCS) analysis.
This introductory chapter reviews some of the standard terminology and concepts in auto-

matic control, as well as the historical context in which the TDC methodology described in
the present book was developed. Naturally, subjects of particular importance to TDC design
are considered in much more detail later and the main aim here is to provide the reader with
a selective and necessarily brief overview of the control engineering discipline (sections 1.1
and 1.2), before introducing some of the basic concepts behind the NMSS form (section 1.3)
and TDC design (section 1.4). This is followed by an outline of the book (section 1.5) and
concluding remarks (section 1.6).

1.1 Control Engineering and Control Theory

Control engineering is the science of altering the dynamic behaviour of a physical process
in some desired way (Franklin et al. 2006). The scale of the process (or system) in question
may vary from a single component, such as a mass flow valve, through to an industrial
plant or a power station. Modern examples include aircraft flight control systems, car engine
management systems, autonomous robots and even the design of strategies to control carbon
emissions into the atmosphere. The control systems shown in Figure 1.1 highlight essential
terminology and will be referred to over the following few pages.
This book considers the development of digital systems that control the output variables

of a system, denoted by a vector y in Figure 1.1, which are typically positions or levels,
velocities, pressures, torques, temperatures, concentrations, flow rates and other measured
variables. This is achieved by the design of an online control algorithm (i.e. a set of rules
or mathematical equations) that updates the control input variables, denoted by a vector u in
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(a) Open-loop control system

(b) Closed-loop (feedback) control system

(c) Closed-loop (feedback) control system with state estimation

Commands Outputs Inputs 
Controller System 

yuyd

Outputs 

Outputs Commands Inputs 
Controller System 

u yyd

Commands Inputs 
Controller System 

u y

x̂

yd

State Estimator 

Figure 1.1 Three types of control system

Figure 1.1, automatically and without human intervention, in order to achieve some defined
control objectives. These control inputs are so named because they can directly change the
behaviour of the system. Indeed, for modelling purposes, the engineering system under study
is defined by these input and output variables, and the assumed causal dynamic relationships
between them. In practice, the control inputs usually represent a source of energy in the form
of electric current, hydraulic fluid or pneumatic pressure, and so on. In the case of an aircraft,
for example, the control inputs will lead to movement of the ailerons, elevators and fin, in
order to manipulate the attitude of the aircraft during its flight mission. Finally, the command
input variables, denoted by a vector yd in Figure 1.1, define the problem dependent ‘desired’
behaviour of the system: namely, the nature of the short term pitch, roll and yaw of an aircraft
in the local reference frame; and its longer term behaviour, such as the gradual descent of an
aircraft onto the runway, represented by a time-varying altitude trajectory.
Control engineers design the ‘Controller’ in Figure 1.1 on the basis of control system design

theory. This is normally concerned with the mathematical analysis of dynamical systems using
various analytical techniques, often including some formof optimisation over time. In this latter
context, there is a close connection between control theory and the mathematical discipline of
optimisation. In general terms, the elements needed to define a control optimisation problem
are knowledge of: (i) the dynamics of the process; (ii) the system variables that are observable
at a given time; and (iii) an optimisation criterion of some type.
A well-known general approach to the optimal control of dynamic systems is ‘dynamic

programming’ evolved by Richard Bellman (1957). The solution of the associated Hamilton–
Jacobi–Bellman equation is often very difficult or impossible for nonlinear systems but it is
feasible in the case of linear systems optimised in relation to quadratic cost functions with
quadratic constraints (see later and Appendix A, section A.9), where the solution is a ‘linear
feedback control’ law (see e.g. Bryson and Ho 1969). The best-known approaches of this type
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Figure 1.2 The archetypal negative feedback system

are the Linear-Quadratic (LQ) method for deterministic systems; and the Linear-Quadratic-
Gaussian (LQG) method for uncertain stochastic systems affected by noise. Here the system
relations are linear, the cost is quadratic and the noise affecting the system is assumed to
have a Gaussian, ‘normal’ amplitude distribution. LQ and LQG optimal feedback control are
particularly important because they have a complete and rigorous theoretical background,
while at the same time introduce key concepts in control, such as ‘feedback’, ‘controllability’,
‘observability’ and ‘stability’ (see later).
Figure 1.1b and Figure 1.1c show two examples of such closed-loop feedback control. These

are in contrast to the open-loop formulation of Figure 1.1a, where, given advanced knowledge
of yd , a sequence of decisions u could be determined offline, i.e. there is no feedback. The
potential advantages of closed-loop feedback control are revealed by Figure 1.2, where a
single-input, single-output (SISO) system is denoted by G and k is a simple feedback control
gain (that is adjusted by the control systems designer).
It is easy to see that y = k G e, where e = yd − y is the error between the desired output

and the actual output, so that after a little manipulation,

y = k G
1+ k G

yd (1.1)

This is a fundamental relationship in feedback control theory and we see that if k G � 1
and provided the closed-loop system remains stable, then the ratio k G/(1+ k G) approaches
unity and the control objective y = yd is achieved, regardless of the system G. Of course,
this is a very simplistic way of looking at closed-loop control and ensuring that the gain k is
selected so that stability is maintained and the objective is achieved, can be a far from simple
problem. Nevertheless, this kind of thinking, followed in a more rigorous fashion, shows
that the main advantages of a well designed closed-loop control system include: improved
transient response; decreased sensitivity to uncertainty in the system (such as modelling
errors); decreased sensitivity to disturbances that may affect the system and tend to drive it
away from the desired state; and the stabilisation of an inherently unstable system.One property
that the high gain control of equation (1.1) does not achieve is the complete elimination of
steady-state errors between y and yd , which only occurs when the gain k is infinite, unless the
system G has special properties. But we will have more to say about this later in the chapter.
The disadvantage of a closed-loop system is that it may be more difficult to design because

it has to maintain a good and stable response by taking into account the potentially complex
manner in which the dynamic system and its normally dynamic controller interact within the
closed-loop. And it may be more difficult (and hence more expensive) to implement because
it requires sensors to accurately measure the output variables, as well as the construction of
either analogue or digital controller mechanisms. Control system design theory may also have
to account for the uncertain or ‘stochastic’ aspects of the system and its environment, so that
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key variables may be unknown or imperfectly observed. This aspect of the problem is implied
by Figure 1.1c, in which an ‘observer’ or ‘state estimator’ is used to estimate the system state
x from the available, and probably noisy, measurements y. However, in order to introduce the
concept of the system state, we need to return to the beginnings of control theory.

1.2 Classical and Modern Control

The mathematical study of feedback dynamics can be traced back to the nineteenth century,
with the analysis of the stability of control systems using differential equations. James Clerk
Maxwell’s famous paper On Governors1, for example, appeared in 1868 and the stability
criteria introduced by Routh in 1877 (Routh 1877) are still commonly taught in undergraduate
control courses. With the development of long distance telephony in the 1920s, the problem
of signal distortion arose because of nonlinearities in the vacuum tubes used in electronic
amplifiers. With a feedback amplifier, this distortion was reduced. Communications engineers
at Bell Telephone Laboratories developed graphical methods for analysing the stability of
such feedback amplifiers, based on their frequency response and the mathematics of complex
variables. In particular, the approaches described by Nyquist (1932) and Bode (1940) are still
in common usage.
The graphical ‘Root Locus’ method for computing the controller parameters was introduced

a few years later by Evans (1948). While working on the control and guidance of aircraft, he
developed rules for plotting the changing position of the roots of the closed-loop characteristic
equation as a control gain is modified. As we shall see in Chapter 2, such roots, or closed-loop
poles, define the stability of the control system and, to a large extent, the transient response
characteristics. This root locus approach to control system design became extremely popular.
In fact, the very first control systems analysis carried out by the second author in 1960, when he
was an apprentice in the aircraft industry, was to use the device called a ‘spirule’ to manually
plot root loci: how times have changed! Not surprisingly, numerous textbooks were published
over this era: typical ones that provide a good background to the methods of analysis used at
this time and since are James et al. (1947) and Brown and Campbell (1948).
However, new developments were on the way. Influenced by the earlier work of Hall

(1943), Wiener (1949) and Bode and Shannon (1950), Truxal (1955) discusses an optimal
‘least squares’ approach to control system design in chapters 7 and 8 of his excellent book
Control System Synthesis; while the influential book Analytical Design of Linear Feedback
Controls, published in 1957 by Newton et al., built a bridge to what is still known as ‘Modern
Control’, despite its origins over half a century ago.
In contrast to classical control, modern control system design methods are usually derived

from precise algorithmic computations based on a ‘state space’ description of a dynamic
system, often involving optimisation of some kind. Here, the ‘minimal’ linear state space
model of a dynamic system described by an nth order differential equation is a set of n,
linked, first order differential equations that describe the dynamic evolution of n associated
‘state variables’ in response to the specified inputs. And the output of the system is defined
as a linear combination of these state variables. For any nth order differential equation that
describes the input–output behaviour of this system, the definition of these state variables is

1 See http://rspl.royalsocietypublishing.org/content/16/270.full.pdf.
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not unique and different sets of state variables in the state vector can be defined which yield
the same input–output behaviour. Moreover, the state variables for any particular realisation
often have some physical interpretation: for instance, in the case of mechanical systems, the
states are often defined to represent physical characteristics, such as the positions, velocities
and accelerations of a moving body.
Conveniently, the state equations can be represented in the following vector-matrix form,

with the state variables forming an n × 1 ‘state vector’ x, in either continuous- or discrete-time,
i.e.

Continuous-time:

ẋ(t) = Ax(t)+ Bu(t)
(

ẋ(t) = dx(t)
dt

)

y(t) = Cx(t)

(1.2)

Discrete-time:

x(k + 1) = Ax(k)+ Bu(k)

y(k) = Cx(k)
(1.3)

Referring to Appendix A for the vector-matrix nomenclature, x = [x1 x2 . . . xn]T is the
n × 1 state vector; y = [y1 y2 . . . yp]T is the p × 1 output vector, where p ≤ n; and
u = [u1 u2 . . . uq ]T is the q × 1 input vector (Figure 1.1).
Here, A, B and C are constant matrices with appropriate dimensions. The argument t

implies a continuous-time signal; whilst k indicates that the associated variable is sampled
with a uniform sampling interval of �t , so that at the kth sampling instant, the time t = k�t .
Using the state space model (1.2) or (1.3), control system synthesis is carried out based on the
concept of State Variable Feedback (SVF). Here, the SVF control law is simply u = −K x,
in which K is a q × n matrix of control gains; and the roots of the closed-loop characteristic
polynomial det(λI − A + B K ), can be arbitrarily assigned if and only if the system (1.2)
or (1.3) is ‘controllable’ (see Chapter 3 for details). In this case, it can be shown that the
closed-loop system poles can be assigned to desirable locations on the complex plane. This
is, of course, a very powerful result since, as pointed out previously, the poles determine the
stability and transient response characteristics of the control system.
This elegant state space approach to control systems analysis and designwas pioneered at the

beginning of the 1960s, particularly by Rudolf Kalman who, in one year, wrote three seminal
and enormously influential papers: ‘Contributions to the theory of optimal control’ (1960a2);
‘A new approach to linear filtering and prediction problems’ (1960b), which was concerned
with discrete-time systems; and ‘The theory of optimal control and the calculus of variations’
(Report 1960c; published 1963). And then, in the next year, together with Richard Bucy, he
published ‘New results in linear filtering and prediction theory’ (1961), which provided the
continuous-time equivalent of the 1960b paper. The first paper deals with LQ feedback control,
as mentioned above; while the second and fourth ‘Kalman Filter’ papers develop recursive

2 This is not available from the source but can be accessed at: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.26.4070.
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(sequentially updated) algorithms for generating the optimal estimate x̂ of the state vector x in
equation (1.3) and equation (1.2), respectively. Here, the design of the optimal deterministic LQ
control system and the optimal state estimation algorithm are carried out separately and then,
invoking the ‘separation’ or ‘certainty equivalence’ principle (see e.g. Joseph and Tau 1961;
Wonham 1968), they are combined to produce the optimal LQG stochastic feedback control
system. In other words, the discrete or continuous-time Kalman Filter is used to estimate or
‘reconstruct’ the state variables from the available input and noisy output measurements; and
then these estimated state variables are used in place of the unobserved state variables in the
linear SVF control law: i.e. u = −K x̂ (Figure 1.1c).
Despite their undoubted power and elegance, these modern control system design methods,

as initially conceived by Kalman and others, were not a panacea and there were critics, even at
the theoretical level. For instance Rosenbrock andMcMorran (1971) in their paper ‘Good, bad
or optimal?’ drew attention to the excessive bandwidth and poor robustness of the LQ-type
controller. And in 1972, the second author of the present book and Jan Willems, noted that
the standard LQ controller was only a ‘regulator’: it lacked the integral action required for the
kind of Type 1 ‘servomechanism’ performance demanded by most practical control system
designers, namely zero steady-state error to constant command inputs. As we shall see later,
the solution to this limitation prompted the development, in the 1980s, of the NMSS-PIP
design methodology discussed in this book.
As a result of these and other limitations of LQG control, not the least being its relative

complexity, it was the much simpler, often manually tuned PI and PID algorithms that became
established as the standard approaches to control system design. Indeed, all of the classical
methods mentioned above still have their place in control systems analysis today and involve
the analysis of either continuous or discrete-time Transfer Function (TF) models (Chapter 2),
often exploiting graphical methods of some type (see recent texts such as Franklin et al. 2006,
pp. 230–313 and Dorf and Bishop 2008, pp. 407–492). But ‘modern’ control systems theory
has marched on regardless. For instance, the lack of robustness of LQG designs has led to
other, related approaches, as when the H2 norm that characterises LQ and LQG optimisation
is replaced by the H∞ norm (see e.g. Zames 1981; Green and Limebeer 1995; Grimble 2006).
These robust design methods can be considered in the time or frequency domains and have
the virtue that classical design intuition can be used in the design process. An equivalent,
‘risk sensitive’ approach is ‘exponential-of-quadratic’ optimisation, where the cost function
involves the expectation of the exponential of the standard LQ and LQGcriteria (Whittle 1990).
This latter approach has been considered within a NMSS context by the present authors: see
Chapter 6.
The NMSS-PIP control system design methodology has been developed specifically to

avoid the limitations of standard LQ and LQG design. Rather than considering robust control
in analytical terms by modifying the criterion function, the minimal state space model on
which the LQ and LQG design is conventionally based is modified so that state estimation, as
such, is eliminated by making all of the state variables available for direct measurement. As we
shall see in section 1.3, this is achieved by considering a particular NMSS model form that is
linked directly with the discrete-time TF model of the system, with the state variables defined
as the present and stored past variables that appear in the discrete-time equation associated
with this TF model. In this manner, the SVF control law u = −K x can be implemented
directly using these measured input and output measurements as state variables, rather than
indirectly using u = −K x̂, with its requirement for estimating the state variables and invoking
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the separation principle. As this book will demonstrate, the resulting PIP control system is
not only easier to implement, it is also inherently more robust. Moreover, it can be interpreted
in terms of feedback and forward path control filters that resemble those used in previous
classical designs. In a very real sense, therefore, its heritage is in both classical and modern
control system synthesis.
Finally, any model-based control system design requires a suitable mathematical represen-

tation of the system. Sometimes this may be in the form of a simulation model that has been
based on a mechanistic analysis of the system and has been ‘calibrated’ in some manner. How-
ever, in the present TDC context, it seems more appropriate if the model has been obtained
by statistical identification and estimation, on the basis of either experimental or monitored
sampled data obtained directly from measurements made on the system. In the present book,
this task is considered in a manner that can be linked with the Kalman Filter (Young 2010),
but where it is the parameters in the model, rather than the state variables, that are estimated
recursively. Indeed, early publications (see e.g. Young 1984 and the prior references therein)
pointed out that the Kalman Filter represents a rediscovery, albeit in more sophisticated form,
of theRecursive Least Squares (RLS) estimation algorithm developed byKarl FriedrichGauss,
sometime before 1826 (see Appendix A in Young 1984 or Young 2011, where the original
Gauss analysis is interpreted in vector-matrix terms).
Chapter 8 in the present book utilises RLS as the starting point for an introduction to the

optimal Refined Instrumental Variable (RIV) method for statistically identifying the structure
of a discrete or continuous-time TF model and estimating the parameters that characterise
this structure. Here, an optimal instrumental variable approach is used because it is relatively
robust to the contravention of the assumptions about the noise contamination that affects
any real system. In particular, while RIV estimation yields statistically consistent and efficient
(minimum variance) parameter estimates if the additive noise has the required rational spectral
density and a Gaussian amplitude distribution, it produces consistent, asymptotically unbiased
and often relatively efficient estimates, even if these assumptions are not satisfied. This RIV
method can also be used to obtain reduced order ‘dominant mode’ control models from large
computer simulation models; and it can identify and estimate continuous-time models that
provide a useful link with classical methodology and help in defining an appropriate sampling
strategy for the digital control system.

1.3 The Evolution of the NMSS Model Form

The NMSS representation of the model is central to TDC system design. In more general
terms, the state space formulation of control system design is the most natural and convenient
approach for use with computers. It allows for a unified treatment of both SISO and multivari-
able systems, as well as for the implementation of the state variable feedback control designs
mentioned above, which can include pole assignment, as well as optimal and robust control.
Unfortunately, the standard minimal state space approach has three major difficulties. First, as
pointed out in section 1.2, the required state vector is not normally available for direct mea-
surement. Secondly, the parameterisation is not unique: for any input–output TF model, there
are an infinite number of possible state-space forms, depending on the definition of the state
variables. Thirdly, the number of parameters in an n-dimensional state space model is much
higher than that in an equivalent TF model: e.g. a SISO system with an nth order denominator,
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mth order numerator and a one sample time delay has n + m parameters; while the equivalent
state space model can have up to n2 + n parameters. The first problem has motivated the use
of state variable estimation and reconstruction algorithms, notably the Kalman Filter (Kalman
1960b, 1961) for stochastic systems, as mentioned in section 1.2 and the Luenberger observer
(Luenberger 1967, 1971) for deterministic systems. The second and third problems have led
to a reconsideration of the state-space formulation to see if the uniqueness and parametric
efficiency of the TF can be reproduced in some manner within a state space context.
The first movements in this direction came in the 1960s, when it was realised that it was

useful to extend the standard minimal state space form to a non-minimal form that contained
additional state variables; in particular, state variables that could prove advantageous in control
system design. For example, as pointed out previously, Young and Willems (1972) showed
how an ‘integral-of-error’ state variable, defined as the integral of the error between a defined
reference or command input yd and the measured output of the system y, could be appended
to an otherwise standard minimal state vector. The advantage of this simple modification is
that a state variable feedback control law then incorporates this additional state, so adding
‘integral-of-error’ feedback and ensuring inherent Type 1 servomechanism performance, i.e.
zero steady-state error to constant inputs, provided only that the closed-loop system remains
stable. Indeed, in the 1960s, the present second author utilised this approach in the design of
an adaptive autostabilisation system for airborne vehicles (as published later in Young 1981)
and showed how Type 1 performance was maintained even when the system was undergoing
considerable changes in its dynamic behaviour.
In the early 1980s, the realisation that NMSS models could form the basis for SVF control

system design raised questions about whether there was a NMSS form that had a more
transparent link with the TF model than the ‘canonical’, minimal state space forms that had
been suggested up to this time. More particularly, was it possible to formulate a discrete-time
state space model whose state variables were the present and past sampled inputs and outputs
of the system that are associated directly with the discrete-time dynamic equation on which
the TF model is based? In other words, the NMSS state vector x(k) for a SISO system would
be of the form:

x(k) = [y(k) y(k − 1) . . . y(k − n + 1) u(k − 1) u(k − 2) . . . u(k − m + 1)]T (1.4)

where y(k) is the output at sampling instant k; u(k) is the input at the same sampling instant;
n and m are integers representing the order of the TF model polynomials (see Chapter 2).
Here, the order n + m − 1 of the associated state space model is significantly greater than the
order n of a conventional minimal state space model (see Chapters 3 and 4 for details). Such
a NMSS model would allow the control system to be implemented straightforwardly as a full
state feedback controller, without resort to state reconstruction, thus simplifying the design
process and making it more robust to the inevitable model uncertainty.
A NMSS model based on the state vector (1.4) was suggested by Hesketh (1982) within

a pole assignment control context. This ‘regulator’ form of the NMSS model is discussed in
Chapter 4, where the term ‘regulator’ is used because the model is only really appropriate
to the situation where the command inputs are zero (or fixed at constant values, in which
case the model describes the perturbations about these constant levels). The purpose of the
control system is then to ‘regulate’ the system behaviour by restoring it to the desired state, as
defined by the command inputs, following any disturbance. In particular, it does not include
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any inherent integral action that will ensure Type 1 servomechanism performance and the
ability to ‘track’ command input changes, with zero steady-state error, when the command
input remains constant for some time period greater that the settling time of the closed-loop
system.
Fortunately, following the ideas in Young and Willems (1972) mentioned above, an alterna-

tive ‘servomechanism’ NMSS model can be defined straightforwardly by extending the state
vector in (1.4) to include an integral-of-error state, i.e. again in the SISO case,

x(k) = [y(k) y(k − 1) . . . y(k − n + 1) u(k − 1) u(k − 2) . . . u(k − m + 1) z(k)]T (1.5)

where, in this discrete-time setting, the integral-of-error state variable is defined by the fol-
lowing discrete-time integrator (summer),

z(k) = z(k − 1)+ (yd (k)− y(k)) (1.6)

and yd (k) is the control system command input. This NMSS form, which was first introduced
and used for control system design by Young et al. (1987) and Wang and Young (1988), is
discussed in Chapter 5 and it constitutes the main NMSS description used in the present book.
Indeed, as this book shows, the NMSS model provides the most ‘natural’ and transparent state
space description of the discrete-time TF model as required for control system design (Taylor
et al. 2000a). State variable feedback control system design based on this NMSS model yields
what we have termed Proportional-Integral-Plus (PIP) control algorithms since they provide
logical successors to the PI and PID controllers that, as mentioned previously in section 1.2,
have dominated control applications for so long. Here, the ‘plus’ refers to the situation with
systems of second and higher order, or systems with pure time delays, where the additional
delayed output and input variables appearing in the non-minimal state vector (1.5), lead to
additional feedback and forward path control filters that can be interpreted in various ways,
including the implicit introduction of first and higher order derivative action (see Chapter 5
and Appendix D for details).
As this book explains, the servomechanism NMSS model provides a very flexible basis for

control system design. For example, the state vector is readily extended to account for the
availability of additional measured or estimated information, and these additional states can be
utilised to develop more sophisticated NMSS model structures and related control algorithms
(see Chapter 6 and Chapter 7). Also, the PIP algorithm is quite general in form and resembles
various other digital control systems developed previously, as well as various novel forms,
including: feedback and forward path structures, incremental forms and the Smith Predictor
for time-delay systems (Taylor et al. 1998a); stochastic optimal and risk sensitive control
(Taylor et al. 1996b); feed-forward control (Young et al. 1994); generalised predictive control
(Taylor et al. 1994, 2000a); multivariable control (Taylor et al. 2000b); and state-dependent
parameter, nonlinear control (see e.g. Taylor et al. 2009, 2011 and the references therein).
The multivariable extensions are particularly valuable because they allow for the design of
full multi-input, multi-output control structures, where control system requirements, such as
channel decoupling and multi-objective optimisation, can be realised.
Of course, a control system is intended for practical application and this book will only

succeed if it persuades the reader to utilise PIP control systems in such applications. In this
regard, its application record and potential is high: in the 25 years that have passed since
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the seminal papers on the servomechanism NMSS model and PIP control were published,
the methodology has been extended and applied to numerous systems from the nutrient-
film (hydroponic) control of plant growth (e.g. Behzadi et al. 1985); through various other
agricultural (e.g. Lees et al. 1996, 1998; Taylor et al. 2000c, 2004a, 2004b; Stables and Taylor
2006), benchmark simulation, laboratory and industrial applications (e.g. Chotai et al. 1991;
Fletcher et al. 1994; Taylor et al. 1996a, 1998b, 2004c, 2007; Seward et al. 1997; Ghavipanjeh
et al. 2001; Quanten et al. 2003; Gu et al. 2004; Taylor and Shaban 2006; Taylor and Seward
2010; Shaban et al. 2008); and even to the design of emission strategies for the control of
atmospheric carbon dioxide in connection with climate change (Young 2006; Jarvis et al. 2008,
2009). And all such applications have been guided by the underlying TDC design philosophy
outlined in the next subsection.

1.4 True Digital Control

In brief, the TDC design procedure consists of the following three steps:

1. Identification and recursive estimation of discrete and continuous-time models based on
the analysis of either planned or monitored experimental data, or via model reduction from
data generated by a physically based (mechanistic) simulation model.

2. Offline TDC system design and initial evaluation based on the models from step 1, using
an iterative application of an appropriate discrete-time design methodology, coupled with
closed-loop sensitivity analysis based on MCS.

3. Implementation, testing and evaluation of the control system on the real process: in the
case of self-tuning or self-adaptive control, employing online versions of the recursive
estimation algorithms from step 1.

Step 1 above is concerned with stochastic system identification and estimation, i.e. the
identification of the control model structure and estimation of the parameters that characterise
this structure from the measured input–output data. In the present book, this will normally
involve initial identification and estimation of TF models on which the NMSS model form,
as required for PIP control system design, is based. It may also involve the identification
and estimation of continuous-time models that allow for the direct evaluation of the model in
physicallymeaningful terms, aswell as the evaluation of different sampling strategies.Here, the
continuous-time model, whose parameter estimates are not dependent on the sampling interval
unless this is very coarse, can be converted easily (for example using the c2d conversion routine
available in MATLAB R©3) to discrete-time models defined at different sampling intervals,
which can then be evaluated in control system terms in order to define the most suitable
sampling frequency.
In step 2, the stochastic models also provide a useful means of assessing the robustness of the

TDC designs to the uncertainty in the model parameters, as estimated in step 1 (see e.g. Taylor
et al. 2001). However, if experimental data are unavailable, the models are instead obtained
from a conventional, usually continuous-time and physically based, simulation model of the
system (assuming that such a model is available or can be built). In this case, the identification

3 MATLAB R©, The MathWorks Inc., Natick, MA, USA.
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step addresses the combined problem of model reduction and linearisation, and forms the
connection between the TDC approach and classical mechanistic control engineeringmethods.
Step 3 is, of course, very problem dependent and it is not possible to generalise the approach

that will be used. Implementation will depend on the prevailing conditions and technical
aspects associated with specific case studies. We hope, therefore, that the various examples
discussed in later chapters, together with other examples available in the cited references, will
be sufficient to provide some insight into the practical implementation of TDC systems.

1.5 Book Outline

Starting with the ubiquitous PI control structure as a worked example, and briefly introducing
essential concepts such as the backward shift operator z−1, we try to make as few prerequisite
assumptions about the reader as possible. Over the first few chapters, generic concepts of
state variable feedback are introduced, in what we believe is a particularly intuitive manner
(although clearly the reader will be the judge of this), largely based on block diagram analysis
and straightforward algebraic manipulation. Conventional minimal state space models, based
on selected canonical forms, are considered first, before the text moves onto the non-minimal
approach.
More specifically, the book is organised as follows:

• In Chapter 2, we introduce the general discrete-time TF model, define the poles of the
system and consider its stability properties. Here, as in Chapters 3–6, the analysis is based
on this SISOmodel. Some useful rules of block diagram analysis are reviewed and these are
the utilised to develop three basic, discrete-time control algorithms. The limitations of these
simple control structures are then discussed, thereby providing motivation for subsequent
chapters.

• Chapter 3 considers minimal state space representations of the TF model and shows how
these may be employed in the design of state variable feedback control systems. Two
particularly well-known representations of this minimal type are considered, namely the
controllable canonical form and the observable canonical form. These are then used to
illustrate the important concepts of controllability and observability.

• We start Chapter 4 by defining the regulator NMSS form, i.e. for a control system in
which the command input yd = 0 (Figure 1.1). Once the controllability conditions have
been established, the non-minimal controller can be implemented straightforwardly. The
final sections of the chapter elaborate on the relationship between non-minimal and minimal
state variable feedback, while the theoretical and practical advantages of the non-minimal
approach are illustrated by worked examples.

• Chapter 5 develops the complete version of the NMSS-PIP control algorithm for SISO
systems. Most importantly and in contrast to Chapter 4, an integral-of-error state variable
(1.6) is introduced into the NMSS form to ensure Type 1 servomechanism performance, i.e.
if the closed-loop system is stable, the output will converge asymptotically to a constant
scalar command input yd specified by the user. Two main design approaches are considered:
pole assignment and optimal LQ control.

• In Chapter 6, we extend the NMSS vector in various ways to develop generalised linear
PIP controllers. The robustness and disturbance response characteristics of the main control
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structures that emerge from this analysis are considered, including incremental forms for
practical implementation, the Smith Predictor for time-delay systems, stochastic optimal
design, feed-forward control and predictive control.

• Chapter 7 is important in practical terms because it considers the full NMSS-PIP control
system design approach for more complex multivariable systems of the kind that are likely
to be encountered in practical applications. Here, the system is characterised by multiple
command and control inputs that affect the state and output variables in a potentially
complicated and cross-coupled manner. Two design approaches are discussed: optimal
LQ with multi-objective optimisation; and a combined multivariable decoupling and pole
assignment algorithm. These can be contrasted with the classical ‘multichannel’ approach
to design in which each channel of the system, between a command input and its associated
output, is often designed separately and ‘tuned’ to achieve reasonable multivariable control
and cross-coupling.

• Chapter 8 provides a review of data-based modelling methods and illustrates, by means of
simulation and practical examples, how the optimal RIVmethods of statistical identification
and estimation are able to provide the TF models utilised in previous chapters (including
both SISO and multivariable). We also demonstrate how these stochastic models provide a
useful means of assessing the robustness of the NMSS designs to uncertainty in the model
parameters. In order to help connect with classical methods for modelling in engineering
and also allow for the appropriate selection of the sampling interval �t , both discrete-time
and continuous-time estimation algorithms are considered.

• Chapter 9 considers several additional topics that are not central to TDC design but could
have increased relevance in future design studies. These include control system design for
rapidly sampled systems using δ-operator models (Middleton and Goodwin 1990); and
nonlinear NMSS control system design using Time-Variable (TVP) and State-Dependent
(SDP) parameter models.

• Finally,Appendix A revises matrices and the essentials of matrix algebra, as used at various
points in the text. The other appendices cover supplementary topics, such as selected theorem
proofs, and are cited in the main text where appropriate.

These chapters blend together, in a systematic and we hope readable manner, the various
theoretical and applied research contributions made by the authors and others into all aspects
of TDC system design over the past half century. This allows for greater integration of the
methodology, as well as providing substantially more background detail and examples than
the associated academic articles have been able to do.

1.6 Concluding Remarks

The present book, taken as a whole, aims to provide a generalised introduction to TDC
methods, including both NMSS design of PIP control systems, and procedures for the data-
based identification and estimation of the dynamicmodels required to define theNMSS form. In
this initial chapter, we have both introduced the TDC design philosophy, drawing a distinction
between it and Direct Digital Control, and reviewed the historical context in which TDC and
its associated methodological underpinning have been developed. In TDC design, all aspects
of the control system design procedure are overtly digital by nature, with continuous-time
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concepts introduced only where they are essential for the purposes of describing, simulating
and understanding the process in physically meaningful terms; or for making decisions about
digitally related aspects, such as the most appropriate sampling strategies. We believe that
the approach we have used for the development of the NMSS form and the associated PIP
class of control systems provides a relatively gentle learning curve for the reader, from which
potentially difficult topics, such as stochastic and multivariable control, can be introduced and
assimilated in an interesting and straightforward manner.

References

Behzadi, M.A., Young, P.C., Chotai, A. and Davies, P. (1985) The modelling and control of nutrient film systems. In
J.A. Clark (Ed.), Computer Applications in Agricultural Environments, Butterworth, London, Chapter 2.

Bellman, R. (1957) Dynamic Programming, Princeton University Press, Princeton, NJ.
Bode, H.W. (1940) Feedback amplifier design, Bell Systems Technical Journal, 19, p. 42.
Bode, H.W. and Shannon, C.E. (1950) A Simplified derivation of linear least–squares smoothing and prediction
theory, Proceedinqs IRE, 38, pp. 417–425.

Brown, G.S. and Campbell, D.P. (1948)Principles of Servomechanisms, JohnWiley&Sons, Ltd, NewYork; Chapman
and Hall, London.

Bryson, A.E. and Ho, Y.C. (1969) Applied Optimal Control, Blaisdell, Waltham, MA.
Chotai, A., Young, P.C. and Behzadi, M.A. (1991) Self-adaptive design of a non-linear temperature control system,
special issue on self-tuning control, IEE Proceedings: Control Theory and Applications, 38, pp. 41–49.

Dorf, R.C. and Bishop, R.H. (2008)Modern Control Systems, Eleventh Edition, Pearson Prentice Hall, Upper Saddle
River, NJ.

Evans, W.R. (1948) Analysis of Control Systems, AIEE Transactions, 67, pp. 547–551.
Fletcher, I., Wilson, I. and Cox, C.S. (1994) A comparison of some multivariable design techniques using a coupled
tanks experiment. In R. Whalley (Ed.), Application of Multivariable System Techniques, Mechanical Engineering
Publications Limited, London, pp. 49–60.

Franklin, G.F., Powell, J.D. and Emami-Naeini, A. (2006) Feedback Control of Dynamic Systems, Fifth Edition,
Pearson Prentice Hall, Upper Saddle River, NJ.

Ghavipanjeh, F., Taylor, C.J., Young, P.C. and Chotai, A. (2001) Data-based modelling and proportional integral plus
(PIP) control of nitrate in an activated sludge benchmark. Water Science and Technology, 44, pp. 87–94.

Green, M. and Limebeer, D. (1995), Linear Robust Control, Prentice Hall, London.
Grimble, M. (2006) Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems, John
Wiley & Sons, Ltd, Chichester.

Gu, J., Taylor, C.J. and Seward, D. (2004) Proportional-Integral-Plus control of an intelligent excavator, Journal of
Computer-Aided Civil and Infrastructure Engineering, 19, pp. 16–27.

Hall, A.C. (1943) The Analysis and Synthesis of Linear Servomechanisms, The Technology Press, MIT, Cambridge,
MA.

Hesketh, T. (1982) State-space pole-placing self-tuning regulator using input–output values, IEE Proceedings: Control
Theory and Applications, 129, pp. 123–128.

James, H.M., Nichols, N.B. and Phillips, R.S. (1947) Theory of Servomechanisms, volume 25 of MIT Radiation
Laboratory Series, McGraw-Hill, New York.

Jarvis, A., Leedal, D., Taylor, C.J. and Young, P. (2009) Stabilizing global mean surface temperature: a feedback
control perspective, Environmental Modelling and Software, 24, pp. 665–674.

Jarvis, A.J., Young, P.C., Leedal, D.T. and Chotai, A. (2008) A robust sequential emissions strategy based on optimal
control of atmospheric concentrations, Climate Change, 86, pp. 357–373.

Joseph, P.D. and Tau, J.T. (1961) On linear control theory, Transactions of the American Institute of Electrical
Engineers, 80, pp. 193–196.

Kalman, R.E. (1960a) Contributions to the theory of optimal control, Boletin de la Sociedad Matematica Mexicana,
5, pp. 102–119 (http://garfield.library.upenn.edu/classics1979/A1979HE37100001.pdf).

Kalman, R.E. (1960b) A new approach to linear filtering and prediction problems, ASME Journal Basic Engineering,
82, pp. 34–45.



Introduction 15

Kalman, R.E. (1960c) The Theory of Optimal Control and the Calculus of Variations. RIAS Technical Report, Defense
Technical Information Center, Baltimore Research Institute for Advanced Studies.

Kalman, R.E. (1963) The theory of optimal control and the calculus of variations. In R.E. Bellman (Ed.),Mathematical
Optimization Techniques, University of California Press, Berkley, Chapter 16.

Kalman, R.E. and Bucy, R.S. (1961) New results in linear filtering and prediction theory. Transactions of the American
Society of Mechanical Engineers, Journal of Basic Engineering, 83, pp. 95–108.

Lees,M.J., Taylor, C.J., Chotai,A.,Young, P.C., andChalabi, Z.S. (1996)Design and implementation of a Proportional-
Integral-Plus (PIP) control system for temperature, humidity, and carbon dioxide in a glasshouse, Acta Horticul-
turae (ISHS), 406, pp. 115–124.

Lees, M.J., Taylor, C.J., Young, P.C. and Chotai, A. (1998) Modelling and PIP control design for open top chambers,
Control Engineering Practice, 6, pp. 1209–1216.

Luenberger, D.G. (1967) Canonical forms for linear multivariable systems, IEEE Transactions on Automatic Control,
12, pp. 290–293.

Luenberger, D.G. (1971) An introduction to observers, IEEE Transactions on Automatic Control, 16, pp. 596–603.
Newton, G.C., Gould, L.C. and Kaiser, J.F. (1957) Analytical Design of Linear Feedback Controls, John Wiley &
Sons, Ltd, New York.

Middleton, R.H. and Goodwin, G.C. (1990) Digital Control and Estimation – A Unified Approach, Prentice Hall,
Englewood Cliffs, NJ.

Nyquist, H. (1932) Regeneration theory, Bell Systems Technical Journal, 11, pp. 126–147.
Quanten, S., McKenna, P., Van Brecht, A., Van Hirtum, A., Young, P.C., Janssens, K. and Berckmans, D. (2003)
Model-based PIP control of the spatial temperature distribution in cars, International Journal of Control, 76,
pp. 1628–1634.

Rosenbrock, H. and McMorran, P. (1971) Good, bad, or optimal? IEEE Transactions on Automatic Control, 16,
pp. 552–554.

Routh, E.J. (1877) A Treatise on the Stability of a Given State of Motion, Macmillan, London.
Seward, D.W., Scott, J.N., Dixon, R., Findlay, J.D. and Kinniburgh, H. (1997) The automation of piling rig positioning
using satellite GPS, Automation in Construction, 6, pp. 229–240.

Shaban, E.M., Ako, S., Taylor, C.J. and Seward, D.W. (2008) Development of an automated verticality alignment
system for a vibro-lance, Automation in Construction, 17, pp. 645–655.

Stables, M.A. and Taylor, C.J. (2006) Nonlinear control of ventilation rate using state dependent parameter models,
Biosystems Engineering, 95, pp. 7–18.

Taylor, C.J., Chotai, A. and Burnham, K.J. (2011) Controllable forms for stabilising pole assignment design of
generalised bilinear systems, Electronics Letters, 47, pp. 437–439.

Taylor, C.J., Chotai, A. and Young, P.C. (1998a) Proportional-Integral-Plus (PIP) control of time delay systems,
IMECHE Proceedings: Journal of Systems and Control Engineering, 212, pp. 37–48.

Taylor, C.J., Chotai, A. andYoung, P.C. (2000a) State space control system design based on non-minimal state-variable
feedback: further generalisation and unification results, International Journal of Control, 73, pp. 1329–1345.

Taylor, C.J., Chotai, A. and Young, P.C. (2001) Design and application of PIP controllers: robust control of the
IFAC93 benchmark, Transactions of the Institute of Measurement and Control, 23, pp. 183–200.

Taylor, C.J., Chotai, A. and Young, P.C. (2009) Nonlinear control by input–output state variable feedback pole
assignment, International Journal of Control, 82, pp. 1029–1044.

Taylor, C.J., Lees, M.J., Young, P.C. andMinchin, P.E.H. (1996a) True digital control of carbon dioxide in agricultural
crop growth experiments, International Federation of Automatic Control 13th Triennial World Congress (IFAC-
96), 30 June–5 July, San Francisco, USA, Elsevier, Vol. B, pp. 405–410.

Taylor, C.J., Leigh, P.A., Chotai, A., Young, P.C., Vranken, E. and Berckmans, D. (2004a) Cost effective combined
axial fan and throttling valve control of ventilation rate, IEE Proceedings: Control Theory and Applications, 151,
pp. 577–584.

Taylor, C.J., Leigh, P., Price, L., Young, P.C., Berckmans, D. and Vranken, E. (2004b) Proportional-Integral-Plus
(PIP) control of ventilation rate in agricultural buildings, Control Engineering Practice, 12, pp. 225–233.

Taylor, C.J., McCabe, A.P., Young, P.C. and Chotai, A. (2000b) Proportional-Integral-Plus (PIP) control of the
ALSTOM gasifier problem, IMECHE Proceedings: Journal of Systems and Control Engineering, 214, pp. 469–
480.

Taylor, C.J., McKenna, P.G., Young, P.C., Chotai, A. and Mackinnon, M. (2004c) Macroscopic traffic flow mod-
elling and ramp metering control using Matlab/Simulink, Environmental Modelling and Software, 19, pp. 975–
988.



16 True Digital Control

Taylor, J. and Seward, D. (2010) Control of a dual-arm robotic manipulator, Nuclear Engineering International, 55,
pp. 24–26.

Taylor, C.J. and Shaban, E.M. (2006)Multivariable Proportional-Integral-Plus (PIP) control of theALSTOMnonlinear
gasifier simulation, IEE Proceedings: Control Theory and Applications, 153, pp. 277–285.

Taylor, C.J., Shaban, E.M., Stables, M.A. and Ako, S. (2007) Proportional-Integral-Plus (PIP) control applications
of state dependent parameter models, IMECHE Proceedings: Journal of Systems and Control Engineering, 221,
pp. 1019–1032.

Taylor, C.J., Young, P.C. and Chotai, A. (1994) On the relationship between GPC and PIP control. In D.W. Clarke
(Ed.), Advances in Model-Based Predictive Control, Oxford University Press, Oxford, pp. 53–68.

Taylor, C.J., Young, P.C. and Chotai, A. (1996b) PIP optimal control with a risk sensitive criterion, UKACC Inter-
national Conference (Control–96), 2–5 September, University of Exeter, UK, Institution of Electrical Engineers
Conference Publication No. 427, Vol. 2, pp. 959–964.

Taylor, C.J., Young, P.C., Chotai, A., McLeod, A.R. and Glasock, A.R. (2000c) Modelling and proportional-integral-
plus control design for free air carbon dioxide enrichment systems, Journal of Agricultural Engineering Research,
75, pp. 365–374.

Taylor, C.J., Young, P.C., Chotai, A. andWhittaker, J. (1998b)Non-minimal state space approach tomultivariable ramp
metering control of motorway bottlenecks, IEE Proceedings: Control Theory and Applications, 145, pp. 568–574.

Truxal, T.G. (1955) Control System Synthesis, McGraw-Hill, New York.
Wang, C. and Young, P.C. (1988) Direct digital control by input–output, state variable feedback: theoretical back-
ground, International Journal of Control, 47, pp. 97–109.

Whittle, P. (1990) Risk-Sensitive Optimal Control, John Wiley & Sons, Ltd, New York.
Wiener, N. (1949) Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applica-

tions, MIT Press and John Wiley & Sons, Ltd, New York.
Wonham, W.M. (1968) On the separation theorem of stochastic control, SIAM Journal on Control and Optimization,

6, pp. 312–326.
Young, P.C. (1981) A second generation adaptive autostabilization system for airborne vehicles, Automatica, 17,
pp. 459–470.

Young, P.C. (1984) Recursive Estimation and Time-Series Analysis: An Introduction, Springer-Verlag, Berlin.
Young, P.C. (2006) The data-based mechanistic approach to the modelling, forecasting and control of environmental
systems. Annual Reviews in Control, 30, pp. 169–182.

Young, P.C. (2010) Gauss, Kalman and advances in recursive parameter estimation. Journal of Forecasting (special
issue celebrating 50 years of the Kalman Filter), 30, pp. 104–146.

Young, P.C. (2011) Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner,
Springer-Verlag, Berlin.

Young, P.C., Behzadi, M.A., Wang, C.L. and Chotai, A. (1987) Direct digital and adaptive control by input–output,
state variable feedback, International Journal of Control, 46, pp. 1861–1881.

Young, P.C., Chotai, A. and Tych, W. (1991) True Digital Control: a unified design procedure for linear sampled
data systems. In K. Warwick, M. Karny and A. Halouskova (Eds), Advanced Methods in Adaptive Control for
Industrial Applications, volume 158 of Lecture Notes in Control and Information Sciences, Springer-Verlag,
Berlin, pp. 71–109.

Young, P.C., Lees, M., Chotai, A., Tych, W. and Chalabi, Z.S. (1994) Modelling and PIP control of a glasshouse
micro-climate, Control Engineering Practice, 2, pp. 591–604.

Young, P.C. andWillems, J.C. (1972) An approach to the linear multivariable servomechanism problem, International
Journal of Control, 15, pp. 961–975.

Zames, G. (1981) Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and
approximate inverses, IEEE Transactions on Automatic Control, 26, pp. 301–320.



2
Discrete-Time Transfer Functions

Throughout this book, discrete-time Transfer Function (TF) models will be utilised as a basis
for control system design. In this initial, tutorial chapter, the models and control systems are
represented conveniently in block diagram form, with TF models representing both the control
model and control algorithm in various feedback arrangements. Later chapters will focus
on state space methods. Although these methods, when implemented in vector-matrix form,
yield a concise algorithm that is ideal for computational purposes, the authors feel that block
diagram analysis provides a more transparent solution and, hence, can offer valuable insight
into the algorithmic approach, particularly for tutorial purposes. Indeed, the development of a
non-minimal state space approach to control system design, as discussed in later chapters, has
been strongly motivated by the analysis of TF models at the block diagram level.
Classically, control systems have been analysed by means of continuous-time TF models.

Here, the TF is the ratio of the Laplace transform of the output to the Laplace transform of the
input, with the assumption that the initial conditions on the system are zero (see e.g. Franklin
et al. 2006, pp. 72–165; Dorf and Bishop 2008, pp. 41–143). The numerator and denominator
of this ratio are polynomials in the Laplace operator, s. A similar approach for discrete-time
systems is based on the z-transform (Kuo 1980, pp. 106; Åström and Wittenmark 1984,
pp. 52–55; Franklin et al. 2006, pp. 598–605; Dorf and Bishop 2008, pp. 901–912) and the
TF is a ratio of polynomials in the z-transform operator z. In both the continuous and discrete-
time cases, the denominator polynomial of the TF model plays a key role and is called the
characteristic polynomial. The roots of the denominator polynomial, or the poles, define the
stability and transient dynamic behaviour of the system.
In this book, we will normally exploit the operator notation in its simplest form, where the s

operator is used to denote the differential operator, i.e. si y(t) = di y(t)/dti ; while the z operator
denotes the forward shift operation, i.e. zi y(k) = y(k + i). The inverse of the latter operation,
i.e. z−i y(k) = y(k − i), is particularly important since we are dealing here with digital control
based on sampled data, so that the controller is normally referring to present and past values of
the input and output variables. In the present chapter, we introduce the general discrete-time
TF model represented in z−1 terms (section 2.1), define the poles of the system and then
use standard results (without derivation) to consider its stability properties (section 2.2). We
review some useful rules of block diagram analysis in section 2.3 and utilise these in section

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 2.1 Transfer Function (TF) in block diagram form

2.4 to introduce three basic, discrete-time control algorithms: namely, proportional, integral
and combined proportional-integral control. The limitations of these simple control structures
are then discussed briefly, thereby providing motivation for subsequent chapters.
Finally, it is noted that most discrete-time TF models in the z−1 operator relate to an

underlying continuous-time TF model in the s operator (equivalent to a differential equation)
that normally exposes more clearly the physical nature of the system (section 2.5). It also
raises the question of how the sampling interval should be selected, so that the discrete-time
model is well identified and suitable for control system design.

2.1 Discrete-Time TF Models

Linear systems theory assumes a cause-and-effect relationship between the input and output
variables. In this book, we aim to regulate the behaviour of a controlled output variable y(k),
typically position or level, velocity, pressure, torque, concentration, flow rate or some other
measured variable, where the argument k indicates that the associated variable is sampled in
time, normally uniformly with a constant sampling interval of�t time units. At each sampling
instant k, the control algorithmupdates the control input variable u(k), which usually represents
an actuator of some kind (see Chapter 1).
In essence, the TF is a mathematical object that describes the transfer of an input signal to

an output signal. This is illustrated by Figure 2.1, in which u(k) and y(k) denote the sampled
input and output signals, respectively. For example, in the simplest case, the TF in Figure 2.1
represents a scalar gain element or multiplier K , and so y(k) = K u(k); or it may describe a
time delay (Figure 2.2). In all other cases, however, it describes the dynamic behaviour of the
system in response to the input.

2.1.1 The Backward Shift Operator

As pointed out above, the basic discrete-time operator is the backward shift operator z−i , i.e.

z−i y(k) = y(k − i) (2.1)

It is clear, therefore, that z−i introduces a time delay of i samples. In Figure 2.2, for example,
z−1 denotes a time delay of one sample between the input and output signals.

z−1
u(k) y(k) = z−1u(k) = u(k − 1)

Figure 2.2 The backward shift operator
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1 + a1z−1

b1z−1u(k) y(k)

Figure 2.3 Block diagram form of the TF model (2.4)

Example 2.1 Transfer Function Representation of a First Order System Consider the
following first order, scalar difference equation, in which a1 and b1 are constant coefficients:

y(k)+ a1y(k − 1) = b1u(k − 1) (2.2)

Substituting for the backward shift operator yields:

y(k)+ a1z
−1y(k) = b1z

−1u(k) (2.3)

and the equivalent TF representation is:

y(k) = b1z−1

1+ a1z−1 u(k) (2.4)

The block diagram of this TF model is illustrated in Figure 2.3.
Now consider the following numerical example, based on the TFmodel (2.4), with arbitrarily

chosen a1 = −0.8 and b1 = 1.6,

y(k) = 1.6z−1

1− 0.8z−1 u(k) (2.5)

Figure 2.4 shows the unit step response of this system, i.e. the response of the output variable
y(k) to a unit step in the control input variable u(k), with u(k) = 0 for k < 5 and unity
thereafter; whilst the initial condition for y(0) is zero.

0 10 20 30 40 50

0

2

4

6

8

Sample no.

output

control input

Figure 2.4 Unit step response of the first order TF model in Example 2.1
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Here, y(k) for k = 1, 2, . . . , 50, as plotted in Figure 2.4, is generated recursively from
this initial condition and u(k), k = 1, 2, . . . , 50, using the difference equation form of
the model,

y(k) = 0.8y(k − 1)+ 1.6u(k − 1) (2.6)

This system has a time delay of one sample, i.e. there is a delay of one sample before a change
in u(k) starts to affect y(k), as shown by equation (2.6) and Figure 2.4.
In order to provide the context for the simulation examples later in this chapter, we will

briefly illustrate the practical utility of the TF model (2.4) with four practical examples:

• Permanent magnet Direct Current (DC) motors are commonly used to provide motion for
a wide variety of electromechanical devices, including robotic manipulators, disk drives
and machine tools. They convert DC electrical energy into rotational mechanical energy.
Assuming linearity and ignoring various second order effects, TF models for DC motors
can be developed from first principles (Dorf and Bishop 2008, pp. 62–66). Furthermore,
if the electrical time constant is at least an order of magnitude faster than the mechanical
time constant, then the behaviour of a DC motor can be approximated by the first order TF
model (2.4). In this case, y(k) represents the output shaft velocity and u(k) the control input
voltage, with a typical �t = 0.01 s (100 Hz).

• The civil and construction industries use hydraulic actuators for heavy lifting. The control
problem is generally made difficult by a range of factors that include highly varying loads,
speeds and geometries, as well as the soil–tool interaction in the case of excavators. A
commercial mini-tracked excavator and a 1/5th scale laboratory model have been used to
investigate such issues at Lancaster University (e.g. Bradley and Seward 1998; Gu et al.
2004; Taylor et al. 2007b). In this regard, the laboratory excavator bucket dynamics are
well approximated by the TF model (2.4), where y(k) represents the joint angle and u(k)
the control input voltage. Here, the control input is scaled to lie in the range ±1000, with
the sign indicating the direction of movement. Using the statistical identification methods
described in Chapter 8, together with experimental data collected at �t = 0.1 s, yields
a1 = −1 and b1 = 0.0498. Here, the normalised voltage has been calibrated so that there is
no movement when u(k) = 0, which becomes clear when the model is expressed as: y(k) =
y(k − 1)+ 0.0498u(k − 1). Similar models have been identified for other hydraulically
actuated systems (e.g. Shaban et al. 2008; Taylor and Seward 2010), and an example of
their control is considered in Chapter 5.

• Free Air Carbon dioxide Enrichment (FACE) systems enable the effects of elevated CO2
on vegetation and other ecosystem components to be studied in the open air (Hendrey et al.
1999). They provide an alternative to studies inside glasshouses, by releasing a gas mixture
from a distribution system of pipes surrounding an experimental plot. The absence of any
enclosure enables research to be performed with in situ crops, natural vegetation or even
mature forest trees. Using experimental data collected at�t = 10s, the TF model (2.4) was
identified with a1 = −0.713 and b1 = 2.25 for a FACE system installed in an uncut arable
meadow adjacent to the Monks Wood National Nature Reserve, near Huntingdon in the
United Kingdom. In this case, y(k) is the CO2 concentration (parts per million) and u(k) is
the voltage regulating a mass flow valve delivering the CO2 gas (Taylor et al. 2000). The
control of this system is considered in Chapter 5.
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• Rainfall–flow and flow–flow (or ‘flow routing’) models are used in modelling water flow
in rivers for the purposes of either forecasting flow at locations along the river (‘flood
forecasting’: see e.g. Young 2010 and the previous references therein) or flow control
and management (see e.g. Evans et al. 2011; Foo et al. 2011 and the previous references
therein). A typical TF model (discrete or continuous-time) is of second order, between the
rainfall (mm) and flow (m3s−1); and it is normally characterised by one short and one long
time constant which, respectively, represent the surface and ground water flow pathways in
the system (this is sometimes referred to as a stiff dynamic system). In such cases, each
flow pathway is alternatively represented by a first order TF model such as (2.4), with the
total flow obtained by the sum of these components, as shown later in this chapter (see
Example 2.9).

Example 2.2 Transfer Function Representation of a Third Order System Consider the
following third order, scalar difference equation:

y(k)+ a1y(k − 1)+ a2y(k − 2)+ a3y(k − 3) = b1u(k − 1)+ b2u(k − 2)

+ b3u(k − 3) (2.7)

where ai and bi (i = 1, 2, 3) are constant coefficients. Substituting for the backward shift
operator yields:

y(k)+ a1z
−1y(k)+ a2z

−2y(k)+ a3z
−3y(k) = b1z

−1u(k)+ b2z
−2u(k)+ b3z

−3u(k) (2.8)

and the equivalent TF representation is:

y(k) = b1z−1 + b2z−2 + b3z−3

1+ a1z−1 + a2z−2 + a3z−3 u(k) (2.9)

The block diagram of this TF model is illustrated in Figure 2.5.
Now consider a numerical example based on the TF model (2.9):

y(k) = 27.4671z−1 + 65.6418z−2 − 91.1006z−3

1− 2.4425z−1 + 2.2794z−2 − 0.8274z−3 u(k) (2.10)

Equation (2.10) has been obtained from a model reduction (or ‘nominal emulation’) exercise
(see later, Chapter 8) conducted on a high order, continuous-time simulation model of a hori-
zontal axis, grid-connected wind turbine. The original continuous-time simulation represents
a medium- to large-scale, constant speed, wind turbine, comprising a three-blade rotor with
rigid hub, gearbox and induction generator (Leithead et al. 1991). The output y(k) and input

b1z−1 + b2z−2 + b3z−3

1 + a1z−1 + a2z−2 + a3z−3

u(k) y(k)

Figure 2.5 Block diagram form of the TF model (2.9)
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Figure 2.6 Unit step response of the wind turbine system in Example 2.2, comparing the discrete-time
TF model (2.10) with the continuous-time simulation (solid trace)

u(k) are the generator reaction torque and pitch angle of the wind turbine blades, respectively,
with �t = 0.2s.
Figure 2.6 shows the response of the output variable y(k) to a unit step in the control input

variable u(k), highlighting the oscillatory behaviour typical of this poorly damped system
(before the introduction of feedback control). Figure 2.6a compares simulated data obtained
from the continuous-time model (solid trace), with the response of the reduced, third order TF
model (points), based on the numerical values shown in equation (2.10). Figure 2.6b shows
the input, chosen here as a unit step change in the pitch angle.
Note that the representation of a continuous-time model by a discrete-time TF model in

this manner is discussed later in section 2.5, as well as in Chapter 8. For the present purposes,
it is sufficient to note that equation (2.10) is a relatively straightforward mathematical model
representing the practical wind turbine system. Since it is a linear discrete-time TF model and
can be used subsequently for digital control system design, it will be termed the digital control
model.

2.1.2 General Discrete-Time TF Model

Let us consider a general, nth order, deterministic model, with (m + 1) coefficients associated
with the input variable and no time delay. The system difference equation is given by:

y(k)+ a1y(k − 1)+ · · · + an y(k − n) = b0u(k)+ b1u(k − 1)+ · · · + bmu(k − m) (2.11)

where ai (i = 1 · · · n) and bi (i = 0 · · · m) are constant coefficients. The b0 u(k) component
on the right-hand side of equation (2.11) allows for an instantaneous response to an input
signal. By contrast, a time delay of τ ≥ 1 samples can be accounted for by setting b0 = b1 =
. . . = bτ−1 = 0. Representing the TF models (2.4) and (2.9) in this generalised framework,
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n = m = 1 and n = m = 3, respectively. The time delay τ = 1 and b0 = 0 in both cases.
Later, Example 2.8 considers a system with τ = 2, i.e. b0 = b1 = 0.
In fact, discrete-time, model-based control system design generally requires at least one

sample time delay. If there is no delay in the model of the system estimated from data, then it
is necessary to introduce a ‘false’ delay of one sample on the control input u(k). Hence, the
generalised digital control model most commonly used in this book, is defined as follows:

y(k)+ a1y(k − 1)+ · · · + an y(k − n) = b1u(k − 1)+ · · · + bmu(k − m) (2.12)

Following a similar approach to Example 2.1 and Example 2.2, the equivalent TF model is:

y(k) = b1z−1 + b2z−2 + · · · + bm z−m

1+ a1z−1 + a2z−2 + · · · + anz−n
u(k) = B(z−1)

A(z−1)
u(k) (2.13)

where A(z−1) and B(z−1) are the appropriately defined polynomials in z−1.
Chapter 8 considers statistical methods for estimating a TF model such as (2.13), in which

the objective is twofold: first, to ‘identify’ from an input–output data set (u(k), y(k)) of N
samples (i.e. k = 1, 2, · · · , N ) the best model structure, as defined by the orders of the TF
numerator and denominator polynomials, m and n, respectively, together with any pure time
delay τ [see equation (2.4) and equation (2.9) for examples]; and secondly, to then ‘estimate’
numerical values for the coefficients ai (i = 1 · · · n) and bi (i = 1 · · · m) that characterise this
identified structure. The aim of such an identification–estimation procedure is to ensure that the
TF model adequately represents the system under consideration in some statistically defined
sense (e.g. ‘least-squares’ where the sum-of-squares of the model error is minimised).
Note that the two-stage identification–estimation procedure follows the convention in the

statistical literature. We believe this is a useful dichotomy because it explicitly raises the
need to find the best ‘identifiable’ model prior to the final model parameter estimation, thus
heightening awareness of the need for good model identifiability in model-based control
system design. In the systems and control literature, however, it is more normal to refer to the
whole procedure as simply ‘identification’.
Given its importance in control design and other modelling applications (e.g. forecasting),

it is not surprising that numerous software packages are available for such identification–
estimation analysis. One example is the CAPTAIN Toolbox discussed in Chapter 8 (Appendix
G; Taylor et al. 2007a), which runs within the MATLAB R©1 software environment and is used
to obtain many of the models used in the present book. For now, however, it will be assumed
that the control model (2.13) has already been estimated in this manner and is available to the
designer.

2.1.3 Steady-State Gain

If the system is stable and the input signal takes a time invariant value, denoted by ū, then
the output will reach an equilibrium level in which y(k) → y(k − 1) as k → ∞. Hence, the
steady-state gain G of a discrete-time TF is determined straightforwardly by noting that

1 MATLAB R©, The MathWorks Inc., Natick, MA, USA.
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y(k)− y(k − 1) = 0 or y(k)(1− z−1) = 0, in the steady state, so that z−1 = 1. Making this
substitution in the case of the general TF model (2.13) yields the following:

y(k → ∞) = b1 + b2 + · · · + bm

1+ a1 + a2 + · · · + an
ū = Gū (2.14)

whereG is the steady-state gain. For example, the steady-state gain of the first order TF model
(2.5) is given by,

G = 1.6

1− 0.8
= 8.0 (2.15)

as would be expected from Figure 2.4. The response of the system to a time invariant input
ū will approach Gū in a time that is dependent on the dynamics of the system and will be
insignificantly different from y(∞) thereafter.

2.2 Stability and the Unit Circle

There are numerous definitions of stability, particularly for nonlinear systems in which the
concept of an equilibrium state becomes important (Zak 2003, pp. 149–153). For the present
purposes, it is sufficient to say that a linear dynamic system is stable if its output is bounded
for any bounded input. It is well known that a continuous-time TF is stable if the roots of the
characteristic equation (i.e. the poles) lie in the left-hand side of the complex s-plane, where s
is the Laplace transform operator (Franklin et al. 2006, pp. 130–131; Dorf and Bishop 2008,
pp. 355–360). The equivalent condition for discrete-time systems is based on the z-operator
(Franklin et al. 2006, pp. 602–604; Dorf and Bishop 2008, pp. 915–916).
In Chapter 3, the characteristic equation is derived directly from the state space model of

the system. For now, however, it is sufficient to note that the TF model (2.13) is converted
to the z-domain by multiplying by zn (see Example 2.3, Example 2.4 and Example 2.7). In
this regard, A(z) obtained from the denominator of equation (2.13) is called the characteristic
polynomial, while A(z) = 0 is the associated characteristic equation. The roots of A(z) = 0
are called the poles of the system and these are plotted on the complex z-plane, as illustrated
in Figure 2.7.
For stability, all the poles pi must have a magnitude less than unity, i.e.

|pi | < 1 i = 1, 2, . . . , n (2.16)

where n is the order of the system: so that, for stability, the poles must all lie inside the unit
circle on the complex z-plane, as shown in Figure 2.7, where it will be noted that, for n > 1,
the poles may occur in complex conjugate pairs.
The roots of the numerator polynomial in equation (2.13), i.e. the solutions of B(z) = 0, are

called the zeros. Although the stability of the system is not dependent on these zeros, they do
shape the response of the system to an input signal, as illustrated below.
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1

j

Re

Figure 2.7 Unit circle on the complex z-plane with complex axis j and real axis Re. The shaded area
shows the stable region with the magnitude of 1.0 highlighted by the arrow

Example 2.3 Poles, Zeros and Stability Consider a second order TF model based on
equation (2.13) with n = m = 2,

y(k) = b1z−1 + b2z−2

1+ a1z−1 + a2z−2 u(k) (2.17)

With arbitrarily chosen numerical values for the coefficients, equation (2.17) becomes

y(k) = 0.5z−1 − 0.4z−2

1− 0.8z−1 + 0.15z−2 u(k) (2.18)

TF models (2.17) and (2.18) will be considered later in Chapter 3 and Chapter 4, where
state space models and various algorithms for their control are considered. For now, how-
ever, we will examine their open-loop behaviour, i.e. before the introduction of feedback
control. In this regard, the unit step response of the TF model (2.18) is illustrated by Fig-
ure 2.8a, which also highlights the steady-state gain (2.14) of the system, i.e. in this case
G = (0.5− 0.4)/(1− 0.8+ 0.15) = 0.29.
Multiplying the denominator polynomial by z2 and setting this equal to zero yields the

following characteristic equation:

z2 − 0.8z + 0.15 = (z − 0.3)(z − 0.5) = 0 (2.19)

Hence, the system is defined by two poles, i.e. p1 = 0.3 and p2 = 0.5, both lying on the real
axis of the complex z-plane. In this case, |pi | < 1 (i = 1, 2) and the system is stable, which
is quite obvious from Figure 2.8a.
Next, consider a model with the same denominator polynomial, but revised numerator

coefficients, as follows:

y(k) = −0.2z−1 + 0.3z−2

1− 0.8z−1 + 0.15z−2 u(k) (2.20)

The stability and steady-state gain are unchanged, as illustrated by Figure 2.8b. However, the
new numerator B(z) = −0.2z + 0.3 = 0 has one zero, which lies outside the unit circle, i.e. a
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Figure 2.8 Unit step response of (a) stable (2.18), (b) stable non-minimum phase (2.20) and (c)
marginally stable (2.21) TF models in Example 2.3

value of 0.3/0.2 = 1.5 on the real axis. Consequently, the system is said to be non-minimum
phase (Åström and Wittenmark 1984, pp. 59–60) and, in the case of the present example, this
yields an initial negative response to the positive step input (examine the first few samples of
Figure 2.8b).
Finally, consider another systembased on equation (2.17) but herewith a1 = −1.7,a2 = 1.0,

b1 = −1 and b2 = 2.0. The characteristic equation

z2 − 1.7z + 1 = 0 (2.21)

in this case yields a complex conjugate pair of poles, i.e. p1,2 = 0.85± 0.5268 j , where the

magnitude |pi | =
√
0.852 + 0.52682) = 1 (i = 1, 2) and the system is marginally stable.

As a result, the system is characterised by an undamped, limit cycle response, as shown in
Figure 2.8c. Furthermore, the numerator B(z) = −z + 2 = 0 has one zero, which again lies
outside the unit circle, i.e. a value of 2 on the real axis. Consequently, this system is also
non-minimum phase.

2.3 Block Diagram Analysis

When considering feedback control structures in later chapters, three key rules of block diagram
manipulation will prove particularly useful, namely those dealing with series, parallel and
feedback connections, as illustrated by Figure 2.9, Figure 2.10 and Figure 2.11, respectively.
Here, G1(z−1) and G2(z−1) represent two connected (arbitrary) TF models.

G1(z−1) G2(z−1)
u(k) y(k)

Figure 2.9 Two TF models connected in series
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G1(z−1)

G2(z−1)

+

+

u(k) y(k)

Figure 2.10 Two TF models connected in parallel

Since we are dealing with linear systems, the order of the blocks in the serial connection
does not matter. Therefore, the essential input–output relationship defined by Figure 2.9 is
obtained straightforwardly by multiplying the TF models, as follows:

y(k) = G1(z
−1)G2(z

−1)u(k) = G2(z
−1)G1(z

−1)u(k) (2.22)

In Figure 2.10, u(k) represents an input to both TF models, while the summation yields:

y(k) = G1(z
−1)u(k)+ G2(z

−1)u(k) = (
G1(z

−1)+ G2(z
−1)

)
u(k) (2.23)

With regard to the feedback connection, inspection of Figure 2.11 shows that:

y(k) = G1(z
−1)

(
u(k)− G2(z

−1)y(k)
)

(2.24)

and straightforward algebra yields the ubiquitous negative feedback relationship:

y(k) = G1(z−1)
1+ G1(z−1)G2(z−1)

u(k) (2.25)

For a unity feedback system with G2(z−1) = 1, equation (2.25) reduces to [cf. equation (1.1)]:

y(k) = G1(z−1)
1+ G1(z−1)

u(k) (2.26)

+

−

u(k) y(k)
G1(z−1)

G2(z−1)

Figure 2.11 Two TF models connected in a negative feedback arrangement
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yd(k) e(k) u(k) y(k)+

− 1 + a1z−1

b1z−1

kp

Figure 2.12 Proportional control of a first order TF model

To illustrate these rules of block diagrammanipulation and to review some elementary concepts
in discrete-time control, three basic control algorithms are introduced in section 2.4.

2.4 Discrete-Time Control

The following examples are concernedwith developing discrete-time feedback control systems
for the illustrative TFmodel (2.4), with parameter values (2.5), where y(k) is the output variable
and u(k) is the control input. Note that the simplest first order control model has been chosen
deliberately in these examples, for the reasons discussed at the end of the section.

Example 2.4 Proportional Control of a First Order TF Model One of the simplest
closed-loop controllers is based on a negative feedback of the output variable and scalar
proportional gain kp, as illustrated in Figure 2.12.
In Figure 2.12, yd (k) is the command input, also commonly called the set point or reference

level. Generally, this is dependent on the current requirements of the system: referring to the
practical control systems introduced in Example 2.1, for example, it represents the desired
value of the DC motor shaft velocity, bucket joint angle or elevated CO2 concentration.
Examination of Figure 2.12 shows that:

u(k) = kpe(k) = kp (yd (k)− y(k)) (2.27)

Equation (2.27) represents the control algorithm for automatically generating the control input
signal u(k) at each sampling instant. Here, e(k) = yd (k)− y(k) is the difference between the
desired and measured behaviour of the system. Most typically, the control objective is to
minimise some measure of this error signal over time.
The simulated behaviour of this control system is illustrated by its response to a unit

step in the command level yd (k), as shown by Figure 2.13. Here, the response is based on
the proportional control structure illustrated in Figure 2.12, with a1 = −0.8, b1 = 1.6 and
arbitrarily chosen kp = 0.2. It is clear that the output variable y(k) does not converge to the
command input yd (k), as would be required for most practical control systems.
Utilising Figure 2.12, together with equation (2.22) and equation (2.26) yields:

y(k) =
kp

(
b1z−1

1+ a1z−1

)

1+ kp

(
b1z−1

1+ a1z−1

) yd (k) = kpb1z−1

1+ a1z−1 + kpb1z−1 yd (k) (2.28)
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Equation (2.28) is called the Closed-Loop Transfer Function (CLTF) and this is of particular
interest to control designers. It represents the aggregated relationship between the controlled
output variable y(k) and the associated command input yd (k).
Recall that the TF model (2.4) has constant coefficients a1 and b1 defined by the physical

behaviour of the system. Hence, a1 and b1 cannot be modified except by redesigning the
device. Therefore, the control designer aims to achieve a satisfactory closed-loop response by
selecting a suitable value for the proportional gain kp.
The closed-loop characteristic equation:

z + a1 + kpb1 = 0 (2.29)

has one root, i.e. the pole of the CLTF is a real number, p1 = −a1 − kpb1.
Utilising (2.16), the system is stable if |p1| < 1. Note that the gain must be a positive real

number to ensure a positive response towards yd (k): hence, for stability,

kp > 0 and kp <
1− a1

b1
= 1.125 (2.30)

The value of kp = 0.2 utilised in Figure 2.13 clearly lies within this stability range.
The steady-state gain of the CLTF, found by setting z−1 = 1 in equation (2.28) is:

G = kpb1
1+ a1 + kpb1

(2.31)

Assuming that the closed-loop system is stable, y(k → ∞) = G ȳd = 0.615ȳd where ȳd is a
time invariant command input [e.g. in Figure 2.13, yd (k) = ȳd = 1.0 for k > 2].
Equation (2.31) shows that the closed-loop steady-state gain is normally less than unity

(except for in the special case that a1 = −1), so that simple proportional control action of
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Figure 2.13 Closed-loop unit step response of the proportional control system in Example 2.4
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this type yields a steady-state error, i.e. the output variable y(k) does not converge to a time-
invariant command input yd (k) for k → ∞, as noted above. In fact, in Figure 2.13, the output
asymptotically approaches a value of 0.615, yielding a steady-state error of e(k → ∞) =
1− 0.615 = 0.385.
Although equation (2.31) implies that this steady-state error can be reduced by simply

increasing the value of the control gain, kp, equation (2.30) shows that this will be limited
by the stability requirement. For example, utilising equation (2.31) with a1 = −0.8 and b1 =
1.6, as before, together with kp = 1.1, close to the stability limit given by equation (2.30),
yields:

y(k → ∞) = 0.9yd (k → ∞) (2.32)

and the steady-state error e(k → ∞) = 0.1.
This example demonstrates that, when implemented in isolation, proportional control action

does not have an inherent unity steady-state gain. In the control literature this is referred to
as a Type 0 control system. The disadvantages of such Type 0 control systems are considered
further in Chapter 4.

Example 2.5 Integral Control of a First Order TF Model An alternative basic control
action is illustrated by Figure 2.14, which shows an integral control algorithm applied to the
first order TF model (2.4).
Examination of Figure 2.14 shows that the integral control algorithm is written in TF form

as follows:

u(k) = kI

1− z−1 (yd (k)− y(k)) (2.33)

Using equation (2.1) and rearranging, this yields the following difference equation form of the
algorithm:

u(k) = u(k − 1)+ kI (yd (k)− y(k)) (2.34)

showing that the control input signal u(k) is equal to its value at the previous sampling instant
u(k − 1), together with a correction term based on the error e(k) = yd (k)− y(k).
Although outside the remit of the present book, it is straightforward to implement the control

algorithm (2.34) in electronic hardware, using a micro-controller where, at each sampling
instant k, the control input is determined using the current measured output variable y(k), the
stored value of the input variable u(k − 1) and the user specified command input yd (k).

1 − z−1 1 + a1z−1

kI
e(k)yd(k) +

−

u(k) y(k)b1z−1

Figure 2.14 Integral control of a first order TF model
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Utilising equation (2.22) and equation (2.26), the CLTF is determined from Figure 2.14 in
the following form:

y(k) =

(
kI

1− z−1

)(
b1z−1

1+ a1z−1

)

1+
(

kI

1− z−1

) (
b1z−1

1+ a1z−1

) yd (k) (2.35)

Noting that z−1 · z−1 = z−2, straightforward algebra yields:

y(k) = kI b1z−1

1+ (kI b1 + a1 − 1) z−1 − a1z−2 yd (k) (2.36)

The steady-state gain of the CLTF, found by setting z−1 = 1 in equation (2.36), is now unity, i.e.

y(k → ∞) = kI b1
1+ kI b1 + a1 − 1− a1

ȳd = ȳd (2.37)

where ȳd is the time-invariant command input. In other words, if the closed-loop system is
stable, the output will converge asymptotically to the constant command input specified by
the user with dynamics defined by the value of the integral gain kI ; see Example 2.7 for
illustrations of such steady-state tracking. However, as we shall see, control over the nature
of these closed-loop dynamics is limited by the fact that there is only a single control gain
kI . Nevertheless, the inherent unity steady-state gain introduced by the integral action is a
very useful property of integral control. In the control literature, this is referred to as Type 1
servomechanism performance. The subject is discussed more thoroughly in Chapter 5.

Example 2.6 Proportional-Integral Control of a First Order TF Model An important
feedback algorithm widely used in industrial control systems is the Proportional-Integral-
Derivative (PID) controller. An early citation is Challender et al. (1936) but the algorithm
remains the focus of much practical and theoretical development into the current decade (e.g.
Tan et al. 2006; Tavakoli et al. 2007). The term PID refers only to the structure of the algorithm,
whilst a very wide range of design approaches may be utilised to tune the gains (Zhuang and
Atherton 1993; Åström and Hagglund 1995). Let us consider, however, a special case of the
PID controller: the ‘two-term’ Proportional-Integral (PI) control algorithm.
The previously cited introductory control engineering textbooks include numerous examples

of both continuous-time (Franklin et al. 2006, p. 187; Dorf and Bishop 2008, p. 445) and
discrete-time (Åström and Wittenmark 1984, p. 373) PI control algorithms. One particular
PI control structure that proves particularly significant in the present book is illustrated in
Figure 2.15. Here, the controller is implemented in a discrete-time form and again applied to
the TF model (2.4).
Figure 2.15 exemplifies the way in which elements of a control algorithm, together with

the control model, can be conveniently represented in block diagram form using Transfer
Functions, scalar gains and summations.
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1 − z−1

kI
yd(k) u(k) y(k)

1 + a1z−1

b1z−1

integral

controller

proportional

controller  

control model 

−

+

−

+

f0

Figure 2.15 Proportional-Integral control of a first order TF model

Note that, in contrast to Figure 2.12, the proportional action is implemented in the feedback
path. For this reason, and for consistency with later chapters, the proportional gain is denoted
by f0 rather than kp, whilst kI represents the integral gain, as before.
Examination of Figure 2.15 shows that the PI control algorithm is written in TF form:

u(k) = kI

1− z−1 (yd (k)− y(k))− f0y(k) (2.38)

Using equation (2.1) and rearranging yields the difference equation form of the algorithm,
suitable for implementation on a digital computer:

u(k) = u(k − 1)+ kI (yd (k)− y(k))− f0 (y(k)− y(k − 1)) (2.39)

In a similar manner to the previous examples, we now use the rules of block diagram anal-
ysis to determine the closed-loop behaviour of the PI control system. In the first instance,
the inner feedback loop of Figure 2.15, consisting of the control model together with a
negative feedback of the output variable and the scalar proportional gain f0, is simplified
using equation (2.25), so that the control system is equivalently represented as shown in
Figure 2.16.
Utilising equation (2.22) and equation (2.26), the CLTF determined from Figure 2.16 is:

y(k) = kI b1z−1

1+ ( f0b1 + a1 − 1+ kI b1)z−1 + (−a1 − f0b1)z−2 yd (k) (2.40)

1 − z−1

kI

−

yd(k) y(k)+

1 + a1z−1 + f0b1z−1

b1z−1

Figure 2.16 Reduced form of the control system in Figure 2.15
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The steady-state gain of the closed-loop system, found by setting z−1 = 1 in equation (2.40)
is again unity, i.e.

y(k → ∞) = kI b1
1+ f0b1 + a1 − 1+ kI b1 − a1 − f0b1

ȳd = ȳd (2.41)

where ȳd is the time-invariant command input.
Hence, if the closed-loop system is stable, the output will converge asymptotically to the

constant command input, i.e. Type 1 servomechanism performance.
Note that the closed-loop dynamics are now defined by the two control gains f0 and kI so

that, as we see in Example 2.7, the control systems designer has much more control over the
nature of the closed-loop dynamics than in the pure integral control situation.

Example 2.7 Pole Assignment Design Based on PI Control Structure Continuing
directly from the previous example, the poles pi (i = 1, 2) of the CLTF (2.40) are the roots of
the characteristic equation:

z2 + ( f0b1 + a − 1+ kI b1)z + (−a − f0b1) = 0 (2.42)

Now, if kI and f0 are selected so that both these poles lie at the origin of the complex z-plane,
i.e. p1 = p2 = 0, then we obtain the deadbeat response illustrated by Figure 2.17. Here, the
output signal y(k) follows a step change in the command input yd (k) after just one sampling
instant, the fastest theoretical response of a discrete-time control system. By contrast, the
response shown in Figure 2.18 is obtained by selecting kI and f0 so that the closed-loop poles
are complex with p1,2 = 0.6± 0.3 j .
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Figure 2.17 Closed-loop unit step response of the deadbeat PI control system using the characteristic
equation (2.45) in Example 2.7
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Figure 2.18 Closed-loop unit step response of the PI control system based on conjugate complex poles
using the characteristic equation (2.43) in Example 2.7

The latter of these two controllers yields a slower speed of response and deliberately
incorporates a small temporary overshoot of the command level, which is sometimes desirable
in practice since it is more likely that the desired steady-state level is achieved despite practical
limitations in the system, such as mechanical friction effects. In practical applications, it is
also more robust to uncertainty in the model parameters and generates a less severe control
input signal than the deadbeat design (see later chapters for discussions on robustness and
other practical matters).
The characteristic equation of the closed-loop system associated with p1,2 = 0.6± 0.3 j

and Figure 2.18 is given by:

D(z) = (z − 0.6+ 0.3 j ) (z − 0.6− 0.3 j) = z2 − 1.2z + 0.45 = 0 (2.43)

where D(z) denotes the ‘desired’ characteristic polynomial. In this case, the control gains are
determined by equating (2.42) and (2.43), as follows:

( f0b1 + a1 − 1+ kI b1) = −1.2; (−a1 − f0b1) = 0.45 (2.44)

For the TF model (2.5) with a1 = −0.8 and b1 = 1.6, the simultaneous equations (2.44) are
solved straightforwardly to obtain f0 = 0.2188 and kI = 0.1563. Using these control gains,
the PI controller is implemented in the form of Figure 2.15 or, in practical applications,
typically equation (2.39). The simulated response is illustrated in Figure 2.18.
The characteristic equation of the closed-loop system associated with p1 = p2 = 0 and the

deadbeat response shown by Figure 2.17, is given by:

D(z) = (z − 0) (z − 0) = z2 = 0 (2.45)
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and the control gains are obtained by equating (2.42) and (2.45) as follows:

( f0b1 + a1 − 1+ kI b1) = 0; (−a1 − f0b1) = 0 (2.46)

Solving these simultaneous equations yields: f0 = −a1/b1 and kI = 1/b1. For the TF model
(2.5) with a1 = −0.8 and b1 = 1.6, these relationships yield f0 = 0.5 and kI = 0.625.
In the above manner, the closed-loop behaviour is determined by the pole positions chosen

by the designer. Such an approach to control system design is called pole placement or pole
assignment. The important question of how to choose suitable pole positions, in order to satisfy
a range of control design objectives, is addressed in later chapters.

Example 2.8 Limitation of PI Control Structure Taylor (2004) and Leigh (2002) describe
a 1.0 m2 by 2.0 m forced ventilation test chamber at Lancaster University. A computer-
controlled axial fan is positioned at the outlet in order to draw air through the chamber, whilst
an air velocity transducer measures the associated ventilation rate. In this regard, the following
first order difference equation with�t = 2 s, and two such sampling intervals defining a pure
time delay of 4 s, has been estimated from experimental data collected from the chamber,
using the statistical identification methods described in Chapter 8:

y(k) = 0.743y(k − 1)+ 0.027u(k − 2) (2.47)

where y(k) is the air velocity (m s−1) and u(k) is the applied voltage to the fan expressed as a
percentage. The TF form of the model is:

y(k) = 0.027

1− 0.743z−1 u(k − 2) = 0.027z−2

1− 0.743z−1 u(k) (2.48)

where it is clear that y(k) is expressed as a function of the delayed input u(k − 2). Comparing
(2.48) with the generalised control model (2.13), it is clear that n = 1,m = τ = 2 and b1 = 0.
Similar first order models with time delays have been identified and estimated for other
ventilation systems (Taylor et al. 2004a, b).
Following a similar approach to Example 2.6, application of the PI controller (2.38) to this

TF model yields the following CLTF:

y(k) = 0.027kI z−2

1− 1.743z−1 + (0.743+ 0.027 f0 + 0.027kI ) z−2 − 0.027 f0z−3 yd (k) (2.49)

The CLTF is now third order, so that there are three closed-loop poles but still only two control
gains, f0 and kI , that can be selected to achieve pole assignment. Consequently, the pole
assignment problem cannot be solved, i.e. the designer cannot arbitrarily assign the closed-
loop poles to any positions in the complex z-plane. Similar results emerge for PI control of
second or higher order systems, such as the TF models (2.9) and (2.17). Hence, alternative
approaches are required in order to handle the general nth order control model (2.13) and/or
TF models with pure time delays. These alternative approaches are discussed in subsequent
chapters.
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2.5 Continuous to Discrete-Time TF Model Conversion

In the present control systems context, a discrete-time TF model is simply a convenient
representation of a dynamic system. It normally relates to a real-world, physical system that
we wish to control in some manner. However, models of physical systems are most often
derived in continuous-time, differential equation terms on the basis of natural laws, such as
Newton’s Laws of Motion or conservation laws (mass, energy, momentum, etc.); and they are
characterised by parameters that often have a prescribed physical meaning.
For instance, the parameters of a continuous-time TF model for a second order system with

oscillatory dynamics reveal the natural frequency and damping of the oscillations (Franklin
et al. 2006, p. 111). These are particularly useful because, together with the steady-state gain,
they provide an immediate indication of the system’s dynamic response characteristics.
In order to move from such a continuous-time differential equation model to its discrete-

time equivalent, it is necessary to utilise some convenient method of transformation: e.g. in
the case of a continuous-time TF model, we might use the MATLAB R© c2d function. This
transformation requires the user to make some assumptions about the inter-sample behaviour.
For example, in the case of the c2d function, it is necessary to specify both the sampling
interval �t and the method of discretisation from amongst the following: zero order hold
on the inputs; linear interpolation of the inputs (triangle approximation); impulse-invariant
discretisation; bilinear (Tustin) approximation; and the Tustin approximation with frequency
pre-warping. All of these are approximations because the actual inter-sample behaviour is
normally not known. Moreover, since the resultant discrete-time TF is a function of the
specified sampling interval �t , its parameter values will change as �t is changed. Finally,
they will have no clear physical interpretation: in other words, they constitute a nominally
infinite set of completely ‘black-box’ models.
It is clear from the above that, when compared with continuous-time models, discrete-time

models have a number of disadvantages. Consequently, as an alternative to obtaining the model
in discrete-time form by statistical estimation, it is possible to obtain the model directly in
continuous-time form. This is achieved either by analysis based on the physical nature of the
system, as is often the case when using simulation modelling software such as SIMULINK2;
or by statistical estimation of the model in continuous-time form, based on input–output data.
Example 2.9 helps to illustrate these possibilities but the topic receives a much more detailed
examination in Chapter 8.

Example 2.9 Continuous- and Discrete-Time Rainfall–Flow Models A continuous-time
model of flow in a river (Littlewood et al. 2010), obtained by statistical identification and
estimation from the hourly measured effective rainfall u(t) and flow y(t), using the Refined
Instrumental Variable method for Continuous-time Box–Jenkins models (RIVCBJ) algorithm
developed in Chapter 8, has the following form:

y(t) = 0.01706s2 + 0.1578s + 0.001680

s2 + 0.3299s + 0.001768
u(t) (2.50)

2 SimulinkTM, The MathWorks Inc., Natick, MA, USA.
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where s is the differential operator, i.e. si y(t) = di y(t)/dti . Applying partial fraction expansion
to this TF, the model can be written in the following parallel pathway form:

y(t) =
{
0.0171+ 0.1496

s + 0.3244
+ 0.002573

s + 0.00545

}
u(t) (2.51)

This has the following practical interpretation:

1. An instantaneous effect 0.0171 u(t) accounting for the small amount of effective rainfall
that affects the river flow within each hourly sampling period.

2. A ‘quick-flow’ effect with steady-state gain G1 = 0.1496/0.3244 = 0.461 and residence
time (or time constant: see Appendix B) T1 = 1/0.3244 = 3.1 h that is associated with
surface and near surface processes.

3. A ‘slow-flow’ effectwith steady-state gainG2 = 0.002573/0.00545 = 0.472 and residence
time T2 = 1/0.00545 = 183.5 h associated with groundwater processes.

4. The ‘partitioning’ of the flow, defined by P1 = 100(0.0171/0.950) = 1.8%, P2 = 0.461/
0.950 = 48.5% and P3 = 0.472/0.950 = 49.7%, where 0.950 is the steady-state gain of
the composite TF model (2.50).

In other words, the parameters of this continuous-time model have immediate practical
significance. Also, note that the model has ‘stiff’ dynamics: i.e. a combination of fairly widely
spaced ‘quick’ and ‘slow’ modes. This has practical implications on model estimation, as
discussed in Chapter 8.
Now, suppose we want to design a digital control system involving this model, initially

considering implementation at a sampling interval of �t = 6 h. MATLAB R© c2d conversion
at this sampling interval, using the zero order hold option, yields the following discrete-time
model:

y(k) = 0.01706+ 0.3915z−1 − 0.3824z−2

1− 1.1106z−1 + 0.1382z−2 u(k) (2.52)

Naturally, this model has the same dynamic behaviour as the continuous-time model from
which it is derived. If we only had this description, however, and wished to compute physical
attributes, such as the residence times, it is clear that we would need to convert back to
continuous time to do this. In other words, unlike the continuous-time model, the parameter
values in this discrete-time model have no immediate physical interpretation. Moreover, it is
found that, if this discrete-time model is actually estimated directly from the data decimated
to the 6 h sampling interval (or, since it is possible in this particular hydrological application,
the data are accumulated to yield samples every 6 h), then the estimates are biased away from
the continuous-time estimates and so are misleading.
This biasing problem is a consequence of the rather coarse sampling at this decimation

level. The natural period of the quick mode is: 2π/0.3244 = 19.4 h. Therefore, in order to
identify and control this mode, the data should be sampled faster than the Nyquist period
(Franklin et al. 2006, p. 617) 19.4/2=9.7 h: i.e. a sampling interval less than about 10 h.
Although�t = 6 h does not contravene this rule, it is quite close to it and so the estimation is
affected by this, as well as the reduced sample size. Clearly, this has implications as regards
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control system design and so this important question of choosing a suitable sampling interval
for identification, estimation and control is considered more fully in Chapter 8.

2.6 Concluding Remarks

This chapter has introduced the nth order discrete-time TF model and examined both the
steady-state gain and stability properties of systems via several simple, worked examples.
It has also reviewed basic techniques in block diagram analysis, as demonstrated by the
consideration of three well known control structures: namely, proportional control, integral
control and PI control. This has led to the concept of pole assignment, using the PI control
structure as a worked example. It has been noted that the PI pole assignment approach is limited
to the simplest first order model with unity time delay. Finally, it has been emphasised that the
discrete-time model is a function of the sampling interval and that it is often related to, and
can be obtained from, a continuous-time model that is uniquely parameterised and normally
physically meaningful. So, although this book is concerned with digital control, continuous-
time concepts and models cannot be ignored, both in modelling and control system design.
Subsequent chapters of the book will expand on these simple beginnings and consider the

development of control systems to handle the general TF model, with pure time delays and
higher order model polynomials. This will set the scene for the extension of the concepts to
the complexities of optimal, stochastic and multivariable systems.
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3
Minimal State Variable Feedback

The classical approach to control systems analysis for Single-Input, Single-Output (SISO) sys-
tems involves continuous or discrete-time Transfer Function (TF) models, represented in terms
of either the Laplace transform (s-operator) or the backward shift operator (z−1), respectively.
Here, closed-loop stability and satisfactory transient responses are obtained through techniques
such as the Evans Root Locus method (Evans 1948, 1950; Ogata 1970) or Guillimin’s synthe-
sis method (Truxal 1955), both of which allow for the specification of closed-loop pole-zero
patterns. Alternatively, a frequency domain approach is utilised involving Nyquist and Bode
diagrams (Nyquist 1932; Bode 1940; Truxal 1955). One prominent feature of such classical
approaches is that they are generally based on graphical analysis of some sort (see e.g. Kuo
1980, pp. 393–420; Franklin et al. 2006, pp. 230–313; Dorf and Bishop 2008, pp. 407–492).
By contrast, modern control system design methods are usually derived from precise algo-

rithmic computations, often involving numerical optimisation. As mentioned in Chapter 1,
one very important concept is the idea of the state space, which originates from the state
variable method of describing differential equations (Kalman 1960, 1961, 1963; Zadeh and
Descoer, 1963; Rosenbrock 1970, 1974; Kailath 1980; Franklin et al. 2006, pp. 438–593; Dorf
and Bishop 2008, pp. 144–211). While the TF approach discussed in Chapter 2 is concerned
only with input–output characteristics, the state space approach also provides a description
of the non-unique, internal behaviour of the system. For mechanical systems, the states are
often defined to represent physical characteristics, such as the positions and velocities of a
moving body. However, in the more general case considered here, the state space formulation
is derived directly from the previously estimated TF model using special canonical forms.
The present chapter considers minimal state space representations of a SISO-TF model and

shows how these may be employed in the design of State Variable Feedback (SVF) control
systems. In particular, a pole assignment SVF control law is developed for the general linear nth
order system. Such a minimal dimension SVF always involves n states, where n is the highest
power of z in the denominator polynomial of the discrete-time TF model. Two particularly
well-known black-box (i.e. they do not relate obviously to any particular physical system) state
space representations of this minimal type are considered: namely the controllable canonical
form (section 3.1) and the observable canonical form (section 3.2). Some useful mathematical
background is introduced in section 3.3, which discusses the transformation between state
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space and TF models, so defining the characteristic equation, eigenvalues and eigenvectors of
a system.
As we shall see, for a particular state variable representation of the system, the TF model

is completely and uniquely specified. There are, however, an infinite number of possible state
space representations for any given TF model. For example, certain state space representations
can include states that are completely decoupled from the control input and so are uncontrol-
lable by the control input signal. And again, there may be unobservable states that are entirely
decoupled from the output and thus cannot influence the observed behaviour of the system.
Section 3.4 considers these important concepts of controllability and observability. However,
let us start with a straightforward example that demonstrates the non-uniqueness of a state
space model.

Example 3.1 State Space Forms for a Third Order TF Model Consider the following
third order, scalar difference equation:

y(k)+ a1y(k − 1)+ a2y(k − 2)+ a3y(k − 3) = u(k − 1) (3.1)

where y(k) and u(k) are the sampled output and input signals, respectively, whilst a1, a2 and
a3 are constant coefficients. These coefficients or parameters would normally be estimated
from the data {y(k), u(k)} using the identification and estimation methods discussed later in
Chapter 8. When the difference between the true system and the estimated model is significant
to the analysis, the estimateswill be denoted by âi (i = 1, 2, 3). For simplicity here, however, it
will be assumed initially that the parameters are knownwithout any uncertainty. Consequently,
the equivalent TF representation of equation (3.1) is:

y(k) = z−1

1+ a1z−1 + a2z−2 + a3z−3 u(k) (3.2)

in which z−1 denotes the backward shift operator (cf. Example 2.2). The block diagram of this
TF model is illustrated in Figure 3.1.
An illustrative minimal state vector x(k) is defined as follows:

x(k) =

⎡
⎢⎣

x1(k)

x2(k)

x3(k)

⎤
⎥⎦ =

⎡
⎢⎣

y(k)

y(k − 1)
y(k − 2)

⎤
⎥⎦ (3.3)

where x1(k), x2(k) and x3(k) are the state variables.

u(k)

1 + a1z−1 + a2z−2 + a3z−3

z−1 y(k)

Figure 3.1 Block diagram form of the TF model (3.2)
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Note that the model (3.1) or (3.2) is third order and there are three state variables. In this
example, these state variables have been defined straightforwardly as the output signal y(k)
and its past values.
Equation (3.1) or its equivalent (3.2) can be written in the following state space form:

x(k) =

⎡
⎢⎣

x1(k)

x2(k)

x3(k)

⎤
⎥⎦ =

⎡
⎢⎣

−a1 −a2 −a3
1 0 0

0 1 0

⎤
⎥⎦

⎡
⎢⎣

x1(k − 1)
x2(k − 1)
x3(k − 1)

⎤
⎥⎦ +

⎡
⎢⎣
1

0

0

⎤
⎥⎦ u(k − 1) (3.4)

In this case, the output variable y(k) is obtained from an observation equation:

y(k) = [
1 0 0

]
⎡
⎢⎣

x1(k)

x2(k)

x3(k)

⎤
⎥⎦ (3.5)

The relationship between (3.1) and (3.4) is most apparent if we explicitly substitute for the
state variables using (3.3), as follows:

x(k) =

⎡
⎢⎣

y(k)

y(k − 1)
y(k − 2)

⎤
⎥⎦ =

⎡
⎢⎣

−a1 −a2 −a3
1 0 0

0 1 0

⎤
⎥⎦

⎡
⎢⎣

y(k − 1)
y(k − 2)
y(k − 3)

⎤
⎥⎦ +

⎡
⎢⎣
1

0

0

⎤
⎥⎦ u(k − 1) (3.6)

where the first equation (row) relates directly to equation (3.1) and the remaining two are
simply definitions of the delayed output variables (and are necessary to complete the state
vector).
Equations (3.6) are illustrated in Figure 3.2, which represents a straightforward decompo-

sition of the TF model in Figure 3.1.

+

u(k)

y(k)

y(k − 1) y(k − 2) y(k − 3)+

−

a1

a2

a3

z−1 z−1 z−1 z−1

+

+

+

Figure 3.2 State space model described by equations (3.6)
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However, if the state vector is now defined as:

x(k) =

⎡
⎢⎣

x1(k)

x2(k)

x3(k)

⎤
⎥⎦ =

⎡
⎢⎣

−a1x1(k − 1)+ x2(k − 1)+ u(k − 1)
−a2x1(k − 1)+ x3(k − 1)

−a3x1(k − 1)

⎤
⎥⎦ (3.7)

then equation (3.1) or equation (3.2) is described by the state space form:

x(k) =

⎡
⎢⎣

x1(k)

x2(k)

x3(k)

⎤
⎥⎦ =

⎡
⎢⎣

−a1 1 0

−a2 0 1

−a3 0 0

⎤
⎥⎦

⎡
⎢⎣

x1(k − 1)
x2(k − 1)
x3(k − 1)

⎤
⎥⎦ +

⎡
⎢⎣
1

0

0

⎤
⎥⎦ u(k − 1) (3.8)

y(k) = [
1 0 0

]
⎡
⎢⎣

x1(k)

x2(k)

x3(k)

⎤
⎥⎦ (3.9)

The equivalence between {(3.8), (3.9)} and the TF model can be checked by substituting for
the state vector (3.7).
Despite their differences, it is clear that the state space representations developed above,

namely the equation pairs {(3.4), (3.5)} and {(3.8), (3.9)}, both describe the same input–output
relationship specified by the TF model. And it is clear that these are not unique representations
of the TF model; they are simply two specific examples that illustrate the non-uniqueness of
the state space representation.

3.1 Controllable Canonical Form

Let us turn to the general nth order deterministic, unit delay control model introduced in
Chapter 2. However, for notational simplicity, in this chapter we will assume that the orders of
the numerator and denominator polynomials are the same. This assumption does not constrain
the model in any sense, since different orders may be considered by simply setting the relevant
parameters to zero.
Hence, the system difference equation is given by:

y(k)+ a1y(k − 1)+ · · · + an y(k − n) = b1u(k − 1)+ b2u(k − 2)+ · · · + bnu(k − n)

(3.10)

where ai (i = 1 · · · n) and bi (i = 1 · · · n) are constant coefficients. The equivalent TF model
is:

y(k) = b1z−1 + b2z−2 + · · · + bnz−n

1+ a1z−1 + a2z−2 + · · · + anz−n
u(k) = B(z−1)

A(z−1)
u(k) (3.11)



Minimal State Variable Feedback 45

where A(z−1) and B(z−1) are appropriately defined polynomials in z−1. To help develop the
state space form, we can write equation (3.11) as:

y(k) =
(
b1 + b2z−1 + · · · + bnz−n+1) z−1

1+ a1z−1 + a2z−2 + · · · + anz−n
u(k) (3.12)

Furthermore, by introducing an intermediate variable w(k), the TF model can be decomposed
into two components, namely:

w(k) = z−1

1+ a1z−1 + a2z−2 + · · · + anz−n
u(k) (3.13)

and,

y(k) = (
b1 + b2z

−1 + · · · + bnz−n+1) w(k) (3.14)

Generalising from equation (3.3), it is clear that defining the state vector:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w(k)

w(k − 1)
...

w(k − n + 2)
w(k − n + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.15)

yields the following state space representation of the TF model (3.11):

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
...

. . .
...

...
...

0 0 1 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k − 1)
x2(k − 1)

...

xn−1(k − 1)
xn(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u(k − 1)

(3.16)

y(k) = [
b1 b2 · · · bn−1 bn

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

Equations {(3.16), (3.17)} are known as the controllable canonical form1 and are illustrated
in block diagram form by Figure 3.3.

1 A standard form: here, the simplest and most significant controllable form possible without loss of generality.
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u(k)

y(k)

z−1 z−1 z−1 z−1 z−1+

+

xn(k − 1)

−an−1

x1(k) x2(k) xn(k)

−a1

b1 b2 bn

−an

Figure 3.3 Controllable canonical form for the general discrete-time system (3.11)

The controllable canonical form is an example of a minimal state space model since there
are n states (3.15). The advantage of such a representation is that it is straightforward to
construct and yields a convenient structure for the computation of a pole assignment control
algorithm (see below). However, one disadvantage of the controllable canonical form is that
the state vector is not directly available from the measured output because it consists of the
intermediate variable w(k) and its past values.
In this regard, it is clear from equation (3.14) that w(k) is given by:

w(k) = y(k)(
b1 + b2z−1 + · · · + bnz−n+1) (3.18)

Multiplying by z−1/z−1 yields:

w(k) = z−1y(k)

b1z−1 + b2z−2 + · · · + bnz−n
= y(k − 1)

B(z−1)
(3.19)

Therefore, in the controllable canonical form, the minimal state vector is implicitly formed
from the delayed and filtered output variable, where the filter is defined by the numerator
polynomial of the TF model, i.e. B(z−1).

Example 3.2 State Variable Feedback based on the Controllable Canonical Form Con-
sider a second order TF model based on equation (3.11) with n = 2, together with illustrative
numerical values for the parameters:

y(k) = B(z−1)
A(z−1)

u(k) = b1z−1 + b2z−2

1+ a1z−1 + a2z−2 u(k) = 0.5z−1 − 0.4z−2

1− 0.8z−1 + 0.15z−2 u(k) (3.20)

This model was first introduced in Chapter 2 (Example 2.3). It will be utilised for several
examples in this chapter and so is restated here for convenience.
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The minimal state vector associated with the TF model (3.20) is:[
x1(k)

x2(k)

]
=

[
w(k)

w(k − 1)

]
(3.21)

The controllable canonical form is subsequently defined as follows:[
x1(k)

x2(k)

]
=

[
−a1 −a2
1 0

] [
x1(k − 1)
x2(k − 1)

]
+

[
1

0

]
u(k − 1) (3.22)

y(k) = [
b1 b2

] [
x1(k)

x2(k)

]
(3.23)

A linear SVF control law for this system is simply a linear combination of the state
variables, i.e.

u(k) = −l1x1(k)− l2x2(k)+ yd (k) (3.24)

where yd (k) is the command input, while the control gains l1 and l2 are chosen by the designer
to ensure a satisfactory closed-loop response (see below).
The general form of a SVF control algorithm, such as equation (3.24), will be discussed in

Chapter 4. For now, it is sufficient to note that the control input signal u(k) is determined using
a negative feedback of each state variable multiplied by a control gain. In the example above,
the command input is introduced as a straightforward addition to this feedback law: i.e. using
equation (3.19) and equation (3.21), the control law (3.24) is written as:

u(k) = −l1y∗(k − 1)− l2y∗(k − 2)+ yd (k) (3.25)

in which

y∗(k) = 1

B̂(z−1)
y(k) (3.26)

where B̂(z−1) is the estimated numerator polynomial of the control model. The ‘hat’ notation,
i.e. B̂(z−1) = b̂1z−1 + b̂2z−2 is introduced here in order to emphasise the inevitable mismatch
between the true system represented by B(z−1)/A(z−1) and the estimated TF model used for
control system design, i.e. B̂(z−1)/ Â(z−1), where Â(z−1) = 1+ â1z−1 + â2z−2, and {âi , b̂i }
(i = 1, 2) are the parameter estimates.
Combining equation (3.25) and equation (3.26) yields:

u(k) = − l1z−1 + l2z−2

B̂(z−1)
y(k)+ yd (k) (3.27)

The block diagram of the resultant closed-loop control system, with potential model mismatch,
is illustrated by Figure 3.4. Here, the term plant is used to represent the notional true system,
as distinct from the estimated control model.



48 True Digital Control

B(z−1)

B(z−1)

A(z−1)

l1z−1 + l2z−2

yd (k) u(k) y(k)

plant

ˆ

controller

+

−

Figure 3.4 The closed-loop control system for Example 3.2 with model mismatch

Example 3.3 State Variable Feedback Pole Assignment based on the Controllable Canon-
ical Form The SVF framework developed in Example 3.2 will now be used to design a
pole assignment controller (cf. Example 2.6 and Example 2.7). In this regard, block diagram
reduction applied to Figure 3.4 yields the following Closed-Loop Transfer Function (CLTF):

y(k) = B(z−1)

A(z−1)+ (
l1z−1 + l2z−2) B(z−1)

B̂(z−1)

yd (k) (3.28)

The denominator of equation (3.28) reveals a cancellation of the numerator polynomial,
which is implicit in any SVF controller based on the controllable canonical form. However,
using the polynomials defined in equation (3.20) and assuming no plant–model mismatch, i.e.
B(z−1) = B̂(z−1) = b1z−1 + b2z−2, the CLTF reduces to:

y(k) = b1z−1 + b2z−2

1+ (a1 + l1)z−1 + (a2 + l2)z−2 yd (k) (3.29)

Recall from Chapter 2 that the denominator of a TF defines its stability and transient dynamic
behaviour. Therefore, in order to determine the control gains l1 and l2, we consider the
characteristic equation as follows:

1+ (a1 + l1)z
−1 + (a2 + l2)z

−2 = 0 (3.30)

Each of the feedback gains are explicitly associated with different model coefficients in
equation (3.30) so that, when using the controllable canonical form, it is a trivial matter for
the control system designer to obtain a desired closed-loop characteristic equation:

D(z−1) = 1+ d1z
−1 + d2z

−2 = 0 (3.31)

where d1 and d2 are user chosen coefficients, by setting:

l1 = d1 − a1 and l2 = d2 − a2 (3.32)
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Figure 3.5 Closed-loop unit step response of the SVF control system in Example 3.3

Since the roots of the CLTF are known as the poles of the closed-loop system, this approach
is another example of pole assignment, as introduced in Chapter 2. In this regard, note that
equation (3.31) is equivalent to:

D(z) = z2 + d1z + d2 = 0 (3.33)

Therefore, selecting illustrative closed-loop poles of 0.4 and 0.8 on the complex z-plane
yields: (z − 0.4) (z − 0.8) = z2 − 1.2z + 1.32, hence d1 = −1.2 and d2 = 1.32. Now, the
control gains can be computed from equation (3.32) using the model coefficients a1 = −0.8
and a2 = 0.15, resulting in l1 = −0.4 and l2 = 0.17. The final control system is implemented
as shown by Figure 3.4.
The closed-loop response to a unit step in the command input is illustrated by Figure

3.5. For comparison, the open-loop response of the TF model (3.20) to the same input,
without any control, is shown by Figure 2.8a. It is clear that, in this simple example, the
closed-loop behaviour has been modified considerably. The wider issues of control system
performance, as well as the selection of control system gains that will achieve desirable
closed-loop performance, will be discussed in later chapters.
However, the basic SVF algorithm considered above is a Type 0 control system, as discussed

in Chapter 2, indicating that it does not have an inherent unity steady-state gain. Hence, the
final value of the step response in Figure 3.5 is not equal to the desired level yd (k) = 1.0. This
is an obvious disadvantage and its conversion into a Type 1 control system, with inherent unity
steady-state gain, is also discussed in subsequent chapters.

3.1.1 State Variable Feedback for the General TF Model

Following the approach taken in Example 3.3, it is clear that the feedback gains for the general
nth order TF model (3.11) are given by:

li = di − ai (i = 1, 2, · · · n) (3.34)
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where di are the coefficients of the following desired characteristic polynomial:

1+ d1z
−1 + d2z

−2 + · · · + dnz−n (3.35)

This transparency of the pole assignment control design is the main advantage of the con-
trollable canonical form. But, as mentioned previously, while the computation of the control
gains is very straightforward, the practical implementation of this control system is more
problematic because the state vector is not directly available from the measured output.
In Example 3.3, we have extracted the states using equation (3.26) and then implemented the

controller in the form shown by Figure 3.4. Unfortunately, this has disadvantages as a general
solution to the control problem. In particular, the control system is very much dependent
upon the accuracy of the estimated model, with the associated disadvantage of decreased
robustness in the face of uncertainty, as discussed later in Chapter 4. A particularly important
example of its limitations arises if the system is non-minimum phase, with zeros (the roots of
the numerator polynomial) outside the unit circle in the complex z-plane. In this situation, the
feedback loop will have an unstable component, unless there is an exact cancellation of the
B(z−1) polynomial in equation (3.28), which is highly unlikely in any real, practical example.

3.2 Observable Canonical Form

Consider now a new state vector for the general nth order system (3.11) defined in the following
manner [cf. equation (3.7) of Example 3.1]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a1x1(k − 1)+ x2(k − 1)+ b1u(k − 1)
−a2x1(k − 1)+ x3(k − 1)+ b2u(k − 1)

...

−an−1x1(k − 1)+ xn(k − 1)+ bn−1u(k − 1)
−an x1(k − 1)+ bnu(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.36)

The associated state space representation then takes the quite simple form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a1 1 0 · · · 0

−a2 0 1 · · · 0
...

...
...
. . .

...

−an−1 0 0 · · · 1

−an 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k − 1)
x2(k − 1)

...

xn−1(k − 1)
xn(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
...

bn−1
bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u(k − 1) (3.37)

y(k) = [
1 0 · · · 0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.38)
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u(k)

z−1 z−1 z−1 z−1++

bn

−an −a1−an−1

b1bn−1

xn(k) xn−1(k) x2(k) y(k) = x1(k)

Figure 3.6 Observable canonical form for the general discrete-time system (3.11)

This particular realisation of the system is called the observable canonical form and its block
diagram structure is shown in Figure 3.6. It is clear from Figure 3.6 that the state vector is
formed from a combination of input and output signals, defined by the model parameters.
The term ‘observable’ canonical form indicates that it is a particularly convenient state space

model to employ when considering how state variables can be reconstructed (or estimated in
the stochastic situation), based on themeasured signals and knowledge of the state spacemodel
(see e.g. Luenberger 1971; Kailath 1980; Åström & Wittenmark 1984; Young 2011). Such
techniques are potentially important in any implementation of SVF control based on a minimal
state space model. However, they are not discussed in detail here, because we obviate their
need by exploiting the alternative Non-Minimal State Space (NMSS) form that is considered
in Chapter 4.

Example 3.4 State Variable Feedback based on the Observable Canonical Form Con-
sider again the second order TF model (3.20). Defining the vector:

[
x1(k)

x2(k)

]
=

[
y(k)

−a2y(k − 1)+ b2u(k − 1)

]
(3.39)

the observable canonical form is given by the following second order state space model:

[
x1(k)

x2(k)

]
=

[
−a1 1

−a2 0

] [
x1(k − 1)
x2(k − 1)

]
+

[
b1
b2

]
u(k − 1) (3.40)

y(k) = [
1 0

] [
x1(k)

x2(k)

]
(3.41)

so that a linear SVF control law for this example is again:

u(k) = −l1x1(k)− l2x2(k)+ yd (k) (3.42)
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Figure 3.7 The closed-loop control system for Example 3.4 with model mismatch

where yd (k) is the command input. Note that x1(k) is equal to the system output y(k) and is,
therefore, directly observed (measured). However, x2(k) is not observed, which once again
prevents us from directly implementing the control law. Instead, we employ the model of the
system:

B̂(z−1)
Â(z−1)

= b̂1z−1 + b̂2z−2

1+ â1z−1 + â2z−2 (3.43)

to provide estimates of the states (3.39): i.e. in this case:

u(k) = −l1y(k)− l2
(−â2y(k − 1)+ b̂2u(k − 1)) + yd (k) (3.44)

and the closed-loop system is represented in the block diagram form by Figure 3.7.
It is interesting to note that, whereas the SVF controller based on a controllable canonical

form only involves feedback of the output variable (Figure 3.4), here the control algorithm
requires y(k), y(k − 1) and u(k − 1) (Figure 3.7). This observation will assume greater sig-
nificance when we introduce NMSS models in Chapter 4.
Assuming no plant–model mismatch, i.e. B(z−1) = B̂(z−1) and A(z−1) = Â(z−1), the CLTF

associated with Figure 3.7 takes the form:

y(k) = b1z−1 + b2z−2

1+ (a1 + l2b2 + b1l1) z−1 + (a2 + l2b2a1 + b2l1 − b1l2a2) z−2 yd (k) (3.45)

As before, a pole assignment control algorithm can be derived by equating the coefficients of
the denominator polynomial with the desired coefficients from equation (3.33). In this case,
however, the solution of two simultaneous equations is required to find the unknown control
gains l1 and l2. Not surprisingly, therefore, the general nth order system would require the
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solution of n simultaneous equations, making the pole assignment solution more computa-
tionally intensive when using this observable canonical form than the previous controllable
canonical form.

3.3 General State Space Form

The general state space representation of a linear, discrete-time, SISO system takes the fol-
lowing form:

x(k) = Fx(k − 1)+ gu(k − 1) (3.46)

y(k) = hx(k) (3.47)

where x(k) is the state vector, u(k) and y(k) are the input and the output variables, respectively;
and the state transition matrix F, input vector g and output vector h are all of appropriate
dimensions. For minimal SISO state space representations, as considered in this chapter, F is
a n × n square matrix, g is a n × 1 column vector and h is a 1× n row vector. All the state
space models discussed earlier (i.e. Example 3.1, Example 3.2 and Example 3.4) take the form
{(3.46), (3.47)}, which is illustrated in Figure 3.8.
Note that, as discussed in Chapter 2, discrete-time control system design requires at least

one sample time delay in the control model, which is implicit in the state space representation
{(3.46), (3.47)} and the TF model (3.11). Notwithstanding this requirement, a state space
model with no time delay can be developed by the inclusion of a ‘feed-through’ u(k) variable
in the output equation (3.47), i.e. y(k) = hx(k)+ b0u(k), where b0 is a constant coefficient
[see equation (2.11)].

3.3.1 Transfer Function Form of a State Space Model

Using the state equation (3.46):

x(k) = Fz−1x(k)+ gz−1u(k) (3.48)

where, as before, z−1 is the backward shift operator. Hence,

(I − Fz−1)x(k) = gz−1u(k) (3.49)

u(k) x(k) y(k)
z−1

z−1

h
+

+

F

g

Figure 3.8 Block diagram form for the general state space system description {(3.46), (3.47)}
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so that

x(k) = (I − Fz−1)−1gz−1u(k)

and substituting for x(k) in the observation equation (3.47):

y(k) = hx(k) = h(I − Fz−1)−1gz−1u(k) (3.50)

The TF representation G1(z−1) of the state space model {(3.46), (3.47)} is:

y(k)

u(k)
= G1(z

−1) = h(I − Fz−1)−1gz−1 (3.51)

This TF can be written equivalently in terms of the forward shift operator z, i.e.

y(k)

u(k)
= G1(z) = h(z I − F)−1g (3.52)

As stated above, the TF G1(z) completely defines the input–output behaviour of the system
and is independent of the state space representation. This becomes apparent if we now define
a new state vector x∗(k) = T x(k), where T is a non-singular transformation matrix.
Replacing x(k) in {(3.46), (3.47)} with T−1x∗(k):

x∗(k) = TFT−1x∗(k − 1)+ Tgu(k − 1) (3.53)

and

y(k) = hT−1x∗(k) (3.54)

The input–output TF from {(3.53), (3.54)} is given by:

y(k)

u(k)
= hT−1(I − TFT−1z−1)−1Tgz−1 = h(I − Fz−1)−1gz−1 = G1(z

−1) (3.55)

Hence, the TF model G1(z−1) is independent of the state space representation.

Example 3.5 Determining the TF from a State Space Model Substituting the numerical
values of the TF model (3.20) into the controllable canonical form {(3.22), (3.23)} yields:

x(k) =
[
0.8 −0.15
1.0 0

]
x(k − 1)+

[
1

0

]
u(k − 1) (3.56)

y(k) = [
0.5 −0.4 ]

x(k) (3.57)
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Using (3.51) and the standard rules of matrix inversion (see Appendix A), the TF is derived in
terms of the backward shift operator z−1, as follows:

G1(z−1) = [
0.5 −0.4 ] [

1− 0.8z−1 0.15z−1

−z−1 1

]−1 [
1

0

]
z−1

= z−1

1− 0.8z−1 + 0.15z−2
[
0.5 −0.4 ] [

1 0.15z−1

−z−1 1− 0.8z−1

] [
1

0

]

= 0.5z−1 − 0.4z−2

1− 0.8z−1 + 0.15z−2

(3.58)

as expected from equation (3.20). The equivalent forward shift operator form of the TF is:

G1(z) = 0.5z − 0.4
z2 − 0.8z + 0.15 (3.59)

The following subsection examines the relationship between TF and state space models in
more detail.

3.3.2 The Characteristic Equation, Eigenvalues and Eigenvectors

Noting the procedure for the inversion of a matrix, the z-operator TF model (3.52) can be
rewritten as:

G1(z) = h(z I − F)−1g = h (adj(z I − F)) g
|(z I − F)| (3.60)

where the determinant |(z I − F)| is called the characteristic polynomial. The characteristic
equation of the system is obtained by equating this determinant to zero, i.e.

|(z I − F)| = 0 (3.61)

Evaluating the determinant and equating to zero yields:

|(z I − F)| = zn + a1z
n−1 + a2z

n−2 + · · · + an = 0 (3.62)

while, in terms of the backward shift operator, the equivalent result is given by:

∣∣(I − Fz−1)
∣∣ = 1+ a1z

−1 + a2z
−2 + · · · + anz−n = 0 (3.63)

Note that the dimension of the matrix F, in this minimal state space case, is always equal to
n × n, hence the order of the characteristic equation is also n; and it is clear from equation
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(3.62) and equation (3.63) that the characteristic equation of F is equivalent to the characteristic
equation of the TF model (3.11).
In mathematics, the characteristic equation of the n × n matrix F is usually denoted as:

|(λI − F)| = λn + a1λ
n−1 + a2λ

n−2 + · · · + an = 0 (3.64)

The roots of equation (3.64) are called the eigenvalues of F (see also Hoffman and Kunze
1971, p. 182; Marcus and Minc 1988, p. 145; O’Neil 2007, pp. 267–276).
As discussed in Chapter 2, the roots of A(z) = 0 obtained from the TF model (3.11) are

called the poles of the system. For a minimal state space model, it follows that the eigenvalues
of the matrix F are equal to the poles of the equivalent TF model. By contrast, in Chapter 4,
we will show that if the state space representation is non-minimal, then the poles of the TF
model represent a subset of the eigenvalues of F.
Finally, any non-zero vector wi = [

wi1 wi2 · · · win
]T
which satisfies the following matrix

equation:

(λi I − F)wi = 0 (3.65)

where λi (i = 1, 2, . . . , n) is the ith eigenvalue of F and 0 is a null vector (i.e. zeros), is called
the eigenvector associated with λi .
Note that since the eigenvalues of F are the poles of the system TF, it follows that the

eigenvalues of F̃ = T−1FT are the same. In other words, the eigenvalues are unaffected by a
similarity transformation. To show this, let wi denote an eigenvector of F. Then, by definition,
Fwi = λ i wi , where λ i is the eigenvalue corresponding to wi . Now if we define w̃i = T−1wi

as the transformed eigenvector, then:

F̃w̃i = F̃(T−1wi ) = (T−1FT )(T−1wi ) = T−1Fwi = T−1λ i wi = λ i w̃i

Thus, the transformed eigenvector is an eigenvector of the transformed F matrix, and the
eigenvalue is unchanged.

Example 3.6 Eigenvalues and Eigenvectors of a State Space Model Returning to the TF
model (3.20) and the associated state space form {(3.56), (3.57)}, the state transition matrix
F is given by:

F =
[
0.8 −0.15
1.0 0

]
(3.66)

so that the characteristic equation (3.64) is simply:

|(λI − F)| =
∣∣∣∣∣λ − 0.8 0.15

−1.0 λ

∣∣∣∣∣ = 0 (3.67)
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i.e.

λ2 − 0.8λ + 0.15 = 0 or (λ − 0.5)(λ − 0.3) = 0 (3.68)

This shows that the eigenvalues and TF poles are λ1 = 0.3 and λ2 = 0.5. From equation (3.65),
therefore, the eigenvectors of F satisfy:

λi wi − Fwi = 0 i = 1, 2 (3.69)

In order to find the corresponding eigenvector, λ = 0.3 is substituted into this equation:

0.3

[
w11
w12

]
−

[
0.8 −0.15
1.0 0

] [
w11
w12

]
=

[
0

0

]
(3.70)

so that, lettingw12 = 1, the eigenvector corresponding toλ1 = 0.3 isw1 = [ 0.3 1 ]T . Similarly,
the eigenvector corresponding to λ2 = 0.5 can be found from:

0.5

[
w21
w22

]
−

[
0.8 −0.15
1.0 0

] [
w21
w22

]
=

[
0

0

]
(3.71)

and this is satisfied when w21 = 1 and w22 = 2. Hence, the eigenvector corresponding to
λ1 = 0.5 is w2 = [ 1 2 ]T . The eigenvectors are useful in various ways but, within the present
context, they facilitate the transformation of the state space model into a diagonal ‘decoupled’
form, as shown below.

3.3.3 The Diagonal Form of a State Space Model

In general, if the state transition matrix F has distinct (i.e. non-repeated), real eigenval-
ues, the eigenvectors are linearly independent. Furthermore, if the columns of the matrix
T−1 in equation (3.53) are chosen as the eigenvectors of F, then TFT−1will be a diagonal
matrix, i.e.

TFT−1 = � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.72)

where λi (i = 1, 2, . . . , n) are the eigenvalues of F, as before. In this case, the state equations
in (3.53) are conveniently decoupled (i.e. each state variable appears in only one equation).
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The state equations in this decoupled form are written as:

x∗(k) = � x∗(k − 1)+ T gu(k − 1)
y(k) = hT−1x∗(k)

(3.73)

where x∗(k) = T x(k) is the transformed, decoupled state vector.

Example 3.7 Determining the Diagonal Form of a State Space Model Consider again
the system described by the TF model (3.20) and associated state space form {(3.56), (3.57)}.
Noting the eigenvectors obtained in the previous section, T−1 is defined:

T−1 = [
w1 w2

] =
[
0.3 1

1 2

]
(3.74)

Therefore, the transformation matrix T is:

T =
[

−5.0 2.5

2.5 −0.75

]
(3.75)

and

TFT−1 =
[

−5.0 2.5

2.5 −0.75

] [
0.8 −0.15
1.0 0

] [
0.3 1

1 2

]
=

[
0.3 0

0 0.5

]
= � (3.76)

Finally, note that if the eigenvalues of F are not all distinct, then it may not be possible
to obtain independent eigenvectors and hence determine the diagonal form. In this case, the
F matrix can be transformed into a Jordan form, in which the eigenvalues of F lie on the
main diagonal, while some of the elements immediately above the main diagonal are unity.
However, this form has no importance for the present book and the reader is advised to consult
Ayres (1962, p. 206) or Kuo (1980, pp. 195–198) for further information.

3.4 Controllability and Observability

The twin concepts of controllability and observability, first introduced by Kalman (1960), are
very important in SVF control system design, since they are concernedwith the interconnection
between the input, state and the output of a state space model. In this book, the controllability
is particularly significant, since it determines whether or not we can control a system’s state
using the control input variable.

3.4.1 Definition of Controllability (or Reachability2)

The digital system described by equations {(3.46), (3.47)} is controllable (or reachable) if,
for any initial state x(0), it is possible to find an unconstrained control sequence which will
transfer it to any final state x(n) (not necessarily the origin) in a finite time (Kuo 1980, p. 423;
Middleton and Goodwin 1990, p. 180).

2 Note that the term reachability is often preferred for discrete-time systems.
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3.4.2 Rank Test for Controllability

Using {(3.46), (3.47)}, the desired state x(n), in terms of the initial state x(0) and the input
sequence u(0), u(1), . . . , u(n − 1), is given by:

x(n) = Fn x(0)+ gu(n − 1)+ Fgu(n − 2)+ · · · + Fn−2gu(1)+ Fn−1gu(0) (3.77)

or

x(n)− Fn x(0) = [
g Fg · · · Fn−2g Fn−1g

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(n − 1)
u(n − 2)

...

u(1)

u(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.78)

The left-hand side of equation (3.78) is known (as part of the definition above), while the
right-hand side is a function of the input signals. Since equation (3.78) also represents n
simultaneous algebraic equations, these equationsmust be linearly independent for the solution
to exist. Hence, a necessary and sufficient condition for controllability, is that the following
controllability matrix:

S1 = [
g Fg · · · Fn−2g Fn−1g

]
(3.79)

is of full rank n, i.e. that it is non-singular and can be inverted.

3.4.3 Definition of Observability

The digital system described by equations {(3.46), (3.47)} is observable if the state vector
x(k), at any sample time k, can be determined from the systemmodel and complete knowledge
of the system’s input and output variables (Kuo 1980, p. 430; Middleton and Goodwin 1990,
p. 196).

3.4.4 Rank Test for Observability

Consider the system {(3.46), (3.47)} with the initial state vector x(0). Since the effect of
the known input can always be subtracted from the solution, we will simplify the analysis by
assuming u(k − 1) = 0 in {(3.46), (3.47)}. This yields the following linear algebraic equations
for the output:

y(0) = hx(0)

y(1) = hx(1) = hFx(0)
...

y(n − 1) = hFn−1x(0)

(3.80)
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or, in vector-matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h

hF
...

hFn−2

hFn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y(0)

y(1)
...

y(n − 2)
y(n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.81)

and it is clear that the initial state x(0), can be found if and only if the following observability
matrix:

S0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h

hF
...

hFn−2

hFn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.82)

is of full rank n. Once the initial state x(0) is known, then the state equation (3.46) is employed
to find x(1), x(2), . . . , x(n − 1) and the definition of observability is satisfied. Finally, note that
the observable canonical form defined in section 3.2 is always observable, but not necessarily
controllable, while the opposite is true of the controllable canonical form in section 3.1.

Example 3.8 Rank Tests for a State Space Model Consider the system (3.56). The
controllability matrix is:

S1 = [
g Fg

] =
[
1 0.8

0 1

]
(3.83)

which is non-singular, i.e. it has rank 2. Hence, the state space representation is completely
controllable, as expected for this controllable canonical form. The observability matrix of the
system is:

S0 =
[

h

hF

]
=

[
0.5 −0.4
0 −0.25

]
(3.84)

which is again non-singular, so the system is also observable.
Now consider an arbitrarily chosen third order system based on {(3.46), (3.47)} with:

F =

⎡
⎢⎣
0.8 −0.15 −0.4
1 0 0

0 0 0

⎤
⎥⎦ ; g =

⎡
⎢⎣
0.5

0

1

⎤
⎥⎦ ; h = [

1 0 0
]

(3.85)
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The controllability matrix is:

S1 = [
g Fg F2 g

] =

⎡
⎢⎣
0.5 0 −0.075
0 0.5 0

1 0 0

⎤
⎥⎦ (3.86)

which is non-singular, i.e. it has rank 3. Hence the state space representation is again control-
lable. However, the observability matrix of the system is:

S0 =

⎡
⎢⎣

h

hF

hF2

⎤
⎥⎦ =

⎡
⎢⎣
1 0 0

0.8 −0.15 −0.4
0.49 −0.12 −0.32

⎤
⎥⎦ (3.87)

which is singular and this system is unobservable.

3.5 Concluding Remarks

This chapter has introduced the concept of SVF, based on the definition of various minimal
state space models for SISO systems. Such non-unique, minimal state space representations
of a TF model always consist of n states, where n is the order of the system (i.e. the highest
power of z in the denominator polynomial of the TF model). The advantage of SVF is that it
allows us to completely specify the poles of the closed-loop characteristic equation, thereby
ensuring the stability and desired transient response of the control system. This concept was
briefly demonstrated in the present chapter (Example 3.3), but is developed in a more general
form in Chapter 4 and Chapter 5.
While the computation of the control gains is straightforward, the practical implementation

of minimal SVF control is more difficult, since the state vector is not normally available
directly from the measured output. Therefore, a SVF algorithm is required that generates a
reconstruction, in the deterministic case, and an estimate, in the stochastic case, of the unknown
states. In the present book, however, we will concentrate on an alternative NMSS formulation
of the control problem, where the entire state is directly available from the input and output
measurements, hence state reconstruction and/or estimation are unnecessary complications.
It will suffice to point out, therefore, that one approach to solving the minimal SVF control

problem is to formulate it in stochastic terms by invoking the separation principle (Franklin
et al. 2006, pp. 511–513; Dorf and Bishop 2008, pp. 773–775), as mentioned in Chapter 1, and
introducing an optimal Kalman Filter for state estimation (Kalman 1960): see section 6.4 for an
example of this approach. The deterministic equivalent is the Luenberger observer (Luenberger
1971). In either case, however, this adds complexity to the design and the controller becomes
more dependent on the estimated model of the system, with the associated disadvantage of
decreased robustness. One approach that is aimed at improving the robustness is Loop Transfer
Recovery (LTR: see e.g. Bitmead et al. 1990; Lecchini et al. 2006): here robustness is obtained
by matching the open-loop return ratio of the designed feedback loop with the open-loop
return ratio of the Kalman Filter associated with the selected noise model. However, a much
more straightforward alternative is the NMSS approach considered in subsequent chapters.
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4
Non-Minimal State Variable
Feedback

The state space formulation of control system design is, perhaps, the most natural and con-
venient approach for use with computers. It has the further advantage over Transfer Function
(TF) design methods of allowing for a simplified and unified treatment of both Single-Input,
Single-Output (SISO) andMulti-Input, Multi-Output (MIMO), multivariable systems (Kailath
1980; Kuo 1980; Skogestad and Postlethwaite 2005). Most importantly, the approach allows
for the implementation of powerful State Variable Feedback (SVF) control designs, including
pole assignment, Linear Quadratic Gaussian (LQG) optimal control (i.e. the optimal control
of linear stochastic systems with Gaussian disturbances, based on a quadratic cost function)
and other optimal ‘risk sensitive’ procedures, such as H∞ (e.g. Mustafa and Glover 1990) and
the related Linear Exponential of Quadratic Gaussian (LEQG) approach of Whittle (1990),
which allow for a degree of optimism or pessimism in the optimal control system design.
Unfortunately, the state space approach has one major difficulty: namely, the state vec-

tor required for SVF control is not normally available for direct measurement. The standard
approach to this problem is the use of state variable estimation and reconstruction algorithms,
most notably the Kalman Filter (Kalman 1960) for stochastic systems and the related Luen-
berger observer (Luenberger 1964, 1971) for deterministic systems. Here, an estimate or
reconstruction of the state vector is generated by the algorithm and can be used in the imple-
mentation of the control system, in which it replaces the unmeasurable true state vector in the
deterministic SVF control law. This separation of the deterministic control system design and
state variable estimation functions, followed by their amalgamation in the final control system
implementation, is justified theoretically by the separation, or certainty equivalence, theorem
for LQG optimal control (see Chapter 6 and e.g.Wonham 1968; Åström andWittenmark 1984,
pp. 273–275; Green and Limebeer 1995, pp. 179–208; Franklin et al. 2006, pp. 511–513; Dorf
and Bishop 2008, pp. 773–775; Gopal 2010, pp. 413–428). Unfortunately, as pointed out
in Chapter 3, this elegant LQG approach not only adds complexity to the design but, more
importantly, the controller becomes more dependent on the estimated model of the system,

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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with the associated disadvantage of decreased robustness (Maciejowski 1985; Bitmead et al.
1990).
In the present chapter, we introduce another, much simpler solution to this problem, by

defining a Non-Minimal State Space (NMSS) form. Here, the state vector is composed only
of those variables that can be measured directly and then stored in the digital computer for
use by the control law (section 4.1). In the discrete-time, backward shift operator case, these
are the present and past sampled values of the output variable, and the past sampled values
of the input variable. Once the controllability conditions have been established for the NMSS
model (section 4.2), the non-minimal SVF controller can be implemented straightforwardly,
without resort to state reconstruction (section 4.3), thus simplifying the control system design
and making it more robust to the inevitable uncertainty associated with the estimated model
of the system.
The final sections of the chapter elaborate on the relationship between non-minimal and

minimal SVF control (section 4.4), while the theoretical and practical advantages of the
non-minimal approach are illustrated by worked examples (section 4.5).

4.1 The NMSS Form

The major attraction of the NMSS representation of a linear, discrete-time system is the
simplicity of the state vector, which is composed only of the present and past sampled values
of the input and output signals, all of which are directly measurable (for standard discrete-time
models, see Hesketh 1982, Young et al. 1987, Wang and Young 1988 and Taylor et al. 2000;
and for delta operator discrete-time systems, see Young et al. 1998 and Chotai et al. 1998).
Indeed, the NMSS model is the natural state space description of a discrete-time TF model,
since its dimension is dictated by the complete structure of the model, i.e. the denominator
polynomial order n, numerator polynomial order m and time delay τ (see below).
This is in contrast to minimal state space descriptions, which only account for the order

of the denominator and whose state variables, therefore, usually represent combinations of
input and output signals, as exemplified by the observable canonical form of the state space
introduced in section 3.2.

4.1.1 The NMSS (Regulator) Representation

A regulation control system, or ‘regulator’, is a Type 0 closed-loop system (see Examples
2.4 and 3.3) that is concerned only with ensuring closed-loop stability and the maintenance
of closed-loop transient dynamics that are satisfactory in some sense. It is not intended for
maintaining ‘set-points’ or for tracking the changes in a command input [e.g. the yd (k) of
Chapters 2 and 3], which requires Type 1 servomechanism control.
As we shall see in Chapter 5, it is straightforward to design a NMSS control system that

yields a Type 1 closed-loop systemwith inherent regulatory and tracking behaviour. Moreover,
such Type 1 NMSS control can be extended quite straightforwardly to multivariable systems,
as shown in Chapter 7. For initial tutorial purposes, however, the present chapter is limited to
consideration of NMSS control in the SISO regulator case, i.e. a Type 0 control system and
with one input–output pathway.
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Let us start with the following discrete-time TF model in the backward shift operator z−1:

y(k) = B(z−1)
A(z−1)

u(k) (4.1)

where

A(z−1) = 1+ a1z
−1 + a2z

−2 + · · · + anz−n (an �= 0) (4.2)

B(z−1) = b1z
−1 + b2z

−2 + · · · + bm z−m (bm �= 0) (4.3)

Once again, it is important to note that discrete-time control systems require at least one sample
time delay, which is implicit in the model above. As a result, if there is no delay in the model
of the system estimated from data, then it is necessary to introduce such a ‘false’ delay on the
control input u(k).
Any additional time delay of τ > 1 samples can be accounted for simply by setting the

τ − 1 leading parameters of the B(z−1) polynomial to zero, i.e. b1 . . . bτ−1 = 0 (see Example
4.3). Finally, and in contrast to Chapter 3, it is useful to make the distinction here between the
denominator polynomial order n and the numerator polynomial order m.
It is straightforward to show (see Example 4.1, Example 4.3 and Example 4.5) that the

model (4.1) can be written in the following NMSS form:

x(k) = Fx(k − 1)+ gu(k − 1) (4.4)

with an associated output equation:

y(k) = hx(k) (4.5)

where the state transition matrix F, input vector g, and output vector h are defined as follows:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm

1 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)

g = [
b1 0 · · · 0 0 1 0 · · · 0 0

]T
(4.7)

h = [
1 0 · · · 0 0 0 0 · · · 0 0

]
(4.8)
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The non-minimal state vector x(k) is defined in terms of the present and past sampled outputs
and the past sampled inputs, i.e.

x(k) = [
y(k) y(k − 1) · · · y(k − n + 1) u(k − 1) u(k − 2) · · · u(k − m + 1)

]T

(4.9)

The non-minimal state vector (4.9) has an order of (n + m − 1). When m > 1 (i.e. when the
system has zeros and/or pure time delays), the NMSS form has more states than the minimal
state space representations discussed in Chapter 3. Hence, as noted above, we refer to this
description of the system as a NMSS representation.
In the control literature, the idea of extending the state space from its minimal dimension has

a long history: for example, Young andWillems (1972) showed how the addition of integral-of-
error states introduced inherent Type 1 servomechanism performance in SVF control systems;
and the further extension of this idea to include ‘input–output’ state variables of the above
kind, in addition to the integral-of-error states, was suggested by Young et al. (1987). The
above, purely regulatory form of the NMSS, was suggested by Hesketh (1982) within a pole
assignment control context. More recently, a number of different NMSS forms have been
suggested for a range of application areas (Taylor et al. 1998, 2000, 2009, 2012; Taylor and
Shaban 2006; Wang and Young 2006; Gonzalez et al. (2009; Exadaktylos and Taylor 2010).
They have also appeared in various other areas of science. For example, in the time series
literature, Priestley (1988) used an NMSS model in his work on state-dependent parameter
estimation, and Burridge and Wallis (1990) use a NMSS model in research on the seasonal
adjustment of periodic time series.
Before proceeding further, it is important to note the difference between the output signal

y(k) and the output observation vector y(k) = x(k). The latter may be straightforwardly
obtained at every sampling instant, provided that the past sampled values of the input and
the output are stored in the computer control system. In particular, note that while the vector
h in equation (4.8) is chosen to highlight the essential SISO nature of the model, this tends
to conceal the fact that all of the state variables in (4.9) can be observed at the kth sampling
instant. Thus, for some analytical purposes, it makes sense to utilise the following observation
equation:

y(k) = H x(k); H = In+m−1 (4.10)

In equation (4.10), In+m−1 is the (n + m − 1)th order identity matrix, i.e.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k)
y(k − 1)

...
y(k − n + 1

u(k − 1)
...

u(k − m + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 0 1 0 0 0
0 0 0 0 1 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(k) (4.11)
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In this manner, we explicitly acknowledge that all of the state variables can be observed at the
kth sampling instant, so that the NMSS form is trivially observable! Moreover, if the system
can also be shown to be controllable, then any SVF design will yield a control system that can
be directly implemented in practice, utilising only the measured input and output variables,
together with their stored past values. In contrast to the SVF examples considered in Chapter
3, therefore, a model-based estimation or reconstruction of the states is not required.

4.1.2 The Characteristic Polynomial of the NMSS Model

Using equation (3.64), the characteristic polynomial S(λ) of the NMSS representation is
given by:

S(λ) = |Iλ − F| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + a1 a2 · · · an−1 an −b2 −b3 · · · −bm−1 −bm

−1 λ · · · 0 0 0 0 · · · 0 0
0 −1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · −1 λ 0 0 · · · 0 0

0 0 · · · 0 0 λ 0 · · · 0 0
0 0 · · · 0 0 −1 λ · · · 0 0
0 0 · · · 0 0 0 −1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.12)

Evaluating the determinant yields:

S(λ) = |Iλ − F| = λm−1 {
λn + a1λ

n−1 + · · · + an
} = λm−1A∗(λ) (4.13)

where A∗(λ) = λn + a1λn−1 + · · · + an . Note that S(λ) is the product of the characteristic
polynomial of the original TF model (or the equivalent minimal state space representation)
and a term λm−1, where the latter is due to the additional states in the NMSS model.

Example 4.1 Non-Minimal State Space Representation of a Second Order TF Model
Consider the following second order TF model from Chapter 2 and Chapter 3:

y(k) = b1z−1 + b2z−2

1+ a1z−1 + a2z−2 u(k) = 0.5z−1 − 0.4z−2

1− 0.8z−1 + 0.15z−2 u(k) (4.14)

In the context of the general TF model (4.1), n = m = 2 and the system has unity time delay
(τ = 1). The non-minimal state vector has an order of n + m − 1 = 3, i.e. there are three state
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variables. Using equation (4.4), equation (4.5), equation (4.6), equation (4.7), equation (4.8)
and equation (4.9), the NMSS model is defined as follows:

⎡
⎣ y(k)

y(k − 1)
u(k − 1)

⎤
⎦ =

⎡
⎣−a1 −a2 b2
1 0 0
0 0 0

⎤
⎦

⎡
⎣ y(k − 1)

y(k − 2)
u(k − 2)

⎤
⎦ +

⎡
⎣ b1
0
1

⎤
⎦ u(k − 1) (4.15)

y(k) = [
1 0 0

] ⎡
⎣ y(k)

y(k − 1)
u(k − 1)

⎤
⎦ (4.16)

Examination of the difference equation obtained from equation (4.14), i.e.

y(k) = −a1y(k − 1)− a2y(k − 2)+ b1u(k − 1)+ b2u(k − 2) (4.17)

verifies that {(4.15),(4.16)} holds as one particular state space representation of the system but
one where the coefficients are defined directly from the coefficients in the TF model. Indeed, it
can be considered as the most obvious state space representation of the TF model. Substituting
for the numerical values (4.14), the state transition matrix F, input vector g and output vector
h are given by:

F =
⎡
⎣0.8 −0.15 −0.4
1 0 0
0 0 0

⎤
⎦ ; g =

⎡
⎣0.50
1

⎤
⎦ ; h = [

1 0 0
]

(4.18)

The observation matrix (4.10) is a 3× 3 dimension identity matrix, i.e. H = I3.
The characteristic equation for this NMSS model is determined from equation (4.12):

|(λI − F)| =
∣∣∣∣∣∣
λ − 0.8 0.15 0.4

−1 λ 0
0 0 λ

∣∣∣∣∣∣ = 0 (4.19)

Evaluating the determinant yields λ (λ2 − 0.8λ + 0.15) = 0, hence the eigenvalues are 0.5,
0.3 and 0. The eigenvalues 0.5 and 0.3 are equivalent to those of the minimal state space model
(Example 3.6) and are also the poles of the original TF model (Example 2.3). The eigenvalue
at the origin owes its existence to the additional state u(k − 1).

4.2 Controllability of the NMSS Model

If the NMSS model is to be used as the basis for the design of SVF control systems, it is
important to evaluate the controllability conditions of the model. Since the NMSS form differs
from the conventional minimal approach, these are fully developed in Appendix C using the
Popov, Belevitch and Hautus (PBH) test (Kailath 1980). However, we will see that the standard
results for minimal systems discussed in Chapter 3 are also applicable.
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Theorem 4.1 Controllability of the NMSS Representation Given a SISO, discrete-time
system described by the TF model (4.1), the NMSS representation (4.4), as defined by the pair
[F, g], is completely controllable (or reachable) if and only if the polynomials A(z−1) and
B(z−1) are coprime (Appendix C).

Comment on the Controllability Conditions of Theorem 4.1 Appendix C shows that the
modes of the system specified by λ = 0 are always controllable in the NMSS representation.
In fact, from the formulation of the NMSS model, we realise that these modes have been
deliberately introduced into the system by u(k − 1), u(k − 2), . . . , u(k − m + 1). These are
obviously controllable since u(k) represents our control input signal.
The coprime condition is equivalent to the standard requirement for SVF control systems,

namely that the TF model (4.1) should have no pole-zero cancellations. Consequently, nothing
has been lost in controllability terms bymoving to theNMSS description, except to increase the
effective order of the system from n to n + m − 1. At the same time, an enormous advantage
has been gained: we now have direct access to SVF control based only on the sampled input
and output signals.
Finally, the controllability conditions of Theorem 4.1 are equivalent to the normal require-

ment that the controllability matrix associated with the NMSS representation:

S1 = [
g Fg F2g · · · Fn+m−2g

]
(4.20)

has full rank (n + m − 1), i.e. that it is non-singular. Equation (4.20) takes a similar form to
equation (3.79), here revised to account for the order of the NMSS model.

Example 4.2 Ranks Test for the NMSS Model Returning to the numerical example
described by equations (4.18), since the TF model (4.14) has no pole-zero cancellations, the
NMSS model is clearly controllable. However, this result can be verified by examining the
controllability matrix:

S1 = [
g Fg F2g

] =
⎡
⎣0.5 0 −0.075
0 0.5 0
1 0 0

⎤
⎦ (4.21)

which is non-singular, i.e. it has rank 3.

4.3 The Unity Gain NMSS Regulator

The SVF control law associated with the above NMSS model can be written in the following
vectorised form:

u(k) = −kT x(k)+ kd yd (k) (4.22)
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where yd (k) is the command input, kd is a control gain for the command input and k is the
SVF gain vector, defined as:

k = [
f0 f1 · · · fn−1 g1 · · · gm−1

] T
(4.23)

in which the feedback control gains f0, f1, . . . , fn−1, g1, . . . , gm−1 are selected by the
designer to achieve desired closed-loop characteristics, as illustrated by Example 4.4 (and,
more generally, by the various case studies and design approaches considered elsewhere in this
book). As also shown later, the control gain on the command input, kd is chosen to produce
a designer-specified steady-state gain (normally unity to provide command input tracking).
Expanding the terms in (4.22) yields:

u(k) = − f0y(k)− f1y(k − 1)− · · · − fn−1y(k − n + 1)
−g1u(k − 1)− · · · − gm−1u(k − m + 1)+ kd yd (k)

(4.24)

Equation (4.22) and equation (4.24) represent the NMSS regulator control law.

Example 4.3 Regulator Control Law for a NMSS Model with Four State Variables
Consider the following second order TF model with three numerator parameters:

y(k) = b1z−1 + b2z−2 + b3z−3

1+ a1z−1 + a2z−2 u(k) (4.25)

In the context of the general TF model (4.1), it is clear that n = 2, m = 3 and τ = 1. The
non-minimal state vector has an order of n + m − 1 = 4, i.e. there are four state variables.
Utilising equation (4.4), equation (4.5), equation (4.6), equation (4.7), equation (4.8) and
equation (4.9), the NMSS model is defined by:

⎡
⎢⎢⎣

y(k)
y(k − 1)
u(k − 1)
u(k − 2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−a1 −a2 b2 b3
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y(k − 1)
y(k − 2)
u(k − 2)
u(k − 3)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

b1
0
1
0

⎤
⎥⎥⎦ u(k − 1) (4.26)

The observation matrix (4.10) is a 4× 4 dimension identity matrix, i.e. H = I4.
An instructive special case of the TF model (4.25) is when b1 = 0, representing a pure time

delay of two samples (τ = 2). In this regard, consider the following numerical example based
on equation (4.25) with a1 = −1.7, a2 = 1.0, b1 = 0, b2 = −1 and b3 = 2.0, i.e.

y(k) = −1.0z−2 + 2.0z−3

1− 1.7z−1 + 1.0z−2 u(k) = −1.0+ 2.0z−1

1− 1.7z−1 + 1.0z−2 u(k − 2) (4.27)

This second order, non-minimum phase oscillator has been studied by Clarke et al. (1985)
and Young et al. (1987). In fact, a unity time-delay version of the model is considered
in Example 2.3, with the marginally stable, oscillatory open-loop step response shown in
Figure 2.8c.
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The NMSS model takes the same form as equation (4.26). Substituting for the numerical
values yields the following state transition matrix F and input vector g:

F =

⎡
⎢⎢⎣
1.7 −1 −1 2
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ ; g =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ (4.28)

In general, a pure time delay of τ samples is automatically incorporated into the NMSS
description by simply setting the first τ − 1 parameters of the numerator polynomial to zero.
When τ = 2, as in the present example, the parameter b1 = 0 in both the TF model (4.25) and
the g vector (4.26). It is clear, therefore, that the NMSS formulation has no difficulty handling
pure time delays. The relationship between this approach and more conventional methods of
dealing with long time delays, such as the Smith Predictor (Smith 1957, 1959), is discussed
in Chapter 6.
The NMSS regulator control law (4.24) for the NMSS model (4.26) is given by:

u(k) = − f0y(k)− f1y(k − 1)− g1u(k − 1)− g2u(k − 2)+ kd yd (k) (4.29)

Utilising the backward shift operator:

u(k) = − (
f0 + f1z

−1) y(k)− (
g1z

−1 + g2z
−2) u(k)+ kd yd (k) (4.30)

so that the closed-loop system is represented by Figure 4.1.
However, to simplify the block diagram and subsequent analysis for higher order systems,

the inner feedback loop of Figure 4.1 is usually evaluated first in order to obtain an equivalent
forward path input filter, as illustrated by Figure 4.2.
This example is instructive: it reveals the simple block diagram structure of the NMSS

regulator, from which we can easily deduce the general NMSS regulator structure for an
arbitrary, controllable system.
But what degree of control dowe have over these coefficients? In theminimal case (Example

3.3 and Example 3.4), it is possible to compute values for the gains, in order to specify the
coefficients of the closed-loop characteristic equation and, thereby, assign the poles to desired
positions on the complex z-plane. However, Theorem 4.1 states that this should also be possible
here, so let us continue with the present example and compute the SVF gains for the NMSS
regulator.

plant

yd(k) u(k) y(k)+

−
kd

+

−
−z−2 + 2z−3

g1z
−1 + g2z

−2

1 − 1.7z−1 + z−2

f0 + f1z−1

Figure 4.1 NMSS regulator control of Example 4.3 showing an explicit feedback of the input states



72 True Digital Control

plant

yd(k) u(k) y(k)+

−
kd

feedback f ilter

forward path f ilter

−z−2 + 2z−3

1 − 1.7z−1 + z−2

1

1 + g1z
−1 + g2z

−2

f0 + f1z−1

Figure 4.2 Simplified NMSS regulator control of Example 4.3 with a forward path filter

Example 4.4 Pole Assignment for the Fourth Order NMSS Regulator Using block
diagram reduction on either Figure 4.1 or Figure 4.2 produces the following closed-loop TF
describing the relationship between y(k) and yd (k):

y(k)

yd (k)
= kd (−z−2 + 2z−3)
1+ (g1 − 1.7)z−1 + (1− 1.7g1 + g2 − f0)z−2 + (g1 − 1.7g2 + 2 f0 − f1)z−3 + (g2 + 2 f1)z−4

(4.31)

showing clearly how the control gains affect all the coefficients of the closed-loop TF denom-
inator. Suppose that the design requirement is for the closed-loop system to be critically
damped, with no possibility of oscillation. This can be achieved, for example, by assigning
four poles to 0.5 on the real axis of the complex z-plane, i.e.

D(z) = (z − 0.5)4 = z4 − 2z3 + 1.5z2 − 0.5z + 0.0625 (4.32)

or, in terms of z−1:

D(z−1) = (1− 0.5z−1)4 = 1− 2z−1 + 1.5z−2 − 0.5z−3 + 0.0625z−4 (4.33)

Here, D(z) = 0 or D(z−1) = 0 represent the desired characteristic equation. In this case, the
SVF control gains are obtained by simply equating coefficients in the denominator polynomial
of equation (4.31) to like coefficients in D(z−1), i.e.

g1 − 1.7 = −2
1− 1.7g1 + g2 − f0 = 1.5
g1 − 1.7g2 + 2 f0 − f1 = −0.5
g2 + 2 f1 = 0.0625

(4.34)

These equations are conveniently written in the following vector-matrix form:

⎡
⎢⎢⎣

1 0 0 0
−1.7 1 −1 0
1 −1.7 2 −1
0 1 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

g1
g2
f0
f1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.3
0.5

−0.5
0.0625

⎤
⎥⎥⎦ (4.35)



Non-Minimal State Variable Feedback 73

Since the system is controllable, the matrix in equation (4.35) can be inverted, yielding the
following unique solution to these simultaneous equations:

g1 = −0.3; g2 = −0.2359; f0 = −0.2259; f1 = 0.1492 (4.36)

Substituting these values into equation (4.31) and setting z−1 = 1, the steady-state gain of the
closed-loop system is kd/0.0625. Therefore, selecting a command input gain kd = 0.0625 will
result in unity gain closed-loop dynamics.
This example illustrates how, in general, the basic minimal and NMSS regulators, without

the input gain kd , have a non-unity steady-state gain. The controller with the gain kd chosen to
correct this deficiency will be referred to as a unity gain regulator. Note, however, that this does
not provide Type 1 servomechanism performance because the unity gain is not inherent in the
closed-loop system: this and other deficiencies of the NMSS regulator design are considered
in Example 4.6. In the unlikely event that the model and system are identical, however, the
output converges to the command input in a time that is defined by the designed closed-loop
dynamics, as illustrated in Figure 4.3.
Contrast this stable response with the highly oscillatory behaviour of the open-loop system

(without control) shown by Figure 2.8c. However, some aspects of the open-loop system
have been retained: in addition to the time delay being unaffected, the non-minimum phase
behaviour, characterised by the output moving initially in the wrong direction, remains. This
is because the closed-loop numerator polynomial is only affected by the input gain kd , so that
the dynamic behaviour associated with the numerator polynomial is exactly the same in the
open- and closed-loop cases: compare equation (4.27) and equation (4.31).

Example 4.5 Unity Gain NMSS Regulator for the Wind Turbine Simulation The
following third order TF model is introduced in Example 2.2:

y(k) = b1z−1 + b2z−2 + b3z−3

1+ a1z−1 + a2z−2 + a3z−3 u(k) (4.37)
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Figure 4.3 Closed-loop unit step response using the unity gain NMSS regulator of Example 4.4
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The model is used to represent a wind turbine system, in which y(k) is the generator reaction
torque and u(k) the pitch angle of the wind turbine blade. Since n = m = 3, there are five state
variables in the NMSS model, which is defined as follows:

⎡
⎢⎢⎢⎢⎣

y(k)
y(k − 1)
y(k − 2)
u(k − 1)
u(k − 2)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−a1 −a2 −a3 b2 b3
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y(k − 1)
y(k − 2)
y(k − 3)
u(k − 2)
u(k − 3)

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

b1
0
0
1
0

⎤
⎥⎥⎥⎥⎦ u(k − 1) (4.38)

The NMSS unity gain regulator control law (4.24) for the model above is:

u(k) = − f0y(k)− f1y(k − 1)− f2y(k − 2)− g1u(k − 1)− g2u(k − 2)+ kd yd (k) (4.39)

The control system is implemented in a similar way to Figure 4.2 but here with a higher order
feedback filter of the form: f0 + f1z−1 + f2z−2. Although increasingly time consuming to
analyse by hand, the pole assignment problem is solved in a similar way to Example 4.4, but
with five closed-loop poles and an associated set of five simultaneous equations. Note that
Chapter 5 will develop a general computer algorithm to carry out these rather tedious manual
calculations for such high order systems.

4.3.1 The General Unity Gain NMSS Regulator

Following from Example 4.3, Example 4.4 and Example 4.5 and, in particular Figure 4.2, it is
clear that the block diagram form for the general unity gain NMSS regulator takes the structure
shown in Figure 4.4. Here, the feedback and forward path filters are defined as follows:

G(z−1) = 1+ g1z
−1 + · · · + gm−1z−m+1 (4.40)

F(z−1) = f0 + f1z
−1 + · · · + fn−1z−n+1 (4.41)

where n and m are the order of the denominator and numerator polynomials of the TF model
(4.1), respectively.

plant

yd(k) u(k) y(k)+

−
kd

feedback f ilter

forward path f ilter

1

G(z−1)

B(z−1)

A(z−1)

F(z−1)

Figure 4.4 Block diagram representation of the unity gain NMSS regulator
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plant

yd(k) u(k) y(k)+

+

+

−
kd

feedback f ilter

forward path f ilter

1

G(z−1)

B(z−1)

A(z−1)

F1(z−1)

proportional gain

f0

Figure 4.5 Unity gain NMSS regulator with separate proportional gain

By contrast, Figure 4.5 shows how the feedback filter can be divided into two components,
with a proportional feedback gain f0 and an additional filter F1(z−1) operating on the present
value of the output y(k), where

F1(z
−1) = f1z

−1 + · · · + fn−1z−n+1 (4.42)

Figure 4.5 shows how the structure of the NMSS controller compares with conventional digital
control systems that employ simple proportional feedback. One useful interpretation of the
differences is that the additional feedback and forward path compensators F1(z−1) and G(z−1)
are introduced to ensure the controllability of the general TF model and allow for SVF control.
The limitations of the unity gain NMSS regulator, indeed of unity gain regulators in general,

are discussed in Example 4.6.

Example 4.6 Mismatch and Disturbances for the Fourth Order NMSS Regulator
Returning to the control system shown in Figure 4.2, suppose there is some uncertainty

associated with the model used to estimate the gains. In particular, let us assume that the
plant numerator polynomial is actually −z−2 + 1.8z−3, i.e. there is a 10% error in the second
parameter. In this case, the closed-loop step response is shown in Figure 4.6, which is obtained
using the SVF control gains (4.36) and kd = 0.0625 as previously calculated.
Although the system remains stable and well controlled, despite the error in the model

parameter, the steady-state gain of the closed-loop system has changed, so that y(k) no longer
converges to the final command level of yd (k) = 1, as required. In fact, the new steady-state
gain is 0.642. In other words, a 10% error associated with a single parameter results in a 36%
reduction in the steady-state gain!
The regulator has another important limitation, as illustrated in Figure 4.7. This shows how

the control system, now designed with exact knowledge of the system parameters, reacts to
the imposition of an unmeasured (i.e. unexpected) step disturbance applied to the input of the
system at the 25th sample: the initial response is identical to that in Figure 4.3 but, following
the application of the disturbance, the output moves away from the unity set point defined by
yd (k) and settles at a new level of 1.37, an offset of 37%.
These examples reveal clearly a major shortcoming of the regulator formulation: namely,

that it yields Type 0 control systems that do not have an inherent unity (or user specified)
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Figure 4.6 Closed-loop unit step response using the unity gain NMSS regulator of Example 4.4 when
the model has a 10% error in one parameter

steady-state gain in the closed-loop. In other words, the output does not automatically ‘follow’
the command input yd (k) (or achieve a specified set point) and, in the presence of either model
uncertainty or unmeasured input disturbances, the controlled system will exhibit steady-state
error, i.e. an offset to step commands or constant set-point inputs. Similar problems occur with
load level disturbances at the system output, although these are not considered in this example.
These results apply to both the minimal and non-minimal regulator solutions.
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Figure 4.7 Closed-loop unit step response using the unity gain NMSS regulator of Example 4.4, with
an input step disturbance of 0.05 at the 25th sample
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It is possible to alleviate this problem to some extent by introducing a self-tuning or self-
adaptive system, where the control system continuously estimates the model parameters and
the input gain kd is adjusted online in an attempt to counteract offsets. Even so, this is still not
very satisfactory: any estimate is always characterised by a degree of uncertainty so that, in
general, a steady-state error will normally be present (albeit usually much smaller than without
adaption).
In most realistic practical circumstances, a control systems designer would demand inherent

Type 1 servomechanism performance, obtained using integral control action, as illustrated by
Example 2.5 and Example 2.6. Fortunately, it is straightforward to introduce such character-
istics into the NMSS control system: Chapter 5 will show how the NMSS regulator can be
augmented by an integral-of-error state variable, in order to guarantee the required Type 1
performance. Before moving onto this subject, however, it is useful to consider the simpler
regulator form further, in order to examine some of the theoretical and practical consequences
of the NMSS design.

4.4 Constrained NMSS Control and Transformations

Equation (4.13) shows that the NMSS model includes the eigenvalues of the minimal model
in open-loop. This section demonstrates how the NMSS closed-loop control system similarly
encompasses any minimal design as a special constrained case.
In the first instance, note that it is always possible to transform the NMSS model into

other (minimal) controllable state space forms describing the same input–output relation-
ship. Theorem 4.2 describes one such transformation from a non-minimal to the observable
canonical form, but it is clear that similar transformations are possible for other state space
representations.

Theorem 4.2 Transformation from Non-Minimal to Minimal State Vector Here, for
simplicity, it is assumed that the order of the numerator polynomial is equal to that of the
denominator, i.e. m = n, although this condition is not strictly necessary.
Suppose the TF model (4.1) is represented by the following observable canonical form:

xmin(k) = Fminxmin(k − 1)+ gminu(k − 1) (4.43)

y(k) = h xmin(k) (4.44)

where

xmin(k) =

⎡
⎢⎢⎢⎢⎢⎣

x1(k)
x2(k)
...

xn−1(k)
xn(k)

⎤
⎥⎥⎥⎥⎥⎦ ; Fmin =

⎡
⎢⎢⎢⎢⎢⎣

−a1 1 0 · · · 0
−a2 0 1 · · · 0
...

...
...

...
...

−an−1 0 0 · · · 1
−an 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ (4.45)

gmin = [
b1 b2 · · · bn−1 bn

]T
; hmin = [

1 0 . . . 0 0
]

(4.46)
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The n dimensional minimal state vector xmin(k) is then related to the 2n − 1 dimensional
non-minimal state vector x(k) by:

xmin(k) = T 1 · x(k) (4.47)

Here, the n by 2n − 1 transformation matrix T 1 is defined:

T 1 =

⎡
⎢⎢⎢⎣
1 0 · · · 0 0 · · · 0
0 −a2 · · · −an b2 · · · bn
...

... . .
. ...

... . .
. ...

0 −an · · · 0 bn · · · 0

⎤
⎥⎥⎥⎦ (4.48)

Note that the NMSS regulator model has 2n − 1 states since we are assuming that m = n.

Proof of Theorem 4.2 (Taylor et al. 2000) As shown by equation (3.36), the states in the
minimal case are:

x1(k) = −a1x1(k − 1)+ x2(k − 1)+ b1u(k − 1)
x2(k) = −a2x1(k − 1)+ x3(k − 1)+ b2u(k − 1)

...
xn(k) = −an x1(k − 1)+ bnu(k − 1)

(4.49)

From the set of equations (4.49), it is clear that x1(k) = y(k) and Theorem 4.2 follows by
straightforward algebra.

Corollary 4.1 Transformation from Minimal to Non-Minimal SVF Gain Vector Any
minimal state space regulator, given by the following SVF control law:

umin(k) = −kT
minxmin(k)+ kd yd (k) (4.50)

where the minimal control gain vector:

kmin = [
l1 l2 · · · ln

]T
(4.51)

may be converted into an equivalent NMSS form:

u(k) = −kT x(k)+ kd yd (k) (4.52)

where k is the non-minimal control gain vector (4.23), by the following transformation:

kT = kT
minT 1 (4.53)

Note again that the NMSS regulator control gain vector is of dimension 2n − 1.
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Proof of Corollary 4.1 Noting from Theorem 4.2 that xmin(k) = T 1 · x(k), equation (4.50)
can be written as:

umin(k) = −kT
minT 1x(k)+ kd yd (k)

Corollary 4.1 demonstrates that any minimal SVF design may be exactly duplicated by an
equivalent non-minimal structure.
Crucially, however, it should be noted that the reverse is not true: there is no minimal

equivalent of a general, unconstrained, non-minimal SVF controller, since the latter is of a
higher dimension. Specifically, the transformation matrix T 1 cannot be inverted in equation
(4.53), even if padded with zeros to ensure that it is a square matrix.

4.4.1 Non-Minimal State Space Design Constrained to yield a Minimal
SVF Controller

Corollary 4.1 provides a direct transformation from the minimal gain vector to the NMSS
gain vector. However, we can similarly constrain the NMSS solution to yield the same control
algorithm as the minimal case at the design stage, by using either pole assignment or linear
quadratic optimal design. The latter approach is discussed in Chapter 6 (in the context of
Generalised Predictive Control or GPC) while, in the former case, n poles are simply assigned
to their minimal positions and the additional (m − 1) NMSS poles are set to zero, i.e. to lie at
the origin of the complex z-plane.
Obviously the pole assignment approach will ensure equivalent characteristic equations and,

since the closed-loop numerator polynomial is simply B(z−1) in both cases, then the minimal
and non-minimal solutions will yield exactly the same closed-loop TF when there is no model
mismatch. Furthermore, if the minimal controller has the same structure as the NMSS case,
then the two control algorithms will be exactly the same and will yield an identical response,
even in the presence of model mismatch or disturbance inputs to the system. In this regard,
it is clear that SVF based on the controllable canonical form takes a very different structure
to NMSS design, since it only utilises feedback of the output variable. However, as hinted at
in Chapter 3 and illustrated in Example 4.7, the NMSS and observable canonical forms do
yield an equivalent structure and, therefore, an identical control algorithm when the additional
(m − 1) poles in the NMSS case are assigned to zero.
It should be stressed that assigning the extra poles to zero is not necessarily the optimal

solution: one advantage of the NMSS approach is that the (m − 1) extra poles can be assigned
to desirable locations anywhere on the complex z-plane. This is a particularly useful feature
in the linear quadratic optimal case, as discussed in later chapters.
Also, it should be pointed out that minimal state space forms cannot automatically handle

the case when m > n, i.e. long time delays or high order numerator polynomials, whereas
Example 4.3 shows that the NMSS form has no problems in this regard. This is why, in Chapter
3, the examples were selected deliberately so that m = n. In fact, examination of equations
{(3.16), (3.17)} and {(3.37), (3.38)} shows that the minimal formulation of the problem can
only deal with cases wherem > n, by changing the state vector to dimensionm and setting the
trailing denominator parameters an+1, . . . , am to zero. Of course, such an approach is itself
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non-minimal and so it makes much more sense to explicitly acknowledge this fact by utilising
the NMSS model introduced above.

Example 4.7 Transformations between Minimal and Non-Minimal Returning to the
system described in Example 4.1, where the TF model and NMSS form are given by equation
(4.14) and equation (4.15), respectively, the non-minimal state vector is:

⎡
⎣ x1(k)

x2(k)
x3(k)

⎤
⎦ =

⎡
⎣ y(k)

y(k − 1)
u(k − 1)

⎤
⎦ (4.54)

and the NMSS regulator control law (4.24) is given by:

u(k) = − f0y(k)− f1y(k − 1)− g1u(k − 1)+ kd yd (k) (4.55)

where f0, f1 and g1 are the SVF control gains and kd is the command input gain.
By contrast, the state vector for a (minimal) observable canonical form is:

[
x1(k)
x2(k)

]
min

=
[

y(k)
−1.5y(k − 1)+ 0.4u(k − 1)

]
(4.56)

yielding the following SVF control law:

umin(k) = −kT
minxmin(k)+ kd yd (k) (4.57)

Hence,

umin(k) = − [
l1 l2

] [
x1(k)
x2(k)

]
min

+ kd yd (k) (4.58)

where l1 and l2 are the SVF control gains, while kd is the command input gain. Expanding the
terms and substituting for the state vector (4.56) yields:

umin(k) = −l1y(k)+ 1.5l2y(k − 1)− 0.4l2u(k − 1)+ kd yd (k) (4.59)

Equation (4.55) and equation (4.59) take the same structural form, although in the NMSS case
there are three independent control gains, compared with just two in the minimal controller.
The 2 × 3 transformation matrix T 1 defined by equation (4.48) is:

T 1 =
[
1 0 0
0 −1.5 0.4

]
(4.60)

and it is easy to show, from equation (4.54) and equation (4.56), that

[
x1(k)
x2(k)

]
min

=
[
1 0 0
0 −1.5 0.4

] ⎡
⎣ x1(k)

x2(k)
x3(k)

⎤
⎦ (4.61)
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If we wish to constrain the NMSS solution into exactly the same control law as the minimal
design, then Corollary 4.1 can be utilised to transform the gains, i.e.

kT = kT
minT 1 = [

f0 f1 g1
] = [

l1 l2
] [
1 0 0
0 −1.5 0.4

]
(4.62)

so that

f0 = l1, f1 = −1.5l2 and g1 = 0.4l2.

4.5 Worked Example with Model Mismatch

The significance of the NMSS formulation is not always immediately apparent from a cursory
examination of the state space matrices. For this reason, it is worth re-examining one of our
examples to help clarify the discussion.

Example 4.8 The Order of the Closed-loop Characteristic Polynomial Consider again
the second order TF model (4.14). Since n = 2, minimal SVF controllers are based on the
feedback of two state variables x1(k) and x2(k), as shown by Example 4.7 for the case of an
observable canonical form. For minimal SVF design based on the controllable canonical form,
refer to Example 3.2. Although an input gain kd is not included in the latter example, it is
straightforward to do so now.
In this regard, Figure 4.8 represents the unity gain minimal SVF regulator based on the

controllable canonical form. Here, the distinction needs to be made between the plant (i.e.
the notional true system) represented by B(z−1)/A(z−1) and the estimated control model
represented by B̂(z−1)/ Â(z−1). In particular, B̂(z−1) = b̂1z−1 + b̂2z−2 where b̂1 and b̂2 are the
estimated numerator parameters of the control model.
Considering now the NMSS case, the model is based on the three state variables in (4.54).

Converting equation (4.55) into the z−1 operator form:

u(k) = − (
f0 + f1z

−1) y(k)− g1z
−1u(k)+ kd yd (k) (4.63)

yd(k) y(k)u(k)+

−
kd

controller

plant

b1z
−1 + b2z

−2

1 + a1z
−1 + a2z

−2

ˆ ˆ

l1z
−1 + l2z−2

b1z
−1 + b2z

−2

Figure 4.8 Unity gain (minimal) SVF regulator for Example 4.8 based on the controllable canonical
form (cf. Figure 3.4)
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plant

yd(k) u(k) y(k)+

−
kd

+

−

b1z
−1 + b2z

−2

g1z
−1

1 + a1z
−1 + a2z

−2

f0 + f1z−1

Figure 4.9 Unity gain NMSS regulator for Example 4.8

Hence, the unity gain NMSS regulator is illustrated in block diagram form by Figure 4.9.
Block diagram or algebraic reduction of Figure 4.9 produces the following closed-loop TF:

y(k)

yd (k)
= kd

(
b1z−1 + b2z−2)

1+ (a1 + g1 + b1 f0)z−1 + (a2 + a1g1 + b2 f0 + b1 f1)z−2 + (a2g1 + b2 f1)z−3
(4.64)

In this NMSS case, the closed-loop characteristic polynomial is third order (n + m − 1 = 3),
one more than for minimal design. Initially, this may appear to be a weakness of the NMSS
solution, since higher order systems are potentially more difficult to analyse (at least before the
advent of relatively cheap digital computers) and we have to design for third order closed-loop
dynamic behaviour. However, this argument is fundamentally flawed, because the problem
of model mismatch has not yet been considered. In fact, evaluation of the closed-loop TF
relationship for the minimal design in Figure 4.8 shows that:

y(k)

yd (k)
=

kd

(
b1z−1 +

(
b1b̂2
b̂1

+ b2

)
z−2 +

(
b2b̂2
b̂1

)
z−3

)

1+
(

b̂2
b̂1

+ a1 + l1b1
b̂1

)
z−1 +

(
a1b̂2
b̂1

+ a2 + l1b2
b̂1

+ l2b1
b̂1

)
z−2 +

(
a2b̂2
b̂1

+ l2b2
b̂1

)
z−3

(4.65)

and the closed-loop is third order!
Furthermore, the closed-loop TF in the NMSS case, with model mismatch, is the much

simpler third order TF in (4.64); and the parameter estimates do not appear at all in equation
(4.64), since the model is not utilised in the NMSS controller of Figure 4.9.
This result is clearly significant in practical terms because there will always be mismatch

between the estimated model and the real world, and the ‘minimal’ solution will, in practice,
yield a closed-loop TF with a higher order than n. This is one of the key advantages of
the NMSS approach: the order of the true closed-loop TF is a function of the order of
the open loop numerator polynomial m and the time delay τ , as well as the denominator.
Therefore, in the NMSS formulation, the impact of m and τ is acknowledged at the design
stage.
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Example 4.9 Numerical Comparison between NMSS and Minimal SVF Controllers
Continuing from Example 4.8, let us now assign the numerical values shown in equation

(4.14). For pole assignment design, it is assumed that there is no model mismatch and so the
closed-loop characteristic equation for the minimal SVF controller, based on a controllable
canonical form, is simply:

1+ (l1 − 0.8)z−1 + (l2 + 0.15)z−2 = 0 (4.66)

where l1 and l2 are the control gains. Equation (4.66) is obtained by substituting the parameter
values a1 = −0.8 and a2 = 0.15 into equation (3.30). If the two poles are assigned to values
of, say, 0.7 and 0.8 on the real axis of the complex z-plane, then the desired characteristic
polynomial is given by:

D(z−1) = (1− 0.7z−1)(1− 0.8z−1) = 1− 1.5z−1 + 0.56z−2 = 0 (4.67)

In this case, equating like coefficients from (4.66) and (4.67), produces the solution:

l1 = −0.7; l2 = 0.41 (4.68)

Using these gains and assuming no model mismatch, i.e. b̂1 = b1 = 0.5 and b̂2 = b2 = −0.4,
equation (4.65) reduces to:

y(k)

yd (k)
= kd

(
0.5z−1 − 0.8z−2 + 0.32z−3)

1− 2.3z−1 + 1.76z−2 − 0.448z−3 = kd
(
0.5z−1 − 0.4z−2)

1− 1.5z−1 + 0.56z−2 (4.69)

The poles of the left-hand side TF in equation (4.69) are 0.8, 0.8 and 0.7, while there are also
two zeros at 0.8 on the real axis of the complex z-plane. In this zero mismatch case, one of the
zeros exactly cancels with a pole, yielding the second order system shown by the right-hand
side TF in equation (4.69). The steady-state gain of this TF is kd/0.6 so that selecting kd = 0.6
ensures that the closed-loop system has unity gain when there is no model mismatch.
For the purposes of this example, the NMSS solution will be constrained to yield exactly

the same closed-loop TF as equation (4.69). This is achieved straightforwardly by assigning
two of its poles to 0.7 and 0.8 (as in the minimal case) and the additional pole to zero, i.e. the
origin of the complex z-plane. Equating the denominator coefficients of equation (4.64) with
equation (4.67) in the usual manner yields:

g1 = −0.8; f0 = 0.2; f1 = −0.3 (4.70)

In this ideal, zeromismatch case, the NMSS and theminimal SVF controllers produce identical
closed-loop responses. However, consider the effect of the following mismatched values for
the system parameters:

a1 = −0.84, a2 = 0.1425, b1 = 0.525, and b2 = −0.38 (4.71)

The new closed-loop poles and zeros shown in Table 4.1 are obtained by substituting the
control gains (4.68) and (4.70), together with the above mismatched system parameters, into
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Table 4.1 Comparison of SVF based on NMSS and the (minimal) controllable canonical form

Design poles Actual poles Actual zeros

Minimal NMSS Minimal NMSS Minimal NMSS

0.8 0.8 1.1573 0.8573 0.8000 0.7238
0.7 0.7 0.6632 0.6777 0.7238 —
N/A 0 0.5545 0.0000 — —

the respective closed-loop TF models given by equation (4.64) and equation (4.65). In the
latter case, the control model coefficients b̂1 = 0.5 and b̂2 = −0.4 are unchanged.
In this realistic casewithmodelmismatch, the pole-zero cancellation of theminimal solution

does not occur and the closed-loop is third order. Furthermore, one of the poles is outside the
unit circle, so that the closed-loop system is unstable! By contrast, the NMSS poles are all
within the unit circle and the response remains stable.
This example shows that the NMSS formulation accounts for the higher order of the closed-

loop system at the design stage and that we can assign the additional poles to desirable
locations, in the above case at the origin. As pointed out previously, however, assigning the
extra pole to the origin is not necessarily the optimal solution: the advantage of the NMSS
approach is that the (m − 1) extra poles can be assigned anywhere on the complex z-plane
(Chapter 6 presents examples that illustrate the benefits of this). Finally, although Table 4.1
applies for a single simulation example, the results presage the likely increased robustness of
the NMSS controller in more general terms, as discussed below.

Example 4.10 Model Mismatch and its effect on Robustness The control algorithms
discussed above may be further evaluated by taking advantage of Monte Carlo Simulation
(MCS), as described in Chapter 8. MCS is used here to infer the effects of model param-
eter uncertainty, based on the estimate of the parametric error covariance matrix P∗(k),
obtained when the statistical identification algorithms discussed in Chapter 8 are used to
identify the control model from the analysis of noisy input–output data. With the current
wide availability of powerful desktop computers, MCS provides one of the simplest and most
attractive approaches for assessing the sensitivity of a controller to parametric uncertainty.
Here, the model parameters for each realisation in the MCS, are selected randomly from the
joint probability distribution defined by P∗(k) and the sensitivity of the controlled system to
this parametric uncertainty is evaluated from the ensemble of resulting closed-loop response
characteristics.
Figure 4.10 and Figure 4.11 compare 200 MCS realisations using the minimal and NMSS

designs, respectively, fromExample 4.9. Here, we have constrained theNMSS solution to yield
exactly the same control algorithm as the minimal designs when there is no model mismatch.
However, as already suggested by Table 4.1, when these control systems are implemented with
mismatch, the minimal state space version, based on the controllable canonical form (Figure
4.10), is much less robust than the NMSS equivalent (Figure 4.11), with numerous unstable
realisations.
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Figure 4.10 MCS using the unity gain controllable canonical form regulator with gains (4.68)
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Figure 4.11 MCS using the unity gain NMSS regulator with gains (4.70)

4.6 Concluding Remarks

This chapter has introduced some of the most fundamental results in the theory of NMSS
control system design. Several examples have been used to demonstrate how the approach
differs from the more conventional minimal SVF approach. In particular, since the state vector
is composed only of the present and past sampled values of the output variable, and the
past sampled values of the input variable, the NMSS controller is very easy to implement in
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practice. It does not require any form of state reconstruction, since it always involves full state
feedback based solely on measured input and output signals. In fact, the NMSS form is the
most obvious and straightforward way to represent the TF model (4.1) in state space terms.
Minimal state space models, based on selected canonical forms, represent the same system in
a less intuitive manner, requiring each state to be formed from various, often rather abstract,
combinations of the input and output signals that are dictated by the canonical form.
This chapter has shown the relationship between the NMSS and minimal state space model

forms and how the NMSS model can be transformed into a minimal form, with the associated
SVF control law constrained to yield exactly the same closed-loop system as a minimal design
when there is no model mismatch. Even in this constrained form, however, the non-minimal
design can be more robust than SVF based on the minimal controllable canonical form. By
contrast, the observable canonical form yields a SVF control system with a similar structure
to the NMSS based controller. In this case, when the additional poles in the NMSS case are
assigned to the origin of the complex z-plane, the control algorithms are exactly the same.
As will become apparent from case studies in later chapters, however, it is not a good idea to
constrain NMSS design in this way. Rather, it is advantageous to utilise the additional poles
in the NMSS case to provide extra flexibility and design freedom.
In Example 4.7, for instance, when the minimal design shown by equation (4.59) is imple-

mented, there are three control parameters, as in the NMSS controller defined by equation
(4.55). But the minimal control gains are really just combinations of two coefficients. This can
be contrasted with NMSS design, where there is complete freedom to either manually assign
the extra m − 1 poles as required, or to employ optimal control with a wider range of possible
solutions. And the NMSS approach has a further, very important, advantage: it can inherently
handle high order numerator polynomials and long time delays, i.e. situations when the model
identification determines that m > n.
In conclusion, NMSS design provides a flexible and logical approach to SVF control

system design based on TF models, because the NMSS model is formulated in the most
obvious way and, at the same time, provides useful degrees of freedom for the control system
designer. Unfortunately, the regulator SVF control systems considered in the present chapter
do not necessarily track the command input yd (k) or converge on a required set-point with
zero steady-state error. In Chapter 5, therefore, we consider how to remove this limitation by
augmenting the NMSSmodel with an integral-of-error state variable, so guaranteeing inherent
Type 1 servomechanism performance with zero steady-state error.
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5
True Digital Control for
Univariate Systems

Chapter 4 has demonstrated the theoretical and practical advantages of the Non-Minimal State
Space (NMSS) model where, in the discrete-time backward shift operator case, the state
variables consist only of the present and past sampled values of the input and output signals. In
the present chapter, the full power of non-minimal state variable feedback (SVF) is realised,
with the introduction of an integral-of-error state variable to ensure Type 1 servomechanism
performance (section 5.1), i.e. if the closed-loop system is stable, the output will converge
asymptotically to a constant command input specified by the user. In this manner, the steady-
state errors that were encountered when using the unity gain regulator solutions discussed in
the previous two chapters, are eliminated.
Since the SVF control law in the NMSS case involves only the measured input and output

variables and their past values, it avoids the need for an explicit state reconstruction filter
(observer). It can be compared directly with a ‘dynamic output feedback’ system that utilises
additional dynamic compensation elements (control filters) in both the feedback and forward
pathways (see e.g. Kucera 1979; Rosenthal and Wang 1996). Moreover, we will see that
it can be interpreted as a logical extension of conventional Proportional-Integral (PI) and
Proportional-Integral-Derivative (PID) controllers, here with additional feedback and input
compensators introduced when the process has either second or higher order dynamics; or
pure time delays greater than one sampling interval. Hence, the SVF control law obtained in
this manner is usually called a Proportional-Integral-Plus (PIP) controller (section 5.2).
The structure of the PIP controller is quite general in form, and resembles that of various

other digital control systems developed previously. For example, it is closely related to the
Generalised Predictive Control (GPC) of Clarke et al. (1987) and can be interpreted directly
in such model-based predictive control terms. The advantage of the PIP controller over GPC
and other earlier, more ad hoc, dynamic output feedback designs, lies in its inherent state space
formulation. This guarantees closed-loop stability in the fully deterministic case and allows
not only for SVF pole assignment (section 5.3) or optimal Linear Quadratic (LQ) control

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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(section 5.4), but also for straightforward extension to the control of stochastic (Chapter 6)
and multivariable (Chapter 7) dynamic systems.
First of all, in order to introduce the idea of an integral-of-error state variable and to highlight

the structural similarity between PIP and PI control, let us consider a simple example.

Example 5.1 Proportional-Integral-Plus Control of a First Order TF Model The
following first order TF model was introduced in Chapter 2:

y(k) = b1z−1

1+ a1z−1 u(k) (5.1)

where y(k) is the output variable and u(k) is the control input. The model has one pole, hence
the associated minimal state space model consists of one state variable. Furthermore, since
the model also has one numerator parameter and unity time delay, the regulator NMSS form
(4.9) also consists of one state variable, i.e. y(k).

By contrast, consider the following non-minimal ‘servomechanism’ state vector:

x(k) = [y(k) z(k)]T (5.2)

where z(k) represents the discrete-time integral (summation) of the error between the output
y(k) and the command input yd (k): i.e. an integral-of-error state variable. In recursive terms,
this can be written as:

z(k) = z(k − 1)+ (yd (k)− y(k)) (5.3)

or, in TF form:

z(k) = 1

1− z−1 (yd (k)− y(k)) (5.4)

where the TF:

1

1− z−1

will be recognised as a discrete-time integrator. Comparison of equation (5.4) with equation
(2.33) indicates how the z(k) state will introduce integral action into the final control system.
Noting from the TF model (5.1) that y(k) = −a1y(k − 1)+ b1u(k − 1), equation (5.3) can

be replaced with:

z(k) = z(k − 1)+ yd (k)+ a1y(k − 1)− b1u(k − 1) (5.5)

Hence, the NMSS model is defined by the following pair of state and observation equations:

x(k) =
[

y(k)
z(k)

]
=

[−a1 0
a1 1

] [
y(k − 1)
z(k − 1)

]
+

[
b1

−b1

]
u(k − 1)+

[
0
1

]
yd (k) (5.6)

y(k) = [
1 0

]
x(k) (5.7)
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As in Chapter 4, the SVF control law associated with the above NMSS model is based on a
negative feedback of the state vector:

u(k) = −kT x(k) (5.8)

where the control gain vector:

kT = [ f0 −kI ] (5.9)

In contrast to the regulator NMSS controller (4.22), the command input yd (k) enters the control
algorithm by means of the integral-of-error state variable z(k) and so a separate term for yd (k)
is not required in equation (5.8).
Evaluating the SVF control algorithm (5.8) yields:

u(k) = − [
f0 −kI

] [
y(k)
z(k)

]
= − f0y(k)+ kI z(k) (5.10)

Using equation (5.4) and equation (5.10), the control law for this system is given by:

u(k) = − f0y(k)+ kI

1− z−1 (yd (k)− y(k)) (5.11)

In order to distinguish equation (5.8) or its TF equivalent (5.11) from the unity gain NMSS
regulator introduced previously, this control law will be termed the PIP controller. In this
simple first order case, however, it is obvious that equation (5.11) is identical to the digital PI
control algorithm (2.38) introduced in Chapter 2. Indeed, the block diagram form of this control
system has already been illustrated by Figure 2.15, in which f0 represents the proportional
control gain and kI the integral control gain.
In other words, for the simplest TF model (5.1), the PIP formulation is equivalent to a

digital PI control system, albeit one implemented in the output feedback arrangement shown
by Figure 2.15, rather than a more conventional parallel arrangement (see e.g. Franklin et al.
2006, p. 187; Dorf and Bishop 2008, p. 445). In contrast to classical PI design, however, the
vagaries of manual tuning are replaced by the systematic application of SVF control theory to
yield pole assignment control; or, as discussed later, optimal control. Example 2.7 has already
demonstrated how to use pole assignment to determine numerical values for the control gains,
f0 and kI , with Figure 2.17 and Figure 2.18 showing illustrative closed-loop simulation results.
Note that the negative sign associated with kI in equation (5.9) is utilised for consistency

with the basic PI controller previously discussed. It ensures that the integral action appears in
the forward path of the negative feedback control system. Finally, as shown by equation (2.41),
the steady-state gain of the closed-loop system is unity, as required for Type 1 servomechanism
performance.

Example 5.2 Implementation Results for Laboratory Excavator Bucket Position Return-
ing to the laboratory robot excavator mentioned in Example 2.1, the TF model (5.1) with
a1 = −1 and b1 = 0.0498 has been identified from experimental data (Shaban 2006; Taylor
et al. 2007). In this case, y(k) represents the bucket joint angle while u(k) is a scaled control
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Figure 5.1 Closed-loop response using the PIP controller of Example 5.2, showing the output bucket
joint angle in degrees (thick traces) and the time varying command input (thin traces). (a) Experimental
data collected from the laboratory excavator and (b) the equivalent simulated response based on the TF
model (5.1). The sampling rate is 0.11s

input voltage. Solving the pole assignment problem for the following complex conjugate pair
of poles p1,2 = 0.814± 0.154 j , yields f0 = 6.30 and kI = 1.17 (these particular pole posi-
tions are utilised here because they are the closed-loop pole positions obtained using optimal
PIP control, as considered later in section 5.5). The response of the closed-loop system to a
time varying command input is illustrated by Figure 5.1 and Figure 5.2, which show the bucket
position and voltage input, respectively. The command input has been obtained as part of the
high-level control objectives for this device, i.e. a practical experiment for digging a trench in
a sandpit.
Using the PIP control system (implemented here in PI form, so the PIP and PI are exactly

equivalent), themeasured bucket joint angle closely follows this command input. Experimental
and simulated data are very similar in both cases, confirming that the TFmodel (5.1) adequately
represents the laboratory excavator bucket angle and that the PIP control system is robust to
modelling errors in this example.
But what have we achieved in this first order example? At first sight, the PIP controller

used to generate these results is also the ubiquitous PI controller. So at the superficial level,
we do not seem to have made much progress since Chapter 2 of this book! Nevertheless, one
advantage of the PIP approach is already clear: although the control algorithm (5.11) retains
the straightforward implementation structure of classical PI control, it has been derived within
the powerful framework of SVF design. It is this underlying framework for the PIP design that
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Figure 5.2 Control input signals associated with Figure 5.1, showing the scaled voltage. (a) Experi-
mental data collected from the laboratory excavator and (b) the equivalent simulated response based on
the TF model (5.1)

differentiates the controllers and foreshadows the advantages of PIP control system design
when applied to higher order processes with time delays greater than unity. In other words, by
following a similar approach to Chapter 4, we should now be able to develop an equivalent
NMSS servomechanism form for TF models of any dimension and hence solve the general
pole assignment problem.

5.1 The NMSS Servomechanism Representation

Consider again the general discrete-time TF model with unity time delay:

y(k) = B(z−1)
A(z−1)

u(k) = b1z−1 + · · · + bm z−m

1+ a1z−1 + · · · + anz−n
u(k) (5.12)

It is straightforward to show (see Example 5.1, Example 5.3 and Example 5.4) that the model
(5.12) can be represented by the following NMSS equations (Young et al. 1987; Wang and
Young 1988):

x(k) = Fx(k − 1)+ gu(k − 1)+ dyd (k)
y(k) = hx(k)

}
(5.13)
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The n + m dimensional state vector x(k) consists of the present and past sampled values of the
output variable y(k) and the past sampled values of the input variable u(k), now enhanced by the
integral-of-error state variable introduced to ensure Type 1 servomechanism performance, i.e.

x(k) = [
y(k) y(k − 1) · · · y(k − n + 1) u(k − 1) u(k − 2) · · · u(k − m + 1) z(k)

]T
(5.14)

where z(k) is defined by equation (5.3). The associated state transition matrix F, input vector
g, command input vector d and output vector h are:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm 0
1 0 · · · 0 0 0 0 · · · 0 0 0
0 1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 1 0 0 0 · · · 0 0 0
0 0 · · · 0 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 0 · · · 0 0 0
0 0 · · · 0 0 0 1 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · 1 0 0
a1 a2 · · · an−1 an −b2 −b3 · · · −bm−1 −bm 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.15)

g = [b1 0 0 · · · 0 1 0 0 · · · 0 −b1 ]T

d = [ 0 0 0 · · · 0 0 0 0 · · · 0 1 ]T

h = [ 1 0 · · · 0 0 0 0 · · · 0 0 0 ]

⎫⎪⎪⎬
⎪⎪⎭

(5.16)

In this NMSS model, the dimension is increased from the minimum n up to (n + m), one
more than the regulator NMSS form discussed in Chapter 4. It must be emphasised, however,
that the NMSS form is not limited to this particular structure and other additional states can
be added in order to introduce other features than can enhance the control system design, as
shown by further examples considered in later chapters.
The output vector h in (5.16) simply extracts the output variable y(k) from the state vector

and is chosen to highlight the essential Single-Input, Single-Output (SISO) nature of the
model (5.12). But, as in the regulator NMSS case, the observation matrix H can be defined
also as an identity matrix of dimension n + m by n + m, in a similar manner to that shown by
equation (4.11), because all of the state variables at any sampling instant k can be stored in the
digital computer (or special purpose micro-controller) that is being used to implement the PIP
control system. In other words, equations (5.13), equation (5.14), equation (5.15) and equations
(5.16) provide a ‘snapshot’ physical description of the SISO system at the kth sampling instant;
while the replacement of h byH in the observation equation provides the ‘control’ description,
revealing that the whole of the NMSS state vector is accessible and available for exploitation
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because of the stored past values y(k − 1) · · · y(k − n + 1) and u(k − 1) · · · u(k − m + 1) of
y(k) and u(k), respectively, that are being retained in the control computer.

5.1.1 Characteristic Polynomial of the NMSS Servomechanism Model

Using equation (3.64), the open-loop characteristic polynomial S(λ) of the NMSS representa-
tion (5.13) is given by:

S(λ) = |λI − F| =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + a1 a2 · · · an−1 an −b2 −b3 · · · −bm−1 −bm 0
−1 λ · · · 0 0 0 0 · · · 0 0 0
0 −1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · −1 λ 0 0 · · · 0 0 0
0 0 · · · 0 0 λ 0 · · · 0 0 0
0 0 · · · 0 0 −1 λ · · · 0 0 0
0 0 · · · 0 0 0 −1 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · −1 λ 0
−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm λ − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.17)

Equation (5.17) can be written as:

|λI − F| = (λ − 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + a1 a2 · · · an−1 an −b2 −b3 · · · −bm−1 −bm

−1 λ · · · 0 0 0 0 · · · 0 0
0 −1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · −1 λ 0 0 · · · 0 0

0 0 · · · 0 0 λ 0 · · · 0 0
0 0 · · · 0 0 −1 λ · · · 0 0
0 0 · · · 0 0 0 −1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · −1 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.18)

Evaluating the determinant yields the following the open-loop characteristic polynomial:

S(λ) = |λI − F| = (λ − 1)λm−1(λn + a1λ
n−1 + · · · + an) (5.19)

Note that S(λ) is the product of the characteristic polynomial of the original system (or the
equivalent minimal state space representation), a term λm−1 due to the additional input states
in the NMSS case and a third term (λ − 1) associated with the integral-of-error state.
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As discussed in Chapter 3 and Chapter 4, SVF design requires that the state space model
should be controllable, the conditions for which are stated by Theorem 5.1.

Theorem 5.1 Controllability of the NMSS Servomechanism Model Given a SISO,
discrete-time system described by a TF model (5.12), the NMSS representation (5.13) defined
by the pair [F, g], is completely controllable if and only if the following two conditions are
satisfied (Wang and Young 1988):

(i) the polynomials A(z−1) and B(z−1) are coprime;
(ii) b1 + b2 + · · · + bm �= 0.

The first condition restates the normal requirement that the TF representation should have
no pole-zero cancellations. The second condition states that there should be no zeros at unity,
which would otherwise cancel with the unity pole introduced to give integral action. The proof
of this theorem is very similar to that discussed in Appendix C for the regulator NMSS form,
so it will not be repeated here.
Finally, the above controllability conditions are equivalent to the normal requirement that

the controllability matrix:

S1 = [g Fg F2g · · · Fn+m−1g ] (5.20)

has full rank, i.e. for controllability in this NMSS servomechanism case, S1 should have rank
n + m.

Example 5.3 Non-Minimal State Space Servomechanism Representation of a Second
Order TF Model Let us return to the following second order TF model with three
numerator parameters, which was introduced in Chapter 4 (Example 4.3):

y(k) = b1z−1 + b2z−2 + b3z−3

1+ a1z−1 + a2z−2 u(k) (5.21)

or, in difference equation form:

y(k) = −a1y(k)− a2y(k − 1)+ b1u(k − 1)+ b2u(k − 2)+ b3u(k − 3) (5.22)

The integral-of-error state variable (5.3) can be replaced with:

z(k) = z(k − 1)+ yd (k)+ a1y(k)+ a2y(k − 1)− b1u(k − 1)− b2u(k − 2)− b3u(k − 3)
(5.23)

In the context of the general TF model (5.12), it is clear that n = 2 and m = 3, hence the
non-minimal servomechanism state vector x(k) consists of n + m = 5 state variables:

x(k) = [y(k) y(k − 1) u(k − 1) u(k − 2) z(k)]T (5.24)
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It is straightforward to confirm that the following NMSS servomechanism model represents
equation (5.22) and equation (5.23):

⎡
⎢⎢⎢⎢⎣

y(k)
y(k − 1)
u(k − 1)
u(k − 2)

z(k)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−a1 −a2 b2 b3 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
a1 a2 −b2 −b3 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y(k − 1)
y(k − 2)
u(k − 2)
u(k − 3)
z(k − 1)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

b1
0
1
0

−b1

⎤
⎥⎥⎥⎥⎦ u(k − 1)+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ yd (k)

(5.25)

As pointed out above, although the observation equation is usually defined as follows:

y(k) = [ 1 0 0 0 0 ] x(k) (5.26)

all the state variables are readily stored in a digital computer, so that the system is trivially
observable and the observation matrix can be defined also as y(k) = Hx(k), where, in this
example, H = I5.

Example 5.4 Rank Test for the NMSS Model Consider again the following non-minimum
phase oscillator with a pure time delay of two sampling intervals:

y(k) = −z−2 + 2.0z−3

1− 1.7z−1 + 1.0z−2 u(k) (5.27)

The TF model (5.27) is based on equation (5.21) with a1 = −1.7, a2 = 1.0, b1 = 0, b2 = −1
and b3 = 2.0. In a similar manner to Example 4.3, the pure time delay of two samples is
addressed by simply setting b1 to zero in both the TF model and associated NMSS description.
Hence, the NMSS servomechanism representation is algebraically equivalent to (5.25) or,
equivalently, by substituting the numerical parameter values directly into equation (5.15) and
equation (5.16):

F =

⎡
⎢⎢⎢⎢⎣

1.7 −1 −1 2 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0

−1.7 1 1 −2 1

⎤
⎥⎥⎥⎥⎦ ; g =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ ; and h = [ 1 0 0 0 0 ] (5.28)

Since the TF model (5.27) has no pole-zero cancellations and b1 + b2 + b3 = 1 �= 0, the
NMSS model is clearly controllable. This result can be verified formally by examining the
5× 5 dimension controllability matrix:

S1 = [
g Fg F2g F3g F4g

] =

⎡
⎢⎢⎢⎢⎣

0 −1 0.3 1.51 2.267
0 0 −1 0.3 1.51
1 0 0 0 0
0 1 0 0 0
0 1 0.7 −0.81 −3.077

⎤
⎥⎥⎥⎥⎦ (5.29)

which has full rank 5 and so is non-singular.
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5.2 Proportional-Integral-Plus Control

The SVF control law associated with the NMSS model (5.13) takes the usual form:

u(k) = −kT x(k) (5.30)

where k is the n + m dimensional SVF control gain vector:

kT = [ f0 f1 · · · fn−1 g1 · · · gm−1 − kI ] (5.31)

in which the feedback control gains are selected by the designer to achieve desired closed-loop
characteristics, as discussed in section 5.3 and section 5.4. Expanding the terms in (5.30):

u(k) = − f0y(k)− f1y(k − 1)− · · · − fn−1y(k − n + 1)
− g1u(k − 1)− · · · − gm−1u(k − m + 1)+ kI z(k)

(5.32)

Equation (5.30) and equation (5.32)will be referred to as theNMSS servomechanism controller
or, more commonly, as the Proportional-Integral-Plus or PIP control law.
Following a similar approach to Example 5.1, the negative sign associated with the integral

gain kI in equation (5.31) is introduced to allow the integral feedback term to take on the form
used in conventional PI and PID control laws. The block diagram representation of the closed-
loop system in Figure 5.3 showswhy the PIP controller can be considered as a logical extension
of the PI controller. Here, the proportional action f0 and integral action kI (1− z−1)−1, are
enhanced by the higher order input G1(z−1) and feedback F1(z−1) compensators (the ‘Plus’
elements in the PIP controller), defined as follows:

F1(z−1) = f1z−1 + · · · + fn−1z−n+1

G1(z−1) = g1z−1 + · · · + gm−1z−m+1

}
(5.33)

plant

yd(k) u(k) y(k)+ +

− − − −

proportional control

output feedback f ilter

input feedback f ilter

integral
control

kI

1 − z−1

B(z−1)

A(z−1)

+ +

f0

G1(z−1)

F1(z−1)

Figure 5.3 Block diagram of the univariate PIP control system explicitly showing the proportional and
integral control action
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plant

yd(k) u(k) y(k)+

− −

feedback f ilter

integral
control

kI

1 − z−1

B(z−1)

A(z−1)

forward path f ilter

1

G(z−1)

+

F(z−1)

Figure 5.4 Block diagram of the univariate PIP control system in reduced form

These additional feedback and input compensators are introduced when the process has either
second order or higher dynamics, or pure time delays greater than one sampling interval, i.e.
when either n or m are greater than unity in equation (5.12). Straightforward algebra or block
diagram analysis shows that Figure 5.3 may be represented equivalently by the simplified form
illustrated in Figure 5.4, where:

F(z−1) = f0 + F1(z−1) = f0 + f1z−1 + · · · + fn−1z−n+1

G(z−1) = 1+ G1(z−1) = 1+ g1z−1 + · · · + gm−1z−m+1

}
(5.34)

In order to derive G(z−1), the inner feedback loop involving G1(z−1), as shown in Figure 5.3,
is reduced to a forward path filter, using equation (2.26).
Finally, note that the ‘Plus’ term in the PIP name replaces the ‘Derivative’ term associated

with the conventional ‘three-term’ PID controller. Appendix D shows that the PIP controller
can be transformed into a form that explicitly includes derivative action. This analysis reveals
that the NMSS control strategy has resulted in a control system that can be related structurally
to more conventional PI and PID controllers. However, as discussed below, it is inherently
much more flexible and sophisticated than such conventional designs. In particular, it is able
to exploit the power of SVF for closed-loop control system design and so introduce inherent
higher order derivative action.

5.2.1 The Closed-Loop Transfer Function

The closed-loop control system can be obtained in TF form directly from Figure 5.4 by block
diagram reduction:

y(k) = kI B(z−1)(
1− z−1) (

G(z−1)A(z−1)+ F(z−1)B(z−1)
) + kI B(z−1)

yd (k) (5.35)

The closed-loop characteristic equation of the PIP control system is, therefore:

(
1− z−1) (

G(z−1)A(z−1)+ F(z−1)B(z−1)
) + kI B(z−1) = 0 (5.36)

Assuming that the closed-loop system is stable and that the command input takes a constant
value ȳd , then as k → ∞ the output will reach an equilibrium level where y(k) = y(k − 1). In
other words, the output converges asymptotically to a steady-state value of y(∞), where y(∞)
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is found by setting z−1 = 1 in equation (5.35). In this case, the difference operator 1− z−1 in
the denominator of (5.35) becomes zero and the closed-loop TF function reduces to:

y(∞) = kI B(z−1)
kI B(z−1)

ȳd = ȳd (5.37)

where ȳd is the time-invariant command input. As required, therefore, the steady-state gain of
the closed-loop TF is unity and Type 1 servomechanism performance is achieved.
The device of introducing integral action into the control law by adjoining an additional

integral-of-error state variable was suggested by a number of authors in the late 1960s and
early 1970s, including Young and Willems (1972). It probably represents the first intentional
exploitation of a non-minimal concept and, therefore, seems particularly apposite for utilisation
within the present much more general context.

Example 5.5 Proportional-Integral-Plus Control System Design for NMSS Model with
Five State Variables Let us return to the non-minimum phase oscillator (5.27) considered
in the previous example. Using equation (5.4), equation (5.24), equation (5.30) and equation
(5.31), the PIP control law for this system is given by:

u(k) = − f0y(k)− f1y(k − 1)− g1u(k − 1)− g2u(k − 2)+ kI

1− z−1 (yd (k)− y(k))

(5.38)

The control system is represented in block diagram form by Figure 5.5, in which the control
filters (5.34) are defined as follows:

F(z−1) = f0 + f1z
−1 (5.39)

G(z−1) = 1+ g1z
−1 + g2z

−2 (5.40)

Alternatively, using equation (2.1) and rearranging (5.38), yields the difference equation form
of the PIP algorithm:

u(k) = u(k − 1)+ kI (yd (k)− y(k))− f0(y(k)− y(k − 1))
− f1(y(k − 1)− y(k − 2))− g1(u(k − 1)− u(k − 2))
− g2(u(k − 2)− u(k − 3))

(5.41)

yd(k) u(k) y(k)+

− −

feedback f ilter

integral
control

kI

1 − z−1

forward path f ilter

+

f0 + f1z−1

1

1 + g1z
−1 + g2z

−2

plant

−z−2 + 2z−3

1 − 1.7z−1 + z−2

Figure 5.5 PIP control of the non-minimum phase oscillator in Example 5.5
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which can be coded straightforwardly for practical applications using a digital computer.
Evaluation of the characteristic equation (5.36) for this example reveals that the closed-loop

TF is fifth order. The presence of integral control action has increased the order of the system
by one degree, when compared with the equivalent NMSS regulator solution (4.31). However,
there are five control gains so that, once more, the poles of the characteristic equation can be
assigned to desired locations in the complex z-plane, here by solving a set of five simultaneous
equations. As the order of the system increases, so it becomes more time consuming to
determine the algebraic solution by hand. Fortunately, as discussed below, the pole assignment
solution for the general TF model (5.12) may be written conveniently in vector-matrix form,
and it is then straightforward to compute using standard software packages.

5.3 Pole Assignment for PIP Control

In the present section, the automatic control objective is to design a SVF control law such that
the closed-loop poles lie at pre-assigned positions in the complex z-plane.
Many algorithms have been proposed for calculating the SVF pole assignment control gains

(e.g. Luenberger 1967; Gopinath 1971;Munro 1979; Kailath 1980). However, the special form
of the NMSS representation allows us to compute the gains in a particularly straightforward
manner. Indeed, it is possible to develop a general pole assignment algorithm for PIP control
in one of two main ways that naturally yield the same result:

(i) by polynomial algebra, based on the block diagram Figure 5.4, as discussed in Appendix
E; or

(ii) by state space analysis using an approach similar to that proposed previously for
continuous-time systems (Young and Willems 1972).

The latter approach provides greater insight into the nature of the solution and is the one
considered below. Of course, it is not always necessary to utilise these general algorithms: in
low order cases the computations are so simple that special solutions may be computationally
more efficient and so more appropriate to applications such as adaptive control.

5.3.1 State Space Derivation

The closed-loop control system is derived by substituting the PIP control law (5.30) into the
NMSS model (5.13). This yields the following closed-loop state space system:

x(k) = (F − gk) x(k − 1)+ dyd (k)
y(k) = hx(k)

}
(5.42)

Following a similar approach to the analysis of open-loop systems in Chapter 3, the z-operator
TF representation of (5.42) can be written as:

G(z) = h(zI − F + gkT )−1d = h
(
adj(zI − F + gkT )

)
d∣∣(zI − F + gkT )

∣∣ (5.43)
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where I represents a n + m dimension identity matrix, adj(zI − F + gkT ) denotes the adjoint
of the matrix (zI − F + gkT ) and

∣∣(zI − F + gkT )
∣∣ denotes its determinant. The characteristic

equation of the closed-loop PIP control system is obtained by equating this determinant to
zero, i.e.

∣∣(zI − F + gkT
)∣∣ = 0 (5.44)

The eigenvalues of
(
F − gkT

)
are the roots of

∣∣(zI − F + gkT
)∣∣ = 0. Provided that the pair

[F, g] is completely controllable and we are dealing with a low order system, it is straight-
forward to compute the elements of k by simply equating the coefficients of equation (5.44)
with those of a specified characteristic polynomial having the desired roots, as in Example 5.1.
This yields a set of (n + m) linear simultaneous algebraic equations, which can be solved in
the normal manner.
In the higher order situation, this approach can be unwieldy and amore systematic procedure

seems necessary for general practical applications and for use in Computer Aided Control
System Design (CACSD) programs. This requires a method for determining the simultaneous
algebraic equations directly from the NMSS model and the desired characteristic polynomial
coefficients.
In order to develop a more general algorithm, we follow the approach of Young (1972) and

let p(z) and r (z) denote the open- and closed-loop characteristic polynomials, respectively:

p(z) = ∣∣zI − FT
∣∣ (5.45)

r (z) = ∣∣zI − F + gkT
∣∣ (5.46)

Note that

zI − F + gkT = (zI − F)
(
I + (zI − F)−1gkT

)
(5.47)

Therefore, taking the determinant on both sides of (5.47):

∣∣zI − F + gkT
∣∣ = |zI − F| ∣∣I + (zI − F)−1gkT

∣∣ (5.48)

where the identity matrices are of appropriate dimensions, and rearranging the terms inside
the determinant:

∣∣I + (zI − F)−1gkT
∣∣ = ∣∣I + gkT (zI − F)−1

∣∣ = ∣∣I + kT (zI − F)−1g
∣∣ (5.49)

Using equation (5.48) and equation (5.49), we see that

∣∣zI − F + gkT
∣∣ = |zI − F| ∣∣I + kT (zI − F)−1g

∣∣ (5.50)
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Therefore,

r (z) = p(z)
∣∣I + kT (zI − F)−1g

∣∣ (5.51)

Recall that

(zI − F)−1 = adj (zI − F)
|zI − F| (5.52)

Let the vector q(z) be defined as:

q(z) = adj (zI − F) g (5.53)

so that the closed-loop characteristic equation r (z) can be written in the form:

r (z) = p(z)+ kT q(z) (5.54)

Hence,

kT q(z) = r (z)− p(z) (5.55)

Thus knowing q(z), r (z) and p(z), the solution of equation (5.55) yields the feedback gain
vector k, as required.
The open-loop characteristic equation of the NMSS model (5.13) is given by:

p(z) = |zI − F| = (z − 1)zm−1 (
zn + a1z

n−1 + · · · + an
) = zn+m +

n+m∑
i=1
(ai − ai−1)zn+m−i

(5.56)

where a0 = 1 and ai = 0 for i > n.
Now define a desired closed-loop characteristic polynomial D(z):

D(z) = zn+m + d1z
n+m−1 + · · · + dn+m = zn+m +

n+m∑
i=1

di z
n+m−i (5.57)

From equation (5.55) and equation (5.56), and replacing r (z) by the desired closed-loop
characteristic polynomial D(z), the following equation is obtained:

kT q(z) = d(z)− p(z) =
n+m∑
i=1

{di − (ai − ai−1)}zn+m−i (5.58)
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again with a0 = 1 and ai = 0 for i > n. It can be shown that:

adj (zI − F) =
n+m∑
j=1

z j−1
n+m∑
i= j

(an+m−i − an+m−i−1)Fi− j (5.59)

so that equation (5.58) can be written as:

kT
n+m∑
j=1

z j−1
n+m∑
i= j

(an+m−i − an+m−i−1)Fi− j g =
n+m∑
i=1
(di − (ai − ai−1))zn+m−i (5.60)

Equating the coefficients of the like powers of z on both sides of (5.60), the following equations
can be generated:

j = 1, kT
n+m∑
i=1
(an+m−i − an+m−i−1) Fi−1g = dn+m − (an+m − an+m−1)

j = 2, kT
n+m∑
i=2
(an+m−i − an+m−i−1) Fi−2g = dn+m−1 − (an+m−1 − an+m−2)

...
...

...

j = n + m − 1, kT
n+m∑

i=n+m−1
(an+m−i − an+m−i−1) Fi−(n+m−1)g = d2 − (a2 − a1)

j = n + m, kT a0 g = d1 − (a1 − a0)

(5.61)

Now define the matrixM as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 · · · 0 0
a1 − 1 1 0 · · · 0 0 · · · 0 0
a2 − a1 a1 − 1 1 · · · 0 0 · · · 0 0
...

...
... · · · ...

...
...

...
...

−an an − an−1 an−1 − an−2 · · · 1 0 · · · 0 0
0 −an an − an−1 · · · a1 − 1 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · an − an−1 an−1 − an−2 · · · 1 0
0 0 0 · · · −an an − an−1 · · · a1 − 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.62)
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Since a0 = 1 and ai = 0 for i > n, the set of equations (5.61) can be written conveniently in
the following vector-matrix equation form:

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gT

gT FT

gT
(
FT

)2
...

gT
(
FT

)n

gT
(
FT

)n+1

...

gT
(
FT

)n+m−2

gT
(
FT

)n+m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k = d − p (5.63)

where d and p are the vectors of coefficients of the desired closed-loop characteristic polyno-
mial and the open-loop characteristic polynomial of the NMSS model, respectively:

dT = [d1 d2 d3 · · · dn dn+1 · · · dn+m−1 dn+m ] (5.64)

pT = [a1 − 1 a2 − a1 a3 − a2 · · · an − an−1 −an · · · 0 0 ] (5.65)

and k is the (n + m) dimensional control gain vector (5.31). Equation (5.63) represents the
required set of (n + m) simultaneous equations in the (n + m) unknown SVF gains.
It will be noted thatM on the left-hand side of (5.63) is lower triangular with unity elements

on the main diagonal, hence it is non-singular. The second matrix is the transpose of the
NMSS controllability matrix (5.20). As a result, it is clear that a solution to the simultaneous
equations (5.63) exists if and only if the NMSS model is controllable, i.e. the controllability
matrix S1 must be of full rank (n + m). We have already seen above that this is the case for
the NMSS model, as long as the conditions of Theorem 5.1 hold.
In this controllable case, equation (5.63) can be written:

(MST
1 )k = d − p (5.66)

whereMST is invertible, so that the control gain vector can be obtained from:

k = (MST
1 )

−1(d − p) (5.67)

This is the required algorithm for computing the PIP gains. For later reference, define a matrix
� = MST

1 .

Theorem 5.2 Pole Assignability of the PIP Controller Given a SISO discrete-time system
described by the NMSS representation (5.13), all of the poles of the closed-loop system can
be assigned to arbitrary positions in the closed-loop z-plane by the PIP control law (5.30), if
and only if the controllability conditions of Theorem 5.1 are fully satisfied.
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Proof of Theorem 5.2 If the matrix � = MST
1 in equation (5.67) is non-singular, the

eigenvalues of the closed-loop system can be arbitrarily assigned by the use of the state
feedback algorithm u(k) = −k x(k) and the feedback gain vector k for the PIP control system
will be uniquely defined. It is not difficult to prove the non-singularity of the � matrix,
provided that the conditions of Theorem 5.1 are satisfied. In particular, if we add to each row
in turn, all of the rows below that row, then � becomes:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0 0 · · · 0 0 b1 + · · · + bm

−b1 0 · · · 0 0 −1 0 · · · 0 0 0
−b2 −b1 · · · 0 0 −a1 −1 · · · 0 0 0
...

... · · · ...
...

...
... · · · ...

...
...

−bm−1 −bm−2 · · · −b2 −b1
...

... · · · ... −1 0

−bm −bm−1 · · · −b3 −b2 −an−1
... · · · −a2 −a1 0

0 −bm · · · −b4 −b3 −an −an−1 · · · −a3 −a2 0
... 0 · · · ...

... 0 −an · · · ...
...

...
...

... · · · ...
...

... 0 · · · ...
...

...
0 0 · · · −bm −bm−1 0 0 · · · −an −an−1 0
0 0 · · · 0 −bm 0 0 · · · 0 −an 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, the lower left block matrix will be recognised as the well known Sylvester resultant
matrix (see e.g. Kailath 1980), which is non-singular if the polynomials A(z−1) and B(z−1)
are coprime. If, in addition b1 + · · · + bm �= 0, then the whole � matrix will be non-singular
as required. These are the same conditions as stated in Theorem 5.1.

Thus, provided the system (5.13) satisfies the controllability conditions of Theorem 5.1, we
will always be able to compute the specified PIP pole assignment gains via the solution of
the set of linear, simultaneous equations (5.67) or their equivalent (E.5) in Appendix E. These
conditions for pole assignability are intuitively obvious and quite non-restrictive. But they are,
of course, based on purely theoretical results. In practice, like all other linear control system
design procedures, PIP pole assignment will only apply strictly if the controlled system is, and
continues to be, described adequately by the linear TF model (5.12) and so maintains a linear
mode of behaviour. The robustness consequences of parametric uncertainty will be considered
in Example 5.6.

Example 5.6 Pole Assignment Design for the NMSS Model with Five State Variables Let
us return to the non-minimum phase oscillator (5.27) and PIP controller (5.38) considered
in the previous two examples. In order to illustrate the pole assignment approach, let the
desired closed-loop characteristic polynomial (5.57) be specified as D(z) = (z − 0.5)4 or,
equivalently:

D(z−1) = (1− 0.5z−1)4 = 1− 2z−1 + 1.5z−2 − 0.5z−3 + 0.0625z−4
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The desired coefficients (5.64) are then expressed in vector form as follows:

dT = [−2 1.5 −0.5 0.0625 0 ] (5.68)

while the open-loop coefficients (5.65) are:

pT = [−2.7 2.7 −1 0 0 ] (5.69)

and equation (5.66) takes the form:

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
−1 0 −2.7 1 −1
3 −1 2.7 −2.7 2

−2 3 −1 2.7 0
0 −2 0 −1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

f0
f1
g1
g2
kI

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.7
−1.2
0.5
0.0625
0

⎤
⎥⎥⎥⎥⎦ (5.70)

Solving (5.70) yields:

k = [ 0.176 −0.464 0.700 0.928 −0.063 ]T (5.71)

Hence, the PIP control law (5.38) is:

u(k) = −0.176y(k)+ 0.464y(k − 1)− 0.7u(k − 1)− 0.928u(k − 2)+ 0.063

1− z−1 (yd (k)− y(k))

(5.72)

Note that, although the dimension of the NMSS servomechanism system here is five, the
closed-loop system has been specified as fourth order by placing the additional pole at the
origin of the complex z-plane, i.e. d5 = 0 in equation (5.68). This allows for a direct comparison
with the NMSS regulator solution developed in Example 4.3 and Example 4.4. In fact, in the
ideal case, the response of the PIP (NMSS servomechanism) and NMSS regulator controllers
are exactly the same as that shown in Figure 4.3.
However, one advantage of the PIP controller is highlighted by Figure 5.6, which shows the

closed-loop response of the systemwhen an unmeasured output disturbance input is introduced.
Here, we see that the addition of the integral-of-error state variable in the PIP control law,
not only ensures basic steady-state tracking of the command input but also ‘backs-off’ the
disturbance, i.e. the control input brings the system back to the command level following the
imposition of the step disturbance at the 25th sample. For comparison, the equivalent unity
gain NMSS regulator response, which exhibits a steady-state error, is illustrated by Figure 4.7.
Now suppose there is some uncertainty associated with the model used to estimate the gains

and that the system numerator polynomial is actually −z−2 + 1.8z−3, i.e. there is a 10% error
in the second parameter. The closed-loop PIP control system with this model mismatch is
illustrated by Figure 5.7, with the unit step response shown in Figure 5.8. This shows that the
system remains well controlled despite the error in the model parameter and that the steady-
state gain of the closed-loop system is still unity. For comparison, the equivalent unity gain
NMSS regulator response, again with a steady-state error, is illustrated by Figure 4.6.
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Figure 5.6 Closed-loop unit step response using the PIP controller of Example 5.6, with an input step
disturbance of 0.05 at the 25th sample (cf. Figure 4.7 using the unity gain NMSS regulator)

These results are based on the fourth order closed-loop design. In fact, any order ≤ n + m
could be selected for the closed-loop system, including a dead-beat specification where all
the poles are assigned to the origin of the complex z-plane, i.e. D(z−1) = 1. As discussed in
Chapter 2 (Example 2.7), such a dead-beat design is superficially attractive since, in theory, it
yields a very rapid, critically damped response.
In general, however, it represents a rather risky design in practical terms, with numerous

potential disadvantages: for example, it can be too ‘harsh’, often leading to problems such as
input saturation and poor disturbance rejection. Furthermore, such dead-beat control systems
can also have very low stabilitymarginswith considerable sensitivity to parametric uncertainty.
Indeed, for the present example, with the model mismatch in Figure 5.7 and Figure 5.8, the
dead-beat design yields an unstable closed-loop response.

Example 5.7 Implementation Results for FACE system with Disturbances Let us return
to the FACE system mentioned in Example 2.1, as represented by the TF model (5.1) with

yd(k) y(k)+

− −

feedback f ilter

integral
control

0.063

1 − z−1

forward path f ilter

+

0.176 − 0.465z−1

1

1 + 0.7z−1 + 0.927z−2

plant

−z−2 + 1.8z−3

1 − 1.7z−1 + z−2

Figure 5.7 PIP control of the non-minimum phase oscillator in Example 5.6 with model mismatch
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Figure 5.8 Closed-loop unit step response using the PIP controller of Example 5.6, when the model
has a 10% error in one of the parameters (cf. Figure 4.6 using the unity gain NMSS regulator)

a1 = −0.713 and b1 = 2.25. Here, y(k) is the CO2 concentration (parts per million, ppm)
and u(k) is the voltage regulating a mass flow valve. Practical FACE systems are dominated
by the wind disturbances (Taylor et al. 2000), hence the PIP control law offers an essential
improvement over the simpler NMSS regulator solution. However, the question of how to
choose suitable pole positions remains open. Referring back to Example 2.6 (equivalently
Example 5.1), this is the design decision that has to be made when choosing between the
dead-beat response illustrated by Figure 2.17 and slower designs such as Figure 2.18.

In fact, practical implementation results for the FACE system, based on dead-beat design,
are very poor, with the mass flow value control input oscillating rapidly between its maxi-
mum and minimum extremes. By contrast, trial and error experimentation using the practical
FACE system suggests that satisfactory closed-loop responses, for a wide range of wind con-
ditions, are obtained by selecting the following second order desired closed-loop characteristic
polynomial:

D(z−1) = (1− 0.75z−1)2 = 1− 1.5z−1 + 0.5625z−2 (5.73)

In this case, solving (5.67) yields:

k = [ 0.0669 −0.0278 ]T (5.74)

and the PIP control law takes the PI form shown by Figure 2.15, here with f0 = 0.0669 and
kI = 0.0278.
Figure 5.9 illustrates the response for a typical implementation experiment. Considering

the relatively gusty wind conditions associated with this experiment (indicated by the rapid
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Figure 5.9 Closed-loop response using the PIP controller (5.74), showing the output CO2 concentration
(ppm), the command input at 500 ppm, the control input (a scaled voltage regulating a mass flow valve)
and a scaled voltage representing changes in wind velocity (for which zero represents the mean wind
speed). The sampling rate is 10 s

changes required in the control input variable), these results show how the basic PI structure
can, nonetheless, yield acceptable results. Here, the 1 min mean CO2 concentrations (based
on averaging the 10 s means obtained by the data logger) never deviate from the set point by
more than 15%, which is well within the objectives of the study. Note that the wind velocity
is represented by an arbitrarily scaled voltage that has not been calibrated in this case – the
lower trace in Figure 5.9 is shown only to highlight the time varying nature of this disturbance
signal.

5.4 Optimal Design for PIP Control

In this book, the control design specification considered so far has always been pole assignment,
an approach in which the designer directly selects the poles of the closed-loop system. In
Example 5.7, these poles were chosen by trial and error experimentation, in order to achieve
a satisfactory response. In the present section, the PIP control gain vector is chosen to fulfil
an alternative closed-loop requirement. Here, we introduce the concept of optimal control,
i.e. a control system that simultaneously ensures the completion of the system objectives (e.g.
stability) and the minimisation of a performance index (see e.g. Zak 2003, p. 225; Dorf and
Bishop 2008, p. 781). In the most general terms, the parameters of an optimal control system
are adjusted so that a performance index reaches an extremum value; usually, the performance
index is defined so that its numerical value decreases as the quality (in some defined sense) of
the control increases (Zak 2003).
More specifically, a well known example of SVF optimal control is when the control gain

vector is chosen tominimise the Linear Quadratic (LQ) type of performance criterion (Kalman
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1960a; Wonham 1968). For a SISO control system, the aim is to design a feedback gain vector
k that will minimise the following quadratic cost function:

J =
∞∑

k=0
x(k)T Qx(k)+ r (u(k)2) (5.75)

where Q is a (n + m) by (n + m) symmetric, positive semi-definite matrix and r is a positive
scalar. As usual, x(k) and u(k) are the state vector and control input variable, respectively. The
quadratic form x(k)T Qx(k) (see Appendix A) represents a very general or weighted (by the
elements of Q) ‘sum of squares’ type operation on the elements of x(k), providing a measure
of the ‘power’ in the state variables that is being balanced by the power in the input signal.
As a result, the minimisation of this cost function over the interval k = 0 → ∞ means that a
balance is struck between the minimisation of the state variable changes and the amount of
input power required to achieve this.
Equation (5.75) is a standard formulation of the infinite time, optimal LQ servomechanism

cost function for a SISO system (see e.g. Åström and Wittenmark 1984, pp. 254–281; Zak
2003, pp. 244–314; Franklin et al. 2006, pp. 487–488; Dorf and Bishop 2008, pp. 781–791).
However, it is worth noting that the special structure of the non-minimal state vector means that
the diagonal elements of Q have particularly simple interpretation. In particular, the diagonal
elements of Q represent the weights assigned to squared values not only of the current and
past values of the output but also the integral-of-error term and the past values of the input, as
discussed below.

5.4.1 Linear Quadratic Weighting Matrices

For now, we will follow the usual convention and let Q be a purely diagonal matrix:

Q = diag(q1 q2 . . . qn qn+1 . . . qn+m−1 qn+m ) (5.76)

Noting the NMSS state vector (5.14), the user-defined output weighting parameters
q1, q2, . . . , qn and input weighting parameters qn+1, . . . , qn+m−1 are generally set equal to
common values of qy and qu , respectively, while qn+m is denoted by qe to indicate that it
provides a weighting constraint on the integral-of-error state variable z(k). Hence,

Q = diag(qy · · · qy qu · · · qu qe ) (5.77)

Also, because of the special nature of the NMSS formulation, we typically set r = qu in
equation (5.75). Using this approach, qy , qu and qe represent the partial weightings on the
output, input and integral-of-error variables in the NMSS vector x(k), usually defined as
follows:

qy = Wy

n
; qu = Wu

m
; qe = We (5.78)

so that the total weightings are given by scalar weights Wy , Wu and We.
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These three scalar weighting factors are chosen by the designer to achieve the desired
closed-loop performance, as discussed in Example 5.8 and subsequently in section 5.5. In one
sense, this formulation is analogous to the PID controller that also has three tuning parameters.
Of course, for classical PID control the tuning parameters are simply the proportional, integral
and derivative control gains, and changing these directly may yield an unsatisfactory or even an
unstable solution. This contrasts with LQ design, in which closed-loop stability is guaranteed
in the deterministic case (i.e. no uncertainty in the model coefficients) when the system is
represented by the TF model (5.12), as shown in section 5.4.2.
Satisfactory closed-loop performance can often be obtained by straightforward manual

tuning of the diagonal LQ weights or simply Wy , Wu and We. However, in more difficult
situations, for example in the multivariable case, there can be advantages in considering the
exploitation of the off-diagonal elements of Q. Indeed, we will see that the PIP-LQ control
system is ideal for incorporation within a multi-objective optimisation framework. In this more
complex situation, satisfactory compromise can be obtained between conflicting objectives,
such as multivariable decoupling, robustness, overshoot, rise times and actuator demands.
This is achieved by concurrent optimisation of the diagonal and off-diagonal elements of the
weighting matrices in the cost function, as discussed in Chapter 7.
For now, however, it is worth noting that the ‘default’ PIP-LQ controller, which is obtained

using total optimal control weights of unity, i.e.

Wy = Wu = We = 1 (5.79)

or, using equations (5.78), equivalently,

qy = 1

n
; qu = r = 1

m
; qe = 1 (5.80)

is often found to work well in practice. If a faster or slower closed-loop response is desirable,
then qe can usually be straightforwardly increased or reduced as required.

5.4.2 The LQ Closed-loop System and Solution of the Riccati Equation

Given the NMSS system description [F, g], the weighting matrix Q and the input weighting r,
the SVF gain vector k is given by standard LQ theory (e.g. Willems 1971; Pappas et al. 1980;
Åström and Wittenmark 1984, p. 260). In particular, the control gains are determined using:

kT = (r + gT Pg)−1gT PF (5.81)

where the matrix P is the steady-state solution of the following discrete-time, matrix Riccati
equation:

P − FT PF + FT Pg(r + gT Pg)−1gT PF − Q = 0 (5.82)



True Digital Control for Univariate Systems 113

in which 0 is a matrix of zeros. Using equation (5.30), the optimal SVF control law takes the
form:

u(k) = − (
(r + gT Pg)−1gT PF

)
x(k) (5.83)

Substituting from (5.83) into (5.42), the closed-loop system becomes:

x(k) = (
F − g(r + gT Pg)−1gT PF

)
x(k − 1)+ dyd (k) = 0 (5.84)

and the closed-loop poles are obtained from the following characteristic equation:

∣∣λI − F + g(r + gT Pg)−1gT PF
∣∣ = 0 (5.85)

It can be shown (e.g. Kuo 1997) that the closed-loop poles are the (n + m) stable eigenvalues
of the following generalised eigenvalue problem:

|VLλ − VR| = 0 (5.86)

where

VR =
[

F 0
Q −I

]
; VL =

[
I grgT

Q −FT

]
(5.87)

This latter result is useful in obtaining a computational solution of the matrix Riccati equation,
as required to define the PIP control law. Here, we solve the following eigenvalue–eigenvector
equation:

(VLλ − VR)w = 0 (5.88)

where λ is the eigenvalue, w is the corresponding eigenvector, and the matrices VR and VL are
given by equations (5.87).
Note that the standard approach used for solving the steady-state matrix Riccati equation,

as originally used in the MATLAB R©1 Control System Toolbox (Grace et al. 1990), requires
that the state transition matrix is non-singular. However, in the NMSS model the Fmatrix can
be singular and so this approach is not applicable. The problem is easily obviated, however,
by recourse to one of three methods: the generalised eigenvalue method mentioned above; the
technique of Hewer (1971, 1973), which relies on the successive (quasi-linear in matrix terms)
approximations of the Riccati equation by Lyapunov equations (the numerical solutions of
which are well known); or the direct recursive solution of the matrix Riccati equation discussed
below. None of these approaches requires inversion of F.

1 MATLAB R©, The MathWorks Inc., Natick, MA, USA.
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5.4.3 Recursive Solution of the Discrete-Time Matrix Riccati Equation

The direct method of obtaining the feedback gain vector k is given by Bryson and Ho (1969)
and Borrie (1986). Here, the equations

kT (i) = (r + gT P(i + 1)g)−1gT P(i + 1)F (5.89)

and

P(i) = Q + FT P(i + 1)F − FT P(i + 1)gkT (i) (5.90)

are solved by a backwards recursion with the boundary conditions (P(N ) = 0; k(N ) = 0),
and with the value of N chosen as large as necessary to reach the steady-state solutions
(alternatively, a convergence criterion can be evaluated), as in Example 5.8.

Example 5.8 PIP-LQ Design for the NMSS Model with Five State Variables Consider
once again the non-minimum phase oscillator (5.27) and associated PIP controller (5.38). The
default PIP-LQ design (5.80) has the following weighting terms: qy = 1/2, qu = 1/3 and
qe = 1. Hence,

Q = diag( 0.5 0.5 0.3333 0.3333 1 ); r = 0.3333 (5.91)

Consider N = 20 in (5.89) and (5.90) and set:

kT (20) = [ f0 f1 g1 g2 −kI ] = [ 0 0 0 0 0 ]; P(20) = 0 (5.92)

where 0 is a 5× 5 zero matrix. Solving {(5.89), (5.90)} with these initial conditions and the
NMSS matrices (5.28), gives kT (19) = [ 0 0 0 0 0 ] and P(19) = Q. A second iteration
yields kT (18) = [ 0 0 0 0 0 ] and

P(18) =

⎡
⎢⎢⎢⎢⎣

5.335 −2.55 −2.55 5.1 −1.7
−2.55 2 1 −3 1
−2.55 1.5 2.1667 −3 1
5.1 −3 −3 6.3333 −2

−1.7 1 1 −2 2

⎤
⎥⎥⎥⎥⎦ (5.93)

The next iteration yields:

kT (17) = [−1.814 1.42 0.22 −2.84 0.4 ] (5.94)

Continuing in the same manner to N = 0, yields:

kT (0) = [ 1.462 −1.886 1.603 3.772 −0.259 ] (5.95)
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Figure 5.10 Closed-loop unit step response using the default (bold solid trace) and modified slower
(dashed trace) PIP-LQ controllers of Example 5.8

Unfortunately, for this TF model, the default PIP controller with this gain vector is rather fast
and the non-minimum phase behaviour becomes excessive, as shown by the 7th sample in the
closed-loop step response shown in Figure 5.10.
However, using trial and error adjustment of only the integral-of-error weighting to change

the speed of response, quickly yields improved closed-loop behaviour. For example, using
qy = 1/2, qu = 1/3 and qe = 0.1 yields:

kT (0) = [ 0.597 −1.008 1.226 2.017 −0.109 ] (5.96)

With these settings, the closed-loop response shown as the dashed trace in Figure 5.10, is
similar to that obtained for the PIP pole assignment controller (5.71) and the equivalent NMSS
regulator (4.36). The latter two designs are both based on assigning the poles to 0.5 on the
real axis of the complex z-plane. It is interesting to note, however, that evaluating equation
(5.44) for this example reveals the following different closed-loop pole positions λ1 = λ2 = 0,
λ3 = 0.748 and λ4,5 = 0.363± 0.162 j for the LQ design.
This LQ controller has a higher gain margin (Franklin et al. 2006, pp. 353), compared with

the pole assignment algorithm (5.71), implying that the latter design is closer to the stability
margin and potentially less robust. However, a detailed evaluation of these two particular
examples using, for example, Monte Carlo Simulation, is left to the reader. It should be noted,
of course, that the poles and weightings selected for this simulation example have been chosen
for illustrative purposes, rather than because they met any particular design objectives (such
as robustness).
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5.5 Case Studies

We are now in a position to solve the pole assignment or LQ optimal control problem for
any of the TF models considered so far in this book. For example, returning to the laboratory
robot excavator considered in Example 5.2, it is possible to explain how the closed-loop pole
positions were chosen. The PIP-LQ approach was utilised, with straightforward trial and error
experimentation suggesting that Q = diag (1 20) and r = 10 provides adequate control of the
bucket angle for a wide range of operating conditions (Shaban 2006). These weightings yield
f0 = 6.30 and kI = 1.17, while the associated closed-loop poles are p1,2 = 0.814± 0.154 j ,
as stated previously in Example 5.2.
Using the same sampling rate of 0.1 s, similar first order TF models have been identified for

the other degrees-of-freedom (i.e. hydraulically actuated joints) of the laboratory excavator.
However, in some cases, the identified TF model includes two samples pure time delay, i.e.
n = 1 and m = τ = 2 and so the NMSS servomechanism representation is defined by the
following third order state vector:

x(k) = [ y(k) u(k − 1) z(k) ]T (5.97)

In this case, the PIP control law takes the form:

u(k) = − f0y(k)− g1u(k − 1)+ kI

1− z−1 (yd (k)− y(k)) (5.98)

For more information about the laboratory robot excavator, including PIP control system
design for these other joints, see Shaban (2006) and Taylor et al. (2007). For PIP control of
the full scale, commercial excavator and other examples of PIP control in the construction
industry, see e.g. Gu et al. (2004) and Shaban et al. (2008).
Another previous case study, Example 2.8, considered the control of an axial fan positioned

at the outlet of a forced ventilation test chamber. Here, the identified TF model (2.48) for
air velocity is also based on n = 1 and m = τ = 2. Hence, the PIP control law is obtained
similarly using equation (5.97) and equation (5.98). For examples of PIP control of ventilation
rate and other micro-climatic variables, such as temperature and CO2, see Lees et al. (1996,
1998), Price et al. (1999) and Taylor et al. (2000, 2004a, b).
A higher order example is the NMSS servomechanism representation of the third order wind

turbine model (2.9), introduced in Example 2.2. This has the following sixth order NMSS state
vector:

x(k) = [ y(k) y(k − 1) y(k − 2) u(k − 1) u(k − 2) z(k) ]T (5.99)

so that the PIP control law associated with equation (5.99) takes the form:

u(k) = − f0y(k)− f1y(k − 1)− f2y(k − 2)− g1u(k − 1)− g2u(k − 2)+ kI

1− z−1 yd (k)

(5.100)
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In all these cases, the pole assignment or LQ design procedure follows in exactly the same
way as for the previous examples.
Finally, in order to illustrate the practical utility of the PIP approach, Example 5.9 is based

on a traditionally rather difficult control problem, namely the control of a real system whose
model is an integrator with a long pure time delay.

Example 5.9 PIP-LQ Control of CO2 in Carbon-12 Tracer Experiments Figure 5.11
and Figure 5.12 illustrate the response of a PIP-LQ controller applied to the carbon dioxide
(12CO2) tracer system described by Minchin et al. (1994). These experiments, in which the
radioactive isotope carbon-12 is employed to study the uptake and transport of carbon in
plants, require the tight regulation and control of specified CO2 levels in the leaf chamber.
This system is quite difficult to control because of the rather limited pulse-width-modulated
input signal, where the control input represents the duration of time during each 5 s sample
that the CO2 gas is injected into the system.

Furthermore, the system behaves essentially as an integrator with a 4-sample time delay, i.e.

y(k) = b4z−4

1+ a1z−1 u(k) = 0.0045z−4

1− z−1 u(k) (5.101)

where y(k) is the CO2 concentration (ppm) and u(k) is the CO2 injection time (s). The TFmodel
(5.101) has been identified from experimental data using the statistical methods described in
Chapter 8 (Taylor et al. 1996).
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Figure 5.11 Closed-loop response using the PIP controller of Example 5.9, showing the command
input (sequence of steps of varying magnitude), together with the simulated (dashed trace) and measured
CO2 concentration (subjected to high frequency chatter). The plant was shaded at the 730th sample
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Figure 5.12 Control input signal (seconds of CO2 injection) associated with Figure 5.11

The NMSS state vector for (5.101) takes the following form:

x(k) = [y(k) u(k − 1) u(k − 2) u(k − 3) z(k)]T (5.102)

and the associated NMSS model (5.13) is defined in the usual manner, here with a1 = −1
and b4 = 0.0045. Note that the relatively long time delay of 4 samples (20 s) is automatically
incorporated into the NMSS description by setting b1 = b2 = b3 = 0 as usual.
Utilising the default PIP-LQ settings (5.80) and solving {(5.89), (5.90)} yields:

kT (0) = [ 22.9987 0.0949 0.0992 0.1035 −0.9536 ] (5.103)

The PIP control system is implemented as in equation (5.32).
As can be seen in Figure 5.11 andFigure 5.12, the practical performance of this PIP controller

is very good, with the CO2 concentration kept within 1 or 2 ppm of the set point at steady
state. Figure 5.11 also demonstrates the robustness of the controller to changing dynamics in
the system: at the 730th sample, the CO2 level starts to rise following the covering of the leaf
chamber with a neutral coloured light filter (this has no preferential absorption of particular
wavelengths). This filter has the effect of approximately halving the rate of CO2 uptake.
Despite this major output disturbance, the PIP controller soon returns the concentration to the
set point, where the regulatory performance remains good. This demonstrates the practical
importance of the integral-of-error state feedback in the PIP controller.
Note that the output signal is quantised due to limitations in the measurement device, hence

the input signal in Figure 5.12 also appears noisy. However, it is clear that this does not disrupt
the performance of the PIP control system. Indeed, even though the open-loop system is
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marginally stable (with a pole at unity) and the output measurement is quantised, the practical
implementation of this PIP-LQ design is very robust.

5.6 Concluding Remarks

This chapter has introduced the PIP controller, in which NMSS models are formulated so that
full SVF control can be implemented directly from the measured input and output signals of
the controlled process. We have seen that the PIP controller can be interpreted as a logical
extension of conventional PI and PID controllers, with additional dynamic feedback and
input compensators introduced automatically when the process has second order or higher
dynamics; or pure time delays greater than one sampling interval. In contrast to conventional
PI/PID controllers, PIP design has numerous advantages: in particular, its structure exploits
the power of SVF methods, where the vagaries of manual tuning are replaced by either pole
assignment or LQ design.
Such SVF techniques become particularly important as we move to multivariable systems

in Chapter 7. However, even in the simplest SISO case discussed in the present chapter, some
of the main advantages of the NMSS approach have become apparent:

• As discussed in Chapter 4, the NMSS form is a particularly obvious and rather natural way
of representing the general TF model (5.12) in state space terms.

• In the full servomechanism formulation discussed in the present chapter, the introduction of
an integral-of-error state variable provides a logical approach to ensure Type 1 servomecha-
nism performance, i.e. steady state tracking of the set point. Type 2 servomechanism could
also be obtained, if required, by introducing a double integration of error state.

• Since all the states are available, either by direct measurement or access to the past input and
output values stored by a digital computer or micro-controller, no observer is required to
implement the controller. The approach often yields a control law of similar complexity to
that of a conventional PID controller. It is clear that full state feedback is always achieved,
so neither Kalman filtering (Kalman 1960b) nor Loop Transfer Recovery (Bitmead et al.
1990) is required in deterministic PIP design. In this regard, the incorporation of an observer
or Kalman Filter is not only more complicated, it can also reduce the robustness of any
design.

• Not only is the observer a redundant complexity but, equally importantly, the cost function
weighting terms in the PIP case apply only to the present and past values of the output
variable and past values of the input variables, rather than the far less intuitive combinations
of variables required in the minimal state case. Indeed, the fact that PIP control is straight-
forward to implement and has intuitive tuning parameters (i.e. Wy , Wu and We) is one of its
key practical strengths and attractions.

Although one of the original motivations for introducing the PIP controller was simply
to avoid the need for a state observer with its inherent problems, it was quickly realised
that the non-minimal state vector can form the basis for a wide range of extensions to the
basic algorithm. These include an expanded form of GPC, feed-forward control for improved
disturbance rejection, stochastic optimal control and risk-sensitive (exponential of quadratic
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and H∞) optimal control, as discussed in Chapter 6; and multivariable control design, as
considered in Chapter 7.
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6
Control Structures
and Interpretations

In previous chapters, we have examined several State Variable Feedback (SVF) control sys-
tems, culminating in Chapter 5 with the introduction of the univariate Proportional-Integral-
Plus (PIP) controller. Apart from the integral-of-error state variable, which is introduced specif-
ically to ensure Type 1 servomechanism performance, we have seen that theNon-Minimal State
Space (NMSS) form provides one of the most natural ways to define the Transfer Function
(TF) model in state space terms. However, there is no reason to limit the design to this basic
form. Indeed, one advantage of the NMSS model is that the state vector is readily extended
to account for the availability of additional measured or estimated information, and these
additional states can be utilised to develop a more sophisticated Generalised PIP controller.
Furthermore, there are a number of different methods available for implementing even the

basic PIP control law, in addition to the straightforward SVF form of equation (5.30), i.e.
u(k) = −kT x(k). These are, of course, all based on equation (5.30) but the control input can
be generated using different control structures that can have various advantages in practical
applications. The present chapter employs both simulated and real examples to discuss the
robustness and disturbance response characteristics of the main PIP control structures that
emerge from the analysis. These include the feedback and forward path forms (section 6.1),
incremental forms for practical implementation (section 6.2), links to the Smith Predictor for
time-delay systems (section 6.3), stochastic optimal and risk sensitive design (section 6.4),
feed-forward control (section 6.5) and predictive control (section 6.6).

6.1 Feedback and Forward Path PIP Control Structures

The structure represented by Figure 5.4 is referred to as PIP control in standard feedback form.
When considering other structures, it should be noted that the various forms fall into two broad
categories: in the first place, there are those structures which, although they may illustrate
certain features of the controller in a different manner to that normally used, nevertheless
remain identical to the nominal form in practice; secondly, and more importantly, there are

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 6.1 Alternative representation of the feedback PIP control system (equivalent to Figure 5.4)

those structures which have different closed-loop characteristics to the original form: these
differences only become apparent when the system is subjected to disturbances or model
mismatch. An example of the former of the two categories is illustrated in Figure 6.1 (Young
et al. 1987). This alternative structure results when the two control polynomials are combined
into a single TF F(z−1)/G(z−1), which can be positioned in either the feedback or forward
paths. Figure 6.1 illustrates the latter case, where the additional forward path filter 1/F(z−1),
is required in order to ensure complete equivalence of the closed-loop system.
In Figure 6.1, the general discrete-time TF model:

y(k) = B(z−1)
A(z−1)

u(k) = b1z−1 + · · · + bm z−m

1+ a1z−1 + · · · + anz−n
u(k) (6.1)

PIP control polynomials:

F(z−1) = f0 + F1(z−1) = f0 + f1z−1 + · · · + fn−1z−n+1

G(z−1) = 1+ G1(z−1) = 1+ g1z−1 + · · · + gm−1z−m+1

}
(6.2)

and integral gain kI are all defined inChapter 5 but are repeated here for convenience. Similarly,
the closed-loop TF obtained from Figure 5.4 or Figure 6.1 is:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k) (6.3)

where � = 1− z−1 denotes the difference operator. Note that � is utilised frequently in this
chapter and that 1/� represents an integrator, as shown in Chapter 2 (Example 2.5).
Although Figure 5.4 and Figure 6.1 appear to show two quite different structures, in practice

both forms are analytically identical, and yield the same response even in the presence of
model mismatch or disturbance inputs to the system. However, Figure 6.1 does have important
ramifications for the case of PIP controllers implemented using other operators. For example,
the δ-operator PIP algorithm (discussed briefly in Chapter 9) involves discrete derivatives
of the input and output signals and is not necessarily realisable in practice, hence alternative
structures (similar to Figure 6.1) are required in this case (seeChapter 9 andYoung et al. 1998)1.

1 A continuous-time equivalent of δ-operator PIP control is also possible, where full time derivatives have to be avoided
in a similar manner (see e.g. Taylor et al. 1998b, 2012; Gawthrop et al. 2007). Although such a continuous-time form
of PIP control is not considered in this book because it does not fall within our definition of True Digital Control, its
implementation follows the same approach used in the δ-operator case.
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Figure 6.2 Forward path PIP control with inverse model

6.1.1 Proportional-Integral-Plus Control in Forward Path Form

It is straightforward to eliminate the inner loop of Figure 5.4 completely, to form a single
forward path TF, in which the control algorithm is based on a unity feedback of the output
variable. To derive this new structure, consider the inner loop of the feedback PIP system
illustrated in Figure 5.4, consisting only of the plant B(z−1)/A(z−1), feedback filter F(z−1) and
input filter G(z−1). Using the rules of block diagram analysis, this component of the closed-
loop system may be reduced to a single TF representation, labelled the ‘pre-compensation
filter’ in Figure 6.2. In practice, however, the system is always distinct from the controller and
its behaviour can be determined only from the estimated TF model. Hence, the inverse of the
TF model is also required in order to cancel out the plant dynamics. As in earlier chapters, the
circumflex notation is introduced to distinguish the estimated TF model B̂(z−1)/ Â(z−1) from
the nominal system or plant.
Note that a non-minimum phase system does not cause any problems of internal instability

here, despite the inverse model, since the B̂(z−1) polynomial in the denominator of the inverse
model may be analytically cancelled before practical implementation. In fact, noting the
explicit cancellation of the estimated B̂(z−1) polynomials in Figure 6.2, the block diagram
can be simplified to yield a single pre-compensation filter, as shown by Figure 6.3. This new
structure is referred to as the forward path PIP controller because of the unity feedback, with
a single pre-compensation filter operating on the error signal between the command input and
the measured system output (Taylor et al. 1998a).
An equivalent forward path arrangement is illustrated in Figure 6.4 (Lees 1996), which

appears superficially similar to the feedback PIP form of Figure 5.4, with one major difference:
the inner feedback loop is based on the model output rather than the measured outputy(k). In
Figure 6.4, we see how the estimated TF model acts as a source of information on the output
state variables, but that the actual measured output from the system is also employed to ensure
Type 1 servomechanism behaviour.
One advantage of using an ‘internal model’ of this type (see later comments), is that

measurement noise does not pass through the feedback filter F(z−1). Instead, the noisy output
variable is only utilised by the integral component of the control algorithm. Such integral action

plant

yd(k) u(k) y(k)+

−
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A(z−1)

ˆkI A(z−1)

ˆ ˆ(G(z−1) A(z−1) + F(z−1) B(z−1))Δ

Figure 6.3 Forward path PIP control in reduced form



126 True Digital Control

plant

yd(k) u(k) y(k)+

−

+

−
integral

controller
forward path f ilter

internal
f ilter

feedback f ilter

kI

1 − z−1

B(z−1)

A(z−1)

F(z−1)

1

G(z−1)

B̂(z−1)
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Figure 6.4 Forward path PIP control with feedback of an internal model

is effectively a ‘low pass’ filter, i.e. it acts to attenuate any high frequency noise entering via
the output measurement. Therefore, the actuator signal from the forward path implementation
is generally smoother than that produced by an equivalent feedback form (see Example 6.3).
Yet another way of representing the same controller is illustrated in Figure 6.5. In this case,

the denominator of the TF labelled ‘pre-compensation filter’, is the same as the denominator
of the desired closed-loop system (6.3), whilst the feedback loop consists of an error signal,
i.e. the difference between the measured plant output and the response of the internal model.
Figure 6.5 is in the form of an Internal Model Controller (IMC) as described, for example, by
Garcia and Morari (1982) and Tsypkin and Holmberg (1995).

6.1.2 Closed-loop TF for Forward Path PIP Control

The control algorithm associated with any of the above block diagrams, but most obviously
obtained from Figure 6.3, is conveniently expressed in the following TF form:

u(k) = kI Â(z−1)(
G(z−1) Â(z−1)+ F(z−1)B̂(z−1)

)
�
(yd (k)− y(k)) (6.4)
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Figure 6.5 Forward path PIP control represented as an internal model controller
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Retaining the distinction between the model and plant polynomials, the closed-loop TF for the
forward path PIP controller is as follows:

y(k) = kI B(z−1) Â(z−1)(
G(z−1) Â(z−1)A(z−1)+ F(z−1)B̂(z−1)A(z−1)

)
� + kI B(z−1) Â(z−1)

yd (k) (6.5)

In contrast to the feedback PIP closed-loop TF (6.3), equation (6.5) includes the estimated
model polynomials. However, if we now assume that there is nomodelmismatch, i.e. B̂(z−1) =
B(z−1) and Â(z−1) = A(z−1), then equation (6.5) reduces to the nominal closed-loop TF (6.3).
This has two main consequences: in the first place, the control gains of the forward path form
are always the same as the standard feedback structure; and, secondly, the response of the two
forms is identical in this zero mismatch case.
Finally, at steady state, � → 0 and the steady-state gain of equation (6.5) is unity, hence

Type 1 servomechanism performance is normally ensured even in the presence of model
mismatch (assuming closed-loop stability). However, there is one special exception to this
result, which is discussed later in Example 6.3.

6.1.3 Closed-loop Behaviour and Robustness

Although a number of block diagram representations of the PIP controller have now been
considered, it should be stressed that there are only two forms that have different closed-loop
characteristics. In the first instance, the control structures in Figure 5.3, Figure 5.4 and Figure
6.1 are all equivalent and are considered as the standard feedback PIP structure. Secondly,
Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5 are similarly identical and are referred to as
the forward path PIP structure. As we shall see, the choice of control structure has important
consequences, both for the robustness of the final design to parametric uncertainty and for the
disturbance rejection characteristics.
Consider, for example, the imposition of a disturbance v(k) added directly to the output

variable and represented as follows:

y(k) = B(z−1)
A(z−1)

u(k)+ v(k) (6.6)

In many control design applications, such load disturbances are an important factor. In the
control of a greenhouse environment, for example, there are a number of disturbance inputs
to the system which may accumulate to a non-zero mean value (Young et al. 1994). Examples
include solar radiation, external temperature, vents and so on. Similarly, in industrial processes
it is common to encounter random steps, occurring at random times (such as changes inmaterial
quality).
In this case, the closed-loop TF for feedback PIP control becomes:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k)

+ �G(z−1)A(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
v(k)

(6.7)
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while the closed-loop TF for forward path PIP control is:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k)

+ �
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
v(k)

(6.8)

Equation (6.7) and equation (6.8) are determined using either straightforward (although time
consuming) algebra or,more conveniently, by block diagram analysis. Further algebraicmanip-
ulation of equation (6.8) shows that:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k)

+
(
1− kI B(z−1)

�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)

)
v(k)

(6.9)

Here, we see that the disturbance response in the forward path case is equal to one minus
the desired closed-loop TF (6.3), thus ensuring similar disturbance response dynamics to
those specified by the designer in relation to the command input response. However, in the
case of the feedback PIP structure, the situation is more complex since past noisy values of
the disturbed output are involved in the control signal synthesis because of the feedback filter
F(z−1). In practice, this can result in a less desirable disturbance response to that obtained
with the forward path form.
Although the forward path control structure is more resilient to disturbances, the explicit

cancellation of the system dynamics with an inverse model ensures that the forward path
PIP controller is generally more sensitive to modelling errors than the feedback form. This is
especially noticeable for marginally stable or unstable systems. These issues are illustrated in
Example 6.1.

Example 6.1 Simulation Response for Feedback and Forward Path PIP Control Con-
sider again the following non-minimum phase oscillator from earlier chapters:

y(k) = −z−2 + 2.0z−3

1− 1.7z−1 + 1.0z−2 u(k) (6.10)

The present analysis utilises the pole assignment PIP controller developed in Chapter 5
(Example 5.4, Example 5.5 and Example 5.6), i.e. based on placing four closed-loop poles
at 0.5 on the real axis of the complex z-plane and the fifth at the origin. This approach
yields the following gain vector, for implementation using either feedback or forward path
PIP control:

kT = [ fo f1 g1 g2 −kI ] = [ 0.176 −0.464 0.700 0.928 −0.063 ] (6.11)
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Figure 6.6 Closed-loop response for a unit step in the command level, with the feedback (dashed trace)
and forward path (bold solid trace) PIP controllers of Example 6.1, when a load disturbance of magnitude
0.5 is applied at sample 30 and removed at sample 60

Figure 6.6 and Figure 6.7 show the closed-loop response for a unit step in the command
level, with a constant load disturbance from samples 30 through to 60 (and zero otherwise).
The nominal response for the feedback and forward path forms are identical, as shown by the
first 30 samples of the simulation. However, following each step change in the disturbance, the
forward path form of the PIP controller yields a smoother response than the feedback form, so
requiring much reduced actuator movement (Figure 6.7) and, in practical situations, resulting
in less actuator wear.
To assess the robustness of these designs to parametric uncertainty, we employ Monte

Carlo Simulation (MCS; see Example 4.10 for another example of this approach). Here,
all the parameters are considered uncertain, with the uncertainty defined by a diagonal
covariance matrix σ 2 I with σ 2 = 0.00001 and I an identity matrix. Figure 6.8 shows the
response to a unit step command input for 100 MCSs. In the case of forward path PIP con-
trol, most of responses are oscillatory and many of the realisations are, in fact, unstable, as
confirmed by the closed-loop poles. These closed-loop poles for each realisation or stochastic
root loci are plotted on the complex z-plane, which also shows the unit circle mark-
ing the stability boundary. Figure 6.8 clearly demonstrates the expected superior robust-
ness of the feedback PIP structure when it comes to uncertainties in the estimated system
dynamics.
Finally, in considering these results, it should be emphasised that, not only is the system in

this case quite difficult to control [the TF model (6.10) is marginally stable], but the parametric
uncertainty has been artificially scaled to facilitate the comparison. Both forms of PIP control
are usually quite robust to more realistic modelling uncertainties, as demonstrated in the
various practical examples considered elsewhere in this book.
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Figure 6.7 Control input signals associated with Figure 6.6
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Figure 6.8 Closed-loop response for a unit step in the command level with 100 realisations, showing
the output (a and c) and closed-loop poles (b and d), for the feedback (a and b) and forward path (c and
d) PIP controllers of Example 6.1
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6.2 Incremental Forms for Practical Implementation

The block diagrams considered above are useful for analysis and design. However, in most
practical circumstances, PIP controllers should be implemented using an appropriate feedback
or forward path incremental form, so as to avoid problems of integral ‘wind-up’ when the
controller is subject to constraints on the actuator signal. Without the correction discussed
below, a prolonged period when the input is at its practical limit and unable to keep the output
at the set point, causes the integrated error signal to build up, resulting in ever larger input
signals that are not achievable in practice. In such instances, when the saturation finally ends,
the controller could take several samples to recover and might even drive the system into
instability.

6.2.1 Incremental Form for Feedback PIP Control

Substituting the integral-of-error state (5.4) into the PIP control law (5.32) yields:

u(k) = − f0y(k) − f1y(k − 1) − · · · − fn−1y(k − n + 1)

− g1u(k − 1) − · · · − gm−1u(k − m + 1) + kI

�
(yd (k)− y(k))

(6.12)

Multiplying through by � yields:

�u(k) = − f0�y(k) − f1�y(k − 1)− · · · − fn−1�y(k − n + 1)
− g1�u(k − 1)− · · · − gm−1�u(k − m + 1) + kI (yd (k)− y(k))

(6.13)

Noting that �u(k) = u(k)− u(k − 1), we obtain the following difference equation:

u(k) = u(k − 1)− f0 (y(k)− y(k − 1)) − f1 (y(k − 1)− y(k − 2))
· · · − fn−1 (y(k − n + 1)− y(k − n))− g1 (u(k − 1)− u(k − 2))
· · · − gm−1 (u(k − m + 1)− u(k − m)) + kI (yd (k)− y(k))

(6.14)

The PIP feedback control law given by equation (6.14) is a linear function of the system vari-
ables, together with their delayed values and control gains. It is straightforward to implement
such an algorithm using standard software code. Furthermore, we can specify the following
limits for the input:

{
u, u

} →
{
if u(k) ≥ u then u(k) = u

if u(k) ≤ u then u(k) = u
(6.15)

with u and u representing the maximum and minimum realisable input signals. For brevity
in the block diagrams that follow, the correction (6.15) is denoted

{
u,u

}
. In this manner, the

delayed control input variables utilised in equation (6.14) remain within these practical limits,
hence avoiding integral ‘wind-up’ problems.
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Figure 6.9 Block diagram representation of equation (6.16)

Now consider the block diagram representation of equation (6.14) and equation (6.15).
Substituting the control polynomials F(z−1) and G1(z−1) = G(z−1)− 1 = g1z−1 + · · · +
gm−1z−m+1 into equation (6.13), and dividing through by � yields:

u(k) = 1

�

[−F(z−1)�y(k)− G1(z
−1)�u(k) + kI (yd (k) − y(k))

]
(6.16)

Defining x(k) = −F(z−1)�y(k)− G1(z−1)�u(k) + kI (yd (k) − y(k)), it is clear that u(k) =
x(k)/�, as illustrated by Figure 6.9. The significance of this arrangement is that the integrator
can be expanded subsequently to accommodate the correction (6.15), as illustrated by Figure
6.10. Noting that x(k) = �u(k), Figure 6.10 is obtained by replacing equation (6.16) with:

u(k) = 1

�

(−F(z−1) �y(k)− G1(z
−1)x(k)+ kI (yd (k)− y(k))

)
(6.17)

In Figure 6.10, the integrator 1/� is implemented bymeans of a positive feedback arrangement.
The reader can verify the validity of this approach by reconsidering Figure 2.11 and equation

(2.26), albeit with a sign change. Figure 6.10 represents the PIP feedback structure in block
diagram form, expressed in a manner that allows for implementation of (6.15), denoted

{
u, u

}
.
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Figure 6.10 Block diagram representation of equation (6.15) and equation (6.17): the feedback PIP
control system represented in incremental form with input limits
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Figure 6.11 Closed-loop response with a steady-state error because of limits on the input, showing
the command level (sequence of steps of varying magnitude), together with the output obtained using a
controller with (bold solid trace) and without (dashed trace) the correction in equations (6.15)

This block diagram is particularly useful when using iconographic simulation or real-time
control packages to represent problems with control input limits, as in Example 6.2.

Example 6.2 Simulation Experiment with Integral ‘Wind-Up’ Problems Consider
again the pole assignment PI controller from Example 2.6 and Example 2.7, with a1 = −0.8,
b1 = 1.6, f0 = 0.2188 and kI = 0.1563. Figure 6.11 and Figure 6.12 show the output and
input variables respectively, in response to a sequence of changes in the command level.
Here, the solid traces are based on the incremental form of the algorithm (2.39), utilising the
correction (6.15), whilst the dashed traces show the response of the same controller without this
correction. In both cases, however, the control input is arbitrarily limited to a maximum value
of 0.11 before it is connected to the TF model in simulation, representing a level constraint on
the actuator.
Note that a constant maximum control input of 0.11 yields a steady-state output y(k →

∞) = 0.11× 1.6/(1− 0.8) = 0.88, hence there is an error between the unity command level
and the output in Figure 6.11 (for both controllers). Significantly, without the correction
(6.15), the integrated error signal quickly builds up during the middle part of the simulation,
resulting in ever larger input signals that are not achievable in practice: these are shown as
the dashed trace in Figure 6.12. Integral wind-up can sometimes lead to instability although,
in this example, control is maintained. However, when the saturation finally ends follow-
ing a step down in the command level, the basic controller without the correction takes
almost 20 samples to recover. By contrast, the incremental form of the algorithm has no
such problems.
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Figure 6.12 Control input signals associated with Figure 6.11

6.2.2 Incremental Form for Forward Path PIP Control

Since the integrator already appears in the denominator of the pre-compensation filter in Figure
6.3, the block diagram for the incremental form of forward path PIP control, with input limits,
is straightforward to obtain, as illustrated by Figure 6.13.
The algorithm is equivalently expressed as follows, in which the correction (6.15) is again

utilised to avoid integral wind-up problems:

u(k) = u(k − 1)+ kI Â(z−1)
G(z−1) Â(z−1)+ F(z−1)B̂(z−1)

(yd (k)− y(k)) (6.18)

However, for practical implementation, equation (6.18) is usually converted into a difference
equation form, as shown by Example 6.3.

Example 6.3 Incremental Form for Carbon-12 Tracer Experiments All engineering
systems have constraints on the input signal or signals, including both level and rate of change
limits. For these reasons, the practical examples considered in this book are all based on
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Figure 6.13 Forward path PIP control system represented in incremental form with input limits
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implementing PIP control algorithms using an appropriate incremental form, as a precaution
against these constraints being reached. This includes the experimental results for control of
carbon dioxide (12CO2) level in carbon tracer experiments (Example 5.9). In fact, Figure 5.11
and Figure 5.12 were obtained as follows, using the feedback algorithm in incremental form
(6.14), together with the PIP control gains (5.103):

u(k) = u(k − 1)− 23.00 (y(k)− y(k − 1))− 0.095 (u(k − 1)− u(k − 2))
− 0.099 (u(k − 2)− u(k − 3))− 0.104 (u(k − 3)− u(k − 4))
+ 0.954 (yd (k)− y(k))

(6.19)

For comparison, Figure 6.14 illustrates the response of the system using the incremental
forward path PIP algorithm. The advantage of the forward path design in this example is its
ability to yield a smoother control input signal and, therefore, a more desirable constant CO2
level, without as much ‘chatter’ as that occurring in the feedback case: compare the control
input shown in Figure 5.12 with Figure 6.14b.
However, examination of the estimated TF model (5.101) reveals a potential problem with

the forward path structure: the estimated Â(z−1) = 1− z−1 polynomial is an exact integrator
in this case, which would cancel with the integral action of the forward path PIP controller, as
shown in Figure 6.3 or equation (6.4). Unfortunately, the real system is not an exact integrator
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Figure 6.14 Closed-loop response using the forward path PIP controller of Example 6.3. (a) The
command input (sequence of steps of varyingmagnitude), together with the measured CO2 concentration
(ppm). (b) The control input (seconds of CO2 injection)
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and, in practice, there is a small net loss of CO2 from the leaf chamber over time; as a result,
the forward path structure yields an undesirable steady-state error.
By contrast, if the CO2 uptake rate is particularly high because there is a large amount of leaf

in the chamber, then the decay time constant may become significant and the estimated model
will have a lag coefficient significantly different from unity, as in the following example:

y(k) = b4z−4

1+ a1z−1 u(k) = 0.0047z−4

1− 0.9788z−1 u(k) (6.20)

where y(k) is the CO2 concentration (ppm), u(k) is the CO2 injection time (seconds) and the
sampling period is 5 s. In fact, the experimental results shown by Figure 6.14 are based on
this non-conservative model, together with Linear Quadratic (LQ) weights (5.78) obtained by
trial and error experimentation in order to obtain a satisfactory closed-loop response; namely
qy = 1, qu = 1/4 and qe = 1/100. These settings yield the control gain vector:

k = [ fo g1 g2 g3 −kI ]T = [ 3.464 0.0164 0.0165 0.0166 −0.0992 ]T (6.21)

Evaluating equation (6.4), we obtain the incremental forward path PIP algorithm:

u(k) = 0.0992− 0.0971z−1

1− 1.9624z−1 + 0.9629z−2 − 0.0005z−4 (yd (k)− y(k)) (6.22)

Expressing this as a difference equation, yields a forward path PIP algorithm that is particularly
straightforward to implement using standard software code:

u(k) = u(k − 1)+ 0.0992 (yd (k)− y(k))− 0.0971 (yd (k − 1)− y(k − 1))
+ 0.9624u(k − 1)− 0.9629u(k − 2)+ 0.0005u(k − 4) (6.23)

Note that the coefficient associated with u(k − 3) in equation (6.22) and equation (6.23) is
zero.
The TF model (6.20) is still relatively close to being an integrator, hence the small 4 ppm

steady-state error seen in Figure 6.14. In practical terms, this arises because the two yd (k)−
y(k) components of equation (6.23) almost sum to zero. Hence, the integral action is acting
rather slowly and, although the error is eliminated eventually (beyond the time frame of
the graph), the response time is very slow. Chapter 9 introduces an alternative, δ-operator
approach to the control of such systems, i.e. for models with poles that are close to the
unit circle.
Nonetheless, in general terms, these results are instructive: they illustrate important dif-

ferences between the two main PIP implementation structures; and act as a timely reminder
that we must always consider the effect of parametric uncertainty in our designs. However,
the example raises another interesting issue, one that requires detailed comment over the next
few pages. The numerator polynomial of the TF model (6.20) includes a time delay of four
control samples, representing 20 s pure time delay. This is sometimes referred to as a transport
delay or dead time: it is a common feature of many physical systems and is a major concern
in control system design.
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When the time delay is relatively short in comparison with the dominant time constants
of the system it can be handled fairly easily. In the case of discrete—time, sampled data
control systems, where the time delay can be approximated by an integral number of sampling
intervals, NMSS design methods are able to absorb the delay directly into the system model,
as shown in Chapter 4 and Chapter 5. In this case, the PIP controller automatically handles
the time delay by simply feeding back sufficient past values of the input variable by means of
the G(z−1) filter.
However, for systems with a particularly long time delay, and where the choice of a coarser

sampling interval is not possible as a means of reducing the dimension of the NMSS model,
this may require an unacceptably large number of gains in the G(z−1) filter. Indeed, it is
noteworthy that the present example, for which the open-loop TF model (6.20) is first order,
yields a fifth order PIP control system (6.21) including a third order input filter, i.e. G(z−1) =
1+ 0.0164z−1 + 0.0165z−2 + 0.0166z−3. The following section considers one method for
reducing the order of the PIP control system in such cases.

6.3 The Smith Predictor and its Relationship with PIP Design

Over many years, the Smith Predictor (SP) has proven to be one of the most popular
approaches to the design of controllers for time-delay systems. Although initially formu-
lated for continuous-time systems (Smith 1957, 1959), the SP can be implemented in any
discrete-time control scheme, such as digital PIP control. In the latter case, a unit time-delay
model of the system provides an estimate of the output variable, which is utilised by the
feedback control filters as shown in Figure 6.15 (Taylor et al. 1998a). Here, τ > 0 is the pure
time delay of the plant in sampling intervals of �t time units.
When the time delay is much larger than the dominant time constants of the system, it

seems more efficient and parsimonious to employ a SP in this way, rather than to exces-
sively extend the non-minimal state vector. In the present section, however, we demonstrate
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how, under certain non-restrictive pole assignment conditions, the forward PIP controller is
exactly equivalent to the digital SP controller but has much greater inherent flexibility in
design terms.
Discrete-time control system design assumes a delay of at least one sampling interval.

In the SP-PIP controller, time delays greater than unity are external to the control loop
(Figure 6.15), and so the specification of system performance is obtained by defining the
following modified TF control model:

y(k) = Bs(z−1)
A(z−1)

u(k − τ + 1) = bτ z−1 + bτ+1z−2 + · · · + bm z−m+τ−1

1+ a1z−1 + · · · + anz−n
u(k − τ + 1) (6.24)

This is based on equation (6.1) but τ − 1 samples time delay are removed from the numerator
polynomial and added to the input variable. To illustrate this, in the case of the TF model for
carbon-12 tracer experiments (6.20), m = τ = 4, hence A(z−1) = 1+ a1z−1 and B(z−1) =
b4z−4 as usual, whilst Bs(z−1) = b4z−1.
The SP-NMSS form is based on equation (5.13), equation (5.14), equation (5.15) and

equation (5.16), albeit with the following modifications to address the reduced order of the
numerator polynomial. The n + m − τ + 1 non-minimal state vector is:

x(k) = [y(k) · · · y(k − n + 1) u(k − 1) · · · u(k − m + τ ) z(k)]T (6.25)

while

F=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an−1 −an bτ+1 bτ+2 · · · bm−1 bm 0

1 0 · · · 0 0 0 0 · · · 0 0 0

0 1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 1 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 1 0 · · · 0 0 0

0 0 · · · 0 0 0 1 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · 1 0 0

a1 a2 · · · an−1 an −bτ+1 −bτ+2 · · · −bm−1 −bm 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.26)

and g = [bτ 0 0 · · · 0 1 0 0 · · · 0 −bτ ]T .
The n + m − τ + 1 dimensional SVF control gain vector is found using pole assignment or

optimal design:

kT
s = [ f0 f1 · · · fn−1 g1 · · · gm−τ − kI ] (6.27)
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The numerical values of these SP-PIP control gains may differ from those of the nominal PIP
controller, as discussed below. Furthermore, the order of the input filter Gs(z−1):

Gs(z
−1) = 1+ g1z

−1 + · · · + gm−τ z−m+τ (6.28)

is reduced by τ − 1 degrees, in comparison with the nominalG(z−1) polynomial (6.2). Indeed,
this is the reason for introducing the SP in the first place. It is important to stress that any
time delays larger than unity have been ignored in the model and associated SVF control
algorithm. Therefore, to account for longer time delays in the plant, the final algorithm must
be implemented using Figure 6.15.
Assuming that there is no model mismatch, i.e. B̂(z−1) = B(z−1) and Â(z−1) = A(z−1), the

closed-loop TF obtained from Figure 6.15 is as follows:

y(k) = kI Bs(z−1)z−τ+1

�
(
Gs(z−1)A(z−1)+ F(z−1)Bs(z−1)

)+ kI Bs(z−1)
yd (k) (6.29)

The characteristic polynomial of the SP-PIP system is of the order n + m − τ + 1, compared
with n + m in the nominal PIP case.

6.3.1 Relationship between PIP and SP-PIP Control Gains

Equivalence between the two approaches may be obtained using Theorem 6.1.

Theorem 6.1 Relationship between PIP and SP-PIP Control Gains When there is no
model mismatch nor any disturbance input, the closed-loop TF of the nominal PIP control
system (6.3) for a Single-Input, Single-Output (SISO), time-delay system is identical to that
of the SP-PIP closed-loop TF (6.29), if:

(i) τ − 1 poles in the nominal PIP control system are assigned to the origin of the complex
z–plane; and

(ii) the remaining n + m − τ + 1 poles of the nominal PIP control system are constrained to
be the same as those of the SP-PIP case.

Moreover, under these simple conditions, the nominal PIP gain vector k is given by:

kT = �−1 • �s • kT
s (6.30)

where� is the parametermatrix (5.67) employed for the design of a pole assignment controller;
�s is the parameter matrix employed for SP-PIP pole assignment (defined in a similar manner
to � but based on the unit delay model); and ks is the SP-PIP gain vector (6.27). The proof of
this theorem is given in Appendix F.
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6.3.2 Complete Equivalence of the SP-PIP and Forward
Path PIP Controllers

To consider the more general case when there is model mismatch, the SP-PIP controller is
converted into a unity feedback, forward path pre-compensation implementation:

u(k) = ks Â(z−1)(
Gs(z−1) Â(z−1)+ F(z−1)B̂s(z−1)

)
� + ks

(
B̂s(z−1)− B̂s(z−1)z−τ̂+1)e(k) (6.31)

in which τ̂ is the estimated time delay and e(k) = yd (k)− y(k). Using straightforward algebra,
equation (6.31) is obtained from, and is exactly equivalent to, the control algorithm shown
diagrammatically in Figure 6.15.
Theorem 6.1 has already established that, with appropriate selection of poles, the SP-PIP

closed-loop TF must be identical to the closed-loop TF resulting from nominal PIP design,
assuming a perfectly known model. Clearly, for this result to hold when both controllers are
implemented in a forward path form, then the control filter in each case must be identical, i.e.
once the polynomial multiplications have been resolved, equation (6.4) and equation (6.31) are
identical. Moreover, this result applies even in the case of mismatch and disturbance inputs,
since the control filter is invariant to such effects.

Example 6.4 SP-PIP Control of Carbon-12 Tracer Experiments Returning to the carbon-
12 tracer experiments, as discussed in Example 6.3, the model encompasses a pure time delay
of τ = 4 samples. For this model, the LQ cost function yields a closed-loop characteristic
equationwith τ − 1 = 3 poles at the origin of the complex z-plane, automatically satisfying the
conditions of Theorem 6.1. This result implies that the SP-PIP approach is the optimal solution
(in the LQ sense) for this system. These poles are obtained by substituting the TF model (6.20)
and control gains (6.21) into the closed-loop TF (6.3). The roots of the associated characteristic
equation are p1 = p2 = p3 = 0, p4 = 0.981+ 0.011 j and p5 = 0.981− 0.011 j . Using the
following closed-loop design polynomial:

D(z) = (z − 0.981+ 0.011 j ) (z − 0.981− 0.011 j ) = z2 − 1.962+ 0.963 = 0 (6.32)

and Bs(z−1) = 0.0047z−1, SP-PIP pole assignment yields F(z−1) = f0 = 3.39, Gs(z−1) = 1
and kI = 0.099. The controller is implemented as illustrated by Figure 6.15. In this example,
we see that the SP-PIP control algorithm yields two control gains, i.e. f0 and kI . However,
noting that Bs(z−1)− Bs(z−1)z−τ+1 = 0.0047z−1 − 0.0047z−4 and substituting into equation
(6.31), yields exactly the same algorithm as the forward path PIP controller (6.22) or (6.23).
Therefore, the closed-loop response of the SP-PIP system is identical to the forward path PIP
controller, and has the same advantages and disadvantages.
Furthermore, the final control algorithm effectively has five control gains, i.e. the same

as the nominal PIP controller based on the time-delay model! This is because Figure 6.15
includes the estimated time delay in the feedback loop, and this subsequently appears in the
denominator of the control algorithm (6.22), as indicated above. In other words, the reduced
order of the SP-PIP controller only applies at the design stage, but the overall control algorithm
(and hence closed-loop system) is unchanged. It is clear from this example that, whilst the SP-
PIP approach yields a well-known control structure (and hence is considered in this chapter
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for tutorial purposes), it can always be exactly replicated by forward path PIP control and
hence does not offer any advantages over such PIP design.

Example 6.5 SP-PIP Control of Non-Minimum Phase Oscillator Consider the TF model
(6.10) with τ = 2 samples. The unit delay numerator polynomial is Bs(z−1) = −z−1 + 2.0z−2.
In order to satisfy the conditions of Theorem 6.1, we are free to assign four poles anywhere
on the complex z-plane, as long as the fifth is at the origin. Once again, this is the design
deliberately employed earlier (Example 6.1). For example, the Monte Carlo realisations in
Figure 6.8 illustrate the expected poorer robustness properties of the SP-PIP and equivalent
forward path algorithms to model mismatch.
Within the context of the present discussion, however, it is interesting to examine the situation

when there is uncertainty in the time delay. For this type of model uncertainty, we find that
the forward path approach is typically more robust than feedback PIP design. The results in
Figure 6.16 are for a controller design based on τ̂ = 2 as above, but with the simulated time
delay changed to τ = 3. This represents a significant error in the original identification of the
control model, but is useful here since it exaggerates the difference between the feedback and
SP-PIP structures. We can see that while the former yields an unstable closed-loop response,
with growing oscillations in the output, the forward path implementation remains stable, albeit
with a small overshoot of the command level.
In this regard, it is important to emphasise that PIP pole assignment design of this type, in

which the closed-loop poles associated with the time delay are assigned to the origin of the
complex z-plane, is not necessarily the most robust solution. In the present example, if we
specify all five closed-loop poles to lie at 0.5 on the real axis, then the feedback PIP controller
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Figure 6.16 Closed-loop response for a unit step in the command level, with the feedback (dashed
trace) and SP-PIP (bold solid trace) controllers of Example 6.5, when there are time-delay modelling
errors
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yields a stable closed-loop response similar to the bold solid trace in Figure 6.16. Here, we see
the benefit of having complete freedom to assign the n + m poles anywhere on the complex
z-plane (including those associated with the time delay).

6.4 Stochastic Optimal PIP Design

The discussion so far has concentrated on a deterministic NMSS model of the system and
associated PIP pole assignment or LQ design. However, since it is formulated in state space
terms, the NMSS approach to control system design can be converted into stochastic form,
by invoking the separation theorem and introducing an optimal Kalman Filter (Kalman 1960,
1961, 1963) for state estimation.
Here, the Kalman filter is employed as an observer to generate a surrogate state vector, which

converges asymptotically to the true state vector in the presence of state and measurement
noise. The separation theorem states that the SVF control algorithm and observer can be
designed separately. When connected, they will function as an integrated control system in
the desired manner (see e.g. Åström and Wittenmark 1984, pp. 273–275; Green and Limebeer
1995, pp. 179–208; Franklin et al. 2006, pp. 511–513; Dorf and Bishop 2008, pp. 773–775;
Gopal 2010, pp. 413–428). In the present context, the approach yields PIP-Linear Quadratic
Gaussian (PIP-LQG) designs that may be implemented in either state space or polynomial
form, as demonstrated below.
Such a Kalman Filter formation is not strictly necessary for basic PIP design, but it is

introduced here for completeness and as a useful starting point for some of the analysis later
in this chapter. The objective of the stochastic approach is to reduce the detrimental effects
of measurement noise, so as to yield a smoother input signal in the closed-loop response.
This provides an alternative to the forward path PIP structure considered above. As we have
seen, forward path PIP control is a pragmatic solution to the problem of measurement noise,
obtained using straightforward block diagram analysis.
By contrast, the Kalman Filter approach is optimal (given assumptions about the noise) but

more complex to design and implement in practical situations. Furthermore, like the forward
path implementation of deterministic PIP control, it carries with it the potential disadvantage of
decreased robustness. Therefore, in this chapter, we will concentrate on the use of an observer
filter D(z−1), since this offers a practical compromise between filtering, robust design and
straightforward implementation2.

6.4.1 Stochastic NMSS Equations and the Kalman Filter

We initially formulate the PIP-LQG control problem by introducing stochastic white noise
disturbances into the regulator NMSS equations, as follows:

x(k) = Fx(k − 1)+ gu(k − 1)+ w(k)

y(k) = hx(k)+ ε(k)

}
(6.33)

2 Although the observer polynomial is sometimes denoted (e.g. Clarke 1994) byC(z−1) or T (z−1), we will use D(z−1)
for consistency with the various stochastic TF models considered in Chapter 8.
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where x(k), F, g and h are defined by equation (4.4), equation (4.5), equation (4.6), equation
(4.7), equation (4.8) and equation (4.9), w(k) is a zero mean, discrete-time, Gaussian, vector
white noise process with positive semi-definite covariancematrixN and ε(k) is an independent,
zero mean, white measurement noise signal with variance σ 2. The innovations, or Kalman
Filter, representation of this system is:

x̂(k + 1/k) = Fx̂(k/k − 1)+ gu(k − 1)+ L(k)e(k)

y(k) = hx̂(k/k − 1)+ e(k)

}
(6.34)

where L(k) is the Kalman gain vector and e(k) = y(k)− hx̂(k/k − 1) is the innovations
sequence (see e.g. Young 2011). From equations (6.34), it is clear that the optimal state
estimator has the form:

x̂(k + 1/k) = Fx̂(k/k − 1)+ gu(k − 1)+ L(k) (y(k)− hx̂(k/k − 1)) (6.35)

Here, we see that x̂(k + 1/k) represents a one step ahead estimate of the non-minimal state
vector, conditional on the ‘latest’ measured output y(k). Note that only the latest scalar
observation of y(k) is used to update the NMSS state at each sampling instant since the
NMSS vector is composed of past values of y(k) that have already been processed, as well
as the present and past values of the input u(k), that are known exactly. Subsequently, we use
ŷ(k) = hx̂(k/k − 1) to represent the optimal estimate of the output, hence,

e(k) = y(k)− ŷ(k) (6.36)

The SVF control law is now formulated by reference to the separation theorem in the
usual manner (see e.g. Åström and Wittenmark 1984, pp. 273–275; Green and Limebeer 1995
pp. 179–208; Franklin et al. 2006, pp. 511–513; Dorf and Bishop 2008, pp. 773–775; Gopal
2010, pp. 413–428):

u(k) = −kT x̂(k/k − 1) (6.37)

where k is the PIP control gain vector (5.31). Equation (6.37) is based on the deterministic
control law (5.30) but adapted here to utilise the optimal estimate of the state vector.
Once the Kalman gain vector has converged to its steady-state value, i.e. L(k → ∞) = L,

it can be shown that e(k) in equations (6.34) constitutes a zero mean white noise sequence
with constant variance σ 2 (e.g. Young 2011). Here, L is determined from the steady-state
solution of the discrete-time, matrix Riccati equations, involving the state transition matrix
and observation vector, together with the covariances of the state disturbance andmeasurement
noise inputs. In particular, L is obtained from equation (5.81) and equation (5.82) but replacing
F with FT , g with hT , Q with the covariance matrix NT and r with σ (see e.g. Åström and
Wittenmark 1984, pp. 259 and 270), as follows:

LT = (σ + hPhT )−1hPFT (6.38)
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where P is the steady-state solution of the matrix Riccati equation:

P − FPFT + FPhT (r + hPhT )−1hPFT − N = 0 (6.39)

in which 0 is a matrix of zeros. For more information about this interesting duality between
LQ control and optimal filtering, refer to the textbook references on linear control theory
highlighted above.
For regulator NMSS design, the state covariance matrix N is chosen to represent the noise

on the output states, while zeros are utilised to correspond to the exactly known past values of
the calculated control input signal, i.e.

N =
[

Nn 0

0 0

]
(6.40)

where Nn is an n × n disturbance covariance matrix and 0 is an appropriately defined matrix
of zeros. Therefore, the general form of this minimal Kalman gain vector, where only the
optimal estimate of the output and its past values are filtered, is as follows:

L(k) = [ l1(k) l2(k) . . . ln(k) 0 . . . 0 0 ]T (6.41)

Finally, in the servomechanism formulation of the problem, the integral-of-error state variable
z(k), defined in equation (5.4), is included as normal, with either the measured output y(k) or
the optimal estimate of the output ŷ(k) fed back to the integral controller, as discussed below.

6.4.2 Polynomial Implementation of the Kalman Filter

An important consequence of the convergence of L(k) to a steady-state value L is that the
innovations representation of the system (6.34) may be expressed as the following Auto-
Regressive, Moving-Average eXogenous variables (ARMAX) model:

y(k) = b1z−1 + · · · + bm z−m

1+ a1z−1 + · · · + anz−n
u(k)+ 1+ d1z−1 + · · · + dnz−n

1+ a1z−1 + · · · + anz−n
e(k) (6.42)

or, in shorthand form:

y(k) = B(z−1)
A(z−1)

u(k) + D(z−1)
A(z−1)

e(k) (6.43)

Equation (6.43) is derived by Young (1979) for a minimal stochastic state space representation
of the system, i.e. based on the observable canonical form (3.37) introduced in Chapter 3. This
paper also shows how a Kalman Filter can be constructed from polynomial filters that are used
in the Refined Instrumental Variable (RIV) method of TF model estimation (see Chapter 8);
and that, in this minimal state situation, the coefficients of the D(z−1) polynomial are defined
by di = ai + li , where ai are the parameters of the deterministic characteristic equation A(z−1)
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and li are the minimal state Kalman Filter gains3. Again noting the duality between LQ control
and optimal filtering, this result can be compared with equation (3.34), in which li are the SVF
control gains obtained using the controllable canonical form.
In the non-minimal case, the coefficients of D(z−1) are defined as follows (Hesketh 1992):

di = ai + l̃i (6.44)

where

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l̃1
l̃2
l̃3
...

l̃n−1
l̃n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

0 −a2 −a3 · · · −an−1 −an

0 −a3 −a4 · · · −an 0
...

...
...

...
...

...

0 −an−1 −an · · · 0 0

0 an 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1
l2
l3
...

ln−1
ln

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.45)

With this formulation, the noise polynomial D(z−1) is either derived from L or obtained
directly from observed data using the system identification tools discussed in Chapter 8. In
the latter case, equation (6.44) and equation (6.45) could then be used in reverse to determine
the equivalent Kalman gains from the estimated model. Alternatively, the Kalman Filter can
be implemented in a number of ways that directly employ D(z−1), as shown below.
Using equation (6.36) and equation (6.43):

y(k) = B(z−1)
A(z−1)

u(k)+ D(z−1)
A(z−1)

(y(k)− ŷ(k)) (6.46)

After rearranging,

ŷ(k) = D(z−1)− A(z−1)
D(z−1)

y(k)+ B(z−1)
D(z−1)

u(k) (6.47)

In other words,

ŷ(k) = (d1 − a1)

[
z−1

D(z−1)
y(k)

]
+ · · · + (dn − an)

[
z−n

D(z−1)
y(k)

]

+ b1

[
z−1

D(z−1)
u(k)

]
+ · · · + bm

[
z−m

D(z−1)
u(k)

] (6.48)

so that the optimal estimate ŷ(k) is the linear sum of the pre-filtered output and input variables,
where the pre-filter is the numerator of the Auto-Regressive, Moving-Average (ARMA) noise
model. SeeChapter 8 for discussion on this pre-filter, as used forARMAnoisemodel parameter

3 The multivariable version of this analysis is developed in Jakeman and Young (1979).
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Figure 6.17 Polynomial implementation of the PIP-LQG control system with the integral controller
operating on the optimal estimate of the output

estimation. On the basis of the above results, the optimal estimate ŷ(k) can be simply fed back
in place of the measured output, as shown in Figure 6.17.
In an alternative structure, the feedback filter F(z−1) utilises ŷ(k) but the integral controller

operates on the measured unfiltered output y(k), as illustrated by Figure 6.18 (cf. Figure 6.4).
In the latter case, note that the scalar gain on the integral controller does not amplify the noise.
The relative merits of these and other polynomial structures are discussed after the following
introductory example.
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Figure 6.18 Polynomial implementation of the PIP-LQG control system with the integral controller
operating on the measured output
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Example 6.6 Kalman Filter Design for Noise Attenuation Consider again the non-
minimum phase oscillator (6.10) and associated deterministic PIP-LQ controller developed
in Chapter 5 (Example 5.8), i.e. based on the weights (5.78) with qy = 1/2, qu = 1/3 and
qe = 0.1, which yields the following control gain vector:

kT = [ fo f1 g1 g2 −kI ] = [ 0.597 −1.008 1.226 2.017 −0.109 ] (6.49)

With regard to Kalman Filter design, the system is represented using the stochastic NMSS
model (6.33), a measurement noise variance σ 2 = 0.1 and the following state covariance
matrix chosen to provide a reasonably balanced amount of noise filtration:

N =

⎡
⎢⎢⎢⎣
0.003 0 0 0

0 0.003 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ (6.50)

The regulator NMSS state transition matrix is:

F =

⎡
⎢⎢⎢⎣

−a1 −a2 b2 b3
1 0 0 0

0 0 0 0

0 0 1 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1.7 −1 −1 2

1 0 0 0

0 0 0 0

0 0 1 0

⎤
⎥⎥⎥⎦ (6.51)

and the observation vector is h = [ 1 0 0 0 ].
In this case, the discrete-time, matrix Riccati equation (6.38) and equation (6.39) yield the

following Kalman gain vector:

L = [ 0.365 0.353 0 0 ]T (6.52)

and equation (6.45) becomes

[
l̃1
l̃2

]
=
[
1 0

0 −a2

][
l1
l2

]
=
[
1 0

0 −1

][
0.365

0.353

]
=
[

0.365

−0.353

]
(6.53)

Hence, D(z−1) = 1+ (l̃1 + a1)z−1 + (l̃2 + a2)z−2 = 1− 1.335z−1 + 0.647z−2 and the opti-
mal estimate of the output (6.47) is determined from:

ŷ(k) = 0.365z−1 − 0.353z−2

1− 1.335z−1 + 0.647z−2 y(k)+ −z−2 + 2.0z−3

1− 1.335z−1 + 0.647z−2 u(k) (6.54)

with the final control algorithm implemented as shown by Figure 6.17.
The response of the PIP-LQG and standard PIP-LQ (i.e. with and without the filtering)

closed-loop system is illustrated by Figure 6.19 and Figure 6.20. The main advantage of using
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Figure 6.19 Closed-loop response for a unit step in the command level, comparing the output of the
stochastic system both with (stochastic PIP-LQG design) and without (deterministic PIP-LQ design) the
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an optimally filtered output variable is that the control input is generally smoothed in some
way, as demonstrated by Figure 6.20.

6.4.3 Stochastic Closed-loop System

Algebraic or block diagram analysis of Figure 6.17, reveals that the closed-loop response is
given by the deterministic closed-loop TF (6.3) and a stochastic component, as follows:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k)

+�
(
G(z−1)D(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
e(k)

(6.55)

Similarly for Figure 6.18:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k)

+ �
(
G(z−1)D(z−1)+ F(z−1)B(z−1)

)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
e(k)

(6.56)

These take a similar form to the deterministic disturbance response TF models considered
earlier, i.e. equation (6.7) and equation (6.8). In the present analysis, however, the numerator
of the stochastic component includes the expression G(z−1)D(z−1), which contrasts with the
G(z−1)A(z−1) term in the denominator.
It is clear that, as usual for observer design, the D(z−1) polynomial cancels out in the com-

mand response (Clarke 1994; Yoon and Clarke 1994). By contrast, the stochastic component
in equation (6.55) relates to the disturbance vector w(k) of the stochastic NMSS model (6.33).
As discussed above, the Kalman Filter is designed to attenuate the measurement noise ε(k) but
to pass the state disturbancesw(k). The latter are regarded as ‘real’ disturbances that have to be
handled by the control system and, for example, could be dealt with by feed-forward control
(see section 6.5). Of course, Figure 6.17 and Figure 6.18 have actually been derived from the
innovations representation (6.34), hence the noise is encompassed by the D(z−1)/A(z−1) TF
model.
In the ideal case represented by Figure 6.17 or Figure 6.18, it is straightforward to verify

that ŷ(k) = y(k)− e(k) exactly. In this context, it is interesting to also consider the spe-
cial case of a white noise disturbance i.e. D(z−1) = A(z−1). Here, the open-loop TF model
(6.43) is:

y(k) = B(z−1)
A(z−1)

u(k)+ e(k) (6.57)
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Since D(z−1)− A(z−1) = 0, the optimal estimate of the output (6.47) is determined using the
deterministic open-loop TF model, as follows:

ŷ(k) = B(z−1)
A(z−1)

u(k) (6.58)

This is a very unsatisfactory solution in practical terms because ŷ(k) is generated from u(k),
with no reference at all to the measured output, and it clearly exposes some lack of robustness
in the Kalman Filter when used in the minimal state feedback context.
To further illustrate the implication of a white noise disturbance D(z−1) = A(z−1), consider

Figure 6.17 or Figure 6.18 again. Combining equation (6.58) and Figure 6.18 yields the
block diagram for the deterministic forward path PIP controller (Figure 6.4). Equivalently, the
closed-loop response (6.56) based on Figure 6.18 reduces to the forward path load disturbance
closed-loop response (6.8). This interpretation shows that, in the absence of state disturbance
noise, forward path PIP design is optimal.
By contrast, with D(z−1) = A(z−1), equation (6.55) based on Figure 6.17 becomes:

y(k) = kI B(z−1)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k)+ e(k) (6.59)

In other words, when the output is contaminated by white measurement noise only, Figure
6.17 simply yields the closed-loop form of equation (6.57).

6.4.4 Other Stochastic Control Structures

At this juncture, it should be remembered that the NMSS approach to control system design
does not need any form of state reconstruction. In essence, therefore, the Kalman Filter is only
required for noise attenuation and not for state estimation per se. Furthermore, like the forward
path implementation of basic PIP control, the Kalman Filter carries with it the disadvantage
of decreased robustness, as revealed also by equation (6.58): in particular, the state estimation
is dependent upon the input-driven model of the system and the cancellation of the observer
dynamics.
This limitation has led to the concept of Loop Transfer Recovery (LTR: see e.g. Maciejowski

1985; Bitmead et al. 1990), which attempts to recover the robustness of the full state feed-
back properties. However, full state feedback is always achieved in the NMSS case, so LTR
is not required. For this reason, it is sometimes advantageous to utilise different, nominally
sub-optimal, approaches to noise attenuation which do not involve the Kalman Filter and
do not necessitate complicated design manipulation such as LTR. In this regard, it should
be stressed that Figure 6.17 and Figure 6.18 illustrate just two possible polynomial imple-
mentations of the PIP-LQG control system, among a wide range of other options available
in the literature. For example, Dixon (1996) and Taylor (1996) consider a number of other
approaches to noise attenuation that utilise either the Kalman Filter (implemented in various
forms, including a special non-minimal filter), explicit pre-filtering of the non-minimal states
and/or the introduction of additional filters.
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One limitation of the stochastic model (6.43), is that it does not allow for non-stationary
(time-varying) disturbance inputs to the system. This problem manifests itself in the form of
a non-zero steady-state error, if the controller shown by Figure 6.17 is utilised on a system
that is affected by such disturbances. This is verified by noting that the steady-state gain of the
stochastic component of equation (6.55) is unity. To combat the problem, we could follow a
similar approach to forward path PIP control, by utilising Figure 6.18, where the steady-state
gain of the stochastic component of equation (6.56) is zero, as required. Arguably, however,
a more satisfactory solution in the context of optimal filtering, can be achieved by explicitly
representing the disturbance in the NMSS model, as shown below.

6.4.5 Modified Kalman Filter for Non-Stationary Disturbances

To address the problem of non-stationary disturbances, consider the following modified inno-
vations representation, which is based on equations (6.34) but with the introduction of a
random walk state variable r (k) to represent the unknown disturbance:

[
x̂(k + 1/k)

r (k + 1/k)

]
=
[

F Om+n,1

O1,n+m 1

][
x̂(k/k − 1)
r (k/k − 1)

]
+
[

g

0

]
u(k)+

[
L(k)

ln+1(k)

]
e(k)

y(k) = [
h 1

] [ x̂(k/k − 1)
r (k/k − 1)

]
+ e(k)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(6.60)

where 0 represents a vector of n + m zeros, while r (k) = r (k − 1)+ ξ (k), in which ξ (k) is
a zero mean white noise sequence with constant variance. As usual, the Kalman gain vector
obtained from equations (6.60), including the gain associated with r (k), is estimated using the
steady-state solution of the discrete-time, matrix Riccati equations.
Following again a similar approach to Young (1979) and Hesketh (1992), the polynomial

representation of the modified system is the following Auto–Regressive, Integrated Moving-
Average eXogenous variables (ARIMAX) model4:

y(k) = B(z−1)
A(z−1)

u(k) + D1(z−1)
�A(z−1)

e(k) (6.61)

where D1(z−1) = D(z−1)� + ln+1A(z−1). Utilising equation (6.36) and rearranging (6.61)
yields the optimal estimate of the output:

ŷ(k) = D1(z−1)− �A(z−1)
D1(z−1)

y(k)+ �B(z−1)
D1(z−1)

u(k) (6.62)

The PIP control algorithm is now implemented in either SVF form based on equation (6.35)
and equation (6.37), or in polynomial form in a similar manner to Figure 6.17. In both cases, the

4 This is sometimes called the CARIMA (Controlled Auto-Regressive Integrated Moving-Average) model.
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optimal estimate ŷ(k) now includes the difference operator� = 1− z−1, which automatically
introduces the necessary integral action into the observer.
The discussion above has utilised the stochastic NMSS model to develop PIP-LQG control

systems. In section 6.4.6, we will briefly consider the introduction of a risk sensitive, Linear
Exponential-of-Quadratic Gaussian (LEQG) cost function.

6.4.6 Stochastic PIP Control using a Risk Sensitive Criterion

Robust control design aims to minimise problems caused by uncertainty in the control system
(e.g. Green and Limebeer 1995). For example, H∞ control ensures that bounds on the H∞-
norm of certain TF models, representing the relationship between disturbance signals and
particular variables of interest, are achieved. This contrasts with the more conventional H2
approach where, in the optimal stochastic LQG case considered above, the deterministic
control law involves the minimisation of the LQ criterion:

J =
N−1∑
k=0

x(k)T Qx(k)+ r (u(k)2) (6.63)

in which Q is a symmetric, positive semi-definite matrix, r is a positive scalar and N is an
integer number of samples (the optimisation window). The cost function is presented in this
N − 1 step ahead form for the purposes of the later discussion on predictive control (section
6.6). However, N → ∞ ensures equivalence with the standard implementation of optimal
PIP-LQ control introduced in Chapter 5, i.e. the steady-state or infinite time solution (5.75).
Unlike in the LQG formulation, a particular H∞ criterion does not yield a unique solution.

One approach, for example, is the minimum entropy solution of Mustafa and Glover (1990)
which, in turn, is closely related to the following LEQG cost function:

γ (θ ) = −2θ−1 loge E
{
e−θ J/2} (6.64)

where θ a scalar ‘risk-sensitive’ parameter and E {·} represents the expectation (Jacobson
1973; Kumar and van Schuppen 1981; Whittle 1981, 1990). An interesting result in the
present context is the relationship between LEQG optimisation and the H∞ approach. This
relationship means that the LEQG formulation has certain robustness properties that enhance
its potential importance to control engineers (Glover and Doyle 1988).
To develop the PIP-LEQG control system, we first define a stochastic servomechanism

NMSSmodel, similar to equations (6.33) but here including the integral-of-error state variable.
The control gains are obtained using the following backwards Riccati recursion:

P(k) = Q + FT
[
gr−1gT + θ N + P(k + 1)−1]−1 F

kT (k) = r−1gT
[
gr−1gT + θ N + P(k + 1)−1]−1 F

}
(6.65)

where k(k) is the state variable feedback control gain matrix (Whittle 1981). In contrast to the
minimal approach, the PIP-LEQG algorithm may be implemented in entirely deterministic
form without filtering if desired, i.e. the NMSS equations employed here ensure that it is
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possible to implement what is referred to, in this context, as the ‘complete observations’
solution. In this case, LEQG design does not include any consideration of the measurement
noise.
In deterministic PIP-LEQG design, solving (6.65) with θ > 0 generally moves the closed-

loop pole positions towards the origin of the complex z-plane and so increases the speed
of response in comparison with the PIP-LQ solution (Taylor et al. 1996). By contrast, with
θ < 0, the control input signal is generally smoother than in the LQ case, but at the expense
of a slower output response. In other words, θ is essentially an additional tuning parameter
for optimal PIP control design. For this reason, it is best combined with a multi-objective
optimisation approach to control system design, as discussed in Chapter 7.

6.5 Generalised NMSS Design

One advantage of the NMSS model is that the state vector is readily extended to account
for the availability of additional measured or estimated information. As we have seen, such
additional states can be utilised to develop more sophisticated algorithms that address specific
control problems. This concept is illustrated by the modified Kalman Filter for non-stationary
disturbances (6.60). In the present section, the flexibility of the NMSS model is further
illustrated using two new examples, namely feed-forward control design and command input
anticipation.

6.5.1 Feed-forward PIP Control based on an Extended Servomechanism
NMSS Model

Here, we aim to improve the response of the controller to measured system disturbances (see
e.g. Figure 6.6), by utilising these measurements in a feed-forward structure. Therefore, the
following multi-input, single-output TF model is estimated using the system identification
tools in Chapter 8. The model takes a similar form to equation (6.43), but the unknown noise
signal is replaced with the measured disturbance v(k), i.e.

y(k) = B(z−1)
A(z−1)

u(k) + D(z−1)
A(z−1)

v(k) (6.66)

Although equation (6.66) suffices for the present illustrative discussion, generalised versions
of this model are also possible, including multiple disturbance signals with independent
denominator polynomials (Young et al. 1994). In conventional feed-forward design, we derive
a control structure algebraically to exactly cancel the disturbance signal in the zero model
mismatch case (e.g. Ogata 2001). This cancellation approach can also be utilised for PIP
design (Cross et al. 2011), but an alternative is to extend the NMSS model, as follows:

x(k) = F̃x(k − 1)+ g̃u(k − 1)+ d̃ yd (k)+ b̃ v(k)

y(k) = h̃x(k)

}
(6.67)
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where the non-minimal state vector is, for example

x(k) = [y(k) · · · y(k − n) u(k − 1) · · · u(k − m + 1) z(k) v(k − N + 1) · · · v(k)]T
(6.68)

in which N is the order of the disturbance polynomial D(z−1). Here, F̃, g̃, d̃, b̃ and h̃ are
defined in the obvious way, following a similar approach to the nominal servomechanism
NMSS model of Chapter 5, but here extended to represent equation (6.66) in difference
equation form. The SVF control gain vector:

kT = [ f0 f1 · · · fn−1 g1 · · · gm−1 − kI − pN · · · − p1 − p0] (6.69)

is obtained by minimising the LQ cost function (5.75) or (6.63) in the usual manner5. In block
diagram terms, an additional control filter operates on the measured disturbance signal:

P(z−1) = p0 + p1z
−1 + · · · + pN−1z−(N−1) (6.70)

Young et al. (1994), for example, utilise a feed-forward PIP approach based on these equations
to control temperature in a greenhouse, significantly reducing the effects of the solar radiation
disturbance. More recently, Cross et al. (2011) developed feed-forward PIP control systems
for regulating the power take-off of a nonlinear wave energy convertor simulation. In this case,
the feed-forward approach addresses the influence of the wave force disturbance, ultimately
improving power capture.

6.5.2 Command Anticipation based on an Extended Servomechanism
NMSS Model

In many applications of control, the command level is either constant or any adjustments
are known well in advance. In the case of robotic manipulators, for example, the joint angle
trajectory is often determined by solving the kinematics offline. This is the approach taken for
the laboratory excavator discussed in Chapter 5 (Example 5.2), in which the PIP controlled
manipulator joint angles are planned at the start of each manoeuvre. In this situation, the
NMSS model can be extended to handle N future known commands by simply appending the
state vector with these values (Taylor et al. 2000a):

x(k) = [y(k) · · · y(k − n) u(k − 1) · · · u(k − m + 1) z(k) yd(k)
T ]T (6.71)

5 For consistency with the later discussion on command anticipation and model predictive control, the order of the
disturbance polynomial is given by N, which is also the number of iterations of the finite-horizon LQ cost function
(6.63). However, this connection is not a general requirement of the feed-forward PIP formulation. Indeed, the practical
implementation results discussed by Young et al. (1994) are based on the infinite horizon cost function (5.75), with
the order of the disturbance polynomial obtained independently using the system identification algorithms discussed
in Chapter 8.
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where

yd (k) = [yd (k + 1) yd (k + 2) . . . yd (k + N )]T (6.72)

The command input NMSS form with these modifications is:

x(k) = F̃x(k − 1)+ g̃u(k − 1)+ d̃ yd (k + N )

y(k) = h̃x(k)

}
(6.73)

where

g̃ = [ g 0 · · · 0 0 ]T , d̃ = [ 0 0 · · · 0 d ]T , h̃ = [ h 0 · · · 0 0 ] and

F̃ =

⎡
⎢⎣

F d On+m,N−1
O N−1,n+m O N−1,1 I N−1
0 . . . 0

⎤
⎥⎦ (6.74)

in which F, g and d are from the servomechanism NMSS model, i.e. they are defined by
equation (5.15) and equation (5.16). Finally, O is an appropriately defined matrix of zeros and
IN−1 an identity matrix.
The extended PIP control algorithm is implemented in either SVF or incremental form,

with the SVF control gain vector (6.69) again obtained by minimising the infinite-horizon
LQ cost function (5.75). Because of the integral-of-error state variable, and in contrast to the
minimal approach (see e.g. Bitmead et al. 1990), no special LQ state weighting arrangements
are required to ensure steady-state tracking. ThereforeQ is usually formed as a diagonal matrix
similar to equation (5.77), with the additional elements set to zero:

Q = diag
(

qy · · · qy qu · · · qu qe 0 · · · 0
)

(6.75)

In fact, the command input is clearly not controllable, so the choice of associated weights in
the Q matrix has no effect on the final PIP gains. Furthermore, for a given model and LQ
weights, the gain associated with each future command input is always the same, regardless
of the value of N. Hence, above a certain level, the closed-loop response is not particularly
sensitive to the value of N and selecting a high value (say greater than 10) has little effect,
since the gains trail off to zero.
In block diagram terms, the controller can be implemented as shown in Figure 6.21, in

which P(z−1) is given by equation (6.70).
Note that P(z−1) operates on the N-step ahead command input yd (k + N ), whilst that the

integral-of-error state variable z(k) is defined using the ‘current’ command yd (k). Inspection
of Figure 6.21 shows:

u(k) = 1

G(z−1)

(
−F(z−1)y(k) + P(z−1)yd (k + N ) + kI

�

(
z−N yd (k + N ) − y(k)

))
(6.76)
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Figure 6.21 Feedback PIP control with command input anticipation

Rearranging gives:

G(z−1)�u(k) = − (
F(z−1)� + kI

)
y(k) + (

kI z−N + P(z−1)�
)

yd (k + N ) (6.77)

Further algebraic or block diagram analysis yields:

y(k) = B(z−1)
(
kI z−N + P(z−1)�

)
�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

)+ kI B(z−1)
yd (k + N ) (6.78)

Here, only the numerator polynomial of the closed-loop TF is modified in comparison with
equation (6.3), hence LQ design yields the same closed-loop poles as for the nominal case.
Furthermore, since � = 1− z−1 → 0 for k → ∞, the steady-state gain of equation (6.78) is
unity and Type 1 servomechanism performance is obtained, as required.
Other NMSS implementations of command anticipation are also possible, including forward

path and stochastic solutions. Finally, as Hesketh (1992) points out, the z−N time delay
employed in Figure 6.21 could be replaced by a TF model, in order to induce a model
following response in the closed-loop.

Example 6.7 Command Input Anticipation Design Example There are two major advan-
tages of introducing the future command input states: in the first place, the closed-loop system
anticipates changes and reacts to the command input sooner; and, secondly, simulation studies
show that the control input is generally smoothed in some manner. An attractive consequence
of the latter point can be seen in the control of the familiar model (6.10), where the open-
loop non-minimum phase characteristics have been completely eliminated, as illustrated by
Figure 6.22.
To emphasise the difference between the command anticipation and nominal responses,

the PIP-LQ controller in Figure 6.22 is based on an increased integral-of-error weighting
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Figure 6.22 Closed-loop response for positive and negative unit steps in the command level, comparing
the output of the PIP-LQ optimal control system with (bold solid trace) and without (dashed trace) a
command anticipation filter

compared with Example 6.1, hence a faster closed-loop response, i.e. based on the weights
(5.78) with qy = 1/2, qu = 1/3 and qe = 10, which yields:

kT = [ f0 f1 g1 g2 −kI ] = [ 2.440 −2.877 2.023 5.753 −0.428 ] (6.79)

With command anticipation based on N = 10, the above SVF gains remain unchanged, whilst
the additional gains (6.70) are p0 = 0.006, p1 = 0.012, p2 = 0.023, p3 = 0.045, p4 = 0.089,
p5 = 0.182, p6 = 0.369, p7 = 0.611, p8 = 0.428 and p9 = 0.428. Another example of PIP
command anticipation, in which the NMSS model is stated in full for tutorial purposes, is
discussed later (Example 6.8).

6.6 Model Predictive Control

Model Predictive Control (MPC) is a popular approach to control system design with many
successful applications, particularly in the chemical and process engineering industries (Morari
and Lee 1999). An attractive feature of MPC is the ability to handle constraints on the system
variables, such as equations (6.15), as an inherent part of the design process, albeit at the
cost of increased complexity (Maciejowski 2002; Rossiter 2003). MPC algorithms based on
minimal state space models typically utilise an observer and exploit the separation theorem in
a similar manner to equation (6.37). Hence, much research effort has been directed towards
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increasing the robustness of MPC design and to reducing the online computational load (e.g.
Bemporad et al. 2002).

6.6.1 Model Predictive Control based on NMSS Models

Aswe have seen, PIP control systems are generally implemented using an incremental form, in
order to avoid integral ‘wind-up’ problems. To address more general system constraint prob-
lems, such as limits on the output signal and other measured variables, we will consider later
the use of multi-objective optimisation techniques where the PIP-LQ weights are optimised
offline using computer simulation, as described in Chapter 7. However, in recent years, various
deterministic NMSS model structures have also been utilised for MPC design (see e.g. Taylor
et al. 2000a; Wang and Young 2006; Exadaktylos et al. 2009; Gonzales et al. 2009). The
latter citations all define a modified form of the regulator NMSS model, in which differenced
values of the control input signal�u(k) are utilised as state variables. By contrast, the relative
merits of various integral action schemes for MPC have been considered by Pannocchia and
Rawlings (2003), and these results are exploited by Exadaktylos and Taylor (2010) to develop
MPC systems using the servomechanism NMSS model of Chapter 5.
The MPC cost function is generally solved online to address the problem of system con-

straints. In particular, the future constrained control input variables, u(k), u(k + 1), u(k + 2)
through to u(k + N ), are determined by solving a quadratic optimisation problem at every
sampling instant k. Following standard MPC practice, a receding-horizon approach is sub-
sequently employed, with only the first of these actually utilised at each control sample. By
contrast, the focus of the present book is on linear control theory and on the development of
fixed gain controllers that can be analysed in block diagram terms. In this context, an important
step in the evolution of MPC is the Generalised Predictive Control (GPC) approach of Clarke
et al. (1987). Hence, the final part of this chapter focuses on the relationship between GPC
and PIP control.

6.6.2 Generalised Predictive Control

Unlike PIP control, GPC was not originally formulated overtly in an optimal state space
context. Rather, it is normally presented in an alternative receding-horizon optimal setting,
defined by the following cost function:

J = E

⎧⎨
⎩

N∑
j=1
(y(k + j)− yd (k + j))2 +

NU∑
j=1

λ (�u(k + j − 1))2
⎫⎬
⎭ (6.80)

where N and NU are the output and input costing horizons, respectively, and E {·} represents
the expectation.
Here, the control strategy is posed in terms of the differenced input signal, i.e. �u(k) =

u(k)− u(k − 1). The approach utilises the ARIMAX model (6.61), which can be rearranged
and restated as follows:

Ã(z−1)y(k) = B(z−1)�u(k)+ D(z−1) e(k) (6.81)
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Figure 6.23 The NMSS servomechanism system in predictive form

where Ã(z−1) = �A(z−1) = 1+ ã1z−1 + · · · + ãn+1z−(n+1), A(z−1) and B(z−1) are defined
by equation (6.1), and the generalised noise polynomial D(z−1) = 1+ d1z−1 + · · · + dpz−p.
The simplest form of GPC is based on the ARIMAX system model (6.81) with the noise

polynomial set to unity, i.e. D(z−1) = 1. We will consider the general case using the noise
polynomial for filtering purposes later on. Minimising the cost function (6.80) yields:

�u(k) = gT ( yd − f ) (6.82)

in which gT = [g1 g2 . . . gN ] is a vector of gain coefficients, yd is a vector of future
command inputs (6.72) and f = [ f (k + 1) f (k + 2) . . . f (k + N )]T is called themodel free
response prediction. As shown, for example, by Clarke et al. (1987) and Bitmead et al. (1990),
evaluation of equation (6.82) yields a fixed gain control algorithm that can be conveniently
expressed in block diagram form, as illustrated by Figure 6.23.
The control polynomials in Figure 6.23 are defined:

S(z−1) = s0 + s1z−1 + · · · + snz−n

R(z−1) = 1+ r1z−1 + · · · + rm−1z−(m−1)

W (z−1) = w0 + w1z−1 + · · · + wN−1z−(N−1)

⎫⎪⎬
⎪⎭ (6.83)

Using Figure 6.23, the GPC algorithm can be expressed:

R(z−1)�u(k) = −S(z−1)y(k) + W (z−1)yd (k + N ) (6.84)

Further algebraic or block diagram analysis yields the closed-loop TF:

y(k) = W (z−1)B(z−1)
�R(z−1)A(z−1)+ S(z−1)B(z−1)

yd (k + N ) (6.85)

Note that s0 + s1 + · · · + sn = w0 + w1 + · · · + wN−1, hence the steady-state gain of closed-
loop system (6.85) is unity. The integral action implicit in the model (6.81), ensures an
integrator in the forward path control filter and so yields Type 1 servomechanism performance.

6.6.3 Equivalence Between GPC and PIP Control

Returning now to the command anticipation form of PIP control, Figure 6.21 can be alge-
braically transformed so that it conforms to the same structure as GPC in Figure 6.23 (Taylor
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et al. 1994, 2000a). In fact, comparing equation (6.77) and equation (6.84), it is straightforward
to determine the equivalent terms, as follows:

S(z−1) ≡ (
F(z−1)� + kI

) = F∗(z−1)
R(z−1) ≡ G(z−1)
W (z−1) ≡ (

kI z−N + P(z−1)�
) = P∗(z−1)

⎫⎪⎬
⎪⎭ (6.86)

where F∗(z−1) and P∗(z−1) can be considered as modified versions of the F(z−1) and P(z−1)
polynomials in the command anticipation PIP controller.
Furthermore, it can be seen from their definitions in equation (6.2) and equation (6.83), that

theGPC polynomials S(z−1), R(z−1) andW (z−1) are of the same order as their PIP equivalents,
F∗(z−1),G(z−1) and P∗(z−1). Note, however, that the control gains and corresponding closed-
loop response will only match if, for example, PIP pole assignment is employed to ensure the
same pole positions or, as shown by Theorem 6.2, appropriate LQ conditions are specified.
The relationship betweenGPC andminimal LQG control is verywell known (see e.g. Clarke

et al. 1987; Bitmead et al. 1990). For NMSS design, the control gains are usually obtained
from the infinite time solution of (6.63), withN set to infinity. However, in order to demonstrate
full equivalence with the finite horizon cost function employed in GPC, Theorem 6.2 (Taylor
et al. 2000a) instead selects suitable initial conditions for the matrix Riccati equations and
only completes N − 1 recursions over the selected horizon.

Theorem 6.2 Equivalence Between GPC and (Constrained) PIP-LQ The command
anticipation PIP-LQ control law, based on the NMSS model (6.73), is identical to that of the
GPC algorithm (6.82) when N = NU (for simplicity), if the following three conditions all
hold:

(i) Q = hT
1 h1

(ii) P0 = hT
1 h1

(iii) r = λ

Here, Q is the state weighting matrix and r is the scalar weight on the input in the LQ cost
function (6.63), P0 is the initial value for the Riccati equation P matrix in equation (5.82),
whilst h1 = [0 . . . 0 1 0 . . . 0] is a specially defined vector, of dimension n + m + N , chosen
to ensure that the LQ cost function weights apply only to the integral-of-error state.
The details of this theorem are similar to those in Bitmead et al. (1990), since the NMSS

form is just another equivalent state space representation of themodel (6.81). In particular, note
that the GPC cost function (6.80) involves differencing the control input, which is equivalent
to integrating the error term. Therefore, the basis for the equivalence is that the only state
assigned a positive weighting in the Qmatrix is the one equivalent to the GPC predicted error.
As in the case of Theorem 4.2 (for the relationship between minimal and non-minimal

forms), it should be stressed that, while any GPC design can be exactly replicated with
an equivalent PIP controller, the reverse is not true: the relationship only holds under the
constraining conditions above. Finally, in this example, N in the LQ criterion (6.63) takes
the same value as the GPC forecasting horizon. However, it is clear that this is not a general
requirement of the command anticipation PIP formulation and, in practice, N is a free design
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parameter, independent of the number of iterations of the Riccati equation. To illustrate this,
the PIP control gains (6.79) are based on the infinite solution of (6.63), while the order of the
command anticipation filter, N = 10.

Example 6.8 Generalised Predictive Control and Command Anticipation PIP Control
System Design In order to illustrate the discussion above, the example considered by
Bitmead et al. (1990, p. 78) is extended to the non-minimal case. The system is defined by
(6.81), with D(z−1) = 1, A(z−1) = 1− 0.7z−1, Ã(z−1) = 1− 1.7z−1 + 0.7z−2 and B(z−1) =
0.9z−1 − 0.6z−2. Hence, n = 1 andm = 2, while the difference equation representation of the
model is:

y(k) = 1.7y(k − 1)− 0.7y(k − 2)+ 0.9�u(k − 1)− 0.6�u(k − 2)+ e(k) (6.87)

Selecting N = NU = 3 and λ = 0.1 in the GPC cost function (6.80) and evaluating equation
(6.82) in the manner of Clarke et al. (1987), the GPC polynomials (6.83) for implementation
using Figure 6.23 are:

S(z−1) = 1.748− 0.751z−1

R(z−1) = 1− 0.644z−1

W (z−1) = 0.010+ 0.093z−1 + 0.895z−2

⎫⎪⎬
⎪⎭ (6.88)

The non-minimal state vector (6.71) for PIP design is:

x(k) = [ y(k) u(k − 1) z(k) yd (k + 1) yd (k + 2) yd (k + 3) ]T (6.89)

The command anticipation servomechanism NMSS model (6.73) is defined by:

F̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7 −0.6 0 0 0 0

0 0 0 0 0 0

−0.7 0.6 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; g̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9

1

−0.9
0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; d̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; h̃T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.90)

Using Theorem 6.2 to obtain equivalence with GPC, the LQ cost function weights are r = 0.1
and Q = P0 = diag[0 0 1 0 0 0]. Two iterations of the Riccati equation yield kI = 0.997
and

F(z−1) = f0 = 0.751

G(z−1) = 1+ g1z−1 = 1− 0.644z−1

P(z−1) = p0 + p1z−1 + p2z−2 = 0.010+ 0.102z−1 + 0.997z−2

⎫⎪⎬
⎪⎭ (6.91)
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The PIP control system is implemented as shown by Figure 6.21. Finally, utilising equations
(6.86), the following modified control polynomials are obtained:

F∗(z−1) = (0.751� + 0.997) = 1.748− 0.751z−1

P∗(z−1) = (
0.997z−3 + P(z−1)�

) = 0.010+ 0.093z−1 + 0.895z−2

}
(6.92)

It is clear that F∗(z−1) = S(z−1), P∗(z−1) = W (z−1) and G(z−1) = R(z−1) as expected.

6.6.4 Observer Filters

For brevity, the discussion above has assumed that D(z−1) = 1 in the model (6.81). However,
we have already seen in section 6.4 that such an observer polynomial can be introduced into
PIP design: the optimally filtered output is obtained using the asymptotic gain, innovations
representation of theKalman Filter, converted into TF form (6.62). Subsequently, the stochastic
PIP control law can be implemented using a similar approach to Figure 6.17 or Figure 6.18
(modified to use the non-stationary disturbances version of the model).
Alternatively, the observer polynomial can be treated as a design ‘parameter’ [sometimes

denoted by T (z−1) to highlight its generic form]. For GPC, it is chosen by the designer
to improve disturbance rejection or to improve the robustness of the closed-loop system to
mismatch between the model and the real plant (Clarke 1994; Yoon and Clarke 1994). In order
to mimic this GPC approach for PIP design, using equation (6.77) [here replacing y(k) with
the optimal estimate ŷ(k)] and equation (6.86),

�u(k) = − F∗(z−1)
G(z−1)

ŷ(k)+ P∗(z−1)
G(z−1)

yd (k + N ) (6.93)

In this case, substituting from equation (6.62) [here based on the generalized noise polynomial
defined below equation (6.81)] yields:

�u(k)=− F∗(z−1)
G(z−1)

{
D(z−1)− �A(z−1)

D(z−1)
y(k)+ �B(z−1)

D(z−1)
u(k)

}
+ P∗(z−1)

G(z−1)
yd (k+N ) (6.94)

which can be reduced to the following form:

�u(k) = − Fa(z−1)
D(z−1)

D(z−1)
Ga(z−1)

y(k) + D(z−1)P∗(z−1)
Ga(z−1)

yd (k + N ) (6.95)

where

Fa(z−1) = F∗(z−1)
(
D(z−1)− �A(z−1)

)
Ga(z−1) = G(z−1)D(z−1)+ B(z−1)F∗(z−1)

}
(6.96)

The block diagram of the complete closed-loop stochastic PIP system using this control
structure is shown in Figure 6.24, which is equivalent to the usual GPC formulation. Of
course, as in the GPC case, it is possible to replace D(z−1) by the more general filter T (z−1)
and select it either heuristically or optimally to satisfy other requirements.
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Figure 6.24 Stochastic PIP-LQG control conformed to show its relationship with the equivalent GPC
system

6.7 Concluding Remarks

In this chapter, we have examined the two main structures for implementing PIP control
systems, namely the incremental feedback and forward path forms. We have seen how
the latter utilises an internal deterministic model to generate a noise-free estimate of the
output. For this reason, the feedback form is inherently more robust to parametric uncer-
tainty, especially for open-loop unstable and marginally stable systems. Practical examples
of feedback PIP control are described by Chotai et al. (1991), Young et al. (1994), Seward
et al. (1997), Taylor et al. (2000b, 2004a, b), Gu et al. (2004) and Shaban et al. (2008),
among others.
However, many systems in industry and the environment are inherently open-loop stable, so

that the reduced robustness of the forward path PIP controller is often less important. In such
circumstances, the improved disturbance rejection and input characteristics of the forward
path structure can prove advantageous. Example applications of forward path PIP control are
given by Lees et al. (1996, 1998) and Taylor and Shaban (2006).
We have also considered various ways of either extending or modifying the basic NMSS

form to include stochastic, disturbance and command input elements. An interesting aspect
of such generalised NMSS models and the associated PIP control systems is the manner in
which they may be readily compared with other approaches to control system design. Figure
5.3 and Appendix D show how the PIP controller may be considered as one extension to the
classical Proportional-Integral-Derivative algorithm. In the present chapter, we have seen how
the SP for time-delay systems and the GPC may similarly be treated as special constrained
cases of PIP design. In demonstrating this ability to mimic exactly other control approaches,
we see again the power and flexibility of the PIP algorithm.
It is important to emphasise that PIP pole assignment or optimal design of this type, in

which the closed-loop poles or optimisation weights, are constrained in some manner to
ensure equivalence with the other control system design methodologies, is not necessarily
the most robust solution to the design problem. For example, the feedback PIP approach,
which effectively subsumes the SP in the time-delay situation, will normally yield better and
more robust closed-loop behaviour, making it more desirable for practical applications. The
advantage of the PIP approach is that full order pole assignment or optimal control can be
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handled in these various forms, with the final implementation structure chosen according to
the particular control objectives and plant in question.
Finally, it is noteworthy that the discussion so far has been entirely limited to SISO systems.

This is largely for reasons of brevity and for tutorial purposes. Therefore, before we can claim
that NMSS methods provide a unified approach to digital control system design, we first
need to consider, in Chapter 7, the more general multivariable (Multi-Input, Multi-Output or
MIMO) case.
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7
True Digital Control for
Multivariable Systems

The general state space formulation of the linear Single-Input, Single-Output (SISO)
Proportional-Integral-Plus (PIP) control system, introduced in Chapter 5, facilitates straight-
forward extension to the multivariable case. This chapter describes the True Digital Control
(TDC) design philosophy for such Multi-Input, Multi-Output (MIMO) systems. Here, the
system is characterised by multiple control inputs that affect the state and output variables in
a potentially complicated and cross-coupled manner (Wolovich 1974; Kailath 1980; Albertos
and Sala 2004; Skogestad and Postlethwaite 2005).
Multivariable PIP design should take account of this natural cross-coupling and generate

control inputs which ameliorate any unsatisfactory aspects of the system behaviour that arise
from it. In particular, it is often an advantage if the control system is able to decouple the
effects of different command inputs and their related outputs. In this case, each command
signal leads only to the required changes in the specified output variable, without disturbing
the other output variables. This can be a rather difficult task, which is achieved bymanipulating
the control inputs for all of the input–output channels simultaneously, so that the effects of the
natural coupling are neutralised.
We start with the Transfer Function Matrix (TFM) model and use it to derive a left Matrix

Fraction Description (MFD) of the multivariable system. In the TDC approach to control
system design, these models are obtained from either experimental or simulated data using
multiple SISO or Multi-Input, Single-Output (MISO) versions of the system identification
tools described in Chapter 8. The control approach is subsequently based on the definition
of a suitable multivariable Non-Minimal State Space (NMSS) form constructed from these
multiple SISO or MISO models. As in the univariate case, the NMSS setting of the control
problem allows for the use of full State Variable Feedback (SVF), involving only the measured
input and output variables and their past values, so avoiding the need for an explicit state
reconstruction filter or observer (section 7.1).

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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The resulting multivariable PIP control system is, therefore, relatively straightforward to
design and implement in practical applications (section 7.2). For example, the weighting
matrices required for optimal Linear Quadratic (LQ) design are directly related to the input
and output state variables, and so can be manually tuned in a similar manner to univariate
systems (section 7.3).
In addition to multivariable decoupling control, we often require different response charac-

teristics between each command input and the associated output variable, so that the control
system has to satisfy these and other conflicting requirements: in other words, we need to
simultaneously satisfy multiple objectives. In this regard, the PIP-LQ control system is ideal
for incorporation within a multi-objective optimisation framework. Often, it is possible to
obtain a satisfactory compromise between conflicting objectives such as robustness, system
constraints, overshoot, rise times and multivariable decoupling, by concurrent numerical opti-
misation of the diagonal and off-diagonal elements of the weighting matrices in the cost
function (section 7.4).
By contrast, one approach to multivariable PIP pole assignment is based on a transformation

of the NMSS model into the Luenberger controller canonical form (Luenberger 1971). This
method, while achieving the desired pole assignment, does not address the problem of ensuring
good transient cross-coupling characteristics. However, it is well known that assignment of the
closed-loop poles of the multivariable system does not, in itself, uniquely specify the SVF gain
matrix (see e.g. Luenberger 1967; Gopinath 1971; Young and Willems 1972; Munro 1979;
Kailath 1980). Consequently, this extra design freedom can be used to instead develop a PIP
algorithm that provides combined multivariable decoupling and pole assignment (section 7.5).

7.1 The Multivariable NMSS (Servomechanism) Representation

One approach for the control of multivariable systems is to utilise a number of independent
SISO controllers. However, an important advantage of model-based multivariable design over
such multiple-loop SISO controllers is the ability of the former to dynamically decouple the
control channels. This is achieved by exploiting information about the interactions contained
in the control model. Example 7.1 illustrates how a matrix of Transfer Function (TF) models
may be employed to describe these interactions.

Example 7.1 Multivariable TF Representation of a Two-Input, Two-Output System
Consider the following pair of two-input, single-output models, which have been arbitrarily

chosen here for tutorial purposes:

y1(k) = 0.9z−1

1− 0.5z−1 u1(k)+ 2z−1

1− 0.5z−1 u2(k)

y2(k) = 1.1z−1

1− 0.8z−1 u1(k)+ z−1

1− 0.8z−1 u2(k)

(7.1)

Here, the dynamic response of the two output variables, y1(k) and y2(k), are both deter-
mined by the two control input signals, u1(k) and u2(k). Such a coupled two-input,
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two-output system can be represented equivalently in the following TF matrix or TFM
form:

[
y1(k)
y2(k)

]
=

⎡
⎢⎢⎣

0.9z−1

1− 0.5z−1
2z−1

1− 0.5z−1

1.1z−1

1− 0.8z−1
z−1

1− 0.8z−1

⎤
⎥⎥⎦

[
u1(k)
u2(k)

]
(7.2)

Here, the open-loop system consists of four first order TF models, with common denominator
polynomials, unity time delay in each case, and no zeros. Despite the apparent simplicity
in this model, Figure 7.1 shows clear evidence of cross-coupling, with each input variable
influencing both outputs, as expected from the above system definition.
Similar figures will be employed on several further occasions in the present chapter, so

it is worthwhile clarifying exactly what is presented here: Figure 7.1 shows the response of
two separate open-loop simulation experiments: it illustrates the open-loop response of y1(k)
(Figure 7.1a) and y2(k) (Figure 7.1b) to a unit step change in u1(k) when u2(k) = 0; and the
response of y1(k) (Figure 7.1c) and y2(k) (Figure 7.1d) to a unit step change in u2(k) when
u1(k) = 0. Later, a similar arrangement will be utilised to illustrate the closed-loop response
to step changes in each command input.
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Figure 7.1 Open-loop unit step response of the multivariable system in Example 7.1
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For analogy with the SISO case described in earlier chapters, we can write equation (7.2)
in the following form:

[
y1(k)
y2(k)

]
= (A(z−1))−1B(z−1)

[
u1(k)
u2(k)

]
(7.3)

Alternatively,

A(z−1)
[

y1(k)
y2(k)

]
= B(z−1)

[
u1(k)
u2(k)

]
(7.4)

where, for this example,

A(z−1) =
[
1− 0.5z−1 0

0 1− 0.8z−1

]
=

[
1 0
0 1

]
+

[−0.5 0
0 −0.8

]
z−1 (7.5)

and

B(z−1) =
[
0.9z−1 2z−1

1.1z−1 z−1

]
=

[
0.9 2
1.1 1

]
z−1 (7.6)

Compare these matrix equations with their scalar equivalents (5.12) in Chapter 5. Hence,
following a similar approach to the state equation in equations (5.13), we can define the
following servomechanism NMSS form:

⎡
⎢⎢⎣

y1(k)
y2(k)
z1(k)
z2(k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.5 0 0 0
0 0.8 0 0

−0.5 0 1 0
0 −0.8 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y1(k − 1)
y2(k − 1)
z1(k − 1)
z2(k − 1)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0.9 2
1.1 1

−0.9 −2
−1.1 −1

⎤
⎥⎥⎦ u(k)+

⎡
⎢⎢⎣
0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ yd (k)

(7.7)

where u(k) = [u1(k − 1) u2(k − 1) ]T and yd (k) = [ yd1(k) yd2(k) ]T , in which yd1(k) and
yd2(k) are the command levels associated with y1(k) and y2(k), respectively. As usual, the
integral-of-error state variables are based on equation (5.3), i.e.

z1(k) = z1(k − 1)+ (yd1(k)− y1(k)) ; z2(k) = z2(k − 1)+ (yd2(k)− y2(k)) (7.8)

Note that no input states are required for this simplest example. However, a higher order
system requiring input state variables is described later (Example 7.3).

7.1.1 The General Multivariable System Description

Generalising from Example 7.1, consider a multivariable discrete-time system described by a
set of ordinary difference equations, represented in the following TFM form:

y(k) = G(z−1)u(k) (7.9)
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where u(k) and y(k) are the following vectors of r input and p output variables, respectively:

y(k) = [
y1(k) y2(k) · · · yp(k)

]T

u(k) = [
u1(k) u2(k) · · · ur (k)

]T (7.10)

and G(z−1) is a matrix of TF models, such as (7.2). Here, the TF model for each input–output
pathway takes the same general univariate form as employed in earlier chapters: see e.g.
equation (5.12). In general, no prior assumptions are made about the nature of this TF matrix,
which may be marginally stable, unstable, or possess non-minimum phase characteristics. The
presentation here is based on the general case when the number of input and output variables
may differ. However, in practice, Type 1 servomechanism performance requires at least the
same number of input variables as outputs.
The TFM (7.9) can be transformed into the following left MFD form (Wolovich 1974;

Kailath 1980), which represents a generalisation of equation (7.3):

y(k) = (A(z−1))−1B(z−1)u(k) (7.11)

Alternatively,

A(z−1)y(k) = B(z−1)u(k) (7.12)

where

A(z−1) = I + A1z−1 + · · · + Anz−n (An �= 0)
B(z−1) = B1z−1 + B2z−2 + · · · + Bm z−m (Bm �= 0)

(7.13)

Here, Ai (i = 1, 2, . . . , n) are p × p and Bi (i = 1, 2, . . . , m) are p × r matrices, while I is
an p × p identity matrix. In a similar manner to that described in Chapter 5 for the univariate
case, some of the initial B(z−1) terms could take null values to accommodate pure time delays
in the system. Note that, in the context of the system identification and parameter estimation
literature, the left MFDmodel (7.11) is known as a vector TFmodel and, in the stochastic case,
the associated, additive, multivariable noise model is known as the vector Auto-Regressive,
Moving Average (ARMA)model. Finally, its relationship with the nominal minimal state space
representation of a multivariable system is well established (see e.g. Wolovich 1974; Kailath
1980; Gevers and Wertz 1984).

7.1.2 Multivariable NMSS Form

The multivariable non-minimal state vector is defined as follows1:

x(k) = [
y(k)T · · · y(k − n + 1)T u(k − 1)T · · · u(k − m + 1)T z(k)T

]T
(7.14)

1 In this book, the multivariable non-minimal state vector (7.14) is assigned the same notation as for the SISO case;
see e.g. equation (5.14). Of course, the dimension of the multivariable state vector (7.14) will generally be higher,
since it includes present and past values of all the system variables.
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where x(k) is composed of vectors of sampled past and present system outputs and past control
inputs, while the integral-of-error state vector z(k) is defined:

z(k) =
(
yd (k)− y(k)

)
1− z−1 (7.15)

Alternatively,

z(k) = z(k − 1)+ (
yd (k)− y(k)

)
(7.16)

in which yd (k) is the reference or command input vector:

yd (k) = [
yd1(k) yd2(k) · · · ydp(k)

]T
(7.17)

and, finally, z(k) similarly consists of p elements:

z(k) = [
z1(k) z2(k) · · · z p(k)

]T
(7.18)

Type 1 servomechanism performance is automatically accommodated by the introduction of
this integral-of-error vector z(k), in which the definitions of each element follow a similar
approach to equations (7.8). Consequently, provided the closed-loop system is stable, then
steady state decoupling is inherent in the basic design, i.e. each output variable yi (k) will
asymptotically converge to its associated command level ydi (k): in other words, there is the
automatic steady-state decoupling in the sense that although, in general, any maintained step
command input signal will cause perturbations in all the output variables, it will lead eventually
to a steady-state change only in its associated output.
It should be noticed that the NMSS state vector (7.14) has an order of p(n + 1)+ r (m − 1),

which is usually higher than that of the original system representation, as expected for any
non-minimal formulation of the problem.
With the above definitions, the NMSS representation associated with the MFDmodel (7.11)

is defined directly in terms of the following discrete-time state equations:

x(k) = Fx(k − 1)+ Gu(k − 1)+ Dyd (k) (7.19)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A1 −A2 · · · −An−1 −An B2 B3 · · · Bm−1 Bm 0
Ip 0 · · · 0 0 0 0 · · · 0 0 0
0 Ip · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · Ip 0 0 0 · · · 0 0 0
0 0 · · · 0 0 0 0 · · · 0 0 0
0 0 · · · 0 0 Ir 0 · · · 0 0 0
0 0 · · · 0 0 0 Ir · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · Ir 0 0
A1 A2 · · · An−1 An −B2 −B3 · · · −Bm−1 −Bm Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.20)
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and

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1
0
0
...
0
Ir

0
0
...
0

−B1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
0
0
...
0
Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.21)

Here, the block matrices Ip and Ir denote p × p and p × r identity matrices, respectively.
The leftMFDmodel is particularly convenient to use here, because it allows for the formation

of an appropriateNMSSmodel in a very similarmanner to that described for univariate systems
in Chapter 5. Although the multivariable case naturally requires a vector-matrix notation, the
analogy with equation (5.12), equation (5.13), equation (5.14), equation (5.15) and equation
(5.16) is clear.

7.1.3 The Characteristic Polynomial of the Multivariable NMSS Model

The open-loop characteristic polynomial S(λ) of themultivariable NMSS representation (7.19)
is given by:

S(λ) = |Iλ − F| = (λ − 1)pλr (m−1) det(A∗(λ)) (7.22)

where det(A∗(λ)) is the determinant of A∗(λ) and

A∗(λ) = Iλn + A1λn−1 + · · · + An (7.23)

Equation (7.22) is obtained from the transition matrix of the state space model, as shown in
earlier chapters; see e.g. equation (3.64). It shows that S(λ) is the product of three compo-
nents: (λ − 1)p are associated with the integral-of-error state vector; λr (m−1) are due to the
input variables, i.e. u(k − 1), u(k − 2), . . . , u(k − m + 1); and det(A∗(λ)) is composed of
the modes of the original open-loop representation (7.9), together with extra modes at λ = 0.
The latter are called ‘transmission zeros’ and are introduced by the delayed output variables
when the p row degrees n1, n2, . . . , n p of the polynomial matrix A(z−1) are not equal (this
occurs when the TF models associated with each input–output pathway are of different orders:
see Example 7.4).
Chapter 3 introduced the concept of controllability. To obtain a satisfactory SVF control

law, the NMSS model must be controllable. In this case, all of the p(n + 1)+ r (m − 1)
eigenvalues may be assigned to any desired positions in the complex z-plane, subject only to
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the normal restriction that complex eigenvalues appear in conjugate pairs. If the NMSS model
is not completely controllable, then the controllable eigenvalues can be assigned arbitrarily,
while the uncontrollable ones remain invariant (as in the case of the coupled drives system
considered in Example 7.4). The conditions for controllability are listed below.

Theorem 7.1 Controllability of the Multivariable NMSS Model Given a multivariable
linear discrete-time system represented in the leftMFD form (7.11), theNMSSmodel (7.19), as
described by the pair [F, G], is completely controllable if and only if the following conditions
are all satisfied:

(i) the two polynomial matrices A(z−1) and B(z−1) are left coprime;
(ii) the row degrees of A(z−1) and B(z−1) satisfy the following identity,

(n − ni ) (m − mi ) = 0 for i = 1, 2, . . . , p

where ni and mi are the ith row degrees of A(z−1) and B(z−1), respectively;
(iii) when z = 1, Rank

(
B(z−1)

) = p.

The proof of Theorem 7.1 is a straightforward extension of the regulator SISO case described
by Theorem 4.1 (see also Appendix C) and so, for brevity, is omitted here.
The first controllability condition simply ensures that there are no pole-zero cancellations

in the original system, i.e. the system representation should be derived from a controllable
and observable state space representation. The second condition requires that A(z−1) and
B(z−1) should possess no lower degrees in the same row than their highest row degrees n and
m, respectively. When this condition is not satisfied, redundant delayed output variables are
introduced into the non-minimal state vector and these redundant variables add uncontrollable
modes at the origin (z = 0). However, such uncontrollable modes cause no problem since they
are all at the origin and are, therefore, stable. In fact, they are cancelled out in the TFM and
have no effect upon the closed-loop system response. Note that the extra r (m − 1) modes at
z = 0, which are introduced into the NMSS model by u(k − 1), u(k − 2), . . . , u(k − m + 1)
are always inherently controllable, since u(k) represents the vector of control input signals.
The third condition of Theorem 7.1 requires that, as for all multivariable SVF servomecha-

nism systems, there must be at least the same number of independent input variables as there
are independent output variables. Hence, for simplicity, we usually define the control system
such that p = r in equations (7.10). This condition also avoids the presence of zeros at z = 1
on the complex z-plane, which would otherwise cancel with the poles associated with the
integral-of-error states.
In a similar manner to the SISO case, the controllability conditions of Theorem 7.1 are

equivalent to the normal requirement that the following controllability matrix:

S1 = [
G FG F2G · · · Fp(n+1)+r (m−1)−1 G

]
(7.24)

has full rank p(n + 1)+ r (m − 1). Equation (7.24) takes a similar form to equation (3.79),
here revised to account for the order of the multivariable NMSS model.
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7.2 Multivariable PIP Control

The SVF control law associated with the NMSS model (7.19) takes the usual form:

u(k) = −Kx(k) (7.25)

where the control gain matrix:

K = [
L0 L1 · · · Ln−1 M1 · · · Mm−1 −KI

]
(7.26)

Expanding the terms in (7.25) yields:

u(k) = −L0y(k)− L1y(k − 1)− · · · − Ln−1y(k − n + 1)
−M1u(k − 1)− · · · − Mm−1u(k − m + 1)+ KI z(k)

(7.27)

The gainmatrixK is usually decomposed into the following output feedback and input feedback
polynomial matrices L(z−1) andM(z−1), respectively, together with the integral-of-error gain
matrix KI , where

L(z−1) = L0 + L1z−1 + · · · + Ln−1z−n+1

M(z−1) = M1z−1 + M2z−2 + · · · + Mm−1z−m+1 (7.28)

From equation (7.27) and equation (7.28), the control law becomes:

u(k) = −L(z−1)y(k)− M(z−1)u(k)+ KI z(k) (7.29)

The block diagram for such a PIP control system is illustrated by Figure 7.2, which
reveals the structural similarity between this approach and multivariable Proportional-Integral
(PI) and Proportional-Integral-Derivative (PID) design. As for the SISO case, the nega-
tive sign associated with KI in (7.26) is introduced to allow the integral states to take
on the same structural form as multivariable PI and PID control. In this manner, the PIP
approach can be interpreted as a logical extension of these standard industrial controllers,

yd(k) u(k) y(k)+

−

+

−

+

integral control
plant

input feedback

output feedback

kI(1 − z−1)−1

L(z−1)

G(z−1)

M(z−1)

−

Figure 7.2 Multivariable PIP control in feedback form
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−

+

−

+
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input feedback

ˆ

KI(1 − z−1)−1

L(z−1)

model

G(z−1)

G(z−1)

M(z−1)

−
plant

Figure 7.3 Multivariable PIP control in forward path form

with additional dynamic feedback and input compensators introduced automatically when
the process has second order or higher dynamics; or more than a single sample pure
time delay.
As we have already seen in the univariate case, the PIP formulation is inherently much

more flexible than conventional PI or PID designs, allowing for the implementation of well
known SVF control strategies such as closed-loop pole assignment, with complete (or partial)
decoupling control; or deterministic LQ optimal design. It also facilitates consideration of
other control strategies based on state space concepts, such as the risk averse designs proposed
byWhittle (1981), the related robust H∞ design (e.g. Green and Limebeer 1995) and predictive
control (e.g. Rossiter 2003). These approaches are readily extended from the SISO solutions
discussed in Chapter 6. Examples of multivariable NMSS based control in various contexts
are given by Dixon and Lees (1994), Lees et al. (1994), Young et al. (1994), Dixon et al.
(1997), Chotai et al. (1998), Taylor et al. (1998), Taylor and Shaban (2006) and Exadaktylos
and Taylor (2010), among others.
The multivariable PIP controller can be implemented in an alternative forward path form, as

illustrated in Figure 7.3 (cf. Figure 6.4). Here, the disturbance response and relative parametric
sensitivity of the two control structures are similar to the SISO case described in Chapter 6.
Finally, in practice PIP controllers are generally implemented in an equivalent incremental
form to avoid problems associated with integral wind-up. Again, these are simply the vector-
matrix form of the scalar examples discussed in section 6.2.
For example, the incremental feedback algorithm is as follows:

u(k) = u(k − 1)− L(z−1)�y(k)− M(z−1)�u(k)+ KI
(
yd (k)− y(k)

)
(7.30)

where � = 1− z−1 is the difference operator, and the correction:

{
ū, u

} →
{

if u(k) ≥ ū then u(k) = ū
if u(k) ≤ u then u(k) = u

(7.31)

in which ū and u are the specified constraints on the input control signals u(k).
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7.3 Optimal Design for Multivariable PIP Control

For optimal design, the aim is to design a feedback gain matrix K that minimises the following
LQ cost function:

J = 1

2

∞∑
k=0

x(k)T Qx(k)+ u(k)T Ru(k) (7.32)

Here Q = qT q is a positive semi-definite symmetric state weighting matrix and R = rT r is a
positive definite symmetric input weighting matrix, where q and r are the associated Choleski
factors. Equation (7.32) is the multivariable equivalent of the univariate cost function (5.75) in
Chapter 5. It is the standard formulation of the infinite time, LQ optimal servomechanism cost
function for a multivariable system. The optimal control law that minimises the performance
measure (7.32) is given by:

u(k) = − (
R + GT PG

)−1
GT PFx(k) (7.33)

where the matrix P is the steady-state solution of the following discrete-time, algebraic Riccati
equation (e.g. Kuo 1997):

P − FT PF + FT PG(R + GT PG)−1GT PF − Q = O (7.34)

Using equation (7.26), the optimal feedback gain matrix K is given by:

K = (
R + GT PG

)−1
GT PF = [

L0 L1 · · · Ln−1 M1 · · · Mm−1 −KI
]

(7.35)

It is important to note that, with a perfect model, the control law (7.33) guarantees the
asymptotic stability of the resulting closed-loop system, as long as the NMSS model is either
completely controllable or at least stabilisable. The closed-loop control system in this case is
given by:

x(k) =
(

F − G
(
R + GT PG

)−1
GT PF

)
x(k − 1)+ Dyd (k) (7.36)

and the associated closed-loop poles or eigenvalues can be obtained from the following
characteristic equation:

det
{
λI − F + G

(
R + GT PG

)−1
GT PF

}
= 0 (7.37)

It is clear that, due to the special structure of the non-minimal state vector, the elements of the
LQ weighting matrices have a particularly simple interpretation, since the diagonal elements
directly define the weights assigned to the measured input and output variables, together with
the integral-of-error states. In this regard, the following convention is sometimes employed
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for the choice of the multivariable weighting matrices Q and R (Taylor et al. 2000; Taylor and
Shaban 2006):

Q = diag[ȳ1 . . . ȳn ū1 . . . ūm−1 z̄] (7.38)

where ȳi (i = 1 . . . n), ūi (i = 1 . . . m − 1) and z̄ are defined as follows:

ȳi (i = 1 . . . n) =
[

yw
1

n
. . .

yw
p

n

]

ūi (i = 1 . . . m − 1) =
[

uw
1

m
. . .

uw
r

m

]

z̄ = [
zw
1 . . . zw

p

]
(7.39)

in which, yw
1 . . . yw

p , uw
1 . . . uw

r and zw
1 . . . zw

p are the user selected weighting parameters.
In this case, the corresponding input weighting matrix takes the following form:

R = diag

[
uw
1

m
. . .

uw
r

m

]
(7.40)

Although convoluted in description, the purpose of equation (7.38), equation (7.39) and
equation (7.40) is to simplify the choice of the LQ weightings, so that the designer selects only
a total weight associated with all the present and past values of each input and output signal,
together with each integral-of-error state. This formulation is the multivariable equivalent of
equation (5.78) and, in a similar manner, the ‘default’ weightings are obtained by setting each
of the user selected parameters to unity.

Example 7.2 Multivariable PIP-LQ control of a Two-Input, Two-Output System Con-
sider again the first order multivariable system described in Example 7.1, i.e. the TFM model
(7.2) and NMSS form (7.7). Since p = r = 2 and n = m = 1:

Q = diag
[
yw
1 yw

2 zw
1 zw

2

]
; R = diag

[
uw
1 uw

2

]
(7.41)

In this case, the default state weighting matrix Q and input weighting matrix R, are 4 × 4 and
2 × 2 identity matrices, respectively. Solving the LQ cost function (7.32), using (7.34) and
(7.35) yields:

K =
[−0.2079 0.7891 0.2347 −0.4838
0.3005 −0.2807 −0.3569 0.1469

]
(7.42)

Hence, the control gain matrices associated with Figure 7.2 or Figure 7.3 are:

L(z−1) = L0 =
[−0.2079 0.7891
0.3005 −0.2807

]
; KI =

[−0.2347 0.4838
0.3569 −0.1469

]
(7.43)
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Figure 7.4 Closed-loop response of the multivariable system in Example 7.2, comparing optimal
design using diagonal weights (thin traces) and algebraic decoupling by pole assignment (thick traces:
see Example 7.6)

The various closed-loop responses are illustrated by the thin traces in Figure 7.4, which shows
the response of y1(k) (Figure 7.4a) and y2(k) (Figure 7.4b) to a unit step change in yd1(k)
when yd2(k) = 0; and the response of y1(k) (Figure 7.4c) and y2(k) (Figure 7.4d) to a unit step
change in yd2(k) when yd1(k) = 0. In other words, the diagonal subplots show the response of
each output variable to a unit step in the associated command level, whilst the off-diagonals
show the cross-coupling dynamics.
For this example with these default weights, the closed-loop cross-coupling dynamics are

relatively small (10–15%), as shown by the off-diagonal subplots, noting the differing scales
on the axis. Of course, improved responses may be obtained by utilising either analytical
decoupling by pole assignment or numerical optimisation of the LQ weighting matrices, as
discussed later. For example, a pole assignment solution with analytical decoupling is shown
by the thick traces in Figure 7.4 (see Example 7.6 for details).

Example 7.3 Multivariable PIP-LQ control of an Unstable System Consider another
two-input, two-output system represented in TFM form (7.9):

G(z−1) =

⎡
⎢⎢⎣

z−1 + z−2

1− 2z−1 + z−2
z−1

1− z−1

2z−1

1− 2z−1
3z−1

1− 0.5z−1

⎤
⎥⎥⎦ (7.44)

where it will be noted that 1− 2z−1 + z−2 = (
1− z−1) (

1− z−1).
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For stability analysis, the TFM is usually expressed in terms of the forward shift operator (see
Example 2.3), as follows:

G(z) =

⎡
⎢⎢⎣

z + 1
z2 − 2z + 1

1

z − 1
2

z − 2
3

z − 0.5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

z + 1
(z − 1)(z − 1)

1

z − 1
2

z − 2
3

z − 0.5

⎤
⎥⎥⎦ (7.45)

Hence, the open-loop system is rather badly behaved with the TF models for the first output
variable consisting of a double integrator and a single integrator; while those associated
with the second output variable are both first order systems, one of which is unstable. To
develop the MFD form, we first determine common denominators for each output variable,
as follows:

y1(k) = z−1 + z−2

1− 2z−1 + z−2 u1(k)+
z−1 (

1− z−1)(
1− z−1) (

1− z−1)u2(k)

y2(k) = 2z−1 (
1− 0.5z−1)(

1− 2z−1) (
1− 0.5z−1)u1(k)+

3z−1 (
1− 2z−1)(

1− 2z−1) (
1− 0.5z−1)u2(k)

(7.46)

where y1(k), y2(k), u1(k) and u2(k) are the output and input variables associated with the TFM
model (7.44). Hence,

G(z−1) =

⎡
⎢⎢⎣

z−1 + z−2

1− 2z−1 + z−2
z−1 − z−2

1− 2z−1 + z−2

2z−1 − z−2

1− 2.5z−1 + z−2
3z−1 − 6z−2

1− 2.5z−1 + z−2

⎤
⎥⎥⎦ (7.47)

The system representation is next transformed into the following left MFD description:

A(z−1)
[

y1(k)
y2(k)

]
= B(z−1)

[
u1(k)
u2(k)

]
(7.48)

in which

A(z−1) =
[
1− 2z−1 + z−2 0

0 1− 2.5z−1 + z−2

]
=

[
1 0
0 1

]
+

[−2 0
0 −2.5

]
z−1 +

[
1 0
0 1

]
z−2

(7.49)

and

B(z−1) =
[

z−1 + z−2 z−1 − z−2

2z−1 − z−2 3z−1 − 6z−2

]
=

[
1 1
2 3

]
z−1 +

[
1 −1

−1 −6
]

z−2 (7.50)
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Finally, the NMSS model is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(k)
y2(k)

y1(k − 1)
y2(k − 1)
u1(k − 1)
u2(k − 1)

z1(k)
z2(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 0 1 −1 0 0
0 2.5 0 −1 −1 −6 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−2 0 1 0 −1 1 1 0
0 −2.5 0 1 1 6 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(k − 1)
y2(k − 1)
y1(k − 2)
y2(k − 2)
u1(k − 2)
u2(k − 2)
z1(k − 1)
z2(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2 3
0 0
0 0
1 0
0 1

−1 −1
−2 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
u1(k − 1)
u2(k − 1)

]
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
yd1(k)
yd2(k)

]

(7.51)

where z1(k) and z2(k) are the integral-of-error states (7.8). The weighting matrices in the
quadratic cost function are selected as follows:

Q = diag
[
0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1

]
;R = diag

[
0.5 0.5

]
(7.52)

These particular Q and R matrices were tuned by trial and error to obtain a desirable closed-
loop response, using (7.39) with yw

1 = 1, yw
2 = 1, uw

1 = 1, uw
2 = 1, zw

1 = 0.1 and zw
2 = 0.1. In

contrast to the default solution, we have simply reduced the integral-of-error weightings by a
factor of 10, in order to slow down the speed of response. Solving the LQ cost function (7.32),
using (7.34) and (7.35) yields:

K = [
L0 L1 M1 −KI

]
(7.53)

where the control gain matrices associated with Figure 7.2 or Figure 7.3 are:

L0 =
[−1.3568 3.6790
1.4314 −2.2330

]
; L1 =

[
1.0537 −1.831

−1.0324 1.1610

]

M1 =
[−2.8669 −9.8251
2.1934 5.9339

]
; KI =

[−0.0402 0.0397
0.0716 0.0392

] (7.54)

The resulting closed-loop step responses are shown in Figure 7.5a–d, with the corresponding
control input signals shown in Figure 7.6a–d.
As usual, (a) and (b) show the response to a unit step change in yd1(k) when yd2(k) = 0,

whilst (c) and (d) are for a unit step change in yd2(k) when yd1(k) = 0. Although the output
variables shown in Figure 7.5 are not completely decoupled, the closed-loop response of this
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Figure 7.5 Closed-loop output response of the multivariable system in Example 7.3
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Figure 7.6 Control input variables associated with Figure 7.5
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Figure 7.7 Closed-loop pole positions associated with Figure 7.5

open-loop unstable system is quite satisfactory, i.e. stable and with relatively small interaction
effects.
Finally, the closed-loop pole locations obtained from equation (7.37), including a complex

conjugate pair and two poles at the origin are: p1 = 0.0443, p2 = 0.4036, p3 = 0.7301,
p4 = 0.7320, p5 = p6 = 0, p7 = 0.2805+ 0.3553 j and p8 = 0.2805− 0.3553 j . These are
plotted on the complex z-plane in Figure 7.7.

Example 7.4 Multivariable PIP-LQ Control of a Coupled Drive System The coupled
drive system illustrated in Figure 7.8 is described, for example, by Dixon and Lees (1994),
Dixon (1996), Young et al. (1998) and Chotai et al. (1998). It is a two-input, two-output,

belt

motor 1 motor 2

pivot

tension

speed

Figure 7.8 Schematic diagram of the coupled drives apparatus
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Figure 7.9 Open-loop unit step response of the coupled drives model in Example 7.4

laboratory scale apparatus, analogous in its dynamic behaviour to systems employed in the
manufacturing of strip metal, wire, paper and textile fibres. The rig consists of three pulley
wheels connected by a single rubber band. Two of these wheels are in fixed positions and
connected to independently driven motors. The third is mounted upon a pivoting arm that, in
turn, is attached to the main body of the rig by a spring.
There is a high degree of dynamical coupling between the tension and the speed of the

rig, as shown in Figure 7.9a–d. Furthermore, the tension variable exhibits oscillatory dynamic
behaviour. The multivariable design problem is to independently control both the speed of the
third pulley and the tension in the spring, thus decoupling these two control channels.
Hence, in the equations that follow, y1(k) and y2(k) are the measured speed and tension,

respectively; whilst the control inputs u1(k) and u2(k) relate to the motor 1 and motor 2 applied
toque, respectively. These variables are all scaled for the purposes of the present example, so
no units are given; details of the instrumentation set-up are given by Dixon (1996).
Statistical analysis of data obtained from open-loop experiments with a sampling rate of 40

Hz (0.025 s), utilising the Simplified Refined Instrumental Variable (SRIV) algorithm described
in Chapter 8, yields the following TFM (7.9):

G(z−1) =

⎡
⎢⎢⎣

0.0602z−1

1− 0.8696z−1
0.0666z−1

1− 0.8696z−1

−0.1150z−1 + 0.2603z−2

1− 1.3077z−1 + 0.7374z−2
0.1385z−1 − 0.2610z−2

1− 1.3077z−1 + 0.7374z−2

⎤
⎥⎥⎦ (7.55)
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The TFM is converted into MFD form (7.11) with:

A(z−1) =
[
1 0
0 1

]
+

[−0.8696 0
0 −1.3077

]
z−1 +

[
0 0
0 0.7374

]
z−2 (7.56)

and

B(z1) =
[
0.0602 0.0666

−0.1150 0.1385

]
z−1 +

[
0 0

0.2603 −0.261
]

z−2 (7.57)

The associated multivariate NMSS model (7.19) is defined by:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8696 0 0 0 0 0 0 0
0 1.3077 0 −0.7374 0.2603 −0.2610 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−0.8696 0 0 0 0 0 1 0
0 −1.3077 0 0.7374 −0.2603 0.2610 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0602 0.0666
−0.1150 0.1385

0 0
0 0
1 0
0 1

−0.0602 −0.0666
0.1150 −0.1385

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.58)

Here, the non-minimal state vector is:

x(k) = [
y1(k) y2(k) y1(k − 1) y2(k − 1) u1(k − 1) u2(k − 1) z1(k) z2(k)

]T

(7.59)

where z1(k) and z2(k) are the integral-of-error states for the speed and tension signals, respec-
tively, defined in the same way as (7.8). Trial and error tuning, using both simulation and the
laboratory apparatus, yields the following weighting matrices for a satisfactory closed-loop
response:

Q = diag
[
0.25 0.25 0.25 0.25 0.5 0.5 0.01 0.01

]
R = diag

[
1.0 1.0

] (7.60)
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In this case, solving the LQ cost function (7.32), using (7.34) and (7.35) yields:

K =
[
0.3452 0.0636 0 −0.1936 0.0683 −0.0685 −0.0519 −0.0579
0.3990 −0.0249 0 0.1545 −0.0545 0.0547 −0.0600 0.0497

]

(7.61)

Consequently, the control gain matrices associated with Figure 7.2 or Figure 7.3 are:

L(z−1) =
[
0.3452 0.0636
0.3990 −0.0249

]
+

[
0 −0.1936
0 0.1545

]
z−1 (7.62)

M(z−1) =
[
0.0683 −0.0685

−0.0545 0.0547

]
z−1; KI =

[
0.0519 0.0579
0.0600 −0.0497

]
(7.63)

For this coupled drive system, both polynomial matrices A(z−1) and B(z−1) are left coprime,
hence condition (i) of Theorem 7.1 is fulfilled. However, the two row degrees of A(z−1) are
different so that condition (ii) is not satisfied. As a result, there is one uncontrollable mode at
the origin in the NMSS model. Furthermore, both terms in the output feedback polynomial
matrix (7.62) corresponding to y1(k − 1) are zero, i.e. although y1(k − 1) is introduced into
the NMSS representation, it does not appear in the optimal control law and hence this mode
has no effect upon the closed-loop response.
Nonetheless, laboratory experiments reveal that the PIP–LQ control system effectively

removes almost all the coupling between the output variables, as illustrated in Figure 7.10a–d
for simulated data. The subplots in Figure 7.10 are arranged in the same manner as for the
earlier examples. Similar results based on closed-loop experimental data are illustrated in the
references given earlier.

7.4 Multi-Objective Optimisation for PIP Control

In many cases, satisfactory closed-loop performance of the optimal PIP-LQ control system
is obtained by straightforward manual tuning of the diagonal weights, as discussed in Exam-
ple 7.2, Example 7.3 and Example 7.4 and, for univariate controllers, in Chapter 5 and Chapter
6. In more difficult situations, the PIP approach is ideal for incorporation within a multi-
objective optimisation framework. Here satisfactory compromise can be obtained between
conflicting objectives such as robustness, overshoot, settling times, rise times, control input
level and rate constraints, frequency domain band-pass and, for multivariable systems, decou-
pling control. Examples of such multi-objective optimisation can be found in Fleming and
Pashkevich (1986), Dixon and Pike (2006), Simm and Liu (2006), Wojsznis et al. (2007) and
Exadaktylos and Taylor (2010), among others. In the case of PIP-LQ design, this is achieved by
concurrent optimisation of the diagonal and off-diagonal elements of the weighting matrices
in the LQ cost function (Chotai et al. 1998).
Such multi-objective optimisation is a convenient and practical approach to mapping the

technical characteristics into elements of the LQ weighting matrices. It is straightforwardly
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Figure 7.10 Closed-loop output of the coupled drives model in Example 7.4

implemented by exploitation of goal-attainment functions in readily available numerical opti-
misation packages, such as MATLAB R©2. Here, our novel approach is to numerically optimise
the Cholesky factors of theweightingmatrices in order to satisfy the user-defined requirements,
while ensuring the positive definiteness of the LQ weighting matrices (Tych and Taylor 1996;
Chotai et al. 1998). The approach differs from related methods that involve direct optimisation
of the control gains themselves (e.g. Fleming and Pashkevitch 1986). The optimisation of
the LQ weights has the advantage of generating only guaranteed stable optimal solutions (in
the case of no model mismatch), thus allowing for better (smoother) defined optimisation
problems.

7.4.1 Goal Attainment

In order to meet the multiple objectives, a solution is sought within a subspace of controller
parameters which fulfil both the LQ optimality criteria (7.32) and the technical conditions,
such as multivariable decoupling. The goal attainment method involves expressing a set of
design objectives or goals F∗ associated with a set of objective functions F(f), where f is
a vector of optimisation parameters. The problem formulation permits the objectives to be
over- or under-achieved, allowing for very optimistic goals to be defined without leading to

2 MATLAB R©, TheMathWorks Inc., Natick, MA, USA. Various commercial and freely available tools address generic
optimisation problems. The examples in this book all utilise the fgoalattain function in the Optimisation Toolbox for
MATLAB R©.
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an infeasible problem. A relative weighting ω among the objectives is also specified, which
enables the designer to include every desirable objective but to assign a relative importance
to each. With a set of h goals, we define the goal, objective function and weighting vectors as
follows:

F∗ = [
F∗
1 F∗

2 · · · F∗
h

]
F(f) = [F1(f) F2(f) · · · Fh(f)]
ω = [ω1 ω2 · · · ωh]

(7.64)

The optimisation problem is then to minimise the real scalar variable λ such that:

F(f)− ωλ ≤ F∗ (7.65)

In the case that an element ωi of the weighting vector is zero, the associated objective is
intended as ‘hard’ and (if possible) the solution will explicitly satisfy the inequality above.
Depending on their nature, it can be necessary to constrain the optimisation parameters f
to a specified region (linear or nonlinear) imposed by process-related factors. In the present
context, therefore, f is a vector containing the elements of the lower triangular matrices q and
r, where q and r are the Choleski factors of the weighting matrices in the LQ cost function
(7.32).
In fact, it is not always necessary to exploit the full dimension of the weighting matrices.

In practice, excellent results are often achieved by simply optimising the combined diagonal
weighting parameters yw

1 . . . yw
p , uw

1 . . . uw
p and zw

1 . . . zw
p defined by equations (7.39).

However, in the case of multivariable decoupling, practical experience reveals that the off-
diagonals associated with the z(k) states can be very important. As discussed above, these
states are explicitly introduced into the PIP control system to ensure steady-state tracking
and, in the multivariable case, static decoupling. Example 7.5 shows how optimisation of the
diagonal elements of Q and R, together with the off-diagonals associated with the z(k) states
only, yields almost complete dynamic decoupling of a three-input, three-output system.

Example 7.5 PIP-LQ control of the Shell Heavy Oil Fractionator Simulation The Shell
Heavy Oil Fractionator simulation was introduced by Shell in 1987. It is a highly coupled
continuous-time linear model that illustrates some of the control problems associated with
a typical multivariable industrial plant (Sandoz et al. 2000). The full benchmark simulation,
with 7 outputs and 5 inputs, is based on 35 differential equations with various time delays.
However, four of the outputs are auxiliary variables that do not have to be controlled, while
two of the input variables are uncontrollable disturbances. Hence, in the simplest design terms
considered here, the system is limited to 3 control inputs and 3 measured outputs.
For convenience, the time units employed in this study are minutes. Clearly, however, any

consistent set of units may be applied to the simulation, which is illustrative of a typical
industrial plant, rather than a specific case. Experimentation reveals that a sampling rate of 10
units (minutes) yields a good compromise between simplicity, in the form of a relatively low
order state vector, while ensuring the ability to maintain tight control at all times. In order to
obtain suitable models for control system design, three open-loop experiments are carried out
on the continuous-time simulation, the responses of which are illustrated in Figure 7.11.
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Figure 7.11 Open-loop response of the Shell Heavy Oil Fractionator simulation model in Example 7.5

Each row in Figure 7.11 represents an open-loop simulation experiment, in which one of
the control input variables is a Pseudo Random Binary Signal (PRBS), while the other two
are held at zero and there are no disturbances. As usual, each column represents one output
variable. Figure 7.11 clearly illustrates the high degree of coupling between the variables,
confirmed by the similar steady-state gains and time constants for many of the input–output
pathways. Although PIP control will, of course, achieve steady-state decoupling of the outputs,
Figure 7.11 suggests that good transient decoupling will be a difficult objective to achieve.
Statistical analysis of simulation data for each input–output pathway, utilising the SRIV

algorithm developed in Chapter 8, yields discrete-time TF models that follow the simulated
response almost exactly, as would be expected since the simulation is a linear model with
no noise. Any time delays of the continuous-time model that are a non-integral number of
sampling intervals are approximated, where necessary, by the estimation of two numerator
parameters. These models are converted into the following MFD form based on equation
(7.11):

A1 =
⎡
⎣−1.6637 0 0

0 −2.4418 0
0 0 −1.9578

⎤
⎦ ; A2 =

⎡
⎣0.6918 0 0

0 1.9864 0
0 0 1.2373

⎤
⎦

A3 =
⎡
⎣0 0 0
0 −0.5383 0
0 0 −0.2487

⎤
⎦
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B1 =
⎡
⎣0 0 0
0 0.4173 0.5851
0 0 3.9022

⎤
⎦ ; B2 =

⎡
⎣0.1232 0 0.1789
0.9853 −0.2036 −0.0301
0.9993 0.8873 −5.9895

⎤
⎦ (7.66)

B3 =
⎡
⎣ 0.5079 0.2737 0.7375

−1.6010 −0.4722 −1.1641
−1.0715 −0.6107 2.2950

⎤
⎦ ; B4 =

⎡
⎣−0.5173 −0.2241 −0.7511

0.6493 0.2940 0.6520
0.1574 −0.2103 0

⎤
⎦

B5 =
⎡
⎣ 0 0 0

0 0 0
0.0495 0.1311 0

⎤
⎦

where the input and output vectors are:

y(k) = [y1(k) y2(k) y3(k)]
T ; u(k) = [u1(k) u2(k) u3(k)]

T (7.67)

Here, the various input and output signals, which represent pressures, temperatures and so on,
are defined by Sandoz et al. (2000). The NMSS model (7.19) and PIP-LQ controller (7.25) is
obtained in the usual manner, to determine a 3×24 matrix of feedback gains K. The response
of the PIP-LQ controller is illustrated in Figure 7.12, in which the thin traces are based on
identity matrices for both Q and R, while the thick traces show the optimised response. In
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Figure 7.12 Closed-loop response of the multivariable system in Example 7.5, comparing design using
diagonal unity weights (thin traces) and optimised weights (thick traces)
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a similar manner to the earlier simulation examples, the subplots along the diagonal of the
figure show the response to a unit step in the command input, with the off-diagonal subplots
illustrating the various cross-coupled responses.
In order to obtain the optimised traces in Figure 7.12, the objective functions F(f) in (7.65)

are based on the six cross-coupled responses: specifically, the sum of the absolute errors
between the command input and the output that occur in two of the variables, when there is a
step change in the third. The off-diagonal subplots in Figure 7.12 illustrate these cross-coupled
responses. In other words, to obtain the values of the goals at each iterative step, the command
response is determined for each output variable in turn, while the other two variables are
controlled to zero. The associated (desired) goals inF∗ are all set to zero. However, the desired
speed of response is also included in F(f), in the form of the rise time for each of the three
outputs. Without this balance, the decoupling objective could be achieved by simply ensuring
an unacceptably slow command response. The rise times are obtained from the diagonal
subplots in Figure 7.12. For the present example, the rise time goals in F∗ are specified to
be the same as those obtained with the initial PIP-LQ design based on identity weighting
matrices. Hence, three of nine optimisation goals are to maintain these rise times, while the
remainder are associated with the decoupling.
In this example, it is not necessary to employ the entire Q and R matrices in order to obtain

reasonable transient decoupling. In fact, the optimisation is based mainly on the diagonal
elements, together with the off-diagonals associated with the z(k) states. For completeness,
the numerical values of the optimised weights are quoted below. The diagonal elements
of R are:

diag(R) = [0.1187 0.0137 0.0471] (7.68)

while

diag(Q) = [2.1039, 2.8282, 1.7701, 2.1050, 2.8279, 1.7714, 2.1031, 2.8281,
1.7714, 0.1187, 0.0137, 0.0471, 0.1039, 0.0133, 0.0461, 0.1185,
0.0137, 0.0458, 0.1190, 0.0138, 0.0463, 0.2711, 5.2028, 1.3661]

(7.69)

and the 3× 3 submatrix of Q associated with the z(k) states is:

Q(22 : 24, 22 : 24) =
⎡
⎣0.2711 0.1102 0.0236
0.1102 5.2028 0.0606
0.0236 0.0606 1.3661

⎤
⎦ (7.70)

All the other elements of Q and R are set to zero (they are not optimised). It is clear from Fig-
ure 7.12 that the improved decoupling performance has been achieved without any significant
reduction in the speed of response. Note the different scales for the axis of the off-diagonal
cross-coupling subplots in this figure. Note also that Figure 7.12 is based on the discrete-time
model (7.66) but similar results are obtained using the original continuous-time system.
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7.5 Proportional-Integral-Plus Decoupling Control by Algebraic
Pole Assignment

As we have seen, an important advantage of model-based multivariable controllers over
multiple-loop SISO controllers is their ability to dynamically decouple the various con-
trol channels, exploiting information about the interactions contained in the control model.
Although the examples in the previous subsection show that the standard PIP-LQ con-
troller can often provide good closed-loop performance, with relatively low cross-coupling
terms, the present section considers how PIP control systems can be used for full dynamic
decoupling.
Since Morgan (1964) initiated research on the design and synthesis of non-interacting

control systems for multivariable systems, various techniques for decoupling a multivariable
system by SVF (e.g. Falb and Wolovich 1967; Gilbert 1969; Morse and Wonham 1970) and
output feedback (e.g. Wolovich 1975; Bayoumi and Duffield 1977; Argoun and van de Vegte
1980) have appeared in the literature. Similarly, numerous approaches have been presented
for analytical decoupling of PI and PID type controllers. Examples are given by Plummer and
Vaughan (1997), Wang et al. (2000, 2002), Gilbert et al. (2003), Liu and Zhang (2007) and
Liu et al. (2007).
In the remainder of this chapter, we formulate two different methods for non-minimal

SVF decoupling design. The first method uses a combined algebraic pole assignment and
decoupling algorithm to achieve complete decoupling, with the closed-loop response shaped
by the desired pole positions. The second method algebraically decouples the open-loop
system, so that multiple loop univariate PIP control systems can be employed to obtain the
required dynamics for each input–output channel.
From equation (7.19) and equation (7.25), the closed-loop system becomes:

x(k) = (F − GK) x(k − 1)+ Dyd (k) (7.71)

and the characteristic polynomial associated with this equation is given by:

det (λI − F + GK) (7.72)

The poles of the closed-loop system can be arbitrarily assigned by SVFprovided that the system
is completely controllable, i.e. the pair [F, G] is controllable (Theorem 7.1). Unfortunately,
assignment of the closed-loop poles of a multivariable system does not, in itself, uniquely
specify the feedback gain matrixK. Consequently, a number of algorithms have been proposed
for obviating this difficulty, e.g. the use of dyadic feedback (Gopinath 1971;Young andWillems
1972) or the Luenberger canonical form (Luenberger 1967; Munro 1979; Kailath 1980). The
details of the Luenberger canonical form for the multivariable NMSS discrete-time system are
developed byWang (1988) and Chotai et al. (1991). However, in this book, we consider instead
a special PIP pole assignment algorithm that takes advantage of the extra design freedom in
the multivariable case to achieve complete decoupling of the output variables.
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7.5.1 Decoupling Algorithm I

In order to develop this joint decoupling and pole assignment problem, the nominal PIP control
algorithm (7.25) is modified as follows:

u(k) = −Kx(k)− M0u(k) (7.73)

where M0 is an additional control gain matrix. Hence, using equation (7.29) and equation
(7.73), the modified control law is:

u(k) = −L(z−1)y(k)− Mou(k)− M(z−1)u(k)+ KI z(k) (7.74)

Alternatively,

u(k) = −L(z−1)y(k)− M∗(z−1)u(k)+ KI z(k) (7.75)

where L(z−1) is defined by (7.28),

M∗(z−1) = M0 + M1z
−1 + M2z

−2 + · · · + Mm−1z−m+1 (7.76)

and KI is the integral gain matrix, as usual. Using (7.12), (7.15) and (7.74), we can determine
the following relationship between y(k) and yd (k):

Ā(z−1)y(k) = B̄(z−1)yd (k) (7.77)

where

Ā(z−1) = �
{

A(z−1)+ B(z−1)
[
I + M∗(z−1)

]−1
L(z−1)

}
+ B(z−1)

[
I + M∗(z−1)

]−1
KI

B̄(z−1) = B(z−1)
[
I + M∗(z−1)

]−1
KI

(7.78)

with � = 1− z−1. Consequently, the combined decoupling and pole assignment algorithm
can be obtained if the matrices L(z−1),M∗(z−1) and KI are chosen such that:

(i) B̄(z−1) is diagonal and non-singular; and
(ii) Ā(z−1) is diagonal and its zeros (i.e. the closed-loop poles) are located at desired positions

in the complex z-plane.

If B−1(z−1) exists and B1 is not a null matrix, then we can chooseM∗(z−1) such that:

B(z−1)
(
I + M∗(z−1)

)−1 = Iz−1 (7.79)

where I is the identity matrix. Furthermore, Ā(z−1) in equations (7.78) can be written as:

Ā(z−1) = �
(
A(z−1)+ z−1L(z−1)

) + z−1KI (7.80)
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where

Ā(z−1) = I + Ā1z−1 + · · · + Ān+1z−(n+1) (7.81)

is the desired closed-loop polynomial matrix, in which Āi (i = 1, 2, . . . , n + 1) are diagonal
matrices. In this case, L(z−1) and KI can be selected such that (7.80) is satisfied, to yield the
following combined decoupling and pole assignment algorithm:

M0 = B1 − I

Mi = Bi+1 i = 1, 2, . . . , m − 1

Li = −
n+1∑

j=i+2
Ā j − Ai+1 i = 0, 1, . . . , n − 1

KI = I +
n+1∑
j=1

Ā j

(7.82)

It is important to note, however, that this approach has limitations: in particular, the transmis-
sion poles and zeros of the system are cancelled by the controller, so that it is not applicable
to systems with unstable poles or non-minimum phase zeros.

7.5.2 Implementation Form

In structural terms, the decoupling algorithm is particularly straightforward to implement by
incorporating the new M0 component into the nominal PIP gain matrix K. Here, K is defined
by equation (7.26), with the various control gain matrices obtained using (7.82). In this case,
rearranging from the modified control law (7.73) yields:

u(k) = − (I + M0)
−1 Kx(k) = −K̄x(k) (7.83)

where K̄ is the combined decoupling and pole assignment control gain matrix, now in a form
that can be implemented using standard PIP methods. In other words, equation (7.83) takes
the same form as the PIP state variable feedback algorithm (7.25), and hence can also be
implemented in using any of the other control structures derived from (7.25), including the
incremental form (7.30), Figure 7.2 or Figure 7.3.

Example 7.6 Pole Assignment Decoupling of a Two-Input, Two-Output System Consider
again the multivariable system from Example 7.1, represented by the TFM (7.2), which can
be factorised into the MFD form shown by equation (7.5) and equation (7.6). It is clear
from G(z−1) and the open-loop unit step responses illustrated in Figure 7.1, that the natural
cross-coupling effects are large. Since B−1(z−1) exists and there are no unstable poles or
non-minimum phase zeros, we can use the algorithm above for full decoupling and pole
assignment. For example, define the desired closed-loop diagonal polynomial matrix (7.81):

Ā(z−1) =
[
1 0
0 1

]
+

[−0.5 0
0 −0.5

]
z−1 (7.84)
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Here, we require both channels to have the same, first order response. In fact, (7.84) yields
a PIP pole assignment control system with a similar speed of response as the PIP-LQ design
discussed in Example 7.2, as illustrated by the diagonal subplots of Figure 7.4.
The decoupling and pole assignment algorithm (7.82) yields:

M0 = B1 − I =
[
0.9 2
1.1 1

]
−

[
1 0
0 1

]
=

[−0.1 2
1.1 0

]

L0 = −A1 =
[
0.5 0
0 0.8

]
; KI = I + Ā1 =

[
0.5 0
0 0.5

] (7.85)

Hence, the control law (7.83) becomes:

u(k) = − (I + M0)
−1 [L0 − KI ] x(k) = −

[
0.9 2
1.1 1

]−1 [
0.5 0 −0.5 0
0 0.8 0 −0.5

]
x(k)

(7.86)

Resolving (7.86) yields:

u(k) = −
[−0.3846 1.2308 0.3846 −0.7692
0.4231 −0.5538 −0.4231 0.3462

]
x(k) (7.87)

The earlier Figure 7.4 compares the response of the combined decoupling and pole assignment
algorithm (7.87) with the PIP-LQ design (7.42) discussed previously. As noted above, both
approaches yield a similar damped first order response to a unit step in the command level,
but only (7.87) achieves complete decoupling control (shown by the thick traces).

7.5.3 Decoupling Algorithm II

In this second approach to analytic decoupling design, we assume that A(z−1) is a diagonal
polynomial matrix (see section 3.3.3) and that there exists an open-loop, feed-forward com-
pensation polynomial matrix Kc(z−1), such that P(z−1) = B(z−1)Kc(z−1) is also diagonal. The
necessary and sufficient conditions for the minimal order of Kc(z−1) are given by Teng and
Ledwich (1992). Since A(z−1) is diagonal, if Kc(z−1) can be found such that P(z−1) is also
diagonal, then the plant outputs of each channel are affected only by the input associated with
the same channel, i.e. the open-loop system is decoupled. For closed-loop pole assignment
design, we can then utilise the standard SISO algorithm of Chapter 5, to obtain the required
dynamics for each channel, using either pole assignment or optimal LQ control as usual. In
contrast to Algorithm I, this approach can be used even when det(B(z−1)) is zero; and the
design method can be applied to stable, unstable or non-minimum phase systems.

7.6 Concluding Remarks

This chapter has generalised the PIP control system to address multivariable systems. We
have seen how, as in the univariate case, the NMSS setting of the control problem allows for
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the use of full SVF, involving only the measured input and output variables and their past
values, so avoiding the need for an explicit state reconstruction filter or observer. The resulting
multivariable PIP control system is designed on the basis of either pole assignment or LQ
optimisation.
In the pole assignment case, the PIP control law can be defined so as to exactly dynamically

decouple the various control channels. Of course, this result assumes an ideal model with
no mismatch. We have also introduced a multi-objective optimisation procedure for optimal
PIP-LQ design, in which the weighting matrices in the quadratic cost function are tuned by
numerical goal attainment. This latter approach to dynamic decoupling has the advantage
that it is more generally applicable and less sensitive to both modelling errors and stochastic
disturbances than the analytical pole assignment solution. Although utilised here for multivari-
able decoupling, the approach is generic in nature and enables the designer to simultaneously
meet other objectives, such as the combination of rapid response, smooth input activation
and robustness. Furthermore, the approach can be applied to both multivariable (as here) and
univariate (see e.g. Taylor et al. 2001) systems.
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8
Data-Based Identification
and Estimation of Transfer
Function Models

So far in this book, it has been assumed that the model of the system is available to the
control systems designer. Sometimes such a model may be in the form of a simulation model
that has been based on a mechanistic analysis of the system and has been ‘calibrated’ in
some manner. However, in the context of True Digital Control (TDC) design, as formulated
in this book, it seems more appropriate if the model has been obtained on the basis of
experimental or monitored, digitally sampled data obtained directly from the system. In this
chapter, therefore, we consider such data-based modelling methods and illustrate, mainly by
means of simulation examples, how they are able to provide stochastic models that are well
suited to the control system design methods described in previous chapters. They also indicate
how these stochasticmodels allow for the use ofMonte Carlo Simulation (MCS) analysis based
on the estimated uncertainty in the model parameters, as quantified by the model estimation
procedures. Previous chapters have demonstrated how MCS provides a useful means for
assessing the robustness of the TDC designs to such uncertainty.
In particular, the chapter provides an introduction to the en bloc and recursive algorithms that

are used in the previous chapters of the book for estimating parameters in Transfer Function
(TF) models of stochastic dynamic systems. Although there are numerous approaches in the
literature (a brief overview is given in section 8.2), the present book initially focuses on three
algorithms for the estimation of Single-Input, Single-Output (SISO) discrete-time TF models,
namely the Recursive Least Squares (RLS) (I), standard instrumental variable (II) and optimal
Refined Instrumental Variable (RIV; III) algorithms, as considered in section 8.1, section 8.2
and section 8.3 respectively1.

1 The en bloc versions of each algorithm are denoted Ie, IIe and IIIe and a special ‘symmetric’ version of the latter
is called IIIs (see later).

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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The present authors have utilised RIV estimation for most of the practical Proportional-
Integral-Plus (PIP) control applications cited in earlier chapters, hence important variations
of this algorithm, in the context of TDC design, are discussed in section 8.3. A general
procedure for model structure identification is suggested and illustrated by several case studies
(section 8.4). The algorithms are extended to the multivariable (section 8.5), continuous-time
(section 8.6) and closed-loop (section 8.7) situation. All these algorithms are described in a
tutorial style that avoids unnecessary theoretical rigour and is intended to provide the reader
with a basic understanding of their development and application.
Finally, the main identification and estimation algorithms considered in the chapter are

available as computational routines in either the authors’ CAPTAIN Toolbox (Appendix G;
Taylor et al. 2007a; Young 2011a) or the MATLAB R© System Identification Toolbox, both
available for use in the MATLAB R©2 software environment.

8.1 Linear Least Squares, ARX and Finite Impulse Response Models

Let us consider the following, slightly modified version of the deterministic, discrete-time
model (2.11) introduced in Chapter 2. In the more general modelling context considered
here, the model may contain a pure time-delay effect of δ ≥ 0 samples3. Depending upon the
convention that is preferred by the analyst, the TF form of the model is:

y(k) = bδz−δ + bδ+1z−(δ+1) + bδ+2z−(δ+2) + · · · + bδ+m z−(δ+m)

1+ a1z−1 + a2z−2 + · · · + anz−n
u(k) = B(z−1)

A(z−1)
u(k) (8.1a)

or

y(k) = b0 + b1z−1 + b2z−2 + · · · + bm z−m

1+ a1z−1 + a2z−2 + · · · + anz−n
u(k − δ) = B(z−1)

A(z−1)
u(k − δ) (8.1b)

Here, the numerator polynomial B(z−1) has been modified from that shown in (2.13) so that
it includes the explicit presence of a pure time delay of δ samples. Also, when δ = 0, this
definition allows the input to affect the output instantaneously through the addition of the b0
coefficient. Note that the structure of the model (8.1) can be characterised by the triad [n m δ],
which defines the orders of the polynomials and the size of the time delay. However, since the
number of parameters in the numerator is m + 1, the modified triad [n (m + 1) δ ] is used
in the CAPTAIN Toolbox and the examples below.
It is easy to see that the discrete-time equation associated with (8.1b) takes the form:

y(k) = −a1y(k − 1)− a2y(k − 2)− · · · − an y(k − n)

+ b0u(k − δ)+ · · · + bmu(k − δ − m) (8.2)

2 MATLAB R©, The MathWorks Inc., Natick, MA, USA.
3 Earlier chapters have denoted the sampled time delay by τ . In this chapter τ will be reserved for the time delay of
continuous-time models, such as equation (8.100); for discrete-time systems, as here, we will instead use δ (as also
used by many of the publications on system identification cited in this chapter).
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which can be written concisely in the following vector inner product terms:

y(k) = φT (k) ρ (8.3)

where

φT (k) = [−y(k − 1),−y(k − 2), . . . ,−y(k − n), u(k − δ), u(k − δ − 1), . . . ,
u(k − δ − m)]

ρ = [a1 a2 . . . an b0 b1 . . . bm]T
(8.4)

Alternatively, for the model (8.1a), ρ = [a1 a2 . . . an bδ bδ+1 . . . bδ+m]T .
In statistical identification and estimation, it is necessary to assume that the data

{y(k), u(k)}, k = 1, 2, . . . , N , are corrupted in some manner by errors or noise. The sim-
plest such assumption in this case is to add a noise variable ξ (k) to equation (8.3), i.e.

y(k) = φT (k) ρ + ξ (k) (8.5a)

where ξ (k) represents all those components in the measured output y(k) that are not caused by
the input excitation u(k): for example, the effects ofmeasurement noise, unmeasured stochastic
inputs and modelling errors. In TF terms, the reader can easily verify that this model is:

y(k) = B(z−1)
A(z−1)

u(k − δ)+ 1

A(z−1)
ξ (k) (8.5b)

which exposes its rather special form, with the noise ξ (k) being filtered by the TF defined by
1/A(z−1). It is not the same, for example, as the more obvious (and, as we shall see, more
practically useful) general TF model:

y(k) = B(z−1)
A(z−1)

u(k − δ)+ ξ (k) (8.5c)

We might expect ξ (k) in the above models to have quite general stochastic properties that
require a similarly general stochastic representation and this will be considered later. To begin
with, however, let us make a simplifying assumption and consider the model (8.5a) where
ξ (k) = e(k), in which e(k) is a simple ‘white noise’ process:

E{e(k)} = 0; E{e( j)e(k)} = σ 2δ jk (8.6)

where E is the expectation operator and δ jk is the Kronecker delta function:

δ jk =
{
1 if j = k
0 if j �= k

(8.7)

In other words, e(k) is a sequence of uncorrelated random variables with zero mean value and
variance σ 2. In this special case, the model (8.5a) takes the special form:

y(k) = φT (k) ρ + e(k) (8.8a)
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Note, for later reference, that this equation could be written in the operator form:

A(z−1)y(k) = B(z−1)u(k − δ)+ e(k) (8.8b)

This is normally referred to as the Auto Regressive eXogenous variable (ARX) model because
it is in the form of a linear regression relationship, in which the output y(k) depends upon
past values of itself (autoregressive terms), as well as present and past values of the input or
‘exogenous’ variable u(k).

8.1.1 En bloc LLS Estimation

The assumption that the stochastic noise ξ (k) in (8.5a) is the simple white noise process e(k)
in (8.6) is important, albeit rather restrictive, because it considerably simplifies the problem of
estimating the parameter vector ρ that characterises the model (8.8a). In particular, the Linear
Least Squares (LLS) estimate ρ̂(N ) of the vector ρ, based on the N data samples, is very
easy to compute by minimisation of the least squares cost function in the ‘prediction error’
e(k), i.e.

ρ̂(N ) = argmin
ρ

J2(ρ) J2(ρ) =
N∑

k=1
[e(k)]2 =

N∑
k=1
[y(k)− φT (k)ρ]2 (8.9)

The minimum is obtained in the usual manner by partially differentiating with respect to each
element of the estimated parameter vector ρ, and then setting these derivatives to zero. This
analysis, using matrix algebra (see Appendix A), is as follows:

∇ρ(J2 ) = ∂

∂ρ

{
N∑

k=1

[
y(k)− φT (k)ρ

]2 }
= − 2

N∑
k=1

φ(k)
[
y(k)− φT (k)ρ

]
(8.10)

so that

1

2
∇ρ(J2 ) = −

N∑
k=1

φ(k)y(k) +
[

N∑
k=1

φ(k)φT (k)

]
ρ = 0 (8.11a)

or

[
N∑

k=1
φ(k)φT (k)

]
ρ =

N∑
k=1

φ(k)y(k) (8.11b)

where ∇ρ(J2 ) denotes the gradient of J2 with respect to all the elements of ρ.
The vector-matrix equation (8.11b) represents n + m + 1 equations in the n + m + 1 ele-

ments of the parameter estimate vector ρ. These equations are usually referred to as the
‘normal equations’ of LLS analysis. Consequently, provided that the matrix

∑
φ(k)φT (k) is
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non-singular and can be inverted, the en bloc LLS estimate ρ̂(N ) based on the N data samples
is given by the solution of these equations, which can be written concisely as:

ρ̂(N ) = P(N )b(N ) (i) le

where the (n + m + 1)× (n + m + 1) matrix P(N ) and the (n + m + 1)× 1 vector b(N ) are
defined as follows:

P(N ) =
[

N∑
i=1

φ(i)φT (i)

]−1

; b(N ) =
N∑

i=1
φ(i)y(i) (ii) Ie

At any intermediate sampling instant k, the estimate ρ̂(k) is given by:

ρ̂(k) = P(k)b(k) (8.12)

This is referred to in the next section, which considers the recursive or sequentially updated
version of LLS estimation.

8.1.2 Recursive LLS Estimation

In model-based automatic control system design of the kind discussed in this book, it is
sometimes useful to be able to ‘tune’ or ‘adapt’ the design online and in real-time. One way
of doing this is to estimate the parameters on the basis of data being received online from
sensors, and then use these updated parameters to update the control system gains based on
the PIP design algorithm. This can be achieved by developing a recursive version of the en
bloc solution (Ie). Here, the estimate ρ̂(k) at the kth sampling instant is updated on the basis
of (i) the previous estimate ρ̂(k − 1) at the previous (k − 1)th sampling instant and (ii) the
error between the predicted model output φT (k)ρ̂(k − 1) and the measured output y(k), i.e.
the ‘recursive residual’ or ‘model prediction error’:

ε(k) = y(k)− φT (k)ρ̂(k − 1)

This is often called the ‘innovation’ error because it provides the new (latest) information on
the quality of the estimates. In order to develop this Recursive Least Squares (RLS) estimation
algorithm, note from equations (Ie) that, after k < N sampling intervals:

P−1(k) = P−1(k − 1)+ φ(k)φT (k) (8.13)

and

b(k) = b(k − 1)+ φ(k)y(k) (8.14)

Now pre-multiply equation (8.13) by P(k) and post-multiply by P(k − 1) to give:

P(k − 1) = P(k)+ P(k)φ(k)φT (k)P(k − 1) (8.15)
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Post multiplying by φ(k) then yields:

P(k − 1)φ(k) = P(k)φ(k)+ P(k)φ(k)φT (k)P(k − 1)φ(k)
= P(k)φ(k)[1+ φT (k)P(k − 1)φ(k)] (8.16)

Post-multiplying by [1 + φT (k)P(k − 1)φ(k)]−1φT (k)P(k − 1):

P(k − 1)φ(k)[1 + φT (k)P(k − 1)φ(k)]−1φT (k)P(k − 1) = P(k)φ(k)φT (k)P(k − 1)
(8.17)

Hence, we obtain finally:

P(k) = P(k − 1)− P(k − 1)φ(k)[1+ φT (k)P(k − 1)φ(k)]−1φT (k)P(k − 1) (8.18)

which is termed the ‘matrix inversion lemma’ (Bodewig 1956;Ho1962) since, at each sampling
instant, it provides the inverse of the accumulated ‘cross-product’ matrix, i.e.

P(k) =
[

k∑
i=1

φ(i)φT (i)

]−1

(8.19)

By now substituting in equation (8.12) from (8.18) and (8.14), it is a simple matter to obtain
the equivalent recursive equation for ρ̂(k), i.e.

ρ̂(k) = {P(k − 1)− P(k − 1)φ(k)[1 + φT (k)P(k − 1)φ(k)]−1φT (k)P(k − 1)}
{b(k − 1)+ φ(k)y(k)}

= ρ̂(k − 1)− P(k − 1)φ(k)[1+ φT (k)P(k − 1)φ(k)]−1φT (k)ρ̂(k − 1)
+ P(k − 1)φ(k)y(k)− P(k − 1)φ(k)[1 + φT (k)P(k − 1)φ(k)]−1φT (k)
P(k − 1)φ(k)y(k)

So that finally:

ρ̂(k) = ρ̂(k − 1)+ g(k)[y(k)− φT (k)ρ̂(k − 1)] (8.20a)

where

g(k) = P(k − 1)φ(k)[1+ φT (k)P(k − 1)φ(k)]−1

An alternative expression for g(k) can be obtained straightforwardly by manipulation, i.e.

g(k) = [P(k)P−1(k)]P(k − 1)φ(k)[1+ φT (k)P(k − 1)φ(k)]−1
= P(k)[P−1(k − 1)+ φ(k)φT (k)]P(k − 1)φ(k)[1 + φT (k)P(k − 1)φ(k)]−1
= P(k)[φ(k)+ φ(k)φT (k)P(k − 1)φ(k)][1+ φT (k)P(k − 1)φ(k)]−1
= P(k)φ(k)[1+ φT (k)P(k − 1)φ(k)][1 + φT (k)P(k − 1)φ(k)]−1 = P(k)φ(k)
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Thus an alternative form of the recursion (8.20a) is the following:

ρ̂(k) = ρ̂(k − 1) + P(k)[φ(k)y(k)− φ(k)φT (k)ρ̂(k − 1) ] (8.20b)

This second form exposes nicely that the RLS algorithm is a ‘gradient’ algorithm, since the
expression in the square brackets will be recognised as being proportional to the gradient of the
instantaneous squared error (y(k)− φT (k) ρ̂)2. However, equation (8.20a) is usually preferred
in computational terms.
To summarise, the RLS algorithm consists of equation (8.20a) and equation (8.18), i.e.

ρ̂(k) = ρ̂(k − 1)+ P(k − 1)φ(k)[1+ φT (k)P(k − 1)φ(k)]−1
[y(k)− φT (k)ρ̂(k − 1)]−1 (i)

I
P(k) = P(k − 1)− P(k − 1)φ(k)[1 + φT (k)P(k − 1)φ(k)]−1φT (k)P(k − 1) (ii)

Since the algorithm I is recursive, it is necessary to specify starting values ρ̂(0) and P(0) for the
vector ρ̂(k) and the matrix P(k), respectively. This presents no real problem, however, since
it can be shown that the criterion function–parameter hypersurface is unimodal and that an
arbitrary finite ρ̂(0) [say ρ̂(0) = 0] coupled with a P(0) having large diagonal elements (say
106 in general) will yield convergence and performance commensurate with the stage-wise
solution of the same problem (Lee 1964).

8.1.3 Statistical Properties of the RLS Algorithm

As pointed out by Ho (1962), P(k) is a strictly decreasing function of k and this results in
the matrix having a smoothing effect on the innovation error ε(k) = y(k)− φT (k)ρ̂(k − 1)
in the algorithm I(i). At the beginning of the RLS estimation, when the P(k) matrix is still
quite large, it takes a lot of notice of the innovation error, since this is most likely to be due
to parameter estimation error. However, as k increases and P(k) becomes much smaller, it is
more likely that the error is due to the noise e(k). Note that ε(k) is different from the final a
posteriori model residuals or least squares residuals:

ê(k) = y(k)− φT (k)ρ̂(N ) (8.21)

obtained in the same manner but with φ̂(k − 1) replaced by the final en bloc estimate ρ̂(N ).
It is also interesting to note that the instantaneous gradient of the squared innovation error

can be written in the form:

1

2
∇ρ̂[ê

2(k)] = φ(k){y(k)− φT (k)ρ̂(k − 1)} = ∇ρ̂[ê(k)]ê(k) (8.22)

revealing that this gradient measure can also be considered as the product of the derivative
∇ρ̂[ê(k)] and the innovation error ê(k). As a result, and noting equation (8.20b), the recursive
estimation equation I(i) can be written in the form:

ρ̂(k) = ρ̂(k − 1)+ P(k)∇ρ̂[ê(k)]ê(k) (8.23)
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This is a more general form of the recursive algorithm, one that has relevance to situations
where the error variable ê(k) is not, as here, a simple linear function of the unknown parameters.
The algorithm I provides some considerable advantage over the stage-wise solution of

equation (8.12). In addition to the now convenient recursive form, which provides for a
minimum of computer storage, note that the term [1+ φT (k)P(k − 1)φ(k)] is simply a scalar
quantity. As a result, there is no requirement for direct matrix inversion, even though the
repeated, stage-wise solution of the equivalent classical en bloc solution (8.12) entails inverting
an (m + n + 1)×(m + n + 1) matrix for each solution update.
Finally, it is beneficial to introduce the additional statistical assumption that the white

noise e(k) has a Gaussian normal probability distribution function. This has the advantage
that it is completely defined by the first two moments: the mean value (here zero) and the
variance σ 2. It can then be shown that the estimate ρ̂(k) of ρ(k), whether obtained by en
bloc or recursive estimation, is asymptotically unbiased, consistent and statistically efficient
(minimum variance). This means that, in statistical terms, the asymptotically unbiased nature
of the estimate can be written as:

p. lim
k→N

ρ̂(k) = ρ or p. lim
k→N

ρ̃(k) = 0 (8.24)

where ρ̃ = ρ̂ − ρ is the estimation error and p. lim denotes the ‘probability-in-the-limit’, in
this case as the sample size N → ∞. Young (2011a) provides the mathematical background
and offers a fuller discussion of these results. Put simply, however, they show that the recursive
estimate ρ̂(k) becomes more accurate (in the sense that the probability of it being close to the
true value ρ increases) as the sample size k increases; and that for large k, it has minimum
variance. Moreover, because the sole source of the stochasticity in the model, e(k), has a
normal probability density function, it is straightforward to show that the LLS estimate can be
considered as a multivariate normal probability density function. In this case its first moment,
the vector mean, is defined by the estimated parameter vector ρ̂(k) and its second moment,
the covariance matrix, is conveniently given by σ̂ 2P(k). Here P(k) is the matrix computed in
the above estimation algorithms and σ̂ 2 is an estimate of the noise variance σ 2. These results
will be considered in more detail later but we will first make use of them in Example 8.1 and
Example 8.2.

Example 8.1 Estimation of a Simple ARX Model Consider the following simple ARX
model:

y(k) = −a1y(k − 1)+ b1u(k − 1)+ e(k) k = 1, 2, . . . , 1000 (8.25)

with a1 = −0.5 and b1 = 0.5. Noting the triad [n (m + 1) δ ] defined above, this will be
referred to as the ARX [1 1 1] model (i.e. n = δ = 1 and m = 0). For the purpose of this
example, the input u(k) is a Pseudo Random Binary Signal (PRBS) with switching interval of
5 samples and an amplitude 2.0; and e(k) is a zero mean white noise process with variance
σ 2 = 0.3, giving a Noise–Signal Ratio (NSR) based on the Standard Deviations (SDs) of
the e(k) and y(k) of 0.52 (52% noise by SD4), i.e. NSRy = std{e(k)}/std{y(k)} = 0.52. A
typical section of the input–output data is shown in Figure 8.1 where the dashed line is the

4 Quoting the noise level in decibels is often the tradition in the control literature but we feel that the NSR defined in
terms of the SDs is a more transparent and physically obvious definition.
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Figure 8.1 Representative section of the input–output data for the ARX model in Example 8.1

‘noise-free’ output obtained by generating y(k) from equation (8.25) with e(k) zero for all k.
The NSRx = std{e(k)}/std{x(k)} based on this noise-free signal x(k) is 0.61. The noisy output
shown as a dash–dot line [referred to as ‘noisy (TF)’ in Figure 8.1] is discussed in Example
8.2. The ARX results obtained by LLS using arx in the MATLAB R© System Identification
Toolbox, or by using MATLAB R© directly to compute the estimates, are as follows:

â1 = −0.513 (0.019); b̂1 = 0.484 (0.019) (8.26)

where the figures in parentheses are the estimated Standard Errors (SEs) computed from the
square root of the diagonal elements of the estimated covariance matrix σ 2P(k), as supplied
by the algorithm.
This model has a coefficient of determination R2T = 0.63. As discussed more fully in section

8.4, R2T is a statisticalmeasure of howwell the simulatedmodel explains the data: if the variance
of the simulated model residuals is low compared with the variance of the data, then R2T tends
towards unity. In this case, the result R2T = 0.63 is based on the error between the measured
output y(k) and the ARX model output x̂(k), where

x̂(k) = −â1 x̂(k − 1)+ b̂1u(k − 1) or x̂(k) = b̂1
1+ â1z−1 u(k − 1) (8.27)

However, when evaluated in relation to the noise-free output x(k), R2T = 0.999; i.e. 99.9%
of the noise-free output is explained by the ARX model. In other words, the ARX procedure
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has estimated the parameters very well and so it is able to obtain a very good estimate of the
underlying dynamics and output of the system.

Example 8.2 Estimation of a Simple TF Model As already emphasised, the LLS estimation
of theARXmodel is quite restrictive in practice. In order to illustrate these limitations, let us see
what LLS estimation yields if the model (8.25) is modified slightly to the following TF form:

y(k) = b1
1+ a1z−1 u(k − 1)+ e(k); k = 1, 2, . . . , 1000 (8.28a)

still with a1 = −0.5 and b1 = 0.5. Note that this model can be written in the alternative,
decomposed form:

System equation: x(k) = b1
1+ a1z−1 u(k − 1)

Output equation: y(k) = x(k)+ e(k)
(8.28b)

and it results in the following discrete-time difference equation form:

y(k) = −a1y(k − 1)+ b1u(k − 1)+ e(k)+ a1e(k − 1) (8.28c)

which reveals that the main change in the data generation process is the inclusion of an
additional noise term a1e(k − 1) that is dependent on the model parameter a1. As we shall
see, although relatively small at first sight, this change has a profound and deleterious effect
on the ARX estimates.
The output of the model (8.28) with the same noise as used in Example 8.1, is shown as the

dash-dot line in Figure 8.1. Despite the apparently very small change in the data generation
process and the input–output data, the ARX estimates are now found to be very poor, with:

â1 = −0.307 (0.022) ; b̂1 = 0.655 (0.022) (8.29)

Not only are the estimates badly biased away from their true values but the estimated SEs
are much too optimistic: in other words, the modeller seeing these results would be very
misled about the nature of the system. The reason for this bias is discussed more fully in
section 8.2 when the estimation of more general TF models is considered. The poor quality
of these results is also illustrated in Figure 8.2. Here, Figure 8.2a compares the output of the
first order ARX estimated model [ARX(1): solid line] with the noise-free output x(k) (dashed
trace), as obtained from (8.28b), over a small, step response portion of the data; while Figure
8.2b shows the associated model error [for the model (8.29), these errors are shown as the
solid line: the other lines are explained later].
It is possible to obtain better results with the above example using ARX estimation, but

only at the cost of estimating a higher order model, i.e. by using LLS methods to estimate an
ARX model that is higher order than the [1 1 1] model used to generate the input–output data!
Åström and Eykhoff (1971) refer to this approach as ‘repeated least squares’ but a better name
is ‘high order ARX modelling’. Here, ARX models of increasing order are estimated against
the data, each time checking on the significance of the result in some manner. Åström and
Eykhoff suggested evaluating the significance of the decrease in the sum of the squares using a
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Figure 8.2 Comparison of model outputs with the noise-free output from samples 40 to 55, showing
the limitations of the ARX estimated model in Example 8.2

Student t-test (see e.g. Kendall and Stuart 1961). An alternative approach, exploited below, is
to utilise AutoCorrelation Function (ACF) and Partial AutoCorrelation Function (PACF) tests
(e.g. Box and Jenkins 1970), as well as the Akaike Information Criterion (AIC; Akaike 1974).
Given the ARX model, it is clear that the model residuals ê(k) provide an estimate of the

white noise input e(k) and so should possess similar statistical characteristics, as specified in
equation (8.6) and equation (8.7). These require that ê(k) should have no significant autocorre-
lation at any lag. The ACF and PACF of ê(k) obtained from the above analysis, using the model
structure ARX [1 1 1] show that the series represents ‘coloured’, rather than white noise. In
particular, there is significant lag 1 autocorrelation; and significant partial autocorrelation up
to lag 3, the latter suggesting an autoregressive model of at least order 3, i.e. AR(3) is required
to model ê(k) (Box and Jenkins 1970). This is confirmed by the AIC (see section 8.4), which
also clearly identifies an AR(3) model for ê(k). These results suggest that estimation of an
ARX model [3 3 1] may yield white residuals and this is indeed the case, with the ACF of the
residuals ê(k) showing that the significant autocorrelations have been removed.
The ARX [3 3 1] model parameters are estimated as:

â1 = −0.0455 (0.032); â2 = −0.0440 (0.030); â3 = −0.0606 (0.0230)
b̂1 = 0.5094 (0.029); b̂2 = 0.2037 (0.043); b̂3 = 0.1260 (0.040)

(8.30)

where the âi , i = 1, 2 are not significantly different from their SEs, suggesting that the model
is not very well identified. Nevertheless, it explains the data quite well, as shown by the



210 True Digital Control

dotted lines in Figure 8.2. Here, we see that the model response x̂(k) in Figure 8.2a (dotted
line) matches the actual noise-free output x(k) very well; and in Figure 8.2b, that the model
error x(k)− x̂(k) (again the dotted line) is quite small. Indeed this error is only a little larger
than that obtained using an optimal, RIV estimation algorithm (dash-dot line) to estimate the
[1 1 1] model, as discussed in section 8.3 (Example 8.5). Of course, the difference is that,
whereas the two optimal RIV parameter estimates are, as we shall see, statistically very well
defined because the model is parametrically efficient (or ‘parsimonious’), the six ARX [3 3
1] parameter estimates (8.30) are poorly defined, suggesting that the model is considerably
over-parameterised (as is obviously the case for this simulation example, which is based on
data generated using an ARX [1 1 1] model). We will consider why this over-parameterised
[3 3 1] model is able to explain the data well in Example 8.4.

8.1.4 The FIR Model

The only other modelling approach that can directly exploit simple LLS is the estimation of
the Finite Impulse Response (FIR) model, which takes the form:

y(k) = B(z−1)
A(z−1)

u(k − δ)+ e(k) ≈ G(z−1) u(k − δ)+ e(k)

G(z−1) = g0 + g1z−1 + g2z−2 + · · · + gpz−p
(8.31)

Here, the coefficients gi , i = 0, 1, 2, . . . , p provide a finite dimensional approximation to the
infinite dimensional, discrete-time impulse response, as obtained when B(z−1) is divided
by A(z−1). In other words, (8.31) is the discrete-time approximation of the well-known
continuous-time convolution integral equation model, where y(k) is simply a weighted linear
sum of a finite number of past inputs u(k − δ), u(k − δ − 1), . . . , u(k − δ − p), with p chosen
to provide a reasonable description of the impulse response and the system dynamics.
The FIR model can be formulated in a similar vector inner product manner to the ARX

model (8.8), i.e.

y(k) = φT (k)ρ + e(k) (8.32a)

but now

φT (k) = [u(k − δ) u(k − δ − 1) u(k − δ − 2) . . . u(k − δ − p)]
ρT = [gδ gδ+1 gδ+2 . . . gδ+p]

(8.32b)

As a result, the FIR parameters can be estimated by LLS using either the en bloc or recursive
solution. However, there are twomain problems in this case. First, themodel is not in a TF form
and so is not particularly useful in relation to the PIP design methods discussed in previous
chapters of this book. Secondly, it is not a parsimonious description, requiring a sufficient
number of parameters to reasonably describe the impulse response at the sampling interval of
the data. This will often mean that the model is severely over-parameterised, particularly when
the system is characterised by long time constants. In such cases, the parameter estimates will
not be well estimated, as shown in Example 8.3.
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Example 8.3 Estimation of a Simple FIR Model Using the same data set as in Example
8.1 (i.e. Figure 8.1 with the TF model output shown as a dash-dot line), there is little advantage
in terms of the coefficient of determination for FIR lengths p > 5 samples. The resulting LLS
estimates and SEs for this FIR(5) model are:

ĝ1 = 0.513 (0.029); ĝ2 = 0.225 (0.039); ĝ3 = 0.108 (0.039) ;
ĝ4 = 0.099 (0.040); ĝ5 = 0.044 (0.029)

(8.33)

Although this model does not explain the data as well as the ARX [3 3 1] and RIV [1 1 1]
models, the result is reasonably acceptable. However, if the first order model parameters in
equation (8.25) are changed to a1 = −0.95 and b1 = 0.05, the FIR model is now highly over-
parameterised and performs poorly. For example, let us consider the results obtained with this
model using a PRBS input u(k) with a switching interval of 65 samples and amplitude 2.0.
The noise e(k) is once again a zero mean white noise process with variance σ 2 = 0.3, giving
a NSR commensurate with that used in Example 8.1. Here, in order to obtain a reasonable
explanation of the data, the FIR model has to have 94 parameters which, not surprisingly, are
estimated with high variance. As a result, the model does not estimate the noise-free output
x(k) very well with a quite high error variance var{x(k)− x̂(k)} = 0.046 and R2T = 0.928.
By contrast, the RIV estimated [1 1 1] model (see section 8.3, Example 8.5) has an error
variance of 0.0007 and R2T = 0.999; and its two parameters are estimated very well indeed.
This poor FIR estimation performance arises because the high variance associated with the
FIR parameter estimates means that the estimated impulse response is very noisy indeed.

8.2 General TF Models

How can we explain the results presented in Example 8.2, in which the LLS estimates are
biased away from their true values? In order to answer this question, it is first necessary to
consider the form of the general ARX model in TF terms. In this case, equation (8.8b) takes
the form:

y(k) = B(z−1)
A(z−1)

u(k − δ)+ 1

A(z−1)
e(k) (8.34)

revealing that the additive noise, in this important TF context, is not white noise but coloured
noise that is strongly influenced by the nature of the TF denominator polynomial A(z−1).
The only exception is the case where A(z−1) = 1.0, which then forms the special FIR model
discussed above.

Example 8.4 Poles and Zeros of the Estimated ARX [3 3 1] Model If the ARX [3 3 1]
model from Example 8.2, with the estimated parameters (8.30), is now considered in the form
of equation (8.34), then:

y(k) = B̂(z−1)
Â(z−1)

u(k − 1)+ 1

Â(z−1)
e(k)

= b̂1 + b̂2z−1 + b̂3z−2

1+ â1z−1 + â2z−2 + â3z−3 u(k − 1)+ 1

1+ â1z−1 + â2z−2 + â3z−3 e(k)

(8.35)
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A clue to what is happening is obtained if the poles and zeros of the TF are computed based
on the estimated parameters in (8.30). This yields:

Roots of Â(z−1):− 0.2008+/−0.3086 j ; 0.4471

Roots of B̂(z−1):− 0.2000+/ − 0.4553 j

There is a complex conjugate pair of poles that are similar to a complex conjugate pair of zeros.
These will tend to cancel each other out, resulting in a model that behaves approximately as
a first order, rather than a third order, dynamic system. Moreover, if the MATLAB R© function
deconv is used to divide Â(z−1) by B̂(z−1), we obtain:

Â(z−1)
B̂(z−1)

= 1.9631 (1− 0.8743z−1)+ remainder (8.36)

Consequently, the model can be written in the approximate form:

y(k) ≈ 0.509

1− 0.445z−1 u(k − 1)+ e(k) (8.37)

This reduced order model (8.37) can be compared with the original simulated TF (8.28a),
with a1 = −0.5 and b1 = 0.5, and we see now why the ARX [3 3 1] model is able to achieve
the good response matching shown in Figure 8.2. In fact, if more data are used, then the
approximation becomes closer: e.g. for a very large N=100 000, the two parameter estimates
are –0.504 and 0.496.
As a general approach to TF modelling, the problem with high order ARX estimation is

two-fold. First, it is a rather ‘messy’ ad hoc procedure. Secondly, and more important, it yields
a model with rather poorly defined estimates. For example, if we use MCS analysis to carry
out the above model reduction, based on the covariance matrix of the ARX [3 3 1] model
estimates and 5000 realisations, then the mean estimate of the a1 parameter is –0.450, with
a high SE of 0.1. As we shall see later, this is ten times worse than the RIV algorithm MCS
estimate of −0.4997 (0.0182). So, although LLS estimation of an ARX model seems, at first
sight, to be a reasonable approach to TF model estimation, it has proven necessary to develop
other, less restrictive and more generally applicable algorithms.

8.2.1 The Box–Jenkins and ARMAX Models

The most common stochastic TF models are obtained from the model form (8.5c) by assuming
that the additive noise ξ (k) has rational spectral density, i.e. it is coloured noise obtained here
by passing white noise through a linear TF model consisting of a ratio of rational polynomials.
These include, most importantly, the Box–Jenkins (BJ) model:

y(k) = B(z−1)
A(z−1)

u(k − δ)+ D(z−1)
C(z−1)

e(k); e(k) = N (0, σ 2); k = 1, 2, . . . , N (8.38)
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and the Auto-Regressive Moving Average eXogenous variables (ARMAX) model:

A(z−1)y(k) = B(z−1)u(k − δ)+ D(z−1)e(k); e(k) = N (0, σ 2); k = 1, 2, . . . , N (8.39a)

or [cf. equation (6.43)]

y(k) = B(z−1)
A(z−1)

u(k − δ)+ D(z−1)
A(z−1)

e(k); e(k) = N (0, σ 2); k = 1, 2, . . . , N (8.39b)

where N is the available sample size and e(k) = N (0, σ 2) denotes a zero mean, inde-
pendent and identically distributed, white noise process with Gaussian normal amplitude
distribution.
In the above models, the noise TF or Auto-Regressive Moving Average (ARMA) model

polynomials C(z−1) and D(z−1) are defined as follows:

C(z−1) = 1+ c1z−1 + c2z−2 + · · · + cpz−p

D(z−1) = 1+ d1z−1 + d2z−2 + · · · + dq z−q (8.40)

and the associated noise model parameter vector is denoted by:

η = [c1 c2 · · · cp d1 d2 · · · dq ]
T (8.41)

With the additional noise model polynomials in (8.40) introduced into the stochastic model,
the model structure is now defined by the pentad [n m δ p q]5. Note that both BJ and the
ARMAX models can be extended straightforwardly to include the effects of more than one
input, as we will see in section 8.5 which deals with suchMulti-Input, Single-Output (MISO)
and full Multi-Input, Multi-Output (MIMO) models.

8.2.2 A Brief Review of TF Estimation Algorithms

The estimation problem associated with time series models such as (8.38) and (8.39) is well
known and various procedures have been suggested over the past 50 years. A good survey of
these techniques was first given by Åström and Eykhoff (1971) and Eykhoff (1974), although
there have been many books on the topic published since then (e.g. Goodwin and Payne
1977; Ljung and Söderström 1983; Young 1984; Norton 1986; Söderström and Stoica 1989;
Wellstead and Zarrop 1991; Young 2011a). Probably the best known method of estimation is
the Maximum Likelihood (ML) method suggested by Box and Jenkins in the 1960s (Box and
Jenkins 1970); and by Åström and Bohlin (1966) for ARMAX models. Here, the problem of
bias is obviated by simultaneously estimating the parameters of all the polynomials A, B,C and
D in the BJ model; or A, B and D in the ARMAXmodel. This is clearly a nonlinear estimation
problem that, in general, requires either numerical hill-climbing (gradient) procedures to
determine the parameters that maximise the likelihood function, or some alternative iterative
approach of the kind considered in section 8.3 and subsequently in the present chapter. Here,

5 As noted earlier, the number of parameters in the polynomial B(z−1) is given by m + 1, hence the modified pentad
[n (m + 1) δ p q] is used in the CAPTAIN Toolbox and Example 8.8 and Example 8.9.
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the data are normally analysed in block form so that online utilisation and time variable
parameter estimation are not nearly so straightforward as in the LLS case.
If a recursive solution with online and time variable parameter estimation potential is

required, then there are a number of alternatives. One approach is to reformulate the problem
in state space terms and consider the Extended Kalman Filter (EKF) estimation methods of
analysis (Jazwinski 1970) or some of the more recent methods based on discrete-time state
space models (see Chapter 10 in Young 2011a). Another is to use the recursive form of
Generalised Least Squares (GLS) analysis as suggested by Hastings-James and Sage (1969),
which applies to the so-called ‘Dynamic Adjustment’ model with autoregressive residuals.
The iterative GLS approach was discussed originally by Johnston (1963) and applied to time
series analysis by Clarke (1967).
Since 1970, a number of other recursive approaches have been suggested (see Chapter 7

in Eykhoff 1974), such as the Extended Matrix method (Talmon and Van den Boom 1973,
which is related to the Approximate Maximum Likelihood (AML) procedure (Young 1968;
Panuska 1969) and is also referred to as the Recursive Maximum Likelihood 1 (RML1) by
Söderström et al. (1974); the Recursive Maximum Likelihood 2 (RML2), which is applied to
the ARMAX model (8.39); the Prediction Error Recursion (PER) approach of Ljung (1979;
see also Ljung and Söderström 1983 and Ljung 1987, 1999), which is similar to the RML2
for the ARMAX model but can be applied to general time series model forms; the various
recursive algorithms suggested by Landau (1976) which are closely related to some of the other
procedures mentioned above, but are derived from an alternative theoretical standpoint based
on hyperstability theory; and, finally, the real-time recursive version of the RIV algorithm
discussed in section 8.3.
In the present context, it would serve little useful purpose to describe all of these alternative

methods. It will suffice to note that all of the above procedures require simultaneous esti-
mation of the system [ai ; bi ] and noise [ci ; di ] parameters and are, therefore, relatively
complex to implement. There is one procedure, however, that does not require this and
is able to obtain consistent, asymptotically unbiased and relatively efficient (i.e. low, but
not in general minimum variance) en bloc or recursive estimates of the [ai ; bi ] parame-
ters without simultaneous noise model parameter estimation. This is the Instrumental Vari-
able (IV) method proposed by the second author of the present book (Young 1965, 1969,
1970) in connection with continuous-time TF model estimation and by Wong and Polak
(1967) and again by the second author (Young 1974) in relation to discrete-time TF mod-
els (see also Mayne 1963). Other publications that deal in detail with such IV estimation
are by Durbin (1954), Kendall and Stuart (1961), Young (1984, 2011a) and Söderström and
Stoica (1989).
If the noise can be assumed to have rational spectral density then the IV method can be

extended into an optimal or RIV form mentioned above (Young 1976, 1984, 2011a; Young
and Jakeman 1979) that allows for simultaneous noise model estimation and yields asymp-
totically efficient, ML parameter estimates. As we shall see in section 8.3, one attraction
of the RIV approach is that the associated algorithms retain some of the appearance and
characteristics of LLS estimation, so the estimation solution can always be implemented
naturally in a recursive manner. In contrast to this, the Recursive Prediction Error Method
(RPEM) approach represents an approximation to en bloc PEM optimisation and so does not
produce parameter estimates that are exactly the same as those produced by the stage-wise
PEM solution.
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8.2.3 Standard IV Estimation

The general TF model (8.5c) can be written in the alternative form:

x(k) = B(z−1)
A(z−1)

u(k) (i)

y(k) = x(k)+ ξ (k) (ii)
(8.42a)

where x(k) can be considered as underlying ‘noise-free’ output of the system. Now, the vector
φ(k) in (8.8a) can be decomposed in the following manner, where

◦
φ(k) is the ‘noise-free’

vector containing x(k − i) in place of y(k − i), for i = 1,2, . . . n, i.e.

φ(k) =
◦
φ(k)+ ξ (k) (8.42b)

in which

◦
φ(k) = [−x(k − 1)− x(k − 2)− · · · − x(k − n) u(k − δ) u(k − δ − 1) · · · u(k − δ − m)]T

ξ T (k) = [−ξ (k − 1) − ξ (k − 2) · · · − ξ (k − n) 0 0 · · · 0]

Equations (8.42) reveal that the estimation problem is one that has been termed errors-in-
variables6 and that the model (8.5a) is a ‘structural’ rather than a ‘regression’ model. The
structural nature of the model (8.5a) has serious consequences that become apparent if (8.42b)
is used to modify the LLS normal equations (8.11b) to the following form:

[
N∑

k=1
[

◦
φ(k)+ ξ (k)][

◦
φ(k)+ ξ (k)]T (k)

]
ρ −

N∑
k=1
[

◦
φ(k)+ ξ (k)](k)y(k) = 0 (8.43)

In general, because the noise matrix
∑N

k=1 ξ (k)ξ T (k) arising from the expansion of the left-
hand side of this equation has noise-squared elements on its first n diagonal elements, the
following result applies:

p lim
N → ∞

1

N

N∑
k=1

ξ (k) ξ T (k) �= 0 (8.44)

even if the noise ξ (k) is zero mean, white noise. We have seen in Example 8.2 that, in the case
of general TFs, the estimates obtained from the solution of these equations can be badly biased
[see the estimates in equation (8.29)]. It can be shown (e.g. Young 1984, 2011a; Söderström
and Stoica 1989) that this bias is induced in direct consequence of the result (8.44). And this
is the reason why, in general, estimation methods other than simple LLS are required for TF
model estimation.

6 The situation where there is noise also on the input variable u(k) is not considered here since it is assumed that the
control input will normally be measured without noise.
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Although there are a number of such methods available (see those mentioned in section
8.2.2), the only solution to the above structural model problem that retains much of the
simplicity and robustness of LLS estimation is the IV method. This is an extremely simple
technique that does not require detailed a priori information on the noise statistics in order
to yield consistent, asymptotically unbiased estimates. It entails modifying the LLS normal
equations (8.11b), for the purposes of estimation, to the following IV form:

[
N∑

k=1
φ̂(k)φT (k)

]
ρ −

N∑
k=1

φ̂(k)y(k) = 0 (8.45)

so that the IV estimate is obtained as:

ρ̂ =
[

N∑
k=1

φ̂(k)φT (k)

]−1 N∑
k=1

φ̂(k)y(k) (8.46a)

or

ρ̂ = [�̂T (k)�(k)]−1�̂T (k) y (8.46b)

where �̂(k) is a k × N matrix with rows φ̂
T
(k); �(k) is a similarly dimensioned matrix with

rows φT (k), k = 1, 2, . . . ., N; and [�̂T (k)�(k)] is called the Instrumental Product Matrix
(IPM). In equation (8.46a), φ̂(k) is a vector of ‘instrumental variables’ (variables that are
‘instrumental’ in solving the estimation problem) which are chosen to be as highly correlated

as possible with the equivalent variables in the noise-free vector
◦
φ(k) in equation (8.42b); but

totally statistically independent of the noise, i.e.

E{φ̂(i)φ( j)} >> 0 and E{φ̂(i)e( j)} = 0 ∀i, j (8.47)

Of course, the highest correlation occurs when φ̂(k) =
◦
φ(k), ∀k. It is not surprising, therefore,

that this notion is important in developing good IV algorithms which attempt to generate and
exploit, in variousways, a variable that is as good an approximation as possible to the noise-free
output.
The en bloc solution (8.46) can be written in the form:

ρ̂(k) = P̂(k)b̂(k) IIe

where

P̂(k) = Ĉ(k)−1 =
[

k∑
i=1

φ̂(i)φT (i)

]−1

(8.48)

b̂(k) =
k∑

i=1
φ̂(i)y(i) (8.49)
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As a result, it is a simple matter to obtain a recursive IV algorithm using an approach similar
to that employed in the RLS algorithm discussed earlier. We will leave the reader to derive
these equations, which take the following form (cf. algorithm I):

ρ̂(k) = ρ̂(k − 1) + P̂(k − 1)φ̂(k)[1 + φT (k) P̂(k − 1)φ̂(k)]−1{y(k)− φT (k)ρ̂(k − 1)}
P̂(k) = P̂(k − 1)− P̂(k − 1)φ̂(k)[1 + φT (k) P̂(k − 1)φ̂(k)]−1φT (k) P̂(k − 1) (i) II

The major problem with the general application of algorithm II is that of choosing the IVs
themselves: how can we obtain or generate variables with such specific statistical properties?
The difficulty of answering this question in any general manner has acted as a strong deterrent
to the widespread use of the IV approach in statistics (Kendall and Stuart 1961). But the
question is surprisingly easy to answer in the TF modelling context considered here. The IV
x̂(k), at the j th iteration of an iterative (or ‘relaxation’) estimation algorithm, is generated as
the output of an iteratively updated ‘auxiliary model’:

x̂(k) = B̂(z−1, ρ̂ j−1)
Â(z−1, ρ̂ j−1)

u(k − δ) (ii) II

where Â(z−1, ρ̂ j−1) and B̂(z−1, ρ̂ j−1) are the TF polynomials based on the IV estimate ρ̂ j−1
of the TF model parameter vector ρ at the ( j − 1) th iteration of the algorithm. Thus, if the
algorithm converges, the IV x̂(k) will converge on the noise-free output x(k) (recall our earlier
comments) and the IV estimates will have good, albeit not optimal, statistical properties. This
standard IV algorithm is summarised as follows:

Overview of the Standard IV Algorithm

Step 1: Use LLS or RLS to estimate the parameters in the ARX model.

Step 2: Iterative or recursive-iterative IV estimation:

for j = 1 : convergence

1. If the estimated TF model is unstable, reflect the unstable eigenvalues of the estimated Â j

polynomial into the stable region of the complex z-plane (using, for example, the polystab
routine in MATLAB R©). This is not essential to the functioning of the algorithm: it allows
for rarely occurring situations, normally with very poor data, when the initially estimated
ARX model is found to be unstable. Generate the IV series x̂(k) from the system auxiliary
model II(ii), with the polynomials based on the estimated parameter vector ρ̂ j−1 obtained
at the previous iteration of the algorithm; for j = 1, ρ̂0 is the estimate obtained at step 1.

2. Compute the estimate ρ̂ j of the TF system model parameter vector using the en bloc
algorithm IIe, or the recursive equivalent of this II(i).

end
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The iteration is continued for j = 1, 2, . . . , it , where it is defined so that the IV param-
eter estimate ρ̂ j converges in some sense (e.g. an insignificant change between iterations).
Normally, only 3–4 iterations are required for a reasonable sample length N.

8.3 Optimal RIV Estimation

The standard recursive (or en bloc) IV algorithm is simply amodification of the RLS (or en bloc
LLS) algorithm applied to the TF model (8.5c), without making, or exploiting, any statistical
assumptions about the nature of the noise ξ (k). In fact, the standard IV algorithm is no longer
used very much because the more sophisicated alternatives that are based on such assumptions
perform much better in practice. However, its successful iterative implementation served as a
primary stimulus to the development of its successor, the more advanced RIV algorithm for the
estimation of parameters in the full BJmodel (8.38) which include, of course, the parameters of
the ARMA noise model defined in (8.40). The reason for considering this BJ model rather than
the ARMAXmodel, which is probably better known in the control literature, is that it has some
advantages in statistical estimation terms; advantages that are exploited in RIV estimation.
These advantages are exposed by an important theorem due to Pierce (1972: see Appendix
H) concerning the asymptotic statistical properities of the ML estimates for the BJ model
parameters. In particular, it reveals that the system and noise model parameter estimates ρ̂ and
η̂ are asymptotically independent, so that the covariance matrix of the parametric estimation
errors is block diagonal, with zero off-diagonal blocks. As we shall see, this motivates and
justifies an important structural aspect of the iterative RIV algorithm.

8.3.1 Initial Motivation for RIV Estimation

Before considering the development of the RIV algorithm in more detail, it is worthwhile
considering the motivation for the algorithm in the simplest terms. Bearing in mind equations
(8.9) and considering the BJ model (8.38), minimisation of a least squares criterion function
of the form:

J2 =
k=N∑
k=1

[e(k)]2 (8.50)

provides the basis for stochastic estimation and is the criterion function used by Box and
Jenkins (1970). From equation (8.39b):

e(k) = C

D

[
y(k)− B

A
u(k − δ)

]
= C

D A
[Ay(k)− Bu(k − δ)] k = 1, 2, . . . , N

where A,B, C,D denote the model polynomials with the z−1 argument removed for simplicity.
However, since the polynomial operators commute in this linear case, the filter C/D A can be
taken inside the square brackets:

e(k) = Ay f (k)− Bu f (k − δ) (8.51)
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or [cf. equation (8.2)]

e(k) = y f (k)+ a1y f (k − 1) · · · + an y f (k − n)− b0u f (k − δ) · · · − bmu f (k − δ − m)
(8.52)

where y f (k) and u f (k) are ‘prefiltered’ output and input signals, respectively, i.e.

y f (k) = C

AD
y(k) and u f (k) = C

AD
u(k) (8.53)

and the associated estimation equation at the kth sampling instant can be written as:

y(k) = φT (k)ρ + e(k) (8.54)

where

φT (k) = [−y f (k)− y f (k − 1) − · · · − y f (k − n) u f (k − δ) · · · u f (k − δ − m)]
ρ = [a1 a2 . . . an b0 . . . bm]T

(8.55)

This is of the same form as the equivalent simple regression model (8.8a) and (8.8b) but
here all the variables are prefiltered. Thus, provided we assume that A, Cand D are known
a priori, the estimation model forms a basis for the definition of a likelihood function and ML
estimation.
The most interesting feature of the estimation model (8.54) is the introduction of the

prefilters. In this regard, it is important to note that, although the prefiltering operations arise
naturally from the above analysis, they make sense in a more heuristic manner and confirm
the veracity of earlier heuristic IV algorithms that exploited prefilters for continuous-time
TF estimation (e.g. see section 8.6 and Young 1981). In particular, the prefilter C/AD will
pass signals with components within the frequency pass-band of the system, as defined by the
transfer function 1/A, while attenuating components at higher frequencies that are likely to
constitute noise on the data. At the same time, the ‘inverse’ noise filter C/D will ‘prewhiten’
those noise components within the pass-band of the system that have not been attenuated by
the 1/A part of the prefilter. Such a prewhitening procedure is either explicit or implicit in
many optimal time series estimation algorithms because it yields serially uncorrelated residuals
and so improves the statistical efficiency (reduces the variance) of the resulting estimates. It
achieves the same objective in the present context.
Themajor problemwith this formulation of the estimation problem in terms of the estimation

equation (8.54) is, of course, that the polynomials A, C andD are not known a priori: indeed it
is the estimation of their parameters, together with those of B, that is the whole purpose of the
estimation procedure! Fortunately, as in the case of the standard IV algorithm, it is possible to
construct an iterative algorithm where these polynomials are updated at each iteration, based
on the estimation results obtained at the previous iteration. The formulation of this algorithm,
within the context of ML, is discussed in the following subsections.
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8.3.2 The RIV Algorithm in the Context of ML

The standard IV algorithm is simply a modification of the LLS algorithm and so, unlike the
LLS algorithm, it is not defined in optimal statistical terms. In order to consider the RIV
algorithm in optimal terms, therefore, it is necessary to consider the ML approach to the
estimation of the BJ model (Box and Jenkins 1970), where the log-likelihood function for the
observations takes the form (Young 1984, 2011a):

L(ρ, ψ, σ 2, y, u) = −T

2
loge(2π ) − T

2
loge σ 2 − 1

2σ 2

[
C

D
y − BC

AD
u
]T [

C

D
y − BC

AD
u
]

(8.56)

Maximisation of this log-likelihood function clearly requires the minimisation of the final term
on the right-hand side of (8.56), i.e.

J2 =
k=N∑
k=1

[e(k)]2 = eT e =
[

C

D
y − BC

AD
u
]T [

C

D
y − BC

AD
u
]

(8.57)

In this cost function, e is the vector of white noise inputs, i.e.

e = N (0, σ 2 I); e = [e1 e2 . . . eN ]
T

while y and u are defined as follows:

y = [y1y2 . . . yN ]
T ; u = [u1u2 . . . uN ]

T

As shown, the inner product eT e is just another representation of the sum of the squares of
the noise e(k). Thus we need to find those estimates Â, B̂, Ĉ and D̂ of the polynomials A, B,
C and D which minimise the sum of the squares of e(k) – a classical nonlinear least squares
problem that makes obvious sense.
If, for the moment, we assume that C and D are known, then the conditions for the min-

imisation of J2 in (8.57) are obtained in the usual manner by partially differentiating with
respect to âi , i = 1, 2, . . . , n, b̂i , i = 0, 1, . . . , m and σ̂ 2, respectively; and then setting these
derivatives to zero. This yields the following three equations:

∂L

∂ âi
= 1

σ 2

T∑
k=2n+1

[
C

D
y(k) − BC

AD
u(k)

]
BC

A2D
z−i u(k) = 0 (8.58a)

∂L

∂ b̂i
= 1

σ 2

T∑
k=2n+1

[
C

D
y(k) − BC

AD
u(k)

]
C

AD
z−i u(k) = 0 (8.58b)

∂L

∂ σ̂ 2
= − T

σ 2
+ 1

σ 4

T∑
k=2n+1

[
C

D
y(k) − BC

AD
u(k)

]2
= 0 (8.58c)
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These equations are highly nonlinear in the ai and bi parameters but are linear in the bi for
a given ai. Moreover, if estimates of the ai and bi are available, an estimate of σ̂ 2 can be
obtained easily from condition (8.58c).
The best known method for obtaining estimates of the ai and bi that satisfy conditions

(8.58) is to search the whole parameter space of the BJ model in some manner; for example,
using a numerical optimisation scheme. However, bearing in mind the prefiltering operations
in (8.53), together with an equivalent prefiltered auxiliary model II(ii), i.e.

y f (k) = C

AD
y(k) ; u f (k) = C

AD
u(k); x̂ f (k) = B

A
u f (k) (8.59)

equation (8.58a) and equation (8.58b) can be rewritten as follows in terms of these prefiltered
variables, where for simplicity m is assumed equal to n:

∑
[Ay f (k) − Bu f (k)] x̂ f (k − i) = 0; for i = 1, 2, . . . , n (8.60a)∑
[Ay f (k) − Bu f (k)]u f (k − i) = 0; for i = 0, 1, 2, . . . , n (8.60b)

which are now linear in the ai and bi parameters, provided we assume knowledge of the
prefiltered or transformed variables y f (k), u f (k) and x̂ f (k); in which case, they can be solved
to yield ML estimates of these parameters.
Perhaps the most interesting aspect of the equations (8.60) is their remarkable similarity to

the equivalent IV equations for the same problem. This becomes clear if we examine the IV
normal equations (8.45) again, which represent a set of 2n + 1 linear simultaneous equations.
Upon expansion, the first n equations can be written in the form:

∑
y(k)+ a1 y(k − 1)+ · · · + an y(k − n)− b0 u(k)− bnu(k − n)] x̂(k − i) = 0,

i = 0, 1, . . . , n (8.61)

while the subsequent n + 1 equations become:
∑

y(k) + a1 y(k − 1) + · · · + an y(k − n) − b0 u(k) − bnu(k − n)]u(k − i) = 0,

i = 0, 1, . . . , n (8.62)

which, on introduction of the operator notation, and the A and B polynomials, becomes:

∑
[Ay(k) − Bu(k)] x̂(k − i) = 0 i = 0, 1, . . . , n (8.63a)∑
[Ay(k) − Bu(k)] u(k − i) = 0 i = 0, 1, . . . , n (8.63b)

Comparison of equation (8.60) and equation (8.63) shows immediately that the former can
be interpreted as the IV normal equations for the system, with the input u(k), the output y(k)
and the auxiliary model output x̂(k) replaced by their prefiltered equivalents u f (k), y f (k) and
x̂ f (k), respectively.
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As a result of the similarities between equation (8.60) and equation (8.63), it is clear that the
iterative and recursive methods of solution used in the standard IV case, can also be utilised
in the present context. Moreover, upon convergence of the iterations, this solution represents
a solution of the ML optimisation equations (8.57) and the estimate provides a ML estimate
of the parameters in the BJ model (8.38). However, the implementation is obviously more
complex in this case. In particular, it requires the introduction of the additional prefiltering
operations; and the parameters of these prefilters need to be updated, either iteratively or
recursively, using similar adaptive mechanisms to those used to update the auxiliary model
parameters in the basic IV case. Furthermore, in order to do this, it is necessary to introduce
an algorithm to estimate the noise model parameters C and D that are required to implement
the prefilters, as discussed in the following subsection.

8.3.3 Simple AR Noise Model Estimation

The estimation of the noise model parameters can be aided by two simplifications. First,
we note, again from the Pierce Theorem (Appendix H), that the ML estimate of η (8.41)
is asymptotically independent of the system parameter vector ρ (8.55), suggesting that the
estimation of η can be carried out by a separate algorithm that follows the RIV estimation of
ρ. Secondly, we can approximate the ARMA noise model in the BJ model by a simpler Auto-
Regressive (AR) model, whose parameters can be estimated, as we shall see, by simple LLS
or RLS algorithms. This latter modification can also be justified because any ARMA process,
as defined by a transfer function say G/F, can be represented by an AR model 1/H, where H is
obtained from the polynomial division F/G [i.e. G/F=1/(F/G)]. Although this AR model will
usually be of infinite order, arising from the polynomial division, a finite order approximation
will normally suffice, particularly in the present context, where the main objective of the noise
model estimation is to define the nature of the prewhitening filter.
With this AR modification, the BJ model takes the following simpler form:

y(k) = B(z−1)
A(z−1)

u(k − δ)+ 1

C(z−1)
e(k) e(k) =N (0,σ 2) (8.64)

Thismodel structure can be defined by the tetrad [n m δ p]. Following the above reasoning, and
assuming that we have consistent estimates Â(z−1) and B̂(z−1) of the TF model polynomials,
an estimate ξ̂ (k) of the noise series ξ (k) can be obtained from:

ξ̂ (k) = y(k)− B̂(z−1)
Â(z−1)

u(k − δ) (8.65)

An AR model for ξ̂ (k) can then be obtained from either the LLS en-bloc algorithm Ie or the
RLS algorithm I, with the data vector φ(k) and parameter vector ρ replaced by ψ(k) and η,
respectively, where:

ψT (k) = [−ξ̂ (k − 1)− ξ̂ (k − 2) · · · − ξ̂ (k − p)]
η = [c1 c2 · · · cp]T

(8.66a)
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These define the AR noise model, which is written in the vector form:

ξ̂ (k) = ψT (k)η + e(k) (8.66b)

Since this is a linear regression model in which all of the elements in the vector are available,
the parameter vector η can be estimated using the LLS or RLS algorithms. The Refined
Instrumental Variable algorithm with Auto-Regressive noise (RIVAR) model is now simply
the conjunction of the IV algorithm II, incorporating the appropriate prefilters on the input,
output and IV variables, and this AR estimation algorithm, linked through the noise estimation
defined in equation (8.65).

8.3.4 RIVAR Estimation: RIV with Simple AR Noise Model Estimation

Based on the above arguments, the separate en bloc algorithms for the system and noise models
take the following form:

System model estimation: ρ̂(N ) = P̂(N )b̂(N ) (i) IIIe

Noise model estimation: η̂(N ) = Pη(N )bη(N ) (ii) IIIe

where

P̂(N ) = Ĉ(N )−1 =
[

N∑
k=1

φ̂ (k)φT (k)

]−1
and b̂(N ) =

N∑
k=1

φ̂ (k)y f (k)

Pη(N ) = Cη(N )−1 =
[

N∑
k=1

ψ(k)ψT (k)

]−1
and bη(N ) =

N∑
k=1

ψ(k)ξ (k)

(8.67)

The two equivalent recursive algorithms are given below.
System model estimation:

ρ̂(k) = ρ̂(k − 1) + P̂(k − 1)φ̂(k)[1 + φ T (k) P̂(k − 1)φ̂(k)]−1
[ y f (k)− φ T (k)ρ̂(k − 1) ] (i)

III
P̂(k) = P̂(k − 1) − P̂(k − 1)φ̂(k)[1 + φT (k) P̂(k − 1)φ̂(k)]−1φ T (k) P̂(k − 1) (ii)

Noise model estimation:

η̂(k) = η̂(k − 1)+ Pη(k − 1)ψ(k)[1+ ψT (k)Pη(k − 1)ψ(k)]−1
[ξ (k)− ψT (k)η̂(k − 1)]−1 (iii)

Pη(k) = Pη(k − 1)− Pη(k − 1)ψ(k)[1 + ψT (k)Pη(k − 1) III
ψ(k)]−1ψT (k)Pn(k − 1) (iv)
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Here, the prefiltered φ̂(k) and φ(k) vectors are defined:

φ̂(k) = [−x̂ f (k − 1) − x̂ f (k − 2) · · · − x̂ f (k − n) u f (k − δ) u f (k − δ − 1) · · ·
u f (k − δ − m)]T

φ(k) = [−y f (k − 1) − y f (k − 2) · · · − y f (k − n) u f (k − δ) u f (k − δ − 1) · · ·
u f (k − δ − m)]T

(8.68)

in which the prefiltered IV x̂(k), u(k) and y(k) are given by:

x̂ f (k) = Ĉ(z−1)
Â(z−1)

x̂(k); u f (k) = Ĉ(z−1)
Â(z−1)

u(k); y f (k) = Ĉ(z−1)
Â(z−1)

y(k) (8.69)

The RIVAR algorithm uses the above component algorithms in an iterative manner similar
to the standard IV algorithm but modified in a manner motivated by the Pierce Theorem
(Appendix H). This shows that the system and noise model parameter estimates obtained by
ML optimisation are asymptotically independent, so that for large sample size, they can be
estimated sequentially, linked by the noise estimation equation (8.65). As far as the authors are
aware, the small sample performance of the MLmethod has not been analysed theoretically so
this independence cannot necessarily be guaranteed for small sample size. However, extensive
MCS analysis and experience over many years has revealed no discernible difference between
the results obtained using the RIVAR algorithm and the standard, non-recursive ML and PEM
algorithms that utilise alternative gradient methods of optimisation.
Based on these considerations, the main steps in the iterative RIVAR algorithm are outlined

below. As in the standard IV algorithm, the iteration is continued for j = 1, 2, . . . , it , where
it is defined so that the IV parameter estimate ρ̂ j converges in some sense (e.g. an insignif-
icant change between iterations). And again, normally only 3–4 iterations are required for a
reasonable sample length N. The RIVAR algorithm is summarised as follows:

Overview of the RIVAR Algorithm

Step 1: Use LLS or RLS to estimate the parameters in the ARX model.

Step 2: Iterative or recursive-iterative IV estimation with prefilters:

for j = 1: convergence

1. If the estimated TF model is unstable, reflect the unstable eigenvalues of the estimated
Â j polynomial into the stable region of the complex z-plane. This is not essential to the
functioning of the algorithm: it allows for rarely occurring situations, normally with very
poor data, when the initially estimated ARX model is found to be unstable. Generate the
IV series x̂(k) from the system auxiliary model:

x̂(k) = B̂(z−1, ρ̂ j−1)
Â(z−1, ρ̂ j−1)

u(k − δ) (8.70)
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with the polynomials based on the estimated parameter vector ρ̂ j−1 obtained at the previous
iteration of the algorithm; for j = 1, ρ̂0 is the estimate obtained at step 1.

2. Use standard LLS estimation to obtain the latest estimate η̂ j of the AR noise model
parameter vector based on the estimated noise sequence ξ̂ (k) from the equation ξ̂ (k) =
y(k)− x̂(k) and the regression model (8.66b).

3. Prefilter the input u(k), output y(k) and instrumental variable x̂(k) signals by the filter:

f1(z
−1, ρ̂ j−1, η̂ j ) = Ĉ(z−1, η̂ j )

Â(z−1, ρ̂ j−1)
(8.71)

with the polynomials based on the estimated parameter vector ρ̂ j−1 obtained at the previous
iteration of the algorithm and η̂ j obtained in (2); for j = 1, ρ̂0 is the estimate obtained at
step 1.

4. Based on these prefiltered data, compute the estimate ρ̂ j of the TF system model param-
eter vector using the en bloc algorithm IIIe(i), or the recursive equivalent of this, III(i)
and (ii).

end

Step 3: Subsequent to convergence of the estimates, carry out a final iteration using the
following ‘symmetric’ version (Young 1970, 1984) of the algorithm [cf. III(i) and (ii)]:

ρ̂(k) = ρ̂(k − 1) + P̂(k − 1)φ̂(k)[1+ φ̂
T
(k) P̂(k − 1)φ̂(k)]−1

[y f (k)− φ T (k)ρ̂(k − 1) ] (i)
IIIs

P̂(k) = P̂(k − 1) − P̂(k − 1)φ̂(k)[1+ φ̂
T
(k) P̂(k − 1)φ̂(k)]−1φ̂ T

(k) P̂(k − 1) (ii)

This generates superior estimates of the covariance matrix P∗(N ) in equation (H.1) of the
Pierce Theorem (Appendix H), i.e. at k = N:

P∗(N ) = σ 2

N

[
p lim

1

N

N∑
k=1

φ̂(k)φ̂
T

]−1

≈ σ̂ 2 P̂(N ) (8.72)

so providing an estimate of the statistical properties of ρ̂(N ), with the SEs on the individual
parameter estimates obtained as the square root of the diagonal elements of P∗(N ). The
covariance matrix P∗

η(N ) associated with the AR(p) noise model parameters is obtained in the
usual manner for AR estimation, i.e.

P∗
η(N ) = σ̂ 2

[
N∑

i=1
ψ(k)ψT (k)

]−1

(8.73)
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Here, the estimate σ̂ 2 of the residual noise variance σ 2 is obtained from the estimated AR
model residuals ê(k) = ξ̂ (k)− ψT (k) η̂(N ), i.e.

σ̂ 2 = 1

N

N∑
k=1

ê(k)2

In the case of recursive estimation, the covariance matrices at all recursive steps are obtained
in the same manner as (8.72) and (8.73) but with N = k, k = 1, 2, . . . , N .

8.3.5 Additional RIV Algorithms

Some simplifications and additions to the RIVAR algorithm are presented below, and linked
to their implementation in the CAPTAIN Toolbox (Appendix G).

1. First, if it is assumed that the noise is zero mean white noise, then AR noise model
estimation is not included and the algorithm is called the Simplified Refined Instrumental
Variable (SRIV) algorithm. This is an extremely useful algorithm in practical terms, being
robust to assumptions about the noise and computationally very efficient: as a result, it is
useful during the initial stages of model structure identification (section 8.4); for initiation
of the RIVAR algorithm rather than LLS/RLS estimation of the ARX model; and for the
estimation of deterministic models for control system design. In the CAPTAIN Toolbox,
SRIV estimation is available as an option using either the riv or rivbj routines (see item 2).

2. A similar but more complex version of the RIVAR algorithm can be obtained by replacing
the AR noise model estimation by full ARMA noise model estimation. In the CAPTAIN
Toolbox, the relevant algorithm is called RIVBJ (and the associated function similarly rivbj)
to differentiate it from RIVAR (called riv in CAPTAIN) as described above. In RIVBJ, the
ARMA estimation can be carried out using the Instrumental Variable ARMA (IVARMA)
algorithm (Young 2008, 2011a), or an alternative ARMA estimation algorithm, such as the
ARMA option of the armax routine from the MATLAB R© System Identification Toolbox, if
the latter is available to the user. Of course, this RIVBJ algorithm is computationally more
expensive than the RIVAR algorithm if used in its full form with the ARMA noise model
included. However, it reverts to RIVAR if AR noise is selected by the user; and SRIV if the
white noise option is used. Consequently, it is recommended that rivbj is used in preference
to riv in CAPTAIN because it has more options.

Example 8.5 SRIV Estimation of a Simple TF model The model (8.28) is an example
where the SRIV algorithm produces optimal results because the additive noise is white. Using
the same noise as in Example 8.1, the SRIV estimation results are as follows:

â1 = −0.4883 (0.0176)
b̂1 = 0.5100 (0.0168)

; cov(ã) = 10−3
[
0.2507 0.2224
0.2224 0.2342

]
(8.74)

MCS analysis provides a more discerning evaluation of estimation methods than a single run,
such as this. Below are the results obtained using such analysis based on 5000 realisations, i.e.
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5000 separate SRIV estimation runs, each using the same u(k) and x(k) sequences but with an
independent noise sequence ξ (k) = e(k), k = 1, 2, . . . , 1000 added for each realisation.

Mean:
â1 = −0.4997 (0.0167)
b̂1 = 0.5003 (0.0160)

; Covariance: cov (ã) = 10−3
[
0.2790 0.2466
0.2466 0.2554

]
(8.75)

As might be expected, since they are based on an ML approach to estimation, these SRIV
results are virtually the same as those obtained using the PEM algorithm in the MATLAB R©

System Identification Toolbox, which is also an ML-based estimation algorithm.

8.3.6 RIVAR and IV4 Estimation Algorithms

The RIVAR algorithm is sometimes confused with the IV4 algorithm in the MATLAB R©

System Identification Toolbox (Söderström and Stoica 1989, p. 276) when, in fact, they are
quite different. As we shall see, the IV4 algorithm is a four-step (not an iterative) algorithm
and it is not nearly as robust as the RIVAR algorithm. It is based on the following modified
ARMAX-type model but with AR rather than moving average noise:

A(z−1)y(k) = B(z−1)u(k − δ)+ 1

C(z−1)
e(k) (8.76a)

or

y(k) = B(z−1)
A(z−1)

u(k − δ)+ 1

A(z−1)C(z−1)
e(k) (8.76b)

where we see that the model of the noise ξ (k) is effectively constrained to include the TF
denominator polynomial A(z−1). Following Söderström and Stoica (1989, p. 276), IV4 is the
following four-step algorithm:

1. Initialisation: use LLS or RLS to estimate the parameters in the ARX model.
2. Obtain first stage, ordinary IV estimates Â(z−1) and B̂(z−1) of the A(z−1) and B(z−1)
polynomials, with the auxiliary model parameters set to the ARX estimates obtained in (1).

3. Compute the residuals of the IV model obtained in (2), and estimate an AR model of order
n + m for these. Prefilter the input and output signals by a moving average filter based on
this estimated AR(n+m) polynomial Ĉ(z−1).

4. Obtain the IV estimates based on these prefiltered data.

Note that the prefilter of IV4 is of a high pass, pure moving average type based on Ĉ(z−1),
rather than the prefilter used in RIVAR, which is of the ARMA type with the additional AR
part based on Â(z−1). Thus the IV4 prefilter will tend to amplify high frequency noise, while
the low-pass element in the RIVAR pre-filter will compensate for this and attenuate the high
frequency noise components. Such a smoothing effect, based adaptively on the pass-band of
the system, is obviously an advantage in estimation terms, as we see in Example 8.6. Finally,
note that the RIVAR algorithm is based on the TF model (8.64), where the noise model is only
constrained to AR form and so is able to exploit the special properties revealed by the Pierce
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Theorem (Appendix H). Moreover, full RIVBJ estimation of the BJ model with ARMA noise
is completely unconstrained.

Example 8.6 A Full RIVBJ Example Here, the RIV algorithm is applied to N=1700
samples of simulated data generated by the following BJ TF model:

y(k) = 0.016+ 0.026z−1 − 0.0375z−2

1− 1.6252z−1 + 0.642z−2 u(k)+ 1+ 0.5z−1

1− 0.85z−1 e(k)

u(k) = N (0, 8.8) e(k) = N (0, 0.0009)

(8.77)

This is a ‘stiff’ dynamic system, with widely spaced eigenvalues, and it has a reasonable noise
level (NSR of 0.33 by SD). The TF can be decomposed into a parallel connection of three TFs:
one a simple gain, 0.015964; and two with first order TFs having time constants (Appendix
B) of 2.6 and 18.7 samples. This is a common model form in the environmental and natural
sciences but it appears to pose some problems for the PEM algorithm.
Table 8.1 compares the results of single run andMCS analysis, based on 100 realisations, for

the RIVBJ, SRIV, PEM and IV4 algorithms. It also presents the results obtained with the RIV
algorithm when the ARMA model is approximated by an AIC identified AR(5) model (i.e.

Table 8.1 Estimation results for the model (8.77) [SR refers to a single run]

Method Value â1 â2 b̂0 b̂1 b̂2 ĉ1 d̂1 Fails

True −1.6252 0.642 0.016 0.026 −0.0375 −0.85 0.5
RIVBJ Estimated −1.611 0.633 0.0162 0.026 −0.0375 0.845 0.494
(SR) (SE) 0.045 0.033 0.0003 0.0007 0.0018 0.010 0.021

RIVBJ Estimated −1.626 0.642 0.0160 0.0260 −0.0375 −0.847 0.501
(MCS) (SD) 0.0254 0.0200 0.0002 0.0004 0.0010 0.011 0.021

SRIV Estimated −1.631 0.649 0.0165 0.0256 −0.0379 −0.848 0.485
(SR) (SE) 0.0199 0.0159 0.0007 0.0014 0.0009 0.011 0.020

SRIV Estimated −1.616 0.635 0.0159 0.0262 −0.0372 — —
(MCS) (SD) 0.0535 0.0428 0.0005 0.0013 0.0014 — —

PEM Estimated −1.594 0.620 0.0161 0.0266 −0.0367 −0.849 0.502
(SR) (SE) 0.0650 0.0480 0.0003 0.0010 0.0026 0.010 0.021

PEM Estimated −1.617 0.635 0.0160 0.0261 −0.0371 −0.849 0.502 9
(MCS: 91/100) (SD) 0.0400 0.0300 0.0003 0.0007 0.00164 0.011 0.021

RIVAR Estimated −1.611 0.6328 0.0162 0.0263 −0.0375 —a —
(SR) (SE) 0.0440 0.0328 0.0003 0.0007 0.0017

RIVAR Estimated −1.619 0.6371 0.0161 0.0261 −0.0373 —a —
(MCS) (SD) 0.0356 0.0270 0.0002 0.0006 0.0014

IV4 Estimated −1.568 0.6019 0.0162 0.0270 −0.0357 — —
(SR) (SE) 0.0991 0.0716 0.0003 0.0016 0.0040

IV4 Estimated −1.609 0.6300 0.0160 0.0262 −0.0369 — —
(MCS) (SD) 0.0513 0.0384 0.0002 0.0008 0.0021

aHigh order so estimates not cited here.
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RIVAR estimation). In Table 8.1 and later, the estimated SEs from the single runs and theMCS
mean SDs are stated below the parameter estimates. As would be expected because of their
common basis in ML estimation, both of the RIVBJ and PEM algorithms perform similarly
when convergence occurs, with the single run predicted SEs on the parameter estimates
matching reasonably the SDs computed from the MCS analysis. However, in this example,
the PEM algorithm fails to converge in 9 of the 100 MCS realisations (these realisations were
removed in computing the statistics shown in Table 8.1), while the RIVBJ algorithm does not
fail at all.
The SRIV algorithm also performswell: in fact, in terms of the single run andMCS estimated

mean parameter estimates, it performs better than PEM in the sense that it has no failures.
However, we see that its estimated SEs are too optimistic, as might be expected. Also, note
that an estimate of an ARMA model for the noise can be obtained by applying the IVARMA
algorithm separately to the residual noise estimate obtained from the SRIV estimation results.
For illustration, this is shown in Table 8.1 only for the single run case, i.e the row labelled
SRIV (SR). Of course, it had no influence on the TF system model parameter estimates and
it was not computed at all in the MCS results presented in the following row, SRIV (MCS).
Note that this SRIV algorithm is computationally a quite efficient algorithm (a little faster than
PEM in this case and only marginally slower than IV4) and so, as pointed out previously, it
provides the best algorithm for initial model structure/order identification analysis.
The results in Table 8.1 are typical of the performance comparison in the case of examples

such as that considered here. The somewhat poorer performance of the PEM algorithm appears
to be due to the ‘stiff’ nature of the TF model in this example and a consequent failure to
converge from the initial conditions specified for the parameter estimates in the PEM gradient
optimisation algorithm. It is clear from the results that the RIVBJ algorithm does not suffer
from this problem and is always providing statistically consistent and efficient estimates. It
is, in other words, another approach to optimal estimation of discrete-time TF models of the
BJ type (which includes the ARMAX model as a special constrained case, as pointed out
previously). In more general ‘non-stiff’ examples, however, the results obtained by RIVBJ
and PEM are very similar.
We see that the RIVAR results are comparable with those of RIVBJ. They demonstrate

how this ‘approximate’ implementation of the RIVBJ algorithm, in the ARMA noise case,
is appealing because it is computationally much more efficient than RIVBJ and yet performs
similarly in most cases. For this reason, as pointed out previously, it is has been an implemen-
tation used in the CAPTAIN Toolbox for many years. In this case, the IV4 algorithm produces
reasonable results but they are noticeably poorer than those of the RIVBJ/RIVAR/SRIV algo-
rithms. However, like them, it has no failures amongst the MCS realisations. This is not always
the case, however, as we see in Example 8.7.

Example 8.7 A More Difficult Example (Young 2008) This example is concerned with a
simulation model based on a [2 2 4] TF model identified and estimated from the real effective
rainfall−flow data shown in Figure 8.3. Figure 8.3b shows the hourly flow y(k) measured in
a river over most of a year (7500 h or 312.5 days); while Figure 8.3a shows the associated
‘effective rainfall’ u(k) (Young 2008). The simulation data are generated by passing this
effective rainfall input through the model, with its parameters set to those estimated from the
real data. For the purposes of this example, the output is then contaminated by white noise
with variance σ 2 = 5, giving a high NSR (by SD) of 0.62.
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Figure 8.3 Hourly effective rainfall (a) and flow (b) from a UK catchment

Table 8.2 compares the results of the RIVBJ estimation (here effectively SRIV because
the additive noise is white) with those obtained using the PEM and IV4 algorithms. Again,
as would be expected, both of the RIVBJ and PEM algorithms perform similarly (when
convergence occurs), with the single run predicted SEs on the parameter estimates matching
the SDs computed from the MCS analysis. However, the PEM algorithm has a quite high

Table 8.2 Estimation results for the effective rainfall−flow simulated data in Example 8.7

Method Value â1 â2 b̂0 b̂1 Failures

True −1.8563 0.8565 0.0545 −0.0542
RIVBJ (SR) Estimated −1.8575 0.8578 0.0543 −0.0541 —

(SE) (0.0028) 0.0027) (0.0009) (0.0009)
RIVBJ (MCS) Estimated −1.8560 0.8563 0.0545 −0.0543 0

(SD) (0.0027) (0.0026) (0.0008) (0.0008)
PEM (SR) Estimated −1.8561 0.8563 0.0546 −0.0543 —

(SE) (0.0028) (0.0028) (0.0008) (0.0008)
PEM (MCS) Estimated −1.8585 0.8587 0.0541 −0.0539 24

(SD) (0.0027) (0.0027) (0.0008) (0.0009)
IV4 (MCS) Estimated 0.0954 −0.8806 0.0585 0.0481 114

(SD) (13.0) (11.6) (0.0224) (0.694)
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failure rate of 19% in the MCS analysis: it fails to converge satisfactorily in 24 of the 124
realisations (these realisations were removed in computing the statistics shown in Table 8.2)
while, as in the previous example, the RIVBJ algorithm does not fail at all. The performance
of IV4 is much worse: it fails to converge satisfactorily in 114 of the 124 realisations, an
unacceptable failure rate of 92%.
This model is an even ‘stiffer’ dynamic system than the previous example, with time

constants of 6.5 and 605 h7 and PEM problems seem, once again, to be connected with this
property. When the PEM algorithm fails to converge on the correct system, it most often
converges on a false optimum with one root of the denominator polynomial A(z−1) negative
and very close to the unit circle; while the other is positive and just greater than 0.9 (a typical
example is −0.99943, 0.91657). And, in all cases such as this, the explanation of the data is
poor: e.g. the coefficient of determination R2T based on the simulated noise-free output x̂(k), is
only ca. 0.85, compared with values very close to unity when the correct convergence occurs
(as in all the RIV estimated models).

8.4 Model Structure Identification and Statistical Diagnosis

Model structure identification is an important aspect of data-based model building. In the
present linear modelling context, the model structure is defined by the orders of both the
system (n, m) and noise (p, q) TF polynomials; and the size of any pure time delay, δ: i.e.
the model structure pentad [n m δ p q]; see e.g. equation (8.38). An essential adjunct to
identification is the statistical diagnosis of the model, in particular the analysis of the model
residuals and the evaluation of the model time and frequency response characteristics. Such
statistical measures, in themselves, are rarely sufficient to completely and unambiguously
identify the ‘best’ model structure: normally a number of models prove acceptable and it is
necessary to look further at the physical nature of the system being modelled. In the context of
the present book, the practical utility of the estimated model for model-based control system
design is an additional consideration: in general, relatively low order, ‘dominant mode’ models
are required.
An important aspect of model structure identification is that the model should, if at all

possible, relate clearly to the physical nature of the system being modelled, where the term
‘physical’ is interpreted within the particular engineering, scientific or social scientific area
under study. The Data-Based Mechanistic (DBM) approach to modelling (see Young and
Lees 1993; Young 1998, 2011a, b, and references therein; Price et al. 1999) emphasises this
importance by requiring that the model should only be considered credible and, therefore,
fully acceptable, if it also is capable of interpretation in such a physically meaningful manner.
This differs from ‘grey-box’ modelling because it is an inductive, rather than a hypothetico-
deductive process (e.g. Young 2011b): in other words, the interpretation of the model in
physical terms is carried out subsequent to inductive, data-based modelling based on a generic
class of models (here linear TF models); in contrast to grey-box modelling, where the model
interpretation and structure are assumed mainly prior to data-based modelling.

7 Note that these time constants are sensitive to the estimated model parameter values and were computed from
estimates with more decimal places than those shown in Table 8.2.
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8.4.1 Identification Criteria

Model order identification can be a difficult task and can involve subjective judgement based
on the experience of the user. With this caveat in mind, model order identification in DBM
modelling is based around the simulation coefficient of determination R2T ; the standard coef-
ficient of determination R2; and various model order identification criteria, such as the Young
Information Criterion (YIC) andAIC,which are defined as follows, where y(k) is themeasured
output of the system and N is the total number of samples in the data set:

(i) R2T = 1− σ̂ 2s

σ 2y
(8.78)

where

σ̂ 2s = 1

N

k=N∑
k=1

[y(k)− x̂(k)]2, in which x̂(k) is the simulated model output

σ 2y = 1

N

t=N∑
t=1
[y(k)− ȳ]2; ȳ = 1

N

k=N∑
k=1

y(k)

(ii) R2 = 1− σ̂ 2

σ 2y

where

σ̂ 2 = 1

N

k=N∑
k=1

ê(k)2 (8.79)

is the residual variance8

(iii)
YIC = loge

σ̂ 2

σ 2y
+ loge{NEVN}; Normalised Error Variance Norm (NEVN)

= 1

np

i=np∑
i=1

σ̂ 2.p∗
i i

â2i
(8.80)

(iv) AIC(np) = N loge σ̂ 2 + 2.np (8.81)

Here, in the case where the additive noise is white, or where only the systemmodel parameters
are being estimated, np = n + m + 1 is the number of parameters in the estimated system
model parameter vector ρ(N ); p∗

i i is the ith diagonal element of the P∗(N ) covariance matrix
obtained from the estimation analysis (so that σ̂ 2. p̂∗

i i can be considered as an estimate of the
variance of the estimated uncertainty on the ith parameter estimate); and â2i is the square of
the ith parameter estimate in the ρ̂(N ) vector. In the case where the full BJ model is being
estimated, np = n + m + p + q + 1 is the total number of parameters in the system and
noise models.

8 This also defines the variance of the one step ahead prediction errors, i.e. 1N
∑k=N

k=1 [y(k)− ŷ(k|k − 1)]2.
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We see that R2T is a statistical measure of how well the simulated model explains the data:
if the variance of the simulated (deterministic) model residuals σ 2s is low compared with the
variance of the data σ 2y , then R2T tends towards unity; while if σ̂ 2 is of similar magnitude to
σ 2y then it tends towards zero (and can become negative). Note, however, that R2T is based on
the variance of the model errors y(k)− x̂(k), where

x̂(k) = B̂(z−1)
Â(z−1)

u(k − δ) (8.82)

which is identical to the auxiliary model used in RIV/RIVBJ estimation. This needs to be
differentiated from the more conventional coefficient of determination R2, which is based on
the variance of the noise model residual variance, which is identical to the one step ahead
prediction errors. This is because R2T is a more discerning measure than R2 for TF model
identification: R2 can often be quite close to unity even if the model is relatively poor (i.e. it
is easy to predict reasonably well only one sample ahead); while R2T shows how much of the
measured output is being explained by the deterministic output of the system model and will
only be close to unity if the noise level on the measured output is low.
The YIC is more a more complex, heuristic criterion (Young 1989) based on the properties

of the IPM (Wellstead 1978; Young et al. 1980), which is defined below equation (8.46b), and
the statistical interpretation of its inverse P̂(N ) in (8.73). We see that the first term of YIC
is simply a relative measure of how well the model explains the data: the smaller the model
residuals the more negative the term becomes. The second term, on the other hand, provides
a measure of the conditioning of the IPM, which needs to be inverted when the IV normal
equations are solved: if the model is over-parameterised, then it can be shown that the IPM
will tend to singularity and, because of its ill-conditioning, the elements of its inverse P̂(N )
will increase in value, often by several orders of magnitude. When this happens, the second
term in the YIC tends to dominate the criterion function, indicating over-parameterisation.
An alternative justification of the YIC can be obtained from statistical considerations (e.g.
Young 1989).
Although heuristic, the YIC has proven very useful in practical identification terms over the

past 20 years, notably for the estimation of control models. Indeed, the authors have utilised
YIC for most of the practical PIP control applications cited in earlier chapters. However, it
should not be used as a sole arbiter of model order since, in some cases, it tends to favour low
order models that do not provide a sufficiently good explanation of the data compared with
other models that have a low, albeit not the lowest, YIC value. For this reason, it should be
used to select the best model only from those models that provide a satisfactory explanation
of the data (see Example 8.8, Example 8.9 and Example 8.10).
The AIC is a well known identification criterion for AR processes (Akaike 1974) and is

related to the Final Prediction Error (FPE). It is used to identify the order of AR or ARMA
models for the noise process ξ (k), based on the model residuals ê(k) and the number of model
parameters. Here, the first term is a measure of how well the model explains the data; while
the second term is simply a penalty on the number of parameters. Thus, as in the YIC, the
AIC seeks a compromise between the degree of model fit and the complexity of the model:
the smaller the value of the AIC (that is the more negative it is since it is based on a logarithmic
measure) the better identified is the model. As we shall see in later examples, it can also be
used as an aid in identifying the whole BJ transfer function model.
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Following from the publication of Akaike’s seminal paper (Akaike 1974), the topic of model
order identification criteria has received a lot of attention and several different modifications
to the AIC have been suggested. All of these are in the general form (Shibata 1985):

T + α.np (8.83)

where T is a test statistic and the second term is the penalty term on the number of parameters
in the model, with α > 1. The test statistic T can take several forms, as discussed by Shibata,
but the best known is the maximum log likelihood, where the dominant term is the one step
prediction error variance σ̂ 2, as in the AIC defined above. The most controversial point is how
to choose α: this is 2 in the case of the AIC, log(N) in the Bayesian Information Criterion
(BIC) of Schwarz (1978) and c.loglog(N) for some c>2 in the criterion suggested by Hannan
and Quinn (1979). We have found that the AIC and BIC both work well, although the AIC is
more prone to over-fitting.

8.4.2 Model Structure Identification Procedure

Using the above statistical measures, a generally useful approach to model structure identifi-
cation is as follows:

1. Use the SRIV estimation algorithm to estimate a range of different models for min(n) ≤
n ≤ max(n) andmin(m) ≤ m ≤ max(m), where the maximum and minimum values of n
and m are selected by the user, and sort these by the value of R2T , so exposing those model
structures that best explain the data in a simulation sense. This can be accomplished easily
using the rivbjid identification routine in CAPTAIN with the ARMA noise model orders p
and q set to zero.

2. Amongst the best models in step 1, select one that has a relatively low YIC value: normally
this will be a large negative value, since it is a logarithmic measure, but the choice is not
critical provided the associated R2T is relatively high compared with that of other models.
But do not select a model that has a high R2T and a relatively large YIC, since the YIC
is then indicating over-parameterisation. Use this selected model to generate an estimate
ξ̂ (k) of the additive noise ξ (k). Then estimate ARMA(p,q) models for this estimated noise
over a range of p and q, min(p) ≤ p ≤ max(p) and min(q) ≤ q ≤ max(q), again with the
maximum and minimum values selected by the user, and sort these in terms of the AIC or
BIC. In CAPTAIN, this can be accomplished straightforwardly using the ivarmaid routine.

3. Re-estimate the full model, with the ARMA noise model included, over a smaller range
of n, m, p and q, based on the results obtained in step 1 and step 2, using the full RIVBJ
algorithm and sorting on the basis of the AIC or BIC. Select the best model from the results
obtained in this manner.

4. In some cases, particularly if the system is a ‘stiff’ system characterised by widely spaced
eigenvalues, it may be that the model estimated in step 3 provides a poor estimate of the
deterministic system output compared with the simpler SRIV estimated output. In this case,
it is better to use the SRIV estimate, together with the ARMA noise model estimated in
step 2, to define the full stochastic model that is referred to as the SRIV-ARMA model
by Young (2011a, p. 213 and the example on pp. 383–388). In this case, the covariance
matrix provided by the SRIV algorithm will not necessarily provide a good estimate of the
parametric uncertainty.



Data-Based Identification and Estimation of Transfer Function Models 235

Typical examples of this model identification process are discussed in the following case
studies, including one well-known laboratory example (Example 8.8) and selected control
applications from earlier chapters (Example 8.9 and Example 8.10).

Example 8.8 Hair-Dryer Experimental Data For the first example, let us consider a well
known demonstration in the MATLAB R© System Identification Toolbox, where the data are
shown in Figure 8.4. These data are derived from an experiment on a laboratory scale ‘hair-
dryer’ system (see Ljung 1987, p. 440, who refers to this as a ‘nice’ example). A fan blows
heated air through a tube and the air temperature is measured by a thermocouple at the outlet.
The input u(k) is the voltage over the heating device, which is just a mesh of resistor wires. The
output y(k) is the voltage from the thermocouple at the output. Finally, the sampling interval
is �t = 0.08 seconds. Model structure identification, based on the the first 500 samples of
the data shown in Figure 8.4 and using the approach suggested above, yields the initial SRIV
results shown in Table 8.3 (obtained here using the CAPTAIN Toolbox rivbjid routine). This
suggests that, based on YIC considerations, the best model structure is [2 2 3 0 0]. However,
a number of other models of second and third order perform well and the BIC identifies a [2
3 2 0 0] model, which has the same R2T = 0.9881. In addition, the model structure with the
highest R2T = 0.9886 is [3 2 3 0 0]. So at the next stage in identification, we should consider
a tighter range of models that include these as well as noise models.

When AIC and BIC identification is applied to the error series from both the [2 2 3 0 0]
and [2 3 2 0 0] models they identify either a first order AR(1) or a second order AR(2) noise
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Figure 8.4 Hair-dryer experimental data for Example 8.8
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Table 8.3 Initial SRIV structure identification for Example 8.8

Structure YIC (TF) R2T σ̂ 2s NEVN

[2 2 3 0 0] −7.806 0.9881 0.008280 −7.894
[2 2 2 0 0] −6.815 0.9867 0.009273 −8.994
[3 3 3 0 0] −5.561 0.9883 0.008181 −7.093
[2 3 3 0 0] −5.056 0.9882 0.008229 −6.452
[3 3 2 0 0] −4.302 0.9708 0.02042 −6.881
[3 2 3 0 0] −3.890 0.9886 0.007952 −4.957
[2 3 2 0 0] −0.783 0.9881 0.008283 −8.002
[3 2 2 0 0] 0.578 0.9884 0.008081 −6.290

model. So the final stage of model identification is applied to all models in the range [2 2 2 0
0] to [3 3 3 2 2] again using the rivbjid routine in CAPTAIN. The best five models identified
in this manner by the BIC are shown in Table 8.4.
From Table 8.4, the best identified model structure is [2 3 2 1 0], which defines a general

TF model of the form:

y(k) = b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2 u(k − 2)+ 1

1+ c1z−1 e(k) (8.84)

The associated full RIVBJ estimated parameter estimates are given by:

â1 = −1.3145 (0.016); â2 = 0.4325 (0.015)
b̂0 = 0.00173 (0.0020); b̂1 = 0.0655 (0.0029); b̂2 = 0.0406 (0.0034)
ĉ1 = −0.9230 (0.0229); σ̂ 2 = 0.00142

(8.85)

As we see in Figure 8.5, this model explains the data very well, with a coefficient of determi-
nation R2T = 0.9873 and the measured output (dots) is always within the 95% (twice the SD)
confidence bounds. All the parameters of the system TF are well defined statistically, with SEs
much lower than the estimated value.
However, it is necessary to evaluate the model in other regards before it is finally accepted.

An important aspect of such evaluation is the investigation of the model errors and the
final residuals. The model simulation errors, based on the difference between the measured
output and the simulated model output have a near zero mean value, as required but they

Table 8.4 Final RIVBJ structure identification for Example 8.8

Structure BIC R2T σ̂ 2s NEVN R2

[2 3 2 1 0] −1955 0.9873 0.001421 −9.197 0.998
[3 3 2 1 0] −1952 0.9879 0.001411 −5.656 0.998
[2 3 3 1 0] −1951 0.9877 0.001416 −7.755 0.998
[2 3 2 2 0] −1950 0.9873 0.001422 −9.214 0.998
[2 3 2 1 1] −1949 0.9873 0.001423 −9.165 0.998
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Figure 8.5 Estimation: model output (8.84) compared with the measured dryer data

are quite highly coloured. However, the ACF of the final model residuals ê(k) (one step
ahead prediction errors), resulting from the inclusion of the AR(1) noise model, have no
significant lag correlation, as shown by Figure 8.6a. Furthermore, as shown in Figure 8.6b,
the residuals are not significantly cross-correlated with the input series u(k), confirming that
the model is explaining the data very satisfactorily. The coefficient of determination based
on the final residuals is R2T = 0.9980 (i.e. 99.8% of the output data are explained by the
full stochastic general TF model). The unexplained 0.02% remaining is accounted for by
the final residuals, which have the properties of white noise and are, therefore, completely
unpredictable.
Validation is important in data-based modelling: the model should not be accepted unless it

continues to explain measured data that were not used in its identification. Figure 8.7 shows
the validation results: here, the simulated deterministic output of the estimated model (8.84) is
compared with the measured output from samples 500 to 900. The results are very good, fully
confirming the efficacy of themodel, with R2T = 0.9935, which is better than that obtained over
the estimation data; and the standard coefficient of determination based on the final residuals,
which is also marginally better at R2 = 0.9983.
The above results can be compared with those obtained by Ljung (1987) and those available

as a demonstration example in the MATLAB R© System Identification Toolbox. In both, an
ARX model with structure [2 2 3 0 0] is selected, although with the caveat that a number
of models provide a similar explanation of the data. This performs similarly to the RIVBJ
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Figure 8.7 Validation: model output (8.84) compared with the validation data for Example 8.8

identified and estimated [2 3 2 1 0] model at the deterministic validation stage of the analysis
but, not surprisingly, the ACF/PACF tests show that its residuals are significantly coloured,
with the PACF showing a large lag one value of 0.9028, implying a first order AR model
for the residuals. Also, the cross correlation test shows that the residual is significantly cross-
correlatedwith the input. This suggests that theARXmodelmightwell be acceptable for certain
applications, such as deterministic control system design, but that for gaining understanding
about the nature of the system, stochastic control system design or forecasting applications,
the [2 3 2 1 0] model identified here would be a much better choice.
Perhaps the most important limitation of ARX models is the statistical inconsistency and

noise-induced asymptotic bias on the parameter estimates, particularly when the noise is
heavily coloured, as in this case. Here, the poles of the estimated ARX model are at 0.748
and 0.527, indicating associated time constants of 0.107 and 0.152 s. On the other hand, the
RIVBJ estimate of the same structure system but with AR(1) noise, i.e. a [2 2 3 1 0] model, has
complex poles of 0.657± 0.028j. Since the complex part is so small, this is effectively two real
poles: in fact, the ddamp routine in MATLAB R© reports two real roots at 0.658; i.e. two equal
time constants of 0.122 s. This is confirmed by our preferred identified model (8.84), which
has virtually the same estimated poles at 0.657 ± 0.023j. Further confirmation is obtained
by continuous-time model estimation (see section 8.6, Example 8.13) and constrained RIVBJ



240 True Digital Control

estimation with the roots of the denominator polynomial constrained to be real, although not
necessarily equal. The latter yields:

y(k) = 0.001712+ 0.06534z−1 + 0.04120z−2

(1− 0.6556z−1)2
u(k − 2)+ 1

1− 0.9215z−1 e(k) (8.86)

where e(k) is a zeromean, serially uncorrelated, white noise input with variance σ̂ 2 = 0.00142,
the same as that estimated for the unconstrained model (8.84).
Whether the differences in the models discussed above are important in practical terms will

depend upon the use of the model. However, given the limitations of the ARX estimation
algorithm, there is no doubt, in statistical terms, that we should have more confidence in the
RIVBJ estimatedmodel. As a result, the constrainedmodel (8.86), which is more parsimonious
than (8.84) with one less parameter, would seem to be the best model to use in initial PIP
control system design, although subsequent practical implementation over a wider range of
input perturbations might suggest re-estimation and evaluation.

Example 8.9 Axial Fan Ventilation Rate Chapter 2 (Example 2.8) considers the ventilation
rate in a 1.0 m2 by 2.0 m test chamber at Lancaster University (Taylor 2004). Illustrative open-
loop experimental data based on a sampling rate �t = 2 s are shown in Figure 8.8, where
y(k) is the air velocity (m s−1) and u(k) is the control input (the applied voltage to the fan,
which is scaled to lie in the range zero to 100%, i.e. full power). It is clear that the noise levels
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Figure 8.8 Axial fan experimental data in Example 8.9. (a) Ventilation rate (points) andmodel response
(thin trace). (b) Control input. Sampling rate 2 s
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are relatively low, especially when the small perturbation of the system for this particular
experiment is noted (i.e. the input changes over only 5% of its full range).
In Example 2.8, the model was estimated using the CAPTAIN rivbj routine with the simpler

SRIV settings and the model structure was intentionally restricted to [1 1 1] in order to simplify
the control system design. Here, however, wewill utilise the full rivbj analysis, which identifies
a more complicated [1 3 1 4 0] model structure, based on the smallest BIC value:

y(k) = b1z−1 + b2z−2 + b3z−3

1+ a1z−1 u(k)+ 1

1+ c1z−1 + c2z−2 + c3z−3 + c4z−4 e(k);

e(k) = N (0, σ 2)

The estimated parameters and SEs are as follows:

â1 = −0.682(0.0063); b̂1 = −0.00177(0.0009); b̂2 = 0.0121(0.0015); b̂3 = 0.0230(0.0012)

ĉ1 = −0.363(0.053); ĉ2 = −0.137(0.055); ĉ3 = −0.155(0.055); ĉ4 = −0.116(0.053);
σ̂ 2 = 8.6× 10−5

These estimates and the associated step response, suggests a more complicated initial response
that includes a small non-minimum phase effect. The model explains the data very well, as
can be seen from Figure 8.8, with a high R2T = 0.997. The auto and cross correlation functions
show that the estimates ê(k) of the white noise e(k) are serially uncorrelated and not correlated
with the input signal u(k), as required. By contrast and not surprisingly given the need for
an AR(4) noise process in the above model, the SRIV estimated residuals of the first order
[1 1 1] model are both serially correlated and significant correlated with u(k), so the model
is clearly not optimal in statistical terms. Nevertheless, it was clearly good enough for PIP
control system design, showing how robust the PIP control system is to modelling errors. The
above model is based on an illustrative operating level of ≈ 1 m s−1. Similar models have
been used for other operating conditions and have provided an excellent basis for successful
PIP control system design (e.g. Taylor et al. 2004a,b).

Example 8.10 Laboratory Excavator Bucket Position The laboratory excavator bucket
position discussed in Chapter 2 (Example 2.1) and Chapter 5 (Example 5.2) is a little unusual,
since the system essentially behaves as a first order integrator. In fact, preliminary data-based
analysis using the methods discussed above, suggests that an adequate description of the
excavator bucket position is generally given by equation (8.1a) with n = δ = 1, m = 0 and
a1 ≈ −1.0. This is because the joint angle y(k) changes at a relatively constant rate for a steady
input voltage u(k). Furthermore, the normalised voltage has been calibrated so that there is
no movement of the manipulator when the input is zero. The deterministic control model is,
therefore:

y(k) = b1z−1

1− z−1 u(k) (8.87)

Assuming that the value of a1 is known a priori to be very close to −1.0, it is possible to
estimate b1 in equation (8.87) using the recursive option of the rivbj routine in CAPTAIN.



242 True Digital Control

5 10 15 20

0

5

10
(a)

(b)

O
u
tp

u
t

0

20

40

Time (samples)

In
p
u
t

5 10 15 20

Figure 8.9 Open-loop experimental data collected from the laboratory excavator in Example 8.10. (a)
Joint angle data (points) and model response (solid trace) in degrees. (b) Control input (scaled voltage
signal). Sampling rate 0.1 s

This allows the user to specify the a priori conditions on the estimated parameter vector and
its associated covariance matrix. In this case, these were set to ρ̂(0) = [−0.99999 0] and
P(0) = diag[0 106], so that â1(k) does not change at all from its initially specified −0.99999
value because the associated variance p11(k) in P(k) is maintained at the its initially set zero
value. However, the value of p22 = 1× 106 allows the algorithm to generate the recursive
estimate b̂1(k), k = 1, 2, . . . , N . Of course, equation (8.87) is an approximation of the actual
system, as always, but similar models have been identified and successfully used for the control
of this and other hydraulically actuated manipulators (Shaban et al. 2008). An illustrative
experiment and model response are shown in Figure 8.9.
For the illustrated data set, the estimated b1 parameter and its SE obtained using the SRIV

settings in rivbj is b̂1 = 0.01489 (0.00012) and R2T = 0.997, reflecting the good explanation
of the data in Figure 8.9. However, further analysis suggests that the estimated value of b1
can vary depending on the applied voltage used in the experiment. In fact, as discussed by
Taylor et al. (2007b), b1 is best represented as a graphical function of this voltage, an example
of a state-dependent parameter. Further discussion of the concept is deferred until Chapter 9.
At this juncture, it is sufficient to point out that, for the purposes of the linear PIP control
experiments considered in Example 5.2, an optimised value for b1 was used, based on several
open-loop experiments at a range of different operating levels (i.e. voltages) and with PRBS
inputs. The details of this latter analysis (and related state-dependent estimation) are somewhat
peripheral to the present discussion and so are omitted (Shaban 2006).
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8.5 Multivariable Models

The most general multivariable TFmodel is the stochastic version of theMIMO representation
given previously by equation (7.9) with an additive noise vector, i.e.

y(k) = G(z−1)u(k)+ ξ (k) (8.88)

where

y(k) = [y1(k) y2(k) · · · yp(k)]T

u(k) = [u1(k) u2(k) · · · ur (k)]T

ξ (k) = [ξ1(k) ξ2(k) · · · ξp(k)]T
(8.89)

Methods for estimating such models are available (Jakeman and Young 1979). From an
estimation point of view, however, it is simpler to consider the MISO models representing
each row of (8.88). In general, such a model can be written in the form (where time delays
have been explicitly introduced for generality):

yi (k) =
j=r∑
j=1

Bi j (z−1)
Ai j (z−1)

u j (k − δ j )+ ξi (k) (8.90)

where ξi (k) is a coloured noise process and i = 1, . . . , p. In the case where the noise has
rational spectral density, this can be considered as an ARMA(p,q) process, i.e.

yi (k) =
j=r∑
j=1

Bi j (z−1)
Ai j (z−1)

u j (k − δ j )+ D(z−1)
C(z−1)

ei (k) (8.91)

where ei (k) is a zeromean, serially uncorrelated, white noise process. This is theMISO version
of the BJ model.

8.5.1 The Common Denominator Polynomial MISO Model

If the MIMO model (8.88) has been obtained from a state-space representation of the system,
then all of the elemental TFs will have a common denominator polynomial (as is the case for
the examples in Chapter 7), i.e.

y(k) = 1

A(z−1)
Gn(z

−1)u(k)+ ξ (k) (8.92)

where Gn(z−1) is the associated matrix of numerator polynomials. In this case, the MISO
model (8.90) becomes:

yi (k) =
j=r∑
j=1

Bi j (z−1)
A(z−1)

u j (k − δ j )+ ξi (k) (8.93)

with a similar change to (8.91). One potential identifiability problem with this common
denominator MISO model form is that, in general, it will involve some elemental TFs that
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have pole-zero cancellations. However, if this is not the case, it is the simplest model form to
identify and estimate. In fact, in this form, the RIVBJ estimation algorithm is the same as in
the SISO case: all that is required is to extend the relevant data vectors to include the additional
input terms. For instance the ith vector becomes:

φT
i (k) = [−yi (k − 1)− · · · − yi (k − n) ui1(k − δi ) · · · ui1(k − δi − mi )+ · · ·

+ uir (k − δi ) · · · uir (k − δi − mi )]
(8.94)

with similar changes to all other data vectors, including the IV vector. And, of course, in this
MISO environment, the IV auxiliary model will also be a common denominator MISO model.

Example 8.11 Multivariable System with a Common Denominator A simple example
of the common denominator model identification and estimation is the following first order
model: [

y1(k)
y2(k)

]
= 1

1− 0.5z−1

[
z−1 2z−1

z−1 z−1

] [
u1(k)
u2(k)

]
+

[
ξ1(k)
ξ2(k)

]
(8.95)

or, in MISO form:

y1(k) = 1

1− 0.5z−1 u1(k − 1)+ 2

1− 0.5z−1 u2(k − 1)+ ξ1(k)

y2(k) = 1

1− 0.5z−1 u1(k − 1)+ 1

1− 0.5z−1 u2(k − 1)+ ξ2(k)

(8.96)

where u1(k) and u2(k) are independent PRBS sequences with a switching period of 10; while
ξ1(k) and ξ2(k) are additive measurement noise inputs, in the form of zero mean, white noise
sequences with variances 0.55 and 0.20, respectively. For both MISO models, the resulting
NSR by SD is 0.35 (35% noise) and a sample of the output data is shown in Figure 8.10.
MCS results for both MISO channels, based on 100 realisations, each with a sample size

of 2000 samples, are compared with the results from an illustrative single estimation run in
Table 8.5 and Table 8.6. It is clear that the RIVBJ estimates are well defined and that estimated
SEs from the single runs are consistent with the MCS means and SDs. The single run results
are good, with the simulation coefficient of determination, based on the error between the
deterministic model output and the noise-free output data, very close to unity. For comparison,
Table 8.5 and Table 8.6 also show the equivalent results obtained using the PEM algorithm in
the MATLAB R© System Identification Toolbox. To obtain the PEM results, each MISO model
is best estimated in the following form9:

(1− a1z
−1)y(k) = b1u1(k)+ b2u2(k)+ (1− a2z

−1)ξi (k) (8.97)

since the implementation of the PEM algorithm precludes direct estimation in the common
denominator form of equation (8.96). Since it is not then possible to constrain the estimate of

9 An alternative is the different denominator MISO model form but this also requires the estimate of one more
parameter.
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Figure 8.10 Representative section of the data used in Example 8.11

Table 8.5 RIV and PEM results for Example 8.11 MISO Channel 1: y1(k)

Parameter a11 b11 b12

True −0.5 1.0 2.0
RIVBJ: mean −0.49917 1.0047 2.0024
RIVBJ: SD 0.01096 0.027517 0.043935
RIVBJ: single run −0.4978 1.0299 2.0117
RIVBJ: SE 0.010358 0.026457 0.041748
PEM: mean −0.50187 0.99844 1.9922
PEM: SD 0.011316 0.028189 0.045492
PEM: single run −0.49552 1.0435 2.0125
PEM: SE 0.010049 0.02847 0.044774
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Table 8.6 RIV and PEM results for Example 8.11 MISO Channel 2: y2(k)

Parameter a21 b21 b22

True −0.5 1.0 1.0
RIVBJ: mean −0.49708 1.0058 1.0079
RIVBJ: SD 0.009498 0.020543 0.021111
RIVBJ: single run −0.50318 0.99114 0.99291
RIVBJ: SE 0.010349 0.022151 0.022032
PEM: mean −0.4996 1.0001 1.0025
PEM: SD 0.0090982 0.020326 0.020666
PEM: single run −0.49383 1.0094 1.0211
PEM: SE 0.010845 0.023259 0.023094

a2 in (8.97) to be the same as that of a1, this involves the estimation of four rather than three
parameters. The resulting estimates of a2 in (8.97) are not shown in Table 8.5 and Table 8.6
but, in each case, they are close but not identical to the estimate of a1.

8.5.2 The MISO Model with Different Denominator Polynomials

The MISO model with different denominator polynomials can be estimated using the PEM
algorithm in the MATLAB R© System Identification Toolbox. However, it presents a more
difficult estimation problem in the case of the RIV algorithm type. The RIV algorithm in this
case was first suggested by Young and Jakeman (1980) and Jakeman et al. (1980), whilst a
recent description of its RIVBJ successor is given in section 7.6 of Chapter 7 in Young (2011a).
The CAPTAIN routine (Taylor et al. 2012) for this algorithm is denoted by rivdd and this is
used in Example 8.12.

Example 8.12 Multivariable System with Different Denominators A simple first order
example of different denominator model identification and estimation is the following MISO
multivariable model:

y(k) = 1

1− 0.5z−1 u1(k − 1)+ 2

1− 0.9z−1 u2(k − 1)+ ξ (k) (8.98)

Here, as in the previous example, u1(k) and u2(k) are independent PRBS sequences with a
switching period of 10; while ξ (k) is an additive, coloured measurement noise input generated
as the output of the following ARMA(1,1) model:

ξ (k) = 0.1

1− 0.95z−1 e(k) (8.99)

where e(k) is a zero mean, white noise input sequence with variance 4.5. The resulting noise
is highly coloured, as can be seen in the section of the data shown in Figure 8.11, and the NSR
by SD is 0.35.
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Figure 8.11 A representative section of the noisy output used in Example 8.12 compared with the
noise-free output, showing the heavily coloured nature of the noise

MCS results for the RIV and PEM algorithms, based on a 100 realisations, each with a size
of 2000 samples, are compared with the results from a single estimation run in Table 8.7. Once
again, as in the previous common denominator example, it is clear that the estimates are well
defined and that the estimated SEs from the single runs are consistent with the MCS means
and SDs. The comparative PEM results in Table 8.8 were obtained using the standard MISO
model form with different denominators.
Finally, Figure 8.12a compares the deterministic output of the RIV estimated model with

the noise-free output measurement and it is clear that they are hardly distinguishable, with a
coefficient of determination R2T = 0.999. By contrast, the ARX estimated model has a poor

Table 8.7 RIVBJ results for different denominator MISO model in Example 8.12

Parameters a11 a12 b11 b12 c1 d1

True −0.5 −0.9 1.0 2.0 −0.95 0.1
RIVBJ: mean −0.4929 −0.9000 0.9951 2.003 −0.9478 0.1020
RIVBJ: SD 0.0433 0.0029 0.0658 0.0399 0.0073 0.0270
RIVBJ −0.5059 −0.8996 1.0062 2.0244 −0.95 0.1163
RIVBJ: SE 0.0390 0.0027 0.0587 0.0366 0.0076 0.0241
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Table 8.8 PEM results for different denominator MISO model in Example 8.12

PEM: mean −0.4952 −0.9000 0.9930 2.006 −0.94762 0.1022
PEM: SD 0.0518 0.0034 0.0717 0.0443 0.0072 0.0268
PEM −0.5152 −0.8987 0.9324 2.0582 −0.9518 0.1203
PEM: SE 0.0434 0.0029 0.0603 0.0385 0.0075 0.0238

fit to the noise-free data and its parameter estimates (not shown) are heavily biased, as would
be expected.

8.6 Continuous-Time Models

At first sight, the reader might find it strange to see a section on continuous-time model
identification and estimation included in a book on true digital control.However, it is sometimes
more convenient to model a system in continuous-time terms since the model can then be
converted to a discrete-time form with any selected sampling interval �t . This clearly adds
flexibility to the design process since it is often not clear what sampling interval will be best for
practical control system implementation and the closed-loop performance needs to be assessed
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Figure 8.12 Comparison of (a) RIV (solid trace) and (b) ARX (solid trace) estimated model outputs
with the noise-free output (dashed trace) for Example 8.12
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in this regard. Moreover, continuous-time models have other advantages (see also Garnier and
Young 2012):

1. There is only one continuous-time model, regardless of the sampling interval, whereas the
parameters of the discrete-time model are a function of �t .

2. Most models of physical systems are obtained by the application of physical laws (e.g.
conservation of mass, energy, etc.) that are normally formulated in continuous-time terms.
Because of this, the parameters of the continuous-timemodel normally have a clear physical
significance which is independent of the sampling interval and which is useful when
communicating with practitioners who are normally familiar with such parameters and
their meaning.

3. If the data are sampled rapidly in relation to the dominant time constants of the system, the
discrete-time model estimation can be very poor because the eigenvalues of the discrete-
time model will be close to the unit circle in the complex z-plane. As a result, the parameter
estimates can be poorly defined10, particularly if the system is ‘stiff’, with widely spaced
eigenvalues (see Example 8.6 and Example 8.7). By contrast, the continuous-time model
estimates are advantaged by rapid sampling.

4. Continuous-time models can be estimated from non-uniformly sampled data and can
include ‘fractional’ time delays where the time delay is not an integral number of sampling
intervals (e.g. Young 2006; Ahmed et al. 2008).

8.6.1 The SRIV and RIVBJ Algorithms for Continuous-Time Models

The RIV approach to model identification and estimation is, as far as the authors are aware, the
only discrete-timeTF estimation algorithm that can be applied straightforwardly to continuous-
time models, with only fairly minor modifications to the definition of the vectors and the
iterative prefiltering procedures. The Simplified Refined Instrumental Variable method for
hybrid Continuous-time models (SRIVC) was first suggested and evaluated by Young and
Jakeman (1980), under the simplifying theoretical assumption of additive white noise. More
specifically, in the SISO case, it is concerned with the estimation of the following multi-order
continuous-time differential equation model:

dn x(t)

dtn
+ α1

dn−1x(t)
dtn−1 + · · · + αn x(t) = β0

dmu(t − τ )

dtm
+ · · · + βmu(t − τ ) (8.100)

or, using simpler nomenclature where the bracketed superscript denotes the differentiation
order:

x (n)(t)+ α1x
(n−1)(t)+ · · · + αn x (0)(t) = β0u

(m)(t − τ )+ · · · + βmu(0)(t − τ ) (8.101)

Here, the pure time delay τ , in time units, is often assumed to be an integer number related
to the sampling time, as in the discrete-time case: that is τ = δ�t , but this is not essential. In

10 The data could be sub-sampled by decimation but this clearly involves a loss of information on any higher frequency
dynamic modes.
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this continuous-time environment, ‘fractional’ time delays can be introduced if required (see
earlier cited references). In TF terms, equation (8.100) or equation (8.101) take the form:

x(t) = B(s)

A(s)
u(t − τ ) (8.102)

where

B(s) = β0s
m + β1s

m−1 + · · · + βm ; A(s) = sn + α1s
n−1 + · · · + αn (8.103)

and s is the differential operator, i.e. s px(t) = d px(t)/dt p. It is now assumed that the input
signal u(t), t1 < t < tN , is applied to the system and that this input and the output x(t) are
sampled at discrete times tk , not necessarily uniformly spaced.
In the case of uniformly sampled data at a sampling interval�t , the measured output y(tk),

where tk = k�t , is assumed to be corrupted by an additive measurement noise:

y(tk) = x(tk)+ e(tk) e(tk) = N (0, σ 2) (8.104)

where the argument tk indicates that the associated variable is sampled11 at time t1 to tN and,
as shown, e(tk) is a zero mean, normally distributed, white noise sequence with variance σ 2.
Combining the continuous-time model equation with the discrete-time observation equation,
the complete theoretical model takes the following hybrid form:

x(t) = B(s)

A(s)
u(t − τ ) (i)

y(tk) = x(tk)+ e(tk) (ii)
(8.105)

As in the case of the SRIV algorithm, the statistical model (8.105) is assumed for theoretical
purposes and, if its assumptions are correct in any practical situation, then the SRIVC algo-
rithm yields statistically optimal estimates of the model parameters that are both consistent
and asymptotically efficient. However, even if the assumptions about the noise e(tk) are not
satisfied, the estimates remain consistent because of the IV implementation. Moreover, practi-
cal experience with the SRIVC algorithm shows that the estimates are relatively efficient, that
is they normally have relatively low variance.
The more complex RIVCBJ algorithm (Young 2008; Young et al. 2008) is based on the

following hybrid theoretical model:

x(t) = B(s)

A(s)
u(t − τ ) (i)

ξ (tk) = D(z−1)
C(z−1)

e(tk) e(tk) = N (0, σ 2) (ii)

y(tk) = x(tk)+ ξ (tk) (iii)

(8.106)

11 Note that in the uniform sampling situation, y(tk ) means the same as y(k) and this changed nomenclature for sample
variables is utilised simply to emphasise the continuous-time nature of the estimation problem.
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where the white additive noise has been replaced by a discrete-time ARMA noise process of
the same kind as that assumed previously.
In fact, the RIVCBJ algorithm is very similar to the RIVBJ algorithm: the steps in the

algorithm are exactly the same and the only differences are the use of the continuous-time
TF model of the system to generate the source of the instrumental variables, and the intro-
duction of hybrid prefilters in the iterative prefiltering procedure. The initial prefiltering by
1/ Â(s) is carried out in continuous-time (e.g. exploiting the numerical integration facilities in
MATLAB R©), while the inverse noise model prefiltering is carried out in discrete-time, based
on the sampled output from the continuous-time prefilters.
The continuous-time prefilters now have an additional advantage and role: the inputs to

the integrators that appear in the implementaion of the prefilter 1/ Â(s) are clearly the time
derivatives of their outputs and are precisely the variables that are required to define the nth
derivative of the measured, prefiltered output y(n)f and the vector φT in the estimation model
which, in this case, takes the form:

y(n)f (tk) = φT (tk)ρc + e(tk) (8.107)

where

φT (tk) = [ − y(n−1)
f (tk) · · · − y(0)f (tk) u(m)f (tk − τ ) · · · u(0)f (tk − τ )

]
ρc = [α1 . . . αn β0 . . . βm]T

(8.108)

Further details of the SRIVC and RIVCBJ algorithms are given in Young (2008, 2011a) and
Young et al. (2008). They are implemented in the rivcbj and rivcbjid routines in CAPTAIN;
while similar routines are available in the CONTSID Toolbox12. A continuous-time algorithm
for estimating MISO models with different denominator polynomials, using a similar back-
fitting procedure to that used for discrete-time systems (section 8.5) was developed by Garnier
et al. (2007). Other related publications that provide additional information on continuous-
time model estimation and its applications are the edited books by Garnier and Wang (2008)
and Wang and Garnier (2011), which contain numerous contributions; Young and Garnier
(2006) show how these algorithms can be used to model linear and state-dependent parameter
nonlinear systems in environmental applications; and Laurain et al. (2010) also consider how
they can be used for modelling related linear parameter varying nonlinear systems.

Example 8.13 Continuous-Time Estimation of Hair-Dryer Experimental Data Let us
consider again the hair-dryer data from Example 8.8 and see how the RIVC algorithm can be
useful in producing multiple discrete-time models at different sampling intervals from a single
continuous-time model. In this example, the RIVC estimated [2 3 2 1 0] model is as follows
(data sampling interval �t = 0.08 s):

x(t) = 0.00164s2 + 0.139s + 25.18
s2 + 10.47s+ 27.82 u(t − 0.16)

y(tk) = x(tk)+ 1

1− 0.927z−1 e(tk) σ 2 = 0.00147

(8.109)

12 See http://www.iris.cran.uhp-nancy.fr/contsid/.
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Figure 8.13 Comparison of the four inferred Discrete-Time (DT) step responses (dots) with the
Continuous-Time (CT) step response (solid trace) in Example 8.13

Now, using the continuous-to-discrete time c2d routine in MATLAB R©, we are able to generate
discrete-time TF models at any specified sampling interval �t . For example, the results for
�t = 0.02, 0.05, 0.08 and 0.2 s are13:

F0.02(z−1) = 0.001642+ 0.003928z−1 + 0.00351z−2

1− 1.801z−1 + 0.8111z−2

F0.05(z−1) = 0.001642+ 0.0286z−1 + 0.01849z−2

1− 1.539z−1 + 0.5925z−2

F0.08(z−1) = 0.001642+ 0.06539z−1 + 0.04053z−2

1− 1.314z−1 + 0.4329z−2

F0.2(z−1) = 0.001642+ 0.2653z−1 + 0.1196z−2

1− 0.6962z−1 + 0.1233z−2

(8.110)

The step responses of each TF are compared with the step response of the continuous-time
model (8.109) in Figure 8.13: it is clear that, at each sampling instant, the response of each
discrete-time model corresponds exactly with the continuous-time response, as expected. In
this case, the most appropriate sampling interval for discrete-time control design is probably
that of the data used to estimate the continuous-time model (�t = 0.08 s), where it will be
noted that the model parameters obtained here are very similar to those obtained by direct
discrete-time model estimation in Example 8.8. This is not surprising because the data were

13 Note that, for simplicity, the pure time delay in the continuous-time model (8.109) was omitted in this analysis.
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obtained through a planned laboratory experiment on the dryer, but this may not always be the
case in practical situations.
A typical scenario for utilising a continuous-time model within digital control system

design would be when data are sampled very rapidly, as is often the case with modern data
acquisition systems. These data can be used to identify and estimate a continuous-time model
and the derived discrete-time models, at different sampling intervals, then provide the basis for
control system design exercises, normally via simulation modelling. Here, the discrete-time
model to be used for final control system design and implementation is selected on the basis
of the best overall closed-loop performance, as evaluated in terms of factors such as input
signal and response characteristics, robustness to uncertainty on the model parameters and
multi-objective performance.

8.6.2 Estimation of δ-Operator Models

An alternative to continuous-time TF model estimation is to consider a δ-operator model
(Middleton and Goodwin 1990). As discussed in Chapter 9, the δ-operator is the discrete-
time, sampled data equivalent of the differential operator s. The RIVBJ approach to the
estimation of such δ-operator TF models follows directly from the RIVCBJ method outlined
above and was suggested by Young et al. (1991). However, the model can be obtained from the
RIVCBJ estimated continuous-time model using a continuous-time to delta conversion, such
as the c2del routine developed by I. Kaspura in Goodwin and Middleton’s original δ-operator
Toolbox for MATLAB R©. Chapter 9 considers PIP control system design based on such δ-
operator models. The advantage of the δ-operator approach is that it retains the completely
digital approach to model estimation and control system design, while being superior to the
standard discrete-time approach when the data are sampled rapidly, as discussed at length by
Middleton and Goodwin (1990). Its disadvantage is that the parameters are not quite the same
as those of the continuous-time model, except when the sampling rate is very fast, so that their
physical interpretation is not as clear as in the completely continuous-time model case.

8.7 Identification and Estimation in the Closed-Loop

The identification and estimation of TF models in a closed-loop situation has received a lot
of attention in the control systems literature (see e.g. Söderström and Stoica 1989; Verhaegen
1993; Van den Hof 1998; Ljung 1999; Gilson and Van den Hof 2005). Provided there is
an external command input signal, simple, sub-optimal transfer function estimation within
a closed automatic control loop has always been straightforward when using IV estimation
methodology (see e.g. Young 1970). However, themore recent RIVBJ andRIVCBJ algorithms,
as discussed in previous sections of this chapter, provide a stimulus to the development of
statistically optimal methods for closed-loop estimation and a number of possible solutions
are discussed by Gilson et al. (2008, 2009) within a continuous-time setting.
These latest optimal RIVBJ procedures are fairly complicated and so, in the spirit of the

present practically orientated book, we will consider here a new and particularly simple gen-
eralised RIV method for estimating discrete- and continuous-time TF models enclosed within
a feedback control system. This ‘three-stage’ method (Young 2011a) derives from a simple
two-stage algorithm (Young 2008; Young et al. 2009) that yields consistent, but statistically
inefficient, parameter estimates. The additional third stage allows for statistically efficient
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Figure 8.14 Typical closed-loop system: GBJ model (8.111)

estimation of the enclosed TF model parameters when the system within the closed-loop is
stable. The attraction of this new approach is its relative simplicity: in particular, the resulting
closed-loop RIVBJ and closed-loop RIVCBJ algorithms, for discrete-time and continuous-
timemodels, are straightforward to implement since they use the existing estimation algorithms
described in previous sections of this chapter, as implemented by the rivbj and rivcbj routines
in the CAPTAIN Toolbox. As a result, the coding of the new closed-loop routines in CAPTAIN
is straightforward, requiring only three calls to these existing algorithms.

8.7.1 The Generalised Box−Jenkins Model in a Closed-Loop Context

Consider the feedback control system shown in Figure 8.14.
The Generalised Box−Jenkins (GBJ) model then takes the following form:

vx (tk) = G(ρ)vu(tk)
y(tk) = vx (tk)+ ξ (tk)
ξ (tk) = H (z−1)e(tk) e(tk) = N (0, σ 2)

(8.111)

The system and ARMA noise TFs, G(ρ) and H (z−1), are defined as the following ratios of
rational polynomials in a generalised ρ operator14 and z−1, respectively:

G(ρ) = B(ρ)

A(ρ)
; H (z−1) = D(z−1)

C(z−1)
(8.112)

More specifically,

A(ρ) = 1+ a1ρ + a2ρ2 + · · · + anρ
n

B(ρ) = b0 + b1ρ + b2ρ2 + · · · + bmρm

C(z−1) = 1+ c1z−1 + c2z−2 + · · · + cpz−p

D(z−1) = 1+ d1z−1 + d2z−2 + · · · + dq z−q

(8.113)

The generalised operator ρ represents the backward shift operator z−1 in the discrete-time case
and the inverse of the differential operator s−1, where s = d/dt , in the hybrid continuous-
time case. Referring to Figure 8.14, yd (tk) is the command input to the closed-loop system;

14 Do not confuse the lower case ρ used here with the boldface ρ used to denote the system model parameter vector:
ρ is used here because it is employed as a generalised operator by Middleton and Goodwin (1990).
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ε(tk) = yd (tk)− y(tk) is the control system error; and the forward path controller is denoted
by P(z−1)/Q(z−1). The control input to the system, vu(tk), is generated by the controller and
is affected by additive circulatory noise ζu(tk), with u(tk) denoting the underlying ‘noise-free’
control input to the system that would be measured at this point if ξ (tk) = ζu(tk) = 0 ∀ tk . The
output from the system vx (tk) is also affected by additive circulatory noise ζx (tk), with the
noise-free output x(tk) defined in a similar manner to the noise-free input. Finally, the noisy
measured output y(tk) is the sum of vx (tk) and the additive ARMA noise ξ (tk), while e(tk)
is the zero mean, normally distributed white noise source to the ARMA noise model. All of
these signals are sampled at a uniform sampling interval �t .
Note that the ARMA noise model is always considered in discrete-time terms and that ρ

could also represent the δ-operator mentioned in the previous section. It must also be stressed
that Figure 8.14 is purely illustrative: the closed-loop identification and estimation procedures
outlined below can be applied to any standard control structure.
The primary aim of this section is to show how the various RIV algorithms described in

previous sections of this chapter can be exploited for closed-loop TF model identification and
estimation. In order to simplify the presentation, however, the acronyms GRIVBJ and GSRIV
are used in unified situations where both discrete- and continuous-time estimation is being
considered, so that all of the SRIV/RIVBJ and SRIVC/RIVCBJ acronyms introduced earlier
apply in the context of the model (8.111).
Section 8.7.2 outlines two very simple methods of closed-loop model estimation that exploit

the GSRIV algorithms and yield consistent, asymptotically unbiased estimates of the param-
eters in both discrete or hybrid continuous-time TF models of the enclosed system. These
simple, two-stage algorithms can be applied reasonably successfully if the noise ξ (tk) does
not comply with the theoretical assumptions; and even if the enclosed system is inherently
unstable, although convergence cannot be guaranteed in this unstable situation. Section 8.7.3
then goes on to describe how one of these simple algorithms can be enhanced by the addition
of a third stage to induce asymptotic efficiency and ensure that the estimates have desirable
minimum variance characteristics in the case where ξ (tk) can be described by an ARMA
model, but only when the enclosed system is stable.
Note that an important aspect of all these methods, not referred to specifically in the

following descriptions of the estimation procedures, is the identification of appropriate orders
for the TF model polynomials in the model (8.111). However, these would be identified
normally using standard GRIVBJ structure identification statistics available from the rivbjid
and rivcbjid routines in the CAPTAIN Toolbox (section 8.4).

8.7.2 Two-Stage Closed-Loop Estimation

Provided the command input yd (tk) is free of noise and persistently exciting (see e.g. Young
2011a) it can be used as a source on instrumental variables. Note that neither ε(tk) = yd (tk)−
y(tk) nor vu(tk) could be used as the source of the IVs because both are contaminated by
the circulatory noise within the closed-loop system. Now, because both vu(tk) and y(tk) are
available for measurement, in addition to yd (tk), two rather obvious approaches to closed-loop
estimation are possible:

1. Method 1. Estimate the parameters of the TFmodel between between yd (tk) and the control
input vu(tk) using the appropriate GSRIV algorithm. Note that vu(tk) is a function of y(tk)
and so is affected by the component of the noise circulating around the closed-loop at
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this location, denoted by ηu(tk), i.e. vu(tk) = u(tk)+ ηu(tk), where u(tk) is the underlying
noise-free control input to the system (see Figure 8.14 and the associated definition of the
variables). As a result, the deterministic output of this estimated TF model provides a good
but sub-optimal estimate û(tk) of the noise-free input u(tk) to the enclosed system. Hence,
either the GSRIV or the GRIVBJ algorithm can be used again to estimate the required TF
between û(tk) and the noisy y(tk). This is the two-stage approach first suggested by Young
(2008): see also Young et al. (2009)15.

2. Method 2. Estimate the parameters of the TF model for the whole closed-loop system
between yd (tk) and the measured, noisy output y(tk). The deterministic output of this
model then provides a good estimate x̂(tk) of the noise-free output from the system and
the appropriate GSRIV algorithm can be used again, this time in order to estimate the
TF between the two estimated variables û(tk) obtained from Method 1, and x̂(tk). This
approach is less satisfying than the first method in statistical terms because the final
estimation involves two estimated noise-free variables, without direct reference to the
measured output y(tk).

8.7.3 Three-Stage Closed-Loop Estimation

The three stages of the estimation algorithm are as follows, where it will be noted that the first
two stages are very similar to the two-stage Method 1, outlined in Section 8.7.2, except that
full GRIVBJ, rather than GSRIV algorithms are utilised throughout:

1. Stage 1. Estimate the TF between the command input yd (tk) and the noisy control input
vu(tk) using the appropriate GRIVBJ algorithm, and generate an estimate û(tk) of the
underlying noise-free control input u(tk) using this model.

2. Stage 2. Use the appropriate GRIVBJ algorithm to obtain initial, two stage estimates Â(ρ)
and B̂(ρ) of the system TF model polynomials A(ρ) and B(ρ), respectively, based on the
estimated noise-free control input signal û(tk) obtained in Stage 1 and the noisy measured
output signal y(tk). Note that (Figure 8.14), y(tk) = vx (tk)+ ξ (tk) = x(tk)+ ηx (tk)+ ξ (tk)
where x(tk) is the underlying ‘noise-free’ output of the system that would be measured
at this point if ξ (tk) = ηu(tk) = 0 ∀ tk . Note also that, because of this, y(tk)− ηx (tk) =
x(tk)+ ξ (tk), which is referred to below.

3. Stage 3. Compute the estimate η̂u(tk) = u(tk)− û(tk) of the circulatory noise component
of the control input signal, ηu(tk), and transfer this to the output of the system using the
system model obtained in Stage 2, i.e.

η̂x (tk) = B̂(ρ)

Â(ρ)
η̂u(tk) (8.114)

where it provides an estimate of the component of the circulatory noise at the output of the
system, ηx (tk), that derives from ζu(tk). Consequently, if this estimate is subtracted from
the measured output it yields an estimate ŷ(tk) = y(tk)− η̂x (tk) of the output signal that
does not include the circulatory noise component from the closed-loop. It is, therefore,
an estimate of the noise-free output x(tk) plus only the additive noise ξ (tk) [cf. equation

15 This is conceptually similar to the two-stage algorithm suggested by Van den Hof and Schrama (1993) but they
used output error estimation of an FIR model, rather than SRIV.
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(8.111)]. As a result, the data set {û(tk) ; ŷ(tk)} provides an estimate of the data set that
would have been obtained if the system was being estimated in the open-loop situation.
Finally, therefore, use the appropriate open-loop GRIVBJ algorithm for a second time to
re-estimate the system model based on this constructed data set.

In computational terms, this three-stage procedure is straightforward to implement because
it makes use of estimation routines rivbj or rivcbj already available in CAPTAIN.

Example 8.14 Control of CO2 in Carbon-12 Tracer Experiments Let us think again about
the control of the carbon dioxide (12CO2) level in carbon tracer experiments, as previously
considered in Chapter 5 and Chapter 6 (Example 5.9, Example 6.3 and Example 6.4). The
model of the systemwas considered as an integrator in Chapter 5 but as a first order systemwith
a long time constant in Chapter 6. The latter model proved sufficient to design a PIP controller
that, when implemented, produced reasonable closed-loop behaviour. An interesting question,
therefore, is given the measured closed-loop signals, does closed-loop analysis confirm the
initial assumptions about the system model?
In completely objective identification and estimation terms, the answer to this question is

in the negative: the two-stage analysis suggests that the system is second order, with two real
eigenvalues having associated time constants of 523 and 92.5 s. Two-stage estimation is used
here because the noise is rather odd, as a result of the pulse-width modulated control input.
Although it can be modelled as an AR(5) process, the three-stage parameter estimates are
clearly not as good as those obtained by the more robust two-stage algorithm. In particular,
the model takes the form (�t = 5 s):

y(k) = b0 + b1z−1

1+ a1z−1 + b2z−2 u(k − 4)+ ξ (k)

ξ (k) = 1

1+ c1z−1 + c2z−2 + c3z−3 + c4z−4 + c5z−5 e(k); e(k) = N (0, σ 2)
(8.115)

where the estimated parameters are as follows, with the estimated SEs shown in parentheses:

â1 = −1.9379 (0.0048); â2 = 0.9384 (0.0048); b̂0 = 0.005953 (0.00014)
b̂1 = −0.005771 (0.00013); ĉ1 = −0.499 (0.035); ĉ2 = −0.036 (0.039)
ĉ3 = −0.042 (0.039); ĉ4 = −0.0068 (0.040); ĉ5 = 0.120 (0.035); σ̂ 2 = 9.97× 10−7

Given the high R2T = 0.996, it is not surprising that the estimated model outputs explain
both the measured output and the control input of the system very well, as shown in Figure
8.15. Note that the above parameter estimates are cited to four significant figures because the
time contant values and any decomposition of the TF model (for instance to a parallel form
obtained by partial fraction expansion using the MATLAB R© routine residuez) are sensitive to
these values.
Fortunately, this uncertainty only affects the estimation of these derived parameters: the

uncertainty on the model parameters and the system as a whole is very small: see, for example,
the three times SE uncertainty bounds on the frequency response for the second order model
shown in Figure 8.16. One word of caution is necessary, however, since these uncertainty
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Figure 8.15 Comparison of model and measured responses for Example 8.14. (a) Output responses
and (b) control input responses. The residuals in (a) are the final stochastic residuals ê(k)

bounds are based on the statistical assumptions about the nature of the AR noise process and
these are contravened to some extent in this case. For instance, the estimated final residuals
ê(k) are small, zero mean, and serially uncorrelated but, as we can see from the error plot at the
top of Figure 8.15a, they do not have a normal distribution. Indeed, as pointed out above, one
might question the use of an AR model in this case, where the noise has special characteristics
caused by the pulse-width-modulation control method implemented in the plant physiology
research laboratory. But these are the kind of difficult ambiguities that can beset our real world,
which does not always conform to the assumptions of theorists! For practical purposes in this
case, the residual error is small and one can have reasonable confidence in the model, despite
its violation of the assumptions.
As noted above, PIP control of this system represents one of the early practical examples

of the TDC approach (Taylor et al. 1996) but was based on a first order model. If the above
analysis is repeated and the model is constrained to be first order then the system model is
estimated as follows:

y(k) = 0.00439

1− 0.986z−1 u(k − 4)+ ξ (k) (8.116)
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where the noise ξ (k) is now identified as an AR(11) process. However, the explanation of the
data is visibly poorer than that shown in Figure 8.15 and on these grounds the model would
be rejected. Despite this, when the frequency response characteristics of this model and the
second order model are compared, as shown in Figure 8.16, they are quite similar, except at
low frequencies. A comparison with the model (6.20) used for PIP design in Chapter 6 shows
similar results, although the low frequency magnitude is smaller still. Consequently, the main
differences between the various models are in their steady-state gains; differences that can be
accommodated for in the servomechanism PIP design procedure, where the control weightings
are always adjusted to provide the required closed-loop response characteristics. Of course,
given these closed-loop estimation results, the robustness of the closed-loop response to these
kind of differences should be checked by MCS analysis of the kind considered in Chapter 4
and Chapter 6.
Finally, continuous-time estimation yields similar but not identical results. The estimated

model, in factorised form, is as follows:

y(t) = 52.5s+ 0.344
(1+ 488s)(1+ 89.5s)u(t − 20) (8.117)

which reveals straightaway that the time constants are 488 and 89.5 s and the steady-state gain
is 0.344. Earlier, in section 8.4, it was stressed that, in DBM modelling, the model should
be credible when interpreted in physically meaningful terms and this continuous-time TF
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provides an immediate interpretation of the system dynamics for consideration in such terms.
In this regard, the Principle Investigator who managed the research that generated the data
used in this example was Dr Peter Minchin, then of the Department of Scientific and Industrial
Research in New Zealand. Dr Minchin found the present results interesting and confirmed
that the system could be of the identified second order form. Paraphrasing his comments (P.C.
Young, personal communication, 2012):

There was a water bubbler system containing approximately one litre of water in the closed-loop,
in order to maintain a dew point of 4◦C in the circulated air and avoiding any increase in the dew
point caused by the leaf. So when a correction pulse of CO2 was introduced, the bubbler would
have taken some time to come to a new CO2 equilibrium, which is probably the cause of the long
time constant. The short time constant is likely to be that associated with the gas loop. Also, the
12CO2 used in the experiments must be conserved and the closed-loop into which this was injected
had to have a route for the volume increase of gas to be released, and this would have resulted in
some loss of CO2. This leak, controlled to maintain the pressure of the leaf chamber at just below
atmospheric, would result in loss of CO2 from the loop. Also the injected CO2 was not pure, but
a CO2/air mix. Given these considerations the estimated gain of less than unity is not surprising.

8.7.4 Unstable Systems

One major reason why one would wish to identify and estimate a system within a closed-
loop is when the system is open-loop unstable, so that open-loop estimation is difficult,
if not impossible. However, the three-stage estimation procedure described in the previous
subsection includes explicit simulation of the estimated model in the form of the iteratively
updated ‘auxiliary model’ and utilisation of the estimated system denominator polynomial
Â(ρ) in the iteratively updated prefilters. In the normal CAPTAIN Toolbox implementation
of the GRIVBJ-type algorithms for open-loop systems, therefore, the auxiliary model and
prefilter denominator polynomials are stabilised at each iteration in order to avoid any (rare)
transient violations of stability during the iterative updating process (using the MATLAB R©

routines polystab for discrete-time models and polystc for continuous-time models). Despite
these precautions, the full three-stage algorithm fails to produce satisfactory estimation results
when applied to open-loop unstable systems, even when they are contained within a stable
closed-loop. Fortunately, however, the simple two-stage methods function satisfactorily in
this closed-loop environment: comprehensive MCS analysis (Young 2011a) suggests that
they normally yield consistent, asymptotically unbiased parameter estimates with acceptable
confidence bounds, provided sufficient data are available from the closed-loop experiments
when the data are noisy.

8.8 Concluding Remarks

This chapter has presented most of the background information to TF model identification and
estimation that is required for TDC design. However, some other important concepts, such as
identifiability and the required nature of input signals that will ensure model identifiability
have not been discussed. A much more complete coverage of this topic is available in the
second author’s recent book (Young 2011a), to which the reader is directed for these and other
details, particularly in the areas of recursive and closed-loop estimation. The present chapter
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has also concentrated on algorithmic details and the practical application of these algorithms
that will be of most use to the practitioner, rather than the theoretical fundamentals of optimal
‘PEM’-type methods, which are covered well in books such as by Ljung (1987, 1999). How-
ever, note that this latter book does not consider the full RIVBJ methods specifically, even
though their estimates have the same statistical properties as the PEM estimates obtained by
gradient optimisation procedures, so it is useful mainly in a more general theoretical sense.
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9
Additional Topics

In this book, we are concerned mainly with True Digital Control (TDC) based on discrete-time
Transfer Function (TF) models of dynamic systems. In Chapter 8, however, we discussed the
identification and estimation of continuous-time TF models, pointing out that many systems
were more easily considered in continuous-time terms at the conceptual level and that a
continuous-time TF model could be converted into discrete-time for the purposes of TDC
design. An alternative approach is to exploit the δ-operator TF model, which is the discrete-
time equivalent of the continuous-time model. In recent times, the main impetus for the use
of δ-operator TF models in control system design has come from the book by Middleton and
Goodwin (1990), to which the reader is referred for background information. In section 9.1,
we will simply introduce the δ-operator TF model; show how it can be presented in Non-
Minimal State Space (NMSS) form; and develop the δ-operator Proportional-Integral-Plus
(PIP) control algorithm.
The recursive nature of all the Refined Instrumental Variable (RIV) algorithms discussed

in Chapter 8, also allows for the development of Time Variable Parameter (TVP) versions
that can be used for real-time applications, such as self-tuning or adaptive control, i.e. in
those situations where the model parameters are changing relatively slowly over time. Here,
the algorithm updates the parameter estimates as the input–output data are acquired and the
latest estimates are used to update the control system design on a continuing basis. However,
if these changes in the parameters are much more rapidly changing as functions of the state
or input variables (i.e. they actually constitute stochastic state variables), then the system
is truly nonlinear and likely to exhibit severe nonlinear behaviour. Normally, this cannot be
approximated in a simple TVP manner; in which case, recourse must be made to alternative
State-Dependent Parameter (SDP) modelling methods. Section 9.2 and section 9.3 provide
a review of recursive TVP and SDP estimation but a much more comprehensive treatment
is available in Young (2011). The reader is also referred to recent research on the wider
application of SDP modelling within a PIP design context (Taylor et al. 2007b, 2009, 2011).
Finally in relation to SDP models, note that the terms Linear Parameter Varying (LPV) and

NonLinear Parameter Varying (NLPV) are often used in the systems and control literature to
describe SDP-type models. However LPV, in particular, is a quite misleading term since SDP

True Digital Control: Statistical Modelling and Non-Minimal State Space Design, First Edition.
C. James Taylor, Peter C. Young and Arun Chotai.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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models are truly nonlinear dynamic systems and, as we shall see, can even exhibit chaotic
dynamic behaviour.

9.1 The δ-Operator Model and PIP Control

The δ-operator was first utilised in a PIP design context by Young et al. (1991). Later papers
formalised this approach for both Single-Input, Single-Output (SISO; Young et al. 1998)
and multivariable (Chotai et al. 1998) systems (see also McKenna 1997). An outline of
the modelling and PIP design approaches are discussed in these references, with the present
chapter concentrating on the following nth order, SISO system, whose input and output signals
are sampled regularly with a sampling interval of �t time units. The discrete differential or
δ-operator TF model of this system takes the form:

y(k) = B(δ)

A(δ)
u(k) (9.1)

where y(k) and u (k) denote, respectively, the sampled output and input signals at the kth
sampling instant; while A (δ) and B (δ) are the following polynomials in the δ-operator:

A(δ) = δn + a1δ
n−1 + · · · + an; B(δ) = b1δ

n−1 + b2δ
n−2 + · · · + bn (9.2)

Here, the δ-operator is defined as follows in terms of the forward shift operator z:

δ = z − 1
�t

i.e. δy(k) = y(k + 1)− y(k)

�t
(9.3)

In general, no prior assumptions are made about the nature of the TF, which may be marginally
stable, unstable, or possess non-minimum phase characteristics. The order of the numerator
polynomial B (δ) is set to n–1 to ensure that the TF is proper. However, it can be of less
dimension than this if identification and estimation analysis shows that it is more appropriate.
Any pure time delay in the system can be handled in various ways: e.g. by introducing
additional poles at−1/�t to accommodate the time delay; or, in the case of long time delays,
by introducing the δ form of the Smith Predictor using a similar approach to that described in
section 6.3 (see also e.g. Taylor et al. 1998).
It is clear that the δ-operator is the discrete-time, sampled data equivalent of the differential

operator s = d/dt considered in Chapter 8. One attraction of the δ-operator model (9.1) is that
it can be applied to a wide range of discrete-time systems, from sampled data systems with
coarse sampling intervals to rapidly sampled, near continuous-time systems. For example, it
is easy to see that the unit circle in the complex z-plane (see section 2.2) maps to a circle
with centre −1/�t and radius 1/�t in the complex δ-plane; so that, as �t → 0, this circular
stability region is transformed to the left half of the complex s-plane. For very rapidly sampled
systems, therefore, the δ-operator model can be considered in almost continuous-time terms,
with the pole positions in the δ-plane close to those of the equivalent continuous-time system
in the s-plane. As such, the δ-operator model provides a rather natural digital representation
for a rapidly sampled, continuous-time system; one which avoids the approximate digitisation
of continuous-time designs and provides a direct basis for TDC system design. However, it
should be realised that, unless the sampling rate is very high, the parameters of the δ-operator
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Figure 9.1 The δ-operator PIP servomechanism system (see section 9.1.3 for control polynomials)

model will not be the same as those of the continuous-time model, so that they do not have the
same physically meaningful interpretation as the parameters of the continuous-time model.

9.1.1 The δ-operator NMSS Representation

The most obvious NMSS representation of the TF model (9.1) is formulated directly in terms
of the discrete-time δ derivatives of the output and input signals and takes the form [cf.
equations (5.13)]:

δ x(k) = Fx(k)+ gv(k)+ d yd (k) (9.4)

where v(k) is an intermediate control variable: see below and Figure 9.1. The system transition
matrix F , input vector g and command input vector d are defined as follows:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an−1 −an b1 b2 · · · bn−1 bn 0

1 0 · · · 0 0 0 0 · · · 0 0 0

0 1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 1 0 0 0 · · · 0 0 0

0 0 · · · 0 0 0 0 · · · 0 0 0

0 0 · · · 0 0 1 0 · · · 0 0 0

0 0 · · · 0 0 0 1 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 0 0 · · · 1 0 0

0 0 · · · 0 −1 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.5)
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d = [
0 0 · · · 0 0 0 0 · · · 0 0 1

]T
(9.6)

g = [
0 0 · · · 0 0 1 0 · · · 0 0 0

]T
(9.7)

In this formulation, the control variable v(k) is defined as the nth δ differential of the actual
control input u(k), i.e.

ν(k) = δnu(k) (9.8)

and the non-minimal state vector x(k) is defined as:

x(k) = [
δn−1y(k) δn−2y(k) · · · δy(k) y(k) δn−1u(k) · · · u(k) z(k)

]T
(9.9)

In these equations, z(k) will be recognised from earlier chapters as an additional integral-of-
error state of the form:

z(k) = δ −1 {yd (k)− y(k)} (9.10)

in which yd (k) is the reference or command input to the servomechanism system.

9.1.2 Characteristic Polynomial and Controllability

The open-loop characteristic polynomial of the NMSS representation (9.4) can be written as
[cf. equation (5.17)]:

|λI − F| =λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + a1 a2 · · · an−1 an −b1 −b2 · · · −bn−1 −bn

−1 λ · · · 0 0 0 0 · · · 0 0

0 −1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · −1 λ 0 0 · · · 0 0

0 0 · · · 0 0 λ 0 · · · 0 0

0 0 · · · 0 0 −1 λ · · · 0 0

0 0 · · · 0 0 0 −1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.11)

As a result, the open-loop characteristic polynomial is given by:

|λI − F| = λn+1A(λ) (9.12)

which is a product of the characteristic polynomial of the minimal state space representation,
i.e. A(λ), and a term λn+1 due to the introduction of the additional states.
If the NMSS model (9.4) is to be used as the basis for the design of State Variable Feedback

(SVF) control systems, such as closed-loop pole assignment or Linear Quadratic (LQ) optimal



Additional Topics 269

control, it is important to evaluate the conditions for controllability of this model. These are
provided by Theorem 9.1.

Theorem 9.1 Controllability of the δ-operator NMSS Model Given a SISO discrete-time
δ-operator system described by (9.1), the NMSS representation (9.4), as described by the pair
[F, g], is completely controllable if, and only if, the following conditions are satisfied:

(i) the polynomials A (δ) and B (δ) are coprime;
(ii) bn �= 0.

The proof of this theorem is given by Young et al. (1998).
The conditions in Theorem 9.1 have obvious physical interpretations. The coprimeness

condition is equivalent to the normal requirement that the δ-operator TF (9.1) should have
no pole-zero cancellations. The second condition avoids the presence of a zero at the ori-
gin in the complex δ-plane, which would cancel with the pole associated with the inherent
integral action. The controllability conditions of the above theorem are, of course, equiv-
alent to the normal requirement that the controllability matrix associated with the NMSS
representation, i.e.

S1 = [g Fg F2g · · · F2n g] (9.13)

has full rank 2n + 1.

9.1.3 The δ-Operator PIP Control Law

In the context of the NMSS model (9.4), the automatic control objective is to design a SVF
control law [cf. equation (5.32)]:

v(k) = −kT x(k)

= − f1 δn−1y(k)− f2 δn−2y(k) − · · · − fn y(k)

−g1 δn−1u(k)− · · · − gnu(k)+ kI z(k)

(9.14)

such that either the closed-loop poles are at pre-assigned positions in the complex δ-plane; or
the system is optimised in some manner; for example, in an LQ sense. Here, the SVF gain
vector k is defined as:

k = [ f1 f2 . . . fn g1 . . . gn − kI ]
T (9.15)

The closed-loop system block diagram obtained directly from the SVF control law (9.14) takes
the form shown in Figure 9.1 (cf. Figure 5.3).
The control polynomials in Figure 9.1 are defined as follows:

F1(δ) = f1 δ
n−1 + · · · + fn−1 δ; G1(δ) = g1 δ

n−1 + · · · + gn (9.16)

This shows that, as in the standard discrete-time PIP control design, the controller designed
in this manner has a basic structure similar to a conventional PI controller with inherent
proportional and integral-of-error feedback terms; but, for systems higher than first order,
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Figure 9.2 Alternative realisable implementations of the system shown in Figure 9.1. (a) F(δ)/G(δ)
in the feedback path; (b) F(δ)/G(δ) in the forward path; (c) Unity gain feedback with a single pre-
compensation filter

these basic control actions are enhanced by additional feedback and forward path compensation
filters, i.e. F1(δ) andG1(δ), which exploit the information on the higher order system dynamics
that is provided by the TF model and so introduce a general form of derivative action.

9.1.4 Implementation Structures for δ-Operator PIP Control

One of the major attractions of the z−1 operator PIP control system designs discussed in
previous chapters is that they are easy to implement in practice because the NMSS vector only
involves the present and past sampled values of the system output and the past values of its
input, all of which are available for direct utilisation in any digital computer implementation of
the control system. In contrast, the δ-operator control law involves the discrete δ derivatives of
the input and output signals which, as in the case of the continuous-time derivatives required
for continuous-time TF model estimation, are not available for direct measurement and cannot
be generated directly because of the need for multiple δ differentiation with its associated,
unacceptable, noise amplification. This is, of course, a similar situation to that discussed in
connection with the estimation of continuous-time TF models in Chapter 8. And the solution
is also similar: we look for a way in which realisable prefiltered derivatives that do not amplify
high frequency noise can be generated and used in the PIP implementation. The most obvious
way to introduce a suitable prefilter into the PIP control system is shown in Figure 9.2, where
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the two filters:

F(δ) = F1(δ) + fn; G(δ) = G1(δ) + δn (9.17)

are combined into a single filter positioned in either the feedback or forward paths of the
control system. This filter takes the following general form:

F(δ)

G(δ)
= f1 δn−1 + · · · + fn−1 δ + fn

δn + g1 δn−1 + · · · + gn
(9.18)

In Figure 9.2a, the filter is incorporated into the inner feedback loop; while in Figure 9.2b,
it appears in the forward path (cf. Figure 6.1).
The alternative full forward path is shown in Figure 9.2c (cf. Figure 6.2). Here, the forward

path filter reveals the implicit cancellation of the system denominator polynomial by the PIP
controller when there is no plant–model mismatch, i.e. Â(δ) = A(δ), where Â(δ) represents
the model estimate of A(δ). As we shall see in Example 9.1, the sensitivity to plant–model
mismatch and noise rejection properties are quite different for all three forms of the PIP
controller and so the implemented form of the resultant PIP control system becomes a design
consideration.
More generally, the design method for δ-operator PIP control of SISO systems follows

the same general approach as that used in the standard discrete-time TF model case of
Chapter 5, but with the δ-operator equivalents of the various design steps replacing the standard
ones. The pole assignment and optimal LQ calculations are outlined below.

9.1.5 Pole Assignment δ-Operator PIP Design

If the Closed-Loop (CL) and Open-Loop (OL) characteristic polynomials of the PIP system
are defined as follows:

CL(δ) = det
{
δI − F + gkT

}
(9.19)

OL(δ) = det{δI − F} = δ n+1A(δ) = δ2n+1 +
2n+1∑
i=1

aiδ
2n+1−i (9.20)

where ai = 0 for i > n, then, by simple algebraic manipulation, it is easy to show that the two
polynomials are related to the SVF vector k by:

kT q(δ) = CL(δ)− OL(δ) (9.21)

where q(δ) = Adj {δ I − F} g. Thus, knowing q(δ) and OL(δ), it is possible to solve (9.21) for
the feedback gain vector k that ensures any desired closed-loop polynomial CL(δ), provided
only that the pair [F, g] is completely controllable.
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To gain greater theoretical insight into the nature of equation (9.21), however, we can
substitute from (9.20) into (9.21) and replace CL(δ) by the desired closed-loop characteristic
polynomial d(δ), where:

d(δ) = δ2n+1 +
2n+1∑
i=1

diδ
2n+1−i (9.22)

It is then straightforward to obtain the following equation for the computation of the SVF gain
vector k which will ensure that the closed-loop characteristic polynomial is as specified by
d(δ) and, therefore, that the closed-loop poles are at their required locations in the complex
δ-plane:

M ST
1 k = d − p (9.23)

In this equation, d and p are the vectors of coefficients of the desired closed- and open-loop
characteristic polynomials of the NMSS system, respectively, i.e.

dT = [
d1 d2 d3 · · · dn dn+1 · · · d2n d2n+1

]
(9.24)

pT = [
a1 a2 a3 · · · an 0 · · · 0 0

]
while S1 is the controllability matrix (9.13) and the matrix M is defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 · · · 0 0

a1 1 0 · · · 0 0 · · · 0 0

a2 a1 1 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

an an−1 an−2 · · · 1 0 · · · 0 0

0 an an−1 · · · a1 1 · · · 0 0
...

...
. . .

. . .
...

...
. . .

...
...

0 0 0 an an−1 an−2 · · · 1 0

0 0 0 · · · an an−1 · · · a1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.25)

As noted in the case of standard z-operator PIP pole assignment (section 5.3), this derivation
is particularly useful in theoretical terms because it reveals very clearly that a solution to the
simultaneous equations exists if and only if the system is controllable, i.e. if the controllability
matrix S1 is of full rank (2n + 1).

9.1.6 Linear Quadratic Optimal δ-Operator PIP Design

In the case of LQ optimal control, the aim is to design a feedback gain vector k that will
minimise the following quadratic cost function [cf. equation (5.75)]:

J =
∞∑

i=0
x(i)T Q x(i)+ rv(i)2 (9.26)
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where, because of the NMSS formulation, Q is a (2n + 1× 2n + 1) symmetric, positive semi-
definite matrix; and r is a positive scalar. In this δ−operator context, the optimum feedback
gain vector k is given by (Middleton and Goodwin 1990):

kT = (r + �t gT P g)−1gT P(I + F�t) (9.27)

where �t is the sampling rate and the matrix P is the steady-state solution of the following
algebraic matrix Riccati equation:

Q + FT P + PF + �t FT PF − k(r + �t gT Pg)kT = 0 (9.28)

The optimal SVF control law then takes the form:

v(k) = −kT x(k) = − (r + �t gT P g)−1gT P(I + F�t)x(k) (9.29)

In general, this LQ design appears to provide a more satisfactory PIP controller than the pole
assignment alternative, normally yielding higher phase and gain margins, and control which
appears more robust to uncertainty in the model parameters1. However, the pole assignment
design reveals more clearly the nature of the design and so this is used in Example 9.1.

Example 9.1 Proportional-Integral-Plus Design for a Non-Minimum Phase Double Inte-
grator System In this section, we consider a simulation example in the form of a non-
minimum phase double integrator system that demonstrates the utility of the δ-operator PIP
design method. A practical example concerned with the control of a laboratory scale coupled
drives rig is described in Young et al. (1998). As pointed out in Chapter 8, in a practical
situation where suitable input–output, sampled data are available, the identification and esti-
mation of the δ-operator models from data can be accomplished by either directly using a
RIV δ-operator estimation algorithm (Young et al. 1991), or by conversion of the RIVC esti-
mated continuous-time model to δ-operator form (e.g. in MATLAB R©2 using the c2del routine
developed by I. Kaspura in Goodwin and Middleton’s original δ-operator Toolbox). Since the
system here is a double integrator and so open-loop unstable, this would require the design
of an initial stabilising controller and identification within the resulting closed-loop, using a
method such as that described in section 8.7.
The simulated system is described by the following δ-operator TF model:

y(k) = −0.5δ + 1
δ2

u(k) (9.30)

1 This statement refers to a typical ‘hand-tuned’ design in which the poles are adjusted in simulation by trial and
error; of course, any given LQ design can always be reproduced by pole assignment using the LQ closed-loop pole
positions.
2 MATLAB R©, The MathWorks Inc., Natick, MA, USA.
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where the sampling interval�t = 0.05 time units. The NMSS δ-operator model for this system
takes the form:

δx(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −0.5 1 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

x(k)+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

v(k)+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

yd (k) (9.31)

in which the NMSS state vector, x(k) is defined as:

x(k) = [
δy(k) y(k) δu(k) u(k) z(k)

]T
(9.32)

The control input to the system u(k) is related to the intermediate variable v(k) by the equation:

u(k) = 1

δ2
v(k) (9.33)

where v(k) = − [ f1 f2 g1 g2 −kI ] x(k) is the SVF control law (9.14).
Since the NMSS order is 5, the closed-loop system will be fifth order. The desired closed-

loop characteristic polynomial d(δ) is selected so that all five closed-loop poles are at –4 in
the complex δ−plane, i.e.

d(δ) = (δ + 4)5 = δ5 + 20δ4 + 160δ3 + 640δ2 + 1280δ + 1024 (9.34)

These pole positions have been arbitrarily chosen for the purposes of this tutorial simula-
tion example. The vectors of the coefficients of the desired closed-loop and the open-loop
characteristic polynomials, d and p are then defined as:

dT = [ 20 160 640 1280 1024 ]

pT = [ 0 0 0 0 0 ]
(9.35)

The controllability matrix S1 (9.13) in this case is given by:

S1 = [g Fg F2g F3g F4g] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −0.5 1 0 0

0 0 −0.5 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0.5 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.36)
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and the matrix M (9.25) is the identity matrix. As a result, the vector-matrix equation for the
SVF control gains (9.23) takes the form:

MST
1 k = d − p =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

−0.5 0 0 1 0

1 −0.5 0 0 0

0 1 0 0 0.5

0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f1
f2
g1
g2

−kI

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

20

160

640

1280

1024

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.37)

which, since the system is controllable, has the unique solution:

f1 = 1536; f2 = 1792; g1 = 20; g2 = 928; kI = 1024 (9.38)

Example 9.2 Simulation Experiments for Non-Minimum Phase Double Integrator
Using the control gains (9.38) and system model (9.30), all of the three realisable forms of
the δ-operator PIP controller (Figure 9.2) produce the same closed-loop response, as shown in
Figure 9.3. This is because the closed-loop TF between the command input and the output is
exactly the same in each case. The differences between the various PIP control implementations
only become evident when either a load disturbance is applied to the plant, or when there is a
mismatch between the characteristics of the model used to calculate the gains and the actual
system [i.e. when Â (δ) �= A (δ) or B̂ (δ) �= B (δ), where Â (δ) and B̂ (δ) are the estimated
model polynomials]. In such cases, the advantages and disadvantages of each control structure
are similar to those discussed in section 6.1 (i.e. using the feedback and forward path forms
of the standard PIP controller).
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Figure 9.3 Closed-loop response for a unit step in the command level (thin trace) for δ-operator PIP
control of non-minimum phase double integrator system in Example 9.1, with desired closed-loop poles
all set to –4 in the complex δ-plane, showing the output (bold solid trace) and control input (dashed trace)
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Figure 9.4 Closed-loop response for a unit step in the command level (thin trace) for δ-operator PIP
control of non-minimum phase double integrator system in Example 9.1, with a mismatch between the
model and system denominator polynomials. (a) Output response obtained using the feedback (dashed
trace) and forward path (bold solid trace) forms; (b) Control input signals

For the main two control implementations, i.e. Figure 9.2a and c, the responses when
there is a mismatch between the model and plant denominator polynomials are illustrated in
Figure 9.4. Here, the model denominator polynomial is set to Â (δ) = δ2 + 0.2δ + 0.09 rather
than the true polynomial A (δ) = δ2: hence the design is based on open-loop poles that are
stable and located at −0.1± 0.2828 j in the complex δ-plane, whereas the true system poles
are at the origin. The step responses in Figure 9.4 show that, whilst the output generated by
the standard PIP feedback form of Figure 9.2a becomes somewhat oscillatory in the presence
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of this mismatch, the oscillations are reasonably damped, in contrast to those from the pre-
compensator implementation of Figure 9.2c, which is characterised by very poorly damped
and unacceptable oscillations.
Figure 9.5 shows that the performances of the same two PIP control implementations are

reversed when there is mismatch between the model and actual numerator polynomials in
the system TF. In contrast to the results in Figure 9.4, the sensitivity of the forward path pre-
compensation form to model mismatch in B(δ) is quite small, resulting in a small overshoot
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Figure 9.5 Closed-loop response for a unit step in the command level (thin trace) for δ-operator PIP
control of non-minimum phase double integrator system in Example 9.1, with a mismatch between the
model and system numerator polynomials. (a) Output response obtained using the feedback (dashed
trace) and forward path (bold solid trace) forms; (b) Control input signals
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above the desired output; whereas the standard feedback implementation response is now
sluggish with a pronounced, lowly damped oscillation, which is particularly noticeable on the
control input. In this example B̂ (δ) = −0.5δ + 0.77 rather than the actual system numerator
polynomial B (δ) = −0.5δ + 1.
The responses of the two PIP control implementations to the addition of a step load dis-

turbance of magnitude 0.1 after 5 time units are shown in Figure 9.6. Again, the forward
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Figure 9.6 Closed-loop response for a unit step in the command level (thin trace) for δ-operator PIP
control of non-minimum phase double integrator system in Example 9.1, with the addition of a step
load disturbance (magnitude 0.1) to the output signal after 5 s. (a) Output response obtained using the
feedback (dashed trace) and forward path (bold solid trace) forms; (b) Control input signals
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Figure 9.7 Closed-loop response for a unit step in the command level (thin trace) for δ-operator PIP-LQ
optimal control of non-minimum phase double integrator system in Example 9.1, showing the output
(bold solid trace) and control input (dashed trace)

path pre-compensation implementation of Figure 9.2c yields superior performance: the output
is only slightly displaced away from the desired level by the load disturbance and there is
little effect on the input signal. In contrast, the feedback form of the controller produces an
oscillation in the output that is much larger than the magnitude of the disturbance itself and is
accompanied by an even greater oscillation in the control input.
Finally, Figure 9.7 shows the closed-loop responses obtained using the LQ design procedure.

Here, the input weighting in the cost function r is set to unity and the Q weighting matrix
is chosen to be diagonal, with the first four elements set to unity and the integral of error
weighting set to 104. The control gains generated by this LQ design are:

f1 = 175.074; f2 = 169.938; g1 = 8.631; g2 = 123.699; k1 = 80.521 (9.39)

These gains produce closed-loop poles at –1.15± 2.44j, –2.27± 1.01j and –1.78. This choice
of Q and r yields a closed-loop response time similar to that of the pole assignment design,
as shown in Figure 9.7 but with somewhat less non-minimum phase undershoot and a small
overshoot.

9.2 Time Variable Parameter Estimation

The present section briefly reviews an approach to TVP modelling that can be used for real-
time TDC applications, such as self-tuning or adaptive control. More significantly, however,
the approach also facilitates the development of SDP techniques for nonlinear PIP control, as
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discussed in section 9.3. In self-tuning control, it is assumed that the controlled system dynam-
ics are not changing over time, so that the model parameters are constant. In this situation, the
variance of the recursive parameter estimates becomes smaller as time progresses and the data
size increases, so that the model used for control system design becomes ever more accurate.
In many practical situations, however, the assumption of time-invariant parameters will be
inappropriate since, at least to some extent, most real systems exhibit dynamic characteristics
that change over time. Consequently, it is probably safer to assume that parameter changes
may occur and introduce some method of recursive estimation that allows for the estimation of
such changes. Amongst the different approaches to such TVP estimation, the following three
are deserving of most attention here:

1. The Extended (or re-linearised) Kalman Filter (EKF) (e.g. Kopp and Orford 1963; Ljung
1979). Here, the stochastic state space model of the dynamic system is extended to include
simple stochastic models for the TVPs (e.g. the simple random walk model: see later). The
resulting model is nonlinear because the original system state variables are multiplied by
the state variables arising from the adjoined TVPs. As a result, the state estimates of this
nonlinear model are then updated by a KF-type algorithm with the equations linearised in
some manner at each recursive update, based on the current recursive parameter estimates.
This is widely applicable but the parameter tracking ability is dependent on the application.

2. Shaping the memory of the algorithm (e.g. Bray et al. 1965; Young 1969; Wellstead and
Zarrop 1991). Here, the predecessor of the Kalman Filter (KF), the recursive algorithm
developed by K.F. Gauss (1826) for estimating the constant parameters in linear regression
models (Young 2011), is modified to include a ‘forgetting factor’ or ‘weighting kernel’
that shapes the memory of the estimator and so allows for TVP estimation. This is much
the most popular approach to TVP estimation but its performance is rather limited when
compared with the third approach.

3. Modelling the parameter variations (e.g. Mayne 1963; Lee 1964; Young 1969). Here,
the roles of the state equations and observation equations are reversed. The model of the
system now appears in the observation equation and the state equations are used to model
the TVPs appearing in this model, again using simple stochastic models such as the random
walk. This is the most sophisticated and flexible approach and represents the current state
of the art in TVP estimation.

Until comparatively recently, the main emphasis in all three of these approaches has been
the ‘online’ or ‘real-time’ estimation of the TVPs. As a result, most algorithms have been of
the ‘filtering’ type, where the estimate ρ̂(k|k) of the TVP vector ρ(k), at any sampling instant k,
is a function of all the data up to and including this kth instant. Surprisingly, given its ultimate
power, the extension of thesemethods to the ‘offline’ analysis situationwas not considered very
much at first, despite the fact that mechanisms for such ‘smoothing’ estimation were suggested
in the 1960s. In these Fixed Interval Smoothing (FIS) algorithms (e.g. Bryson and Ho 1969 and
the prior references therein; Norton 1975, 1986; Young 1984, 1999, 2011), the FIS estimate
ρ̂(k|N ) of ρ(k) is based on all of the data available over a ‘fixed interval’ of N samples, usually
the full sample length of the time series data. The later research in the above references placed
this approach in an optimal context based on Maximum Likelihood (ML) estimation of the
associated ‘hyper-parameters’ that control the nature of the smoothing operations (see later).
MATLAB R© Toolboxes that allow for the estimation of such TVP models based on KF/FIS
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methods, and with ML optimisation of the hyper-parameters, include CAPTAIN (Appendix
G; Taylor et al. 2007a) and SSpace (Pedregal and Taylor 2012).

9.2.1 Simple Limited Memory Algorithms

Before illustrating the value of a unified, statistical approach to TVP estimation based on
modelling the parameter variations, it is instructive to take a brief look at the less sophisticated,
deterministic algorithms based on explicitly restricting the memory of the recursive estimation
algorithm. For simplicity, let us consider a SISO system (although the extension to multi-
input systems is straightforward). In the case of a TVP or Dynamic3 Transfer Function (DTF)
representation, the model takes the following form:

y(k) = B(z−1, k)

A(z−1, k)
u(k − δ)+ ξ (k) t = 1, . . . , N (9.40)

where δ ≥ 0 represents the time delay (not to be confused with the δ-operator of the previous
subsection) and ξ (k) is the additive noise, while A(z−1, k) and B(z−1, k) are now time variable
coefficient polynomials in z−1 of the following form:

A(z−1, k) = 1+ a1(k)z−1 + a2(k)z−2 + · · · + an(k)z−n

B(z−1, k) = b0(k)+ b1(k)z−1 + b2(k)z−2 + · · · + bm(k)z−m (9.41)

In the more restricted case of the Dynamic Auto-Regressive, eXogenous variables (DARX)
model, the additive noise ξ (k) is defined as:

ξ (k) = 1

A(z−1, k)
e(k) ek = N (0, σ 2) (9.42)

where, as in the constant parameter situation, e(k) is assumed to be is a zero mean, normally
distributed, white noise sequence with variance σ 2. This model has the advantage that equation
(9.40) can be written in the following alternative vector equation or ‘regression’ form:

y(k) = φT (k)ρ(k)+ e(k) (9.43)

where

φT (k) = [−y(k) − y(k − 1) · · · − y(k − n) u(k − δ) · · · u(k − δ − m)]

ρ(k) = [a1(k) a2(k) · · · an(k) b0(k) b1(k) · · · bm(k)]T = [ρ1(k) ρ2(k) · · · ρn+m+1(k)]T

(9.44)

Equation (9.40) and equation (9.42), or equivalently equation (9.43), can be compared with
the time-invariant model given by equations (8.8).

3 The term ‘dynamic’ is used here for historical reasons, primarily because the parameters are defined as evolving in
a stochastic, dynamic manner.



282 True Digital Control

If we wish to limit the memory of the estimation algorithm, it is necessary to specify the
nature of thememory process. Twomainmemory functions have been suggested:Rectangular-
Weighting-into-the-Past (RWP); and Exponential-Weighting-into-the-Past (EWP). The latter
approach is the most popular and can be introduced into the least squares problem formulation
by considering EWP least squares optimisation of the form [cf. equation (8.9)]:

ρ̂(N ) = argmin
ρ

J EWP
2 (ρ) J EWP

2 (ρ) =
N∑

k=1
[y(k)− φT (k)ρ]2α(N − k) (9.45)

where 0 < α < 1.0 is a constant related to the time constant Te of the exponential weighting
by the expression α = exp(−�t/Te), and�t is the sampling interval in time units appropriate
to the application. Of course, with α = 1.0, J EW P

2 becomes the usual, constant parameter,
least squares cost function J2.
The recursive algorithm derived by the minimisation of the EWP cost function (9.45) takes

the form:

ρ̂(k) = ρ̂(k − 1) + P(k − 1)φ (k)[α + φT (k)P(k − 1)φ(k)]−1 {y(k) − φT (k − 1)ρ̂(k − 1)}
P(k) = 1

α
{P(k − 1) − P(k − 1)φ(k)[α + φT (k)P(k − 1)φ(k)]−1 φT (k)P(k − 1)}

(9.46)

This estimation algorithm is one form of the recursive EWP least squares algorithm, although
other forms are possible. These can all be considered in terms of the EWP coefficient α,
or ‘forgetting factor’, as it is often called. Amongst the possibilities (see e.g. Wellstead and
Zarrop 1991) are constant trace algorithms, the use of variable or adaptive forgetting factors,
including start-up forgetting factors; and Directional Forgetting (DF), first suggested by
Kulhavy (1987).
In the latter DF algorithm, the P(k) matrix update takes the form:

P(k) = {P(k − 1) − P(k − 1)φ(k)[r−1(k − 1) + φT (k)P(k − 1)φ(k)]−1 φT (k)P(k − 1) }
(9.47)

where a typical choice for r (k) is:

r (k) = α∗ + 1− α∗

φT (k + 1)P(k)φ(k + 1) (9.48)

in which α∗ plays a similar role to α in the EWP algorithm (9.46).

9.2.2 Modelling the Parameter Variations

TVP estimation is best considered as a unified operation that involves both recursive filtering
and smoothing, based on modelling the parameter variations in a stochastic, state space
manner. Here, the time series data are processed sequentially, first by the ‘forward-pass’
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filtering algorithm that provides the online parametric estimate ρ̂(k | k) k = 1, 2, . . . N , as
well as any predictions (forecasts) ρ̂(k + f | k) into the future, where f is the forecasting
horizon. Following this, the ‘backward-pass’ FIS algorithm updates these filtered estimates
to yield the smoothed estimate ρ̂(k | N ) k = N , N − 1, . . . , 1, as well as any interpolations
over gaps in the data; or backcasts ρ̂(k − b|k), where b is the backcasting horizon (normally
for k = 1 at the beginning of the data set to yield a backcast into the past). Although TVP
estimation of this type can be applied most easily to ARX and ARMAX models, we will now
consider how it has been extended (Young 2000) to the DTF model (9.40).
Reflecting the statistical setting of the analysis and referring to previous research on this

topic, it seems desirable if the temporal variability of the model parameter vector ρ(k) is
characterised in some stochastic manner. Normally, when little is known about the nature
of the time variability, this model needs to be both simple and flexible. One of the simplest
and most generally useful class of stochastic, state space models involves the assumption
the ith parameter, ρi (k), i = 1, 2, . . . , n + m + 1, in ρ(k) is defined by a two-dimensional
stochastic state vector xi (k) = [ρi (k) ∇ρi (k)]T , where ρi (k) and ∇ρi (k) are, respectively, the
changing ‘level’ and ‘slope’ of the associated TVP. This selection of a two-dimensional state
representation of the TVPs is based on practical experience over a number of years. Initial
research tended to use a simple scalar random walk model for the parameter variations but
subsequent research showed the value of modelling not only the level changes in the TVPs
but also their rates of change.
The stochastic evolution of each xi (k) [and, therefore, of each of the n + m + 1 parameters

in ρ(k)] is assumed to be described by one of the Generalised Random Walk (GRW: Young
and Ng 1989; Young 1999, 2011) family defined in the following state space terms:

xi (k) = Fi xi (k − 1)+ Giηi (k) i = 1, 2, . . . , n + m + 1 (9.49)

where4

Fi =
[

αi βi

0 γi

]
; Gi =

[
δi 0

0 εi

]
(9.50)

and ηi (k) = [η1i (k)η2i (k)]T is a 2× 1, zero mean, white noise vector that allows for stochastic
variability in the parameters and is assumed to be characterised by a (normally diagonal)
covariance matrix Qηi . Of course, equation (9.49) is a generic model formulated in this
manner only to unify various random walk-type models: it is never used in its entirety since it
is clearly over-parameterised.
This general model comprises, as special cases, the integrated random walk (IRW:

αi = βi = γi = εi = 1; δi = 0); the scalar random walk [RW: scalar but equivalent to (9.49)
if βi = γi = εi = 0;αi = δi = 1]; the first order auto-regressive AR(1) model (also scalar,
with βi = γi = εi = 0; 0 < αi < 1; δi = 1); the intermediate case of smoothed random walk
(SRW: 0 < αi < 1; βi = γi = εi = 1; δ = 0); and, finally, both the local linear trend (LLT:
αi = βi = γi = εi = 1; δi = 1) and damped trend (αi = βi = δi = εi = 1; 0 < γiv < 1).
Note that the LLT model can be considered simply as the combination of the simpler

4 Do not confuse the subscripted αi here with the α used in the limited memory algorithms.
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RW and IRW models. The various, normally constant, parameters in this GRW model
(αi , βi , γi , δi , εi ) and the elements of Qηi are normally referred to as ‘hyper-parameters’.
This is to differentiate them from the TVPs that are the main object of the estimation analy-
sis. However, the hyper-parameters are also assumed to be unknown a priori and need to be
estimated from the data, normally under the assumption that they are time-invariant.
In the case of the RW model, i.e.

ρi (k) = ρi (k − 1)+ η1i (k) (9.51)

each parameter can be assumed to be time-invariant if the variance of the white noise input
η1i (k) is set to zero. Then the stochastic TVP setting reverts to the more normal, constant
parameter TF model situation. In other words, if RW models with zero variance, white noise
inputs are specified for the model parameters, the recursive Instrumental Variable (IV) esti-
mation algorithm described below for the general stochastic TVP case will provide recursive
estimates that are identical to those obtained with the normal recursive IV estimation algorithm
for TF models with constant parameters (see section 8.2).

9.2.3 State Space Model for DTF Estimation

Having introduced the GRW models for the individual parameter variations, an overall state
space model can then be constructed straightforwardly by the aggregation of the subsystem
matrices defined in (9.50), with the ‘observation’ equation defined by the model equation
(9.43), i.e.

Observation equation : y(k) = hT (k)x(k)+ μ(k) (i)

State equations : x(k) = Fx(k − 1)+ Gη(k) (ii)
(9.52)

If n p = n + m + 1, then

x(k) = [
ρ 1(k) ∇ρ 1(k) ρ 2(k) ∇ρ 2(k) . . . ρn p

(k) ∇ρn p
(k)

]T
(9.53)

while F is a 2n p × 2n p block diagonal with blocks defined by the Fi matrices in (9.50); G
is a 2n p × 2n p block diagonal matrix with blocks defined by the corresponding sub–system
matricesGi in (9.50); andη(k) is a 2n p-dimensional vector containing, in appropriate locations,
the white noise input vectors ηi (k) (‘system disturbances’ in normal state space terminology)
to each of the GRW models. These white noise inputs, which provide the stochastic degree
of freedom to allow for parametric change in the model, are assumed to be independent of
the observation noise e(k) and have a block-diagonal covariance matrix Q formed from the
combination of the individual covariance matrices Qηi . Finally, hT (k) is a 1× 2n pvector of
the following form:

hT (k) = [−y(k − 1) 0 − y(k − 2) 0 · · · − y(k − n) 0 u(k − δ) 0 · · · u(k − δ − 1) 0]
(9.54)

that relates the scalar observation y(k) to the state variables defined by (9.52) (ii), so that
it represents the DTF model (9.40), with each parameter defined as a GRW process and
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μ(k) = A(z−1, k)ξ (k), which is a complex, non-stationary noise process. In the case of the
scalar RW and AR(1) models for parameter variation, the alternate zeros are omitted.
In the unlikely event that the noise variableμ(k) in (9.52) (i) happens to be zero mean, white

noise, then the above TVP model reduces to the simpler DARX model in which the system
noise component is defined by equation (9.42). It is well known that this DARX model can
be treated as a ‘linear regression’ relationship and that the standard forms of the KF and FIS
algorithms can be used, very successfully, to estimate the TVPs. The problem is, of course, that
μ(k) is not white and Gaussian, even if ξ (k) has these desirable properties. This difference is
very important in the DTF context since it can be shown that the TVP estimates obtained from
the standard recursive filtering/smoothing algorithmwill be inconsistent and so asymptotically
biased away from their ‘true’ values. Note that, strictly, the terms ‘consistency’ and ‘bias’, as
used here, apply only to constant parameter, stationary models but they are used informally
here because similar behaviour is encountered with TVP models.
The level of this asymptotic bias is dependent on the magnitude of the measurement noise

and it can be problematic in high noise situations, particularly if the parameters are physically
meaningful. For this reason, it is necessary to modify the standard algorithms to avoid biasing
problems. This can be achieved by attempting to model the noiseμ(k) in somemoving average
manner (see e.g. Norton 1975, 1986). However, since μ(k) is a complex, non-stationary noise
process, its complete estimation is not straightforward.
An alternative approach, which does not require modelling μ(k) provided it is independent

of the input u(k), is the recursive-iterative DTF algorithm. This algorithm can be implemented
in various ways (Young 2011). The simplest version is outlined below to give some idea
of its main features, while the interested reader can use the dtfm routine in the CAPTAIN
Toolbox (Appendix G; Taylor et al. 2007a) for applications. In the first part of the algorithm, a
‘symmetric matrix’ version of the standard iterative IV algorithm, as described in section 8.2,
is used to estimate the time variable parameters. The results obtained at the final iteration are
then processed by the recursive FIS algorithm.

1. Forward-Pass Symmetric IV Equations (iterative)
Iterate recursive equation (9.55) and equation (9.56) for j = 1, 2, . . . , IT , with Recursive
Least Squares (RLS) estimation used at the first iteration, i.e. ĥ(k) = h(k) for j = 1:

Prediction:

x̂(k | k − 1) = Fx̂(k − 1)
P̂(k | k − 1) = FP̂(k − 1)FT + G Qr GT

(9.55)

Correction:

x̂(k) = x̂(k | k − 1)+ P̂(k | k − 1)ĥ(k)
[
1+ ĥT (k) P̂(k | k − 1)ĥ(k)

]−1

{ y(k)− hT (k)x̂(k | k − 1) }
P̂(k) = P̂(k | k − 1)+ P̂(k | k − 1)ĥ(k)

[
1+ ĥT (k) P̂(k | k − 1)ĥ(k)

]−1

ĥT (k) P̂(k | k − 1)

(9.56)
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where, for j > 1,

ĥT (k) = [−x̂(k − 1), 0,−x̂(k − 2), 0, . . . , x̂(k − n), 0, . . . , u(k − δ),
0, . . . , u(k − δ − m), 0]

x̂(k) = B̂ j−1(z−1, k)

Â j−1(z−1, k)
u(k − δ)

(9.57)

The following FIS algorithm is in the form of a backward recursion operating from the end
of the sample set to the beginning.

2. Backward-Pass Fixed Interval Smoothing IV equations (single pass)

x̂(k | N ) = F−1 [
x̂(k + 1 | N )+ GQr GT L(k)

]
L(k) = [I − P̂(k + 1)ĥ(k + 1)ĥT (k + 1)]T

[FT L(k + 1)− h(k + 1){ y(k + 1)− ĥT (k + 1)x̂(k + 1) }]
P̂(k | N ) = P̂(k)+ P̂(k)FT P̂−1(k + 1 | k)

[
P̂(k + 1 | N )− P̂(k + 1 | k)

]
P̂−1(k + 1 | k)FP̂(k)

(9.58)

with L(N ) = 0. In these recursions, the n p × n p Noise Variance Ratio (NVR) matrix Qr

and the n p × n p matrix P̂(k) are defined as follows:

Qr = Q
σ 2
; P̂(k) = P(k)

σ 2
(9.59)

Here, P(k) = σ 2 P̂(k) is the estimated parametric covariance matrix in the DARX case, where
the square roots of its diagonal elements provide an estimate of the Standard Errors (SEs) on
the TVP estimates. However, care must be taken with its interpretation in the DTF case, where
the estimation provides only an approximation in this regard. Note also that an alternative FIS
algorithm is available in which, at each backwards recursion, the estimate x̂(k | N ) is based on
an update of the filtering estimate x̂(k). This can be specified as an alternative to (9.58) in the
dtfm algorithm of the CAPTAIN Toolbox. The advantage of the smoothing recursions is that
they provide ‘lag-free’, lower variance estimates of the TVPs.
The main difference between the above algorithm and the standard recursive filtering–

smoothing algorithms is the introduction of ‘hats’ on the ĥ(k) and the P̂(k) matrix, and the
use of an iterative IV solution in the forward-pass algorithm. In the standard algorithm, which
applies for the simpler DARX model, ĥ(k) is replaced by h(k) in (9.57) and there is no need
for iteration in the forward-pass. In equations (9.56) ĥ(k) is the IV vector, which is used by
the algorithm in the generation of all the P̂(k) terms and is the main vehicle in removing the
bias from the TVP estimates, as discussed in Chapter 8. The subscript j–1 on Â j−1(z−1, k)
and B̂ j−1(z−1, k) indicates that the estimated DTF polynomials in the auxiliary model (9.57),
which generates the instrumental variables x̂(k) that appear in the definition of ĥ(k), are
updated in an iterative manner, starting with the least squares estimates of these polynomials
for j = 1. In order to ensure the stability of the auxiliary model at each iteration a stability
check is applied to the estimated denominator polynomial Â(z−1, k) and, if necessary, the
polynomial is stabilised (using, for example, the MATLAB R© polystab routine). Iteration is
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continued until the forward pass IV estimates are no longer changing significantly: normally
only 4 or 5 iterations are required.
This recursive-iterative approach exploits the ‘symmetric gain’ version (see IIIs in section

8.3.4) of the IV algorithm (Young 1970), rather than the more usual asymmetric version.
This is necessary in order that the standard recursive FIS algorithm in (9.58) can be used
to generate the smoothed estimates of the TVPs. As we have seen previously in Chapter 8,
optimal RIV algorithms exploit adaptive prefiltering to induce optimality in a ML sense. It is
possible to extend the above algorithm to include such adaptive prefiltering but this requires
TVP prefilters, increasing the complexity of the algorithm.
Note that when it is applied to the general TF model, the DTF algorithm is an offline

algorithm used for investigating the nature of any time variable parameters prior to online, real-
time estimation (e.g. in self-tuning or adaptive control applications). The DARX option can be
used in real-time but is limited to ARX models. The recently developed Real-Time Refined IV
algorithm does include adaptive prefiltering (Young 2010) and the Recursive Prediction Error
Minimisation (RPEM) algorithm in the MATLAB R© System Identification Toolbox fulfils a
similar role, although it does not use IV estimation or have a facility (such as dtfmopt in the
CAPTAIN Toolbox) for optimising the hyper-parameters. However, neither of these real-time
algorithms have been extended yet to include FIS estimation for offline estimation purposes.

9.2.4 Optimisation of the Hyper-parameters

In order to utilise the above TVP estimation algorithm, it is necessary to optimise the values of
the hyper-parameters in relation to the data being modelled, including Qr in equations (9.59).
This optimisation can be achieved in various ways but the best known approach is to use
ML optimisation based on ‘prediction error decomposition’ (Schweppe 1965). This derives
originally from research that showed how to generate likelihood functions for Gaussian signals
using the Kalman Filter (see also Bryson and Ho 1969). Its importance in the present context
was probably first recognised by Harvey (1981) and Kitagawa (1981). It has become one of
the two standard approaches to the problem [the other being the Expectation and Minimisa-
tion (EM) algorithm]. Other alternatives are simply to optimise the hyper-parameters so that
they minimise the sum of the squares of the innovation errors y(k)− ĥT (k)x̂(k | k − 1) in
(9.56); or to use frequency domain optimisation. The advantages of an optimal approach to
hyper-parameter estimation is that it is relatively objective and removes the need for manual
selection of the hyper-parameters that characterises less sophisticated TVP estimation algo-
rithms, such as theEWP forgetting algorithm. This is illustrated for a simulatedDARXmodel in
Example 9.3. An example of full DTF estimation applied to simulated data is given by Young
(2000); and its application to real data is described in the second example of Young (2002).

Example 9.3 Estimation of a Simulated DARX Model This example is based on an
example given in Wellstead and Zarrop (1991) and the results obtained here are similar to
those of Young (2011). These results are obtained using the statistical DARX option of the
DTF algorithm described above. The simulation model takes the following DARX form:

y(k) = b0(k)

1+ a1z−1 + a2z−2 u(k − 1)+ 1

1+ a1z−1 + a2z−2 e(k) (9.60)
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or, in discrete-time equation terms:

y(k) = −a1y(k − 1)− a2y(k − 2)+ b0(k)u(k − 1)+ e(k) (9.61)

where e(k) is zero mean, white noise with variance 0.16 [10% noise by Standard Deviation
(SD)]. The b0 parameter changes from 1.0 to 2.0 at t = 200, and then back to 1.0 at t = 900;
while a1 = −1.0 and a2 = 0.25 are time-invariant. The simulated input–output data are shown
in Figure 9.8: the input u(k) changes from a square wave between plus and minus one to a
very small amplitude square wave of plus and minus 0.002 at t = 400, reverting to the original
large square wave at k = 800. This choice of input signal induces ‘estimator wind-up’ in the
case of the standard EWP algorithm because the information content in the data during the
period of low input activity is not sufficient to ensure good performance from this rather crude
TVP estimation algorithm. The DF algorithm, which is designed specifically to limit estimator
wind-up produces a distinct improvement over the standard EWP algorithm, with the worst
excesses of the wind-up no longer occurring. However, the response to the parametric change
is relatively slow and there is considerable interaction between the estimates over the period
of input inactivity.
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Figure 9.8 Input u(k) (a) and noisy output y(k) (b) for Example 9.3
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Figure 9.9 Estimation results for Example 9.3 using the ML optimised DARX estimation algorithm:
filtering results (a) and smoothing results (b). Estimated SE bounds are shown as the grey area in both
cases

By far the best results are those shown in Figure 9.9, as obtained using the dtfmopt and
dtfm routines in CAPTAIN, based on the simpler DARX model form, which is then of similar
complexity to the EWP and DF algorithms. Here, however, the elements of the diagonal NVR
matrix Qr are the ML-optimised NVR hyper-parameters:

NVRa1 = 1.5× 10−16; NVRa2 = 4.6× 10−20; NVRb0 = 0.0186. (9.62)

We see that the NVRa1and NVRa2 are both insignificantly different from zero, illustrating how
the ML optimisation has, quite objectively, inferred from the data that the associated a1 and
a2 parameters are time-invariant. However, NVRb0 is significant and has been optimised at a
value that gives good tracking of the step changes in the b0 parameter.
Figure 9.9b shows the backward-pass FIS estimation results, as obtained from the simplest

RW version of the FIS algorithm (9.58). In comparison with the filtering results in Figure 9.9a,
it will be noted that the smoothed estimates are more accurate; the step changes are anticipated
because the estimates are based on the whole data set; and the estimates of the constant
parameters are now themselves constant. Note also that, since both the filtering and smoothing
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algorithms are statistical in nature, they provide information on the statistical properties of
the estimates, as shown here by the SE bounds plotted as the shaded area either side of the
estimates. As expected, the SE bounds on the smoothed estimates are visibly smaller than
those of the filtered estimates, particularly over the period of input inactivity.

9.3 State-Dependent Parameter Modelling and PIP Control

The previous section has shown that the estimation of time variable parameters can help to
model ‘non-stationary’ systems whose static and dynamic behaviour changes over time. On
the other hand, if the changes in the parameters are functions of the state or input variables
(i.e. the parameters and/or their changes actually constitute stochastic state variables), then the
stochastic system is truly nonlinear and likely to exhibit severe nonlinear behaviour. Normally,
this cannot be approximated in a simple TVP manner; in which case, recourse must be made
to other approaches, such as the SDP modelling methods of the kind proposed by Young
(2000) and Young et al. (2001). The use of SDP models in the design of PIP control systems
for nonlinear systems was briefly outlined by Young (1996) and McCabe et al. (2000). In
this chapter, we will introduce the basic SDP control approach and refer the reader to recent
research by Taylor et al. (2007b, 2009, 2011) on its wider application within a control systems
design context.

9.3.1 The SDP-TF Model

While the DARX model (9.40) can produce fairly complex response characteristics, it is only
when the parameters are functions of the system variables, and so vary at a rate commensurate
with these variables, that the resultant model can behave in a heavily nonlinear or even chaotic
manner. In its simplest SISO form, the State-Dependent Parameter ARX (SDARX) model can
be written most conveniently in the following form:

y(k) = φT (k)ρ(k)+ e(k); e(k) = N (0, σ 2) (9.63)

where

φT (k) = [−y(k − 1)− y(k − 2) · · · − y(k − n) u(k − δ) · · · u(k − δ − m)]

ρ(k) = [a1 {χ (k)} a2 {χ(k)} · · · an {χ (k)} b0 {χ(k)} · · · bm {χ(k)}]T (9.64)

inwhich ai {χ (k)}, i = 1, 2, . . . , n, and b j {χ (k)}, j = 0, 1, 2, . . . , m, are the state-dependent
parameters, which are each assumed to be functions of one or more of the variables in a non-
minimal state vector χT (k) = [φT (k) U T (k)]. Here U(k) = [U1(k) U2(k) · · · Ur (k)]T is a
vector of other variables that may affect the relationship between the two primary input–
output variables but do not appear in φ(k): for example, measured ‘air data’ variables used in
the self-adaptive autostabilisation of airborne vehicles (see e.g. Young 1981, 1984 and Chapter
4 in Young 2011); or, in the case of the joint angle (or velocity) of a robotic manipulator, the
angles of other joints, representing the present configuration of the device (Taylor and Seward
2010). Finally, δ represents a pure time delay on the input variable and e(k) is a zero mean,
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white noise input with Gaussian normal amplitude distribution and variance σ 2 (although this
assumption is not essential to the practical application of the resulting estimation algorithms).
The SDARX model (9.63) can be written in the alternative pseudo-TF form:

y(k) = B
{
χ(k), z−1}

A
{
χ (k), z−1}u(k − δ)+ 1

A
{
χ (k), z−1}e(k) (9.65)

where

B
{
χ (k), z−1} = b0 {χ (k)} + b1 {χ(k)} z−1 + · · · + bm {χ (k)} z−m

A
{
χ (k), z−1} = 1+ a1 {χ (k)} z−1 + a2 {χ (k)} z−2 + · · · + an {χ(k)} z−n

(9.66)

The more general SDP-TF model is:

y(k) = B
{
χ (k), z−1}

A
{
χ (k), z−1}u(k − δ)+ ξ (k) (9.67)

where ξ (k) is a general additive noise term: e.g. it could be ARMA noise or, indeed, nonlinear
noise described by a SDP relationship. Note that multi-state SDP models, where each TF
model parameter is a function of several variables, are now being considered (e.g. Sadhegi
et al. 2010; Tych et al. 2012) and offer the possibility of still richer nonlinear models. However,
these have not yet been applied to the analysis of real-time series data and their practical utility
still has to be evaluated.

Example 9.4 State-Dependent Parameter Representation of the Logistic Growth Equa-
tion A typical, simple deterministic example of equation (9.63) is a SDARX model in the
form of the following nonlinear ‘forced logistic growth’ equation:

y(k) = α1y(k − 1)− α2y(k − 1)2 + u(k) (9.68)

or

y(k) = −a1 {y(k − 1)} y(k − 1)+ b0 {u(k)} u(k) (9.69)

where, in this example, b0 is not state-dependent, i.e.

a1 {y(k − 1)} = −α1 + α2y(k − 1) and b0 {u(k)} = 1.0 ∀k (9.70)

Although it is simple, this model can exhibit rich behavioural patterns: from simple to chaotic
responses, depending on α1 and α2 (Young 2000). For example, Figure 9.10 shows the typical
chaotic response of themodel obtained when α1 = α2 = 4 and the initial condition y(0) = 0.1.
The noisy response shown in Figure 9.10 relates to aMonte Carlo Simulation (MSC) study in
Example 9.5.
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Figure 9.10 Typical chaotic response of the logistic growth equation (9.68)

9.3.2 State-Dependent Parameter Model Identification and Estimation

The SDP modelling procedure is briefly summarised as follows:

1. If feasible linear models can be obtained (e.g. for small perturbations close to an operating
condition), then the underlying model structure and potential state variables are first iden-
tified by statistical estimation of discrete- or continuous-time, linear TF models, using the
methods discussed in Chapter 8. Otherwise, the modeller can move straight to stage 2 but,
in this case, further investigations into possible model structures are required.

2. The second stage of the analysis is based on the estimation of stochastic state space models
with TVPs, using the recursive KF and FIS algorithms discussed in section 9.2. However,
in order to address systems that exhibit severe nonlinear or chaotic behaviour, these are
embedded within an iterative ‘back-fitting’ routine (i.e. the sdp function in the CAPTAIN
Toolbox) that involves re-ordering of the time series data into an SDP space which is able
to reveal the nature of the state-dependency using standard TVP estimation. Here, each
parameter in the model has a different value at each sample and can only be viewed in
state-dependent form as a graph, so that the model is effectively ‘non-parametric’.

3. In the final optimisation stage, the non-parametrically defined nonlinearities obtained ini-
tially by SDP estimation are now parameterised in somemanner, in terms of their associated
dependent variables. This can be achieved by defining an appropriate parametric model,
such as polynomial functions, trigonometric functions, wavelets, radial basis functions,
etc., estimated directly from the input–output data using some method of dynamic model
optimisation, such as fminsearch in MATLAB R© (see e.g. Taylor et al. 2007b; Beven et al.
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2012). Initial conditions for this optimisation are based on the SDP estimates obtained from
the KF/FIS stage of the analysis, which helps to avoid the potential problem of finding a
locally optimal set of parameters.

It should be noted that SDP models can be linked with what are referred to as Non-Linear
Parameter Varying (NLPV) models in the control and systems literature (see e.g. Previdi
and Lovera 2004); a link that is demonstrated in Young (2005). This name derives from the
earlier LPV models, while the state on which the parameters are assumed to depend is called
the ‘scheduling’ variable because of the link with scheduled gain control systems. The main
difference between the SDP and NLPV modelling approaches is that the former involves an
initial non-parametric SDP identification stage to identify the location and nature (in graphical
or look-up table terms) of any significant nonlinearities in the model. This stage is normally
omitted in NLPV (and LPV) modelling, where the location of the SDPs and their parametric
form appear to be selected either by assuming that all parameters are state-dependent and
modelling them using parametric functions of various kinds (neural/neuro-fuzzy networks,
wavelets, etc.), or by selecting them based on prior knowledge of the physical system being
modelled. Although such parametric modelling is also used in SDP estimation, the selection
of the parametric functions is guided by the shapes of the non-parametric functions identified
in stage 2 above.
SDP estimation is not discussed further here because it is dealt with in detail elsewhere (e.g.

Pedregal et al. 2007; Young 2011). Nonetheless, as a pointer to future TDC design studies, we
will briefly consider the control of such SDP identified systems.

9.3.3 Proportional-Integral-Plus Control of SDP Modelled Systems

The SDP-NMSS representation of the deterministic SDPmodel (9.67)with δ > 0 and ξ (k) = 0
is as follows:

x(k + 1) = F {χ (k)} x(k)+ g {χ(k)} u(k)+ d yd (k); y(k) = hx(k) (9.71)

where x(k) is the usual servomechanism non-minimal state vector, i.e. equation (5.14), and
the various matrices are defined in a similar manner to before. In this case, however, F {χ(k)}
and g {χ (k)} are expressed in terms of the SDPs, i.e. the model coefficients ai (i = 1 . . . n)
and bi (i = 1 . . . m) in equation (5.15) and equation (5.16) are straightforwardly replaced by
ai {χ (k)} and bi {χ(k)}: see Example 9.5.
The SDP-PIP control law takes the following state variable feedback form:

u(k) = −kT {χ (k)} x(k) (9.72)

where, at an arbitrary kth sampling instant, the state dependent control gain vector:

kT {χ(k)} = [ f0 {χ (k)} , . . . , fn−1 {χ(k)} , g1 {χ(k)} , . . . gm−1 {χ (k)} ,−kI {χ (k)}] (9.73)

could be selected using any of the methods discussed for PIP control in previous chapters,
i.e. based on the ‘snapshot’ of the SDP model at this same kth sampling instant. The block
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diagram form of the controller takes a similar form to Figure 5.3, here with the SDP model
and state dependent control gains replacing the linear TF models and time-invariant control
filters of the standard controller. The SDP-PIP algorithm could also be implemented using the
alternative control structures discussed in Chapter 6.
Consider the following three approaches for determining the control gains:

1. Scheduled LQ design. The standard LQ control problem (see section 5.4) can be solved
online at each sampling instant, on an assumption of point-wise controllability. Since
the functional representations of each parameter are estimated offline, this pragmatic
approach yields scheduled rather than adaptive control systems (although this depends
on the viewpoint of the designer). Unfortunately, the optimality of the design is deter-
mined by the choice of SDP model, with suboptimal solutions obtained in the general
case (Taylor et al. 2007b). Furthermore, while some theoretical advances have been
made regarding the asymptotic stability of this type of ‘state-dependent Riccati equa-
tion’ approach, the conditions obtained can be difficult to fulfil in practical applications
(Banks et al. 2007).

2. Scheduled pole assignment. Another approach is to solve a version of the standard linear
pole assignment problem at each sampling interval, i.e. by equating the closed-loop char-
acteristic equation at sample k with the elements of a desired (user-defined) characteristic
polynomial. Section 5.3 develops an algorithmic pole assignment method that is ideal for
an online implementation of the resulting SDP-PIP controller. Alternatively, an algebraic
solution can be determined for the system under study, which can simplify the practical
implementation (see Taylor et al. 2009 and Example 9.5). For time-invariant systems, the
associated eigenvalues are, of course, equivalent to the poles of the closed-loop system
and hence determine the dynamic behaviour of the control system. Unfortunately, it is
well known that, for time-varying systems as here, these eigenvalues do not completely
determine the transient response and stability of the closed-loop system.

3. Stabilising pole assignment for all-pole SDP models. The limitations noted above for
standard pole assignment have motivated the development of a new algorithm for SDP-
NMSS systems, as discussed in recent articles by Taylor et al. (2009, 2011). The initially
developed approach is constrained to ‘all-pole’ systems in which there are no open-loop
zeros. The required pole assignability conditions are particularly transparent in this case
and can be identified offline. Furthermore, using this formulation, the closed-loop system
reduces to a linear TF with the specified (design) poles. Hence, assuming pole assignability
at each sample and no model mismatch, stability of the nonlinear system is guaranteed
for stable design poles. Present research is evaluating the robustness and performance
properties of the algorithm when there is model mismatch, as there always will be in
practical applications.

Notwithstanding the various caveats above, practical examples show that SDP-PIP control
system design can yield robust and practically useful control systems for nonlinear prob-
lems. For example, the scheduled LQ design, scheduled pole assignment and stabilising
pole assignment methods have been utilised for the hydraulic manipulator of a vibro-lance
ground compaction system (Taylor et al. 2007b), ventilation rate in a micro-climate test
chamber (Stables and Taylor 2006) and for a mobile nuclear decommissioning robot (e.g.
Taylor and Seward 2010; Robertson and Taylor 2012), respectively. However, for tutorial
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purposes, the final example of this book returns to the simulated logistic growth equation
introduced above.

Example 9.5 SDP-PIP Control of the Logistic Growth Equation This example is
concerned with the logistic growth equation model (9.68) with α1 = α2 = 4, where the natural
open-loop, chaotic response is shown in Figure 9.10. The reader should verify from the above
equations that the nonlinear NMSS form of this SDP model is as follows:

[
y(k)

z(k)

]
=

[
4− 4y(k − 1) 0

−4+ 4y(k − 1) 1

] [
y(k − 1)
z(k − 1)

]
+

[
1

−1

]
u(k − 1)+

[
0

1

]
yd (k) (9.74)

Here, z(k) = yd (k)− y(k) is the integral-of-error state as usual; yd (k) is the command input
signal; and the control input u(k) is generated by the following SVF control law:

u(k) = − f0(k)y(k)+ kI (k)z(k) (9.75)

where the control gains f0(k) and kI (k) at an arbitrary kth sampling instant are selected using
one of the methods discussed above. Equation (9.74) and equation (9.75) can be compared
with the time-invariant equivalents (for a similar model structure) given by equation (5.6) and
equation (5.10). Using the scheduled pole assignment approach, let the desired polynomial [the
general form of which is given by equation (5.57)] have roots at 0.5 and zero: i.e. D(z−1) =
1− 0.5z−1, so that d1 = −0.5 and d2 = 0. At the kth sampling instant, the parameters of
the SDP model are a1(k) = 4− 4y(k − 1) and b1 = 1, hence the linear PIP pole assignment
computation algorithm (5.67) yields5:

f0(k) = 4− 4y(k − 1)− d2 = 4− 4y(k − 1) and kI = b0 + d1 + d2 = 1− 0.5 = 0.5

(9.76)

In this case, f0(k) varieswith time because it is state dependent but kI is constant. Consequently,
the controller is of the standard PIP form but with the control gain f0(k) being changed at each
sample to reflect the nonlinearity introduced by the SDP.
It might be assumed that this SDP-PIP controller would be sensitive to uncertainty in the

model parameters but this is not necessarily the case, as shown in Figure 9.11, which gives
plots of the results obtained from a MCS exercise. Here, the uncertainty was quantified by
estimating the model from 110 samples of data generated by the uncontrolled (chaotic) system,
in which u(k) is not present and white noise is added to the measurement y(k) to yield a noise–
signal ratio of 0.27 by SD: these noisy open-loop data are shown in Figure 9.10. The resulting
Linear Least Squares (LLS) estimates and their estimated covariance matrix P, are as follows:

α̂1 = 3.89 (0.07); α̂2 = 3.89 (0.08); P =
[

0.0054 −0.0061
−0.0061 0.0072

]
(9.77)

5 For this low order example, it is alternatively straightforward to obtain (9.76) directly by equating the closed-loop
characteristic polynomial with the desired polynomial; see Example 2.7.
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Figure 9.11 MCS response of SDP-PIP controlled logistic growth equation in Example 9.5 to a
sequence of step changes in the command input, showing the relative insensitivity of the controller to
uncertainty in the model parameters

where the estimated parameters are asymptotically biased away from their true values because
of the crude least squares estimation. These estimates were used in the usual MCS manner to
generate 1000 realisations of the SDP-PIP controlled system (this time without the additive
noise in order to more clearly illustrate the closed-loop dynamic behaviour), as shown in
Figure 9.11. The associated changes in the SDP gain f0(k) are plotted in Figure 9.12.
It is clear that the controlled system is robust to this level of uncertainty: indeed all the

realisations remain stable even if the uncertainty in the parameters was increased 10-fold. One
might expect that the performance would be degraded if the controller was designed for much
more rapid ‘dead-beat’ operation (i.e. d1 = d2 = 0) but, once again, this is not the case, as
shown in Figure 9.13, where the 95 percentile bounds remain relatively small.
Unfortunately, it is not possible to guarantee the robustness and apparently strong stability

shown in this example to all SDP-PIP implementations. Research is proceeding to investigate
what conditions are required to guarantee stability, at least in the deterministic (no model
mismatch) case. The most recent research in this regard (Taylor et al. 2009, 2011) has shown
that such a guarantee is possible in the ‘all-pole’ system situation, i.e. when the numerator
polynomial B{χ (k), z−1} in the SDP model (9.67) is limited to:

B{χ (k), z−1} = b0{χ (k)} (9.78)

Furthermore, for unity time-delay systems that are also constrained by (9.78), the basic
scheduled pole assignment and new stabilising pole assignment algorithms mentioned above
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Figure 9.13 MCS response of SDP-PIP dead-beat controlled logistic growth equation in Example 9.5
to a sequence of step changes in the command input
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are equivalent: this is why the expected design responses, such as dead-beat, are successfully
obtained for the present example. Although limited, the time-delay SDP model (9.67) with
(9.78), still encompasses a wide range of nonlinear structures and has proven particularly
useful for the control of hydraulically operated robotic manipulators (e.g. Taylor et al. 2010;
Taylor and Seward 2010; Robertson and Taylor 2012).

9.4 Concluding Remarks

This final chapter has considered two additional topics that illustrate the wide applicability of
the TDC concepts and methods discussed in previous chapters of this book. We believe that
the PIP control of δ-operator systems has important practical implications in those situations
where rapid sampling is essential and we are surprised that, so far, it has not been exploited
more in practical applications. Similarly, adaptive TVP and scheduled SDP control methods
are important because they open the door to the PIP control of nonlinear stochastic systems.
Although the SDP-PIP pole assignment approach demonstrated above has initially been limited
in general terms to systems that can be described by all-pole SDP models, without model
mismatch, this does not mean that systems that are described by the more general SDP-TF
model (9.67), with model mismatch, cannot be controlled at all; it simply means that a general
proof of closed-loop stability has not been established so far in this situation. Indeed, it seems
likely that SDP-PIP control can be applied to such systems within some defined region of the
SDP model parameter space and research is proceeding in this direction. Clearly, therefore,
SDP modelling and nonlinear SDP-PIP control are both subjects that have great potential for
practical application, and are an attractive topic for future theoretical and practical research.
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A
Matrices and Matrix Algebra

A.1 Matrices

A matrix is defined as a rectangular array of elements arranged in rows and columns; in this
book it is denoted by a bold italics capital letter, e.g.

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ (A.1)

Often A is alternatively denoted by [ai j ] to indicate that it is characterised by elements ai j ,

i = 1, 2, . . . , m; j = 1, 2, . . . , n

If it has mn elements arranged in m rows and n columns, then it is said to be of order m by n,
usually written m × n.
The following should be noted in relation to matrices:

(i) A null matrix has all of its elements set to zero, i.e. ai j= 0 for all i, j.
(ii) A symmetric matrix is a square matrix in which ai j = a ji ; i.e. it is symmetric about the

diagonal elements.
(iii) The trace of a square n × n matrix, denoted by Tr., is the sum of its diagonal elements,

i.e. Tr. A = a11 + a22 + · · · + ann .
(iv) A diagonal matrix is a square matrix with all its elements except those on the diagonal

set to zero, i.e.

A =

⎡
⎢⎢⎢⎣

a11 0 · · · 0

0 a22 · · · 0

· · · · · · · · · · · ·
0 0 · · · ann

⎤
⎥⎥⎥⎦
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C. James Taylor, Peter C. Young and Arun Chotai.
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(v) An n × n diagonal matrix with elements set to unity is denoted by In and termed the
identity (or unit) matrix of order n, e.g. for a 3 × 3 identity matrix:

I3 =

⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦ .

Sometimes the subscript is omitted if the order is obvious.
(vi) An idempotent matrix is a square matrix such that A2 = AA = A, i.e. it remains

unchanged when multiplied by itself.

A.2 Vectors

Amatrix of orderm × 1 contains a single column ofm elements and is termed a column vector
(or sometimes just a vector); in this book, it is denoted by a bold italics lower case letter, i.e.
for a vector b:

b =

⎡
⎢⎢⎢⎢⎣

b1
b2
...

bn

⎤
⎥⎥⎥⎥⎦ (A.2)

A.3 Matrix Addition (or Subtraction)

If two matrices A and B are of the same order then we define A + B to be a new matrix C,
where

ci j = ai j + bi j

In other words, the addition of thematrices is accomplished by adding corresponding elements,
with A − B defined in an analogous manner.

A.4 Matrix or Vector Transpose

The transpose of a matrix A is obtained from A by interchanging the rows and columns; in
this book, it is denoted by a superscript capital T, e.g. for A defined in (A.1):

AT =

⎡
⎢⎢⎢⎣

a11 a21 · · · am1

a12 a22 · · · am2

· · · · · · · · · · · ·
a1n a2n · · · amn

⎤
⎥⎥⎥⎦
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The transpose of a column vector b, denoted by bT is termed a row vector, e.g. for b in (A.2),
bT = [b1 b2 . . . bn].
Note that:

(i) in the case of a symmetric matrix AT = A;
(ii) [AT ]T = A;
(iii) [A + B] T = AT + BT .

A.5 Matrix Multiplication

If A is of order m × n and B is of order n × p then the product AB is defined to be a matrix of
order m × p whose (ij)th element ci j is given by:

ci j =
n∑

k=1
aikbk j

i.e. the (ij)th element is obtained by, in turn, multiplying the elements of the ith row of the
matrix A by the jth column of the matrixB and summing over all terms. Therefore, the number
of elements (n) in each row of A must be equal to the number of elements in each column of
B. Note that, in general, the commutative law of multiplication which applies for scalars does
not apply for matrices, i.e.

AB �= B A

so that pre-multiplication of B by A does not, in general, yield the same as post-multiplication
of B byA. However, pre-multiplying or post-multiplying by the identity matrix leaves the
matrix unchanged, i.e.

AI n = I n A = A

Note also that for A of order m × n, B of order n × p and C of order p × q the following
results apply:

(i) (AB)C = A(BC);
(ii) A(B + C) = AB + AC with orders m, n, p and q chosen appropriately;
(iii) (B + C)A = B A + C A;
(iv) for A, B and C, the multiplication by a scalar λ yields a corresponding matrix with all its

elements multiplied by λ, i.e .λA = [λai j ];
(v) [AB]T = BT AT ;
(vi) [ABC]T = CT BT AT , since [ABC]T = [(AB)C]T = CT [AB]T = CT BT AT from (v).
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Finally, it should be observed that, for a vector x = [x1 x2 · · · xn]T , the inner product xT x
yields a scalar quantity which is the sum of the squares of the elements of x, i.e.

[x1 x2 · · · xn]

⎡
⎢⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎥⎦ = x21 + x22 + · · · + x2n

The product xxT , on the other hand yields a symmetric square matrix of order n × n, whose
elements are the squares (on the diagonal) and cross products (elsewhere) of the x elements,
i.e.

⎡
⎢⎢⎢⎣

x1
x2
· · ·
xn

⎤
⎥⎥⎥⎦ [x1 x2 · · · xn] =

⎡
⎢⎢⎢⎣

x21 x1x2 · · · x1xn

x2x1 x22 · · · x2xn

· · · · · · · · · · · ·
xn x1 xn x2 · · · x2n

⎤
⎥⎥⎥⎦

Both products are of importance in the present text.

A.6 Determinant of a Matrix

The determinant of a square n × n matrix A is a scalar quantity, denoted by |A| or det.[A],
obtained by performing certain systematic operations on the matrix elements. In particular, if
the cofactors ci j of A are defined as follows:

ci j = (−1)i+ j |Ai j | (A.3)

where |Ai j | is the determinant of the submatrix obtained when the ith row and jth column are
deleted from A, then the determinant of A can be defined as follows in terms of the elements
of the ith row or their cofactors:

|A| = ai1ci1 + ai2ci2 + · · · + aincin (A.4)

|A| may be similarly expanded in terms of the elements of any row or column.
Note that, for a matrix of order greater than 2, it is necessary to nest the operation (A.3) and

operation (A.4) and apply them repeatedly until Ai j is reduced to a scalar, in which case the
determinant is equal to the scalar. The following example demonstrates this process:

A =

⎡
⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥⎦
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then

|A| = a11

∣∣∣∣∣ a22 a23
a32 a33

∣∣∣∣∣ − a12

∣∣∣∣∣ a21 a23
a31 a33

∣∣∣∣∣ + a13

∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣∣
so that, applying (A.3) and (A.4) again to the subdeterminants, we obtain:

|A| = a11(a22a33 − a32a23)− a12(a21a33 − a31a23)+ a13(a21a32 − a31a22)

For further discussion on determinants see e.g. Johnston (1963).

A.7 Partitioned Matrices

Since a matrix is a rectangular array of elements, we may divide it up by means of horizontal
and vertical dotted lines into smaller rectangular arrays of submatrices, e.g.

A =

⎡
⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎤
⎥⎦

has been divided in this manner into four submatrices:

A11 =
[

a11 a12 a13
a21 a22 a23

]
; A12 =

[
a14
a24

]
; A21 = [a31 a32 a33] ; A22 = a34

So that A11 is a 2× 3 submatrix, A12 is a 2× 1 column vector, A21 is a 1× 3 row vector, and
A22 is a scalar. As a result A can be denoted by:

A =
[

A11 A12
A21 A22

]

The basic operations for addition, multiplication and transposition apply for partitioned matri-
ces but the matrices must be partitioned conformably to allow for such operations. A multi-
plicative example is:

AB =
[

A11 A12
A21 A22

] [
B11
B21

]
=

[
A11B11 + A12B21
A21B11 + A22B21

]

The results of such operations will be the same as would be obtained by multiplying the
unpartitioned matrices element by element (as in section A.5) but the partitioning approach
may be extremely useful in simplifying the analysis.
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One theorem for partitioned matrices that is sometimes useful in the context of this book
concerns the determinant of a partitioned matrix A, where

A =
[

A11 A12
A21 A22

]

It can be shown (e.g. Gantmacher 1960; Dhrymes 1970) that:

|A| = |A22|.|A11 − A12A−1
22 A21|

or, alternatively,

|A| = |A11|.|A22 − A21A−1
11 A12|

where A−1
11 and A−1

22 are, respectively, the inverses of the matrices A11 and A22, respectively,
as defined in section A.8.

A.8 Inverse of a Matrix

If a matrix A−1 exists such that:

AA−1 = A−1A = I

where I is an appropriately ordered identity matrix, then A−1 is termed the inverse (or recip-
rocal) of A by analogy with the scalar situation.
The inverse of a square matrix A of order n × n is obtained from A bymeans of the formula:

A−1 = 1

|A| [Adj.A] =

⎡
⎢⎣

c11
|A|

c21
|A| · · · cn1

|A|
· · · · · · · · · · · ·
c1n
|A|

c2n
|A| · · · cnn

|A|

⎤
⎥⎦

where Adj.A denotes the adjoint of the matrix A and is obtained as the transpose of an n × n
matrix C with elements ci j which are the cofactors of A as defined by (A.3), i.e.

c11 = ∣∣A−1
11

∣∣ ; c12 = − ∣∣A−1
12

∣∣ ; c22 = ∣∣A−1
22

∣∣ , etc.
Note that, by definition, the inverse will only exist if |A| �= 0; otherwise the matrix is non-
invertible or singular. A non-singular matrix is, therefore, invertible.
Several theorems on inverse matrices are useful, e.g.

(i) [AB]−1 = B−1A−1;
(ii) [AB][B−1A−1] = A[B B−1]A−1 = AI A−1 = AA−1 = I ;
(iii) [ABC]−1 = C−1B−1A−1;
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(iv) [AT ]−1 = [A−1]T ;
(v) |A−1| = 1/|A|.

One of the most common uses of the inverse matrix is in solving a set of algebraic,
simultaneous equations such as:

Xa = b (A.5)

where X is a known n × n matrix, a is an n × 1 vector of unknowns, and b is a known n × 1
vector. The reader can easily verify that this represents a set of simultaneous equations in the
elements of a, where a = [a1 a2 . . . an]T , by defining X = [xi j ] and b = [b1 b2 . . . bn]T .
Premultiplying both sides of (A.5) by X−1 we obtain:

X−1Xa = X−1b or I a = X−1b

so that

a = X−1b = 1

|X| [ad j.X]b

which is the required solution for a and is an alternative to other methods of solution such as
pivotal elimination. For further discussion on matrix inverses see e.g. Johnston (1963).

A.9 Quadratic Forms

A quadratic form in a vector e = [e1 e2 . . . en]T is defined as eTQe where Q is a symmetric
matrix of order n × n. The reader can verify that, for Q = [qij] with off-diagonal elements qij

= qji, eTQe is a scalar given by:

eT Qe = q11e
2
1 + 2q12e1e2 + · · · + 2q1ne1en + q22e

2
2 + · · · + 2q2ne2en + qnne2n (A.6)

Note that if Q is diagonal, then this reduces to (cf. inner product):

eT Qe = q11e
2
1 + q22e

2
2 + · · · + qnne2n

A quadratic form such as (A.6) is sometimes termed the weighted Euclidian Squared Norm of
the vector e and is denoted by:

||e||2Q (A.7)

As we see, it represents a very general or weighted (by the elements of Q) ‘sum of squares’
type operation on the elements of e. It proves particularly useful as a cost (or criterion function)
if e represents a vector of errors (e.g. a lack of fit) associated with some model (see Chapter
8) or relates to the states of a control system (see Chapter 1, Chapter 5, Chapter 6 and Chapter
7). For instance, the cost function associated with the Linear Quadratic (LQ) criterion for a
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discrete-time state space model, as utilised extensively in this book, is based on (A.6): see e.g.
equation (5.75).

A.10 Positive Definite or Semi-Definite Matrices

A symmetric matrix A is said to be positive definite (p.d.) if xT Qx > 0 where x is any non-null
vector. It is termed positive semi-definite (p.s.d.) if xT Qx ≥ 0.
For an n × n p.d. matrix A, aii > 0, i = 1, 2, . . . , n; for a p.s.d. matrix aii ≥ 0, i = 1, 2, . . . ,

n.
Note that if A is p.d. then A is non-singular and can be inverted; if A is p.s.d. (but not p.d.)

then A is singular (Dhrymes 1970).

A.11 The Rank of a Matrix

The rank of a matrix is the order of its largest submatrix that is non-singular and so has a
non-zero determinant. Thus for a square nxnmatrix the rank must be n (i.e. the matrix must be
full rank) for the matrix to be non-singular and invertible. For further discussion on the rank
of a matrix see e.g. Johnston (1963). The rank of a matrix is particularly useful in this book in
relation to the rank test for controllability (e.g. section 3.4).

A.12 Differentiation of Vectors and Matrices

The differentiation of vectors and matrices is most important in optimisation and statistical
analysis. The main result concerns the differentiation of an inner product of two vectors with
respect to the elements of one of the vectors.
Consider the inner product of two (n × 1) vectors x and a, i.e.

xT a = [x1 x2 . . . xn]

⎡
⎢⎢⎢⎢⎣

a1
a2
...

an

⎤
⎥⎥⎥⎥⎦

It is clear that for all i, i = l, 2, . . . , n, the partial differentials with respect to ai are given by:

∂ (xT a)
∂ ai

= xi

As a result, if the partial differentials are arranged in order of their subscripts as a vector, then
this vector is simply x. Thus it is convenient to refer to the process of vector differentiation in
shorthand as:

∂ (xT a)
∂ a

= x or
∂ (xT a)
∂ aT

= xT



Appendix A: Matrices and Matrix Algebra 309

The analogy with scalar differentiation is apparent from the above result. A particularly
important example of vector differentiation, which occurs in Chapter 8 of this book, is
concerned with the differentiation of a least squares cost function J2 which, in its simplest
form, is defined as:

k∑
i=1

e2i

where ei = xT
i â − yi is an error measure based on a vector of estimated coefficients or

parameters â. In order to obtain the estimate â, it is necessary to differentiate J2 with respect
to all of the elements âi , i = l, 2, . . . n, of â. Using the above results, we see that since

J2 =
k∑

i=1
[xT (i) â)2 − 2x(i)T â y(i)+ y(i)2]

then

∂ J2
∂ â

=
k∑

i=1
[2x(i)x(i)T â − 2x(i)y(i)] = 2

k∑
i=1

x(i)x(i)T â − x(i)y(i) (A.8)

which, when set to zero in the usual manner, constitutes a set of n simultaneous equations in
the n unknowns âi , i = 1, 2, . . . , n; the normal equations.
Alternatively, we can proceed by forming the k × n matrix X with rows defined by xT (i), i

= 1,2, . . . , k. The reader can then verify that the vector e = [e1 e2 . . . en]T is defined by:

e = Xâ − y

where e = [y1 y2 . . . yk]T , and so

J2 = [Xâ − y]T [Xâ − y] = âT XT Xâ − 2aT XT y + yT y

since yT X â is a scalar and so equal to its transpose aT XT y. It now follows straightforwardly
that

∂ J2
∂ â

= 2XT Xâ − 2XT y

which will be seen as identical to (A.8) by substituting for X in terms of x(i).
If J2 is replaced by the more general weighted least squares cost function, i.e.

J2 = [Xâ − y]T [QX â − y] = ||Xâ − y||2Q (A.9)
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where Q is a symmetric p.d. weighting matrix, then it is straightforward to show that

∂ J2
∂ â

= 2XT QX â − 2XT Qy
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B
The Time Constant

The continuous-time concept of a time constant is referred to occasionally in this book. In
brief, the time constant relates to the analytical solution for the unit step response of a first
order differential equation, and is the time taken for the output to reach 63% of the steady-state
value; see e.g. Franklin et al. (2006, p. 107). The unit step response of a first order differential
equation

T
dy(t)

dt
+ y(t) = Gu(t) (B.1)

is given by:

y(t) = G(1− e−t/T ) (B.2)

Hence, y(t → ∞) = G and y(T ) = 0.632G. The TF form of equation (B.1) is:

G

T s + 1 (B.3)

where G is the steady-state gain and T is the time constant. For the first order discrete-time
system defined by equation (2.4), with sampling interval �t , the equivalent time constant is
given by:

− �t

ln(−a1)
(B.4)

in which ln is the natural logarithm.
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C
Proof of Theorem 4.1

Theorem 4.1 Controllability of the Non-Minimal State Space (NMSS) Representation is stated
in section 4.2. The proof is based on Wang and Young (1988). According to the Popov,
Belevitch and Hautus (PBH) test (Kailath 1980), the state space system (4.4) defined by
[F, g] is uncontrollable (or unreachable) if and only if there exists a non-zero row vector q (a
left eigenvector of F), which is orthogonal to g, i.e. we need to find a vector:

q = [
q1 q2 · · · qn+m−1

] �= 0 (C.1)

such that the following two equations hold simultaneously:

q F = λ q (C.2)

q g = 0 (C.3)

where λ is an eigenvalue of F. If there exists a row vector q such that equation (C.2) and (C.3)
are fulfilled, then expanding these yields the following scalar equations:

−q1a1 + q2 = λq1 (1)

−q1a2 + q3 = λq2 (2)
...

...

−q1an−1 + qn = λqn−1 (n − 1)
−q1an = λqn (n)

q1b2 + qn+2 = λqn+1 (n + 1)
...

...

q1bm−1 + qn+m−1 = λqn+m−2 (n + m − 2)
q1bm = λqn+m−1 (n + m − 1)
q1b1 = −qn+1 (n + m)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.4)
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Let us consider the implications of the above scalar equations under the conditions λ = 0
and λ �= 0 separately.

(i) λ = 0. In the first instance, we note that since an �= 0, then λ = 0 is not a root of A∗(λ) in
equation (4.13). Also, from the nth equation in (C.4), we know that q1 = 0 which, from
the other equations of (C.4), implies that the row vector q is a zero vector. As a result, the
modes λ = 0 are completely controllable.

(ii) λ = λ1 �= 0 and A∗(λ1) = 0.

In order to consider this case, we need to manipulate equations (C.4). By multiplying
equation (1) to equation (n − 1) of (C.4) by λn−1, λn−2, . . . , λ, respectively, and subsequently
adding all of them to equation n, we obtain:

− q1(a1λ
n−1 + · · · + an) = λn q1 (C.5)

which can be written as:

q1(λ
n + a1λ

n−1 + · · · + an) = q1A∗(λ) = 0 (C.6)

Similarly, by multiplying equation (n + m) of (C.4) by λn−1 and equation (n + 1) to equation
(n + m − 2) by λm−2, λm−3, . . . ,λ, respectively, before finally adding all of them to equation
(n + m − 1), we obtain:

q1B∗(λ) = 0 (C.7)

where

B∗(λ) = b1λ
m−1 + b2λ

m−2 + · · · + bm (C.8)

Now assume that A∗(λ) and B∗(λ) are not coprime, i.e. that there is at least one common
factor between A∗(λ) and B∗(λ). In this case, there is a λ = λ1, such that A∗(λ1) = 0 and
B∗(λ1) = 0. Therefore, we can always find a non-zero vector q, so that equations (C.4) all
hold. Conversely, if A∗(λ) and B∗(λ) are coprime, then B∗(λ1) �= 0, which implies from
equation (C.7) that q1 = 0. It follows from equations (C.4) that the whole vector q is a zero
vector, so that the modes specified by the roots of A∗(λ) = 0 are controllable if and only
if A∗(λ) and B∗(λ) are coprime. Finally, in this scalar case, coprime A∗(λ) and B∗(λ) is
equivalent to coprime A(z−1) and B(z−1), i.e. the controllability conditions stated by Theorem
4.1.
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D
Derivative Action Form
of the Controller

In order to demonstrate that Proportional-Integral-Plus (PIP) control contains derivative
action, as noted in section 5.2, we need to find the polynomials F (�) and G(�) using the
difference operator � = 1− z−1, such that:

F(�) ≡ F(z−1) and G(�) ≡ G(z−1) (D.1)

where F(z−1) and G(z−1) are defined by equations (5.34).
Let

F(�) = k0 + k1� + k2�
2 + · · · + kn−1�n−1 (D.2)

and

G(�) = l0 + l1� + l2�
2 + · · · + lm−1�m−1 (D.3)

After substituting for � = 1− z−1, the expression for F(�) is expanded and the coefficients
for like powers of zi equated to those of the polynomial F(z−1). This results in the following
relationships between the coefficients of both polynomials:

f j =
n−1∑
i= j

i C j ki (D.4)

where

i C j = (−1) j i !

(i − j) ! j !
(D.5)
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are binomial coefficients and j = 0, 1, . . . , n − 1. Here i! is the i factorial and 0! = 1 by
definition. These relationships are expressed in vector matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f0
f1
f2
...

fn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k0
k1
k2
...

kn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

0 1C1 2C1 · · · n−1C1
0 0 2C2 · · · n−1C2
...

...
. . .

...

0 0 0 0 n−1Cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k0
k1
k2
...

kn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(D.6)

Similarly, we can show that the coefficients gi (i = 0, 1, . . . , m − 1) are related to the derivative
action coefficients l j ( j = 0, 1, . . . , m − 1) by the following vector-matrix equations, with
g0 = 1:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g0
g1
g2
...

gm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l0
l1
l2
...

lm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

0 1C1 2C1 · · · m−1C1
0 0 2C2 · · · m−1C2
...

...
. . .

...

0 0 0 0 m−1Cm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l0
l1
l2
...

lm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(D.7)

Finally, it should be noted that the transformation matrices T in equation (D.6) and equation
(D.7) are both upper triangular matrices, such that T = T−1.
Hence, equation (D.6) can be written alternatively:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k0
k1
k2
...

kn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

0 1C1 2C1 · · · n−1C1
0 0 2C2 · · · n−1C2
...

...
. . .

...

0 0 0 0 n−1Cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f0
f1
f2
...

fn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(D.8)



E
Block Diagram Derivation
of PIP Pole Placement Algorithm

One approach for developing a general pole assignment algorithm for Proportional-Integral-
Plus (PIP) control utilises polynomial algebra based on Figure 5.4 and the closed-loop charac-
teristic polynomial (5.36). The closed-loop characteristic polynomial is equated to the desired
characteristic polynomial as follows:

�
(
G(z−1)A(z−1)+ F(z−1)B(z−1)

) + kI B(z−1) = D(z−1) (E.1)

where � = 1− z−1 is the difference operator and

D(z−1) = 1+ d1z
−1 + d2z

−2 + · · · + dn+m z−(n+m) (E.2)

in which di are the user-specified coefficients. The left-hand side of equation (E.1) is written
in the form of the following Diophantine equation:

A′(z−1)G(z−1)+ B(z−1)F ′(z−1) (E.3)

where

A′(z−1) = � A(z−1)
F ′(z−1) = � F(z−1)+ kI

}
(E.4)

If the system is controllable, the Diophantine equation has a unique solution. This solution can
be obtained straightforwardly by equating the coefficients of like powers of z−i in equation
(E.1) to yield a set of simultaneous algebraic equations in the (n + m) unknown pole assign-
ment control gains: f0, f1, . . . fn−1, g1, . . . gm−1, kI . These equations are, of course, identical
with those obtained from the state space analysis in themain text, except that the controllability
requirement is not so transparent.
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For computational purposes, the pole assignment equations obtained in the above manner
are conveniently written in the following general form:

Σ k = d − p (E.5)

where d and p are defined by equation (5.64) and equation (5.65), respectively, while Σ is a
(n + m) by (n + m) matrix:

Σ = [
Σ1 Σ2 Σ3

]
(E.6)

in which the component matrices are as follows:

Σ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 · · · 0 0

b2 − b1 b1 · · · 0 0

b3 − b2 b2 − b1 · · · 0 0
...

... · · · ...
...

bm − bm−1 bm−1 − bm−2 · · · b2 − b1 b1
−bm bm − bm−1 · · · b3 − b2 b2 − b1
0 −bm · · · b4 − b3 b3 − b2
... 0 · · · ...

...
...

... · · · ...
...

0 0 · · · −bm bm − bm−1
0 0 · · · 0 −bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.7)

Σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0

a1 − 1 1 · · · 0 0

a2 − a1 a1 − 1 · · · 0 0
...

... · · · ...
...

...
... · · · a2 − a1 a1 − 1

an − an−1 an−1 − an−2 · · · a3 − a2 a2 − a1
−an an − an−1 · · · a4 − a3 a3 − a2

0 −an · · · ...
...

...
... · · · ...

...

0 0 · · · −an an − an−1
0 0 · · · 0 −an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.8)

Σ3 = [
b1 b2 b3 · · · bm 0 0 · · · · · · 0 0

]T
(E.9)
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Comparing (E.6) and (5.66) in the main text, it is clear that Σ = M ST
1 .

We can see from these equations that the PIP control gain vector k can only be computed if the
matrix Σ = M ST

1 is non-singular. This ‘pole assignability’ condition (a practical requirement
of the above approach) and the controllability conditions developed in Chapter 5 are equivalent
(see Theorem 5.1 and Theorem 5.2).



F
Proof of Theorem 6.1

Theorem 6.1 Relationship between Proportional-Integral-Plus (PIP) and Smith Predictor
(SP)-PIP Control Gains is stated in section 6.3. The proof is based on Taylor et al. (1998).
With the conditions of Theorem 6.1, the closed-loop systems (6.3) and (6.29) in Chapter 6 have
exactly the same denominator polynomials. Since both systems have a gain of unity, by virtue
of the inherent integral action, then the closed-loop numerator polynomials must also be equal
at steady state. Moreover, the scalar integral gains are equal, since Bs(z−1)z−τ+1 = B(z−1) by
definition. In this case, the numerator polynomials of the nominal PIP and SP-PIP closed loop
systems are always equal.
To derive equation (6.30), consider the PIP pole assignment algorithm (E.5) developed in

Appendix E, i.e.

Σk = d − p

where d and p are the vectors of coefficients of the desired closed-loop characteristic poly-
nomial of the nominal PIP system and the open-loop characteristic polynomial of the NMSS
model, respectively, modified here to explicitly show the time delay [see equation (6.24)], i.e.

dT = [
d ′
1 d ′

2 d ′
3 · · · d ′

n d ′
n+1 · · · d ′

n+m+τ−2 d ′
n+m+τ−1

]
(F.1)

pT = [
a1 − 1 a2 − a1 a3 − a2 · · · an − an−1 −an · · · 0 0

]
(F.2)

The equivalent result for the SP-PIP case is:

Σ s · ks = ds − ps (F.3)

where

ds = [
d ′′
1 d ′′

2 · · · d ′′
n+m−1 d ′′

n+m

]T

ps = [
a1 − 1 a2 − a1 · · · an − an−1 −an 0 · · · 0

]T (F.4)
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Using the conditions of Theorem 6.1:

d ′
1 = d ′′

1 , d ′
2 = d ′′

2 , . . . , d ′
n+m−1 = d ′′

n+m−1, d ′
n+m = d ′′

n+m (F.5)

and

d ′
n+m+1 = d ′

n+m+2 = · · · = d ′
n+m+τ−2 = d ′

n+m+τ−1 = 0 (F.6)

If the SP-PIP Σ s matrix and the vector of gains ks are padded with an appropriate number of
zeros, in order to ensure that the matrices and vectors are all of the same order:

Σ · k = Σ s · ks (F.7)

Note that theΣ matrix is always invertible if the system satisfies the controllability conditions,
i.e. the pole assignability conditions of Theorem 5.2, hence k = Σ−1Σ s · ks .
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G
The CAPTAIN Toolbox

The Computer-Aided Program for Time series Analysis and Identification of Noisy systems
(CAPTAIN) Toolbox provides access to novel algorithms for various important aspects of
identification, estimation, non-stationary time series analysis, signal processing, adaptive fore-
casting and automatic control system design. These have been developed between 1981 and
the present at Lancaster University, UK. Much of the underlying research into the modelling
tools in CAPTAIN was carried out by the second author at the University of Cambridge,
UK (1965–1975) and the Australian National University, Canberra, Australia (1975–1981).
Although it has its origins in the CAPTAIN and micro-CAPTAIN (Young and Benner 1991)
packages, the CAPTAIN Toolbox (Taylor et al. 2007) developed for theMATLAB R©1 software
environment is much more flexible, and provides access to many more algorithms that have
been added over the 1990s and continue to be developed up to the present day, most of them
only available in this Toolbox.
Essentially, the CAPTAIN Toolbox is a collection of routines (MATLAB R© m-file scripts)

for: the identification and estimation of the various Transfer Function (TF) model types
discussed in Chapter 8, together with numerous other model types considered elsewhere
(e.g. Pedregal et al. 2007; Young 2011), including the Time Varying Parameter (TVP) and
State-Dependent Parameter (SDP) models defined in Chapter 9. These are organised around
a core of the Recursive Least Squares (RLS), Kalman Filter (KF), Fixed Interval Smoothing
(FIS) and Refined Instrumental Variable (RIV) algorithms. However, in order to allow for
straightforward user access, CAPTAIN consists of numerous ‘shells’, i.e. top level functions
that automatically generate the necessary model structures, with default options based on the
experience of the developers (but user-adjustable to override these). In this regard, the main
areas of functionality related to the present book are listed below.

G.1 Transfer Functions and Control System Design

The functional pairs rivid/riv (for discrete-time models) and rivcid/rivc (for continuous-
time models estimated from discrete-time sampled data) are provided for order/structure

1 MATLAB R©, The MathWorks Inc., Natick, MA, USA.
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identification and parameter estimation in the case of constant parameter, linear TF models.
These routines include, as options, both recursive and en bloc versions of the optimal RIV and
Simplified Refined Instrumental Variable (SRIV) algorithms, in addition to conventional least
squares based approaches. More recent enhancements are the introduction of the rivbj/rivcbj
and rivbjid/rivcbjid routines for full Box–Jenkins (BJ) models with Auto-Regressive Moving-
Average eXogenous variables (ARMA) additive noise.
In all of the order/structure identification routines (the above routines ending in ‘id’), the

model listing, for the selection of models chosen, can be reported in the order of various
statistics, such as the coefficient of determination R2T and various identification statistics,
including the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
and Young Information Criterion (YIC), as discussed in Chapter 8. The ivarmaid/ivarma
routines are for the identification and estimation of ARMA noise models; ivarma is part of the
rivbj/rivcbj routines but is made available separately for univariate noise model estimation.
The Proportional-Integral-Plus (PIP) control system design routines in CAPTAIN include

the pip algorithm for pole assignment and pipopt for Linear Quadratic (LQ) design, together
with other required support routines. These are integrated into SIMULINK2 objects that can
be used in simulation studies and, potentially, for online use. Generalised PIP control routines
and multivariable versions of the algorithms are also available from the first author.

G.2 Other Routines

Various other model structures are unified in terms of the unobserved components model. Here,
the output time series is assumed to be composed of an additive ormultiplicative combination of
different components that have defined statistical characteristics but which cannot be observed
directly. Such components may include a trend or low frequency component, a seasonal
component (e.g. annual), additional sustained cyclical or quasi-cyclical components, stochastic
perturbations, and a component that captures the influence of exogenous input signals. If the
system is non-stationary, then the analysis typically utilises statistical estimation methods
that are based on the identification and estimation of stochastic TVP models, as discussed
in Chapter 9. An important example that is used for nonlinear PIP control is the SDP model
considered in section 9.3. The modelling approach is based around the sdp routine which
yields non-parametric (graphical) estimates of SDPs. If required, the user can parameterise
these graphically defined nonlinearities using specified nonlinear functions (e.g. exponential,
power law, radial basis functions, etc.) that can then be optimised using standard MATLAB R©

functions.
Various conventional models, identification tools and auxiliary functions, too numerous

to list individually here are included. Of these, the largest is the kalmanfis routine, which
provides a shell to the KF/FIS algorithms for general state space filtering, smoothing and
forecasting purposes.
System identification is inherent to the modelling approach utilised by most of the functions

already discussed. Other routines include: acf to determine the sample and partial autocor-
relation function; ccf for the sample cross-correlation; period to estimate the periodogram;
and statist for some sample descriptive statistics. Additional statistical diagnostics include:

2 SIMULINKTM, The MathWorks Inc., Natick, MA, USA.
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boxcox (optimal Box–Cox transformation for homoscedasticity); cusum (cusum recursive
test for time varying mean) and cusumsq (recursive test for time varying variance); and histon
(histogram over normal distribution and Bera–Jarque statistical test); while useful general rou-
tines are: del for generating a matrix of delayed variables; irwsm for smoothing, decimation or
for fitting a simple trend to a time series; prepz to prepare data for TF modelling (e.g. baseline
removal and input scaling); stand to standardise or de-standardise a matrix by columns; and
reconst to reconstruct a time series by removing any dramatic jumps in the trend.
Note that almost all of the recursive estimation and smoothing procedures outlined above

will automatically handle missing data in the time series, represented in MATLAB R© by Not-
a-Number (NaN) variables. Indeed, by appending or pre-pending such variables to the data
set using the fcast function, the routines will forecast, interpolate or backcast as appropriate,
without requiring further user intervention.
Finally, the toolbox is supported by online help and numerous demonstration examples.

These demonstrations, including several for control system design, are invoked by typing the
instruction captdemo in the MATLAB R© command line. The various command line demos
can also be opened and edited, as conventional scripts.

G.3 Download

http://www.lancs.ac.uk/staff/taylorcj/tdc/
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H
The Theorem of D.A. Pierce (1972)

The theoretical justification for theRefined Instrumental Variable (RIV) algorithmdeveloped in
Chapter 8 is twofold. First, the development of the normal equations (8.60) for the estimation
of the parameters in the Box–Jenkins model (8.38) when it is considered in pseudo-linear
form; and secondly, the following theorem of D.A. Pierce (1972) that establishes the statistical
properties of theMaximum Likelihood (ML) estimates obtained as the solution to these normal
equations and shows that the ML estimates ρ̂ and η̂ of the system and noise parameter vectors,
respectively, are asymptotically independent, so justifying an important aspect of the iterative
RIV algorithm.

If, in the model (8.38) of Chapter 8:

1. the e(k) are independent and identically distributed with zero mean, variance σ 2 and
skewness and kurtosis κ1 and κ2;

2. the parameter values are admissible (i.e. the model is stable and identifiable); and
3. the u(k) are persistently exciting1

then the ML estimates ρ̂(N ), η̂(N ) and σ̂ 2 obtained from a data set of N samples, possess a
limiting normal distribution, such that:

1. The asymptotic covariance matrix of the estimation errors associated with the estimate
ρ̂(N ) is of the form:

P∗ = σ 2

N

[
p lim

1

N

∑
φ̂ f (k)φ̂

T
f (k)

]−1
(H.1)

1 Identifiability and persistent excitation are important concepts discussed in most books on transfer function identi-
fication and estimation (e.g. Ljung 1999; Young 2011).
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2. The estimate η̂(N ) is asymptotically independent of ρ̂(N ) and has an error covariance
matrix of the form:

P∗
η = σ 2

N
[E{ψ̂(k)ψ̂T

(k)}]−1 (H.2)

3. The estimate σ̂ 2 has asymptotic variance (2σ 4/T )(1 + 0.5κ2) and, if κ1 = 0, is independent
of the above estimates.
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steady state gain, 23–25



Index 333
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