OPTOELECTRONICS (I)

Chapter 5: Losses in Optical Fibers

Mohammad Ali Mansouri- Birjandi

Department of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) **mansouri@ece.usb.ac.ir** mamansouri@yahoo.com

M. A. Mansouri-Birjandi

Contents

5. Losses in Optical Fibers

- 5-1 Absorption Loss
- 5-2 Scattering:
- Rayleigh, Brillouin, Raman Scattering
- 5-3 Bending Losses
- -Geometrical Optics View
- -Physical Optics View
- -Length Scale for Bending Loss
- -Mode Coupling, Cladding Modes

6. Dispersion in Optical Fibers

- 6-1 Graded Index Fiber
- 6-2 Intramodal Dispersion
- -Material Dispersion
- -Waveguide Dispersion
- -Polarization-mode
- -Dispersion
- -Total Fiber Dispersion

5. Losses in Optical Fibers

 \succ In an optical fiber, there are three fundamental loss mechanisms:

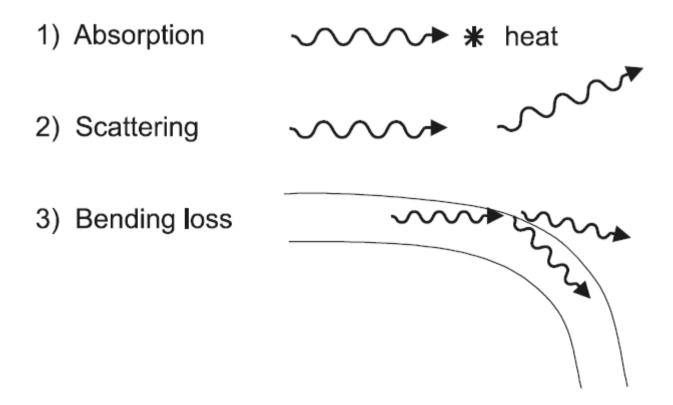


Figure 5-1 Loss mechanisms for light propating in optical fiber

5. Losses in Optical Fibers (2)

 \succ Absorption results in the loss of a propagating photon, the photon's energy generally being converted into heat.

> In a scattering process, the photon does not disappear, but its direction (and possibly its energy) is changed.

> Absorption and scattering are fundamental <u>materials properties</u>, occurring both in **fibers** and in **bulk glass** (large uniform sections of glass).

> The <u>third loss mechanism</u>, bending loss, is unique to the fiber geometry, and relates to the requirement of <u>total internal reflection</u> (TIR) for lossless transmission down the fiber.

5-1 Absorption Loss (1)

> Attenuation coefficient (α) : as the fractional loss in light power per unit length of propagation.

> The **amount** of power lost in a thin slice of thickness dz is then Padz, where P is the power incident on the slice.

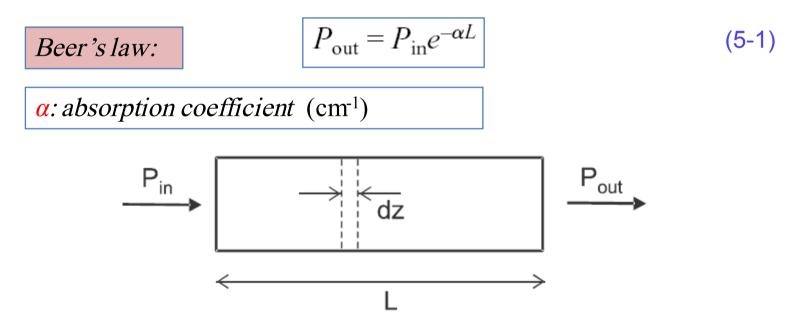
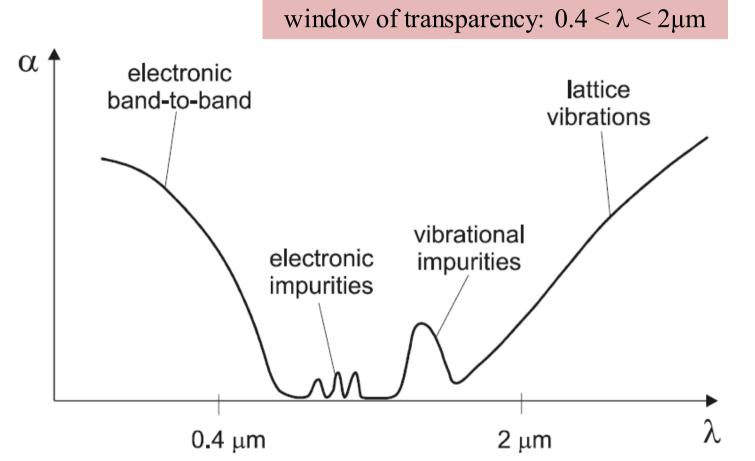


Figure 5-2 A fraction αdz of light power P is absorbed in slice of thickness dz.

5-1 Absorption Loss (2)

dB loss = 10 log₁₀
$$\left(\frac{P_{\text{in}}}{P_{\text{out}}}\right)$$
 = 10 log₁₀ $(e^{\alpha L})$ = 10 $\alpha L \log_{10} e$ (5-2)

or,


$$dB \log = 4.34 \alpha L \tag{5-3}$$

 $1 \text{ cm}^{-1} = 4.34 \times 10^5 \text{ dB/km}$ $1 \text{ dB/km} = 2.303 \times 10^{-6} \text{ cm}^{-1}$ (5-4)

> In practice, the dB/km <u>unit is usually used to describe losses in optical fiber</u> systems.

 \triangleright whereas the cm⁻¹ <u>unit</u> is used when relating propagation losses to fundamental physical processes.

5-1 Absorption Loss (3)

Figure 5-3 Absorption coefficient versus wavelength for optical fiber, showing electronic and vibrational loss mechanisms.

5-1 Absorption Loss (4)

 \succ The <u>presence</u> of impurities introduces additional electronic and vibrational absorption, which can reduce the transparency in this window.

> <u>Typical impurities</u> include transition metal ions such as Cu^{2+} , Fe^{2+} , and Cr^{3+} , which introduce electronic transitions, and

> The hydroxyl ion OH⁻, which introduces strong vibrational transitions at 1.4 and 2.8 μ m.

> The transition at 1.4 μ m is especially detrimental, being close to the important <u>telecommunications wavelength</u> 1.5 μ m where the attenuation in silica fiber is a minimum.

 \succ For the lowest-loss fibers, it is important to keep water out during the manufacturing process, to minimize the OH content.

5-1 Scattering

1. Rayleigh Scattering, 2. Brillouin Scattering, 3. Raman Scattering

1. Rayleigh Scattering

> The most important scattering loss in glass fibers is Rayleigh scattering, in which the wavelength of the scattered light remains unchanged.

 \geq Rayleigh scattering arises from the interaction of the light wave with stationary fluctuations Δn in the index of refraction *n*.

> These fluctuations occur due to random thermal motion when the glass is in a *liquid state*, and are frozen in place when the glass makes the transition from liquid to solid at temperature T_F .

> The scattering process can be thought of as equivalent to the scattering of light from small spheres of diameter d and index $n + \Delta n$, embedded in a uniform medium of index n.

* If $d \ll \lambda$ (a good approximation here), α_R is found to be

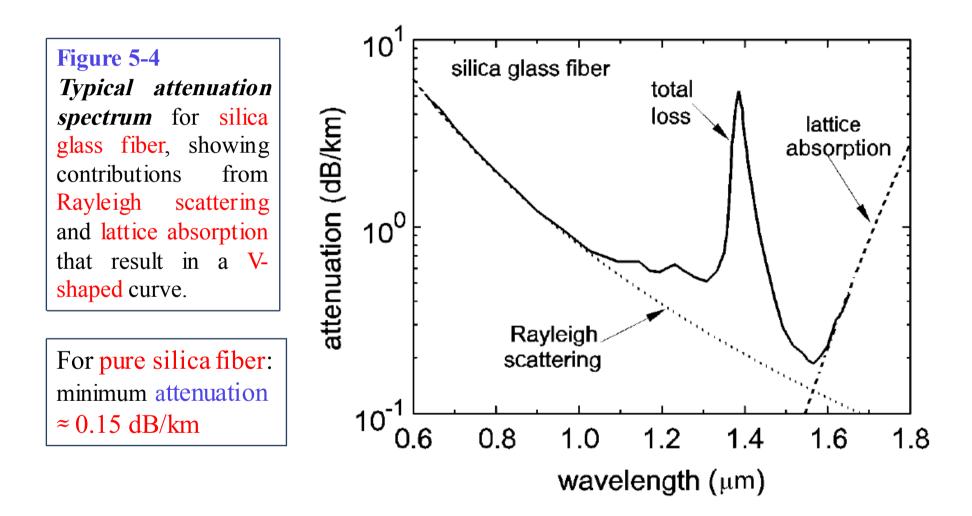
$$\alpha_R \propto \frac{\langle (\Delta n)^2 \rangle}{\lambda^4} \propto \frac{k_B T_F}{\lambda^4}$$
 (Rayleigh scattering) (5-5)

 $<(\Delta n)^2>$: average square of the refractive index fluctuation k_B : Boltzmann's constant, T_F : Frozen Temperature

> why the sky is blue? Because light at shorter wavelengths, i.e. blue, is more strongly scattered into our eyes.

► Longer signal wavelengths will experience less loss.

M. A. Mansouri-Birjandi


First telecommunications window: $\lambda \approx 850 \text{ nm}$	$\alpha_{\rm R} = 1.5 \ \rm dB/km$
> Second telecommunications window: $\lambda \approx 1.3 \mu m$	$\alpha_{\rm R} = 0.28 \text{ dB/km}$
> Third telecommunications window: $\lambda \approx 1.55 \mu m$	$\alpha_{\rm R} = 0.14 \text{ dB/km}$

 \Box Whether the losses can be further reduced for wavelengths longer than 1.55 µm?

Answer: for silica fiber is no, because at longer wavelengths the absorption of light by vibrational transitions of the host glass becomes more important than Rayleigh scattering.

 \succ The combination of Rayleigh scattering at shorter wavelengths and lattice absorption at longer wavelengths results in a V-shaped curve.

> In addition, there is a pronounced OH absorption peak at 1.4 μ m, which creates local minima in the attenuation around 1.3 and 1.5 μ m.

> The Rayleigh scattering can be reduced by adding small amounts of dopants such as Na_2O to the silica host, but the reduction is only a modest 20% (Saito et al. 1997).

> To reduce the lattice absorption: in the late 1980s there was much interest in ZrF_4 -based, heavy-metal <u>fluoride glasses</u> for this purpose, since they have reduced absorption in the infrared compared with silica glass.

> However, the lowest loss so far in <u>fluoride glass fibers</u> is $\sim 1 \text{ dB/km}$, due to problems with crystallization and other sources of loss.

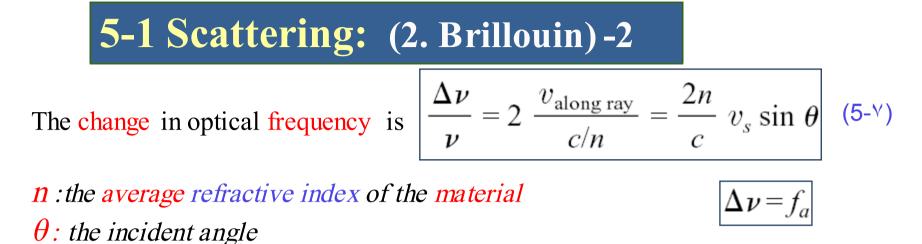
> At present that for light propagating in a glass fiber, the ultimate practical minimum loss will be ~ 0.1 dB/km.

> To reduce the loss further would require that the light propagate not in glass, but in air. Recent developments that make this possible will be discussed in Chapter 8. (Photonic crystal)

5-1 Scattering: (2. Brillouin) -1

* Light will generally be scattered by any nonuniformity in a material's index of refraction (\boldsymbol{n}).

✤ In the case of Rayleigh scattering in glass, the nonuniformity consists of "frozen in" when the liquid cooled into a solid.


✤ *n* can be thought of as nonuniform in a <u>"lumpy" sort of way</u>.

Another way that the n can be nonuniform is via a sound (acoustic) wave, in which the density and pressure vary periodically inside the material.

* The varying density causes a varying n, resulting in "waves" of changing n, propagating at the speed of sound v_s in the material.

* The separation between planes of maximum index will be $d = v_s/f_a$, where f_a is the frequency of the acoustic wave.

* Light could scatter off acoustic waves in a process called Brillouin scattering.

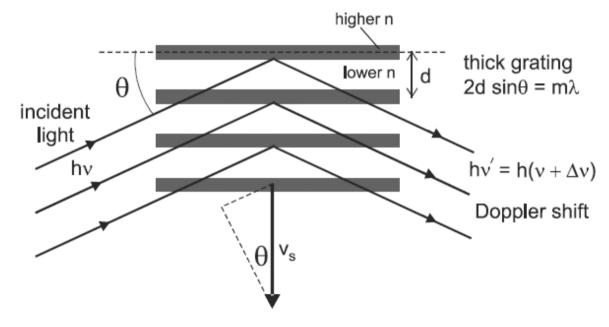


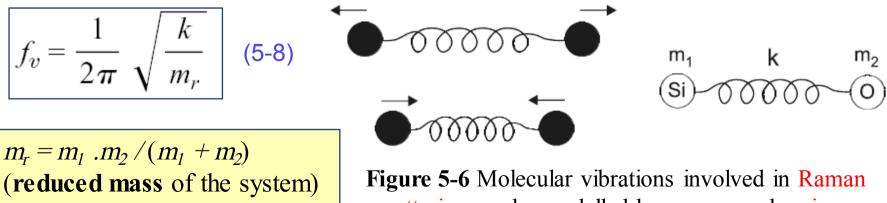
Figure 5-5 Brillouin scattering from acoustic waves.

5-1 Scattering: (2. Brillouin) -3

▶ for glass: n = 1.5 and $v_s = 5 \times 10^3$ m/s and setting sinθ = 1.

 $\Delta v/v \approx 5 \times 10^{-5}$, which for 1500 nm light corresponds to $\Delta v = 10$ GHz or $\Delta \lambda = 0.075$ nm.

 \succ The intensity of the scattered light is very weak for thermally generated acoustic waves.


 \succ However, for externally applied sound waves of large amplitude, this scattering process can be efficient, and forms the basis for a practical way of deflecting laser beams, the acousto-optic deflector.

> In fibers, Brilluoin scattering is an important source of loss *only* when it becomes nonlinear. This occurs primarily for narrowband light, with spectral width $\Delta v < 10$ MHz.

 \blacktriangleright The acoustic waves consist of the collective motion of a large number of atoms, with nearby atoms moving in nearly the **same direction**.

> Other types of vibrations: *localized vibrations* in which neighboring atoms are moving in **opposite directions**. (*Raman scattering*)

 \succ For small-amplitude motion, this results in simple harmonic motion with vibrational frequency f_{ν} given by:

scattering can be modelled by masses and springs.

Energy is conserved in Raman scattering, just as for Brillouin scattering, and the new (scattered) photon energy $h\dot{v}$ is

$$h\nu' = h\nu \pm hf_v$$
 (Raman shift) (5-9)

> Stokes scattering : When the scattered light is decreased in frequency.

> Anti-Stokes scattering : The converse process takes vibrational energy out of the molecule to increase the frequency of light.

 \succ The ratio of anti-Stokes to Stokes scattering probabilities is less than one, and is temperature dependent.

The magnitude of the frequency shift $\dot{\upsilon} - \upsilon$ is much greater for Raman scattering than for Brillouin scattering because the localized vibrational frequency f_v is much larger than the typical acoustic frequency f_a .

> Typically, $f_v \sim 10 - 30$ THz, whereas $f_a \sim 10$ GHz.

 \succ Since the restoring force arises from changes in the spacing between adjacent atoms, the effective spring constant is reduced.

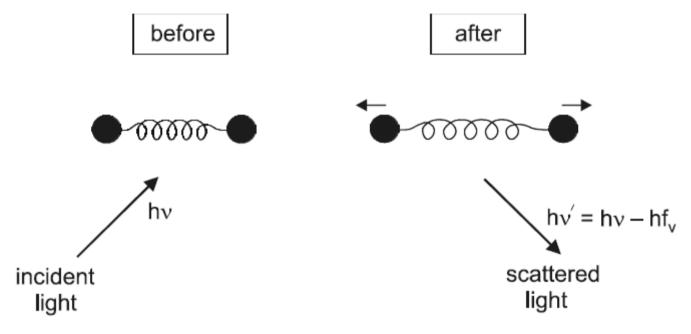
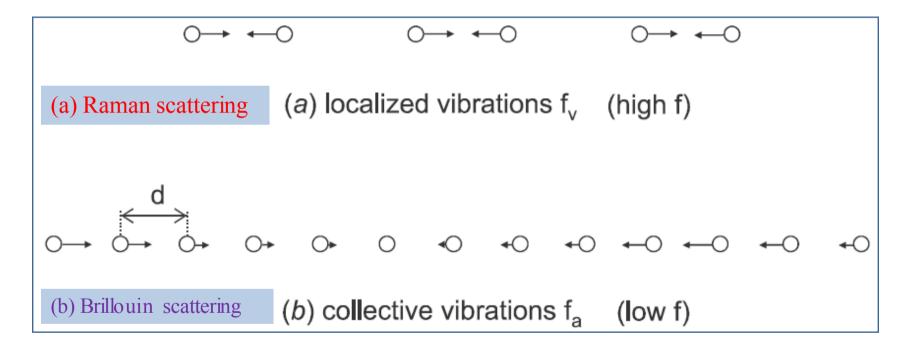



Figure 5-7 Some energy from the photon is transferred to molecular vibrational energy in Raman scattering.

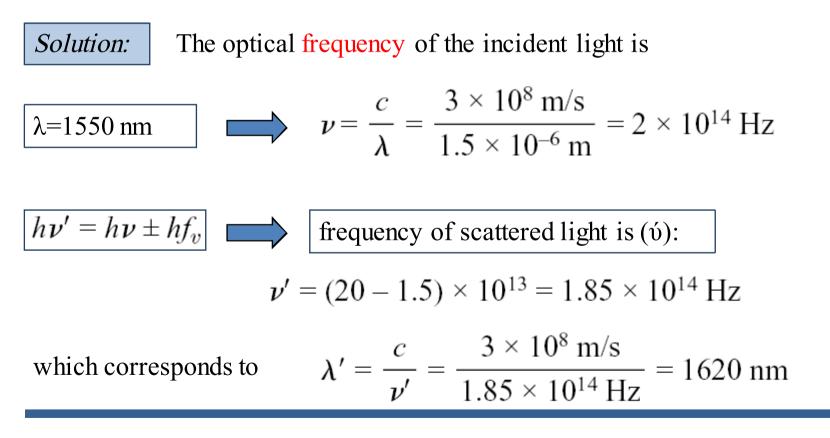
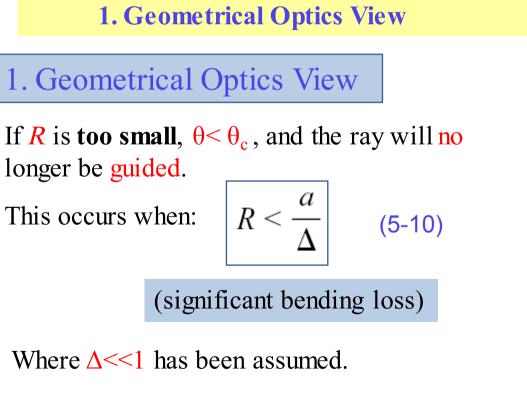

✤ Losses due to Raman scattering become important in single-mode fibers when nonlinear effects set in, typically at power levels > 500 mW.

Figure 5-8 Vibrational patterns for (a) Raman scattering and (b) Brillouin scattering. Arrows show the relative displacement of the atoms.

EXAMPLE 5-1


* Light of free-space wavelength 1500 nm is incident on silica glass. Determine the frequency and wavelength of the Stokes-shifted, Raman-scattered light, assuming $f_v = 15$ THz.

5-3 Bending Losses

 \succ When an optical fiber is bent, light may become unguided, resulting in a loss of guided light power.

> Mode coupling: The light shift from one guided mode to another guided mode.

2. Physical Optics View

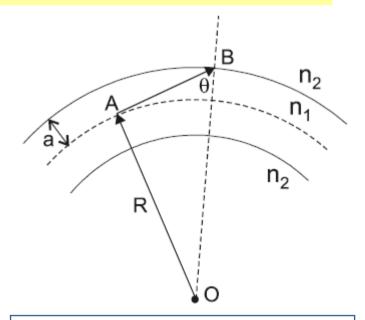
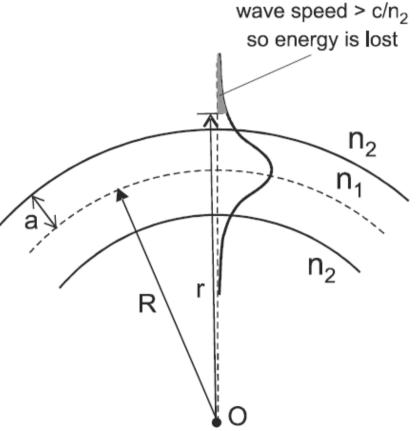


Figure 5-9 Ray optics picture of light loss due to fiber bending

5-3 Bending Losses (Geometrical Optics View)

> For example, if the core diameter is 100 μ m and Δ = 0.01, the bending loss will be significant for *R* < 5 mm.

 \succ The degree of bending loss depends not only on the bend radius, but also on which modes are propagating.


 \succ The low-order modes are more stable and resistant to bending losses.

➤ Whereas the high-order modes are only marginally stable, and prone to *significant loss from even* small bends.

5-3 Bending Losses (Physical Optics View)

> As the wave moves along the arc, different parts of the wave must move at different speeds, in order for the wave to maintain the same shape as it propagates.

> At some distance r_{max} from the pivot, the evanescent wave in the cladding must be moving at a speed greater than the speed of light in the cladding material, c/n_2 .

Figure 5-10 Wave optics picture of light loss due to fiber bending.

5-3 Bending Losses (Physical Optics View)

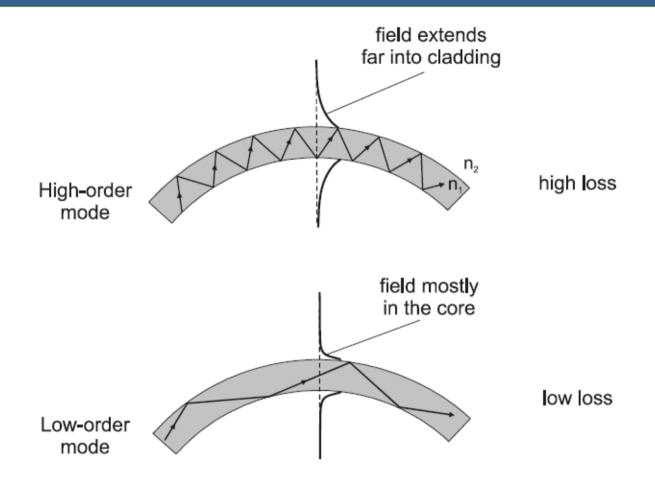
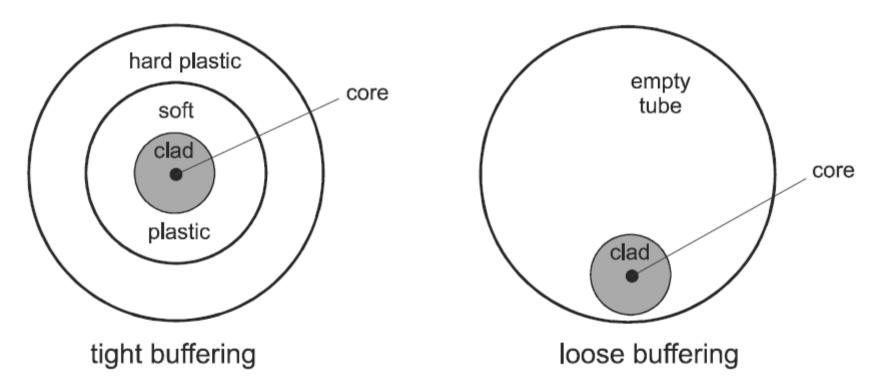


Figure 5-11 High-order modes are more lossy because more of the mode's energy is in the evanescent wave, where energy is lost due to bending.

5-3 Bending Losses (Length Scale for Bending Loss)

1. Macrobending 2. Microbending

 \succ *Macrobending losses* are those caused by bends with R in the centimeter to meter range.


 \succ These losses are usually small, affecting mostly the higher-order modes in a multimode fiber.

 \Box Microbending losses are more difficult to control, arising from bends on the μ m length scale.

 \Box These microbends can be introduced by anything that crimps or stresses the fiber, including the packaging material that houses the fiber.

5-3 Bending Losses (Length Scale for Bending Loss) -2

The protection from microbending is better with loose buffering, since there is more "wiggle room" for the fiber.

Figure 5-12 Two typical fiber-jacketing schemes. The method of containing the fiber in the cable can influence the degree of microbending loss.

5-3 Bending Losses (Mode Coupling)

> Mode coupling : light propagating in one guided mode can be scattered into another guided mode. This process of transferring energy from one mode to another is termed.

- i. Low-order modes: Modes with the highest values
- ii. High-order modes: Modes with the lowest values

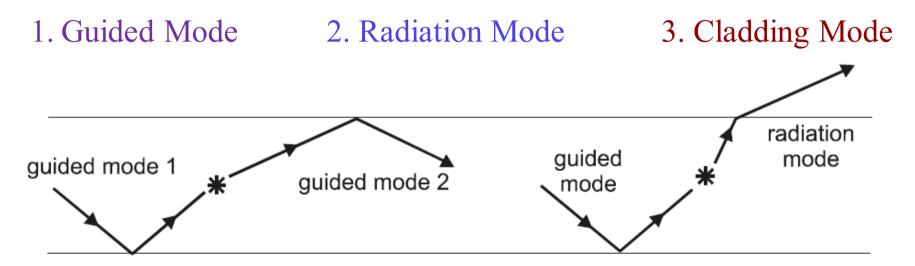
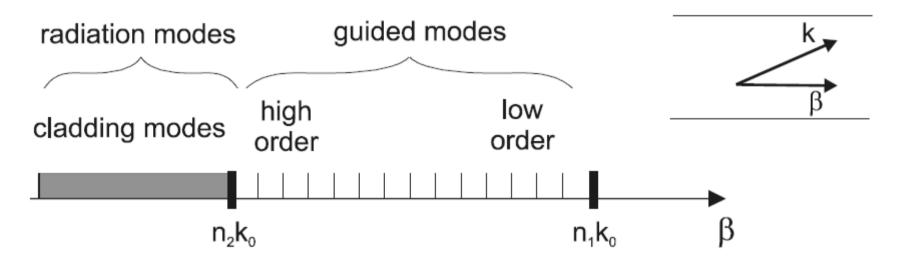



Figure 5-13 Scattering or fiber bending can couple light from one mode to another.

5-3 Bending Losses (Mode Coupling)

> Radiation mode: Light that is no longer guided ($\beta < n_2 k_0$).

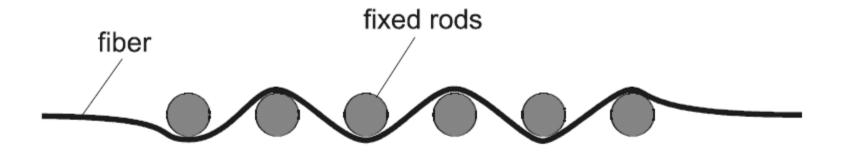
 \succ In a radiation mode, although this is not a true mode of the fiber.

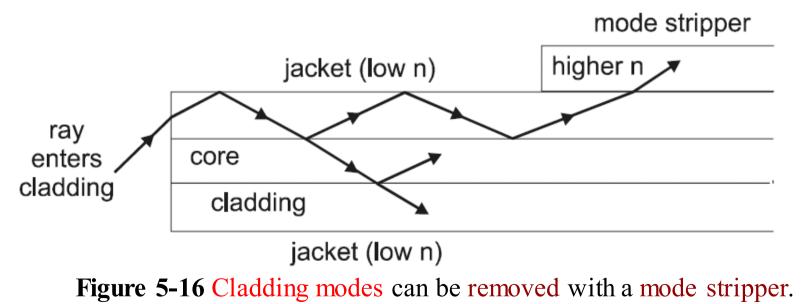
Figure 5-14 Distribution of fiber modes in β space, with discreet guided modes in the range $n_2k_0 < \beta < n_1k_0$, and continuous radiation modes for $\beta < n_2k_0$.

5-3 Bending Losses (Mode Coupling)

➤ The coupling of modes can be enhanced by forcing the fiber through a series of tight bends.

 \succ Such a device is termed a *mode mixer*, and can be realized by simply sandwiching the fiber between pieces of sandpaper.




Figure 5-15 A mode mixer creates an equilibrium modal distribution.

5-3 Bending Losses (Cladding Modes)

 \succ cladding mode: Light that is lost into radiation modes is no longer guided by the core, but it can still propagate some distance along the fiber.

 \succ The mode stripper removes light from the cladding modes, leaving only true guided modes carrying the light energy.

 \succ As the light propagates, some guided modes will continue to feed energy into the cladding modes by mode coupling.

Problems (chap.5): 2, 3, 6, 10, 12

M. A. Mansouri-Birjandi