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2.1 Introduction @

The basic physical building blocks forming the world, may be categorized into:

1. particles of matter (electrons);
2. carriers of force between matter (Photons);
3. composite particles made up of elementary particles of matter and

transmitters of force (Neutrons, protons, and atoms).

All known elementary constituents of matter and transmitters of force are

quantized. For example, energy, momentum, and angular momentum take
on discrete quantized values.

Classical mechanics is unable to explain quantization.
Quantum mechanics can explain the nature of quantization.

The laws of quantum mechanics have been established by experiment.
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2.1 Introduction E

@ Long before realizing the quantized nature Table 2.1 Wavelengths of
of light (photons), key experiments on the visible thr

wave properties of light were performed. Wavelength (nm) Color
@ The color of visible light is associated with —

different wavelengths of light. 760-622 red

@ While Table 2.1 shows the range of 622-597 orange
wavelengths corresponding to different ST=5TT yellow
colors, Table 2.2 shows the frequencies and S77-492 green
wavelengths corresponding to  different | | 492-455 blue
regions of the electromagnetic spectrum. 455-390 violet
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2.1 Introduction @

Table 2.2 Spectrum of electromagnetic radiation

Name Wavelength (m) Frequency (Hz)
radio > 10~ <3x10°
microwave 10=! —10* 3x 107 =3 x 10"
infrared 107% =7 x 1077 3x 102 —4.3x 10
visible 7x 1077 —4x 1077 4.3 x 104 —-7.5x 10
ultraviolet 4x1077—-107" 7.5 % 101 =3 x 10V
X-rays 10~ — 1071 3x 107 =3 % 10"
gamma rays < 101 >3 x 10"

M.A. M.B. Chap.2: Toward quantum mechanics 5



2.1.1 Diffraction and interference of light E

#light waves can exhibit diffraction, linear superposition, and interference
(Young’s slits experiment —1803).

#The interference pattern is due to the superposition of waves, for which
each slit is an effective coherent source.

#Hence, the Young’s slits interference experiment can be understood using
the principle of linear superposition.

# The wave source at each diffracting slit (Huygen’s principle) interferes to
create an interference pattern, which can be observed as intensity

variations on a screen.

# Intensity maxima correspond to electric fields adding coherently in phase
and intensity minima correspond to electric fields adding coherently out of
phase.

diffraction: Uil _» principle of superposition: (¢ at » Jal interference: Jalx
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2.1.1 Diffraction and interference of light @

Position
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Huygen’s Intensity
principle
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Fig. 2.1 lllustration of the Young’s slits experiment.

The interference pattern is due to the superposition of waves, for
which each slit is an effective coherent source.
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2.1.1 Diffraction and interference of light E
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2.1.1 Diffraction and interference of light E

Consider two plane waves labeled j =1 and j = 2, with wavelength A= 2m/k,
amplitude |E; |, phase @;, and frequency W .
(In a linear system we can make any wave from a linear superposition of plane waves).

Mathematically, the two waves can be represented as:

E, =e||E, |€f(k'l‘—w?)€f¢?1 (1) E, = e;lEzlef(k'r—m.f)gf(i)z )

respectively, where e~; is the unit-vector in the direction of the electric field E; .

The intensity due to the linear superposition of E; and E, with e~, = e~, is just:

E|* = |[E, +E,|> = |E,|* + |E,|> + 2|E, | |E, | cos() @)

where @= @, - @ | is the relative phase between the waves. Our expression
for |E|? is called the interference equation.
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2.1.1 Diffraction and interference of light @

interference equation: | ||E|* = |E, +E,|* = |[E,|* + |E,|* + 2|E,||E,| cos(¢)

if: |E;| =|E,| = [Eg
for 6 =0

intensity maximum |E|? = 4|E,|*

IMaX

when ¢ =
intensity minimum |EJ]2. =0

min

Fig. 2.2 The linear superposition of two
waves at exactly the same frequency
can give rise to interference if there is a
relative phase delay between the
waves. The figure illustrates the
sinusoidal interference pattern in
intensity as a function of phase delay, @,
between two equal amplitude waves.

Intensity, |E|2/|EU|2

]

[

Phase, o ()

Intensity minimum at ¢o=7

Intensity maximum at =0
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2.1.1 Diffraction and interference of light E

# This interference pattern is periodic in @and exists over all space.
& In the more general case, when |E,| # |E,|, the interference pattern is still
periodic in @, but:

the intensity maximum = (|E,| + |E,])?

the intensity minimum = (|E,|-|E,|)%

Usually we do not see large variations in light intensity due to interference.
The reason is that the frequencies of the light waves are not exactly (i.e., are
not precisely monochromatic).

There is a continuous range or spectrum of frequencies about some average
value of w. Because the light is not exactly monochromatic, even if the
spectrum is sharply peaked at some value of frequency, there is a linewidth
associated with the spectral line typically centered at frequency w,.
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2.1.1 Diffraction and interference of light E

By taking the Fourier transform of the continuous spectral line, we can
obtain the temporal behavior of the wave.

Suppose we have a laser with light emission at wavelength A=1500 nm.

The electromagnetic field oscillates at: f= 200THz or W, = 2rf = 1.26x10%> rad s™*.
Assume that the pulse has a Gaussian shape (at t=t;), so that the
electromagnetic field can be written as:

E(1)=¢; cos(wﬂr)e_“_rﬂ)%& (4)

where 7, is proportional to the temporal width of the pulse. The Fourier transform is

a Gaussian envelope centered at the frequency W,

70 o~ (@=wg)* 73 /4

V2 o

Ej(w) — e}'
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2.1.1 Diffraction and interference of light @

time domain field:

E(r)=e; cos(wﬂr)e_“_’“)z“&

Atpwam = 27V 1n(2)

(8)
frequency domain field:
~ 70 —(m—m{})zrﬁjﬂr | 4 \/7
Ei(w)=e¢ —=¢ Awpyyy = —vIn(2) (9)
V2 70
frequency domain intensity: spectral power density
, T(Z; —(w—awp)272/2 2
E ({U) ' E(ﬂ)) = —¥¢ 07 %0 ACUF“;HNI - 2 1[1(2) (10),
2 Ty (6, 7)
full-width at half-maximum (FWHM)
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2.1.1 Diffraction and interference of light E

Example: | A=1500 nm  f=200THz  W,=2nf=1.26x10"rads™?  t1,=14.14fs

Afo — I (D) — ¥ [ = Aty X €| =
Atpwim = 2704/ In(2) = 23.51s FWHM 7um
A (e A (b
b @ b ®
&
- 04 F
o 0.5 %»
2 5 03
2 00 E
b= = 02
o
05 2 o1}
-1.0 ] I . 0.0 | I | L,
2.0 2.5 3.0 1.0 1.2 1.4 1.6
Time, 7 (sx 10713) Frequency, w (rad s x1019)

Fig. 2.3 (a) lllustration of a 200 THz electric field modulated by a Gaussian envelope
function with 7, = 14.14 fs. (b) Spectral line shape centered at W, = 1.26 x 10*> rad s7!
corresponding to the 200 THz oscillating electric field in (a).
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2.1.1 Diffraction and interference of light E

characteristic time or length

& The fact that the oscillator can only oscillate for a finite time means that the
frequency spectrum always has a finite width. This has a direct impact on the
observation of interference effects.

# Interference effects can only be observed when the wave and the delayed
wave overlap in space.

# \We expect that interference between the pulse and the delayed pulse will
only be easily observed for delays approximately equal to or less than At -
e For a wave moving at the speed of light, this gives a characteristic length

L = AtpyyXC, (Which in our case is 7um.)
® The normalized autocorrelation function is defined as:

. oy = O+ 7)
' (0 f0)

(11)
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2.1.1 Diffraction and interference of light E

coherence time:

_ POt T)

ROV

] i .. (11)
The normalized autocorrelation function is:

f(t): complex function of time (in our case it is a wave).
The value of |g(7)| is a measure of the correlation between f(t) and f(t+1),

where T is a time delay.

For classical monochromatic light, f(t) is of the form e-®t,

T=00

= [ lg@Pdr  w

T=—00

which gives g(7) = e, so that |g(7)| = 1.

The coherence time is defined as:

Soif [g(7)| = 1, the coherence time 7_is infinite and the corresponding
coherence length, which is defined as |_ = 7_ xc, is also infinite.
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2.1.1 Diffraction and interference of light E

In practice, because the wave source is not purely monochromatic, there
is a coherence length associated with the nonmonochromaticity.
The coherence length gives the spatial scale over which interference from the

linear superposition of fields can be observed.

Table 2.3 Relationship between spectral line-

For L. >>L_, the phases of
width and coherence time

different wavelength components

can no longer add to create

Spectral intensity line-shape Spectral width Awpeyy
either a maximum or

Gaussian 22mIn(2))V2 /7,
minimum, and all interference

Lorentzian 2/7,
effects are effectively washed

Rectangular 27/ T,

out.
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2.1.2 Black-body radiation and E
evidence for quantization of light

Experimental evidence for the quantization of light into particles called photons
initially came from measurement of the emission spectrum of thermal light (called
black-body radiation). Application of classical statistical thermodynamics and
electromagnetics gives the Rayleigh—Jeans formula (1900) for electromagnetic field

radiative energy density emitted from a black body at absolute temperature T as:

ko T
% i w2 (13)
T’

Us(w) =

Radiative energy density is the energy per unit volume per unit angular frequency,
and it is measured in J s m3. Equation (13) predicts a physically impossible infinite
radiative energy density as @ — 00

This divergence in radiative energy density with decreasing wavelength is called the

classical ultraviolet catastrophe. (SIS (hdul ji 4xald)
I ——
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2.1.2 Black-body radiation and
evidence for quantization of light

[e]

Planck (in 1900) assumed
emission and absorption of
discrete energy quanta of
electromagnetic radiation, so
that E=hw.

This gives a radiative
energy density measured

in units of J s m=3:

hw? |

Us(w) =

7203 phw/kgT _ |

(14)

Classical ultra-violet catastrophe

O

= [ TN

— i I" \ _

- 20 \ T=6800 K

= sk / T=5800 K

i - .:'a \ _

e : T=4800 K

— 10F# A

e ! \

E 'i_.- \\

g 05FH)

- 00 | ] RarTe I H‘H“““-I—__ .
0.0 0.5 1.0 1.5 2.0

Frequency, X 10 (Hz)

Fig. 2.4 Radiative energy density of black-body radiation
emitted by unit surface area into a fixed direction from a
black body as a function of frequency ( V=W /2m).
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2.1.3 Photoelectric effect and the photon particle E

When light of angular frequency W is incident on a metal, electrons can be
emitted from the metal surface if hw >ed, where ¢ is the work function of

the metal. +ed is the minimum energy for an electron to escape the metal
into vacuum.

(a) i (b
Max. kinetic

en erg}r" Tl]]fl X

Incident light, ‘
energy A Slope 7

0 »-
/ Frequency, w
Metal —Ciny

Fig. 2.5 (a) Light of energy Rw can cause electrons to be emitted from the surface
of a metal. (b) The maximum kinetic energy of emitted electrons is proportional
to the frequency of light, w. The proportionality constant is h.
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2.1.3 Photoelectric effect and the photon particle @

In addition, such photoelectric-effect experiments show that the number of
electrons leaving the surface depends upon the intensity of the incident
electromagnetic field.

This evidence suggests that light can behave as a particle.

The maximum excess kinetic energy of the electron leaving the surface is
observed in experiments to be T, . =hw —e @, where is the slope of the curve
in Fig. 5(b).

The maximum kinetic energy of any ejected electron depends only upon the
angular frequency, , of the light particle with which it collided, and this energy
is independent of light intensity.

Each light particle has energy , and light intensity is given by the particle flux.
This is different from the classical case which predicts that energy is
proportional to light intensity.
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2.1.3 Photoelectric effect and the photon particle @

In 1905, Einstein explained the photoelectric effect by postulating that light

behaves as a particle and that (in agreement with Planck’s work) it is
guantized in energy, so that:

E=ho (15)

h =1.054 592x1073*) s ( Planck’s constant)
dimensions of h: J s or kg m? s~L. (action)
E =hw, comes directly from experiment.

The quantum of light is called a photon.

A photon has zero mass and is an example of an elemental quantity in
guantum mechanics.

In guantum mechanics, one talks of light being quantized into particles
called photons.
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2.1.3 Photoelectric effect and the photon particle @

From classical electrodynamics:

electromagnetic plane waves carry momentum of magnitude p = U/c,

U: electromagnetic energy density

mm) momentum of photon: p = E/c.

Because E =hw is quantized , ‘ momentum should also be quantized.
mm) p=Nw /C or,since W =c2m/A=ck, (k=2m/A)

photon momentum can be written as:

1240
E(eV)

P= hk (16) ‘)lphnlnn (I]IT]) - (17)

Example: A=1000nm ; EEE) E=124eV; p-=6.63x1028kgmsL.

Compare: room temperature thermal energy kgT = 25 meV,
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2.1.3 Photoelectric effect and the photon particle @
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2.1.4 Secure quantum communication E

» An electromagnetic wave consists of
elementary particles called photons.

»Each photon has energy.

»Electromagnetic waves can be
polarized and linearly superimposed.

>we can use the combination of
these facts to create a secure
communication channel.

Fig. 2.6: A polarized optical wave that
passes through a birefringent medium

(such as a calcite crystal).
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N A

{a)
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Y

polarization
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(k)
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polarization
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¢ polarization
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]

0
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Ty oy
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2.1.4 Secure quantum communication E

The polarization state of each horizontally H or vertically V polarized photon
can be used to reliably carry one bit of information.

Dy =(H+V)/V2 D_=(H-V)/J2
Detect Vand D_

Transmit H and D,
single photons

single photons

A R R a

Classical channel Bob

Fig. 2.7 Alice can transmit information to Bob via a quantum communication
channel that uses single photons and nonorthogonal polarization states.

Alice and Bob can also communicate via a classical channel.
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2.1.4 Secure quantum communication E

Alice’s bit value H=0 H=0 D=1 D =1
- - erd e

Bob tests with V=1 D_=0 V=1 D_=0
' -} # -~

Observation probability P =0 P=Y P=Y% P=0

Fig. 2.8 Transmission and detection using nonorthogonal basis ensures
security. This inefficiency is the overhead that is paid for security using

qguantum key distribution (QKD).
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2.1.4 Secure quantum communication E

Alice generates a random number sequence and transmits binary bit 0 and bit 1 as / and D_ respectively
Bit I 1 1.0 1 0 O o0 1 O 1 1 1 1 0O 1 1
Photon state b, b, b, H D, H H H D, H D, D, D, D, H D, D,
Bob tests with randomly chosen D_ or V for bit 0 and bit | respectively

Detector state v v D D D D V D D V V D D D D V D
Probability Bob detects'2 %2 - 12 - ¥ - ¥ - - B - - - 1 lh .
Bob detects I 1 -0 -0 - 0 - -1 - - - 0 0 -
Alice keeps bits Il r -0 - 0 - 0 - - r - - - 0 0 -

Fig. 2.9 Alice generates a secret random binary number sequence and agrees
with Bob through the public channel that she will transmit using a
nonorthogonal basis, D+ and H for binary bit 1 and bit 0 respectively.
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2.1.5 The link between quantization of E
photons and other particles

If photons are particles with energy E =hw , wavelength A, and quantized

momentum p =hk then there may be other particles that are also

photon?
characterized by E, A, and p=hk.

The essential link between quantization of photons and quantization of other
particles such as electrons is momentum. In general, interaction between
particles involves exchange of momentum.

We already know that both photons and electrons have momentum and that
they can interact with each other.

If photon momentum is quantized it is natural to assume that electron

momentum is quantized.
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2.1.5 The link between quantization of E
photons and other particles

In a photoelectric-effect experiment a photon with quantized momentum

1;]kphoton
energy is absorbed, and the electron is ejected from the metal.

and energy E =h®w collides with an electron in a metal. The photon

Photon energy 7w,

‘L\-icinentum 72K o on| = Al
-

Scattered electron
energy E'=FE + hw
momentum p'= k'

Electron energy E,

momentum p =7%Kj.cion

electron

Fig. 2.10 The momentum and energy exchange between a photon and an electron.
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2.1.5 The link between quantization of E
photons and other particles

Because electron kinetic energy is related to momentum and quantized

momentum is related to wavelength, we can estimate the wavelength A_ an

electron with mass m, and energy E in free space would have:

Ao, = 21/ ) 2myE (13)

For an electron with E = 1eV gives a quite small wavelength A, =1.226nm.

In addition, unlike photons, electrons can interact quite strongly with

themselves via the coulomb potential.
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\ : : :
- 2.1.6 Diffraction and interference of electrons

The electron waves exhibited the key features of diffraction, linear

superposition, and interference.

| _ The experiment of Davisson and Germer
1 2mh .
)ll,; — 21Th - = .r\C":OO\
7 / N
/ vV 2”10 E o O Intensity peaks due to
A superposition of scattered
electron waves
%

Incident electron “’c,
’r‘

beam of energy £ Scattered

electrons
/ G

Fig. 2.11 A mono-energetic beam of electrons scattered from a metal crystal showing
intensity maxima. The periodic array of atoms that forms the metal crystal creates a
periodic coulomb potential from which electrons scatter.

Crystal planes form a periodic
coulomb potential

M.A. M.B. Chap.2: Toward quantum mechanics 32



2.1.6 Diffraction and interference of electrons E

The observation of intensity maxima for electrons emerging from the crystal
showed that electrons behave as waves.

The electron waves exhibited the key features of diffraction, linear
superposition, and interference.
The experiment of Davisson and Germer supported the idea put forward by de

Broglie in 1924 of electron “waves” in atoms.

An electron of momentum p = hk (where | k| = 27t/A) has wavelength

l 2mh
A\ =2mh- =
P \/2myE

(18) W(r, 1) ~ e~ (EV/A=k) - (19)

Electrons of kinetic energy E = p2/2m0 behave as waves in such a way
that y(r; 7), where p = hk.

M.A. M.B. Chap.2: Toward quantum mechanics 33



2.1.7 Whenis a particle a wave? E

From the photoelectric effect and Young’s slits experiment, it is clear that the
photon sometimes appears to behave as a particle and sometimes appears to
behave as a wave.

Electrons, and other atomic-scale entities such as neutrons and protons, can
also behave either as particles or waves.

They are both particle and wave.

Neutrons, protons, and electrons can seem like particles, with a mass and
momentum.

However, if one looks on an appropriate length or time scale, they might
exhibit the key characteristics of waves, such as superposition and

interference.
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2.1.7 Whenis a particle a wave? E

wave-particle duality:

Photon energy is quantized as E =h , photon mass is zero,

photon momentum is p = hK, and photon wavelength is A = 2m/k.

The dispersion relationship for the photon moving at the speed of light in
free space is E = hck or, more simply, @ = ck.

Electron momentum is quantized as p = hk,
electron mass is m, =9.109 565x10-3 kg, and electron energy is E = p2/2m0.
The dispersion relationship for an isolated electron moving in free space is
E= h2k2/2m0. If we know the energy E of the electron measured in eV, then
the electron wavelength A, in free space measured in units of nm is given by
the expression A, (nm) = 1.226 (20)

VE(eV)
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2.1.7 Whenis a particle a wave? E

1.226
electron wavelength A_: (in free space) AC(ﬂm) = (20)
VE(@EV)

For the electron with E =100eV , =) wavelength of A, = 0.1226 nm.

Similarly, other finite-mass particles, such as the neutron, have a wavelength
that is inversely related to the square root of the particle’s kinetic energy.
0.0286

Neutron wavelength A :(in free space) A (nm) = (21)

VE(@EV)

For the neutron with E =100eV, ‘ wavelength of A, = 0.00286 nm.
which is quite difficult to observe in an experiment.
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2.2 The Schrédinger wave equation E

There is a need to generalize what we have learned thus far about the wave
properties of atomic-scale particles.

On the one hand, the formalism needs to incorporate the wave nature
observed in experiments; on the other hand, the approach should, in the

appropriate limit, incorporate the results of classical physics.

we will assume that time, t, is a continuous, smooth parameter and that
position, r, is a continuous, smooth variable.

To describe the dynamics of wavy particles, it seems reasonable to assume
that we will wish to find quantities such as particle position r and momentum
p as a function of time.

We know that waviness is associated with the particle, so let us introduce a

wave function ¥ that carries the appropriate information.
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2.2 The Schrodinger wave equation (2) E

Young’s slits experiments suggest that such a wave function, which depends
upon position and time, can be formed from a linear superposition of plane
waves.

Under these conditions, it seems reasonable to consider the special case of

plane waves without loss of generality. So, now we have:
I(r, 1) = A/® T @

In quantum mechanics the wave function  (r, t) is a true complex quantity,
and hence it cannot be measured directly. We cannot use y (r, t) to
represent the particle directly, because it is a complex number, and this is at
variance with our everyday experience that quantities such as particle
position are real.
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2.2 The Schrodinger wave equation (3) E

The easiest way to guarantee a real value is to measure its intensity,:
Y(r, )" (e, 1) = [P(r, )|

The probability of finding the particle at position r in space at time t is
proportionalto | w(r,t) |*.

we can normalize the intensity | y (r, t) | so that integration over all space is
unity. This defines a probability density for finding the particle at position r in
space at time t. If we wish to find the most likely position of our wavy particle
in space, we need to weight the probability distribution with position r to
obtain the average position <r>. The way to do this is to perform an integral

over all space so that:
00

(ry = / i (x, H)r(r, Hd’r = f r|iy(r, f)|2(z’3r (23)

— 00
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2.2 The Schrodinger wave equation (4) E

o0

(r) = / Yy (r, Orf(r, Hd r = f r|y(r, t)|*d’r (23)

—00

In quantum mechanics, the average value of position is <r> and is called the
expectation value of the position operator, r.

For the particle momentum : p = hk 00
the average value of momentum<p>: (p) = / y* (k. )Rk (K, 1)d*k  (24)

Of course, Eq. (24) requires that we find the function w (k, t). This can be done by

taking the Fourier transform of y (r, t).
o0

(p.) = f U (k Yk (k) dk .

— g

In the x direction only:
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2.2 The Schrodinger wave equation (5) E

(= [ W (k)k bk )dk, @

The momentum operator “p, has a " to indicate that it is a quantum operator

but the expectation value does not as it is just a real number.

Notice that for convenience we ignore the time dependence et of the wave
function when evaluating y*y, since the time-dependent terms cancel.
Taking the Fourier transform of y(k, )to obtain y(x) gives:

o0 o0 o0

(Py) = 5= f dk, f dx'"y* (x)e™ | hi, [ dxip(x)e™ " (26)
T . .

—00 — 00 — 00
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2.2 The Schrodinger wave equation (6) E

l 3 r [ ! Py . .
Py =5 | dk, (f Ax' () | hk, ([ a,x-w(m’w) 29
i) . l

o0 o0

Integrating the far right-hand term in the brackets by parts using:

[UV'dx=UV — [U'Vdx

U=yX) and V' = e~ Hhxx

o0
JI(I) E’.'_fer

. PN AN I
f dxif(x)e— ke = [_,'k fﬁ’_fk"'j'v[f(-’f)}_m-l_ [ dx ik lc?x

(27)

X

The oscillatory function in the square brackets is zero in the limit x>%ce.
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2.2 The Schrodinger wave equation (7) E

(p,)=— f dk, f d.r’:/f*(xf)f:‘mff f dxe™ ™ —fi(x) (28)
2im | dx
which we may rewrite as:
(p.) = —fhf dx"f dx(/;*(x")ﬁ f dkxe_’kf(*"_"}(;?L/;(x) (29)
0 : :
Recognizing that ﬁ [ dk,em™ =) = §(x — x") allows one to write
=00
N o0 F o0 . 5.
(p,) =—ih f dx / dx:jf*(r)D(.l‘—.l")a—:jf(x) (30)
X
N )
so that finally we have:  (p,) = —ih f ci.rgl;*(.r)?(—g{,r(.r) (31)
dx
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2.2 The Schrodinger wave equation (8) E

(p.) —;h[dw; 1)—4;( 31)

The important conclusion: in k space (momentum space) "p, = hk,
in real space (momentum operator) “p, = -ihd/ox.
The momentum operator in real space is a spatial derivative.
The momentum operator and the position operator are said to form a
conjugate pair linked by a Fourier transform.

Summarizing, In guantum mechanics, every particle can be described by
using a wave function y(r, t), where |y(r, t)|2 is the probability of finding
the particle in the volume d3r at position r at time t. The wave function and

its spatial derivative are continuous, finite, and single valued.
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2.2 The Schrodinger wave equation (9) E

Table 2.4 Classical variables and quantum
operators for y(r, t)

Description Classical theory Quantum theory
Position r r
Potential W(r, 1) V(r, 1)
L d
Momentum P, —ih—
adx
L0
Energy E ih—
dt

The average or expectation value of an operator A" is:

(A) = [ o Ard’ r (32)
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2.2 The Schrodinger wave equation (10)@

The total energy function or Hamiltonian of a particle mass m moving in potential V is:

P’
H=1T+V=-—+V (33)
2m
. Y 82
1- D: Hii(x, 1) = P(x, 1)+ V(x, t)f(x, t) (34)
2m Jx?
-~ i 2 3
3-D: Hp(x, 1) = ——=V4h(r, 1) + V(r. )i(r, 1) (35)
m
> > 2
. Y Y Y .
Where: Vi, ) = dx? + Jy? T dz? 56
Replacing the Hamiltonian with the energy operator i h.0/0t, we have:
A )
Hii(r, t) = .fh;—fg[,r(r. r) (37)
(
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2.2 The Schrodinger wave equation (11)@

- )
Hii(r, t) = .fh;—fg(,r(r. t) (37)
(

~

-

Where: H = (’7”3 Vo4 V(r, f)) is the Hamiltonian operator. (38)
<l

—h’ _, L0
Schrédinger equation: ( . Vo4 V(r, t )) f(r, 1) = .’h;—rl/f(l‘. t)y| (39
' (

This equation can be used to describe the behavior of quantum mechanical
particles in three-dimensional space.

The fact that the Schrodinger equation is only first-order in the time
derivative indicates that the wave function y(r, t) evolves from a single initial
condition.
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2.2 The Schrodinger wave equation (12)@

When energy is conserved and potential energy is time independent: V = V(r).
using the method of separation of variables:

Assuming Y(x, t)="(x)'¥(t), then substitution into the 1-D Schroédinger equation:
2 9 d

| P () h(1) + V() Y(x) D(2) = ih—h(x) (1) (40)
2m 0x- dt

We then divide both sides by y (x) v (%), so that the left-hand side is a function
of x only and the right-hand side is a function of t only. This is true if both sides

are equal to a constant E. It follows that: d (41)
: Ed(t) = ih—d(1)
time-dependent Schrédinger equation: ot
time-independent - &
ime-independen s V@) () = () |
Schrédinger equation: 2m dx*
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2.2 The Schrodinger wave equation (13)@

time-dependent
Schrodinger equation:

)
Ed(1) = ih—(1) )
Jt

. _: —h2 92
time-independent ( i V(x)) W(x) = Egr(x)

Schrédinger equation: 2m Ix?

(42)

The constant E is just the energy eigenvalue of the particle described by the
wave function.

The solution to the time-dependent Schrodinger equation is of simple harmonic form:

O(t) = e ' (43) where E = hw.

The wave function y(x, t)= y(x)®(t) is called a stationary state because the

probability density |y(x, t) |> is independent of time.
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2.2 The Schrodinger wave equation (14)@

Because the probability of finding a particle with wave function vy (r, t)

somewhere in space is unity, it makes sense to require wave functions that are

solutions to the time-independent Schrédinger equation be normalized such that:

oo

f¢ﬂm¢4ﬂﬁr=1

—o0

(44)

o0

f¢ﬂﬂ@4ﬂmr=0

— 00

(45)

This n is called a quantum number. Wave functions with different quantum

numbers, say n and m, have the mathematical property of orthogonality.

00

summary: f Y, (r)ip, (r)d’r=34,,

Kronecker-delta function

where: | if n=m ==) o, =1;

if n#m =) 0,,=0;

(46)
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2 . 2 . 1 The wave function description of electron in free space E

we start by writing down the time-independent Schrodinger equation for an
electron mass m,. The equation is:

2

. —h
1,00 = Eb(r) @) o 5 — V2, (0) + VIO, () = Eih, (1) (a9
0

for the case of free space we set the potential V(r) = 0.

Here E_ are energy eigenvalues and vy, are eigenstates so that:

(. 1) =, (r)e™" (49)

For an electron in free space, V(r) = 0 and so we have:

D’ h’ k> : T .
Pn_ “=hw,| (50) (v, 1) = (Af?'k'r + Be KTy emionl | (59

i ’
o ,
2my  2my,
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2 . 2 . 1 The wave function description of electron in free space @

r, (v, 1) = (Ae™ T4 Be K T) eI (51)

AekT : 3 wave of amplitude A traveling left to right.
Be kT : 3 wave of amplitude B traveling from right to left.

Selecting a boundary condition characterized by B = 0, and considering the

case of motion in the x direction only, the wave function becomes:

To find the W, (1 f) — Ae'FFpiont
momentum:

(52)

)
f))c'g{j.??('x‘ 'r) — _Eh(j(_#jﬂ ('xﬁ‘ r) — thAE?IR‘ltf? Im”.r — hk.‘{fljjﬂ ('x‘ r) (53)
N

hi?

p=hk=/2mE | |E, =hw=hKk/2m, w(k) = o | Y
0
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2 . 2 . 1 The wave function description of electron in free space @

hk? 4 Parabolic dispersion relation
w(‘l‘) — for an electron 1n free space
o p
Mo w(k)y=hk*/2m
0
=)
.e . . '-3
The Schrodinger equation 2
does not allow an electron in 3
o
free-space to have just any E
energy and  wavelength;
rather, the electron s

constrained to values given by Wesesims. b

the dispersion relation.
Fig. 2.12 Dispersion relation for an

electron in free-space.
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2.2.2 The electron wave packet and dispersion E

An electron in free space was described by traveling plane-wave states that
extended over all space but were well-defined points in k space. Obviously,

this is an extreme limit.

Suppose we wish to describe an electron at a particular average position in

free space as a sum of a number of plane-wave eigenstates.

We can force the electron to occupy a finite region of space by forming a

wave packet from a continuum of plane-wave eigenstates.

we start with a plane wave of momentum hk, in the x direction and create a

Gaussian pulse from this plane wave in such a way that at timet=0

J(x,t=0)= A0 o= (X0l A0 \Whare: A = [/(2mAx*)/* (55)
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2.2.2 The electron wave packet and dispersion (2) E

iff(:f. = O) — AE:’fkﬂxff’_(x_xﬂ)j’&ﬂxz A= lX(zﬂ‘llz)Ujr (’{) — ,1‘0 (55)

The probability density at time t = 0 is just a normalized Gaussian function of
standard deviation Ax:

lff*(x. = O)L{I(l = O) — |'w.{"r(-ra I = O)lz — AZE—(-Y—-Y{})EJQ‘M'E (56)

To find the values of the momentum components in the Gaussian pulse, we
take the Fourier transform of the wave function y(x, t = 0).

| . .
Ulk.t =0) = — e ilk—ko)x ,—(k—=ko)Ax” (57)
4 ) A/

The corresponding probability density in k space (momentum space) is given by:

l 22Ax2 l 2 A2
|ljf(k, — O)|2 — — p(k=ko)m2Ax7 _ o—(k—ko)* /2Ak

A2qr A2 (58]
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2.2.2 The electron wave packet and dispersion (3) E

: 2| 2 2ai

A ) A2 (58)

where k, is the average value of k, and a measure of the spread in the
distribution of k is given by the standard deviation Ak = 7 Ax.

Because AkAx = 1/2 is a constant, this indicates that localizing the Gaussian
pulse in real space will increase the width of the corresponding distribution in

k space , and Conversely. Recognizing that momentum p = hk, we have:

ApAx =h/2 (59)

which is an example of the uncertainty principle. Conjugate pairs of operators
cannot be measured to arbitrary accuracy. In this case, it is not possible to
simultaneously know the exact position of a particle and its momentum.

M.A. M.B. Chap.2: Toward quantum mechanics 56



2.2.2 The electron wave packet and dispersion (4) E

The time evolution of the Gaussian wave packet:
Each plane wave has a time dependence of the form e @k, For time t >0

l : 1A
_ —ilk=kg)x —(k—kg) Ax* —iw,t
Pk, 1) = —Aﬁ{. e e (60)
and E, = hw, = h’k?/2m,. The Taylor expansion about k, for the dispersion

relation is:

hk:  hk,(k—k hik —k,)’
0 4 o {})_I_ ( 0) (61)

g g
2my, i 2my,

w(k) =

To find the effect of dispersion on the Gaussian pulse as a function of time, we
need to take the Fourier transform of y(k, t) to obtain y(x, t). The solution is:

o0 ’ “\
2 A2 ifit
'ff(.T. f) — l\/i f{,f(k(}x—w{ﬁ) / gf(k—k{})(.‘{—x.[}—(ﬁk(}ff mu))g_(k_k“) Ax ( I+ 2mpAx= )(z‘k (62)
AT/
— 00
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2.2.2 The electron wave packet and dispersion (5)@

[ - _(k—k{,)?axﬁ(pr—z,, tht_ )
l/f X. f) = E,I(k(}x—w(}f) f EI(R—R(}}(.‘{—.‘{D—(RRDHm{}))e _ 2mpAx a’k
(v1)=—7 7 J (62)
»>The prefactor is: a plane wave oscillating at w, = hk,?/2m, and moving
with momentum hk, and a phase velocity v, = hk,/2m,,

»The term expli(k—k,)(x—x,~-(hk,t/m,))]: shows that the center of the wave
packet moves a distance hk,t/m, in time t, indicating a group velocity for

the wave packet of v, = hk,/m,,

(k)2 Ax2 (.I+ tht ) :shows that the width of the wave packet )
TR A T S A2 63
e - 2mAxT increases with time.
. K212 1/2
Ax(t) = (&x“ + W) :Increase of the width (64)
m 0 AX
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2.2.2 The electron wave packet and dispersion (6)@

» The wave packet delocalizes as a function of time because of dispersion.
» The characteristic time AtAx for the width of the wave packet to double is
AtAx = 2myAx?/h.

A

Y

Position, x

Fig. 2.13 lllustration of the time evolution of a Gaussian wave packet, showing
the effect of dispersion.
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2.2.2 The electron wave packet and dispersion (7)@

Example 1: Consider a classical particle of mass m = 1 gr = 102 kg, and the
position of Ax = 1um = 10®m.

Modeling this particle as a Gaussian wave packet gives a characteristic time
AT, =2mAx?/ h = 2x1073 x(107°)?/1.05x 10734 = 2x10%% s = 6x10** years.

Example 2: Consider an electron of mass m, = 9.1x1073! kg in a circular orbit of
radius a; = 0.529 177x107m around a proton.

we assume the electron is described by a Gaussian wave packet and that its
position is known to an accuracy of Ax = 107t m.

In this case, one obtains a characteristic time that is

At,, = 2myAx?/ h = 2x9.1x10731x (10711)2/1.05x10734 = 1.7x10 5.

This time is significantly shorter than the time to complete one orbit.

(T, ~ 1.5%107265s).
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2.2.2 The electron wave packet and dispersion (8)@

We can now write the uncertainty relation for momentum

and position more accurately as:

ApAx >

P | ¢

(65)

This relationship controls the precision with which it is

possible to simultaneously know the position of a particle

and its momentum.
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2.2.3 The hydrogen atom

[e]

» we can consider an electron confined by a potential to motion in some

local region. In 1911, Rutherford showed experimentally that electrons appear

to orbit the nucleus of atoms.

»The electron charge -e=-1.602 176x1071°C,
mass m, = 9.109 381x10731 kg.

» The proton charge = +e, and

the proton mass is m =1.672 621x107%’kg.

A V(r)=V(r, 0, ¢) =—eHdn=yr

==

» The ratio of proton mass to electron mass
is m,/m,=1836.15

L&

X

>V

Fig. 2.14 A hydrogen atom consists of an electron and a proton. It is natural
to choose a spherical coordinate system to describe a single electron

moving in the coulomb potential of the single proton.

M.A. M.B. Chap.2: Toward quantum mechanics

62



2.2.3 The hydrogen atom (2)

Experiment shows that the classical theory does not work! Hydrogen is
observed to be stable. In addition, the spectrum of hydrogen is observed to
consist of discrete spectral lines — which, again, is a feature not predicted by

classical models.

Electron mass my,

Electron charee —e
Velocity, v ©

Proton mass i,

Radius, r

Proton charge +e

Fig. 2.15 lllustration of a classical circular orbit of an electron mass m,
moving with velocity U in the coulomb potential of a proton mass m,. This

classical view predicts that hydrogen is unstable.
I ——
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2.2.3 The hydrogen atom (4)

Fig. 2.16 (a) lllustration of
. Electron wavelength, A\,
electron wave propagating (a Velocity, v

1
1
Y S—— I
1

in free space with

wavelength e. | |

(b) lllustration of an electron

— -
g

Wave Wrapped around in a Cut out an integer number of electron wavelengths

circular orbit about a and wrap around in a circle as illustrated below
(b)
proton. Single-valueness of

the electron wave function
suggests that only an
integer number of electron
wavelengths can fit into a

circular orbit of radius .
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2.2.3 The hydrogen atom (5)

The postulates of Bohr (1913):

1. Electrons exist in stable circular orbits around the proton.

2. Electrons may make transitions between orbits by emission or absorption
of a photon of energy .

3. The angular momentum of the electron in a given orbit is quantized

according to p, = nh, where n is a non-zero positive integer. Postulate 3
admits the wavy nature of the electron.

The postulates of Bohr allowed many parameters to be calculated, such as

the average radius of an electron orbit and the energy difference
between orbits.
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2.2.3.1 cCalculation of the average radius of
an electron orbit in hydrogen

We start by equating the electrostatic force and the centripetal force:

g %
_f?“ ”TUIJQ

— == 66
Amre,r? r (66)

we continue to assume an infinite proton mass and electron mass m, instead
of using the reduced mass m, of Eq. (1.26) such that 1/m =1/m_ +1/m,,.

Because angular momentum is quantized, p, = nh = mjvr,..

Since: my?v? = n?h?/r 2 | »  mgu?/r, = (1/r,mg)(n*h?/r ?).

Substituting into our expression for centripetal force gives:

92 l HEhE e
| = ' drregn-h-
4 2 0 (67) andhence |, —
TeEghy Fallly 1, 7l

(68)

mge-
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2.2.3.1 cCalculation of the average radius of
an electron orbit in hydrogen (2)

_ . drre n’h?
radius of the n-th orbit: r, = (68)
mge?
The radius of each orbit is quantized.
The spatial scale is set by the radius for n = 1, giving:
drre,h’
Bohr radius: Fy =dg = —U,} —0.529177 % 10_]0 m (69)

”I(}f’."‘

which is called the Bohr radius.

Notice that if we were to use the reduced mass then r, = 0.529 889x10719m.
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2.2.3.2 Calculation of energy difference E

between electron orbits in hydrogen

» Calculation of the energy difference between orbits is important, since it will

allow us to predict the optical spectra of excited hydrogen atoms.

» We start by equating classical momentum with the quantized momentum of
the n-th electron orbit.
» Since angular momentum: p, = nh = mgvor,

» and momentum of the electron: m v = nh/r,

g

. 2 2
Electron velocity » = nh e nh - e
of the n-th orbit: myr, 4mweon’h® m,  4dmweynh

(70)

The valueof vforn=1isv =2.2x10° ms™1.
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2.2.3.2 Calculation of energy difference E

between electron orbits in hydrogen (2)

We now obtain the kinetic energy of the electron:
- )4
I , e

' = —myv _—m
0 0
2 (41ey)*n*h?

(71)

The potential energy is just the force times the distance between charges, so

—e? et )
= —m 7
" (4mey)?n’h?

V =

drregr,
Total energy for the n-th orbit is:
| 4

'E)
E,=T+V = ——mﬂ (dmen)n
0

(73)
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2.2.3.2 Calculation of energy difference E

between electron orbits in hydrogen (3)

kinetic energy potential energy Total energy
T = Efﬂﬂv V= PP E,=T+V
l e* e | e
—I’I? —n — —
" (4me,)2n2h? o (41ey)’n’h? 2" (4me,)2n’h?

Note that: T =-V/2. The result is a specific example of the more general “virial
theorem” which states that <T> = yV/2 for a system in a stationary state and

with a potential proportional to 17.

The energy difference between orbits with quantum number n, and n, is:

z E — m et l l
T ) (4meg)?hE \n? o on3 (74]

70
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2.2.3.2 Calculation of energy difference E

between electron orbits in hydrogen (4)

1 e’
The pre-factor: natural energy scale E,=T+V=——m, —
2 " (4mwey)nch’

Lowest energy state: n=1

_._‘1
. ) B _my e I B l
E,: (R, is called the Rydberg constant.) E,—En=- G (”% ”%)

—n U Ef 4

E, = Ry= = —13.6058¢V
T T ey 2R ’ 72)

The emission: transitions from high energy levels to lower energy levels.

Absorption: excitation electron from a low energy level to a higher energy level.

Different groups of energy transitions result in emission of photons of
energy, . The characteristic emission line spectra have been given the names
of those who first observed them (Lyman, Balmer, Paschen) .
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Fig. 2.17 Photon emission spectra of excited hydrogen consist of a discrete number of
spectral lines corresponding to transitions from high energy levels to lower energy levels.

Different groups of characteristic emission line spectra have been given the names of
those who first observed them.

E=0.0eV
SNa n=oo
E=-0.544¢eV n=>5
E=-0850eV n=4
Y
E=—1512¢eV Yvy -3
l Paschen
E=-3401eV Yvy n=2
Balmer
A =0.656 um
A..=0.364pum
Lyman 4
A =0.122um F _p M€ o
A.=0.091 um oM 2 (dwey)?h: \nt o n3
E=—13606cv —YYYVY n=1
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2.2.3.2 Calculation of energy difference E

between electron orbits in hydrogen (6)

The Bohr model is somewhat of a hybrid between classical and quantum ideas.

The Schrodinger equation describes an electron moving in the spherically
symmetric coulomb potential of the proton charge.

In spherical coordinates, the time-independent solutions are:
l/’fnhn (F" 9" (b) — R.?? (F) ('E');ﬂ (9)(I}m ((b) (76)

The resulting three equations have wave functions that are quantized with
integer quantum numbers n, /, and m and are separately normalized.
It can be shown that the function ® (@) must satisfy:

°

3

®,(d) +m*®,,(d) =0 (77)
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2.2.3.2 Calculation of energy difference E
between electron orbits in hydrogen (7)

dzd
d¢?

1 d de . omy ] -
sin 6 da(s"‘ede) ["H” sint6)

1 d gﬁ 2m [ e? ) I(J+1]] _
© dr (IQ df) [ﬁ2 (47T€|lr+E r* adian

+m2P=0

M.A. M.B. Chap.2: Toward quantum mechanics 74



2.2.3.2 Calculation of energy difference @

between electron orbits in hydrogen (8)

2 .
afjbzqy,n(é)mﬂ(bm(é):() 77) =) D,(p) =Ae™?

(78)

The normalization constant A can be found from:

27

dp = A f dp=2mA =1 (79)
0

2

27
[ WL (B, ($)dd =A% [ emoens
0

m
0

Hence, A =1/+/2m and b (b)) = e (80)

Hence, we expect @_(¢) be single-valued, repeating itself every 2n.

This happens if m is an integer.
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2.2.3.2 Calculation of energy difference E

between electron orbits in hydrogen (9)

Do (2 0. 6) = R, (NO] ()P, ()

n=1,2,3,...
[=0,1,2,...,(n—1)
m==l,..., +2,.+1,0

The principal quantum number n specifies the energy of the Bohr orbit.
The quantum numbers | and m relate to the quantization of orbital angular

momentum.

The orbital angular momentum quantum number is |, and the azimuthal
guantum number is m.
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2.2.3.2 Calculation of energy difference E
between electron orbits in hydrogen (9)

The energy level for given n is independent of quantum numbers | and m,

hence degeneracy in states of energy E_follow: (see Exercise 2.9)

I=n—1

Z (2/—|— l) = n’ (77)
=0

In addition to n, |, and m, the electron has a spin quantum number s = +1/2.
Electron spin angular momentum, sh, is an intrinsic property of the electron

arising from the influence of special relativity on the behavior of the

electron.
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2.2 .4 periodic table of elements E

There are over 100 other atoms, each with their own unique characteristics.
They are grouped in periodic table, arranged according to the similarities in

their chemical behavior.

H, Li, Na and other atoms form the column |IA elements of the periodic table
because they all have a single electron available for chemical reaction with

other atomes.

The rules of quantum mechanics can help us to understand why atoms
behave the way they do and why chemists can group atoms according to the

number of electrons available for chemical reaction.
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2.2.4.1 The Pauli exclusion principle
and the properties of atoms

An experimental fact: No two electrons in an interacting system can have the
same quantum numbers n, |, m, and s.

This is the Pauli exclusion principle, which determines many properties of
atoms in the periodic table, including the formation of electron shells.

For a given n in an atom there are only a finite number of values of |, m, and s
that an electron may have.

If there is an electron assigned to each of these values, then a complete shell is
formed. Completed shells occur in the chemically inert noble elements of the
periodic table, which are He, Ne, Ar, Kr, Xe, and Rn.

Electrons in these incomplete sub-shells are available for chemical reaction

with other atoms and therefore dominate the chemical activity of the atom.
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Table 2.5 Electron shell states

Allowable states in | Allowable states in
sub-shell complete shell
n { m 28
2'2'4'1 1 0 0 +1 2 2
The Pauli 2 0 |o 41 |2 8
exclusion L
principle S R S
1 +1
and the 3 0 0 +1 2 18
properties T a
of atoms (2) Lo |6
1 +1
-2 +1
—1 +1
2 0 +1 10
1 +1
2 +1
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[e]

2.2.4.1

The Pauli
exclusion
principle
and the
properties
of atoms (3)

Al[Ne]3s°3p'
Si[Ne]3s°3p°
P[Ne]3s*3p°

Ga
Ge
AS

Ar
Ar’
Ar]

3d4s° p!
3d'"4s% p?
3dm432p3

In[Kr]4d'’5s%p'

group IIIB
group IVB
group VB
group IIIB
group 1VB
group VB
group IIIB

M.A. M.B.

Chap.2: Toward quantum mechanics
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Table 2.6 Electron ground state for first 18 elements of the periodic table

Atomic number Element n=1 n=2 n=2 n=3 n=273 Shorthand notation

Is 2 2p 3 3
1 H 1 Is
2.2.4.1 2 2
The Pauli 3 L [He] core ! 152251
. 4 Be 2 electrons | 2 15225
exclusion . . . 22y
principle 6 c 2 2 15225222
7 N 2 3 15225223
and the 8 0 2 4 152252214
properties ’ F > s 122522
10 Ne 2 6 15225226
of atoms (4) - T | o
12 Mg 10 electrons 2 [Ne] 3s°
13 Al 2 1 [Ne] 3s23p!
14 Si 2 2 [Ne] 3s23p°
15 P 2 3 [Ne] 3s23p
16 S 2 4 [Ne] 3s23p*
17 Cl 2 5 [Ne] 3s23p
18 Ar 2 6 [Ne] 3s23p°
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2.2.4.1 The Pauli exclusion principle
and the properties of atoms (5)

Table 2.7 The Periodic Table of elements

1A MNoble
Irdrogm (=
[ E IFE IVA YA V1A VilA He
W ¥
1o 4 e
| man [rmT— [T [ [
Li Be k F
[P 1t Irtndag! [P iy
4l 2 W8l 7 L
] g Nignrdam Al o Fhvd e Sl Pl 1 P et Aigrd
i Mo . . . . . ) ] '
bl * ["" HLIE VB VB W1B YilE ¥l 1 g Al sl x Cl Ar
[P 1" Pe] la? | =l [hiaf ba?bpt ] it [P g e ] " raf B0
R Y T i Y Nhina ] T s
Potuwsm Tl Smndars Temwm Vaantram o mm izt mns Em Crlalt kel Coppar T = "4 s Arsemic Swhimmam Trowmis: Knpen
K Ca Se Ii A} Cr Mn Fe Co Ni Cu fn Cian L As S Br kr
as] 4t | e? [ 2t [ R | 34 P! [THET LY par] atart ] et p 2 LT [FY R LA (A} 2a ™t [Ar I 1ar| 1% Ll Gl
LT D e e anap 2200 LFE LI 5] EKTI FLET) s 2\ Rt gt R HFar ap! HRadapf FLTRE ratalapt
@ X L L Bl ELE
Falalllsrn Ll i Vs v Kadsiom [ PO Trkad ks [ [N FalaBar ek 1wl B lem L[] [PYTTST Telbg Lalie Komi
Rh ST ¥ fir Nh Ma I'e Itu Ith [ Ap Cd In sn sh I'e I Xe
e [ [ Eap datsst ] a2 [ 4 [ s ] T ] sy [ Lo fr] s [ ™ e L] 1Er L] = may
' ETaE = WL 148 B T i [ L [ [ el 17 5 4 5k & 58 5t gk ag s
114z e 1207 12780 L LI
=Y Borrum Lastame Flleaz Tastsbum Tuogws Bhums Cromm il Movnes ekt ey Thallum [P [ Y Tk fuman Eackon
Cs Ba La Hf I'a w Re O Ir It An Hz I Ph Bi Po At Kn
| e e Pef s’ e e %] [ef | %] e %] % [Xa} % | %e] %4 B %] [Xe] P e
e (1M 1 % Y aE et T e o gt TR e Tt T A At St || af it | ettt | et eded | il tediet | el et
(L L] e FERAS 5] L [T 1947 00 3T dunle 3 % 20 1] rr
Foaaium Entmm LT
Fr Ha Ar
R Ta* L [Ex] a1 Rare casths
1] w
Lanthansdes Vil T 1w i psann [T TN | e b Fretms [T [Ty T i b
Ce I'r Ml Pm sm Eu G Ik I Hu Er T
e it it | epar afeed | papirtsrel | Repifared | pepartared | e atsied | pogasiel | ettt I%ed (EX] el R
LA B [EEE2] e [LL] L 15133 1344 ™3l ar''iati! e A"t
L5 [ETLE [FRE [EETH
Actinides Fhavvam LR faviueian Frahmy am A . [ T o= [ TICET LET A
I'h 1] Np Pu Am Cm Bk cr ks Fm M
[ 757 o St | Repiredst | pmpacery | e Car | e 8 ed % | [Rsl AR | i) St T
pEHEC] 1Em T I ] M7 HT 2]
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2.2.4.1 The Pauli exclusion principle
and the properties of atoms (6)

3 group 18
- Ii: [] akkati metals ] other metals [[Jroble gases ?lé[b
E, [[] alcatine earth metals [T] other nonmetals [ ] lanthanides 13 14 15 16 17 [3
1H .uz.; ] transition metals [l hatogens ] actinides :ﬂ: :3: g: Eﬂ gﬂg He
3 |4 T & [T [ [P [
214 Be hl'l'p groups govgie com grevp azaruniv-chem |B C i ] (1] F Ne
1 L E 4 S5 6 7 8 9 10 13 |14 |15 |1& [17 |18
3 M Hla** IVa Va Via Vilals—VIIa—s] 11 12 :
Na [Mg EIII:I’I’* IVb Vo Vib VIbje— vib—si 1 __1p |A [ST P IS CI Ar
19 |20 |21 [22 |28 [2¢ [ |26 |27 [28 [29 [0 |[31 [32 |33 |34 |[35 |[3e
4K Ca |Sc |Ti |V |Cr [Mn |Fe |Co [Ni |Cu |Zn |Ga |[Ge |As |Se |Br |Kr
37 |38 |39 (|40 |[41 |42 |43 [44 [45 [46 |47 |48 |49 |50 [51 |52 [958 |[oe
SRb [Sr |Y |Zr |Nb |[Mo |Tc |Ru |[Rh [Pd |Ag |Cd [In [Sn [Sb |Te [I [Xe
55 %7 |72 |73 |74 |75 |76 |77 |18 [79@ |80 |81 |[8z |83 |84 [BS |B6
éiCs |Ba |La |Hf |Ta |W |Re [0s |Ir |Pt |Au Hg |T1 |Pb |Bi [Po |At [Rn
87 |88 |89 |[104 [105 |106 [107 |108 [109 [110 [111 [112
?Ff Rﬂ A Josgs e |srps | dras|ssns | wsns|ssss sransnss
U[58 [59 [e0 [61 [62 |62 [e4 |65 |66 |e7 [68 [69 |70 |71
.F Ce |[Pr |[Nd |[Pm |Sm |Eu |[Gd |[Tb [Dy |Ho |Er |Tm |Yb |Lu
91 |92 |98 |94 |95 |38 |97 |98 |99 [100 [101 [102 [103 |
7ITh |[Pa |U |Np |Pu |Am [Cm |Bk |Cf |Es |[Fm [Md |No |Lr

M.A. M.B. Chap.2: Toward quantum mechanics 84



2.2.5 Crystal structure

°
o
e O® O eeoe _* *
oo 00 ® 0 e e o o o
o o 0o 0o o o o
oo oo e ® e 0@ e o o Yo
o o e e 0 °
v e 0o 0o 0 ° C e 4 ® o °
) o ] .O ® & 0 0 g @
oo 00 o ®
Crystalline Amorphous Polycrystalline
X (e.g., silicon (S1)) (e.g., silicon dioxide (Si0,)) (e.g.. silicon (Si1))

Fig. 2.18 lllustration of different types of solids according to atomic
arrangement. In the figure, a dot represents the position of an atom.
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2.2.5 Crystal structure 2) [r]

2.2.5.1 Three types of solids classified according to atomic arrangement:

Atoms in a crystalline solid are located in space on a lattice. The unit cell is a
lattice volume, which is representative of the entire lattice and is repeated
throughout the crystal. The smallest unit cell that can be used to form the

lattice is called a primitive cell.

® & o ©o
2.2.5.2 Two-dimensional square lattice:
Fig. 2.19 A two-dimensional square lattice ® ® ® o
can be created by translating the unit ® o o
vectors a, and a, through space according to a R
R =n,a, +n,a,, where n, and n, are integers. ® ® ®
aj
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2.2.5 Crystal structure 3) [r]

2.2.5.3 Three-dimensional crystals: |R=mna; +n,a,+nza;| (g,

where n, n,, and n, are integers. This complete real-space lattice is called the

Bravais lattice. The volume of the basic unit cell (the primitive cell) is:

Qeenn = 4. (ay X az) (83)

A good choice for the vectors a,, a,, and a; that defines the primitive unit
cell is due to Wigner and Seitz. The Wigner—Seitz cell about a lattice
reference point is specified in such a way that any point of the cell is closer
to that lattice point than any other.

The Wigner—Seitz cell may be found by bisecting with perpendicular planes
all vectors connecting a reference atom position to all atom positions in the
crystal. The smallest volume enclosed is the Wigner—Seitz cell.
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2.2.5 Crystal structure (a)

2.2.5.4 Cubic lattices in three dimensions:

Simple cubic Body-centered cubic Face-centered cubic
(SC) (BCC) (FCC)

(L/2)3172

L2

Fig. 2.20 Illustration of the indicated three-dimensional cubic unit cells,
each of lattice constant L. In the figure, each sphere represents the
position of an atom.
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2.2.5 Crystal structure 5) [i]

)

Fig. 2.21 lllustration of the
diamond lattice cubic unit
cell with lattice constant L.

GaAs is an example of a llI-V

compound semiconductor

with the zinc blende crystal

structure. Ga (dark spheres)

and As (white spheres).
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2.2.5 Crystal structure @
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2.2.5.5 The reciprocal lattice E

Because the properties of crystals are often studied using wave-scattering
experiments, it is important to consider the reciprocal lattice which exists in
reciprocal space (also known as wave vector space or k space).

Given the basic unit cell defined by the vectors a,, a,, and a; in real space, one
may construct three fundamental reciprocal vectors, g, g,, and g, in reciprocal
space defined by a; - g; = 2m9;; .

So that g, = 2m(a, xa3)/Q, 8, = 2m(a; xa,)/Q.,, and g5 = 2n(a; xa,)/Q -

Crystal structure may be defined as a reciprocal-space translation of basic

points throughout the space, in which:

G =g, +nm,8, +n38; (84)
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2.2.5.5 The reciprocal lattice E

where n,, n,, and n, are integers. The complete space spanned by G is called
the reciprocal lattice. The volume of the three-dimensional reciprocal-space
unit cell is:

21)°
Q=g (8 xg) = (Q— (85)

cell

The Brillouin zone of the reciprocal lattice has the same definition as the
Wigner—Seitz cell in real space. The first Brillouin zone may be found by
bisecting with perpendicular planes all reciprocal-lattice vectors. The

smallest volume enclosed is the first Brillouin zone.
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2.2.5.5 The reciprocal lattice @

As an example, consider a face-centered cubic lattice in real space.

To find the basic reciprocal lattice vectors for a face-centered cubic lattice
we note that the basic unit cell vectors in real space are:

a,; =(0, 1, 1)(L/2), a,=(1,0, 1)(L/2), and a5 = (1, 1, 0)(L/2),

so that g, = 2m(-1, 1, 1)/L, g, = 2r(1, -1, 1)/L, and g, = 2m(1, 1, -1)/L.
Hence, the reciprocal lattice of a face-centered cubic lattice in real space is

a body-centered cubic lattice.
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2.2.5.5 The reciprocal lattice

Fig. 2.22 |lllustration of the
Brillouin zone for the FCC lattice
with lattice constant L.

Some high-symmetry points are
['=(0,0,0), X=(2r/L)(1,0,0),
L =(2r/L)(0.5, 0.5, 0.5),

W =(2r/L)(1, 0.5, 0).

The high-symmetry line between
the points I' and X is labeled A,
the line between the points I’
and L is A, and the line between
['and K is 2.
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2.2.6 Electronic properties of bulk semiconductors E
and heterostructures

The energy states of an electron in a hydrogen atom are quantized and may
only take on discrete values.

The same is true for electrons in all atoms.

In a single-crystal solid, electrons from the many atoms that make up the
crystal can interact with one another.

Under these circumstances, the discrete energy levels of single atom
electrons disappear, and instead there are finite and continuous ranges or
bands of energy states with contributions from many individual atom

electronic states.
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2.2.6 Electronic properties of bulk semiconductors E
and heterostructures

e A free electron can assume any TE
energy level (continuous). |

e Quantum mechanics predicts a :
bound electron can only assume
discrete energy levels.

e This is a result of the interaction

between the electron and the

nuclear proton(s)
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2.2.6 Electronic properties of bulk semiconductors E
and heterostructures

E
e Crystal is composed of a large number of I_
atoms (1022 /cm3 for silicon) |
* Interaction between the electrons of I
each atom and the protons of other _I_
atoms
e Result is a perturbation of each |

electron’s discrete energy level to form

continua at the previous energy levels
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2.2.6 Electronic properties of bulk semiconductors and heterostructures @

e Silicon crystal formed by covalent bonds

o0 o0 o0
eCovalent bonds share electrons
between atoms in lattice so each thinks .® o\_Jo\ e

its orbitals are full . ¢ ¢ee . ¢

o
°

e Most important bands are __ .
o0 o0 X

— valence band: band which would be ., _, .,
® - @ @
filled at OK oV o \M) o \%) o
o0 o0 o0

— conduction band:

next band above in energy
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2.2.6 Electronic properties of bulk semiconductors and heterostructures E

If an electron is free to move in the material, its motion is influenced by the
presence of the periodic potential.

Typically, electrons with energy near the conduction-band minimum or energy
near the valence-band maximum have an electron dispersion relation that may

be characterized by a parabola, w(k) o< k?

The kinetic energy of the electron in the crystal
may therefore be written as E, =hw=h%k?/2m*,
where m* is called the effective electron mass.
The value of m* can be greater or less than the

mass of a “bare” electron moving in free space. k

For GaAs m* = 0.07m,, and InAs m* = 0.02m,, where m is the bare electron mass.
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2.2.6 Electronic properties of bulk semiconductors and heterostructures @

E
A
* top of valence band (E,)
* bottom of conduction band (E_) 7 ¥ op
* difference in energy between £_ and £, energy gap £, E2
h 4
E,
€
Second
allowed
band B — B
...... i, e S B
Forbidden band §§§§§:fggg%§§§§§§§%§§§?§§§§§§§%ii§§§§ TEE
First
allowed
band
k
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2.2.6 Electronic properties of bulk semiconductors and heterostructures E

The statistical energy distribution of electrons in thermal equilibrium at

absolute temperature T is typically described by the Fermi—Dirac distribution

function:
fi(E) = D
Tk kS E:’(Ek_'u')’kaT ‘I— l Probability of cccupation 1 + € KT d:’C
1.2
1.0 Y
08 —_ o |
— 293 K
0.6 — 2000 K
u: chemical potential o
f (E.): probability of occupancy o |
of a given electron state of 5 \ g,
] 1 2 i 4 5 G ¥
energy Ek' Electron energy / eV

Fermi-Dirac distribution for several temperatures
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2.2.6 Electronic properties of bulk semiconductors and heterostructures E

The Fermi—Dirac distribution is driven by the Pauli exclusion principle which
states that identical indistinguishable half-odd-integer spin particles cannot
occupy the same state.

kT 100

For electrons with effective mass m*, : :
Er = h?k:2 /2m*, where k; is called the 08 b

Fermi wave vector. -

At finite temperatures, and in the limit of ,
electron energies that are large compared [
0.2

with the chemical potential, the e
kTwu/10

distribution function takes on the 0 F

Boltzmann form f (E) > = e ¥/, 0 1 2 3 4

on
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2.2.6 Electronic properties of bulk semiconductors and heterostructures

/
[:¥]
3]
=
[=}]
2
L¥]
. =
. P . o
Conduction-band °® Conduction band EU
minimum energy A o e © o
A C
Electron distribution
function, f(E,)
Band-gap energy, E,
Hole distribution
v function, f,(£;)
Valence-band —¥ = O OO e o o
maximum energy Valence band =)
>
=0
2
e [¥]
ol (5}
o) ©
5 T
— Fig. 2.24 \
Position
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2.2.6 Electronic properties of bulk semiconductors and heterostructures @

A pure crystalline semiconductor is an electrical insulator at low temperature.
In the lowest energy state, or ground state, of a pure semiconductor, all
electron states are occupied in the valence band and there are no electrons in

the conduction band.

:@:@:@:@:@:@: z@z@z@z@@z@z
:@:@:@:@:@:@: HONOXOKOROXNC):
:@:@:@_:@:@:@: HOXOHOXOHORS):
:@:@:@:@:@:@: HOXOXOXONORSH

:@:@:@:@:@:@: HOXOEOXOHOXC
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2.2.6 Electronic properties of bulk semiconductors

and heterostructures

:p:

2
np = n,

N
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2.2.6 Electronic properties of bulk semiconductors @

and heterostructures

before donor 1onization

SO SOPSOSISIESEONES EF
(A X XN N NN R R NNN]
SseSOBOEBTEOINLES

after donor 10onization

SO SOSOOIIOIOSSS EV
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2.2.6 Electronic properties of bulk semiconductors @

and heterostructures

before acceptor 1onization
N
000000000000

0000000000000
000000000000

E

¢

WEA

after acceptor ionization
AL
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2.2.6 Electronic properties of bulk semiconductors E
and heterostructures

E |
Compensated 4 (Np-Ny)
. CO00000000000
doping ﬁtt EC
\ 7
Ny
vvviivvv
EA
EV
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and heterostructures

2.2.6 Electronic properties of bulk semiconductors E

Conduction-band

AE,=0.25 eV

AE,=0.13 eV

heterointerface
Conduction-band \
minimum energy &
A
GaAs
£ band-gap energy
) Eg =1.42eV
[Ea|
Y
Position ~v
Valence-band /

maximum energy
Valence-band

heterointerface

Fig. 2.25

Alp 3Gag 7As
band-gap energy
E o= 1.80eV
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2.2.6.1 The heterostructure diode E

Fig. 2.27 Diagram of the conduction band minimum of a unipolar n-type
GaAs/Al, ;Ga, ,As heterostructure diode. The GaAs is heavily doped, and the
Al, 3Ga, ;As is lightly doped.

Distribution of electrons A

with enough energy to
-+— || surmount potential barrier

of energy eVy=AE.—¢eV,

High energy tail

in electron energy
» distribution

FAE)~ BT

Tonized impurities
of density n

Conduction band minimum

Electron energy, E,

AE =025eV potential energy, eV{x)
GaAs AIQ._QG‘EID.'}AS
I e R o
- -~ * R . * Electron distribution
Equilibrium chemical "
potential, function, fJ(E.)
o ~

£ Depletion region width, w

§ x=0 X=w

&3]

Position, x
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2.2.6.1 The heterostructure diode E

by solving Poisson’s equation: V-E=p/ge p = en,
JE, en J’
- = =——V(x 87
ox g€, 0x ) &7

1/2
2gy€, (88)
W= Vo
en

4

1/2
2&, €,
=&y

W = ( _ (VU Vhl 15))

(89)
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2.2.6.1 The heterostructure diode E

Fig. 2.28 (a) Current—voltage characteristics of an ideal diode plotted on a
linear scale. (b) Current—voltage characteristics of an ideal diode. The natural
logarithm of normalized current is plotted on the vertical axis.

2000 - (@) 10 (b)
1600 r 8
x 100 —
= 1200 F ~ 6
= 800 - — 4
E 400 2 2
O e
0 = 0
o
—400 -2
—800 1 I -4 | | | l
-5 0 5 -10 -5 0 S 10
Voltage bias, eV, /kgT Voltage bias, e Vi, /kgT

_ ,€Viias/Midkg T __
[ =1,(e 1) (90)
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2.3 Example exercises
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