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Appendix F: The Greek alphabet @

A « alpha =a M p mu =m
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Introduction: 1.1 Motivation E

‘*why we needs to know about quantum mechanics?

(1Because we live in a quantum world!

»Engineers would like to make and control electronic, opto-
electronic, and optical devices on an atomic scale.

»In biology there are molecules and cells we wish to understand
and modify on an atomic scale.

»In chemistry, where an important goal is the synthesis of both
organic and inorganic compounds with precise atomic
composition and structure.

**Quantum mechanics gives the engineer, the biologist, and the
chemist the tools with which to study and control objects on an
atomic scale.
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1.1 Motivation (Cont.) E

**In the electrical engineering, there are important

reasons to study quantum mechanics.
»one simple motivation is the fact that transistor dimensions will
soon approach a size where single-electron and quantum effects

determine device performance.
> Moore’s Law: The number of transistors in silicon ICs increases

by a factor of two every eighteen months.
»Moore’s law predicts that DRAM cell size will be less than that

of an atom by the year 2030.

»\We need to learn to use quantum mechanics to make sure that
we can create the smallest, highest-performance devices possible.
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1.1 Motivation (Cont.)

Fig. 1.2 Photograph (left) of the first transistor. Brattain and Bardeen’s p-n-p point-
contact germanium transistor on December 23, 1947. The device is a few mm in size.
On the right is a scanning capacitance microscope cross-section image of a silicon p-
type P-MOSFET with an effective channel length of about 20 nm, or about 60 atoms.

M.A. M.B. Chap.1: Introduction
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1.2 Classical mechanics  [r]

1.2.1 Introduction

correspondence principle: classical mechanics is often assumed
to be the macroscopic (large-scale) limit of qguantum mechanics.
Formally, one requires that the results of classical mechanics be
obtained in the limit h — 0. |}, =275

Newotonian Mechanics:
classical or newtonian mechanics allows a continuous spectrum
of energies and allows continuous spatial distribution of matter.

Motion of macroscopic material bodies is usually described by
classical mechanics.

M.A. M.B. Chap.1: Introduction 24



1.2.1 Introduction: (Newotonian Mechanics) E

A particle with mass m is fully described by the particle’s position
[x(®), ¥(?), z(] and its momentum [p,(2), p(?), p,(V).

Newton’s first law: p(t)= m v(t) = m dx/dt = const. (1.a)
where v =dx/dt is the velocity of the object moving in the direction of the
unit vector x~ = x/|x]|.

Units: Time is seconds (s), and distance is meters (m).

The momentum is (kg m s™1), and the velocity (speed) is (m s™1).

The motion of the object is described by the differential equation:

Newton’s second law: F=dp/dt =m d*x/dt> =ma (1.b)

where the vector F is the force. The magnitude of force is measured in units
of newtons (N).
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1.2.1 Introduction: (Newotonian Mechanics) E

The work done (Energy) moving the object from point 1 to point 2 in space
along a path is defined as:

r=rs s
W, = [ F.dr 2) whereris a s.patial
‘ vector coordinate. -

r=r r=r

Fig. 1.3 lllustration of a classical particle trajectory from position rl to r2.

For a conservative force field, use of the fact F = dp/dt =m dv/dt, one may write:
l":]"g
m

1
Wi, = [ F-dr=m [ dv/dt-vdt = — %(v“)dr (3)
! B b (

r=rj

Wi, =m(v:—v3)/2=T,—T, |where v> =v-v| |T=E, = mv?/2=p?/2m
2 7 | ) 1

and the scalar T = mv?/2 is called the kinetic energy of the object.
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1.2.1 Introduction: (Newotonian Mechanics) E

For conservative forces, for any, the work done around any

closed path, is always zero, or:
36 F-dr=0 (4 Q

F=-VV(r) (5 |since {F-dr=—fVV.dr=—¢dV=0.

For a nonconservative force, such as a particle subject to frictional forces, the
work done around any closed path is not zero, and j F-dr#£0

V(r) is called the potential. Potential is measured in volts (V), and
potential energy :in joules (J) or electron volts (eV).
Then total energy, which is the sum of kinetic and potential energy, is a

constant of the motion. S
] Conservative: Lol
In other words, total energy T +V is conserved. Frictional:S\Sdawal
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1.2.1 Introduction: (Newotonian Mechanics) E

Hamiltonian function: H=T +V (6.a)

T: kinetic energy and V: potential energy can be
expressed as functions of the variable’s position and
time, it is possible to define a Hamiltonian function for
dynamics of particles in the system.

The Hamiltonian function H(x,p) is defined as energy of a system:

2

H(x,p) = p—+ V(X)=T +V(x)

2m (6.b)
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1.2.1 Hamiltonian formulation: wewotonian vechanics) @

Z
H(x,p) = E—m +VX)=T+V(x) (6.b)

d d 0 p

_— - — - (6.d)

7y 1op) =——V(x) (6.c) o H(x,p)=—

dx(t)
dt

d
= const. (6.e) F(x) ==—V(x) (6.

p(t) =mv(t) =m -

Hamiltonian equations of motions:

dx 0 d 0
— =—H(x,p) r._2
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1.2.2 The one-dimensional simple harmonic oscillator @

Hooke’s law: F = —kx ,wherekis the spring constant.

Total energy function or Hamiltonian for the system is H=T+V. (6)

Spring constant, & Mass. m

potential energy: Vv = %sz — fﬂ" kx'dx' (6-V)
kinetic energy: T =m(dx/dt)*/2 (6-T)
so that: . 1 dx\° 1 .,
=—-—m|— —KX°
S () e
Force, F =—rx
| ~— |
|

| | Closed system with no exchange
of energy outside the system
Displacement, x I implies conservation of energy

M.A. M.B. Chap.1: Introduction 30



1.2.2 The one-dimensional simple harmonic oscillator E

3
The system is closed, so there is no exchange of [ dx\~ | )
energy outside the system. There is no dissipation, H = Hm E + HK'X
total energy in the system is a constant, and:
7

dH dx d*x dx (7)
—=0=m——+ kx— (8)

dt dt dt? dt d*x

, _ , Kx+m— =0 (9

so that the equation of motion can be written as dt?

The solutions for this second-order linear differential equation are:
x(1) = Acos(wyt + @) (10)

A: amplitude of oscillation,

dx(t + .
( ) _ —woAsm(wﬂf—l— (,b) (11) wg: angular frequency of

dt oscillation (rad s™),
& : fixed phase.
d*x(t) )
= —wyAcos(wyt + p) (12)
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1.2.2 The one-dimensional simple harmonic oscillator E

potential energy and kinetic energy:

L, 1,
V= §K2A“' cos (wyt 4+ ) (13) T = EmwﬁA“ sin(wot + ) (14)

Total energy: E=T+V= mwﬁAz/’Z = kA%)/2 (15)

since sin”(#) 4+ cos?(f) = 1 and k = mw;.

An increase in total energy, increases amplitude, and an increase
in k, corresponding to an increase in the stiffness of the spring,

decreases A. A= 2E/K = /ZE/mwﬁ,

The theory gives us the relationships among all the parameters
of the classical harmonic oscillator: k, m, A, and total energy.
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1.2.2 The one-dimensional simple harmonic oscillator @

«We have shown that the classical simple harmonic
oscillator vibrates in a single mode with frequency w,.

* The vibrational energy stored in the mode can be changed
continuously by varying the amplitude of vibration, A.

E=T+V=mw,A*/2=kA"/2 (15)

A= 2E/k = /2E/mw,
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Example for the classical one-dimensional harmonic oscillator @

Example: M
Spring constant, x =360 N m™!

|

. % Spring constant, x Mass, m |
Particle mass, m=0.1 kg |
Oscillation amplitude, A =0.01 m V.V VY % |
|

|

Kinetic energy, T(x) = k(A2 —x2)/2 ] —

Displacement, x

Potential energy, V(x) = 1 x%/2 | Deplaementx

(b)
Total energy, E = kA%/2 T(x) = v(A%—x2)/2
—1
wy = +/K/m=60rad s 0 \/
w = DTV nergy _
( . 0.5 V(x) =k x%/2
v~95Hz and 7~ 0.1s S\
-1 =05 00 0.5 1
Position, x(x/A)
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Example for the classical one-dimensional harmonic oscillator @

(C) ] : R N S ] l'.!L'O_;
0010 } 2 A
=z E\;z, 40 F
=3 0005 LS
%% e W
£ < 0.000 |- =3
2 = ||| 0
2T -0.005 - Sy
AR 23 20
~0.010 5 Dll olz" §g .
' ‘ ' 3% B 5
Time, 1(s) = 0.0 0.1 0.2

Time, #(s)

054
.y w, = +/K/m = 60rad g~
W = 2TV
05PN/, NS, v~95Hzand 7~ 0.1s
0 0.1 0.2

0

%) Velocity, dx(t)/dt (m s7h
dx(1)/dt =—Awg sin(wgl)

Time, #(s) E = KA2/2 = 18mlJ
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1.2.3 Harmonic oscillation of a diatomic molecule E

We will show that the Hamiltonian
can be separated into

center of mass motion and

relative motion of the two atoms.

Frequency of oscillation:

w = . k/m,
Fig. 1.7 Illustration of a diatomic

where k is the spring constant and molecule consisting of two atoms with

: . mass m, and m, and position r, and r,
m, 1S the reduced mass such that: respectively. The relative position

— vector is r = r, -r, and the center of
1/m.=1/m+1/m,. =hh
mass coordinate is R.
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1.2.3 Harmonic oscillation of a diatomic molecule

45 Oy 5530 590 41 93y (49l 5 s (5 3l00
dwd 03> | 9) S 3> o0 ol SO0 P awd & LS

&y o.g] )’| PV INeW | og)l.i.“ £y )’| praveY LS'L""

0)0 Qb0 590 41 45 CawlMp 0,2 b 8 00 0,0 S Jolro
Py My g duwd ppx My ST 0352 (o0 F (S

RV QUFOWRVEVEIF PR PP | BRI PRRP T
mym,

m =
" my+m,

e 113 ol g0 (39 piSII Aidly idlS oy 1y M, ConeS

g LT (dispersion) (Susll ally pgdo b padlgs (o0 bo e Jsbuns (pf (owy 2 9 axllan b
B 21 W dw
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1.2.3 Harmonic oscillation of a diatomic molecule E

We assume that the forces, and hence the potential, governing relative
motion depend only on the magnitude of the difference vector so that

r=r,~-r,.

If we choose the origin as the center of mass then | m,r;+m,r, = 0.

—m, —m,
l‘] — l‘z — - (l‘] - l‘) (18) Hfz
n, m, r, = r| (1)
(my, +m,)
m, 1,
I | + — | = Ir (19)
m, m, and
r(m;+my) = m,r (20) m (17)
r, = r
m ! ,
r, = 2 . (m, +m,)
(m,+m,) (21)
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1.2.3 Harmonic oscillation of a diatomic molecule E

Now, combining center of mass motion and relative motion, the Hamiltonian is the sum
of kinetic and potential energy terms T and V respectively, so:

H=T+V
| (dR n, dr)z_l_ l ((Z’R L_m (z’r)2+v(| )
=—m - — 1, r
27"\ dr (my+m,) dt 2 " \dt (m +m,)dt (22)

where the total kinetic energy is

T l(m] ) (dR 2+l m, m; j ((z’r)z_'_l mim, (dr)2 (23)
2 \ dt 2 (m;+m,)* \ dt 2 (my+m,)? \ dt

(dR\® 1 mym, (dr)2

I
= ;(m] +m,)

\ dt * 2 (my+m,y) \ dt "= m
(m, +m,)
or
and
T = _lM (dR) + l:mr,. ((z'r) (24) LM
2 dt 2 dt 27 (m; 4+ m,)
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1.2.3 Harmonic oscillation of a diatomic molecule E

1 (dR\° 1 [dr\’ o)
I'=-M|— ) +-m. | —
2 dt 2 dt

In Eq. (1.24) the total mass is

(25)
M=m,+m,
and the reduced mass 1s
m,m,
m, = (26)

(my, +m,)
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1.2.3 Harmonic oscillation of a diatomic molecule E

If we assume the potential is harmonic then the m, N m

frequency of oscillation of the molecule is given .—/\/\/\/\/\—.

2

b w = ./ {
yw k/mr M|]_., {H

—
The equations of motion for the system are | Fig. 1.8 diatomic molecule
restricted to motion in one
'} . .
du, dimension.
my——— =K(u, —u,) (27)
dt-
d?u,
my—— = K(u; — i) (28)
dt-

which has solution of the form ¢~ giving

o
(K—myw ) u, —Ku, =0 (29)

— Kt -I-(K—Iﬂzwz)r,iz =X (30)
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1.2.3 Harmonic oscillation of a diatomic molecule E

(kK —myw*)u; — Kity =0 (29)
— Kty + (K — myw?)u, =0 (30)
k—me? -k |
— m — . .
| ! = (k—m0*) (K —mw’)—k*=0 (31
 —K K—m,w* |
Hence,
mm,
K= ~— ) 0® = m (32)
m, +m,
and, as before, the frequency of oscillation is just
B my+nm,\ y
w=_|K = K/m, (33)
m,m,
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1.2.4 The monatomic linear chain (1) E

Assuming small deviations uj from equilibrium, the Hamiltonian is:

] 0* Vo

m [du; )\’ .
H:Z.’E(drj) ‘|'V0(0)‘|‘ L
J

HH-I—S’L

it +--+ (35
du juy A 99

6‘;5 Uy
The first term: sum over kinetic energy of each particle, and
V,(0): potential energy (when all particles are stationary in the equilibrium position.)
The remaining terms : Taylor expansion of the potential about the equilibrium

positions. Each particle oscillates about its equilibrium position and is coupled to
other oscillators via the potential.

|
Spring constant, » |
for each spring j-1

Y
A
Y

L.
i
+

L m i

Hj—l Hl,'

— — L is the lattice constant
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1.2.4 The monatomic linear chain (2) E

In the harmonic approximation, the force constant is real and symmetric:

0°E,
k:kjk: ou, |0=kkj

Restricting the sum in Eq. (35) to nearest neighbors and setting V,(0) = O, the
Hamiltonian becomes:

H = L ( )+ L(QH — U — ) (36)

The displacement from equilibrium at site j is u; and is related to that of its nearest
neighbor by:

du

dt

U, = uetdt (37)

where q is the wave vector of a vibration of wavelength. 4 = il
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1.2.4 The monatomic linear chain (3) E

.m [du
H=Lq(_) + = L(2r£ — U — U y) (36)
7 2

assuming no dissipation in the system, so that dH/dt = 0, the equation of motion is:

d*u.

/] _ — 38
s —K(r,ij_|_|-|—£.£j_| Zﬂj) (38)

I

Second-order differential equations of this type have time dependence of the form: ¢ —lwt
which, on substitution into Eg. (38), gives:

. . qL
. 2 _ )IGL )_“?L ! — L 2 .
mw-u; = K(e'l" +e 2)“; = —4ksin ( 3 ) Uj (39)

F

4K . (gL
From Eq. (39) it follows that: {u(q) = \r — SIn By (40)

e
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1.2.4 The monatomic linear chain (4) E

w=w(q) = Oyeoustic(q) The acoustic branch dispersion relation
Ak /2 describing lattice dynamics of a monatomic linear
Wmax = (E) / chain predicts that vibrational waves propagate at
constant group velocity v,.
v, = 50)/5{] This is the velocity of sound waves in the system.
A (a) “max = (4;;/."!?)”2\ — A (b)
= 2.0 <
E 5
= £
E =
3 TH
}, 5 o
2 1_*2 Equilibrium
L E prltlDl"l, .kF-
[ Z .
1L

) 0 > n/L

Wave vector, g
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1.2.5 The diatomic linear chain (1)

[e]

There are two atoms per unit cell spaced by L/2. One atom in the unit cell has

mass m, and the other atom has mass m,.

The motion of one atom : | 14,5 = ng:lz.rg.{. (a1) g=2m/A
)]
d-u . R
The equations of motion: 1 ) = K(HH] + ;| — _Hj) (42)
)]
d“r,ij_| R
— _ 43
my— 3 = k(uj+u;_y—2u;_) (43)
: ; |
| L2 |
Spring constant, » . l_ i |
for each spring j-1 J j+l
Ha My My
o Uj
|—-» I—»-
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1.2.5 The diatomic linear chain (2)

S
d-u, .
. _ 44
or: n, ; = k(1+ ff"qL)r,tj_l — 2Ku,; e
dt
7
d“u i ( i L) .
m,———— =kK(l+e U, — 2ZKu;_y (45)
Solutions for u; and u;_; have time dependence of the form ¢~ S , giving:
—mywiu; =k(l+e "y, —2ku, (46)
. 2 _ —,r'qL i
—myw-u;_y = K(l+e ") u; — 2ku;_, (47)
or
(QK—I??]{UZ){.ij—K(] —I-E?Iql)f,ij_l =0 (48)
— k(1 +€_’qL)uJ,--I—(2K—J?12w2):.fj_] = (49)
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1.2.5 The diatomic linear chain (3)

- |
2k —mw>  —k(l1+ ') I _0 0

|
|
—k(1+e ) 2k —myw® |

so that the characteristic polynomial 1s

, Y -2
0t — 2K (m' T mz) w* + ek (1 —cos(gL)) =0 e

mn, mn,

The roots of this polynomial give the characteristic values, or eigenvalues, @,,

In the long wavelength limit g—>0 In the short wavelength limit g—>rt/L

7
m; +m, | my+m,\ , 4k°
o | 0 =2k | ——= =0| 52 |0 =2k —4—= 0’ + = 0] (53)
ny N, myn, MmN,
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1.2.5 The diatomic linear chain (4)

In the long wavelength limit g—>0 In the short wavelength limit g=>rt/L
’ ’ 7
2 2 4 Mty | my+m,\ ,  4K°
o | 0" =2k —— | )| =0] 5 |p* =2k 2 )02+ = 0| (53)
Hiy ity myn, ) My niy
1/2
5 ) _ 2 172
w=0and w = (ZK (%) w, = (2k/m)'2| |0y = 2k/m,)"
|12
= ; w=2r(my+my)/m mg)l‘{z, both atoms
! rf’j]:(l):g ! / beating ag;linst eachlother
.m'zzl‘{} A
. . ° ° OleC 172 . .
Fig. 1.12 Dispersion relation 2.0 branch wy=(2r/my)", only my vibrating

for lattice vibrations of a
one- dimensional diatomic
linear chain.

Particles are mass m, = 0.5
and m, = 1.0. ‘ | |
The spring constant is = 1.0. WL =2 0 2 i

Wave vector, g

wy=(2r/ my) 2, only m, vibrating

Frequency, w(q)
=

1
1
1
1
1
1
1
1
1
1
1
1
1 .
I Acoustic branch
1

1
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1.2.5 The diatomic linear chain (5) E

For the one-dimensional case

l y — : 1/2 e
A =10 | / w= (2r(my+my)/mym,)"'<, both atoms
|

m;=0.5 beating against each other
Iy = 1.0 I )
| Optic i
2.0 ' branch wy=(2x/my)"'<, only my vibrating
|
o |
- B . .
‘%’ 1.5 | wy = 2K/ my)'2, only m, vibrating
= I
2 1.0 ' i .
o I Typical values for the velocity of
o ' sound waves in a semiconductor
D ' .
& 0.5 | Acoustic branch at room temperature are:
: v, =8.4x10° m st in
0.0 | | (100)-oriented Si and
—nt/L -2 0 2 /L 3 )
vV, =4.7x10° m s in
Wave vector, ¢ (100)-oriented GaAs.
Fig. 1.12 Dispersion relation for lattice vibrations of a one- dimensional diatomic linear chain.
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1.2.5 The diatomic linear chain (6)

In three dimensions:

we add extra degrees of freedom,
resulting in a total of three acoustic
and three optic branches.

GaAs : llI-V compound,

used to make laser diodes and
high-speed transistors.

Gallium Arsenic has the zinc
blende crystal structure with a
lattice constant of L = 0.565nm.
Gallium and As atoms have
different atomic masses.

Bulk GaAs
o0 -~ LO
8
N 7
E |
= 5
2
v o4
z
& 3
2
|
0
000204060810 08 06 04 02 00 02 04
r [100] X UK [011] r [111] L
A by A

Wave vector, g

Fig. 1.13 Lattice vibration dispersion relation along principle crystal symmetry directions of bulk GaAs.
The longitudinal acoustic (LA), two transverse acoustic (TA), longitudinal optic
(LO), and two transverse optic (TO) branches are indicated.
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1.3 Classical electromagnetism: E

1.3.1 Electrostatics 1.3.2 Electrodynamics
1.3.1 Electrostatics: adiabatic:
DR
force: (due to Q and —-Q) F(l‘) — _Q3 r- Permittivity: (€)
dmreyr? (54) S aa,E
force: (due to charge e Permeability: (M)
in an electric field) F =¢E ooubliza a3, K
Susceptibility: ()
force: (relation to Potential) F=—-VV il y pa
- —e?
Potential energy: V= [ ¢E - dx (55) V(r) = (56)
: dreyr
Permittivity of free space g9 =298.854 187 8 x 10"">Fm™
Permeability of free space py=4mx 107" Hm™'
Speed of light in free space c=1//eolo
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1.3 Classical electromagnetism: @

1.3.1 Electrostatics:

E: electric field V-E=p/egye, 7 D=¢,cE
D: displacement vector field

T P — H=B/u.u.
B: magnetic flux density V-B=0 (58) [ ol
H: magnetic field
V: Potential E=-VV
p: charge density
Gauss'’s law: f V-EdV = 56 E-n"dS = f(p/aoar)dv (59)
(Stoke’s theorem) v S v
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1.3 Classical electromagnetism

1.3.1 Electrostatics:

.0 ) A £nE A
Capacitance: C=—1 0 C = é — P — 0™ (61)
V V.  pd/gge, d
t'=t V=V
dv I B
stored energy: | AE = f CV?(Z'I = f CV'dV' = ;(,V“ (62)
( L
I;:_le VI:U
I
: AE = —CV? (63
stored energy density: AU 2
1. energ.y stored per t.mit. fanergy storec.i pe.r unit volume et
volume in the electric field: in a magnetic field:

l o~ Y
s

M.A. M.B. Chap.1: Introduction 55



1.3 Classical electromagnetism

Gauss’s law: f V-EdV = 36 E-ndS= f(p/ér()ar)ff‘f’ (67)
v s v
¢
electric flux: E, = = (68)
dre e, r-
¥ F
) [ 1
Potential: V=- [ E.dr = —f ¢ ~dr = < — = —
: dre e, r? dmege, \ry 1 (69)
Capacitance: C = g = ATy, (70) C =dmeper (71)
v (L _ L)
i r2
charging energy:
=1 v V=V l Q’} e2 o2
( = ? .
— — ! — A f — 2 = (72) AE — —
AE= [ cviidr= [ cviavi=Scvi= 2 3¢ = Smoar
#'=—00 V/=0
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1.3 Classical electromagnetism: (132 Electrodynamics) E

Classical electrodynamics describes the spatial and temporal behavior
of electric and magnetic fields.

Plane waves can be Plane waves can be

represented spatially as: represented temporally by:

sin(kx) = 1 e'kx — e=ikxy (74) e = cos(wt) —isin(wt)| 77
21

| .
cos(kx) = E(e”’”‘ +e )| 79)

plane wave: Ae:(k-r—wr) (78)

™ = cos(kx)+isin(kx) | (78

A: amplitude of the wave,
K=27/A :wave vector of magnitude,
w=2nf: angular frequency,
f=1/t: frequency,

T: periode
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1.3 Classical electromagnetism: (132 Electrodynamics) E

Table 1.1 Maxwell equations D :displacement vector field
E: electric field, or electric flux densit
V-D=p Coulomb’s law Y
, X.: electric susceptibility
V.-B=0 No magnetic monopoles
JB P: electric polarization field

VxE= e Faraday’s law

| dD . o | | Hand B: The magnetic field vector, or
VxH=J+ m Modified Ampere’s law | | 1hq magnetic flux density

K: permeability,
D= ¢E = EDErE = 5[}(1 + XE)E — EUE + P W, relative permeability,

B = uH = pyu,.H = p, (1 + )L'm)H Xm - Mmagnetic susceptibility,
M: magnetization
= po(H + M)
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1.3 Classical electromagnetism: (132 Electrodynamics) E

divergence theorem: f Voad'r= f a-n dS 8a) | V* volurne
n~: unit-normal
V S5 vector to the surface S
’ : J: current density
S. Stokes’ theorem: ~ _
f (Vxa)-n dS = ¢ a-dl (85) p: charge density
A} C
dD
V. (VxH)=V-J+V.-— 9
dt
dD
0=V.J+V.-— (87)
dt
dp
O0=V-J+— (88)
ot

36H-czlzf(VxH)-n“dS=fJ-n"‘dS=f 89)
< S
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1.3.2.1 Light propagation in a dielectric medium E

In the dielectric, current density J = 0 because the dielectric has no mobile charge, and if
W, = 1 at optical frequencies then H = B/p,,.

82
VX(VXE)—_—(VXB)——MU (VXH)——MU(%ED 90
82
V(V-E) = V’E = —p- 5D o
V’E = o & D (92)
ot?
'}2
V’E(r. 1) = (—M(}EE(F-; t) (93)
ot?
VE(r, o) = —0’ 1808, (0)E(r, ) .
. . ) 2 Solution:
wave equation: vV E(l-_ {u) — . .&:r(w)E(I‘, w) plane waves. (95)
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1.3.2.1 Light propagation in a dielectric medium E

If &(w) is real and positive, the solutions to this wave equation for an electric field
propagating in an isotropic medium are just plane waves. The speed of wave
propagation is c¢/n (W), where n (w)=[€(w)]¥? is the refractive index of the material.
In the more general case, when relative permeability p, # 1, the refractive index is:

Je(w) pu(w
n(w) = Ve () p(0) =2 0}y Be) (96)

A/ €0

If one of either € or p is negative, refractive index is imaginary and electromagnetic waves
cannot propagate. It is common for metals to have negative values of €.

In a metal, free electrons can collectively oscillate at a long-wavelength natural frequency
called the plasma frequency, @, =(ne?/g,m)Y/2.

g(w) = 1—002p/002 . a good approximation for a metal at long wavelengths.

If w»w, : €=positive ,and electromagnetic waves can propagate through the metal.

For W«w,: €=negative ,n is imaginary, waves cannot propagate in the metal and are reflected.
why bulk metals are usually not transparent to electromagnetic radiation of frequency less than ®,?
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1.3.2.1 Light propagation in a dielectric medium E

In a homogeneous dielectric medium: .= 1 and £(w)=¢,¢, = £5(€'(w)+ £"(w))
where €' .(w) and €”(w) are the real and imaginary parts. In this situation:

E(r,w)=E,(0)e™ T = E,(w)e'* @ik (@)krr (97)
/1 /
n(w)=, =-(g(w)+.,/ e*(w)+&*(w
() =[5 (51(0) + £2(0) + £72(0)) "
A
- Slope of dispersion relation is
3 velocity of light, ¢
=
Fig. 1.17 Dispersion relation for s
an electromagnetic wave in %
free space. The slope of the &
line is the velocity of light.
-
0

Wave vector, k
e
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1.3.2.1 Light propagation in a dielectric medium E

For the case: k”(w) = 0 and y, = 1, the refractive index is just n (®) = [€"(w)]*/?, and we
have a simple oscillatory solution with no spatial decay in the electric and magnetic field vector:

E(r, w) = Eje ™" (99) H(r. w) = Hye ™" (100
VxE=_2 (103)
Maxwell’s equations V.-D=0 (10 ot
inf :
in free space V.B—0 (102 — 5(;[) o
.

The first two equations are divergence equations that require that k ‘E =0 and k :B = 0.
This means that E and B are perpendicular (transverse) to the direction of propagation k~.

in free space: |V x Ege ™™ =y — Py H()g iwt yik(w)r (105)
ik % E{)f’ —iwt rk(w) ' — W _M(}H(}f’ :wr rL(u)) r (106)
ikxE=iouH (107)
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1.3.2.1 Light propagation in a dielectric medium E

Using the fact that the dispersion relation for plane waves in free space is W= ck and the
speed of light is ¢ = 1/[g,1,]*/?, leads us directly to:

[ E0 4~
H = ;’—k x E  (108)
\r Mo qu 4 Transverse magnetic field
B(." = kw X E

Direction of propagation

k.,
Transverse electric field

where k™ = k/|K]| is

the unit vector tor k.

Fig. 1.18 lllustration of transverse magnetic field H, and electric field E, of a plane wave
propagating in free space in the x direction.
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1.3.2.1 Light propagation in a dielectric medium E

Oscillating transverse electromagnetic waves can decay in time and in space.

E(t) =y7|E,|sin(wt)e™ E(x) =y |E,|cos(kx)e™"*

A I\
b ® oL ®

S 2

£ 0.5 = 05

= =

e =

= 00| = 0.0

-

3] 3]

5 0.5 - g 0

~1.0 | | | I L —~1.0 | | | | L
0 10 20 30 40 50 0 1 2 3 4 5
Time, t (fs) Position, x ( em)

Fig. 1.19 (a) lllustration of temporal decay of an oscillating electric field.
(b) lllustration of spatial decay of an oscillating electric field.
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132 .2 Power and momentum in an electromagnetic wave E

The power in an electromagnetic wave can be obtained by considering the response of a
test charge e moving at velocity v in an external electric field E. The rate of work or power
is just ev -E, where ev is a current. The total power in a given volume is:

. Dy .

[ d’rJ-E = [ E . (V xH)—E- o ad’r (109) Because:
V ﬂllumc V ﬂl‘umc ' VxH=J+ 6'[)/ dt
From: E-(VxH)=H-(VXE)—V.-(ExH) and VxE = —JB/dr,

dD JB
31T.F = — R R, R (110)

f d*r)-E [ (v (ExH)+E-—~+H &)m
Volume Volume
Or on different form: E. 6’9]) +H- (??B =—J-E-V-(ExH) (111)

ot ot
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132 .2 Power and momentum in an electromagnetic wave E

1 1 JdD JB
From (64), (65), (111): AU=-E-D AU=-BH |E-—+H-—=—-J-E-V.(ExH)
2 2 U dt
: l
The total energy density: ] = — (E D+B- H) (112)
2
)
ﬂ:—J-E—V-S (113)
ot
S: Poynting vector: S=ExH (114)

The Poynting vector is the energy flux density in the electromagnetic field.

(115)

In free space, The total energy density: U=
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132 .2 Power and momentum in an electromagnetic wave E

In free space: |y = ﬂ (115) E(r, w) = Eje @ )T (99)
C
H= s/ k™ xE (09 H(r, w) = Hye ™™™ (100
[ey. .
=) | S: Poynting vector: S=ExH= \/M—E xKk™ xE (116)
0
ax(bxc)= b() N N (E-K")=0 /?ﬂ N
S = E-E)kT— (E-kT)E S= | —(E-E)k™| (118)
(a-c)b— (a-b)c:> \/ (( ) ( ) ) (1? v p‘.-()( )
Defining the impedance 7 _ [jg | [=376.73 Q) 19— |§= (E- E)kﬁ, 120)
of free space: 0 \/ gy || Zo=120x7Q Z,

For monochromatic plane waves propagating in the x direction, the Poynting vector:

|E(}| [Eol” )
0 22()

S = 0 (cos? (k,x — wf + Ay K| 121 (S) =

(122)
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13 .2.2 power and momentum in an electromagnetic wave E

Momentum: p Electromagnetic waves carry not only energy, but also momentum.

The classical Lorentz force on a test charge @ moving at velocity V is: F = f?(E 4+ v X B) (123)

| ExH S
F =dp/dt = p= 2= (124)
U, .
momentum can be expressed in terms of the energy densityas: | P = ?k (125)

The magnitude of the
momentum is just: |P|

1 |S| U | (12

— p= (127)
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1.3.2.3 Choosing a potential E

In general, Maxwell’s equations allow electric and magnetic fields to be
described in terms of a scalar potential V(r, t) and a vector potential A(r, t).

V- (Vxa)=0 V.-B=0] [B=VxA

B ) JA
I:>V><E=—(—=—(—V><A (128) or- VX(E-I-—):O (129)

dt ot dt
Since the curl of the gradient of any scalar field is zero, oA
we may equate the last equation with the gradient of a E+ E =—AV (130)

scalar field, V, where:

)

— E(r.7) = —VV(r, r)—;—rA(r,r) 131)
C

B(r,7) =V xA(r, 1) (132)
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1.3.2.4 Dipole radiation E

Oscillatory current in the wire: I(t)=1,e/*t

- lryz™
dipole moment for the harmonic time-dependent source: d = QZ "1y = (133)
V4 , - 4112
P = —Ulrﬂk“ (153) | p — Zy o"|d| (154)

|2 T 12w ¢?

P,: The total time-averaged

radiated power

"o
P,= 10w"|d]>/c? Y

Fig. 1.21 A small length of conducting wire connects two conducting spheres oriented in
the z direction that have center-to-center spacing of r,. Oscillatory current | flows in the
wire, charging and discharging the spheres. The magnetic and electric field at position r

is indicated.
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1.4 Example exercises
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