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The postulates of quantum mechanics

e We may write down four assumptions or postu]ates for quantum mechanics:

» Postulate 1

Associated with every physical observable is a corresponding operator A from

which results qf medasurement (yf the observable may be deduced.

We assume that each operator is linear and satisfies an eigenvalue equation of the

form Al/)n = ap¥n
v’ @, is real

v’ Eigenfunctions 1/, complete orthogonal set in state-function space.

The eigenvalues, which may take on discrete values or exist for a continuous range of

values.

We also note that, in general, the eigenfunctions themselves are complex and hence not

directly measurable.

@ Chap.S: Eigenstates and Operators M.A. M.B. J
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The postulates of qguantum mechanics

» Postulate 2

The result of measurement is related to the eigenvalue of the mathematical operator

A

A

The act of measurement on the system gives an eigenvalue @y, which is a real

number.

The eigenfunction associated with this eigenvalue is stationary.

» Postulate 3

For every system there a]ways exists a State-function W that contains all (j the izyformation

that is known about the system.

The state-function W contains all of the information on all observables in the
system. It may be used to find the relative probability of obtaining eigenvalue ay

associated with operator A for a particular system at a given time.

Chap.S: Eigenstates and Operators M.A. M.B.
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The postulates of quantum mechanics

» Postulate 4

The time evolution of ¥ is determined by ih %—lf = I:Il,b where H is the

Hamiltonian operator for the system.,
We recognize the time evolution of the state function as Schrédinger’s equation
® The postulates, which are a connection between mathematics

and the physical aspects of the model, contain the strangeness of quantum

mechanics.

@ Chap.S: Eigenstates and Operators M.A. M.B.
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0.2 One-particle wave function space (1)

° Physical experience suggests that it is reasonable to assume that the total

probability of finding the particle somewhere in space is unity, so that:
f W(r, )P d*r = 1

e The integrands for which this equation converges are square integrable
functions. This is a set called [2 by mathematicians and it has the structure of

Hilbert space.

® There are analogies between an ordinary N-dimensional vector space consisting
of N orthonormal unit vectors and the eigenfunction space in quantum
mechanics. They are, for example, both linear spaces. However, an important

difference becomes apparent when one considers scalar products.
N N
A=) aa; B=3 bb,
j j

N
A-B=Yab, scalar product of the two vectors
j

@ Chap.S: Eigenstates and Operators M.A. M.B.
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0.2 One-particle wave function space (2)

* In quantum mechanics we have Y4 (7) and Y (T) and
integral:f Ya(rYs(m)d3r
* In Euclidean space for two vector A and B:
|A.B|* < |A|*.|B|?
e In Hilbert space for two 4 (1) and Y (T):

[ vimuwsmdr 1< | wimwamdr . [ viewsmdr

@ Chap.S: Eigenstates and Operators M.A. M.B.
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5.3 Properties of linear operators

® A linear operator A

d(r) = AY(r)

® A linear operator A commutes with constants and is distributive.

A (1) + A, (1)) = A Al () + A, Ay ()

® if we assume:

* So

%, %, d
d(x) = —"ha(/\l‘bl(-\’) + A, (x)) = _Alihgl!’l (x) — Az"ha%(ﬁf)

@ Chap.S: Eigenstates and Operators M.A. M.B.
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5.3.1 Product of operators

® The product of operators A and B/ acting upon the function P (1)

(AB)ii(r) = A(Bii(r))

® We must be know ;\B # BA

To illustrate this important property. We assume :

A ~

* So: A=p,=—ihd/ox. B
. ) )
AB(x) = —ihi— (xih(x)) = —ihab(x) — iRE — ib(x)
ox ox
® But:

. )
BAW(x) = —ihx—(x)
dx

@ Chap.S: Eigenstates and Operators M.A. M.B.
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9.3.2 Properties of Hermitian operators

The results of physical measurements are real numbers. This means that a physical model
of reality is restricted to prediction of real numbers. Hermitian operators play a special
role in quantum mechanics, because these operators guarantee real eigenvalues. Hence,
a physical system described using a Hermitian operator will provide information on

measurable quantities.

The Hermitian AT of an operator A is defined by:

A dmdr = ([ ¢*®Avm)dr)
/ (/ ¢ )

Operator A is anti-Hermitian if A? — —A.

The Hermitian adjoint of a complex number a is its complex conjugate — that is

f § ®

a =d

If A is a Hermitian operator At = A and the expectation value is :

f(<1>*(r),’2\¢;(r))*d3r=/qf*(r)Ad)(r)d-*r=f(,?w;(r))*<b(r)d3r

@ Chap.S: Eigenstates and Operators M.A. M.B.
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95.3.2 Properties of Hermitian operators (2)

® or, equivalently, in matrix notation

AP =A

nm mn

* where A%, = [(PE(0)AY,, () dr

nm

Apn = [PE(r)AD, (r)d*r.

® It follows that for two operators A and E complex number a the following

relations hold:

(aA)f = a*A'

\@ Chap.5: Eigenstates and Operators (AB)T — BT A ' M.A. M.B.
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5.3.2 Properties of Hermitian operators (3)

® To show that the eigenvalues of a Hermitian operator are real and that the

associated eigenfunctions are orthogonal.

o We start by : R
A¢H — (In n

e If we multiply both sides of previous Eq by Y, and integrate over all space we

/ d)j:,/a(bnd-zr = . f d):,(,b,,(pl’

obtain:

L Slmllarly, interclﬁgnn’ihn the acrtherrinte m and n we have-

f (b:A(,bm([Bl‘ — (l,,,[ (b:(,mePI‘

® which can be ;

A 3 3
[ (A b, d'r=a, [ drb,d'r
@ Chap.5: Eigenstates and Operators M.A. M.B.
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2.3.2 Properties of Hermitian operators (4)

® If now one takes the complex conjugate, this gives:
b Ad &’r=a* | = b d*r
m n - 'm mi'n

° Subtracting previous equation and first equation gives:

. * * - 1
0=(a,— am)[ b b,d

L * * ;.
0= ]a, —an)f b b,d’1

® For the case when n = m, we have:
. 2« (e - . S
* Since |y, | is finite : a,=ada,
® For the case in whichn # m, then the integral is zero provideda,, # a;,. Hence
the nondegenerate eigenfunctions of Hermitian operators are orthogonal to each

other

for n # m.

@ Chap.S: Eigenstates and Operators M.A. M.B.
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9.3.3 Normalization of eigenfunctions

® Because eigenvalue equations involve linear operators, we may specity
eigenfunctions to within an arbitrary constant. It is convention that the constant
is chosen in such a way that the integral over all space is unity. This means that
the eigenfunctions are normalized to unity. Eigenfunctions that are orthogonal
and normalized are called orthonormal. The orthonormal properties of

Hermitian operator eigenfunctions can be expressed as

f (’bj: c-blﬂ (13 = 5”!"

where the Kronecker delta 6,,, =0 if n # m and o,, = | if n = m.

a Chap.S: Eigenstates and Operators M.A. M.B.
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9.3.4 Completeness of eigenfunctions

® The completeness property of eigenfunctions ¢, (7) we consider means they

can be used to expand an arbitrary function Y ()

Y(r) = a,d,(r)

 Multiply both sides of the equation by ¢, (T) :

[ Gu@@dr=3a, [ @, @)
® We know that :

-/‘ ('b;kn (r)(bl? (r)(13 ¥ = 8”1”"

* So

[ #nmwmdr=a,

Chap.S: Eigenstates and Operators M.A. M.B.
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5.3.5 Commutator algebra

® The commutator for the pair of operators Aand B

(A, B]=AB—BA

If we have ;\ = [A)x — —iha/é.\‘ and B = X.so:
[$., %] = —ik

° Interchange two operators A and B we obtain that:

[}, py] = ik

"o [A, B] = —[B, A]

Chap.S: Eigenstates and Operators
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5.3.5 Commutator algebra (2)

® other useful relationships:

[A,B+C+D+---]1=[A, B]+[A, C]+[A, D]+ --

® The distributive nature of linear operators requires:

o sothatifB — 6
[A, B*] = B[A, B]+[A. BB

@ Chap.S: Eigenstates and Operators
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2.3.5 Commutator algebra (3)

® The Jacobiidentity:  [A,[B.C]]+[B.[C. A]]+[C.[A.B]]=0

e follows since

If operators A and B are Hermitian then A" = A, B' = B
(A BJ' = (AB—BA) = B'A" — A'B' = —(AB— BA) = _[A. B

so that the commutator of two Hermitian operators is anti-Hermitian.

@ Chap.S: Eigenstates and Operators M.A. M.B.




5.4 Dirac notation

® Single particle quantum systems using wave functions Y (7", t) This is a real

space representation. If we take the Fourier transform to obtain Y/(k, t). we

have a momentum Space representation.

® the physical state of the system should be independent of the coordinate

representation

* In the basis independent notation introduced by Dirac, state vectors, i are

called ket vectors and depicted by the symbol )
® They are elements of a linear Hilbert space.

e Complex conjugate 1 is Y "a shown by the bra symbol <d’| :

(6. 9) = [ &* (. D(r. 1)dr is represented by (S(r. )[ih(r. 1))

® And so:

f b* (r, )b(r, dPr = (d(r, H|(r, 1)) = (W(r, )| d(r, 1))*

Chap.S: Eigenstates and Operators M.A. M.B.
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9.4 Dirac notation (2)

® In Dirac notation the time-independent Schré')dinger equation is: H | n) = FE 5 |I‘l>
* the set {l”)} is the Hilbert-space basis.

* The time-dependence of the state vector is:

i T : : : —iE t/h
® the Schrodinger equation which describes the t |II, [ > = |Il )(.’ SEqt) tum

ate |) HI) = ih 1)

For every ket there is an associated bra such that [') = A|¢) and (W' = (P|AT. If we
use this with the property of a scalar product (/'|¢) = (| )* then (¢|AT|d) = (Y'|d) =
(p|'Y* = (b|A|)* which can then be used to define the Hermitian adjoint A of an
operator A.

The Hermitian adjoint A' of an operator A is defined by

(WIAT|d) = (S| A|P)*

Alternatively, noting that |AY) = A|gb) = [¢') and (Ay| = ((,b|AT = (¢'| we may then
use the fact that (AT)" = A so that (ATp| = (d|(AT)" = ($|A and we have (ATd|¢) =
(¢p|Ar) which can also be used to define a Hermitian adjoint.

The operator A is Hermitian when it is its own Hermitian adjoint A", that is, AT= A

or (Y|A|p) = (dIAlY)* or (W|Ad) = (AY|¢)

Chap.S: Eigenstates and Operators M.A. M.B.
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5.4 Dirac notation (3)

® The orthonormal condition is expressed as:

[ 610, ()& r = (,1$,) = (nlm) =3,
* The projection of P(T) on qu (r) is expressed as:

= (Pulth)

* and the expansion of an arbltrary state-function |lji is |l,b ) Z b, |l I)

o If | ¢ )forms an orthonormal set then the operator :

Z |¢’;><d)z| = l
® isa unit operator "1 since: Z I(b:><(wb1|(bj> - Z |§bi>8ij = |¢_]>

® The Schwarz inequality for states ]lb) and |(,b> 1S |<(b|',[/>|2 < <d)|d)><‘/f|df>

® the average or expectation value of the observable A associated with operator A

iS:

cops:ifedptrs (YAY(r, dr = (d(r, DA[Y(r, 1) = (A)  wams

/
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5.5 Measurement of real numbers

* In quantum mechanics, each type of physical observable is associated with a
Hermitian operator. Hermitian operators ensure that any cigenvalue is a real
quantity. In this way, the result of a measurement is a real number that
corresponds to one of the set of continuous or discrete eigenvalues for the

system:

;\|n) =a,|n)

where A is a Hermitian operator,

n) is an eigenfunction, and «,, is its eigenvalue.

® there are two different physical observables with eigenvalues a,, and b, with
two operators A and B

@ Chap.S: Eigenstates and Operators M.A. M.B.
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9.5 Measurement of real numbers (2)

If the measurements interfere with each other, then the commutator
(A, B]=AB—BA+£0
° of position and momentum are good examples of measurements

that interfere with each other. B;\ s ;\ E}

® If measurements do not interfere with each other, then the commutator

® If there is only one eigenfunction of B associated with cigenvalue b, then

Aqu = cp

* where cis a constant, so that ¢p is an eigenfunction of A

Chap.S: Eigenstates and Operators M.A. M.B.
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5.5.1 Expectation value of an operator

o Y*(r)Y(r)d>r is the probability of finding the particle in volume element

d3r at position r. the integral over is unity.
* so the expectation of the particle somewhere is unity.

e C(Consider the Schrédinger equation
2

h
3 V() + V()U(r) = Eur)

 Multiplying by 1" () and integrating over all space gives
2

S | V) + [ U (0)V(E)W(r)d*r = E [ U (D) (r) dr

1l l l

Local Kinetic energy local Potential energy position

@ Chap.S: Eigenstates and Operators M.A. M.B.




5.5.1 Expectation value of an operator (2)

e We are Weighting the kinetic energy operator and potential operator at position
r with the probability that the particle is at position r. We then integrate over

all space to get the average value or expectation value.

h.’l
2m

(V) = WlV10) = [ 0 ) Vyd(ods

(T = W|TI9) = = [ 0" @) Vh(r)ds

(r) = (WlElw) = [ 0" @rue)d’s

® This measure of average value is most useful if the distribution is symmetric and

strongly peaked.

® Given that we have defined an average value for the result of a measurement, it
is natural to consider the time evolution of the expectation value as well as the
spread or deviation from the average value when a measurement is performed

separately on many identically prepared systems

@ Chap.S: Eigenstates and Operators M.A. M.B. /
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5.5.2 Time dependence of expectation value

® 'To find the time dependence of an expectation value, we start by writing down

the expectation value of the observable A associated

(A) = (Y| Al)

® The time dependence of this equation can be expressed in terms of the

Schrédingerequation

= s

— H B ik

) =5

® We now find the time derivative. using the chain rule
—(A)—< |A|l/f)+(t/f|—A|l!f)+(l!/|A|
—<A> = —mazfmwo - —<¢|Aﬁwf> + <4f|—2\wf>

—(A) = —(flleAltb) - —(JIIAHIJI) + Wl A|¢f)

dt

—(¢|HA AH|Y) + <¢|—A|¢>
@ Chap.5: Eigenstates and Operators M.A. M.B.
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5.5.2 Time dependence of expectation value (2)

® where we used the Hermitian property of A such that (Hs|d) = (¥|H ). Hence,

d o d A
4y = ([ Al + (5 A)

® If the operator A has no explicit time dependence, then (%2\) =0 and
d

F e
AY=—(|H, A
()= —([H.A)
® Time dependence of position operator of partic]e moving in free space

® 'To check this result, consider a particle of mass m moving in free space in such

a way that the Hamiltonian describing motion in the x direction is

h? d?

2m dx?

@ Chap.S: Eigenstates and Operators M.A. M.B.
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5.5.2 Time dependence of expectation value (3)

® To evaluate the time dependence of the expectation value of the observable x

associated with the position operator.
d I
—{({xY=—(|H, Xx
7 (x) . ([H, x])

® The commutator operating on the wave function

§ o B- i fd fd d | d
HAilW=——— [ — [ =3¢ | —-3— [ —
h[ g 2m h (dx (d.\'ul/) \d\ (clrl’b))
—ih ([ d d (. 24 d [ d
—E((l\d_i_d—\( (l\d]) dx (d\"’b))

@ Chap.S: Eigenstates and Operators
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5.5.2 Time dependence of expectation value (4)

®  The Hamiltonian does not commute with the position operator. Using the fact that the
wave function of a free particle moving in the x direction is of the form iy = %=,
we may conclude that

d hk .
Ly =

dt m

* As expected, this is just the x component of momentum divided by the mass or,

equivalently, the speed of the particle in the x direction

@ Chap.S: Eigenstates and Operators M.A. M.B.
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9.9.3 Uncertainty of expectation value

e Here we want to establish a measure of the deviation of the result of a measurement

from the mean value.

e Let A™ bean operator Corresponding to an observable A when the system is in

state r The mean (expectation) value of the observable A is:

(A) =[ U (r. ) AW(r. ) d>r

@ Chap.S: Eigenstates and Operators M.A. M.B.
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5.5.3 Uncertainty of expectation value

(A) = f W (v, ) AU(r. ) dr
(AA)? = ((A—(A))*) = (A®+ (A)* —2A(A))
= (A%) + (A)* —2(A)(A)
AA? = (A®) — (A)?

We can also express this in integral form:
AA? = f U (. ) A2U(r., )d*r — ( [ U (v, ) AU(r. 1)d*r)>

( A> ‘ The average value of many observations on the system
AA ‘ Spread in the values of the measurement

@ Chap.S: Eigenstates and Operators M.A. M.B.




5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential

® Asusual, we start out by defining the potential in which the particle

moves.

® we choose the position x = 0 to be the left-hand boundary of the

{ V(x) =0 )t x a2 AL
V(x) = o0 elsewhere.

potential :

@ Chap.S: Eigenstates and Operators M.A. M.B.
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5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential
(a) A A
® (a) Sketch of a one- .
dimensional, rectangular g g '
potential well with infinite 2
barrier energy showing the a4 E,
energy eigenvalues E1, E2, ] E,
and E3. 0 K Posilion.:
(b) N
_. a2
® (b) Sketch of the 5
eigenfunctions 1, 2, and 3 g
for the potential shown in 5 0
(a).
=
-(2/D)"? -
0 L  Position, x

@ Chap.S: Eigenstates and Operators M.A. M.B. /
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5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential

® We wish to find the expectation value of the particle position and the uncertainty in

the position when the particle is in the n-th energy state:

(- WA V) ) () = Eh ()

2m dx?
Y, (x)=0atx=0and x=L. ‘ |/;" = sin(k,,x)
k,=nm/L x=L x=L
{n: Lo B [y, (0dx= A7 [ sind(k,x)dx =
.tl=0 \=0
S I 1 Loy
— [ (———cos(.?k"x)) dx=[£ sin(2k, ] —iki)
A2 J \2 2 2 4k, |
x=0

@ Chap.S: Eigenstates and Operators M.A. M.B.




5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential

. (x) = \E sin (%)

® 'To find the expectation value of x, we must solve the integral

I 1
(X )= [ U (x)xi, (x)dx = A [ x sin’(k,x)dx = A> [ - (; ~5 COS(Zk,,x)) dx

!

(Xn) =

| B~

@ Chap.S: Eigenstates and Operators M.A. M.B.
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5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential

® In classical mechanics, the particle in the potential well moves at

constant velocity, and traverses the well in time
7= L/v. The average position is given by:
I=T

<x>classical =

=0

vtdr_la-2 l | & L
o ) )

T 2 7+ 2 2 v

which is quite satisfying, since it is the same as the
quantum result.
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5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential

To find the expectation value of the observable x* associated with the quantum mechan-

ical operator x> we must solve
2 2

(x%) = A [ x?sin® (k,x)dx = A’ [ (XT - % COS(Zk,,x)) dx

T 2 I L
<xi>=Ai( o Sk + 5 (=5 ) eosCh,)|

I = n f)k 0

x T » 1 i
) ==AC — sin(2k,,.x)] +
6 22k b

- n

+[ 12 cos(2k x)dx)

A

(x2) = A2 [x3 X sin(2k, x) + —— cos(2k, x) + ' in(2k )]L

Xy = A, — n(2k,x)+ — .X) + ——sin(2k,x
6 4k, 4k2 e I
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5.5.3.1 A particle confined by one-dimensional, infinite,

rectangular potential
® Then:
" L '
<x::> = T G
b LN~

® The uncertainty in the position of the particle in the n-th state is

given by the standard deviation Ax, = ((ﬁ) —(x,)})"

, which we calculate:
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5.5.3.1 A particle confined by one-dimensional, infinite,
rectangular potential

¢ in the limit of very high—energy eigenvalues (n— o0)

the standard deviation in particle position approaches the classical

result

A‘rclas.s'ical = L/\/ 12.
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5.5.4 The generalized uncertainty relation

e We consider the specific example of finding the expectation
value and uncertainty in particle position in a one-dimensional,

rectangular potential well with infinite barrier energy.

® In quantum mechanics, links the uncertainty in results of
measurement between a given pair of associated noncommuting

op crators.

® The spread in results of one set of measurements associated with
one operator is related to the spread in measured values of the

associated noncommuting operator.
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5.5.4 The generalized uncertainty relation

(AA") = (Y| A" AlY) = (AY|Ay) 2 0
from the definition of Hermitian conjugate. Or, in terms

of integrals

(AX") = [ " (A Ag)d*r = [(Ag) (Ad)d*r = [ (Ag)*d’r =0

We can create a linear combination
(A+iB) = (A) +i(B)

((A+iAB)(A+iAB)") = ((A+iAB)(A" —iAB")) > 0
(AY) + AX(B*) —iA(AB—BA) >0
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5.5.4 The generalized uncertainty relation

° If A and are Hermitian: (A+iB) = A—iB
* If one now considers an operator "A +i " B, where is real and

and Aare Hermitian operators
((A+iAB)(A+iAB)") = ((A+iAB)(A"—iAB")) > 0
(A*) + A2(B*) —iA(AB—BA) >0

® The minimum value of ) found by taking the derivative with
respect to such tAat
0= %((Aﬂ) + A3(B*) —iA(AB — BA))
0 =2\ (B?) —i(AB— BA) = 2A,;,(B*) —i([A,B])

_ i ([A.B])
Amin - 5 <B'_>>
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5.5.4 The generalized uncertainty relation

—L([ABD 2 2 /2 N/AD D
Amin_2 (BZ> ‘ (A)-I-A (B)—lA( B—BA)E()

([A.B])>
4

A%)(B%) > —
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5.5.4 The generalized uncertainty relation

® The product of the square of a Hermitian operator with the
square of another has a minimum value that is proportional to
the square of the commutator of the two operators. To show that
this applies to the standard deviation we create a new set of

operators.

A—> A—(A)=5A

B— B—(B)=6B
‘ A - A
((BA)*) = ((A—(A))*) = (A%) — (2A(A)) + (A)?
= (A%) —(A)" = AA°
® AAis the standard deviation.
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5.5.4 The generalized uncertainty relation

[6A,8B]= AB— A(B) — (A)B+ (A)(B)
—BA+ (B)A+ B(A) — (B)(A)
[6A,8B] = AB— BA =[A,B]
(A%)(B%) > —([A,B])*/4
AA2AB? > —([A,B])%/4
(8A%)(8B%) > —([A.B])*/4
Using (§A%) = AA?
AAAB > ;([A,f}])
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5.5.4 The generalized uncertainty relation

AAAB > ~([A.B])

[ This relationship between a conjugate pair of noncommuting
linear operators may be considered a consequence of the

mathematics that is built into our description of quantum

phenomena.

It arises from the linear algebra of noncommuting Hermitian

operators.
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5.5.4 The generalized uncertainty relation

¢ from the commutation relation

[Py x]) = [Py, X] = iR

AAAB > ~([A.B]) )
A derss — lB. S = —h
Pyax = 5([101’ XD — 7' )

@ Chap.S: Eigenstates and Operators M.A. M.B.

Ap Ax >

X

| St




-~

5.6 The no cloning theorem

® When we discussed secure quantum communication in we made use

of the fact that nonorthogonal states can never be precisely copied.

® This is called the no cloning theorem and is a basic feature that arises

due to the linear algebra of quantum mechanics.

* To prove the no cloning theorem we suppose one can make a copy of a
pure state

¥,) — It!f|>|'/f|>
W) — [Yn)|1)
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5.6 The no cloning theorem

® In each case we used the information contained in the wave function
describing the particle to create an additional independent, identical,

particle.

e The resulting two particle wave function is a product of the

independent particle wave functions. If we now try to copy a new state

. 1) = a|,) +a,|,)

... .. .. _near combination

&) = a|) |¥,) +ay|U)|¥,)
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5.6 The no cloning theorem

) = (a,|¥1) +ax|¥2))(a, ) + az|¥))

= ai|g)|¢) + a3lvn) [¥) +aray (| |82) + [¥,)¥))

» It follows that we can only copy pure orthogonal states and not

nonorthogonal linear superposition states.

» The no cloning theorem highlights the fact that quantum information is

different from classical information.

» For example, it is not possible to make precise backup copies of quantum

information contained in nonorthogonal states.
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5.6 The no cloning theorem 3l dilod pud Aib

® The same idea showed up when we considered secure quantum

communication in Section 2.1 .4.

® Because an eavesdropper cannot make a precise copy of the non-
orthogonal quantum state carrying the information, there is always
some signature of the eavesdropper’s presence impressed on the signal

that can subsequently be detected.
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