✓ **Chapter 10**: The Schrodinger Equation in Three dimension

- Central Potentuial
- Conditions and Normalization Condition
- Examples
 - -Free particle
 - Infinite potential well
 - -Finite potential well
 - -Square well (bound states)

✓ Chapter 7: Scattering

- Lippmann-schwinger equation
 - Position basis
 - Momentum basis
 - Differential cross section
- Born approximation
 - First order born approximation
 - Example1: scattering by yukawa potential
 - Example2: scattering by coulomb potential
 - Born amplitude with spherically symmetric potential
 - Validity of the first order born approximation
 - The higher order born approximation
- Optical Theorem
- Eikonal approximation
- Method of partial waves
 - Unitarity and phase shifts
 - Connection with the Eikonal approximation
 - Determination of phase shifts
 - Example: Hard sphere scattering
 - Low and high energy limits of tan (δ_l)

- Low energy scattering and bound states
 - Zero energy scattering and bound states
 - Relation between scattering length and bound state energy
 - Bound states as poles of $\delta_l(k)$
- Resonance scattering
- Inelastic electron-atom scattering
 - Example: Interaction of incident electron with nucleus
 - Definition of the form factor
 - Stopping power
 - Nuclear form factor

✓ **Capter11**: Nuclear reaction

- Type of nuclear reaction
 - Mechanism of nuclear reaction
- Conservation laws
 - Conservation of total energy and liner momentum
 - Nuclear reaction in the laboratory
 - Threshold energy
 - Double valued region
 - Q-value as function of ϑ , T_a and T_b
 - Q_{ex}
 - Nuclear reaction in the center-of-mass system
 - Conservation of total angular momentum and parity and isospin
 - Isospin
- Cross section
 - Definition of the cross section
- Scattering
 - Coulomb scattering
 - Elastic coulomb scattering (Rutherford scattering)
 - Inelastic coulomb scattering

- Nuclear scattering
- Scattering and Reaction Cross Sections
- Optical Model
 - Optical potentials
- Reaction Mechanisms
 - Compound nucleus reactions
 - Direct Reactions
- ✓ Capter13: Nuclear Fission
 - Why nuclei fission?
 - Characteristics of fission
 - Mass Distribution of Fragments
 - Number of Emitted Neutrons
 - Radioactive Decay Processes
 - Fission Cross Section
 - Energy in fission
 - Fission and nuclear structure
 - Controlled fission reactions
 - Fission reactions
 - Radioactive fission product
- ✓ **Capter14**: Nuclear fusion (Thermonuclear fusion)
 - Basic fusion processes
 - Characteristics of fusion
 - Solar fusion
 - Controlled fusion reactor

✓ Capter9: Fusion

- Introduction
- The compound nucleus
 - The compound nucleus and its decay
 - Stability in the mass
 - Stability in angular momentum
- Fusion above the barrier
 - The classical fusion cross section
 - Compound nucleus stability and the fusion cross section
 - The yrast-line limitation
 - The critical distance
 - Summary of the classical description of fusion
 - A classification of nuclear reactions
- Sub-barrier fusion
 - The transmission coefficient the WKB approximation
 - Tunnelling through a parabolic barrier
 - Semiclassical transmission in nuclear fusion
 - Quantal barrier penetration

Coupled Channels Fusion Reactions