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Abstract: Concrete beams reinforced with glass-fiber reinforced polymer (GFRP) bars exhibit large deflections in comparison with
steel-reinforced concrete beams because of the low modulus of elasticity of GFRP bars. This paper proposes new equations for estimating
the effective moment of inertia of FRP-reinforced concrete beams on the basis of the genetic algorithm and experimental results. Genetic
algorithm is used to optimize the error function between experimental and analytical responses. In the experimental part of the study, nine
beam specimens were manufactured and tested. In addition, the results of 55 beam specimens tested by other researchers were also used. The
effects of elastic modulus of FRP bars, reinforcement ratio, and the level of loading on the effective moment of inertia are taken into account.
The proposed equations are compared with different code provisions and previous models for predicting the deflection of FRP-reinforced
concrete beams. The values calculated using the proposed equations are also compared with different test results. The experimental results
correlated well with the values predicted using the proposed equations, especially in the cases of high reinforcement ratios and high levels of
loading. DOI: 10.1061/(ASCE)CC.1943-5614.0000284. © 2012 American Society of Civil Engineers.
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Introduction

Steel reinforcing bars have not performed well in applications
where members were subjected to corrosive environments. Several
techniques have been used to reduce the risk of reinforcement cor-
rosion, such as using epoxy-coated reinforcing bars, decreasing the
permeability of the concrete, increasing the concrete cover, water-
proofing the concrete, and cathodic protection. However, none of
these methods have proven effective as long-term solutions.
Fiber reinforced polymer (FRP) bars can be effectively used as
a reinforcing material in corrosive environments because of their
corrosion-resistant property. Initial investment for constructing
structures exposed to corrosion, difficulties in retrofitting damaged
members, and the price of maintenance are some of the economic
reasons for using fiber reinforced polymer (FRP) bars.

Fiber reinforced polymer bars have different types of fibers in-
cluding glass (GFRP), carbon (CFRP), and aramid (AFRP), and are
available in different grades of tensile strength and modulus of elas-
ticity. Among the different types of current FRP composites for
infrastructure applications, CFRP bars are generally the least prone
to fatigue failure. The modulus of elasticity and tensile strength of
CFRP bars are greater than those of AFRP and GFRP bars. GFRP
reinforcing bars have a lower modulus of elasticity and tensile

strength; however, these bars are more cost-effective in comparison
with CFRP bars.

The behavior of concrete beams reinforced with FRP bars is
different from that of steel-reinforced concrete beams and is highly
dependent on the type of the fiber reinforcement. FRP bars have
high tensile strengths and appropriate durability. However, these
bars display a linear elastic behavior up to the point of failure
and do not demonstrate ductility. The bond between concrete and
FRP bars is different from that with steel bars because of the differ-
ences in their surface geometries and mechanical characteristics.
The bond strength of FRP bars is lower than that of steel bars,
and can lead to an increase in the depth of cracking, a decrease
in the tension stiffening effect, and consequently an increase the
deflection of FRP-reinforced concrete beams relative to steel-
reinforced concrete beams for an equivalent cross-sectional
stiffness of reinforcement. Moreover, FRP-reinforced concrete
members have a relatively smaller stiffness factor after cracking
because the elastic modulus of FRP bars is typically lower than
that of steel bars. For example, the modulus of elasticity of GFRP
bars is only 20–25% of that in steel bars. As a result of their low
modulus of elasticity, the deflection criterion may control the de-
sign of intermediate and long beams reinforced with GFRP bars.
Therefore, the design of FRP-reinforced concrete beams is usually
governed by the serviceability limit state requirements (crack width
and deflection criteria) rather than ultimate limit state requirements
(Newhook et al. 2002). Consequently, a method is needed to predict
the expected service load deflections of FRP-reinforced members
with a reasonably high degree of accuracy.

In this study, analytical models for predicting the deflection of
FRP-reinforced concrete beams are compared with experimental
results. This comparison shows a need for reliability analysis of
FRP code equations for calculating the deflection. The main objec-
tive of this paper is to propose new equations that correlate well
with experimental results. Four hundred data points were used
to obtain these equations, and in order to minimize the differences
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between the experimental results and the calculated values, optimi-
zation by genetic algorithm was conducted.

Analytical Models for Deflection Calculation

The maximum deflection at the center of a beam in a four-point
load system can be calculated by:

δmax ¼
P:La

48EcIe
ð3L2 − 4L2

aÞ (1)

where L is the span of the beam; P is the total concentrated load
divided into two concentrated loads (P=2), each applied at a dis-
tance La from the support; Ec is the modulus of elasticity of con-
crete; and Ie is the effective moment of inertia of the beam section
after cracking. Since the modulus of elasticity of GFRP bars is lower
than that of steel bars, the stiffness of concrete beams reinforced
with GFRP bars abruptly decreases when the applied moment ex-
ceeds Mcr. Then, the effective moment of inertia drops to a value
slightly greater than Icr after cracking (Alsayed et al. 2000). Accord-
ing to the ACI 318-05 code (2005), the effective moment of inertia
suggested by Branson (1965), Ie, can be determined as follows:

Ie ¼
�
Mcr

Ma

�
3

Ig þ
�
1 −

�
Mcr

Ma

�
3
�
Icr ≤ Ig (2)

In Eq. (2), Mcr is the cracking moment; Ma is the maximum
service moment; Icr is the moment of inertia of the cracked trans-
formed section, and Ig is the moment of inertia of the gross section
neglecting the reinforcement. The contribution of concrete to the
tensile stiffness between the cracks of a reinforced concrete
member is influenced by the tension stiffening phenomenon. This
phenomenon affects the stiffness, deflection and crack width of

flexural members. The tension stiffening component in Branson’s
equation [Eq. (2)] depends on the ratio of gross-to-cracked moment
of inertia Ig=Icr, and increases substantially with Ig=Icr ratios
greater than 3. Beams reinforced with FRP bars typically have
Ig=Icr ratios greater than 5. Therefore, Eq. (2) would underestimate
the deflections of these beams (Bischoff 2007).

Different models for the effective moment of inertia of FRP-
reinforced concrete beams are shown in Table 1. Faza and Ganga
Rao (1992) derived the average moment of inertia, Im, in four-point
flexural beams. In this model, the cracking moment of inertia, Icr, is
used for the middle part of the beam, and the effective moment of
inertia, Ie [Eq. (2)], is used for the two end parts of the beam.

The effective moments of inertia are generally the same in the
models suggested by ACI 440.1R-03 (2003), Yost et al. (2003),
and ACI 440.1R-06 (2006). The parameter βd accounts for the
bond properties and modulus of elasticity of FRP bars in the ACI
440.1R-03 (2003) equation. In this parameter, Ef is the elastic
modulus of the FRP bars; Es is the elastic modulus of the reinforc-
ing steel bars, and αb is a bond-dependent coefficient. According to
the ACI 440.1R-03 (2003) code, the value of αb can be taken as 0.5
for GFRP bars. On the basis of results from 48 GFRP-reinforced
concrete beam specimens tested by Yost et al. (2003), αb must be
significantly reduced to a value less than the 0.5 recommended by
ACI 440.1R-03 (2003). These results also show that this parameter
depends on ρf=ρfb (Table 1), where ρf is the reinforcement ratio
and ρfb is the balanced reinforcement ratio. Evaluation of exper-
imental results from several studies has resulted in, a new expres-
sion for βd, based on the relative reinforcement ratio, as proposed
by ACI 440.1R-06 (2006) and shown in Table 1.

A modification to the ACI 440.1R-06 (2006) method for calcu-
lating the effective moment of inertia was proposed by Rafi and
Nadjai (2009) for all types of FRP bars. In this model, the coeffi-
cient βd is similar to the expression used by the ACI 440.1R-06
code (2006). The coefficient γ is a relationship obtained by linear
regression analysis of the test results (Table 1). Alsayed et al.
(2000) proposed two models for the effective moment of inertia
based on experimental results. In the first model (model A),
the average value of the power (m) for GFRP-reinforced concrete
beams can be taken as approximately 5.5, rather than 3 as in
Branson’s equation. Another model (model B) was suggested by
regression analysis of the experimental results of Ie=Icr versus
Ma=Mcr for beams reinforced with GFRP bars.

Fundamental concepts of tension stiffening were used by
Bischoff (2005, 2007) to propose a new expression for the effective
moment of inertia, Ie (Table 1). In this equation,Mcr is the cracking
moment and Ma is the applied load moment of the critical section.
Ie is conservatively based on the moment of the critical section
(where the member stiffness is the lowest). Bischoff and Gross
(2011a, b) proposed an equation, for the equivalent moment of in-
ertia, I 0e which includes an additional factor, γ, to account for the
change of stiffness along the length of beams. They concluded that
a reduced cracking moment equal to 80% of the cracking moment
value in the ACI 318-05 (2005) code provides a reasonable estimate
of deflection for FRP-reinforced concrete beams using their
expression.

Hall and Ghali (2000) have proposed an expression similar to
that in the ISIS Canada Design Manual 3 (2001). In these models,
IT and Icr are the moments of inertia for uncracked and fully
cracked transformed sections, respectively; β1 is a coefficient char-
acterizing the bond properties of the reinforcing bars and is equal to
1.0 for ribbed bars and 0.5 for smooth bars; and β2 is a coefficient
representing the type of loading and is equal to 0.8 for first loading
and 0.5 for sustained or cyclic loading. CSA S806-02 (2002) uses a
simple equation, derived by Razaqpur et al. (2000), for calculating

Table 1. Different Equations for the Effective Moment of Inertia of
FRP-Reinforced Concrete Beams

Reference Model

Faza and Ganga Rao (1992) Im ¼ 23IcrIe
8Icrþ15Ie

Benmokrane et al. (1996) Ie ¼
�
Mcr
Ma

�
3 Ig
7
þ 0.84

h
1 −

�
Mcr
Ma

�
3
i
Icr ≤ Ig

ACI 440.1R-03 (2003) Ie ¼
�
Mcr
Ma

�
3
βdIg þ

h
1 −

�
Mcr
Ma

�
3
i
Icr ≤ Ig

βd ¼ αb

�
Ef

Es
þ 1

�
Yost et al. (2003) αb ¼ 0.064

�
ρf
ρfb

�
þ 0.13

ACI 440.1R-06 (2006) βd ¼ 1
5

�
ρf
ρfb

�
≤ 1

Rafi and Nadjai (2009) Ie ¼
�
Mcr
Ma

�
3
βdIg þ Icr

γ

h
1 −

�
Mcr
Ma

�
3
i
≤ Ig

γ ¼
�
0.0017 ρf

ρfb
þ 0.8541

��
1þ Ef

2Es

�
Alsayed et al. (2000)—
model B

Ie ¼ Icr

for Ma
Mcr

> 3 Ie ¼
h
1.4 − 2

15

�
Ma
Mcr

�i
Icr for 1 <

Ma
Mcr

< 3

Bischoff (2005, 2007) Ie ¼ Icr
1−ð1−Icr

Ig Þ ðMcr
Ma Þ2

Bischoff and Gross
(2011a, b)

I 0e ¼ Icr
1−γð1−Icr

Ig
Þ ðMcr

Ma
Þ2

γ in four-point flexural beams:

γ ¼ 3ðLaL Þ−4f4ðMcr
Ma Þ−3gðLaL Þ3

3ðLaL Þ−4ðLaL Þ3
ISIS Canada (2001) Ie ¼ IT Icr

Icr þ½1−0.5 ðMcr
Ma Þ2� ðIT−IcrÞ

Hall and Ghali (2000) Im ¼ IT Icr
½IT þβ1β2 ðMcr

Ma Þ2 ðIcr−IT Þ�
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the deflection of simply supported four-point bending FRP-
reinforced concrete beams as follows:

δmax ¼
P:La

48EcIcr

�
3L2 − 4L2

a − 8

�
1 − Icr

Ig

��
Mcr

Ma

�
3

L2
a

�
(3)

The CSA S806-02 (2002) approach is based on an assumption
that the moment-curvature relationship of a cracked FRP-
reinforced member remains linear under increasing load, which
ignores the tension-stiffening effect. Rasheed et al. (2004) derived
an analytical solution to predict the load-deflection response of
concrete beams reinforced with FRP bars. This solution is based on
a bilinear moment-curvature relationship. The results of this study
indicate that an increase in tension reinforcement stiffness leads to
stress nonlinearity in the beam’s compression zone, causing the
value of Ie to fall below that of Icr (Rasheed et al. 2004).

Abdalla (2002) tested 15 different concrete members (beams
and slabs) reinforced with CFRP and two types of GFRP bars.
Experimental deflections were used to evaluate various models
of deflection calculation. According to Abdalla (2002), the ACI
440.1R-03 (2003) guidelines for design of FRP-reinforced concrete
members underestimate deflections when compared to the mea-
sured values. However, deflections estimated by the ISIS Canada
Design Manual 3 (2001) approach are in good agreement with the
experimental results.

Mota et al. (2006) conducted a statistical analysis on the effi-
ciency of different methods for deflection estimation, in which 197
beams and slabs were analyzed to find an accurate and conservative
equation for estimating the deflection of FRP-reinforced concrete
members. The analysis showed that the accuracy of the predicted
deflection is highly dependents on the accuracy of the calculated
cracking moment and loading levels. At the service load level, the
equation proposed by Yost et al. (2003) was sufficiently accurate
and conservative for predicting the deflection of GFRP-RC mem-
bers, while the equation in the ISIS Canada Design Manual 3
(2001) was the most accurate and conservative equation for predict-
ing the deflection of CFRP-RC members (Mota et al. 2006).

Proposed Models

In this paper, a wide range of test data including four hundred
data points is used. These data points were obtained from load-
displacement relationships of 64 FRP-reinforced concrete beam
specimens. Nine of the specimens were tested by the authors.
Details of different experimental studies are summarized in Table 2.
In the experimental data points, a wide range of different param-
eters such as concrete strength (f 0

c = 20 MPa–79.7 MPa), modulus
of elasticity of FRP bars (Ef = 26 GPa–147 GPa), relative
reinforcement ratio (ρf=ρfb = 0.51–7.75), and level of loading
(Mcr=Ma = 0.1–0.97) were evaluated. Using the values of mid-span
displacement and its corresponding load, the experimental values
of effective moment of inertia can be calculated using Eq. (4) as
follows:

ðIeÞexp ¼
PexpLa

48Ecδexp
ð3L2 − 4L2

aÞ (4)

where Pexp is the experimental load and δexp is the experimental
midspan displacement corresponding to Pexp.

Proposed Effective Moment of Inertia (Model A)

Similarly to Branson’s equation [Eq. (2)], the effective moment of
inertia can be calculated using Eq. (5) as follows:

ðIeÞexp ¼
�
Mcr

Ma

�
m
Ig þ

�
1 −

�
Mcr

Ma

�
m
�
Icr ≤ Ig

⇒
ðIeÞexp − Icr
Ig − Icr

¼
�
Mcr

Ma

�
m

(5)

Parameter m can be obtained using ðIeÞexp and Mcr=Ma values
for every experimental result at any level of loading as follows:

m ¼
Log

�ðIeÞexp−Icr
Ig−Icr

�

Log
�
Mcr
Ma

� (6)

Them values obtained using Eq. (6) versusMcr=Ma and ρf=ρfb
relationships are presented in Figs. 1 and 2, respectively. As shown
in Fig. 1, the value of m decreases with an increase in level of
loading (a decrease in Mcr=Ma value). Also, according to Fig. 2,
the power m is dependent on the relative reinforcement
ratio (ρf=ρfb).

According to Branson’s equation [Eq. (2)], the effective moment
of inertia, Ie, at different levels of loading, interpolates between the
moment of inertia of an uncracked gross concrete section, Ig, and
the moment of inertia of a transformed cracked section, Icr. In
Eq. (2), the effective moment of inertia is never less than the
cracked moment of inertia. In beams reinforced with FRP bars,
the effective moment of inertia approaches the cracked moment
of inertia after cracking occurs. As shown in Figs. 3 and 4, at high
levels of loading (low Mcr=Ma) and reinforcement ratios
(high ρf=ρfb), the effective moment of inertia becomes less than

Fig. 1. Relationships of m versus Mcr=Ma values

Table 2. Experimental Studies of FRP Reinforced Concrete Beams

Study
Number of beam

specimens
Number of
data points

Alsayed (1998) 3 14
Pecce et al. (2000) 2 9
Hall (2000) 2 16
Alsayed et al. (2000) 4 15
Abdalla (2002) 6 36
Toutanji and Deng (2003) 3 21
Yost et al. (2003) 16 77
Rafi et al. (2008) 2 16
Rafi and Nadjai (2009) 8 67
Barris et al. (2009) 2 15
Oh et al. (2009) 7 36
Current study 9 78
Total 64 400
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the cracked moment of inertia because of nonlinearity of concrete
in the compressive zone. Thus, the two parts of Branson’s equation
should be multiplied by reduction coefficients, the second part
outweighing the first part in concrete beams reinforced with
FRP bars.

According to the experimental results and optimization by
genetic algorithm, Branson’s equation [Eq. (2)] is modified so that
the predicted values of deflection approach the experimental val-
ues. This is the algorithm that was used to evaluate the effects

of several parameters and to re-evaluate the power in Branson’s
equation. The effects of elastic modulus of FRP bars, reinforcement
ratio, and level of loading on the powerm in Branson’s equation are
taken into account in this study. The influence of different param-
eters is introduced by the coefficients X1–X6 in the following
equations:

ðIeÞtheo ¼ X5

�
Mcr

Ma

�
m
Ig þ X6

�
1 −

�
Mcr

Ma

�
m
�
Icr ≤ Ig (7)

The power of m is calculated using Eq. (8):

m ¼ X1 þ X2

ρf
ρfb

þ X3

Mcr

Ma
þ X4

Ef

Es
(8)

In order to calculate the coefficients X1–X6 in Eqs. (7) and (8),
the difference between experimental deflection and the deflec-
tion value predicted by Eq. (7) is defined as an optimization
objective function. The optimization variables (X1–X6), which
determine the influence of different parameters in beam deflection,
are calculated by minimizing the objective function using the
genetic algorithm method. The objective function is defined by
Eq. (9).

e ¼ jδexp − δcalj (9)

The genetic algorithm method (GA) is an optimization and
search technique based on the principles of genetics and natural
selection. The GA creates a number of answers which are called
the population. If a predicted deflection by an answer is closer
to the experimental deflection, it will have a higher value of fitness.
After evaluating the fitness of all population individuals, the more
qualified individuals from the population are selected to create
the next generation, which usually has greater values of fitness than
the previous one. Subsequently, crossover and mutation operations
are performed on the individuals selected to generate the next
population. This algorithm continues until convergence criteria
are satisfied, and the individual having the greatest value of fitness
in the last generation is the best answer. Different solutions for
optimization show that 500 as the size of population and 5000
as the iteration number are sufficient to achieve an optimized an-
swer. The values of X1–X6 obtained by this optimization determine
the influence of different parameters in the proposed model A as
follows:

ðIeÞModel A ¼ 0.15

�
Mcr

Ma

�
m
Ig þ 0.89

�
1 −

�
Mcr

Ma

�
m
�
Icr ≤ Ig

(10)

m ¼ 0.66 − 0.3
ρf
ρfb

þ 1.94
Mcr

Ma
þ 4.64

Ef

Es
(11)

Proposed Effective Moment of Inertia (Model B)

This model is similar to the previous one (model A), and is also
formulated using an optimization by the genetic algorithm method.
However, optimization variables X1–X6 are obtained by minimiz-
ing the error between the effective moments of inertia predicted
using Eq. (7) and experimental values. The objective function is
defined by the following equation:

e ¼ jðIeÞexp − ðIeÞtheoj (12)

Model B is defined by Eqs. (13) and (14) as follows:

Fig. 2. Relationships of m versus ρf=ρfb values

Fig. 3. Relationships of Ie=Icr versus Mcr=Ma values

Fig. 4. Relationships of Ie=Icr versus ρf=ρfb values
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ðIeÞModelB ¼ 0.17

�
Mcr

Ma

�
m
Ig þ 0.94

�
1−

�
Mcr

Ma

�
m
�
Icr ≤ Ig (13)

m ¼ 1.69 − 0.51
ρf
ρfb

þ 1.77
Mcr

Ma
þ 6.67

Ef

Es
(14)

Test Specimens

Nine beam specimens with a total length of 2300 mm, width of
150 mm, depth of 200 mm, and shear span of 700 mm were manu-
factured and tested. Three different concrete mix designs with com-
pressive strengths of 20, 38, and 64 MPa were used for the beam
specimens. Two 10-mm-diameter steel bars were used as compres-
sion reinforcement. The steel stirrups had a diameter of 8 mm and
were spaced at 80 mm o=c for all specimens to provide shear
strength. The structural details and ultimate experimental loads
of specimens are shown in Table 3.

The GFRP bars used for the specimens were sand-coated, hav-
ing an ultimate tensile strength and elastic modulus of 700 MPa and
41 GPa, respectively. Test specimens had three different concrete
compressive strengths and reinforcement ratios that produced a
wide range of relative reinforcement ratios, ρf=ρfb, between 0.51
and 7.75. Using the results from these specimens, the effect of
ρf=ρfb on the proposed equations for deflection prediction can
be considered.

Experimental Work

All specimens with an effective span length of 2000 mm were sub-
jected to a four-point flexural test. Two concentrated loads were
applied to the specimens by means of a hydraulic jack and a
spreader beam (Fig. 5). A load cell was placed directly under the
hydraulic jack and on top of the spreader beam to transfer the load
increments to a data logger acquisition system. A linear variable
displacement transducer (LVDT) was placed at the center of the
specimens to transfer the mid-span displacement values to the data
logger. The load increments and the corresponding displacements
could be read directly from the data logger. At the supports, load
was transferred through a steel rod and bearing plate. This configu-
ration was selected to simulate a pin-roller support system. The
midspan deflection for each specimen was obtained at different
levels of loading. The cracks of the specimens were mapped
and test observations were recorded during loading and at the time
of failure. Fig. 6 shows the crack growth and the failure state of
specimen B7.

Comparison of Analytical and Experimental Results

The flexural capacity of FRP-reinforced concrete beams is depen-
dent on the mode of failure. If the reinforcement ratio is less than
the balanced ratio (ρf < ρfb), the section is under-reinforced and
failure by FRP rupture occurs. If the reinforcement ratio is greater
than the balanced ratio (ρf > ρfb), the section is over-reinforced
and failure by concrete crushing occurs. Studies show that a beam
experiencing an FRP rupture exhibits less ductility than one experi-
encing concrete crushing (Newhook et al. 2002; ACI 440.1R-06
2006).

All specimens, except for specimen B7, failed by concrete
crushing. Comparison of the experimental results shows that the
effect of reinforcement ratio on the deflection of FRP-reinforced
concrete beams is significant. Deflection increases with a decrease
in reinforcement ratio, especially at a higher level of loading. With
an increase in concrete compressive strength, the cracking moment
of the beam increases and fewer cracks appear under the same level
of loading. Consequently, the deflection decreases with an increase
in concrete compressive strength. However, the effect of concrete
compressive strength on deflection reduction is not considerable at
high reinforcement ratios.

For FRP-reinforced sections, ACI 440.1R-06 (2006) requires
that the nominal moment strength multiplied by the strength reduc-
tion factor (φ) is greater than or equal to the moment at service,Ms,

Table 3. Ultimate Loads and Details of Test Specimens

Specimen
number f 0

c (MPa)
Longitudinal

reinforcement (GFRP) d (mm) Af (mm2) ρf ðρf=ρfbÞ
Experimental ultimate

load (kN)

B1 20 2ϕ10 165 142 0.0057 1.64 33.5
B2 20 2ϕ16þ 1ϕ10 165 471 0.0190 5.44 57.0
B3 20 3ϕ16þ 1ϕ10 165 671 0.0271 7.75 56.4
B4 38 2ϕ10 165 142 0.0057 0.87 32.9
B5 38 2ϕ16þ 1ϕ10 165 471 0.0190 2.88 86.0
B6 38 3ϕ16þ 1ϕ10 165 671 0.0271 4.11 95.4
B7 64 2ϕ10 165 142 0.0057 0.51 38.0
B8 64 2ϕ16þ 1ϕ10 165 471 0.0190 1.70 96.4
B9 64 3ϕ16þ 1ϕ10 165 671 0.0271 2.42 112.1

Fig. 5. Details of test apparatus

Fig. 6. Crack growth and failure state of specimen B7
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Fig. 7. Comparison of analytical deflections with experimental values
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multiplied by an appropriate load factor. The strength reduction
factor (φ) is between 0.55 and 0.65 for FRP-reinforced concrete
members. Considering an average load factor of 1.4, the service
load is φ=1.4 times the ultimate load or approximately 40–46%
of the ultimate load.

Figs. 7(a–i) show the values of experimental and analytical de-
flections for specimens B1–B9 at the serviceability limit state. In
specimens B2, B3, B5, and B6, which have high reinforcement ra-
tios, the deflections obtained according to ACI 440.1R-06 (2006)
provisions have the smallest values. According to Figs. 7(a–i),
the deflections obtained according to ACI 440.1R-03 (2003)
and ACI 440.1R-06 (2006) provisions have the smallest values. The
ACI 440.1R-06 (2006) code generates more accurate results for
specimens with lower relative reinforcement ratios (ρf=ρfb < 2.5)
compared to results generated using the ACI 440.1R-03 (2003)
code. Figs. 7(a–i) show good agreement between the experimen-
tal deflections and those calculated using the proposed models (A
and B) as compared with those predicted by the ACI 440.1R-03
(2003), ACI 440.1R-06 (2006), and Yost et al. (2003) equations.
In addition, for specimens with values of ρf =ρfb greater than 2,
the proposed models (A and B) generate a more accurate result as
compared with those obtained using the ISIS Canada Design
Manual 3 (2001). It is interesting that the deflections calculated
using some previous methods are more consistant with one an-
other at high levels of loading and reinforcement ratios. This oc-
curs in the methods in which minimum effective moments of
inertia, Ie, are equal to the cracked moments of inertia, Icr. The
effective moments of inertia at high loading levels and relative
reinforcement ratios are closer to the constant value of Icr using
these methods, while experimental effective moments of inertia
are less than Icr. The advantage of the proposed models is their
ability to more accurately estimate the effective moment of
inertia at values less than that of Icr. Results show that the ISIS
Canada Design Manual (2001) and the CSA S806-02 (2002)
code provide more conservative estimates of deflection than
the ACI 440.1R-03 (2003) and ACI 440.1R-06 (2006) codes.
Figs. 7(b, c, and f) show that in specimens B2, B3, and B6—
which have high relative reinforcement ratios—the results of
proposed model A are more reliable than those of model B.
As shown in Figs. 7(d and g), the results of model B are more
accurate than those of model A in specimens having relative
reinforcement ratios (ρf=ρfb) less than one. Several codes

recommended that the value of ρf=ρfb be greater than one to
prevent FRP rupture failure.

A statistical comparison of the log transformed ratio of calcu-
lated deflection with experimental value (δcal=δexp) is performed to
evaluate the accuracy of the proposed and previous methods of
deflection calculation. The average and standard deviation for all
data, high levels of loading (Mcr=Ma ≤ 0.25), and high relative
reinforcement ratios (ρf=ρfb ≥ 3) are shown in Table 4. These re-
sults show that the deflection prediction developed using the pro-
posed equations, in terms of mean value and standard deviation,
is satisfactory. As shown in Table 4, the mean value and standard
deviation of Lnðδcal=δexpÞ at model A are −0.056 and 0.155,
respectively, at high levels of loading. In addition, these values
are −0.001 and 0.208 at high relative reinforcement ratios. There-
fore, the proposed model A, at high levels of loading and relative
reinforcement ratios, is more accurate than other models. Model B,
with an average of −0.007 and a standard deviation of 0.276, pre-
dicts the deflection of beams accurately with the least scatter for all
data. As shown in Table 4, the ACI 440.1R-06 (2006) equation—
with an average of −0.283—underestimates the deflection of
beams considerably. The mean and standard deviation values pre-
dicted by Yost et al. (2003), the CSA S806-02 (2002) code, and
ISIS Canada Design Manual 3 (2001) are −0.038 and 0.275, 0.025
and 0.276, and −0.011 and 0.281, respectively. Therefore, these
models satisfactorily predict the deflection.

Figs. 8(a–d) show a comparison of the deflection values calcu-
lated the experimental values using different equations. The deflec-
tions predicted using the equation proposed by Bischoff and Gross
(2011a, b) are underestimated, whereas the values calculated using
the equation proposed by Benmokrane et al. (1996) are overesti-
mated. Additionally, the results from the proposed models
(A and B), ISIS Canada Design Manual 3 (2001), and Yost et al.
(2003) show good agreement with the experimental deflections.

Summary and Conclusion

The objective of this paper was to compare experimental and ana-
lytical deflections of concrete beams reinforced with FRP bars. On
the basis of experimental results and Branson’s equation, new equa-
tions were proposed for the effective moment of inertia in concrete
beams reinforced with FRP bars. These equations were derived

Table 4. Statistical Comparison of Lnðδcal=δ expÞ Values

Reference

Total
High levels of loading

(Ma=Mcr ≥ 4)
High reinforcement ratios

(ρf=ρfb ≥ 3)

Mean Standard deviation Mean Standard deviation Mean Standard deviation

Branson (1965) and ACI 318—05 (2005) −0.718 0.620 −0.163 0.216 −0.528 0.406
ACI 440.1R (2003) −0.498 0.498 −0.136 0.217 −0.344 0.301
ACI 440.1R (2006) −0.283 0.342 −0.118 0.224 −0.460 0.364
Benmokrane et al. (1996) 0.111 0.970 0.076 0.220 0.142 0.274
Yost et al. (2003) −0.038 0.275 −0.098 0.222 −0.111 0.260
ISIS Canada (2001) −0.011 0.281 −0.109 0.223 −0.084 0.313
Hall and Ghali (2000) −0.112 0.280 −0.119 0.223 −0.165 0.307
Faza and Ganga Rao (1992) −0.061 0.277 −0.116 0.219 −0.109 0.291
Alsayed et al. (2000)—model A −0.306 0.540 −0.094 0.222 −0.227 0.355
Alsayed et al. (2000)—model B −0.101 0.313 −0.092 0.222 −0.180 0.325
Bischoff (2007) −0.199 0.340 −0.126 0.224 −0.229 0.329
Bischoff and Gross (2011) −0.364 0.388 −0.155 0.224 −0.392 0.365
Rafi and Nadjai (2009) −0.297 0.341 −0.113 0.214 −0.495 0.348
CSA—S806 (2002) 0.025 0.276 −0.095 0.223 −0.067 0.312
Proposed equation—model A −0.029 0.282 −0.056 0.155 −0.001 0.208
Proposed equation—model B −0.007 0.276 −0.075 0.178 −0.040 0.203
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such that the differences between experimental responses and cal-
culated values are minimized using genetic algorithm optimization.
In the experimental part of the study, nine beam specimens with
different concrete compressive strengths and reinforcement ratios
were manufactured and tested. A number of beam specimens tested
by other researchers were also considered. In the analytical part of
the study, 400 experimental values of midspan displacement ex-
tracted from load versus midspan displacement relationships of
64 concrete beam specimens reinforced with FRP bars, were exam-
ined. The variable parameters included type of reinforcing bar
(carbon, glass, aramid), elastic modulus of FRP bars, relative
reinforcement ratio (ρf=ρfb), and different levels of loading.
Therefore, a variety of effective parameters were considered in the
analysis and appropriate equations for deflection prediction were
proposed. Comparison of the experimental results with the values
calculated using the proposed equations and other analytical
models resulted in the following conclusions:
1. Results show that deflection values calculated using the ACI

440.1R-06 (2006) code are more accurate than those predicted
using the ACI 440.1R-03 (2003) code for specimens with
lower reinforcement ratios. However, the results of the ACI
440.1R-06 (2006) code are not satisfactory for specimens with
higher reinforcement ratios.

2. According to the experimental results, the reinforcement ratio
and elastic modulus of FRP bars are the most significant vari-
ables for calculating the deflection. The effects of both afore-
mentioned variables are considered in the equation proposed
by Yost et al. (2003). The deflections estimated using this
model are more accurate than those predicted using the
ACI 440.1R-03 (2003) and ACI 440.1R-06 (2006) provisions.

3. The ACI 440.1R-03 (2003) and ACI 440.1R-06 (2006) codes
underestimate deflections of concrete beams reinforced with

FRP bars. Moreover, deflections calculated using the CSA
S806-02 (2002) code are conservative.

4. The proposed equations account for the most effective para-
meters such as modulus of elasticity of FRP bars, relative re-
inforcement ratio, and levels of loading for calculating the
deflection. The influences of the aforementioned parameters
were determined through optimization using the genetic algo-
rithm method. The values predicted using the proposed equa-
tions correlate well with the experimental values.

5. The proposed equations can better predict deflection when
effective moment of inertia is less than Icr, especially at high
levels of loading and reinforcement ratios.

6. Proposed models A and B, the formula suggested by Yost et al.
(2003), the CSA S806-02 (2002) equation, and the ISIS
Canada Design Manual 3 (2001) expression produce the best
average and standard deviation of Lnðδcal=δexpÞ values com-
pared with other methods. The values obtained using proposed
model A correlate well with experimental results, especially in
cases with high levels of loading and high reinforcement
ratios.

Notation

The following symbols are used in this paper:
Af = cross sectional area of longitudinal tensile FRP bars;
d = distance from extreme compression fiber to center of

reinforcing bar;
Ec = elastic modulus of concrete;
Ef = elastic modulus of FRP bars;
Es = elastic modulus of Steel bars;
f 0
c = concrete compressive strength;

Fig. 8. Comparison of analytical deflections with experimental values in different studies: (a) Specimen IV tested by Alsayed et al. (2000), GFRP;
(b) Specimen 3NL tested by Yost et al. (2003), GFRP; (c) Specimen L0.2 tested by Abdalla (2002), CFRP; (d) Specimen L0.4 tested by Abdalla
(2002), CFRP
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Ie = effective moment of inertia;
Ig = moment of inertia of the gross section;
Icr = cracked moment of inertia;
La = shear span of beam;
Ma = applied moment;
Mcr = cracking moment;
P = total point load;

Pexp = measured point load;
δexp = measured mid-span deflection;
ρf = FRP reinforcement ratio; and
ρfb = FRP reinforcement ratio producing balanced strain

conditions.

References

Abdalla, H. A. (2002). “Evaluation of deflection in concrete members
reinforced with fiber reinforced polymer (FRP) bars.” Compos. Struct.,
56(1), 63–71.

ACI Committee 318. (2005). “Building Code Requirements for Reinforced
Concrete and Commentary.” ACI 318R-05, American Concrete Institute
(ACI), Farmington Hills, Mich.

ACI Committee 440. (2003). “Guide for the design and construction of
concrete reinforced with FRP bars.” ACI 440.1R-03, American
Concrete Institute (ACI), Farmington Hills, Mich.

ACI Committee 440. (2006). “Guide for the Design and Construction of
Concrete Reinforced with FRP Bars.” ACI 440.1R-06, American
Concrete Institute (ACI), Farmington Hills, Mich.

Alsayed, S. H. (1998). “Flexural behavior of concrete beams reinforced
with GFRP bars.” Cem. Concr. Compos., 20(1), 1–11.

Alsayed, S. H., Al-Salloum, Y. A., and Almusallam, T. H. (2000). “Perfor-
mance of fiber reinforced plastic bars as a reinforcing material for
concrete structures.” Compos. Part B, 31(6–7), 555–567.

Barris, C., Torres, L., Turon, A., Baena, M., and Catalan, A. (2009). “An
experimental study of the flexural behavior of GFRP RC beams and
comparison with prediction models.” Compos. Struct., 91(3), 286–295.

Benmokrane, B., Chaallal, O., and Masmoudi, R. (1996). “Flexural
response of concrete beams reinforced with FRP reinforcing bar.”
ACI Struct. J., 93(1), 46–55.

Bischoff, P. H. (2005). “Reevaluation of deflection prediction for concrete
beams reinforced with steel and fiber reinforced polymer bars.”
J. Struct. Eng., 131(5), 752–767.

Bischoff, P. H. (2007). “Deflection calculation of FRP reinforced concrete
beams based on modifications to the existing Branson equation.”
J. Compos. Constr., 11(1), 4–14.

Bischoff, P. H., and Gross, S. P. (2011a). “Design approach for calculating
deflection of FRP reinforced concrete.” J. Compos. Constr., 15(4),
490–499.

Bischoff, P. H., and Gross, S. P. (2011b). “Equivalent moment of inertia
based on integration of curvature.” J. Compos. Constr., 15(3), 263–273.

Branson, D. E. (1965). “Instantaneous and Time-dependent deflections of
simple and continuous reinforced concrete beams.” HPR Report No. 7,

Part 1, Alabama Highway Dept., Bureau of Public Roads, AL, (Dept. of
Civil Engineering and Auburn Research Foundation, Auburn Univ.,
Aug. 1963).

Canadian Standard Association (CSA). (2002). “Design and construction
of building components with fiber-reinforced polymers.” Concrete
Design Handbook: Canadian Standard S806-02, CSA, Toronto,
Ontario.

Faza, S. S., and Ganga Rao, H. V. S. (1992). “Pre- and post-cracking
deflection behavior of concrete beams reinforced by fiber reinforced
plastic rebars.” Proc., First International Conference on the Use of
Advanced Composite Materials in Bridges and Structures, Canadian
Society for Civil Engineering, Montreal, 151–160.

Hall, T. S. (2000). “Deflection of concrete members reinforced with fiber
reinforced polymer (FRP) bars.”M.S thesis, Dept. of Civil Engineering,
Univ. of Calgary, Calgary, Alberta.

Hall, T., and Ghali, A. (2000). “Long-term deflection prediction of concrete
members reinforced with glass fiber reinforced polymer bars.” Can. J.
Civil Eng., 27(5), 890–898.

ISIS Canada Corporation. (2001). “Reinforcing concrete structures with
fiber reinforced polymers.” ISIS Canada: Design Manual No.3, The
Canadian Network of Centers of Excellence on Intelligent Sensing
for Innovative Structures, Winnipeg, Manitoba, Canada.

Mota, C., Alminar, S., and Svecova, D. (2006). “Critical review of deflec-
tion formulas for FRP-RC members.” J. Compos. Constr., 10(3),
183–194.

Newhook, J., Ghali, A., and Tadros, G. (2002). “Cracking and deformabil-
ity of concrete flexural sections with fiber reinforced polymer.”
J. Struct. Eng., 128(9), 1195–1201.

Oh, H., Moon, D. Y., and Zi, G. (2009). “Flexural characteristics of con-
crete beams reinforced with a new type of GFRP bar.” Polym. Polym.
Compos., 17(4), 253–264.

Pecce, M., Manfredi, G., and Cosenza, E. (2000). “Experimental response
and code models of GFRP RC beams in bending.” J. Compos. Constr.,
4(4), 182–190.

Rafi, M. M., and Nadjai, A. (2009). “Evaluation of ACI 440 deflection
model for fiber-reinforced polymer reinforced concrete beams and
suggested modification.” ACI Struct. J., 106(6), 762–771.

Rafi, M. M., Nadjai, A., Ali, F., and Talamona, D. (2008). “Aspects of
behavior of CFRP reinforced concrete beams in bending.” Constr.
Build. Mater., 22, 277–285.

Rasheed, H. A., Nayal, R., and Melhem, H. (2004). “Response prediction
of concrete beams reinforced with FRP bars.” Compos. Struct., 65(2),
193–204.

Razaqpur, A. G., Svecova, D., and Cheung, M. S. (2000). “Rational method
for calculating deflection of fiber reinforced polymer reinforced beams.”
ACI Struct. J., 97(1), 175–184.

Toutanji, H., and Deng, Y. (2003). “Deflection and crack-width prediction
of concrete beams reinforced with glass FRP rods.” Constr. Build.
Mater., 17, 69–74.

Yost, J. R., Gross, S. P., and Dinehart, D. W. (2003). “Effective moment of
inertia for glass fiber-reinforced polymer-reinforced concrete beams.”
ACI Struct. J., 100(6), 732–739.

498 / JOURNAL OF COMPOSITES FOR CONSTRUCTION © ASCE / SEPTEMBER/OCTOBER 2012

J. Compos. Constr. 2012.16:490-498.

 

http://dx.doi.org/10.1016/S0263-8223(01)00188-X
http://dx.doi.org/10.1016/S0263-8223(01)00188-X
http://dx.doi.org/10.1016/S0958-9465(97)00061-9
http://dx.doi.org/10.1016/S1359-8368(99)00049-9
http://dx.doi.org/10.1016/j.compstruct.2009.05.005
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2007)11:1(4)
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000195
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000195
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000164
http://dx.doi.org/10.1139/l00-009
http://dx.doi.org/10.1139/l00-009
http://dx.doi.org/10.1061/(ASCE)1090-0268(2006)10:3(183)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2006)10:3(183)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1195)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2000)4:4(182)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2000)4:4(182)
http://dx.doi.org/10.1016/j.conbuildmat.2006.08.014
http://dx.doi.org/10.1016/j.conbuildmat.2006.08.014
http://dx.doi.org/10.1016/j.compstruct.2003.10.016
http://dx.doi.org/10.1016/j.compstruct.2003.10.016
http://dx.doi.org/10.1016/S0950-0618(02)00094-6
http://dx.doi.org/10.1016/S0950-0618(02)00094-6

