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Abstract

In this paper, an explicit analytical method called the variational iteration

method (VIM) is presented for solving the second-order singular initial value

problems of Lane-Emden type, and its local convergence is discussed. Since

it is often useful to have an approximate analytical solution to describe the

Lane-Emden type equations, especially for ones where the closed-form solutions

do not exist at all, therefore, an effective improvement of the VIM is further

proposed that is capable of obtaining an approximate analytical solution. The

improved VIM is then treated as a local algorithm in a sequence of intervals as

well as an adaptive one for finding accurate approximate solutions of the non-

linear Lane-Emden type equations. Some examples are given to demonstrate

the efficiency and accuracy of the proposed method.

Keywords: Local variational iteration method, Truncated method, Adaptive

strategy, Lane-Emden equations

1. Introduction

Recently, a lot of attention has been focused on the study of singular ini-

tial value problems (IVPs) in the second-order ordinary differential equations
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(ODEs). Many problems in mathematical physics and astrophysics can be mod-

elled by the so-called IVPs of the Lane-Emden type equation [2, 4, 15]: y′′ + 2
xy

′ + f(x, y) = g(x),

y(0) = a, y′(0) = b,
(1)

where a and b are constants, f(x, y) is a continuous real valued function, and

g(x) ∈ C[0,∞]. When f(x, y) = K(y), g(x) = 0, Eq. (1) reduces to the

classical Lane-Emden equation which, with specified K(y), was used to model

several phenomena in mathematical physics and astrophysics such as the theory5

of stellar structure, the thermal behavior of a spherical cloud of gas, isothermal

gas sphere and theory of thermionic currents [2, 4, 15].

Since, the Lane-Emden type equations have significant applications in many

fields of scientific and technical world, a variety of forms of f(x, y) and g(x)

have been investigated by many researchers (e.g., [3, 16, 17]). A discussion of10

the formulation of these models and the physical structure of the solutions can

be found in the literature. Though the numerical solution of the Lane-Emden

equation (1), as well as other various linear and nonlinear singular IVPs in

quantum mechanics and astrophysics [9], is numerically challenging because of

the singularity behavior at the origin x = 0, but analytical solutions are much15

needed for physical understanding. Recently, many analytical methods were

used to solve Lane-Emden equation [8, 10, 18]. Those methods are based on

either series solutions or perturbation techniques [1, 11, 13, 14]. However, the

convergence region of the corresponding results is very small.

The strategy that will be pursued in this work rests mainly on establishing20

a useful algorithm based on the variational iteration method (VIM) [7, 5] for

finding highly accurate solution of the Lane-Emden type equations that it

• Overcomes the main difficulty arising in the singularity of the equation at

x = 0.

• is simple to implement, accurate when applied to Lane-Emden type equa-25

tions and avoid tedious computational works.
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The examples analyzed in the present paper reveal that the newly developed

algorithms are easy, effective and accurate to solve the singular IVPs of Lane-

Emden type equation.

2. Description of the method and its convergence30

In this section, the VIM is described for solving Eq. (1). This method

provides the solution as a sequence of iterations. It gives rapidly convergent

successive approximations of the exact solution if such a solution exists, other-

wise approximations can be used for numerical purposes.

The idea of the VIM is very simple and straightforward. To explain the basic

idea of the VIM, we first consider Eq. (1) as follows:

L[y(x)] +N [y(x)] = g(x), (2)

with

L[y(x)] = y′′(x) +
2

x
y′(x) and N [y(x)] = f(x, y(x)), (3)

where L denotes the linear operator with respect to y and N is a nonlinear

operator with respect to y. The basic character of the VIM is to construct a

correction functional according to the variational method as:

yn+1(x) = yn(x) +

∫ x

0

λ(t)

(
y′′n(t) +

2

t
y′n(t) + f(t, ỹn(t))− g(t)

)
dt, (4)

where λ is a general Lagrange multiplier, which can be identified optimally

via variational theory, the subscript n denotes the nth approximation, and ỹn is

considered as a restricted variation, namely δỹn = 0. Successive approximations,

yn+1(x), will be obtained by applying the obtained Lagrange multiplier and a

properly chosen initial approximation y0(x). Consequently, the exact solution

can be obtained by using

y(x) = lim
n−→∞

yn(x). (5)

Now, to determine the optimal value of λ(t), we continue as follows:

δyn+1(x) = δyn(x) + δ

∫ x

0

λ(t)

(
y′′n(t) +

2

t
y′n(t)

)
dt, (6)
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which the stationary conditions can be obtained from the relation (6) as:
1− λ′(x) + 2

xλ(x) = 0,

λ(x) = 0,

λ′′(x)− 2xλ′(x)−λ(x)
x2 = 0,

(7)

and the Lagrange multiplier is gained as

λ(t) = −(t− t2

x
) (8)

Finally, the iteration formula can be given as:

yn+1(x) = yn(x)−
∫ x

0

(
t− t2

x

)(
y′′n(t) +

2

t
y′n(t) + f(t, yn(t))− g(t)

)
dt, (9)

It is interesting to note that for linear Lane-Emden type equations, its exact35

solution can be obtained easily by only one iteration step due to the fact that

the multiplier can be suitably identified, as will be shown in this paper later.

Now we will have the following proposition for the iteration formula (9).

Proposition 1. If y(x) ∈ C2[0, T ], then, for x ≤ T∫ x

0

(
t− t2

x

)(
y′′(t) +

2

t
y′(t)

)
dt = y(x)− y(0). (10)

Proof. The left side of the relation (10) can be written as below:∫ x

0

(
t− t2

x

)
(y′′(t)) dt+

∫ x

0

(
2− 2t

x

)
(y′(t)) dt, (11)

now integrating by parts first integral (11) yields[
t− t2

x

]t=x

t=0

−
∫ x

0

(
1− 2t

x

)
(y′(t)) dt+

∫ x

0

(
2− 2t

x

)
(y′(t)) dt

=

∫ x

0

y′(t)dt = y(x)− y(0),

(12)

this ends the proof of (10). □

Thus, in the light of (9) and (10), therefore, we will have the following simple

variational iteration formula:

yn+1(x) = y(0)−
∫ x

0

(
t− t2

x

)
(f(t, yn(t))− g(t)) dt, (13)
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The VIM (13) makes a recurrence sequence {yn(x)}. Obviously, the limit of40

this sequence will be the solution of (1) if this sequence is convergent.

In order to prove the sequence {yn(x)} is convergent, we construct a series

y0(x) + [y1(x)− y0(x)] + · · ·+ [yn(x)− yn−1(x)] + · · · . (14)

Noticing that

Sn+1 = y0(x) + [y1(x)− y0(x)] + · · ·+ [yn(x)− yn−1(x)] = yn(x), (15)

the sequence {yn(x)} will be convergent if the series is convergent.

Theorem 1. If N [y(x)] = f(x, y) is Lipschitz-continuous in [0, T ] and g(x) ∈

C[0, T ] then the series of (14) is convergent, i.e., the sequence {yn(x)} is con-

vergent for x ∈ [0, T ].45

Proof. According to (13), note that

|y1(x)− y0(x)| =
∣∣∣∣∫ x

0

(
t− t2

x

)
(f(t, y0(t))− g(t)) dt

∣∣∣∣ ≤ MNx, (16)

where

M = max
0≤t≤x≤T

∣∣∣∣t− t2

x

∣∣∣∣ and N = max
0≤t≤x≤T

|f(t, y0(t))− g(t)| (17)

From (13) and (16), and the assumption that |f(t, yn)−f(t, yn−1)| ≤ L|yn−

yn−1| where L denotes the Lipschitz constant of f(x, y), it follows that

|y2(x)− y1(x)| ≤ ML

∣∣∣∣∫ x

0

|y1(t)− y0(t)|dt
∣∣∣∣ ≤ N

L

(MLx)2

2!
, (18)

|y3(x)− y2(x)| ≤ ML

∣∣∣∣∫ x

0

|y2(t)− y1(t)|dt
∣∣∣∣ ≤ N

L

(MLx)3

3!
, (19)

...

|yn(x)− yn−1(x)| ≤
N

L

(MLx)n

n!
. (20)

In view of (20), the convergence of the series (14) can be concluded for the

solution domain x < T . Therefore the series of (14) is absolute convergence,

i.e., the sequence {yn(x)} is convergent for x ∈ [0, T ]. □

5



2.1. A truncated VIM

The successive iterations of the VIM may be very complex, so that the re-

sulting integrals in the relation (4) may not be performed analytically. Also, the

implementation of the VIM generally leads to calculation of unneeded terms,

which more time is consumed in repeated calculations for series solutions. Here,

an effective modification of the VIM is applied to eliminate these repeated cal-

culations. To completely stop these repeats in each step, provided that the

integrand of (4) in each of iterations is expanded in multivariate Taylor series

around x = 0, we propose the following improvement of the VIM (4), which is

called the truncated VIM (TV):

yn+1(x) = yn(x)−
∫ x

0

Fn(x, t)dt, (21)

where(
t− t2

x

)(
y′′n(t) +

2

t
y′n(t) + f(t, yn(t))− g(t)

)
= Fn(x, t)+O(xn+1)+O(tn+1).

(22)

It is noteworthy to point out that the TV formula (21) can cancel all the50

repeated calculations and terms that are not needed as will be shown below.

Furthermore, it can reduce the size of calculations. Most importantly, however,

it is the fact that the TV algorithm (21) solves a Lane-Emden equation exactly

if its solution is an algebraic polynomial up to some degree.

2.2. A local VIM55

In general, by using the TV formula (21), we obtain a series solution, which

in practice is a truncated series solution. This series solution gives a good

approximation to the exact solution in a small region of x. An easy and reliable

way of ensuring validity of the approximations (21) for large x is to determine

the solution in a sequence of equal subintervals of x, i.e. Ii = [xi, xi+1] where

hi = xi+1 − xi, i = 0, 1, · · · , N − 1, with x0 = 0 and xN = T . According

to the relation (21), therefore, we can construct the following piecewise TV

6



approximations (PTV) in the subintervals Ii. On [x0, x1], let

y1,m+1(x) = y1,m(x)−
∫ x

x0

F1,m(x, t)dt, m = 0, 1, · · · , n1 − 1,

y1,0(x) = y(0) + y′(0)(x− x0) = c0 + c′0(x− x0),(
t− t2

x

)(
y′′1,m(t) +

2

t
y′1,m(t) + f(t, y1,m(t))− g(t)

)
= F1,m(x, t)

+O((x− x0)
n+1) +O((t− x0)

n+1),

(23)

then we can obtain the n1-order approximation y1,n1(x) on [x0, x1]. On [x1, x2],

let

y2,m+1(x) = y2,m(x)−
∫ x

x1

F2,m(x, t)dt, m = 0, 1, · · · , n2 − 1,

y2,0(x) = y1,n1(x1) + y′1,n1
(x1)(x− x1) = c1 + c′1(x− x1),(

t− t2

x

)(
y′′2,m(t) +

2

t
y′2,m(t) + f(t, y2,m(t))− g(t)

)
= F2,m(x, t)

+O((x− x1)
n+1) +O((t− x1)

n+1),

(24)

then we can obtain the n2-order approximation y2,n2(x) on [x1, x2]. In a similar

way, on [xi, xi+1], i = 2, 3, · · · , N − 1, let

yi+1,m+1(x) = yi+1,m(x)−
∫ x

xi

Fi+1,m(x, t)dt, m = 0, 1, · · · , ni+1 − 1,

yi+1,0(x) = yi,ni(xi) + y′i,ni
(xi)(x− xi) = ci + c′i(x− xi),(

t− t2

x

)(
y′′i+1,m(t) +

2

t
y′i+1,m(t) + f(t, yi+1,m(t))− g(t)

)
= Fi+1,m(x, t)

+O((x− xi)
n+1) +O((t− xi)

n+1),

(25)

then we can obtain the ni+1-order approximation yi+1,ni+1(x) on [xi, xi+1].

Therefore, according to (23)-(25), the approximation of Eq. (1) on the entire

interval [0, T ] can be obtained. It should be emphasized that the VIM and TV al-

gorithms provide analytical solutions in [0, T ], while the PTV technique provides

analytical solutions in [xi, xi+1], which are continuous at the end points of each60

interval, i.e., yi,ni(xi) = ci = yi+1,ni+1(xi) and y′i,ni
(xi) = c′i = y′i+1,ni+1

(xi),

i = 1, 2, · · · , N − 1.

It is obvious that the best PTV method of (25) can be achieved by using

a variable order of ni+1 and a variable step size hi in the solution to obtain

7



a specified tolerance. Therefore, the following adaptive strategy based on the65

variable step size is proposed for the PTV method, which we summarize it as

the APTV (see, e.g., [6] and the references therein). This technique simplifies

computation, and saves time and work, as will be observed later in this paper.

Let yi+1,k be the solution of the fixed k-order PTV formula with the step

size hi and ŷi+1,k the solution with the step size hi/2. Taking the difference of

yi+1,k and ŷi+1,k, the local error estimator of yi+1,k

Est = ŷi+1,k − yi+1,k, (26)

is defined. This value is an estimation of the main part of the local discretization

error of the method. Additionally, let r be the dimension of the ODE system,

and Atol and Rtol the user-specified absolute and relative error tolerances. The

tolerances occurring in each step are denoted by

Tolj = Atol +Rtol.|yji+1,k|, j = 1, . . . , r. (27)

Taking

err =

√√√√1

r

r∑
j=1

(
Est

Tolj

)2

, (28)

as a measure we find an optimal step size hopt by comparing err to 1. Thus we

obtain the optimal step size as

hopt = hi.

(
1

err

)α

, (29)

where for err ≤ facerr (facerr ∈ (0, 1]), we use α = 1
k+1 , and for err > facerr,

α = 1
k . This is, of course, not the best choice for all problems. The new step

size

hnew = hi+1 = hi.min

{
facmax,max

{
facmin, fac.

(
1

err

)α}}
, (30)

is obtained by using err with k as order of the approximation, instead of order

of consistency. The integration of the growth factors facmax and facmin to70

relation (30) prevents for too large step increase and contribute to the safety of

the code. Additionally, using the safety factor fac makes sure that err will be

8



accepted in the next step with high probability. The step is accepted, in case

that err ≤ facerr otherwise it is rejected and then the procedure is redone. In

both cases the new solution is computed with hnew as step size.75

3. Implementations

To give a clear overview of the content of this study, several Lane-Emden

type equations will be studied. These equations will be tested by the above-

mentioned algorithms, which will ultimately show the usefulness and accuracy

of these methods. Moreover, the numerical results indicate that the approach80

is easy to implement. All the results here are calculated by using the sym-

bolic calculus software Maple 17. Also, all calculations are carried out in a

Toshiba Tecra A8 (Windows 8.1 Professional): Intel(R) Core(TM)2 Duo Pro-

cessor T7200 (2.00GHz, 4MB Cache, 997 MHz, 0.99 GB of RAM).

Example 1. As a first example, we consider the following linear, non-homogeneous

Lane-Emden equation, i.e., Eq. (1) with f(x, y) = y and g(x) = 6+12x+x2+x3

(see, e.g., [12]):

y′′ +
2

x
y′ + y = 6 + 12x+ x2 + x3, (31)

subject to the initial conditions

y(0) = 0 and y′(0) = 0.

The VIM has a very simple approach. Its concepts begin with dividing

the left hand (31) into two parts, i.e., the linear operator L and the nonlinear

operator N as:

L[y(x)] = y′′ +
2

x
y′ + y and N [y(x)] ≡ 0. (32)

This will allow us to construct a variational iteration relation for Eq. (31)

as follows:

yn+1(x) = yn(x)−
∫ x

0

(
t

x
sin(x− t)

)
(
y′′n(t) +

2

t
y′n(t) + yn(t)− 6− 12x− x2 − x3

)
dt.

(33)

9



By using simple integration by parts, similar to Proposition 1, we will have∫ x

0

(
t

x
sin(x− t)

)(
y′′n(t) +

2

t
y′n(t) + yn(t)

)
dt = y(x)− y(0)

sin(x)

x
. (34)

In the light of (33) and (34), therefore, we have the following VIM:

yn+1(x) = y0
sin(x)

x
+

∫ x

0

(
t

x
sin(x− t)

)(
6 + 12x+ x2 + x3

)
dt, (35)

where y0 = y(0) and y0(x) = y(0)+ y′(0)x. According to (35), therefore, we get

the following approximations with starting the initial guess y0(x) = 0:

yn(x) = x2 + x3 for all n ≥ 1, (36)

which is the exact solution of the Lane-Emden equation (31). This proves85

our above-mentioned claim that the VIM could solve the linear Lane-Emden

equation by only one iteration.

Example 2. As other example, we consider the nonlinear, non-homogeneous

Lane-Emden equation, i.e., Eq. (1) with f(x, y) = y3 and g(x) = 6 + x6 (see,

e.g., [12]):

y′′ +
2

x
y′ + y3 = 6 + x6, (37)

subject to the initial conditions

y(0) = 0 and y′(0) = 0.

Here, we aim to solve the equation (37) by means of the TV algorithm (21).

According to (21), we can easily obtain the following approximations of the TV

with starting the initial approximation y0(x) = 0:

y1(x) = 0,

yn(x) = x2 for all n ≥ 2,
(38)

which the TV algorithm yields the exact solution. This also demonstrates our

above-noted claim that the PV algorithm could solve the linear/nonlinear Lane-

Emden equation exactly if its solution is an algebraic polynomial up to some90

degree.

10



Example 3. As final example, we consider the nonlinear, homogeneous Lane-

Emden-type equation, i.e., Eq. (1) with f(x, y) = ey and g(x) = 0 (see, e.g.,

[12]):

y′′ +
2

x
y′ + ey = 0, (39)

subject to the initial conditions

y(0) = 0 and y′(0) = 0.

Here, we aim to solve the equation (39) by means of the above-proposed

methods. Since the integration of the nonlinear term ey in Eq. (39) is not

easily evaluated, thus the VIM requires a large amount of computational work

to obtain few iterations of the solution (we can replace the nonlinear term with

a series of finite components). However, we use the modified VIM method, i.e.,

the TV algorithm (21). According to (21), we can easily obtain the following

approximations of (39) with starting the initial approximation y0(x) = 0:

y2(x) = − 1
6x

2,

y4(x) = − 1
6x

2 + 1
120x

4,

y6(x) = − 1
6x

2 + 1
120x

4 − 1
1890x

6,

(40)

and so on. Fig. 1 shows a comparison of approximation obtained using the

20th-order TV algorithm with the numerical solution of Eq. (39).

As observed, the TV algorithm (21) in solving Eq. (39) gives good approx-

imations to the exact solution in a small region of x. In order to enlarge the95

convergence region of the series solution, here we implement the PTV (25) pro-

posed in Section 2.2. According to (25), taking N = 4000 and ni+1 = 4, we can

obtain the approximations of (36) on [0, 1000]. Fig. 2 shows the absolute error

(the difference between the approximate value and the numerical value) of the

PTV solution for ni+1 = 4 and hi = 0.25. From Fig. 2, it is easily found that100

the present approximation is efficient for a larger interval.

Now, in order to show the efficiency of the above adaptive mechanism con-

trolling the truncation error, we solve the above system using the before-mentioned

APSP algorithm. The numerical results can be observed in Table 1. In Table 1,

11



Figure 1: Approximate solution for Example 3 using the TV algorithm where the dotted-line:

the 20th-order TV algorithm and symbol: the numerical solution.

Figure 2: Shows the absolute error (E(x) =| y4(x) − yNumeric(x) |) of the 4th-order PTV

solution for Example 3.

12



Table 1: The numerical results obtained from solving Example 3 using the 4th-order APTV

algorithm when facerr = 1, fac = 0.9, facmin = 0.5 and facmax = 1.5.

Algorithm T Atol Rtol No. of steps CPU time (s)

APSP 1000 10−10 10−10 1030 4.156

APSP 1000 10−11 10−11 1819 7.047

APSP 1000 10−12 10−12 3223 12.156

APSP 1000 10−13 10−13 5720 21.765

we listed the costed number of steps (labeled as No. of steps) for some different105

values of T , Atol and Rtol, and the corresponding costed CPU elapsed time

(labeled as CPU time).

Moreover, in Fig. 3, one can see the plot of the variable step size using the

fourth-order APTV algorithm for Atol = Rtol = 10−13 under the assumptions

of Table 1. By observing this graph we can perfectly comprehend how the110

developed method works.

Furthermore, the local discretization error of the APTV algorithm for the

value Atol = Rtol = 10−13 under the assumptions of Table 1, which is an

estimation of the principal portion of the local error, have been given in Fig. 4.

In closing our analysis, we point out that three concreted modeling equations115

of second-order singular IVPs of the Lane-Emden type equation were investi-

gated by using the algorithms proposed in this paper, and the obtained results

have shown noteworthy performance.

4. Conclusion

Application of the methods based on the VIM presented in this paper to120

three Lane-Emden type equations indicates that for linear Lane-Emden type

equations, its exact solution, if such a solution exists, can be obtained easily

by only one iteration step due to the fact that the multiplier can be suitably

identified, that the TP algorithm can solve a nonlinear Lane-Emden differential

equation exactly if its solution is an algebraic polynomial up to some degree,125

13

mojtaba
Highlight



Figure 3: Variable step size of the 4th-order APTV algorithm when Atol = Rtol = 10−13 for

Example 3.

Figure 4: Local error of the 4th-order APTV algorithm when Rtol = Atol = 10−13 for

Example 3.
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and that for nonlinear Lane-Emden type equations can be useful in general.

It is well-known that the achievement of methods to solve the nonlinear IVPs

of ODEs depends on the use of adaptive step size mechanisms controlling the

truncation error. For this reason, an adaptive version of the VIM was proposed.

The numerical results demonstrate that the VIM is a useful analytic tool for130

solving the Lane-Emden type equations.
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