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Preface

This book is designed as a comprehensive lecture on entropy in three major
types of dynamics: measure-theoretic, topological and operator. In each case
the study is restricted to the most classical case of the action of iterates of a
single transformation (or operator) on either a standard probability space or on
a compact metric space. We do not venture into studying actions of more gen-
eral groups, dynamical systems on noncompact spaces or equipped with infi-
nite measures. On the other hand, we do not restrict the generality by adding
more structure to our spaces. The most structured systems addressed here in
detail are smooth transformations of the compact interval. The primary inten-
tion is to create a self-contained course, from the basics through more advanced
material to the newest developments. Very few theorems are quoted without a
proof, mainly in the chapters or sections marked with an asterisk. These are
treated as “nonmandatory” for the understanding of the rest of the book, and
can be skipped if the reader chooses. Our facts are stated as generally as pos-
sible within the assumed scope, and wherever possible our proofs of classical
theorems are different from those found in the most popular textbooks. Several
chapters contain very recent results for which this is a textbook debut.

We assume familiarity of the reader with basics of ergodic theory, measure
theory, topology and functional analysis. Nevertheless, the most useful facts
are recalled either in the main text or in the appendix.

Some elementary statements and minor passages are left without a proof,
as an exercise for the reader. Such statements are collected at the end of each
chapter, together with other exercises of independent interest. It is planned
that solutions to selected exercises will be made available shortly after the
book has occurred in print, at the publisher’s website www.cambridge.org/
9780521888851.


www.cambridge.org/
9780521888851
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Introduction

0.1 The leitmotiv

Nowadays, nearly every kind of information is turned into digital form. Digital
cameras turn every image into a computer file. The same happens to musi-
cal recordings or movies. Even our mathematical work is registered mainly as
computer files. Analog information is nearly extinct.

While studying dynamical systems (in any understanding of this term)
sooner or later one is forced to face the following question: How can the infor-
mation about the evolution of a given dynamical system be most precisely
turned into a digital form? Researchers specializing in dynamical systems are
responsible for providing the theoretical background for such a transition.

So suppose that we do observe a dynamical system, and that we indeed
turn our observation into digital form. That means, from time to time, we pro-
duce a digital “report,” a computer file, containing all our observations since
the last report. Assume for simplicity that such reports are produced at equal
time distances, say, at integer times. Of course, due to bounded capacity of
our recording devices and limited time between the reports, our files have
bounded size (in bits). Because the variety of digital files of bounded size
is finite, we can say that at every integer moment of time we produce just
one symbol, where the collection of all possible symbols, i.e. the alphabet,
is finite.

An illustrative example is filming a scene using a digital camera. Every unit
of time, the camera registers an image, which is in fact a bitmap of some fixed
size (camera resolution). The camera turns the live scene into a sequence of
bitmaps. We can treat every such bitmap as a single symbol in the alphabet of
the “language” of the camera.

The sequence of symbols is produced as long as the observation is being
conducted. We have no reason to restrict the global observation time, and we
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can agree that it goes on forever. Sometimes (but not always), we can imagine
that the observation has been conducted since forever in the past as well. In
this manner, the history of our recording takes on the form of a unilateral or
bilateral sequence of symbols from some finite alphabet. Advancing in time by
a unit corresponds, on one hand, to the unit-time evolution of the dynamical
system, on the other, to shifting the enumeration of our sequence of symbols.
This way we have come to the conclusion that the digital form of the observa-
tion is nothing else but an element of the space of all sequences of symbols,
and the action on this space is the familiar shift transformation advancing the
enumeration.

Now, in most situations, such a “digitalization” of the dynamical system will
be lossy, i.e., it will capture only some aspects of the observed dynamical sys-
tem, and much of the information will be lost. For example, the digital camera
will not be able to register objects hidden behind other objects, moreover, it
will not see objects smaller than one pixel or their movements until they pass
from one pixel to another. However, it may happen that, after a while, each
object will eventually become detectable, and we will be able to reconstruct its
trajectory from the recorded information.

Of course, lossy digitalization is always possible and hence presents a
lesser kind of challenge. We will be much more interested in lossless
digitalization. When and how is it possible to digitalize a dynamical system
so that no information is lost, i.e., in such a way that after viewing the entire
sequence of symbols we can completely reconstruct the evolution of the
system?

In this book the task of encoding a system with possibly smallest alpha-
bet is refereed to as “data compression.” The reader will find answers to the
above question at two major levels: measure-theoretic, and topological. In the
first case the digitalization is governed by the Kolmogorov—Sinai entropy of
the dynamical system, the first major subject of this book. In the topologi-
cal setup the situation is more complicated. Topological entropy, our second
most important notion, turns out to be insufficient to decide about digitaliza-
tion that respects the topological structure. Thus another parameter, called
symbolic extension entropy, emerges as the third main object discussed in
the book.

We also study entropy (both measure-theoretic and topological) for
operators on function spaces, which generalize classical dynamical systems.
The reference to data compression is not as clear here and we concentrate
more on technical properties that carry over from dynamical systems,
leaving the precise connection with information theory open for further
investigation.
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0.2 A few words about the history of entropy

Below we review very briefly the development of the notion of entropy focus-
ing on the achievements crucial for the genesis of the basic concepts of entropy
discussed in this book. For a more complete survey we refer to the expository
article [Katok, 2007].

The term “entropy” was coined by a German physicist Rudolf Clausius from
Greek “en-" =in + “trope” = a turning [Clausius, 1850]. The word reveals anal-
ogy to “energy” and was designed to mean the form of energy that any energy
eventually and inevitably “turns into” — a useless heat. The idea was inspired by
an earlier formulation by French physicist and mathematician Nicolas Léonard
Sadi Carnot [Carnot, 1824] of what is now known as the Second Law of Ther-
modynamics: entropy represents the energy no longer capable to perform work,
and in any isolated system it can only grow.

Austrian physicist Ludwig Boltzmann put entropy into the probabilistic
setup of statistical mechanics [Boltzmann, 1877]. Entropy has also been gen-
eralized around 1932 to quantum mechanics by John von Neumann [see von
Neumann, 1968].

Later this led to the invention of entropy as a term in probability and infor-
mation theory by an American electronic engineer and mathematician Claude
Elwood Shannon, now recognized as the father of information theory. Many
of the notions have not changed much since they first occurred in Shannon’s
seminal paper A Mathematical Theory of Communication [Shannon, 1948].
Dynamical entropy in dynamical systems was created by one of the most
influential mathematicians of modern times, Andrei Nikolaevich Kolmogorov,
[Kolmogorov, 1958, 1959] and improved by his student Yakov Grigorevich
Sinai who practically brought it to the contemporary form [Sinai, 1959].

The most important theorem about the dynamical entropy, so-called
Shannon-McMillan-Breiman Theorem gives this notion a very deep mean-
ing. The theorem was conceived by Shannon [Shannon, 1948], and proved
in increasing strength by Brockway McMillan [McMillan, 1953] (L!-
convergence), Leo Breiman [Breiman, 1957] (almost everywhere convergence),
and Kai Lai Chung [Chung, 1961] (for countable partitions). In 1970 Wolfgang
Krieger obtained one of the most important results, from the point of view of
data compression, about the existence (and cardinality) of finite generators for
automorphisms with finite entropy [Krieger, 1970].

In 1970 Donald Ornstein proved that Kolmogorov—Sinai entropy was a a
complete invariant in the class of Bernoulli systems, a fact considered one
of the most important features of entropy (alternatively of Bernoulli systems)
[Ornstein, 1970a].



4 Introduction

In 1965, Roy L. Adler, Alan G. Konheim and M. Harry McAndrew car-
ried the concept of dynamical entropy over to topological dynamics [Adler
et al., 1965] and in 1970 Efim I. Dinaburg and (independently) in 1971 Rufus
Bowen redefined it in the language of metric spaces [Dinaburg, 1970; Bowen,
1971]. With regard to entropy in topological systems, probably the most impor-
tant theorem is the Variational Principle proved by L. Wayne Goodwyn (the
“easy” direction) and Timothy Goodman (the “hard” direction), which con-
nects the notions of topological and Kolmogorov—Sinai entropy [Goodwyn,
1971; Goodman, 1971] (earlier Dinaburg proved both directions for finite-
dimensional spaces [Dinaburg, 1970]).

The theory of symbolic extensions of topological systems was initiated by
Mike Boyle around 1990 [Boyle, 1991]. The outcome of this early work is
published in [Boyle er al., 2002]. The author of this book contributed to estab-
lishing that invariant measures and their entropies play a crucial role in com-
puting the so-called symbolic extension entropy [Downarowicz, 2001; Boyle
and Downarowicz, 2004; Downarowicz, 2005a].

Dynamical entropy generalizing the Kolmogorov—Sinai dynamical entropy
to noncommutative dynamics occurred as an adaptation of von Neumann’s
quantum entropy in a work of Robert Alicki, Johan Andries, Mark Fannes and
Pim Tuyls [Alicki ez al., 1996] and then was applied to doubly stochastic oper-
ators by Igor I. Makarov [Makarov, 2000]. The axiomatic approach to entropy
of doubly stochastic operators, as well as topological entropy of Markov oper-
ators have been developed in [Downarowicz and Frej, 2005].

The term “entropy” is used in many other branches of science, sometimes
distant from physics or mathematics (such as sociology), where it no longer
maintains its rigorous quantitative character. Usually, it roughly means “disor-
der,” “chaos,” “decay of diversity” or “tendency toward uniform distribution of
kinds.”

99 ¢

0.3 Multiple meanings of entropy

In the following paragraphs we review some of the various meanings of the
word “entropy” and try to explain how they are connected. We devote a few
pages to explain how dynamical entropy corresponds to data compression rate;
this interpretation plays a central role in the approach to entropy in dynamical
systems presented in the book. The notation used in this section is temporary.

0.3.1 Entropy in physics

In classical physics, a physical system is a collection of objects (bodies) whose
state is parametrized by several characteristics such as the distribution of
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density, pressure, temperature, velocity, chemical potential, etc. The change
of entropy of a physical system, as it passes from one state to another, is

AS:/%,

where d() denotes an element of heat being absorbed (or emitted; then it has
the negative sign) by a body, 7T is the absolute temperature of that body at that
moment, and the integration is over all elements of heat active in the passage.
The above formula allows us to compare entropies of different states of a sys-
tem, or to compute entropy of each state up to an additive constant (this is
satisfactory in most cases). Notice that when an element d(@) of heat is trans-
mitted from a warmer body of temperature 7 to a cooler one of temperature
T, then the entropy of the first body changes by —d@Q/T}, while that of the
other rises by dQ/T5». Since Ty < T, the absolute value of the latter fraction
is larger and jointly the entropy of the two-body system increases (while the
global energy remains the same).

A system is isolated if it does not exchange energy or matter (or even infor-
mation) with its surroundings. By virtue of the First Law of Thermodynamics,
the conservation of energy principle, an isolated system can pass only between
states of the same global energy. The Second Law of Thermodynamics intro-
duces irreversibility of the evolution: an isolated system cannot pass from a
state of higher entropy to a state of lower entropy. Equivalently, it says that
it is impossible to perform a process whose only final effect is the transmis-
sion of heat from a cooler medium to a warmer one. Any such transmission
must involve an outside work, the elements participating in the work will also
change their states and the overall entropy will rise.

The first and second laws of thermodynamics together imply that an isolated
system will tend to the state of maximal entropy among all states of the same
energy. The energy distributed in this state is incapable of any further activity.
The state of maximal entropy is often called the “thermodynamical death” of
the system.

Ludwig Boltzmann gave another, probabilistic meaning to entropy. For each
state A the (negative) difference between the entropy of A and the entropy of
the “maximal state” B is nearly proportional to the logarithm of the probability
that the system spontaneously assumes state A,

S(A) = Smaz ~ klogy(Prob(A)).

The proportionality factor k is known as the Boltzmann constant. In this
approach the probability of the maximal state is almost equal to 1, while the
probabilities of states of lower entropy are exponentially small. This provides
another interpretation of the Second Law of Thermodynamics: the system
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spontaneously assumes the state of maximal entropy simply because all other
states are extremely unlikely.

Example Consider a physical system consisting of an ideal gas enclosed in a
cylindrical container of volume 1. The state B of maximal entropy is clearly the

v<
v<

p ! 0

o

t
1
5

State B State A

one where both pressure and temperature are constant (FPp and Tp, respectively)
throughout the container. Any other state can be achieved only with help from out-
side. Suppose one places a piston at a position p < % in the cylinder (the left figure;
thermodynamically, this is still the state B) and then slowly moves the piston to the
center of the cylinder (position %), allowing the heat to flow between the cylinder
and its environment, where the temperature is 7y, which stabilizes the temperature
at Ty all the time. Let A be the final state (the right figure). Note that both states A
and B have the same energy level inside the system.

To compute the jump of entropy one needs to examine what exactly happens
during the passage. The force acting on the piston at position x is proportional to
the difference between the pressures:

F:c(Pol_p—POB).
1—=x x

Thus, the work done while moving the piston equals:

.

3
W = /Fda::cPo((l —p)In(1 —p) +plnp +1n2).
P

The function
p+— (1—p)In(l —p)+plnp

is negative and assumes its minimal value —In2 at p = %

Thus the above work W is positive and represents the amount of energy deliv-
ered to the system from outside. During the process the compressed gas on the
right emits heat, while the depressed gas on the left absorbs heat. By conserva-
tion of energy (applied to the enhanced system including the outside world), the
gas altogether will emit heat to the environment equivalent to the delivered work
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AQ = —W. Since the temperature is constant all the time, the change in entropy
between states B and A of the gas is simply 1/7p times AQ, i.e.,
1
AS = o cPo(—(1=p)In(l —p) —plnp —In2).
0

Clearly AS is negative. This confirms, what was already expected, that the out-
side intervention has lowered the entropy of the gas.

This example illustrates very clearly Boltzmann’s interpretation of entropy.
Assume that there are N particles of the gas independently wandering inside the
container. For each particle the probability of falling in the left or right half of the
container is 1/2. The state A of the gas occurs spontaneously if pN and (1 — p) N
particles fall in the left and right halves of the container, respectively. By elementary
combinatorics formulae, the probability of such an event equals

N! 2,]\/’
(pN)!((1 = p)N)!

By Stirling’s formula (Inn! =~ nlnn — n for large n), the logarithm of Prob(A)
equals approximately

N(f(l —p)In(l —p) —plnp — ln2),

which is indeed proportional to the drop AS of entropy between the states B and
A (see above).

Prob(A) =

0.3.2 Shannon entropy

In probability theory, a probability vector p is a sequence of finitely many non-
negative numbers {p1, ps, . . ., Pn } Whose sum equals 1. The Shannon entropy
of a probability vector p is defined as

H(p) = - pilog,pi
=1

(where Olog, 0 = 0). Probability vectors occur naturally in connection with
finite partitions of a probability space. Consider an abstract space 2 equipped
with a probability measure y assigning probabilities to measurable subsets of
Q. A finite partition P of ) is a collection of pairwise disjoint measurable
sets {Ay, Aa, ..., A, } whose union is 2. Then the probabilities p; = u(A;)
form a probability vector pp. One associates the entropy of this vector with
the (ordered) partition P:

H,(P) = H(pyp).

In this setup entropy can be linked with information. Given a measurable set
A, the information I(A) associated with A is defined as —log,(u(A)). The
information function Ip associated with a partition P = {Ay, Ay,..., A, } is
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defined on the space {2 and it assumes the constant value I(A;) at all points w
belonging to the set A;. Formally,

n

Iy(w) =) —logy(n(A:))La, (),

i=1

where 14, is the characteristic function of A,. One easily verifies that the
expected value of this function with respect to p coincides with the entropy
H,(P).

We shall now give an interpretation of the information function and entropy,
the key notions in entropy theory. The partition P of the space (2 associates with
each element w € 2 the “information” that gives an answer to the question
“in which A; are you?”. That is the best knowledge we can acquire about the
points, based solely on the partition. One bit of information is equivalent to
acquiring an answer to a binary question, i.e., a question of a choice between
two possibilities. Unless the partition has two elements, the question “in which
A; are you?” is not binary. But it can be replaced by a series of binary questions
and one is free to use any arrangement (tree) of such questions. In such an
arrangement, the number of questions N (w) (i.e., the amount of information in
bits) needed to determine the location of the point w within the partition may
vary from point to point (see the example below). The smaller the expected
value of N (w) the better the arrangement. It turns out that the best arrangement
satisfies Ip(w) < N(w) < Ip(w) + 1 for p-almost every w. The difference
between Ip(w) and N (w) follows from the crudeness of the measurement of
information by counting binary questions; the outcome is always a positive
integer. The real number /5 (w) can be interpreted as the precise value. Entropy
is the expected amount of information needed to locate a point in the partition.

Example Consider the unit square representing the space €2, where the prob-
ability is the Lebesgue measure (i.e., the surface area), and the partition P of 2

into four sets A; of probabilities é, %, é, %, respectively, as shown in the figure.
A
A, A,
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) =2on

The information function equals —log, () = 3 on A; and A3, —log, (3

Az and —log, (%) = 1 on A4. The entropy of P equals

1 1 1 1 7
HP) =g 3+ -2+53+5-1=1.

The arrangement of questions that optimizes the expected value of the number of
questions asked is the following:

1. Are you in the left half?
The answer “no”, locates w in A4 using one bit. Otherwise the next question is:

2. Are you in the central square of the left half?
The “yes” answer locates w in A3 using two bits. If not, the last question is:

3. Are you in the top half of the whole square?
Now “yes” or “no” locate w in Ay or As, respectively. This takes three bits.

yes — Az (2 bits)
yes — Question 2 yes — Ap (3 bits)

stion 1
Question no — As (3 bits)

no — Question 3 {
no — Ay (1 bit)

In this example the number of questions equals exactly the information function at
every point and the expected number of question equals the entropy g. There does
not exist a better arrangement of questions. Of course, such an accuracy is possible
only when the probabilities of the sets A; are integer powers of 2; in general the
information is not integer valued.

Another interpretation of Shannon entropy deals with the notion of uncer-
tainty. Let X be a random variable defined on the probability space {2 and
assuming values in a finite set {x1, Z2,...,z,}. The variable X generates a
partition P of  into the sets A; = {w € Q : X(w) = z;} (called the preimage
partition). The probabilities p; = u(A;) = Prob{X = x;} form a probability
vector called the distribution of X. Suppose an experimenter knows the distri-
bution of X and tries to guess the outcome of X before performing the exper-
iment, i.e., before picking some w € ) and reading the value X (w). His/her
uncertainty about the outcome is the expected value of the information he/she
is missing to be certain. As explained above that is exactly the entropy H,,(P).

0.3.3 Connection between Shannon and Boltzmann entropy

Both notions in the title of this subsection refer to probability and there is
an evident similarity in the formulae. But the analogy fails to be obvious. In
the literature many different attempts toward understanding the relation can be
found. In simple words, the interpretation relies on the distinction between the
macroscopic state considered in classical thermodynamics and the microscopic
states of statistical mechanics. A thermodynamical state A (a distribution of
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pressure, temperature, etc.) can be realized in many different ways w at the
microscopic level, where one distinguishes all individual particles, their posi-
tions and velocity vectors. As explained above, the difference of Boltzmann
entropies S(A) — Syuqz is proportional to log, (Prob(A)), the logarithm of the
probability of the macroscopic state A in the probability space €2 of all micro-
scopic states w. This leads to the equation

Smaz — S(A) = k- I(A), 0.3.1)

where I(A) is the probabilistic information associated with the set A C €.
So, Boltzmann entropy seems to be closer to Shannon information rather than
Shannon entropy. This interpretation causes additional confusion, because
S(A) appears in this equation with negative sign, which reverses the direction
of monotonicity; the more information is “associated” with a macrostate A the
smaller its Boltzmann entropy. This is usually explained by interpreting what
it means to “associate” information with a state. Namely, the information about
the state of the system is an information available to an outside observer. Thus
it is reasonable to assume that this information acually “escapes” from the sys-
tem, and hence it should receive the negative sign. Indeed, it is the knowledge
about the system possessed by an outside observer that increases the usefulness
of the energy contained in that system to do physical work, i.e., it decreases the
system’s entropy.

The interpretation goes further: each microstate in a system appearing to
the observer as being in macrostate A still “hides” the information about its
“identity.” Let Ij,(A) denote the joint information still hiding in the system
if its state is identified as A. This entropy is clearly maximal at the maximal
state, and then it equals Sy,q./k. In a state A it is diminished by I(A), the
information already “stolen” by the observer. So, one has

Ih(A) = S’“;; — I(A).

This, together with (0.3.1), yields
S(A) = k- In(A),

which provides a new interpretation to the Boltzmann entropy: it is propor-
tional to the information still “hiding” in the system provided the macrostate
A has been detected.

So far the entropy was determined up to an additive constant. We can com-
pute the change of entropy when the system passes from one state to another.
It is very hard to determine the proper additive constant of the Boltzmann
entropy, because the entropy of the maximal state depends on the level of pre-
cision of identifying the microstates. Without a quantum approach, the space
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) is infinite and so is the maximal entropy. However, if the space of states is
assumed finite, the absolute entropy obtains a new interpretation, already in
terms of the Shannon entropy (not just of the information function). Namely,
in such case, the highest possible Shannon entropy H,(P) is achieved when
P = £ is the partition of the space €2 into single states w and g is the uni-
form measure on €2, i.e., such that each state has probability (#) 1. Itis thus
natural to set

Smaz =k H,(§) = klog, #Q.

The detection that the system is in state A is equivalent to acquiring the infor-
mation I(A) = —log,(u(A)) = —log, (i—é) By Equation (0.3.1) we get

S(A) = k(—logy #92 +logy (%5)) = klogy #A.

The latter equals (k times) the Shannon entropy of 4, the normalized
uniform measure restricted to A. In this manner we have compared the
Boltzmann entropy directly with the Shannon entropy and we have gotten rid
of the unknown additive constant.

The whole interpretation above is a subject of much discussion, as it makes
entropy of a system depend on the seemingly nonphysical notion of “knowl-
edge” of a mysterious observer. The classical Maxwell’s paradox [Maxwell,
18717 is based on the assumption that it is possible to acquire information about
the parameters of individual particles without any expense of heat or work. To
avoid such paradoxes, one must agree that every bit of acquired information
has its physical entropy equivalent (equal to the Boltzmann constant k), by
which the entropy of the memory of the observer increases. In consequence,
erasing one bit of information from a memory (say, of a computer) at tempera-
ture 7", results in the emission of heat in amount k7" to the environment. Such
calculations set limits on the theoretical maximal speed of computers, because
the heat can be driven away with a limited speed only.

0.3.4 Dynamical entropy

This is the key entropy notion in ergodic theory; a version of the Kolmogorov—
Sinai entropy for one partition. It refers to Shannon entropy, but it differs
significantly as it makes sense only in the context of a measure-preserving
transformation. Let 7" be a measurable transformation of the space €2, which
preserves the probability measure 4, i.e., such that u(T-*(A)) = u(A) for
every measurable set A C (). Let P be a finite measurable partition of {2 and
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let P™ denote the partition PV T—1(P) - - - vV T~"F1(P) (the least common
refinement of n preimages of P). By a subadditivity argument, the sequence of
Shannon entropies £ H,,(P™) converges to its infimum. The limit

1
by (T, P) = lim ~ H,,(P") 0.3.2)

is called the dynamical entropy of the process generated by P under the action
of T'. This notion has a very important physical interpretation, which we now
try to capture.

First of all, one should understand that in the passage from a physical system
to its mathematical model (a dynamical system) (2, u, T'), the points w € €
should not be interpreted as particles nor the transformation 7" as the way the
particles move around the system. Such an interpretation is sometimes possi-
ble, but has a rather restricted range of applications. Usually a point w (later
we will use the letter x) represents the physical state of the entire physical
system. The space (2 is hence called the phase space. The transformation 7 is
interpreted as the set of physical rules causing the system that is currently at
some state w to assume in the following instant of time (for simplicity we con-
sider models with discrete time) the state T'w. Such a model is deterministic in
the sense that the initial state has “imprinted” the entire future evolution. Usu-
ally, however, the observer cannot fully determine the “identity” of the initial
state. The observer knows only the values of a few measurements, which give
only a rough information, and the future of the system is, from his/her stand-
point, random. In particular, the values of future measurements are random
variables. As time passes, the observer learns more and more about the evo-
lution (by repeating his measurements) through which, in fact, he/she learns
about the initial state w. A finite-valued random variable X imposes a finite
partition P of the phase space ). After time n, the observer has learned the
values X(w), X(Tw), ..., X(T"w) i.e., he/she has learned which element of
the partition P™ contains w. His/her acquired information about the “identity”
of w equals Ipn(w), the expected value of which is H,,(P"). It is now seen
directly from the definition that:

o The dynamical entropy equals the average (over time and the phase space)
gain in one step of information about the initial state.

Notice that it does not matter whether in the end (at time infinity) the observer
determines the initial state completely, or not. What matters is the “gain of
information in one step.”

If the transformation 7' is invertible, we can also assume that the evolution
of the system runs from time —oo, i.e., it has an infinite past. In such case w
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should be called the current state rather than initial state (in a process that runs
from time —oo, there is no initial state). Then the entropy h, (T, P) can be
computed alternatively using conditional entropy:

By (T, P) = lim H(P|T(P) v T*(P) - v T"1(P)) = H(P|P"),

where P~ is the sigma-algebra generated by all partitions 7" (P) (n > 0) and
is called the past. This formula provides another interpretation:

o The dynamical entropy equals the expected amount of information about the
current state w acquired, in addition to was already known from the infinite
past, by learning the element of the partition P to which w belongs.

Notice that in this last formulation the averaging over time is absent.

0.3.5 Dynamical entropy as data compression rate

The interpretation of entropy given in this subsection is going to be fundamen-
tal for our understanding of dynamical entropy, in fact, we will also refer to a
similar interpretation when discussing topological dynamics.

We will distinguish two kinds of data compression: “horizontal” and “ver-
tical.” In horizontal data compression we are interested in replacing computer
files by other files, as short as possible. We want to “shrink them horizon-
tally.” Vertical data compression concerns infinite sequences of symbols inter-
preted as signals. Such signals occur for instance in any “everlasting” data
transmission, such as television or radio broadcasting. Vertical data compres-
sion attempts to losslessly translate the signal maintaining the same speed of
transmission (average lengths of incoming files) but using a smaller alphabet.
We call it “vertical” simply by contrast to “horizontal.” One can imagine that
the symbols of a large alphabet, say of cardinality 2, are binary columns of
k zeros or ones, and then the vertical data compression will reduce not the
length but the “height” of the signal. This kind of compression is useful for
data transmission “in real time”; a compression device translates the incoming
signal into the optimized alphabet and sends it out at the same speed as the
signal arrives (perhaps with some delay).

First we discuss the connection between entropy and the horizontal data
compression. Consider a collection of computer files, each in form of a long
string B (we will call it a block) of symbols belonging to some finite alphabet
A. For simplicity let us assume that all files are binary, i.e., that A = {0, 1}.

Suppose we want to compress them to save the disk space. To do it, we
must establish a coding algorithm ¢ which replaces our files B by some other
(preferably shorter) files ¢(B) so that no information is lost, i.e., we must
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also have a decoding algorithm ¢~ allowing us to reconstruct the original
files when needed. Of course, we assume that our algorithm is efficient, that
is, it compresses the files as much as possible. Such an algorithm allows us
to measure the effective information content of every file: a file carries s bits
of information (regardless of its original size) if it can be compressed to a
binary file of length s(B) = s. This complies with our previous interpretation
of information: each symbol in the compressed file is an answer to a binary
question, and s(B) is the optimized number of answers needed to identify the
original file B.

Somewhat surprisingly, the amount of information s(B) depends not only
on the initial size m = m(B) of the original file B but also on subtle properties
of its structure. Evidently s(B) is not the simple-minded Shannon information
function. There are 2" binary blocks of a given length m, all of them are
“equally likely” so that each has “probability” 2™, and hence each should
carry the same “amount of information” equal to mlog, 2 = m. But s(B)
does not behave that simply!

Example Consider the two bitmaps shown in this figure. They have the same

dimensions and the same “density,” i.e., the same amount of black pixels. As
uncompressed computer files, they occupy exactly the same amount of disk space.
However, if we compress them, using nearly any available “zipping” program, the
sizes of the zipped files will differ significantly. The left-hand side picture will
shrink nearly 40 times, while the right-hand side one only 8 times. Why? To quickly
get an intuitive understanding of this phenomenon imagine that you try to pass these
pictures over the phone to another person, so that he/she can literally copy it based
on your verbal description. The left picture can be precisely described in a few sen-
tences containing the precise coordinates of only two points, while the second pic-
ture, if we want it precisely copied, requires tediously dictating the coordinates of
nearly all black pixels. Evidently, the right-hand side picture carries more informa-
tion. A file can be strongly compressed if it reveals some regularity or predictability,
which can be used to shorten its description. The more random it looks, the more
information must be passed over to the recipient, and the less it can be compressed
no matter how intelligent a zipping algorithm is used.



0.3 Multiple meanings of entropy 15

How can we a priori, i.e., without experimenting with compression algo-
rithms, just by looking at the file’s internal structure, predict the compression
rate s(B)/m(B) of a given block B? Here is an idea: The compression rate
should be interpreted as the average information content per symbol. Recall
that the dynamical entropy was interpreted similarly, as the expected gain of
information per step. If we treat our long block as a portion of the orbit of
some point w representing a shift-invariant measure p on the symbolic space
ANUL0} of all sequences over A, then the global information carried by this
block should be approximately equal to its length (number of steps in the shift
map) times the dynamical entropy of w. It will be only an approximation, but
it should work. The alphabet A plays the role of the finite partition P of the
symbolic space, and the partition P™ used in the definition of the dynamical
entropy can be identified with A™ — the collection of all blocks over A of length
n. Any shift-invariant measure on ANY{%} assigns values to all blocks A € A™
(n € N) following some rules of consistency; we skip discussing them now. It
is enough to say that a long block B (of a very large length m) nearly deter-
mines a shift-invariant measure: for subblocks A of lengths n much smaller
than m (but still very large) it determines their frequencies:

_#{1<i<m-—-n+1:Bli,i+n—1]=A}

IU’(B)(A)* m—n+1 )

i.e., it associates with A the probability of seeing A in B at a randomly cho-
sen “window” of length n. Of course, this measure is not completely defined
(values on longer blocks are not determined), so we cannot perform the full
computation of the dynamical entropy. But instead, we can use the approxi-
mate value %HM(B) (A™) (see (0.3.2)), which is defined and practically com-
putable for some reasonable length n. We call it the combinatorial entropy of
the block B. In other words, we decide that the compression rate should be
approximately

s(B) 1

m(B) ~ n

H,, (A™). (0.3.3)

As we will prove later, this idea works perfectly well; in most cases the com-
binatorial entropy estimates the compression rate very accurately. For now we
replace a rigorous proof with a simple example.

Example We will construct a lossless compression algorithm and apply it to a file
B of a finite length m. The compressed file will consist of a decoding instruction
followed by the coded image ¢(B) of B. To save on the output length, the decod-
ing instruction must be relatively short compared to m. This is easily achieved
in codes which refer to relatively short components of the block B. For exam-
ple, the instruction of the code may consist of the complete list of subblocks A
(appearing in B) of some carefully chosen length n followed by the list of their
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images ®(A). The images may have different lengths (as short as possible). The
assignment A — ®(A) will depend on B, therefore it must be included in the
output file. The coded image ¢(B) is obtained by cutting B into subblocks B =
A1 As. .. Ay of length n and concatenating the images of these subblocks: ¢(B) =
D(A1)P(A2) -+ - ®(Ayg). There are additional issues here: in order for such a code
to be invertible, the images ®(A) must form a prefix free family (i.e., no block in
this family is a prefix of another). Then there is always a unique way of cutting
¢(B) back into the images ®(A;). But this does not affect essentially the computa-
tions. For best compression results, it is reasonable to assign shortest images to the
subblocks appearing in B with highest frequencies. For instance, consider a long
binary block

B = 010001111001111...110 = 010,001, 111,001,111, ...,110

On the right, B is shown divided into subblocks of length n = 3. Suppose that the
frequencies of the subblocks in this division are:

000 — 0% 001 —40% 010 —-10% 011 —10%
100 - 0% 101 —-0% 110—10% 111 —30%

The theoretical value of the compression rate (obtained using the formula (0.3.3)
forn = 3)is

(—0.410g,(0.4) — 0.3log,(0.3) — 3 0.11log,(0.1)) /3 ~ 68.2%.
A binary prefix free code giving shortest images to most frequent subblocks is

001 — 0,
111 — 10,

010 + 110,
011 — 1110,
110 +— 1111.

The compression rate achieved on B using this code equals
(04x1+03%x2401x3+0.1x4+0.1x4)/3="70%

(ignoring the finite length of the decoding instruction, which is simply a recording
of the above code). This code is nearly optimal (at least for this file).

We now focus on the vertical data compression. Its connection with the
dynamical entropy is easier to describe but requires a more advanced appara-
tus. Since we are dealing with an infinite sequence (the signal), we can assume
it represents some genuine (not only approximate as it was for a long but finite
block) shift-invariant probability measure . on the symbolic space AZ. Recall
that the dynamical entropy h = h, (o, A) (where o denotes the shift map) is
the expected amount of new information per step (i.e., per incoming symbol
of the signal). We intend to replace the alphabet by a possibly small one. It is
obvious that if we manage to losslessly replace the alphabet by another, say
Ao, then the entropy h cannot exceed log, #Ag. Conversely, it turns out that
any alphabet of cardinality #A, > 2" is sufficient to encode the signal. This
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is a consequence of the famous Krieger Generator Theorem (in this book it is
Theorem 4.2.3). Thus we have the following connection:

logs (#Ag — 1) < h < log, #Ao,

where A is the smallest alphabet allowing to encode the signal. In this manner
the cardinality of the optimal alphabet is completely determined by the entropy.
If 2" happens to be an integer we seem to have two choices, but there is an easy
way to decide which one to choose (see Theorem 4.2.3).

0.3.6 Entropy as disorder

The interplay between Shannon and Boltzmann entropy has led to associat-
ing with the word “entropy” some colloquial understanding. In all its strict
meanings (described above), entropy can be viewed as a measure of disorder
and chaos, as long as by “order” one understands that “things are segregated
by their kind” (e.g. by similar properties or parameter values). Chaos is the
state of a system (physical or dynamical) in which elements of all “kinds” are
mixed evenly throughout the space. For example, a container with gas is in its
state of maximal entropy when the temperature and pressure are constant. That
means there is approximately the same amount of particles in every unit of the
volume, and the proportion between slow and fast particles is everywhere the
same. States of lower entropy occur when particles are “organized”: slower
ones in one area, faster ones in another. A signal (an infinite sequence of sym-
bols) has large entropy (i.e., compression rate) when all subblocks of a given
length n appear with equal frequencies in all sufficiently long blocks. Any trace
of “organization” and “logic” in the structure of the file allows for its compres-
sion and hence lowers its entropy. These observations generated a colloquial
meaning of entropy. To have order in the house, means to have food separated
from utensils and plates, clothing arranged in the closet by type, trash segre-
gated and deposited in appropriate recycling containers, etc. When these things
get mixed together “entropy” increases causing disorder and chaos. Entropy is
a term in social sciences, too. In a social system, order is associated with clas-
sification of the individuals by some criteria (stratification, education, skills,
etc.) and assigning to them appropriate positions and roles in the system. Law
and other mechanisms are enforced to keep such order. When this classifica-
tion and assignment fails, the system falls into chaos called “entropy.” Entropy
equals lack of diversity.
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0.4 Conventions

In the main body of the book (Parts I — III) we are using a consistent notational
system. Every symbol has an assigned fixed meaning throughout the book. If
a letter is multiply used, the meanings are distinguished by font types. The
complete list of symbols is provided at the end.

The main conventions include:

e The capital letters X,Y,Z (sometimes with primes or subscripts) are
reserved to denote phase spaces of dynamical systems, lowercase x, y, z are
their elements. The lowercase Greek letters p, v, denote probability mea-
sures, while Gothic capitals 2, B, etc. stand for sigma-algebras. The let-
ters 7', .S, R are used for transformations of the phase space that govern the
dynamical system. Boldface T represents an operator on a function space.
Factor maps and other auxiliary maps between spaces are 7, ¢, 1. Dual maps
on relevant spaces of measures are denoted by the same letter as the map on
points (exception: T denotes the dual to a Markov operator). The images
by major maps of elements of their domains are written (whenever possible)
without parentheses, for example Tz, T'u, mu, T'f.

e The script capitals P, Q, R stand for measurable partitions with elements
(cells) denoted A, B, C, etc. The letters B and C' are also used to denote
finite blocks and their associated cylinders (which in fact are cells of cer-
tain partitions of appropriate symbolic spaces). The alphabet in a symbolic
system is A (rarely A). If we need to distinguish between the alphabet and
the associated zero-coordinate partition of the symbolic space, we use Py
for the latter. A special meaning is reserved to the Gothic capital ‘3 (with
subscripts); it is used for various spaces whose elements are partitions.

e The letters U, V represent open covers and their cells are U, V, while F, G, H
represent finite families of functions (measurable or continuous) on X.

e The symbols Z, N, Ny and R denote the sets of all integers, positive integers
(natural numbers), nonnegative integers and real numbers, respectively. The
letter S is used as either Z or Ny. We try to consistently reserve n for integers
representing the time; whereas k indexes refining sequences of partitions or
covers, while 7, j, [, m (sometimes also p, ¢, r, s, t) are integer indices of all
kinds.

e The letters H and H are reserved to denote various notions of static entropy,
with the boldface version used for topological notions. Similarly, ~ and
h will be used for dynamical entropy, respectively, measure-theoretic and
topological. Calligraphic H is used for a net or sequence of functions such
as an entropy structure.
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Some other conventions:

e From now on we choose to use only logarithms to base 2. We write just log.

e A sequence will be written as (a;);>1 or (a;), or just “the sequence a;,”
when this is not ambiguous.

e Throughout this book, in order to avoid confusingly sounding words we
use “decreasing” and “increasing” in the meaning of “nonincreasing” and
“nondecreasing,” with the adverb “strictly” when the monotonicity is sharp.






Part I

Entropy in ergodic theory
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Shannon information and entropy

1.1 Information and entropy of probability vectors

We agree (applying the continuous extension) that the real function
n(t) = —tlogt (1.1.1)

assumes the value 0 at ¢ = 0. It is strictly concave, i.e., n(pt + gs) > pn(t) +
qn(s) forevery t,s € [0,1], where p € (0,1), ¢ = 1 — p. Like every concave
nonnegative function on [0, 1], n satisfies the subadditivity condition

n(t+s) < n(t) +n(s),

whenever ¢, s,t + s € [0, 1] (Exercise 1.1). By iterating and by continuity, we
also obtain countable subadditivity

o0

(Xn) < io n(t:),

whenever all above arguments of 7 belong to [0, 1].

Let P and S denote the set of all countable probability vectors (i.e., nonneg-
ative, with sum equal to 1) and subprobability vectors (likewise, but with sum
in [0, 1]), respectively. Both sets are contained in the space ¢! of all absolutely
summable sequences, and we will regard them with the ¢! topology. It is an
elementary exercise to check that relatively on P this topology coincides with
the topology of the pointwise convergence (Exercise 1.2), but on S this is no
longer true. For instance P is closed in £, while it is dense in S in the topology
of the pointwise convergence. Of course, we are mainly interested in probabil-
ity vectors. Subprobabilistic vectors will be technically useful in one place in
the proof of Fact 1.1.11, so until then we are forced to check all statements for
them as well.

Below, we define the key notions of entropy theory.
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Definition 1.1.2 If p = (p;);en is a probability vector, its associated infor-

mation function I, : N — [0, o] is defined by

Ip(i) = —log pi.

The entropy of p is defined as

H(p) = szfp(i) = - sz- log(pi) = Zn(pi)-

This nonnegative value can be infinite but it is certainly finite for vectors
with at most finitely many nonzero terms and vectors tending to zero suf-
ficiently fast (see Fact 1.1.4 below). The function H can be applied to any
countable sequence with values in [0, 1] (in particular to subprobabilistic vec-
tors) and here it satisfies the following:

Fact 1.1.3  The function H is concave and on the set where H is finite the
concavity is strict.

Proof Letp = (p1,p2,-..),q = (q1,92,...) andr = (r1,79,...) belong
to [0, 1]V, and suppose that r = pp + gq where p € (0,1), ¢ = 1 — p. Then
by concavity of the function 7

H(r) =Y n(ppi + qu:) Z pn(pi) + an(ai)) = pH(p) + qH(q),
=1 i=1

and since 7 is strictly concave and all terms of the above sums are nonnegative,
equality holds when either p; = g; for all ¢, or both sides are infinite. O

We note the following criterion for finiteness of the function H on probabil-
ity vectors:

Fact 1.1.4  If a probability vector p = (p;) satisfies Y ;- ip; < oo, then
H(p) < oo

Proof Because the function — log ¢ is decreasing, while —t log ¢ is increasing
(certainly for values below 1/4), we have
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H(p) = —sz' log(p;) =

pilogpi+ Y pi(=logp)+ Y (—pilog(p)) <

i>2:p; >271% i>2:p; <277
plogpi+ Y pil—log@ )+ Y (—27log(@) <
i>2:p;>27" i>2:p; <21

p1logpr + Zipi + ZiQ*i < 00.
i i

O

Moreover, for vectors as above the following holds: If we letp =1/, ip;
(clearly, p € (0,1]), then H(p) < %H(p, 1—p), and equality is attained if and
only if p is the geometric distribution p; = p(1 — p)?~!. Although this fact
can be proved using analysis (constrained maximum), we will prove it using
dynamical methods much later, in Section 4.3 (Fact 4.3.7).

Let P,, (respectively, S,,) denote the subset of P (respectively, of S) con-
sisting of all m-dimensional probability (respectively, subprobability) vectors,
i.e., satisfying p; = O for all ¢ > m. Obviously, P,, (and S,,) are com-
pact, and the function H is continuous (hence uniformly continuous) on these
sets, and assumes the maximal value equal to log m at the probability vector
p=(%,L,...,1000,...).

Below we provide a tool very useful for handling countable vectors (and
later countable partitions):

Definition 1.1.5 For p € P we let p(,,,) € P, denote the vector obtained
from p by taking its m — 1 largest terms and, as the mth term, the sum of
the rest, and ordering the resulting m terms decreasingly. For p € S, p(;,) is
defined identically, and it belongs to S,,,.

It is not hard to see that the map p + p(,,) is uniformly continuous in £ 1
Moreover, we have

Fact 1.1.6
H(p) = lim T H(p(m))-
Proof By the finite and countable subadditivity of 7 we have

H(p(m)) < H(P(m+1)) and H(p(my) < H(p).
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On the other hand, ordering the terms p; of p decreasingly, we can write

= lim Z n(p:) < hmH(p(m)). (1.1.7)
O

Combining the above fact with the uniform continuity of the map p — p(,)
and that of H on P, (and on S,,,), we conclude the following

Fact 1.1.8  The functions p — H(p(n)) are 0 -uniformly continuous and
p — H(p) is (*-lower semicontinuous on P (and on S) (see Appendix A.1.4
for the definition of lower semicontinuity). O

We shall be needing another observation:

Fact 1.1.9 For each 0 < M < oo the set of all decreasingly ordered count-
able probability vectors p with H(p) < M is compact in ¢*. The same holds
for subprobability vectors.

Before the proof we note that the statement does not hold without the order-
ing. Indeed, if p,, is the probability vector whose all terms are O except the nth
term which is 1, then H(p,,) = 0, and the set {p,, : n > 1} is 2-separated
in /%,

Proof of Fact 1.1.9 Let p be a decreasingly ordered probability vector. If
H(p) < M, then for every ¢ > 0 the joint mass of the terms p; smaller
than 2~ A is at most ¢, for otherwise already the sum of —p; log p; over these
terms would exceed € - = M. The cardlnahty of the terms larger than or
equal to 2~ Tis clearly bounded by K(¢) = 2% . Thus, p has the following
property:

e For every ¢ > 0 the sum of the terms above index K (¢) is at most €.

The set of all probability vectors with this property is totally bounded in £!.
Indeed, every such vector can be, up to €, approximated by its restriction to
the initial K () terms, while the set of all subprobability vectors of dimension
K (g) obviously has a finite e-net. This net becomes a 2e-net in the set in ques-
tion. On the other hand, by lower semicontinuity of H, the set of probability
vectors with H(p) < M is closed in £, and its subset of decreasing vectors
is also closed. We have shown that the set of decrasingly ordered probability
vectors p with H(p) < M is closed in ¢! and contained in a totally bounded
set. By completeness of the space ¢!, such a set is compact. The proof for
subprobability vectors is identical. O
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Before we continue we need some more notation. Let & be a probability dis-
tribution on [0, 1]N. The barycenter of ¢ is the sequence z¢ = (z5,25,...)
such that for each natural i, 25 = [ @i dé(x) (here z = (1, x2,...)). This
notion generalizes convex combinations of vectors, which correspond to
barycenters of finitely supported probability distributions £. Let p¢ = (pf,
pg, ...) be the barycenter of a probability distribution £ supported on P. We

claim that then p¢ € P. Indeed,

ipfzi/pi%:/ipidg:l,

where the central equality follows from monotone convergence of the finite
sums to the infinite sum and linearity of the integral. By the same argument,
the barycenter of a distribution supported by S belongs to S.

A real function f on P (respectively on S) is supharmonic if for every prob-
ability distribution £ on P (respectively on S), we have f(p®) > [ f(p)d¢.
(The notions of barycenter and of supharmonic function are discussed in a
more general context in Appendix A.2.3.) The following holds.

Fact 1.1.10  As a concave lower semicontinuous function, the entropy H is
supharmonic on P and on S (see Fact A.2.10). O

The next fact will become important in Section 3.1. It says that on the set of
probability vectors p such that H(p) < M, the supharmonic property of H is
0 -uniformly strict, in the following sense:

Fact 1.1.11  Fix some positive number M. For every € > 0 there exists § > 0
such that whenever ¢ is a probability distribution on P with barycenter p¢
such that H(p®) < M and [ H(p)d¢ > H(p®) — 6, then

/||pg plhde <,

where || - ||1 denotes the norm in (*.

Proof The ¢*-uniform strictness of the concavity of H is obvious on the inter-
val [0, 1] because this set is compact, as is the set of all probability measures
supported by this set, and H (which is equal to n) is uniformly continuous and
strictly concave. This property easily passes to any finite-dimensional cube
[0,1]™ (m € N) and thus to S,;,.

Let us proceed to countable probability vectors, as in the assertion. We
can change the order of coordinates so that p¢ becomes decreasingly ordered.
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Let m be such that ) .. p§ < §.Let ¢ be such that on S,,, we have

/H(x) d¢ > H(z%) — 6 = /||x5 — x| dE < §.

Suppose that [ H(p)d¢ > H(p®) — 6. Then, letting w(z) = (21,22, ...,
ZTm) € Sy and ¢(x) = (Typt1, Timgas - .. ) € S, we can write:

H(n(pS)) + H(g(pS)) — 6 = H(pS) — 6 < / H(p) de =
/H(w(p))df+/H( d£</H ) dé + H((p%)),

where the last inequality follows by the supharmonic property of H on S
and the fact that ¢(p®) is the barycenter of the measure & composed with
¢ (this measure is supported on S; it is here that we actually need the set
of subprobabilistic vectors and the properties of H on this set) Cancelling
H(¢(p®)) on both ends we obtain H(w(p®)) —d < [ H(n(p))d¢, Wthh
implies [ [|7(p*%) — 7(p)|lx df < £. In particular, since )" lpf >1-£
we have [ >, p;d¢ > 1 — 5. This implies that [ Y .\ p;df < § and

finally
19 = pllvde < [ 1n6) ~ w@lag + [ o) - ool dé <
s+ Zpl /szd£< +s+s=¢

1=m-+1 1=m-+1

So far, the choice of § depended on m hence also on p. Because the inequal-
ity defining the parameter m is sharp, the choice of m is stable under small
¢ -perturbations of p¢, i.e., m is good for all vectors in an open set around pS.
The same applies to the parameter ¢, which depends only on m. Now, by com-
pactness of the considered set of vectors p¢ ordered decreasingly (Fact 1.1.9),
there is a universal choice of § on this whole set. Finally, notice that the terms
appearing in the assertion of the lemma are insensitive to the ordering of the
coordinates, so the lemma holds as it is stated. O

Now we introduce a somewhat exotic notion of information and entropy with
respect to variable lengths. Anticipating a bit, this notion can be interpreted as
corresponding to a partition of the symbolic space into cylinder sets of different
lengths. This notion and the following lemma will be used in the proof of
one of the key theorems in classical entropy theory — the Shannon—-McMillan—
Breiman Theorem, where the above interpretation will become clear.
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Definition 1.1.12  Consider a pair of vectors: a probability vector p = (p;)ien
and an arbitrary vector of positive integers (called lengths), n = (n;);en-
With this pair we associate its length-information function I, n : N — [0, 00]
defined by

log p;
n; ’

Ip,n(i) = -

The expected value of I, ,, will be called the length-entropy of the pair (p, n):

=Yl = 3

i=1 i

Let n, = ) . p;n; denote the “average length” (which may be infinite, but
not for vectors p with finitely many nonzero terms). We have the following:

Lemma 1.1.13 Let n = (ny1,no,...) be a vector of natural numbers. Let
P be a finite-dimensional probability vector (i.e., with finitely many nonzero
terms), and p’ an arbitrary (countable) probability vector. Then

H(p)

< max Iy y(i) + max 1. (1.1.14)
np ) 7 v

If cis such that )", 2" < 1, then for any countable probability vector p,

H(p,n) < ¢+ max --. (1.1.15)
7 K3

Proof By straightforward computations of partial derivatives it is clear that
with n fixed, the maximal length-entropy among all m-dimensional probability
vectors p is assumed for the unique pg such that the function Ip, » () — n%
is constant on ¢ € {1,2,..., m}. Any other m-dimensional probability vector
p has, on one hand, a smaller length-entropy, on the other, a larger maximal

value of Ip (i) — =, thus

H(p,n) < H(po,n) < maxfpo n(i) <

max(lp, n(i) -

LY 4 max L < max(I,/ (i)—7h)—|—maxi<

i i<m i i<m P(m) 1 i<m i T
max(lp n (i) — 5 L) 4+ max L < maxIp n(i) +max L. (1.1.16)
1<oo i<oo Mi [ ‘

(There is a subtlety in comparing I,/ )7,1(1') with Iy y(¢) for ¢ = m: on the

_ log(¥X ;> m Pi)
T

left-hand side we have , while on the right-hand side we have

— 1057;7;%. Clearly, the right-hand side is larger.) Applying this to the probability
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vector p”’ = (%) g and by convexity of the function — log ¢, we obtain
*/i<m

max I (i) + max - > H(p”,n) =
[ 1 v

Z pini ( szlogpz szlognﬂrlog(mez)) > H(p).

np

This proves (1.1.14).

For (1.1.15) note that there is ¢’ < ¢ such that p’ = (2_0/”7‘)1» is a probabil-
ity vector and then I (i) = ¢’ for each i. Now (1.1.16) yields H(p,n) <
¢ + max; ni < ¢ + max; ni for any finite-dimensional p. Approximating
an arbitrary i)robability vector p by the finite-dimensional vectors p(,,) and
because

m—1

log ps
H(p,n) = sup{ o } < sup H(p(m), n),
i=1 (2 m
we extend the inequality to all probability vectors. O

1.2 Partitions and sigma-algebras

Let (X,2(, 1) be a standard probability space, i.e., a probability space iso-
morphic to a compact metric space with the Borel sigma-algebra and a Borel
probability measure (also called a Lebesgue space). The sigma-algebra 2 is
necessarily completed with respect to y, i.e., every subset of a measurable set
of measure zero is agreed to be measurable. From now on, if not specified
otherwise, by a partition we will mean an at most countable partition of X
into measurable sets P = {4, : i € N}, (U2, 4;) = L,andi # j =
A; N A; = (. In this section we will view all finite partitions as countable
by attaching countably many copies of the empty set. Still, if all but finitely
many elements A; have measure zero we will call P a finite partition. While
the “master” measure p is fixed, we will identify partitions equal modulo sets
of measure p zero and write P = Q instead of P = Q (mod p). The elements
A; of a partition P will be referred to as cells.

A partition P is finer than (or is a refinement of) Q, which we write as P = Q,
when each cell of P is (up to measure) contained in a cell of Q. By disjointness,
each cell of Q is then a union of some cells of P; we will also say that Q is P-
measurable.

By the join (sometimes called the least common refinement) of two partitions
P and Q we shall mean the partition
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PVQ={ANB:Ac?P BeQl (1.2.1)

Itiseasy toseethat P = Q «<— PVv Q=7

We will also consider sub-sigma-algebras ‘B of 2, and call them simply
sigma-algebras, always assuming that B are completed. The fact stated below,
concerning standard probability spaces, will be of crucial importance in many
arguments throughout the book. We refer the reader to [Rokhlin, 1952] for the
proof and for more background on standard spaces.

Fact 1.2.2 Let (X, 2, u) be a standard probability space.

o [fB C Uis a sigma-algebra, then there exists a standard probability space
(Y,B',v) and a measurable map 7 : X — Y such that 7=1(B') = B, and
which sends the measure ji to v “by preimage”, i.e., v(B) = u(r~1(B))
(B € B’). We will write v = 7.

o I[fm: X — Y is amap as described above and, moreover; it is injective,
then m is an isomorphism of measure spaces (i.e., it is, up to measure, a
bimeasurable bijection).

By atoms of B we will understand the preimages 7! (y) of points y € Y.
The above fact implies that any 2-measurable set which is a union of atoms
of B, is ‘B-measurable. It is so, because sets of the above kind form a sigma-
algebra contained in 2 and containing 8, with the same atoms as B, and hence
determining the same (up to isomorphism) space (Y, B, v) (from now on we
can identify B’ with B) and the same map 7. We remark that the above fails
without assuming that 2 is standard, for example on the interval the sigma-
algebra 2 of all sets is essentially larger than the Borel sigma-algebra, while
any of its elements is a union of the atoms of the latter.

Recall that a sequence of partitions (Qy)x>1 is said to generate the sigma-
algebra B if ‘B is the smallest (complete) sigma-algebra which contains all
elements of each Q. If additionally the sequence Qy is refining, i.e., such that
Qky1 = Qi for each k, then for every ®B-measurable set B and every € > 0
there is a k such that B can be approximated up to ¢ (in terms of the measure
of the symmetric difference) by a union of some cells of Q; (see also (1.7.3)
below).

In a standard probability space every sigma-algebra B admits a generat-
ing sequence of finite partitions. It is convenient to denote the sigma-algebra
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generated by a sequence of partitions 9 by

B = §7 Q.
k=1

Taking Q) = \/f=1 Q,, we can always replace an arbitrary sequence of parti-
tions by a refining one, which generates the same sigma-algebra. For
sigma-algebras B, €, the join B V € will denote the (completed) sigma-algebra
generated by the union of B and €, while B = € is synonymous with 8 D €.
This notation is consistent with that for partitions if partitions are replaced by
their generated sigma-algebras. In this spirit, we can (and will) also join parti-
tions with sigma-algebras.

With each ordered countable partition P = {A;, ¢ € N} we associate a prob-
ability vector p(u, P) = (p;)ien called the distribution vector of P, defined
by p; = p(A;). Recall that the set of all probability vectors is convex. The
following decomposition rule, involving another countable partition Q, holds,
by the Law of Total Probability:

p(1,?) = Y w(B)p(ps,P), (1.2.3)
BeQ

where pp () = p(-N B)/u(B) is the conditional measure on B, for B of pos-
itive measure, and pp is an arbitrarily chosen probability measure supported
by B if B has measure zero.

1.3 Information and static entropy of a partition

For a partition P of a probability space (X, 2, 1) we define its associated infor-
mation function I, » : X — [0, 00| by

Lo (x) = Ip(x) = —log u(Az),

where A, is the cell of P containing x. Whenever p is fixed, we will use the
simplified notation Ip(z).

Definition 1.3.1 The static (or Shannon) entropy of P with respect to p,
H(u,?P) is defined as the expected value of the information function:

H(9) = [ Io(a)dule) = 3 u(4)log u(4) = H(p(1.2)).
Ae?P
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In considerations involving one “master measure” p we will abbreviate
H(p,P) as H(P), while Hg(P) will stand for H (5, P) (for B € 2). One of
the fundamental estimates of the entropy of finite partitions is

H(P) <log #P. (1.3.2)

We note that convexity of the function ¢ — — log(¢) immediately implies
that the information function of a given partition at a given point is a convex
function of the measure p, contrary to the entropy, which is concave (this fol-
lows immediately from the concavity of H on probability vectors, see Fact
1.1.3). We gather these two facts below:

Fact 1.3.3 If pu is a convex combination of two measures, [t = pu1 + qliz,
where p € [0,1],q = 1 — p, then, for every countable partition P and every
point x € X we have

I/l,,j)(z) < PI/“,fP(w) + qI/L2,?(x)7 (134)
H(p,P) > pH(p1,P) + qH (u2, P). (1.3.5)
O

1.4 Conditional static entropy

For given two partitions P and Q one defines the conditional information
function

I, p10(x) = Ipjo(x) = Ipya(r) — Io(x) =
1(As N By)

—lo
& (B,

=—logup, (Az) (1.4.1)

(A, and B, denote the cells of P and Q containing x, respectively). This func-
tion can be interpreted as the “gain of precision” with which one can locate x
when, already knowing its position with respect to Q, one learns its position
with respect to P.

Definition 1.4.2 We define the conditional static entropy of P given Q as

H(u, P|Q) = / Ipja(x) du(z).

As before, H(P|Q) will stand for H (1, P|Q) when this causes no confusion.
Clearly, if H(Q) is finite, by (1.4.1) we have H(P|Q) = H(P Vv Q) — H(Q).
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In order to avoid the undefined term oo — oo in the infinite case, it is always
safe to write

H(PvQ)=H(PQ) + H(Q). (14.3)
In any case we have
HE@IQ) =— S u(AnB)logup(4) =
BEQ,AcP
=S uB) S un(A)logup(4) = S w(B)Hp(?).
BeQ Ae? BeQ
The resulting formula
H(P|Q) = Y u(B)Hp(P) (1.4.4)
BeQ

(or H(p,P|Q) = > pcom(B)H(up,P), in the expanded version), is often
used as an alternative definition of the conditional entropy.

We will now introduce the conditional entropy given a sigma-algebra, which
generalizes the preceding notion. Let P be a countable partition and let B < A
be a sigma-algebra.

Definition 1.4.5 The conditional entropy of P given 25 is defined as
H(p,P|B) = H(P|B) =inf{H(P|Q) : Q x B},
where Q ranges over all countable partitions measurable with respect to 8.

For a fixed partition, conditioning partition, and a point, the conditional
information as a function of the measure, being a difference between two con-
vex functions, is in general, neither convex nor concave. Simple examples on
the four-point space show this. The conditional entropy, however, maintains
the concavity property:

Fact 1.4.6 Let i1 be a convex combination of two measures, | = pu1 + q2,
where p € [0,1],q = 1 — p. Then, for any pair of countable partitions P, Q,
alternatively, for any P and a sigma-algebra B, it holds that

H(p,P1Q) > pH(p1,P|Q) + ¢H (12, P|Q), (1.4.7)
H(p, P|B) > pH (pu1, P|B) + qH (112, P|B). (1.4.8)
Proof The concavity (1.4.7) follows from (1.3.5) via (1.4.4). Then (1.4.8) fol-

lows from Definition 1.4.5 and the mere fact that infimum of concave functions
is concave. O]
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1.5 Conditional entropy via probabilistic tools*

In this section we review some alternative definitions of the conditional entropy
given a sigma-algebra in terms of the conditional expectation and of the dis-
integration of the measure. The proofs that these definitions coincide with the
definition given at the beginning of this section rely on the Martingale Conver-
gence Theorem. We refer for example to the book by Karl Petersen [Petersen,
1983] for a more detailed exposition.

The definition of the conditional information function of P given a countable
partition Q, involves the term 115, (A, ), which can be viewed as E, (14, |Q)(x),
the value at = of the conditional expectation of the characteristic function of
A, given the sigma-algebra generated by the partition Q. By pure analogy we
define

L, p(z) = Ips(r) = —log E,(14,[B) (), (1.5.1)

and call it the conditional information function of P given the sigma-algebra
8. The alternative definition of the conditional entropy of P given ‘B is via the
integral

H(OI®) = H(1,21B) = [ Top(z) du(a).

We briefly recall the notion of disintegration of the measure p with respect
to a sigma-algebra 95 < 2. Fact 1.2.2 says that in a standard probability space
(X, 2, 1) any sub-sigma-algebra 98 determines a standard probability space
(Y,B,v) and a projection w : X — Y where the elements y € Y are the
atoms of B and 7 is determined by the inclusion z € 7x. In this setup we
identify B with 7~!(8) and the measure v is the restriction of x to 8. The
disintegration of 1 is the v-almost everywhere defined assignment y +— (i,
where i, is a probability measure on 2l supported by the atom ¥, such that for
every A € 20 we have

w(A) = / ty(A) dv(y), (1.5.2)
which we can write, using the Petis integral, as

W= / iy dv.
Y

The disintegration provides alternative formulae for the conditional informa-
tion function and the conditional entropy, completely analogous to (1.4.1) and
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to (1.4.4):
L ps(z) = Ip)p () = —log prz (As) (1.5.3)

H(u, P|B) = /Y Huy, ) du(y). (1.54)

1.6 Basic properties of static entropy

In this section we fix one measure ;4 and drop it in the denotation, while we
treat the partition as a variable. We gather all basic properties of the static
and conditional static entropy which can be classified as “monotonicity” and
“subadditivity.” Continuity properties are gathered in the next section. The first
fact gives two very useful equalities that generalize (1.4.4) and (1.4.3).

Fact 1.6.1 Let P, Q and R be countable partitions. Then

H(PIQVR) = > u(C)Hc(P|Q), (1.6.2)
ceR
H(PVQIR) = H(P|QV R) + H(QIR). (1.6.3)

Proof By (1.4.4) we can write:

HPQVR) = > u(BNC)Hpno(P) =

BNCeQVR
S uC) > pe(B) Hpre(P) = > w(C)He(P|Q),
CeR BeQ CeR

and then
H(PIQVR)+ H(QR) = > u(C)Ho(P|Q) + Y n(C)He(Q) =
CeR CeR
> w(C)He(P v Q) = H(PVQR).
ceR
O

If H(R) is finite, (1.6.3) can be gotten faster, from (1.4.3), see Exercise 1.3.
The next fact contains monotonicity properties.

Fact 1.6.4 For countable partitions P, Q and R, the following holds

P=Q < H(QIP) =0, (1.6.5)
P=0Q = H(PIR) > H(QR), H(P) > H(Q), (1.6.6)

QR = H(P|Q) < H(PR). (1.6.7)
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Before the proof we list some consequences of (1.6.3) and the monotonici-
ties (1.6.6) and (1.6.7). Their easy derivation is left to the reader (Exercise 1.3).
The first four of them can be viewed as various kinds of subadditivity. The last
three will be useful in the context of the Rokhlin metric later.

Corollary 1.6.8 For countable partitions P, P, Q, 9, and R we have

H(PVQIR) < H(P|R) + H(QIR), (1.6.9)
H(PvQ)<H(P)+ H(Q), (1.6.10)

H®v?Qv Q) <H(PQ)+ H(PQ), (1.6.11)

H(PIR) < H(P|2) + H(QIR), (1.6.12)

|H(P|R) — H(QR)| < max{H (P|Q), H(Q|P)}, (1.6.13)
|H(P|Q) — H(P|R)| < max{H(Q|R), H(R|Q)}, (1.6.14)

|H(P) — H(Q)| < max{H(P|Q), H(Q[P)}. (1.6.15)

(in each of the last three statements we assume that at least one of the terms
on the left is finite). O

Proof of Fact 1.6.4 Both directions of (1.6.5) are immediate, by the formula
(1.4.4) and the fact that H(p, P) = 0 <= P is the trivial partition.

We continue by proving (1.6.7) for the trivial partition R. By (1.4.4), the
left-hand side of (1.6.7) equals the countable convex combination (with coef-
ficients 1u(B)) of the values the function H assumes at the probability vec-
tors p(up,P). The right-hand side of (1.6.7) equals H applied to p(u, P),
the convex combination (with the same coefficients) of the vectors p(up, P)
(see (1.2.3)). By the supharmonic property of the entropy on probability vec-
tors (see Fact 1.1.10), we obtain (1.6.7). For the full version of (1.6.7) assume
Q = R and, using (1.6.2) and (1.6.7) already proved for trivial R, write:

H(PIQ) = HPIQVR) = 3 w(O) He(®IQ) < 3 pn(C) He(®)

CeR CceR
= H(P|R).

We move on to (1.6.6). Suppose P = Q. By (1.6.3), we have H(P|R) =
H(PVQR)=H(PQAVR)+ H(Q|3€) > H(Q|R). For trivial R we get the
second inequality. O

Recall that two partitions are said to be stochastically independent (we will
write P1Q) if u(AN B) = u(A)u(B) forall A € P, B € Q. The following is
an immediate consequence of Fact 1.1.3:
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Fact 1.6.16 P1Q — H(P|Q) = H(P). If H(P) < oo, then the converse
implication holds. O

Analogously as for probability vectors, for a partition P and m € N, by
P(m) we will denote the finite m-element partition obtained from P by uniting
all but the largest m — 1 cells. (In case several cells have equal measures we
fix some order among them.) We note the following convergence:

Fact 1.6.17
H(P) :l'gLnTH(T(m)), (1.6.18)
H(?|Q) =1lim 7 H(iP(m)|Q). (1.6.19)

Proof (1.6.18) is literally Fact 1.1.6, while (1.6.19) follows from (1.4.4), then
(1.6.18) applied to each up, and the mere fact that since the series in (1.1.7) is
in fact an increasing limit, the order of limits can be reversed. O

Lemma 1.6.20 Suppose H(P) < oo. Then p(C)Hc(P) tends to 0 as 1(C)
tends to 0.

Proof LetR = {C,C°}. Because
H(P) = H(P|R) = p(C)Ho(P) + un(C) Heoe (P),

it suffices to show that Hge (P) is larger than H(P) — ¢ whenever u(C¢) is
sufficiently close to 1. This, in turn, follows from the ¢! lower semicontinuity
of the entropy on probability vectors (Fact 1.1.8) and the fact that the probabil-
ity vectors p(uce, P) converge in £* to p(u, P) as the measure of x(C*) tends
to 1. [

Fact 1.6.21 Suppose H(P) < oo. Then
H(P|Q) =lim | H(P|Q(m))-

Proof By (1.6.7), the sequence H(P|Q,,)) decreases. We order Q = { B,
Bs, ...} decreasingly and let C,,, denote the union of B; over ¢ > m. Then

H(P|Q) = H(P|Qm)) = #(Crm) He, (P) + Y w(Bi) Hp,(P).
i>m
Since H(P|Q) < H(P) is finite, the last sum is the tail of a convergent series.

Thus, and by the preceding lemma, we obtain H (P|Q) = lim,,, H(P|Q)).
U

Remark 1.6.22 The above may fail if P has infinite entropy. For example, if
Q = P, then H(P|Q) = 0, while the conditional entropy of P given any finite
partition is infinite.
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Corollary 1.6.23  Fact 1.6.21 implies that in Definition 1.4.5 (of H(P|B)),
Sfor P with finite entropy, it suffices to take the infimum over finite B-measurable
partitions Q only.

Next, we discuss properties analogous to the ones above, but involving con-
ditional entropy given a sigma-algebra.

Fact 1.6.24  For any countable partitions P and Q and any sigma-algebra B
it holds that

H(P|QVB) = > u(B)Hp(P|B), (1.6.25)
BeQ
H(PVQB) = H(P|QV B)+ H(QB). (1.6.26)

Proof We have, by (1.6.2),

H(P|QV %B) = inf H(P|QV R) = inf > w(B)Hp(PIR) >
BeQ
> u(B)inf Hp(PIR) = > pu(B)Hp(P|B),

BeQ BeQ

where R range over all B-measurable partitions.

We proceed with the reversed inequality. It holds trivially if the right-hand
side is infinite. In the finite case, for each B € Q there is a B-measurable
partition Rz which realizes the infimum in the definition of Hp(P|B) upto .
We let R be the countable partition obtained as a refinement of Q by applying
Rp relatively to each B € Q. This partition is measurable with respect to
Q Vv B. We have, by (1.6.2) again,

> WB)Hp(P|B)+e > Y w(B)Hp(P|Rp) = > n(B)Hp(PIR) =

BeQ BeQ BeQ
H(PIQV R) > H(P|QV B).

Elementary properties of infima (see Appendix A.1.5) and (1.6.3) imply the
inequality “>"in (1.6.26). For the converse, take two B-measurable partitions
which nearly realize the infima defining the two terms on the right. By mono-
tonicity with respect to the conditioning partition, their join realizes both. For
this join apply (1.6.3), then apply infimum on the left. O
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Fact 1.6.27
Px®B < H(PB) =0, (1.6.28)
P=Q = H(PI®B) > H(QIWB), (1.6.29)
B =C — H(PIB) < H(P|C). (1.6.30)

As before, prior to the proof, we list a number of easy consequences of
(1.6.26) and the last two monotonicities.

Corollary 1.6.31
H(PVQIB) < H(P|B) + H(Q|B), (1.6.32)
HPVvPQvYvVvB)<HPQVDB)+ H(P|Q VDB, (1.6.33)
H(P|B) < H(P|Q) + H(Q|B), (1.6.34)
H(PIRVB) < H(PIQVB)+ H(QRVB), (1.6.35)
|H(P|B) — H(Q|B)| < max{H(P|Q), H(QIP)}, (1.6.36)
|H(P|QV B) — H(P|RV B)| < max{H(Q|R), H(R|Q)} (1.6.37)

(each of the last two statements requires at least one of the terms on the left to
be finite). U

Proof of Fact 1.6.27 If P is B-measurable, then H(P|B) < H(P|P) = 0.
Conversely, if H(P|®B) = 0, then for every § > 0 there exists an B-measurable
partition Q such that

H(P|Q) =) n(B)Hp(P) <.
BeQ

This means (by the elementary “rectangle rule,” Fact A.1.1 in the Appendix
A.1) that at least 1 — v/§ of the space is covered by cells B € Q for which
Hp(P) < /4. For small § such a B is partitioned by P nearly trivially, i.e.,
with one dominating cell A with up(A) > 1 — €. Every cell A of P is now
approximated (up to & 4 v/8) by the union of those cells B of Q in which
A dominates. Since B is completed, every set which can be arbitrarily well
approximated by B-measurable sets is 2B-measurable.

The inequality (1.6.29) follows from (1.6.6), while (1.6.30) requires nothing
but Definition 1.4.5. O

Fact 1.6.38 Assume that H(P) < co. Then PLB «— H(P|'B) = H(P).

Proof 1f P18, then P_LR for any B-measurable partition R, and Fact 1.6.16
implies the entropy condition. Suppose the entropy condition holds. For a 8-
measurable set A let R = {A, A°}. Then H(P) > H(P|R) > H(P|B) =
H(P), so, by Fact 1.6.16, PLR, in particular P L A. O
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Fact 1.6.39  For a sigma-algebra B and a countable partition P we have
H(PB) = lim T H(P ()| B).

Proof Monotonicity and the inequality “>" are obvious. We order the cells
of P decreasingly in measure, P = {A;, As, ... }. For every € > 0 there exists
a subsequence my, of the natural numbers, such that the partition

P ={A A, }={AUA U --UA,,,
A1 UAp 12U UApy,, ...}

has entropy smaller than e (see Exercise 1.5). By (1.6.26), and since P 3= P,
we have

H(P|B) = H(PV P'|B) =
H(P|P' v B) + H(P|B) < HPIP VB)+e (1.6.40)

For each k, on each of the sets A;, where j < k, the restrictions of T(mk) and
of P coincide. On the other hand, for j > k, the restriction of T(mk) to A;- is
trivial. So,

o0

H(P(,)|B) > H(P (o) [PV B) = Zu DH 4 (P, |B) =

k
ZM(A})HA; (PB).
j=1 '
The last terms increase with &k to
S (AL Hay (PI%B) = H(P|P' v B),
j=1

which was shown in (1.6.40) to be larger than H(P|B) — ¢ (or infinite). We
have shown that H(P|®B) < limy H(P(y,,)|%B). By monotonicity, this ends
the proof. U

Fact 1.6.41 Suppose H(P|B) < oc. Then
H(PIQV B) = lim | H(P|Qn) V B).

We will prove this fact near the end of the next section, as a particular case
of a more general Fact 1.7.10.
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1.7 Metrics on the space of partitions

There is a natural pseudometric between countable partitions:
1. (w
di(P,Q) = 3 mf{Z;M(Ai S Bw(i))} =
1— sup{z (A N Bﬂ(i))}, (1.7.1)
i=1

where P = {A;,i € N},Q = {B;,i € N}, & denotes the symmetric differ-
ence and the infimum (and supremum) runs through all permutations 7 of the
natural numbers. This pseudometric becomes a metric once factored to classes
of partitions modulo measure zero.

It is elementary to see that

dl(?l V Py, Q1 V Qg) < d1(ﬂ)1, Ql) + d1(?2, QQ) (1.7.2)

One of the important features of this metric is the possibility of approximat-
ing a partition measurable with respect to \/, Q;, by Qj-measurable partitions.
We skip the elementary measure-theoretic proof:

Fact 1.7.3 Let*B = \/;C:1 O, where Qi1 = Qi for all k and let P be a
partition measurable with respect to 8. Then for every ¢ there exists a k and
a Q-measurable partition Py, with di (P, Py) < e. If P is finite, then each Py,
can be made finite with the same cardinality as P. O

It is a well-known fact [see e.g. Rokhlin, 1952] that in standard spaces this
metric on the set of all (classes of) countable partitions is complete and separa-
ble. The same is true for every m € N and the set of all partitions with at most
m cells of positive measure. The corresponding Polish spaces of partitions will
be denoted Py, and PB,,, respectively.

The following obvious fact will play a crucial role in this section.

Fact 1.7.4  The assignment P — P,y from Py, — By, is continuous in d;
at every partition P whose (m—1)st and mth largest cells differ in measure. [

Note that if P is infinite, the assumption is satisfied for infinitely many m’s.

Conditional entropy gives rise to an alternative metric among partitions with
finite entropy, called the Rokhlin metric :

Definition 1.7.5
dr (P, Q) = max{H(P|Q), H(Q|P)}.



1.7 Metrics on the space of partitions 43

Indeed, H(P|Q) = H(Q|P) = 0if and only if both Q = P and P = Q, i.e.,
P = Q. The triangle inequality is (1.6.12).

Remark 1.7.6 In most texts the Rokhlin metric is defined as H(P|Q) +
H(Q|?P). Ours is, of course, a uniformly equivalent version.

Fact 1.7.7 The metrics dr and dy are uniformly equivalent on the spaces
Bon-
Proof 1If

H@|0) = 3 p(B)H(P) <6,
BeQ
where § < 1, then, by the rectangle rule (Fact A.1.1), Hg(P) < /6 on sets B
of joint measure at least 1 — /4. In such a B there is a dominating A € P (we
have already used this argument in the proof of (1.6.28)). This time we will

estimate the value ¢t = pp(A) of the dominating cell more accurately. Since
V8 < 1itmust be that ¢ > . Then

V6 > Hp(P) > —tlogt — (1 —t)log(1 —t) > 2t(1 — ) > 1 —¢.

Thus t > 1 — /3 (we have used twice the inequality —logt > 1 — ¢). This
easily implies that d; (Q, PV Q) < 2V/6 (see (1.7.1)). If the same holds with the
roles of P and Q reversed, then d; (P, Q) does not exceed 44/6. Incase § > 1
we have d; < 44/ since dj never exceeds 1. We have proved that

dy < 4\/dg (1.7.8)

(we did not strive to get the best estimate here).
Conversely, let ¢ = d1(P,Q). Let C¢ = ;| Ap, N By(y,) where  is such
that u(C) = e (see (1.7.1)). Let R = {C, C}. Then, using (1.6.3),

H(P|Q) < H(PVRQ) =H(PIRV Q)+ H(R|Q) <
p(C)Hee(P|Q) + n(C)He(P|Q) + H(R) < 0+ecHe(P)+ H(e, 1 —¢),

and on B, the term Hq(P) is estimated by log m. Thus the right-hand side
decreases to zero with . The same estimate applies to H (Q|P). O

Note that the latter direction of the equivalence between the metrics fails for
countable partitions, even if we assume that their entropies are bounded. On
nonatomic measure spaces, the trivial partition P can be approximated in d; by
countable partitions P,, with arbitrary entropy, and then dg(P,,,P) = H(P,)
need not converge to 0.

We pass to investigating continuity properties of the entropy with respect to
varying partitions.
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Fact 1.7.9  The functions H(-), H(:|Q) and H(-|'B) (for an arbitrary fixed
countable partition Q, and an arbitrary fixed sigma-algebra B) are uniformly
continuous on P, and lower semicontinuous on *Py,,.

Proof On ‘P, we can use the Rokhlin metric, and then (1.6.15), (1.6.13) and
(1.6.36) yield the desired uniform continuities. To prove lower semicontinu-
ity (in d;) of each of the above functions at any P € Py, we first choose a
subsequence my; of integers for which the assumption of Fact 1.7.4 is satisfied
for P, and then the considered three functions become increasing limits (along
my,) of functions continuous at P (see (1.6.18), (1.6.19) and Fact 1.6.39). This
suffices for lower semicountinuity at P (see Fact A.1.11 in Appendix A.1). O

Fact 1.7.10 Assume H(P|*B) < oo where B is a sigma-algebra. Then the
function H(P|-V B) is uniformly continuous on By,,. For trivial *B this reads:
if H(P) < oo, then the function H(P|-) is uniformly continuous on PBy,.

Proof Assume that H (P|B) is finite. Then, by (1.6.26) and (1.6.30),

H(P|QVB) —H(fp(m)|Q\/%) = H(wa)(m) VAVB) < H(‘.P|‘P(m) VB) =
H(P|B) — H(P(m)|B),

so, by Fact 1.6.39, the function Q — H(P|Q V B) is a uniform limit of the
functions Q +— H(P(,,)|Q V B). It remains to prove that the considered func-
tion is uniformly continuous for a finite partition . Regard two partitions Q
and Q" and set § = dy(Q,9Q'). Let C¢ = |J"_; B, N B,y where 7 is such
that u(C) = ¢ (see (1.7.1)) and let R = {C, C}. Then, by (1.6.26) (applied
twice to H (P V R|Q V B)), we get

H(PIQVB)=H(PIRVAVB)+ H(RIQVB) - HR|PVAVDB),

and the same for Q’. Since R has small entropy depending only on §, we can
ignore the last two terms at a cost of a uniform error ¢ (if J is small enough).
Thus

|H(P|QVB)—H(P|Q'VB)| < |H(P|IRVAVB)—H(P|RVQ'VB)|+2¢ <
1(C)|Hee (P|QV B) — Hoe (P|Q"V B)|+
+ M(C)’HC(T‘Q VB) — Ho(P|Q' v ‘B)‘ + 2¢.

On C¢ the partitions Q and Q’ coincide, so the first term in the last line is zero.
The next term is, by (1.3.2), at most § log #P. This ends the proof. O

We can now provide the missing proof of Fact 1.6.41.
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Proof of Fact 1.6.41  Notice that Q) converges to Q in Py, and apply Fact
1.7.10. =

Fact 1.6.41 is a particular case of a more general property:

Lemma 1.7.11 Assume that H(P) < oo. If Qi is a refining sequence of
partitions, then

H(PI\/ Q) = lim | H(P|Q)- (1.7.12)
k

More generally, for any monotone sequence of sigma-algebras By, we have

Vi Bi < Bryr = H(P|\/By) = lim | H(P|Bs), (1.7.13)
k

Vi B = B = H(P|[|Bk) = lim | H(P|B). (1.7.14)
k

Proof For (1.7.12), by Corollary 1.6.23, it suffices to consider finite parti-
tions Q measurable with respect to \/,, Qx. Every such partition can be approx-
imated in d; by Qg-measurable partitions, say Ry, of the same cardinality. By
the continuity stated in Fact 1.7.10, we can have H (P|R;,) arbitrarily close to
H(P|Q), which can be chosen close to H(P|\/, Q). More precisely, we can
arrange that the following inequalities hold:

H(P|Qk) < H(P|Ry) < H(P|Q) +e < H(P|\/ Q) + 2¢.
k

This implies that inf), H(P|Qy) < H(P|\/, Qk). The other inequality is obvi-
ous, by the monotonicity (1.6.30).

To prove (1.7.13), for each k let (R ;):cn be a refining sequence of parti-
tions generating B;. We can arrange that for fixed 4, Ry11,; = Ry ; for all
k. Consider the expressions H (P|Ry, ;). The assertion follows by applying, on
one hand the infimum over the pairs (k, ), (and (1.7.12)), on the other, the
iterated infimum, first over ¢ (and (1.7.12) again), then over k.

The statement (1.7.14) will never be used in this book, so we can afford to
sketch an argument using the tools from the “asterisk sections.” In fact one
gets both statements (1.7.13) and (1.7.14) essentially strengthened. For P with
finite entropy, since the function t — —logt is convex, the corresponding
sequence of conditional information functions Ip g, is a (forward or back-
ward) submartingale. Using the martingale theory, it can be proved that in
both cases, this submartingale converges almost everywhere and in L' (1) to
the conditional information function given B, of which the convergence of the
conditional entropies is an immediate consequence. O
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We conclude this section with the following topological statement:

Fact 1.7.15 The space Py of all countable partitions with finite static entropy
is complete and separable in dg.

Proof By (1.7.8), any dg-Cauchy sequence Py, is d;-Cauchy and by (1.6.15)
has bounded entropy. By completeness of Py, , there exists a d;-limit, P,
which, by lower semicontinuity of H(-) (Fact 1.7.9), has finite entropy. Now,
H(P|Py) converges to zero, by the continuity of H(P|-) (Fact 1.7.10). It
remains to prove that also H(P;|P) — 0. By the last mentioned continuity,
for each k,

H(Tkw)) = th/nH(TH?k/) < h]g[ndk(ﬂ)k,fpk/),

which is small for large k, by the Cauchy condition.

Separability follows from the fact that every partition with finite entropy
can be approximated in dg by a finite partition and then, by separability of the
sigma-algebra 2l in the standard metric “measure of the symmetric difference,”
this finite partition can be approximated in d; (equivalently in dr), by a finite
partition with elements belonging to a preselected countable family of sets. [

1.8 Mutual information*

The term addressed in the title is a notion popularly used in information theory.
Its name is a bit misleading, because it is much closer to entropy than to an
information function.

Definition 1.8.1 For two partitions P and Q, their mutual information is
defined as

.0) — #ANB)

1(P;9) Aegeg WANB)log e

Mutual information is the “missing value” when comparing the entropy of
the join with the sum of entropies: H(P)+H (Q) = H(PvQ)+I(P;Q), which
can be rewritten as H (P) = H(P|Q)+I1(P;Q)or H(Q) = H(Q|P)+1(P;Q).
Mutual information is indispensable only when both H(P|Q) and H(Q|P)
are infinite, otherwise it can be expressed as a difference of entropies (condi-
tional and unconditional). In particular, mutual information allows us to deter-
mine stochastic independence without any finiteness restrictions (compare Fact
1.6.16):

Fact1.82 P?1Q < I(P;Q)=0.
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Proof By elementary operations, directly from the definition one derives

1(259) = Y [~u(A) log(u(A) + Y ju(B)us(4) log(us(4))| =

Ae? BeQ

3 [n(u(A)) = > uBes(A))],

Ae? BeQ

where 7 is the strictly concave function (1.1.1). Since pu(A)= > 5o 1(B)
wup(A), foreach A € P the corresponding term in the last displayed sum is non-
negative, and it equals zero if and only if up(A) = u(A) forevery B€Q. O

In this book mutual information will not be used. Its usefulness as a measure
of correlation between two partitions is illustrated in the anecdote below. !

Example 1.8.3 Imagine a place on the Earth, where it rains precisely one day
per year, yet one never knows which day it is. Suppose three weather stations cover
this place. The first one uses an extremely primitive algorithm, in fact no algorithm
at all: they predict “no rain” for each day of the year. Notice that this station is wrong
only one day per year. The second station runs a simulation, which copies precisely
the strategy of the nature: they draw randomly one of 365 numbers and they predict
rain for the corresponding day. This station is wrong a little below 2 times per year
(with very small probability they may be accurate, otherwise they miss the rainy
day and they predict rain on a sunny day). There is also a third station. These guys
conduct very complicated research, study the patterns from the past, use advanced
simulations etc. Each year they obtain three equal peaks of probability for the rainy
day to occur. Their method is so good that the true rainy day always occurs in one
of the three peak days. Their official prediction is rain for each of these three days.
Notice that they are wrong full two times per year.

Judging the “reliability” by the number of errors per year, the first station is the
best, the last one is the worse. However, it is intuitively clear that only the last station
provides us with valuable information. This “valuable information” is precisely the
mutual information of two partitions: the partition of the year (365 days) into “rain”
and “no rain” predicted by the station, and similar partition occurring in reality. The
higher the mutual information, the better job done by the station.

And so, the entropy of the partition P provided by nature equals H (== 365> %)
(we do not really need to calculate this value). The partition Q; provided by the
first station is the trivial partition, has entropy zero, and so is the mutual infor-
mation. The pamtlon Q, given by the second station is already nontrivial and has
entropy H (1= 365 325) the same as P, still it is independent of P and the mutual
information is again zero. The partition Q3 provided by the third station has entropy
H (%, %) The joined partition P V Q3 divides the year into three sets of days:
“no rain predicted and no rain” (362 days), “rain predicted but no rain” (2 days),
and “rain predicted and rain” (1 day). The mutual information is the difference

H(ghs, 380) + H(5ks, 32) — H(ghs, 525, 32) =

3657 365 3657 3()5 3657 3657 365
5= ((3651og 365 — 364 log 364) — (3log 3 — 2log 2)).

1 This example was told to the author over lunch by Mike Keane, who attributed it to Jack van
Lint. In van Lint’s story the place was Death Valley in California and there were just two
weather stations. The modifications are due to the author.
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By elementary calculus, this is approximately (and not less than) % > 0.

1.9 Non-Shannon inequalities®

This section is slightly off our main course, hence we will not provide detailed
proofs of all facts quoted here. It can be treated as a mention of a kind of
curiosity in entropy theory, of which it is good to be aware.

For two or three partitions with finite entropy (or just finite, for simplicity),
the inequalities of Fact 1.6.4 (combined with the equality (1.4.3)) bound the
set of possible vectors

vip,0) = (H(P), H(Q), H(PV Q)

(for two partitions) or

V((P,Q,IR) =
(H(P), H(Q), H(R), H(P Vv Q), HPV R), HQV R), H(PV QVR))

(for three partitions). Of course, these bounds (called Shannon inequalities) are
applicable also to collections of four or more partitions; any two or three joins
composed from such a collection must obey them. Thus, the following prob-
lem arises: Are these the only restrictions? Surprisingly, the answer is positive
only for two partitions; any nonnegative vector v = (a, b, c) equals v(p o) for
some partitions, if and only if max{a,b} < ¢ < a + b (see Exercise 1.7).
We will show that already for £ = 3 the set of corresponding vectors cannot be
described by homogeneous linear inequalities (i.e., without additive constants),
because it is not invariant under positive scaling (i.e., it is not a cone).

Fact 1.9.1 The vector (1,1,1,2,2,2,2) can be obtained as v(p g x), while

its half, (%, %, %, 1,1,1,1), cannot.

Proof The first statement is seen by taking three two-element partitions of
the standard space modeled by the unit square with the Lebesgue measure: P
is the partition into the vertical halves, Q is the partition into the horizontal
halves, and R < PV Q is the “chessboard partition” consisting of two sets: the
union of the top-left and bottom-right corner squares, and its complement.
The second statement needs some computation. Suppose the “half vector”
equals v(p o x) for some partitions. Because the entropies of each pair behave
additively under joining, each pair is stochastically independent (see Fact
1.6.16). On the other hand, since joining the third partition does not increase
the entropy of the join of the other two, it follows that R < P V Q (see
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Fact 1.6.16). Notice that H(P) < 1/2 forces P to contain a set of measure
larger than 1/+/2. Clearly this set is the largest in this partition. Analogously
for Q and R. Let a, b and ¢ denote the measures of the largest sets A, B and C'
in P, Q and R, respectively. Permuting, if necessary, the names of the partitions
we can assume that ¢ < a and ¢ < b. By independence, u(ANB) = ab > 1/2,
and since C'is a union of such intersections, AN B must be a part of C. On the
other hand ;1(A N C) = ac < ab implies that AN C = AN B and similarly,
BN C = An B. This yields ac = bc = ab, hence a = b = c. This also
implies that C'\ AN B C A°N B¢, i.e., thata — a? < (1 —a)?. This quadratic
inequality solves as a < 1/2 or a > 1. In the first case the entropies of the
three partitions are larger than or equal to 1, in the other case they all equal
Zero. O

We are facing the following general problem: Consider the standard proba-
bility space (X, 2, 11), and a collection of k € N measurable partitions P; of
X (i =1,...,k). Associated with these is the (2¥ — 1)-dimensional vector of
Shannon entropies

V(Py,...,Pp) = <HH(:PF) : (Z) 75 F C {1, .. ,k}> s

where, P abbreviates the join \/ iR P;, and the indexing sets F' are ordered
increasingly by cardinality (so that the first k coordinates are just the entropies
of the P;’s, the last coordinate is the entropy of the join of all of them). Describe
the set

I = {v(p,,... 20 Pi, ..., Py are countable partitions with finite entropy }.

Question 1.9.2 It is clear that the set I';’ obtained by admitting, in its defini-
tion, only finite partitions (but without bounding their cardinality) is dense in
I}.. Is it the same set?

Another pathology of the set Iy, for £ > 3 (in spite of not being a cone) is
that it is not even closed. This will follow immediately from the example above
and the statement proved below:

Fact 1.9.3 For each k > 1, the closure I}, is a cone.

Proof Ifv = v(p, . ) andm € N, then mv also belongs to I';. This is
seen by regarding the product space X with the product measure ™ and
taking partitions P; = \/7_, fPZ(j ), where fPEj ) is the partition P; applied to
the jth copy of X (and crossed with the trivial partitions at other coordinates).
Now, for each ) # F' C {1,...,k}, P} is the join of independent copies of
Pr, hence its entropy is precisely m times larger.
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Because every multiplier can be approximated by a rational one with very
large denominator, in order to prove Fact 1.9.3 it now suffices, for each v € T},
to approximate %v by an element of I} up to an error small for large n.

So, again, assume that v = v(p, 5. Let X' be the product of X with the
set {1,...,n}, equipped with the product sigma-algebra 2’ = Ax{all sub-
sets} and the product measure i/ = p x Prob, where Prob is the normalized
counting measure on {1,...,n}. Now, (X', ', 1) is again a standard prob-
ability space. In this space, the set A = X x {1} has measure 1/n and the
complement B = X X {2,...,n} has measure (n — 1)/n. Let Q = {A, B} be
the associated partition of X".

Now define partitions P; (i = 1,...,k) of X’ as follows: each of them
refines the partition Q; on the small part A they are copies of P;, respectively
(formally they are P; x {1}), and on B they are trivial, i.e., they all contain
the large set B in one piece. We fix a nonempty set F' C {1,...,k} and we
calculate the Shannon entropy of the join P. Because Q is refined by each P},
it is also refined by P%, thus we have

H(Pp) = H(PrV Q) = H(Pp|Q) + H(Q) =
@ (B)Hp(Pp) + /(A Ha(Pp) + H(Q) = %1 -0+ L H,(Pr) + H(Q) =
LH,(Pr) + H(Q).

The error term H (Q) of this approximation depends only on n and converges
to zero as n — oo. This concludes the proof. O

The closure I remains hard to describe; only for k£ < 3 it is determined
by the Shannon inequalities. For & > 4 this set is not even a polyhedral
cone, i.e., it cannot be described by a system of linear inequalities. The known
constraints (inequalities) embracing the set I, and not following from the
Shannon inequalities are called “non-Shannon inequalities” and are usually
highly nontrivial. The list of such inequalities is not exhausted and every now
and then new non-Shannon inequalities are being discovered [see Makarychev
et al., 2002, and references therein]. Below we replicate (without a proof) from
[Zhang and Yeung, 1997] an example of such an inequality valid for & = 4:

H(Tl \/Tg) +H(fP1 \/f])g,) +3(H(j)2 \/T;),) +H(:P3 \/934) —l—H(TQ \/?4)) >
2H (P2)+2H (P3)+H (Pa)+H(P1VPy)+H(P1VPVP3)+4H (P VP3VPy).

Question 1.9.4 There is another, similar set of vectors, say fk, arising as
dynamical entropies of all possible joins composed out of & partitions, under an
action of measure-preserving transformation of the standard probability space
(see the next chapter). The definition of [, involves all possible systems of k
partitions as well as all possible transformations. Directly from the definition of
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the dynamical entropy (which is the limit of expressions of the form %H (Pm),
where P is a partition), and from scalability of the set I}, it is immediately
seen that this new set is contained in I};,. Whether it is closed (hence fk =T)
seems to be, at the moment this book was written, an open problem.

1.1

1.2

1.3

1.4

1.5

Exercises

Show that every nonnegative concave function f on [0, a] or on [0, 00) is
subadditive, i.e., f(z +y) < f(x) + f(y) whenever x, y, x + y belong
to the domain.

Prove that a sequence of countable probability vectors converges in ¢! to
a probability vector if and only if the convergence is coordinatewise.
Consider an abstract function H : X — [0, 00), where X is some set
equipped with an associative and commutative operation V. Assume that
foralla,b € X, H(aVb) > H(a) and define H (a|b) as H(aVb)— H (b).
Derive

H(aVblc)=H(albV c¢)+ H(blc),
H(aV blc) > H(alc).
Assuming additionally that H (a|b) > H(a|bVc) (forall a, b, c € X) and

that there exists e € X such that a V e = a for all a € X (e is a “unity”
for V), derive also

H(aV blc) < H(ale) + H(b|c),
H(aVb) < H(a) + H(b),
H(aVd|bVvd) < H(alb) + H(d'|t),
H(alc) < H(alb) + H(blc),
|H (alc) — H(blc)| < max{H (a|b), H(b|a)},
|H (alb) — H(alc)| < max{H (blc), H(c|b)},
|H(a) — H(b)| < max{H(alb), H(b|a)}.

Prove that for every finite-dimensional probability vector p=
{p1,...,pi} we have

< —n; .
H(p)flrg%(l pi)logl+1

Let p = (p;)i>1 be a probability vector. Show that for every £ > 0 there
exists a subsequence my of the natural numbers, such that the vector
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1.6

1.7

Shannon information and entropy

p’ = (pj) where p; = Y>> pi (we set mg = 0) has entropy
smaller than €.

Give an example showing that mutual information is not subadditive, i.e.,
that the inequality (P V Q;R) < I(P;R) + I1(Q;R) may fail.

Show that for any triple a, b, ¢ € [0, 00) such that max{a, b} < ¢ < a+b
there exist two partitions P, Q (say, of the unit square with the Lebesgue
measure) such that H(P) = a, H(Q) =band H(PV Q) = c.
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Dynamical entropy of a process

2.1 Subadditivity

Subadditivity is a property of real functions (we have already mentioned it for
the function 1), sequences, and also sequences of functions (so-called cocy-
cles) defined on a dynamical system. Because it plays a very important role in
the theory of entropy, we isolate this short section.

We will distinguish four classes of sequences (ay)n>1 of nonnegative
numbers:

(A) the sequence (a,,) has decreasing increments if (a, — an—1) (with ag
defined as 0) is decreasing;

(B) the sequence (a,,) has decreasing nths if (%an) is decreasing;

(C) the sequence (ay,) is subadditive if a1, < ap, + am,, forany m,n € N;

(D) the sequence (a,) has descending nths if (La,) converges to its
infimum.

Fact 2.1.1 (A) = (B) = (C) = (D). None of the implications can
be reversed. If (A) holds, then (ay,) increases and li}ln(anﬂ —ap) = liﬁn%an.
Proof The term %an is the arithmetic average of the first n increments.
Averages of a decreasing sequence decrease to the same limit, so (A) implies
(B) and equality of the appropriate limits. If (a, ) was not increasing, there
would be a negative increment and all following increments would be
even smaller, leading eventually to negative values of a, (assumed to be
nonnegative).
Further, (B) implies ﬁamhl < min{-la,, La,}, hence
1 n 1

am

a < — —a
m+n """ mtnm m+nn
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which, after cancellation, yields (C). Assume (C). If m = kn + r with 0 <
r < n, then

hence, for every n, limsup,,, 9= < %= This implies (D). Examples justifying
the last statement are elementary. [

The following lemma will be used to show that some sequences have
decreasing nths.

Lemma 2.1.2 LetE:%(a1+a2+-~+an),5: L (by+by+-4by1).

n—1

Ifb; > a; and b; > a;y 1, foreachi =1,2,...,n — 1, then b > a.

Proof

n(by4+by+-++by1) =
(n - 1)b1 + [bl + (n — 2)1)2} + -+ [(TL — Q)bn_Q + bn—l] + (’I'L - 1)bn_12
n—1a+ m—1ax +---+ (n—1)ap—1 + (n—1)a, =
(n—1) (a1 + a2+ +ay).
O

For certain sequences related to dynamical entropy, subadditivity is usually
the property most easy to verify, and sufficient for the existence of appropriate
limits. Nevertheless, in most cases, either (A) or at least (B) also holds. We
will comment on that in due course.

Now we pass to discussing subadditive cocycles.

Definition 2.1.3 Let X be any space and 7' : X — X any transformation.
By a subadditive cocycle on the system (X, T) we will mean a sequence of
nonnegative functions ( fn)nZl such that for every z € X and every natural m
and n, it holds that

fman(®) < fu(@) + fr(T"2).

If (f,,) is a subadditive cocycle such that f; is bounded from above, then the
sequence (a,,) defined by a,, = sup,¢ x fn(x) is subadditive. Moreover, if the
cocycle is defined on a measure space, 7' is measure-preserving and each f,, is
integrable, then the sequence (b, ), where b,, = f fn du, is also subadditive.

Although the next theorem does not refer directly to entropy we give here
a relatively elementary proof. For a more general version see [Krengel, 1985,
Theorem 5.3]. In the formulation, we anticipate a bit our notation. It is
explained at the beginning of the next section.
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Theorem 2.1.4 (Subadditive Ergodic Theorem) Let (X, 2, u,T,S) be an
ergodic measure-preserving transformation and let (f,,)nen be a measurable
subadditive cocycle with f1 bounded from above. Then, p-almost surely

1 1
lim — f,, () = lim — / fndp. (2.1.5)
n n n n
The limit on the right-hand side can be replaced by the infimum.

Proof Denote by C' the limit on the right, whose existence (and the last state-
ment) follows from the subadditivity of the sequence of integrals. Assume that
f1 is bounded from above by a constant a. Then, for each n € N, % fn is
also bounded from above by a. Fix two natural numbers, m > n and write
m = kn + [ (I < n). By subadditivity of f, we have

fm(2) <) fu(T™2) + la.

%

S
Ju

I
=)

Substituting z by T'z, . .., T" ' and adding on both sides we obtain

m—1

n—1
> fn(Tiz) <Y fulT'2) + nla. (2.1.6)

=0

On the other hand, applying subadditivity again, for each 0 < 7 < n we have

fm—l—n(x) < fz(x) + fm(TZ-r) + fn—i(Tm+ix)a

where the sum of the first and last terms does not exceed na. Averaging over
0 <4 < n and applying the previous estimate we get

1 m—
m n m T - 2 2.1.7
Fr Zf ©) +na < — Z )+ 2na. (2.17)

i=0 i=0

Dividing by m and letting m — oo we obtain, by the ergodic theorem,
lim sup — fm / fndp,

for p-almost every x. Since n is arbitrary, we have, almost surely,

1
lim sup Efm(x) <C.

m—00

It remains to prove the reversed inequality with lim inf. Recall that a mea-
surable function g is called subinvariant (or supinvariant) if, for almost all
xeX, g(Tz)<g(x) (or g(T'z) > g(x)), and that in ergodic systems only
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constants are subinvariant (supinvariant). So, suppose for contrary that for
some positive ¢,
lim inf %fn(m) < C —3ace (2.1.8)
n—oo
on a positive measure set. Denote ¢ = C' — 3ae. By subadditivity, f,11(z) <
a+ fn(Tx), hence the function lim inf,, % fn 18 supinvariant, and thus constant
p-almost everywhere. This implies that the inequality (2.1.8) holds in fact on
a full measure set. In particular,

u([j{x tLf(z) < c}) =1

Then there exists nq such that the set
no
E=|J{x: fa(z) <nc} (2.1.9)
n=1

has measure larger than 1 — €. By the Ergodic Theorem applied to the charac-
teristic function of E there exists a positive integer m larger than ng/c such
that the set

F:{m;mLO#{izogi<mo,Tier}>1—s} (2.1.10)

has measure also larger than 1 — ¢. By the definition of C'in (2.1.5) we have

moC < /fmg dp = / fmo dpt +/ Jmo it
F X\F

The second integral is smaller than mgae. We will arrive at a contradiction
with (2.1.8) by estimating the first integral by mg(c + 2ae). This will be done
by showing that f,,,,(x) < mg(c + 2ae) for every x € F. We fix such an z
and proceed as follows:

We denote by i; the smallest nonnegative integer with T4z € E and
we choose an n; < ng with f,,, (T"x) < njc (see the definition of E in
(2.1.9)). Inductively, for each k > 1, we let ¢; be the smallest integer satis-
fying iy, > ix—1 + nk—1 and T2 € E, and we choose an n;, < ng with
fnp (TP x) < nge. We call [ig, iy, + 1) a good interval. The number of posi-
tive integers smaller than mg not contained in good intervals is at most mge
(see the definition of F' in (2.1.10)). The length of the last incomplete part of
a good interval intersecting [0, my) (if such exists) is at most ng, also smaller
than mee. The sum n1 + ng + - - - + ny, representing the joint length of good
intervals fully contained in [0, mg) is thus larger than mg(1 — 2¢). A final



2.2 Preliminaries on dynamical systems 57

application of subadditivity allows us to write

k‘[] k'()
fmo (l‘) < Z f'ﬂk (lel‘) —+ (mo - an)a'a
k=1 k=1

where the first sum comes from the good intervals and the second one estimates
the rest. Replacing each f,,, (T x) by njc we obtain

Fmo (@) < moc+ 2mpea < mo(c + 2ae),

as claimed. O

2.2 Preliminaries on dynamical systems

We assume familiarity of the reader with basics of ergodic theory, nonethe-
less we recall the notation. Let (X, 2, ) be a standard (completed) probabil-
ity space and let 7" : X — X be a measurable measure-preserving map (an
endomorphism), i.e., such that T-1(A) € 2 and u(T1(A)) = u(A), for
every A € 2. The semigroup of nonnegative integers acts on X by iterates of
T, with the convention that T is the identity map. We call T an automorphism
when, after discarding a set of measure zero, T' becomes injective. Then 71
can be defined almost everywhere, and in standard spaces it is automatically
measurable and preserves p. In such case we can also consider the action of the
group which includes the iterates of 7~ !. In some aspects it is very important
to remember which action one has in mind. In case of an automorphism we
can still have two different actions and the corresponding (measure-theoretic)
dynamical systems will be denoted by (X, 2, u, T,Ng) and (X, 2, u, T, 7Z),
respectively, or by (X, 2, 1, T,S) (S € {Ny,Z}) if we want to include both
choices. The set S will be referred to as the acting semigroup.
Example 2.2.1 Let X be a compact metric space and let 7' : X — X be
a continuous map (or homeomorphism). The triple (X, T, S) is called a topolog-
ical dynamical system. It is known that the collection of T'-invariant probability
measures p on the Borel sigma-algebra 2 x in X is nonempty. Every such mea-

sure produces a dynamical system (X, 2, u, T, S) (2, is the Borel sigma-algebra
completed with respect to ).

A dynamical system (Y, B, v, S,S) is a factor of (X, u,T,S) (equiva-
lently, (X, 2, u, T, S) is an extension of (Y, B, v, S,S)) (notice that we require
the acting semigroup to be the same) if there is a measurable map (called a
factor map) w : X — Y which is equivariant, i.e., suchthat roT = Sonw
and mp = v. Every factor (Y,B,r,S,S) determines a sigma-algebra in X,
7-1(B) < 2, whenever possible also denoted by B. This sigma-algebra is
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subinvariant, i.e., T~1 (B) < B or, in case S is invertible (for instance, when
S = Z), itis invariant, i.e., T~ (B) after completing equals 8. Notice that by
preservation of the measure, after discarding a set of measure zero, 7' is a sur-
jection, hence the last condition also implies T'(8) = B. Conversely, it is well
known in ergodic theory (compare Fact 1.2.2) that every subinvariant sigma-
algebra B (invariant if S = Z) defines a factor of the system (X, 2L, 1, T, S).
The space Y of that factor corresponds to the collection of all atoms of the
sigma-algebra 8. The action on this factor is invertible if and only if B is
invariant.

Two systems (X, 2, 4, T,S) and (Y, B, v, S, S) are isomorphic if there exists
a factor map 7 : X — Y which is invertible. It is important to realize that a
factor of a system associated with a (sub)invariant proper sub-sigma-algebra
can be isomorphic to the whole system via another map (see Exercise 2.1).

An extremely important class of systems are symbolic dynamical systems,
in which X is the space AS" (S’ € {Ny,Z}) of unilateral (i.e., with §' = Np)
or bilateral (i.e., with S’ = Z) sequences (x;);cs/ over a countable set A called
the alphabet. In such spaces we will always regard only one “master” sigma-
algebra, namely the completed product sigma-algebra in A, where each copy
of A is equipped with the sigma-algebra of all subsets. The transformation T’
will be typically the shift transformation o defined by o (2;)ics’ = (Tit1)ies -
The measure i can be chosen as any shift-invariant measure. In full generality
we assume that S C S’. The remaining configuration, S’ = Ny and S = Z, is
possible only when the shift map is invertible on unilateral sequences, which
has very strong consequences (see Fact 2.3.12). We will denote symbolic sys-
tems by (AS', i, 0, S), skipping the obvious sigma-algebra.

Let P be a finite or countable partition of X and let A be a set of labels
assigned bijectively to the elements of P. The map

= 7 = (Tp)nes € AS

defined by the rule z,, = a <= T"xz € A, where a € A is the label of A €
P, is a factor map from (X, 2, i, 7', S) to the symbolic system over the alpha-
bet A with the shift-invariant measure 7. This symbolic factor system will be
called the process generated by P and denoted by (X, P, 1, T, S). The reader
will easily distinguish between a dynamical system denoted by (X, 2, i1, T, S)
(with the sigma-algebra in Gothic) and a process (X, P, 1, T,S), where the
emphasis is on one selected partition. The sequence (z,)res corresponding to
apoint z € X will be referred to as the P-name of .

Every symbolic system (AS/7 i, 0, S) is a process in the above sense, as long
as S’ = S. It suffices to take X = A® and consider the zero-coordinate parti-
tion Py = {A, : a € A}, where A, = {z € A® : 2y = a}. Every z is now
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identical with its own P, -name, so the process generated by P, is equal to the
original system. From now on the term “process” becomes almost synonymous
with “symbolic dynamical system,” except that a process requires S’ = S and
we want to maintain the reference to the “master” dynamical system and the
selected partition.

In a symbolic system, for (z,,) € ASandi < j € S, by z[i, j] we will denote
the block (z;,xi41,...,x;) € AV~ With each block B € A™ we associate
its cylinder set, Ugp = {z : x[0,n — 1] = B}. In a process (X, P, u,T,S)
generated by a partition P labeled by an alphabet A the cylinder is formally the
preimage of Up by 7. For n > 1 we will denote:

n—1
=\ T7(P).
=0

By convention, P° equals the trivial partition. It is easy to see that P" equals
the partition into the cylinder sets 7! (Up) over all blocks B € A™. From now
on we will identify the blocks B with their cylinders Up (in symbolic systems)
or with 7~ 1(Up) (in processes) and denote by B both the block and the cylin-
der, depending on the context. We shall not use Up or 7~ !(Up) again. In
other words, we will identify the Cartesian product A™ with the above defined
join P,
We will also use the following notation: if D is a finite subset of S, then

PP =\/T7(P).
ieD

If D is infinite, PP will be used to denote the smallest completed sigma-algebra
containing all the partitions 7'~*(P), where i € . Intuitively, P is the par-
tition (or sigma-algebra) with atoms determined by the entries the P-names
assume at the coordinates ¢ € D. In addition to the above introduced conven-
tion PlO7=1] = P e will also abbreviate P~" = Pl=n—1] P~ = P(-o0,~1]
and P+ = PI1>)_ The partitions P~", P and the sigma-algebras P, P+ will
be called the nth past, the nth present, the full past and the full future of the
process, respectively. Of course, the notions involving the past apply only to
the invertible case with S = Z. By the full history of the process we shall mean
PS, the full completed sigma-algebra generated by P via the dynamics.

Remark 2.2.2 We apologize for not sticking to the most commonly used
notation P” in place of our P[™ ", There are two major reasons for that: (1)
we will often use partitions with a subscript, which would collide with the
“lower bound” m, (2) we will use more complicated sets D than intervals, for
which the traditional denotation is insufficient.
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2.3 Dynamical entropy of a process

Dynamical entropy of a process depends only on its future, so it is not
important whether we deal with the action of N or Z. Nevertheless, since some
properties related to entropy of the process do depend on the acting semigroup,
we will keep it in mind (and S in the denotation). In order to avoid repetitions of
very similar constructions and statements, we will discuss dynamical entropy
and conditional dynamical entropy at the same time.

Let (X, 2, 1, T,S) be a dynamical system. As long as the transformation
and measure are fixed, we will skip them in the denotation of the entropy
notions. We will consider two countable partitions P, Q and a sigma-algebra
B which represents a factor (recall that 98 is subinvariant, i.e., 7~ 1(8) < B,
in case S = Ny, or invariant, i.e., T-1(B) = B, in case S = Z). We will be
interested in the following four sequences:

H(PY), H(P"|%B), H(P"|Q"), H(P"|Q"V B).

Subadditivity of these sequences can be immediately derived from (1.6.33),
subinvariance of B and T-invariance of the measure, and in most cases this
subadditivity would be enough for us. But in fact these sequences satisfy
stronger conditions. Since the proof in full generality seems not to occur in
other textbooks, we have decided to give it.

Fact 2.3.1 The sequences H(P™), H(P"|B), H(P"|Q™), H(P"|Q™ Vv B)
have decreasing nths. Moreover, the sequences H(P™) and H(P™|B) have
decreasing increments.

Proof Of course, it suffices to prove the decreasing nths for H (P™|Q™ Vv B).
This term decomposes, by (1.6.26), into n terms

H(P|Q"VB)+H(T HP)|PVv Q" VB)+H(T %(P)|P*vA"VB)+---
n—1

o HT™OTD(@)Prt v Qr v B) = > H(TH(P)[PF v Q" v B),
=0

and H(P"~1|Q"~1 v B) decomposes analogously, into n — 1 terms
n—2

S CH(T(P)P vtV B),

=0
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Clearly, the ith term below is not smaller than the ith term above. But it is also
not smaller than the (i + 1)st term above:

H(T™*(P)[P' v tvB) = H(T- D (@) phdvaltr=tlyr=1()) >
H(T~0FDp|pitt v Qn v B).

It is now seen that@ = L H(P"|Q" V B) and b = S H(P"~1|Q"~! v B)
satisfy the requirements of Lemma 2.1.2, so b>a.

The second statement is much easier (though stronger for the sequences to
which it applies). By (1.6.26), the nth increment is

H(P"|B) — H(P" 1 B) = H(T"T(P)|P ! v B). (2.3.2)

Similarly, the (n + 1)st increment is H (7~ (P)|P™ v B). Applying T}, the
nth increment can be rewritten as H (7" (P)|Pl"~1 v T—1(B)). Because
Py B = Pl T-1(B), the (n+ 1)st increment is not larger than
the nth. O

We can now define the major notions of this section (and, perhaps, of the
entire book): the dynamical entropy of a process interpreted as the average
gain of information per iterate.

Definition 2.3.3 Assume H(P) < oc. The value
h(p, T,P) = h(P) =lim | - H(P")

will be called the dynamical entropy of (the process generated by) P. The sim-
plified notation will be used when the measure and the transformation are fixed.
The values

h(u, T, P|B) = h(P|B) = lim | - H(P"(B),
h(u, T,P|Q) = h(P|Q) = lim | L H(P"|Q"), and
h(p, T, P|Q,B) = h(P|Q,B) =lim | LH(P"|Q" v B)

(assuming H(P|B) < oo, or H(P|Q) < oo, or H(P|Q V B) < oo, respec-
tively) are called the conditional dynamical entropy of P given B, given Q, and
given both Q and *B.

Let us remark that the finiteness assumption is completely natural and nec-
essary. Without it, the corresponding dynamical entropy is infinite, even for
the action of the identity transformation, i.e., the infinite value is completely
useless for describing the “complexity” of the dynamical system.

We can derive another formula which is often used as an alternative defini-
tion of the dynamical entropy. It allows for another interpretation of h(P), as
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the expected gain of information in one step given all the information from the
future (or the past, depending on how we interpret the direction of the time) of
the process.

Fact 2.3.4 Let B denote an invariant sigma-algebra (in particular, trivial)
such that H(P|B) < co. Then

h(P|B) = H(P|PT v B), (2.3.5)
h(P) = H(P|PT). (2.3.6)
Proof Since now T 1(B) = B, we can rework the increment in the

sequence H (P |B) differently:
H(P"HB)—H(P"|B) = H(P"HB)—H(T~H(P")|B) = H(P|PL"vB).
By Fact 2.1.1, these increments converge to the same limit as ~H (P"|9B),

ie., to h(u,T,P|™B). On the other hand, by (1.7.12), their limit equals
H(P|P+ v B). O

We shall now explain that the last two notions in Definition 2.3.3 (condi-
tional dynamical entropy given Q and given Q,B) reduce to the preceding
notion of conditional dynamical entropy given a subinvariant sigma-algebra.

Fact 2.3.7
H(P|Q) < oo = h(P|Q) = h(P|Q°), (2.3.8)
H(P|QVB) < co = h(P|Q,B) = h(P|Q° v B). (2.3.9)
Notice that the terms on the right are more universal, as they require weaker

finiteness assumptions (H (P|Q°) < oo or H(P|Q% v B) < 00). Nevertheless,
the limits involving Q™ rather than Q° are often more convenient to use.

Proof of Fact 2.3.7 1t suffices to prove (2.3.9). It follows directly from the
definition that h(P|Q,B) > h(P|Q° v B). To get the reversed inequality for
S = Ny we write
H(PmHm|Qmtny®) < H(P™|QmH"VB) + H(T ™ (P™)|Qm " VvB) <
H(:])nl,‘Qm—i-'rL \/ %) + H(T—nl (rJ)ﬂ)|T—m(Qn) \/ T—m(%)) —
H(P™Qm"™ v B) + H(P"|Q" V B).

If S = Z, 9B is necessarily invariant and, then we write

H((PerZn‘Qer?n Vi %) <
H(:-Pn‘Qm+2nv%)_~_H<T—n(.:Pm)|Qm+2n\/;B)+H(T—n—m(?71)‘Qm+2nv%)
< 2H(P"|Q™ v B) + H(Pm|Ql-mmin—ily @),
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Dividing by m and taking infimum over m we obtain,
h(P|Q,B) < i%f LH@P"Q™" v B) or
h(P|Q,B) < inf Lpg@mgl-rmin-ily g,

depending on the choice of S. Because this is true for every n, we can apply
infimum over n on the right. We can also reverse the order of the infima:

h(P|Q,B) < inf L inf H(P™(|Q™H" v B) = inf L H(P™|Q% v B) or
h(P|Q,®) < inf L inf H(P™|Ql-mmHn=1 v 98) = inf L H(P™|Q% v B).
O

Remark 2.3.10 For actions of S = Z the sigma-algebra QF is invariant (and
so is B), hence, by (2.3.5), we also have

h(P|Q,B) = H(P|PT v Q° Vv B). (2.3.11)

There is now an interesting interpretation of dynamical entropy zero related
to invertibility.

Fact 2.3.12 Consider a process (X, P, u, T,S). The three conditions below
are equivalent:

(a) h(u,T,P)=0;
(b) P is PT-measurable;
(c) the shift map o on the unilateral symbolic space (A0, ) is invertible,

where A is a set of labels bijectively assigned to the elements of the partition
P, 7 is the factor map sending each x to its unilateral P-name and 7w is [
transported via 7 (by preimage).

Proof The condition h(u,T,P) = 0 reads H(P|PT) = 0. The statement
(1.6.28) now establishes the equivalence between (a) and (b). If (b) holds, then
for p-almost every € X the unilateral P-name of T2 determines the element
of P containing x. In other words, the unilateral P-name of T’z determines the
unilateral P-name of x, and this is exactly (c). In the unilateral symbolic system
(ANo 7u, o, Ng), PNo is, by definition, the full (product) sigma-algebra. If (c)
holds, then T'(P) is measurable (i.e., P0-measurable). Applying T~ we get
that P is P*-measurable, i.e., (b). O

The above Fact 2.3.12 can be expressed as follows:

e Every zero-entropy process is in fact invertible.
e An invertible process has entropy zero if and only if P* = P+ (= P).
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In yet other words, if a process has entropy zero, then regardless of whether
it is an action of Ny or Z, almost every point has a well-defined backward P-
name or past (...,x_o,x_1) and this past determines the future of z. Such
processes are often called deterministic. See also Section 3.2 devoted to the
Pinsker factor.

Example 2.3.13 Let T denote the unit circle on the complex plane and let R :
T — T be the rotation map given by R(z) = oz, where o € T. We have a
topological dynamical system (T, R, S). The normalized Lebesgue measure \ is
preserved by R. So, we have a dynamical system (T, 2z, A, R, S). It is well known,
that this system is ergodic if and only if o is not a root of unity (then we deal
with an irrational rotation). Every partition P into two complementary arcs Ao, A1
produces a so-called Sturmian process’ (T, P, ), R,S). The past of every point
determines this point, so the process has entropy zero.

Remark 2.3.14  Since, for an invertible map, h(u, T, P) = h(u, T~1,P), it
follows from Fact 2.3.12 (b) that P is measurable with respect to P+ if and only
if it is measurable with respect to P~. This fact refers only to sigma-algebras
and measurability, in particular it is expressed without using the entropy. It
would be very interesting to have a proof based exclusively on manipulating
sigma-algebras. Such a proof, however, is not known. This is a good example
showing how powerful a tool the entropy theory is. See also Question 3.2.3.

The opposite class to processes of entropy zero are independent processes.

Definition 2.3.15 A process (X, P, u, T, S) is independent if h(P) = H(P),
equivalently, H(P|PT) = H(P), i.e, P is independent of the future (see Fact
1.6.38).

Independent processes have only one possible symbolic realization — as
Bernoulli shifts.”

Let p = (p1,pe, ... ) be a probability distribution on a countable (or finite)
set of symbols A, satisfying H(p) < co. On X = AS the product measure
p = p° is shift invariant. It is easy to see that, for each n, H(P%) = nH (p),
so h(Pp) = H(Pa) = H(p), so the process generated by P, on the symbolic
system (A5, u, o, S) is an independent process.

1 Some authors restict the name “Sturmian” only to the process generated by the partition with
cuts at 1 and p.

2 Bernoulli shifts should not be confused with Bernoulli processes (or Bernoulli systems), by
which we understand any process (system) isomorphic to a Bernoulli shift. See also Section
4.5.
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2.4 Properties of dynamical entropy
We start with a useful statement:
Fact 2.4.1 Suppose H(Q) < co and Q < PYo. Then
h(Q) < h(P).

Proof Note that Q < PNo implies QT < P*. By (1.6.26) and (1.6.28) we
have

h(Q) < h(PV Q) = H(PV QP vat) = HPvQPH) =
H(QIPV PT) + H(P|PF) = 0+ h(P).

O

Applying the decreasing limit of Definition 2.3.3 to appropriate rules for
static entropy ((1.6.26), Fact 1.6.27 and Corollary 1.6.31) we derive the list
of already familiar monotonicity and subadditivity properties, this time for
dynamical entropy. The last two statements are consequences of the preced-
ing two and the inequality A(P|Q) < H(P|Q). Of course, all the statements
are valid with ‘B replaced by a partition, or the trivial sigma-algebra. We skip
rewriting these versions, except the first one which is most frequently used.

Fact 2.4.2 Let P,Q,R be any countable partitions, and B a subinvariant
sigma-algebra. Then

h(P Vv QB) = h(P|Q,B) + h(Q|B), (2.4.3)

h(P Vv Q) = h(P|Q) + h(Q), (2.4.4)

P=Q = h(P|B) > h(QIB), (2.4.5)

B = ¢ = h(PIB) < h(P|C), (2.4.6)
h(PV QIB) < h(P|B) + h(Q|B), (2.4.7)

h(P|B) < h(P|Q) + h(Q]B), (2.4.8)

h(P|R,B) < h(P|Q,B) + h(Q|R,B), (2.4.9)

[h(P1B) — 1(QB)| < max{H(P|Q), H(Q|P)}, (2.4.10)
|h(P|Q,B) — h(P|R,B)| < max{H(QIR), H(R|Q)}. (24.11)
O

Recall that if P is countable, then iP(m) denotes the m-element partition
obtained by uniting all but the largest m — 1 cells. Because P(,,) < P(p1),
the entropies h(P(,,)|Q) increase.
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Fact 2.4.12 Assume H(P|B) < oo (with B subinvariant). Then
h(P[B) = lim T A(P(y)[B).

In particular, replacing B by Q° or the trivial partition we get
h(P|Q) = lim T h(P(n)[Q),
m

Proof By (2.4.10), and since P 3= P(,,), we have [2(P|B) — h(P(,)|B)| <
H(P|P(my) = H(P) — H(P (1)), which by (1.6.18) decreases to zero. Mono-
tonicity is obvious by (2.4.5). O

‘We remark that the finiteness assumption cannot be skipped. For instance, let
T be the identity map on a nonatomic space. There exist partitions with infinite
static (hence dynamical) entropy, while every finite partition has dynamical
entropy zero.

We pass to the continuity properties.

Fact 2.4.13  The functions h(-|B), where B is a fixed subinvariant sigma-
algebra, in particular h(-|Q) for any fixed partition Q, and h(-), are uniformly
continuous on Pr (with the Rokhlin metric dgr), while they are only lower
semicontinuous on the same space with respect to dy. If P satisfies H(P|B) <
oo, then the function h(P|-,B), (in particular h(P|-) where H(P) < o) is
uniformly continuous on Br and upper semicontinuous on By, (with respect
to dq).

Proof Uniform continuity of A(-|8) and h(P|-,B) in dg is literally (2.4.10)
and (2.4.11), respectively.

Lower semicontinuity of ~(:|%) in d; is proved at each P separately. Since
on finite partitions the metrics dg and d; are equivalent, h(P(,,)|®B) is con-
tinuous in dy at P(,,) for each m. Recall Fact 1.7.4, saying that the map
P+ P, is continuous in d; for infinitely many indices m. For these indices
P = h(P(m)|DB) is continuous at P. The increasing convergence of Fact 2.4.12
implies lower semicontinuity of h(:|®B) at P and thus globally.

Since h(P|Q,B) = hyan | 2H(P"Q™ Vv B), Fact 1.7.10 (dy-continuity of
H(P|-VvB)), implies that h(P|-,B) is upper semicontinuous in d;. O

Corollary 2.4.14 If P satisfies H(P|B) < oo, then for any countable parti-
tion Q we have

h(PIQV B) = lim | h(P|Qm) V B).
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Proof Since Q) clearly converge to Q in d;, we can apply the above
upper semicontinuity to obtain ~(P|QV B) > lim,, h(P|Q () VB). The other
inequality is trivial by the monotonicity (2.4.6). O

Lack of continuity of A(-) in d;, even for partitions with bounded static
entropy (i.e., on ‘Pg), is illustrated below. The same example shows lack of
continuity in d; of h(-|Q) and h(P|-).

Example 2.4.15 This example works for both cases of S. Consider the Bernoulli

shift on X = {0, 1}S (with the product Borel sigma-algebra), and the product mea-

sure {%, %}S Let P denote the zero-coordinate partition P (into the cylinders 0
and 1). Let Qj be the following partition: the cylinder associated with the block
0% = (000...0) is partitioned into 22" cylinders (blocks) of the form 0% B, where
B € fPZk, the rest of X is left in one piece (of measure 1 — 2”‘), labeled by .

Notice that the static entropy of Qy exceeds 2% -log 92" = 1. Clearly, the partitions
Qy, converge in d; to the trivial partition Q = { X }. The process generated by Qy, is
the factor of the full shift obtained by the following code: wherever we find a block
0% in the P-name of z, we maintain the zeros and the following 2* symbols. The
rest is replaced by the stars. Since in almost every = the gaps between the occur-
rences of the block 0F have nearly the exponential distribution with the expected
value 2%, the fraction of coordinates copied by the code has a value vy, stabilizing
for large k at a positive v. It is obvious that the dynamical entropy of the factor
process generated by Qy is at least vy, times h(?P), hence lim sup, h(Qx) > v > 0.
On the other hand, Q) — Qin dy, and h(Q) = 0.

Now observe the conditional entropies h(P|Qy). Clearly Q; < PN0 which
implies h(P|Qx) = h(P V Qi) — h(Qk) < h(P) — h(Qk) (see Fact 2.4.1) and
thus their lim inf is at most 1 — v. On the other hand, h(P|Q) = h(P) = 1.

A convergence as in (1.7.13) holds also for dynamical conditional entropies,
generalizing Corollary 2.4.14:

Fact 2.4.16 Let P be a partition with finite static entropy. If By, is an increas-
ing sequence of subinvariant sigma-algebras and B = \/, By, then

h(P|B) = liin 1 h(P|By). (2.4.17)
If By is a decreasing sequence of subinvariant sigma-algebras, and
B =, B, then

h(P|B) > liin T h(P|By). (2.4.18)
Proof Since the limit in Definition (2.3.3) is an infimum, we can apply (1.7.13)

(where the limit is also an infimum) and exchange the order of infima. The
inequality in (2.4.18) is obvious by monotonicity. 0

The inequality (2.4.18) cannot be reversed even for S = Z when all the
sigma-algebras are invariant. See Fact 3.2.8.
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We conclude this section with what we call the power rule, the calculation
of entropy in a process in which 7 is replaced by its iterate. There is a slight
inconvenience in the notation when regarding several transformations: the
terms of the form P™ require verbal explanation, to the action of which trans-
formation does the “power” n refer. Each time it refers to an action different
than that of 7', we will explicitly say it, managing to avoid the nasty notation
of the kind PT",

Given a process (X, P, u, T, S), we fix some n € S and let P = P™. Next,
we consider the power process (X, P, 1, T™,S). We have

Fact 2.4.19 (The Power Rule)

h(p, T, PI") =|n|h(p, T, P),
h(/‘v ™, Ppinl |%) :|n|h(M7 T, :Pl%)7

where negative values of n require B to be invariant (otherwise it is assumed
subinvariant).

Proof For n > 0 the partition P, where m refers to the action of T,
coincides with P™™ (now in the original process). This easily implies the
assertion for such n. For actions of Z, by invariance of 8, we have H (P"|B)
H(P~"|B), hence h(u, T, P|B) = h(p, T~1, P|B).

(]

Remark 2.4.20 By the way, for actions of Z we also have H(P|P") =
H(P|P~), which explains why entropy can be interpreted as the one step
information given the future as well as given the past.

2.5 Affinity of dynamical entropy

So far, we have been concerned with a fixed measure space, a fixed transfor-
mation, and we have been varying the partition. In this section we will change
this point of view. Given a measurable space (X,%2) and a measurable trans-
formation 7" there may exist many probability measures on 2{ preserved by 7T'.
So, we can study the behavior of h(u, T, P) as a function of y, with the other
parameters fixed.

Theorem 2.5.1 Dynamical entropy and conditional dynamical entropy of a
fixed partition are affine functions of the invariant measure. That is, for a par-
tition P of a measurable space (X,2l), a measurable transformation T of X,
and two probability measures . and v preserved by T, for any p € [0, 1] and
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q = 1 — p, the measure py + qu is preserved by T and
h(pp + qv, T,P) = ph(u, T,P) + qh(v, T, P).
If B is a T-subinvariant sigma-algebra, then also
h(pp + qu, T, P|B) = ph(u, T, P|B) + ¢h(v, T, P|B).

Proof 1t is obvious that py + qv is T-invariant. Concavity of dynamical
entropy follows from concavity of static entropy (see (1.3.5)) via the limit pas-
sage defining dynamical entropy. For convexity, consider a model in which X
is replaced by disjoint union of two copies X, X5 of the original space X.
The transformation 7" on this union is defined naturally, as 7" inside each of
the copies. The partition P of the united space is defined by uniting the pairs
of corresponding sets A € P in both copies. The measure p is regarded as
concentrated on X7, and v analogously on X5. Also let Q denote the partition
into the two copies. In this model, the measure pyu + qv assigns to each cell A
of P the convex combination pu(A) 4+ gv(A), the same as the combination of
measures does in the original model. The same holds for P, so the dynamical
entropy of pu + qv in this model is the same as in the original system. In this
model, for each n, we use the monotonicity (1.6.6), the formulae (1.4.3) and
(1.4.4), and we get

H(pp+ qv,P") <
H(pp+quv,P" Vv Q) = H(pu + qv, P"|Q) + H(pp + qv, Q) <
w(X1)Hx, (pp+ quv, P™) + w(Xa)Hx, (pp + qu, P™) + log 2 =
pH(u, P") + qH (v, P") + log 2.

Dividing by n and passing to the limit we arrive at the desired convexity condi-
tion. The proof of the conditional version is identical, except that now we need
to use concavity of the conditional entropy as stated in (1.4.8), monotonicity
(1.6.29), then (1.6.26) and (1.6.25). O

2.6 Conditional dynamical entropy via disintegration™

In this section we present a different approach to conditional dynamical
entropy given a subinvariant sigma-algebra, based on disintegration. This
approach will not be used in the main stream of argumentation, and we include
it for completeness purposes. Recall the formula (1.5.2) defining the disinte-
gration of y with respect to a sigma-algebra 8. If 7 is a factor map between
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dynamical systems (X, 2L, 1, T, S) and (Y, B, v, S,S), and B = 7~ 1(B), then
a desirable property of the disintegration is the following

Definition 2.6.1 The disintegration y — p,, is equivariant if

psy = T'hiy
for v-almost every y € Y.

In general, the disintegration with respect to a subinvariant sigma-algebra is
not guaranteed to be equivariant. It is so, however, when the sigma-algebra is
invariant [see e.g. Furstenberg, 1981, Proposition 5.9], or when (X, 2L, i1, T', S)
is a skew product extension of (Y,%B,v,S,S) [see e.g. Petersen, 1983, for the
definition of a skew product].

The following definition is a direct generalization of a function appearing
in [Abramov and Rokhlin, 1962] in the definition of the fiber entropy in skew
products:

Definition 2.6.2 Let P be a partition of X with H(P) < co. By the fiber
entropy of P with respect to the measure v we shall mean the function y +—
h(P|y) defined v-almost everywhere on Y by the formula

h(Ply) = lim | H (s, P|PL™).

Notice that (1.5.4) implies that H (p,, P) (hence also h(P|y)) is finite for
v-almost every y. It is interesting to note that fiber entropy as a function of y
need not be invariant, (nor, in the ergodic case, constant). We leave finding an
example to the reader, as Exercise 2.7.

Translating to our notation, Abramov and Rokhlin have proved that

sup/h(ﬂ’\y)dy(y) = sup h(P|B).
P P

The precise meaning of the last expression will be discussed in Section 4.1.
Now we shall strengthen the Abramov—Rokhlin Theorem by showing that it
holds also for a fixed partition (i.e., that the supremum can be dropped on both
sides).

Theorem 2.6.3 If (Y,B,v,S,S) is a factor of (X, U, u,T,S) via a map «
such that the disintegration of j. with respect to B = 7w~ 1(B) is equivariant,
then, for every partition P of X with H(P) < oo, we have

W(P|B) = / h(Ply)du(y).
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Proof We have
/h(T\y)dV(y) :/hmH(uyﬂ’lT“’"])dV(y) =
i [ [H P070)  H(ny, 207 () =

lim [/ H (1, P du(y) —/H(uy,T”)dV(y)}

using the Lebesgue Monotone Theorem, equivariance of the disintegration and
invariance of the measure v. Note that all these integrals are finite for almost
every y. The limit of the last sequence is the same as the limit of its averages,
which, after cancellation, reads:
1
lim = [ H (py, P")dv(y).
non
The integral, by the formula (1.5.4), equals H(P™|®B), so the last limit is
exactly h(P|B) (see Definition 2.3.3). O

A particular case of Theorem 2.6.3 occurs when ‘B is the sigma-algebra of
invariant sets. Clearly, this is an invariant sigma-algebra and the corresponding
disintegration is trivially equivariant. The disintegration formula y = [ 1, dv
then corresponds precisely to the ergodic decomposition of 1; the measures /i,
are the ergodic components of (1. Since T acts on the factor corresponding to B
by identity, its dynamical entropy is zero. Thus, using appropriate monotonic-
ities and (2.4.4) we get, for any fixed partition P of finite static entropy and
any finite B-measurable partition Q, h(P) > h(P|Q) > h(P) — h(Q) = h(?P).
Using a sequence of partitions Q which generate B, by (2.4.17), we obtain
h(P|B) = h(P). In this case Theorem 2.6.3 takes on the following form

Theorem 2.6.4 Let ji = [ p, dv be the ergodic decomposition of ji. Then,
for any partition P with H(u, P) finite, the following holds

sz/wmww» 0
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2.7 Summary of the properties of entropy

In the following tables we gather the major properties of static (top table) and dynamical (bottom
table) unconditional and conditional entropies treated as functions of P, Q, u (and, in the boxes,
of B). All abbreviations and unclear terms are explained below the table. In the second table ‘B is

subinvariant.

H(p, P) H{p, P19) H{(p, PIB) H(p, POV B)
increasing increasing increasing increasing
subadditive subadditive subadditive subadditive

P limitin (m) limit in (m) limit in (m) limit in (m)
B — u. cont. B — u. cont. By — u. cont. B — u. cont.
Pr, — Ls.c. Pry — Ls.c. Pry — Ls.c. Pr, — Ls.c.
decreasing decreasing decreasing
Q limit in (m)* B| incr. lim eq* limit in (m)***
Py, — u. cont.” decr. lim eq* P, — u. cont.***
M concave concave concave concave

W, T, P)° M T P A D08 R 1,710V B
increasing increasing increasing increasing
subadditive subadditive subadditive subadditive

p  power power power power
limit in (m) limit in (m) limit in (m) limit in (m)
Br — u. cont. Br — u. cont. Br — u. cont. Br — u. cont.
di1 — Ls.c. d1 — ls.c. di1 — ls.c. di1 — Ls.c.
decreasing decreasin decreasing
o limit in (m)* ) inor. Tim ot limit in (m)***
By, — u. cont.™ -meq " By — u. cont.***
« decr. lim ineq ok
Py — usc Py, — us.c.
o affine affine affine affine

The meaning of terms:

increasing (decreasing) = increasing (decreasing) as the partition (sigma-algebra) refines

subadditive = subadditive under the join of partitions

limit in (m) = equal to the limit over the partitions P, (or Q(,,))

B = the space of all m-element partitions with either d; or dg

Pu, = the space of all countable partitions with dy

PBr = the space of all finite entropy partitions with dr

u. cont. = uniformly continuous

Ls.c. (u.s.c.) = lower (upper) semicontinuous

incr. (decr.) lim eq = limit equality for an increasing (decreasing) sequence of sigma-algebras

decr. lim ineq = limit inequality for a decreasing sequence of sigma-algebras

power = for P™ (and Q™) under the action of 7™ the function grows |n| times

concave = concave under convex combinations of any Borel probability measures

affine = affine under convex combinations of invariant probability measures

* = requires the assumption H(P) < oo

#% = requires the assumption H (P|Q%) < oo
4% = requires the assumption H (P|B) < oo
sk = requires the assumption H (P|Q5 v B) < oo



2.8 Combinatorial entropy 73
2.8 Combinatorial entropy

Combinatorial entropy is a notion that mimics the idea of dynamical entropy,

but assigns entropy directly to finite blocks. It can be applied universally to

any sufficiently long block in the symbolic space, without fixing any shift-

invariant measure. The block itself provides a substitute for such a measure. In

this section the alphabet A is assumed finite and its cardinality is denoted by [.
Pick n € N and m € N much larger than n. Let B = B[0,m — 1] € A™ be

a block over A. With each block A of length n we can associate its frequency

in B defined as

_#H0<i<m—n:Bli,i+n—1]= A}

N m-n-+1 '

Notice that the frequencies of all blocks of length n form a probability vector

Pn,B = {frB(A) Ae An}

fI’B(A)

With the block B we can thus associate its nth combinatorial entropy defined
as one nth of the entropy of p,, p:

H,(B) = 3 H(Pn.B).

Another possibility, which gives slightly different values (with the differ-
ence vanishing for large m) is as follows. For a block B consider the periodic
point ... BBB... in the shift space AZ (the infinite concatenation of copies
of B). Its orbit under the shift is (at most) m-periodic and it carries exactly
one ergodic measure, which we denote by p(py. We can thus define the nth
periodic combinatorial entropy of B as

Hn)(B) = 5 H(u), PR)-

Given a block A of length n, the value 115y (A) is the frequency with which
A occurs in ...BBB..., and, for m > n, it differs from that in B by the fre-
quency of occurrences at the contact places between the concatenated copies
of B. This difference is not larger than n/m. Thus, for fixed n and with m
growing to infinity the vectors of frequencies p,, g and the vectors p,, (p) =
{m)(A) : A € A"} are close, uniformly for all blocks B of length m. By
the uniform continuity of the entropy on ["-dimensional vectors this implies
that H,,)(B) and H,(B) get together uniformly for all blocks B of length m
as m grows to infinity. This is why we can use either definition of combina-
torial entropy, depending on the convenience. The advantage of H ) over H,
is that the former is computed with respect to a genuine shift-invariant mea-
sure defined on the symbolic space, while the latter is computed with respect
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to a probability vector which does not represent a measure on the symbolic
space — it assigns values to short cylinders only.

As was stated in the Introduction, combinatorial entropy can be used to
estimate the compression rate. In order to make sure that there is no mistake
we are interested in counting the blocks B over an alphabet A, of some fixed
length m, whose compression rate does not exceed some fixed value ¢ < 1.
The count must not exceed 2™¢*+! (at least for large m) because these blocks
are supposed to be encoded (by the data compression code) in a injective way,
by binary blocks of lengths not exceeding mc, and there are 2™¢*! such binary
blocks. Let us see ...

Definition 2.8.1 By C[n, m, ¢] we will denote the cardinality of the collec-
tion of blocks B of length m with H(,,(B) < c.

Lemma 2.8.2 Fixsomen € Nandc > 0. Then
s E(C. . )

m— oo m

<ec (2.8.3)

Proof We first prove the lemma for n = 1. In this case there is no difference
between H(,)(B) and H,(B). Let A = {a1,as,...,a;}. The frequencies of
the symbols a; in B form a probability vector p1, 5 = (p1,ps,...,p) With
p; = ki/m where k; is the number of times a; occurs in B. The number of
blocks B of length m producing the same vector p = p1,p is

m!

Cp=—
P Tlkg! - &yl

By a direct application of Stirling’s formula: log(n!) =~ nlogn — n [see e.g.
Feller, 1968] we can write

l
log(Cp) = —m (3 pilog(p) £6,) = m(H(p) £5,).  (2.84)

where d,,, — 0 as m grows. Thus, the cardinality of all blocks B of length m
with H(py,g) < cis not larger than m(H (p) %+ J,,,) times the cardinality of
all [-dimensional probability vectors p with rational entries with denominator
m. Now, this latter cardinality is simply m!, the logarithm of which is [ log m.
Eventually, we have obtained

log(C[1,m,c]) < m(c+£ d,,) + llogm. (2.8.5)

The assertion follows by dividing by m and letting m grow to infinity.
Now consider n > 1. Assume for a while that m is a multiple of n. By
grouping the symbols in n-tuples, the periodic sequence ... BBB... can be
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viewed as a periodic sequence ... B’ B> B°. .., where B’ is over A" and has
length m/n. There are n possible such representations depending on the posi-
tioning of the first cut. We denote the blocks B° so obtained by BV, B(?) .|
B(™_ Tt is easy to see that the vector of probabilities p,, (p) = {1(5)(A) :
A € A"} equals the arithmetic average (over ¢ = 1,...,n) of the vectors
P10 = {#pw (A) : A € A"}, where now the blocks A are treated as single
symbols. By concavity of the entropy on probability vectors,

ne > nt)(B) = H(pn,(p)) 2 min H(py po) = min Hy(BY).

Consider the index ¢ which realizes this minimum. The wanted cardinality
C[n, m, c] of all blocks B with H,(B) < cis not larger than n times (due to
the choice of the cutting position) the estimate of the cardinality of all blocks
which can play the role of B(*). Such blocks are over the alphabet A™, have
length m/n, and have the 1st combinatorial entropy bounded by nc, so their
cardinality is C[1 ncl. Applying (2.8.3) already proved for n = 1, we thus
have

log(C[n, m, c]) < log(nCI[1, 2, c]) - logn N nc
m - m -~ m m

The right-hand side converges to ¢ as m grows to infinity. This concludes the
proof for multiples of n. For other lengths m we estimate the desired cardi-
nality by one obtained for the nearest m’ > m divisible by n. Since the ratio
m’/m tends to 1, we will obtain the same estimate for lim sup. O

We shall also need a conditional version of the above facts. Let A = A x Ay
be a product of two finite sets having /; and [ elements, respectively. Let
B € A™. Such B can be viewed as a two-row block having some B; € A" in
the first row and some By € A" in the second. We define the nth conditional
periodic combinatorial entropy of B (given the first row) as

H (BIB) = 3:H (1(s), PRIPY, )-
Since P} is a refinement of P} , it follows that
Hn)(B|B1) = H(n) (B) — Hin)(B1).

By analogy, we can also define the nth conditional combinatorial entropy of
B as

H,(B|By) = Hy(B) — Hy(By).

(We will not use this term, except for n = 1, when H; = H(y).)
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‘We introduce the notation for cardinalities, analogous to the one used before:

Definition 2.8.6 For D € AT let Cp[n,m,c] denote the cardinality of
the collection of all blocks B of length m over A such that By = D and
H(n)(B|Bl) < c. Next, define

Ceond[n,m,c] = sup Cpln,m,|.
DeAp

Lemma 2.8.7 Fixsomen € N, ¢ > 0. Then
log(Ceona[n, m, c]) <.

lim sup (2.8.8)

m— 00 m

Proof We first prove the lemma for n = 1. Fix some m, D € A" and € > 0.
We can assume that ¢ < log l5, otherwise the statement holds trivially for every
m. Denote by € the family of blocks whose cardinality we want to estimate:

E€={BeA™:By=D,H|(B|By) < c}.
It is straightforward to see that
Sk )
Hy(B|By) =) — Hi(B2"),

i=1

where Béi) is the block over Ay of a certain length k;, obtained by collecting
all positions in By where in the first row there appears the ith symbol of Aj.
The numbers k; are determined by D. We fix an integer s and we divide the
interval [0, log l2) into s subintervals of equal lengths. With every block B € &
we associate the formal sequence Z = {[a;,b;) : i = 1,...,l1} of the above
subintervals determined by the inclusions £ H; (Béi)) € [as, b;). Clearly, the
number of such sequences is limited by s'* and only such Z will appear (for
some B) for which
151

log!
Zb1§6+l1 o8 2.

: S
=1

For every 7 we can estimate the logarithm of the number of the associated
blocks B by the sum over ¢ of the logarithms of the quantities ); of blocks
B for which ki, (BLY) falls in the subinterval [a;, b; ). For indices i for
which k; < /m we use the trivial estimate

log Qi < v/mlogly.

For the remaining indices 7 we apply the preceding lemma, and get

log Q; < ki(72bi +¢),
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where the error term ¢ is small for large m. The sum of these logarithms
amounts to at most

ll lOg ZQ

\/ﬁlllogl2+m(2b,~+€)§\/Ellloglg+m(c+ +e) <

m(c+ @ + 2¢),
for large enough m. The cardinality of & is at most s times larger than the
product of the );’s, which adds /; log s to the logarithm, and vanishes after
dividing by m and passing with m to infinity. Since ¢ is arbitrarily small and s
arbitrarily large, we arrive at the hypothesis.

The proof for n > 1 is identical to the corresponding part of the proof of
Lemma 2.8.2. Suppose, for simplicity, that m is a multiple of n. After group-
ing the symbols in n-tuples, and denoting the blocks over A™ so obtained by
BW BR) . B™ (depending on the first cutting place) one shows that for
at least one index i, H(B® |B§i)) < ne. Applying (2.8.8) already proved for
n = 1, we thus have

IOg(Ccond[n7m76]) < 1Og(nccond[1> %,C]) < 10gn + ’I’LC%’
m m m m

which converges to ¢ as m grows to infinity. O

Also the inequality converse to (2.8.3) is valid for lim inf, hence the limit
exists (see Corollary 2.8.10 below). We will prove a slightly stronger state-
ment. (Usually, a slightly weaker statement is derived with the help of the
Shannon—-McMillan-Breiman Theorem.)

Theorem 2.8.9 Let (X,P,u,T,S) be an ergodic process with P finite.
Denote h = h(u, T, P). Choose a € (0,1], € > 0, and let n be so large that
H(p,P") < n(h + ag). Then, for m large enough, any set A with (A) > a
intersects at least 2™"=2¢) plocks of length m whose nth combinatorial
entropy is smaller than h + ¢.

Corollary 2.8.10 Because, for ¢ < logl (recall that | = #A\), there exists
an independent process of any entropy h < c over the alphabet A, (so that
H(p, PR) = nh for every n), the above lemma (applied to A = X) together
with Lemma 2.8.2 implies that

iy 108(Cln,m, c])

m m

=c. O

Proof of Theorem 2.8.9 By the Ergodic Theorem, a subset X’ of measure
1 — ¢ is covered by blocks B of length m generating frequency vectors p, g
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so close to the distribution of p on P that their nth combinatorial entropies
are smaller than h + ae (see Exercise 2.8). By Lemma 2.8.2, there are no
more than 2("+22) such blocks (if 7 is large enough), hence the conditional
entropy of P™ on any subset of X’ cannot exceed m(h + 2ae) (we will use
this for X’ \ A). Let Q be the partition by three sets: A N X’ (of measure at
most p(A)), X'\ A (of measure at most 1 — p(A)) and X \ X’ (of measure at
most §). Then

mh < H@™) < HEP"|Q) + H(Q) <
u(A) Hanx (P™) + (1= p(A) Hxna(P™) + 0Hx\ x/(P™) + log 3 <
p(A)Hanx (P™) 4+ (1 — w(A))m(h + 2ae) + dmlog #P + log 3.

This implies that the conditional entropy of P on A N X' is at least

mh — (1 — p(A))m(h + 2ag) — dmlog #P — log 3 S

1(A)
2ae dlog #P log3
— — =2 =2 > —
m(h (A + 2¢ o — ) > m(h — 2e),

if § is chosen sufficiently small and m is large enough. Such entropy cannot be
achieved on fewer than 27("=2¢) blocks of length m. All of them intersect A
and, since they are part of X', have the nth combinatorial entropy smaller than
h+as < h+e. O

Exercises

2.1  Consider the Bernoulli shift (unilateral or bilateral) on two symbols 0 and
1 where each symbol has measure 1/2. Let 7 be the factor map given by
the code (7x), = &, + Tp4+1 mod 2. Show that although the map is far
from being invertible, the factor process is isomorphic to the original.

2.2 Use the power rule to show that in a bilateral process for every n € N
we have the equality H (P"|P~) =nh(P).

2.3 Provide an example showing that the sequence H (P™|Q™) need not have
decreasing increments; moreover, may fail to be increasing.

2.4 For subinvariant 98 show that h(P|Q, B) < H(P|P* v QNo v B).

2.5 For subinvariant B the formula (2.3.5) need not hold. In particular, the
inequality in the preceding exercise cannot be reversed even for trivial
(hence invariant) 8. Provide an appropriate example.

2.6 Prove Fact 2.4.1, i.e., h(Q) < h(?P) in case T is invertible and Q < PZ.
Hint: apply (2.3.11).
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2.8

Exercises 79

Provide an example of an ergodic process (X, P, u, T, S) and its factor,
such that the fiber entropy h(P|y) is not constant on the factor space Y.
Hint: The factor can be periodic on a two-element space.

Consider an ergodic process (X, P, u, T, S). For z € X denote B,,,(z) =
x[0,m — 1]. Prove that for every n the combinatorial entropies
H,, (B, (x)) converge almost surely to X H (y1, P").
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Entropy theorems in processes

3.1 Independence and c-independence

We begin by introducing the notion of e-independence for partitions. The goal
is to extend this notion to processes.

Recall (Fact 1.6.16) that stochastic independence between P, with H(P) <
00, and any countable Q is equivalent to the equality H(P|Q) = H(P).

Definition 3.1.1 Two countable partitions P and Q are e-independent (we
write P_LQ) if

> MANB) = u(A) - u(B)| <. (3.1.2)
A€P,BeQ

Note that e-independence for all € > 0 is equivalent to independence of the
partitions. The connection between entropy and e-independence is captured by
the following fact.

Fact 3.1.3 For every M > 0 and € > O there is § > 0 such that for any
two countable partitions P and Q, with H(P) < M the following implications
hold:

PLQ = H(P|Q) > H(P) —¢,
and
H(P|Q) > H(P) —6 = PLQ.

Proof Assume d-independence. The probability vector p(u, P) associated
with the partition P can be ordered decreasingly. Reformulation of (3.1.2) with
0 replacing ¢ reads

> u(B) [p(ps,P) = p(p, P)|1 <6, (3.1.4)
BeQ
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By the rectangle rule (Fact A.1.2), for a collection of B’s of joint measure at
least 1 —+/d it holds that ||p(u5, P) —p(u, P)|l1 < /8. By lower semicontinu-
ity of H(-), and compactness stated in Fact 1.1.9, for such B’s, H (p(up, P)) >
H(p(u,P)) —e/2,if 6 is a priori (independently of P, depending only on M)
chosen small enough. Finally,

H(P|Q) =Y u(B)H(p(up,P)) > (1 = VO)(H(p(1,P)) — §) =
BeQ

H(P) —e¢,

again, for a well chosen 4.
The second implication follows directly from Lemma 1.1.11 and the refor-
mulation (3.1.4) (with € put back in place of §) of the e-independence. O

Fact 3.1.3 allows one to define an alternative notion of e-independence for a
partition P of finite entropy.

Definition 3.1.5 We say that P is e-entropy independent of Q if
H(P|Q) > H(P) —e.
Among partitions of finite entropy this is a symmetric relation (use (1.4.3)).

Definition 3.1.6 We say that a partition P with finite entropy is e-independent
(e-entropy independent) of a sigma-algebra *B if it is e-independent (¢-entropy
independent) of any countable ‘B-measurable partition Q.

Now we pass to e-independence for processes. Recall (Definition 2.3.15)
that independent processes are characterized by the property that P is inde-
pendent of the future PT or, equivalently, by the equality h(P) = H(P). By
analogy we will consider two notions:

Definition 3.1.7 The process (X,P,u,T,S) is called e-independent
(e-entropy independent) if P is e-independent (¢-entropy independent) of P+.

In the finite entropy case e-entropy independence of a process can be
written as

h(P) > H(P) —e.
Remark 3.1.8 Clearly, if H(7P) is smaller than ¢, then the generated process

is (trivially) e-entropy independent. It is thus natural to require, for nontrivial-
ity of the notion, that & is much smaller than H (7P).

Remark 3.1.9 If a process is e-entropy independent for every € > 0, then it
is an independent process.
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We will now provide examples of e-entropy independent processes, appear-
ing naturally in processes of positive entropy. Before we continue, we recall the
notion of an induced system. Induced systems are a good source of
e-independent processes.

Definition 3.1.10 Let (X, 2, u, T,S) be a dynamical system and let B € 2
be a set of positive measure. For x € B we define the return time to B as

Rp(z) =min{n > 0:T"z € B} (3.1.11)

(this is well defined for ;15 almost every x by the Poincaré Recurrence Theo-
rem). Then the map

Tp(x) = TR=@)(z) (3.1.12)

is defined pp-almost everywhere, it is measurable and preserves the measure
up (we skip the argument here). It is called the induced map while the sys-
tem (X, 2, up, Tp,S) (in fact X can be replaced by B) is called the induced
system.

It is clear that if p is ergodic under 7" so is pp under T'5.

Theorem 3.1.13  Let (X, P, u, T,S) be a process with finite positive entropy
and let € > 0 be given. Then for n sufficiently large there is a set X,, C X of
measure at least 1 — ¢ being a union of cylinders B € P with the property
that the process (B, ®, up,Tg,S) is e-entropy independent.

Proof Because H(P|PILn) N, H(P|P), for large n, H(P|PI") — 2 <
H(P|PT). Now

> WB)Hp(P) - = HEP") - 2 < HE|P*) =
Bej:[l,n]
H@PE v Pty = N u(B)Hp(P|PT)
BePlin]
(we have used (1.4.4) and (1.6.25)). Clearly, for every B, the term H(P) dom-
inates Hp(P|P*). However, the above calculation shows that the weighted
average of the first terms exceeds the weighted average of the latter terms by
no more than 2. Thus, by the rectangle rule (Fact A.1.2),

HB(':P) < HB(':P|':P+) + ¢,

except for sets B of joint measure at most . We let X, be the union of the
cylinders B satisfying the above. Because the future of the induced process is
contained (as a sigma-algebra) in the full future P+, we have

HB(:P|?+) S h(uBaTBa?)
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for every B. Thus for every B contained in X,,, Hg(P) < h(up,Ts,P) + ¢,
i.e., the process generated by P for the induced map is e-entropy independent,
as claimed. O

The process (B, P, up,Tp,7Z) for B € P s illustrated in Figure 3.1;
its P-name (- - - a.japaiaszas - - - ) consists of concatenated single symbols that
precede the subsequent repetitions of the block B observed in a P-name of the
master process (X, P, u, T,Z). (For S = Nj the picture starts at coordinate
zero and the above P-name is just (apaiazag - - ).)

coordinate O

...a.1 ............... ao--a1 .......... ag....ag....

Figure 3.1 The process generated by P for the map induced on B.

If (X, P, u, T, S) has entropy zero, then the s-entropy independence as stated
in Theorem 3.1.13 is trivial (see Remark 3.1.8). This means that for the major-
ity of blocks B € P17, the partition P restricted to B is nearly the one-
element partition, hence the process (B, P, up, Txg,S) is nearly trivial; every
name is dominated by repetitions of one symbol.

We now turn to the case of two partitions P and Q. Assume H (P) < oo.

Definition 3.1.14 We will say that the process (X, P, u, T, S) generated by
a partition P with finite entropy is e-entropy limit-independent of the process
generated by Q if

h(P|Q) > h(P) — ¢, (3.1.15)

equivalently,

lim L (H(P") — H(P"|Q")) < e. (3.1.16)

n

If Q also has finite entropy, then (3.1.15) can be rewritten as
h(P) 4+ h(Q) — h(PV Q) <,

which proves that in such case the relation is symmetric.

Notice that e-entropy limit-independence between two processes for every
€ > 0 does not imply the usual (stochastic) independence. For instance, a pro-
cess of entropy zero is, for every € > 0, (trivially) e-entropy limit-independent
of any process, even of itself. This is why we introduce a stronger notion.
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Definition 3.1.17 The process generated by P is e-entropy independent of
the process generated by Q if

LHPYQ™) > LH(P) ¢,

1
n
for every n.

This notion is also symmetric among finite entropy partitions. Now, e-entropy
independence for every € > 0 does imply stochastic independence between the
processes. As before, to avoid triviality, € should be taken smaller than both
H(P) and H(Q).

The notions of e-entropy independence and e-entropy limit-independence
coincide (via change of the parameter) if one of the processes is itself an &-
entropy independent process:

Fact 3.1.18 Suppose (X, P, u, T,S) is an e-entropy independent process and
that it is e-entropy limit-independent of the process generated by another par-
tition Q. Then the first process is 2¢-entropy independent of the latter.

Proof
SH(P"|Q") = R(PIQ) = h(P) — e > H(P) — 2¢ > LH(P") - 2e.
O

Question 3.1.19 Let B be a set of positive measure and let Q = {Q,}
be the countable partition of B given by the first return time, Q, = {z €
B : Rp(z) = n}. The following question is open: Is it true that for the
majority of sufficiently long cylinders B, the e-entropy independent process
(B,?,up,Tg,S) of Theorem 3.1.13 is also e-entropy limit-independent of
the process of return times (B, Q, ugp,T5,S)? (If yes, then by Fact 3.1.18,
these processes are 2¢-entropy independent of one another.)

Later we will show a partial result in this direction (see Lemma 5.3.11).

A rich source of examples of pairs of mutually e-independent processes
will be provided in the section concerning joinings, where we prove the fol-
lowing representation theorem: Given a process and its factor-process, both
with the action of Z, then the larger process is a joining of the given factor-
process with another factor-process such that the two factors are e-entropy
limit-independent of one another (see Theorem 4.4.6).
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3.2 The Pinsker sigma-algebra in a process

Definition 3.2.1 Let (X, P, u,T,S) be a process with finite entropy. The
Pinsker sigma-algebra of this process is IIp = ﬂzozl Pl Tt is sometimes
referred to as the remote future.

It is clear that ITp is an invariant sigma-algebra. Its meaning is explained in
the following theorem originating from [Rokhlin and Sinai, 1961].

Theorem 3.2.2 (Rokhlin-Sinai) Assume H(P) < oo. A countable, measur-
able with respect to PS, partition R with H(R) < oo is lp-measurable if and
only if h(R) = 0. For actions of Z we also have Ilp = (72 P(=o%—"l,

Proof Assume that R is IIp-measurable. By invariance of 11, the transform-
ation on the associated factor is invertible, so RZ is a well-defined invariant
sigma-algebra contained in ITp and hence also in P*. Then, using (2.3.11), we
get h(P|R) = h(P). On the other hand, since H(R) < oo and PV R < PNo,
by Fact 2.4.1 we get h(P V R) = h(P) which by (2.4.4) implies h(R) = 0.

The proof of the other implication is different for the actions of Ny and Z.

For S = Nj consider a PYo-measurable partition R such that h(R) = 0.
Then, by Fact 2.3.12, R is measurable with respect to R* and, by an easy
induction, also with respect to ITx. Since R is measurable with respect to Po,
R[>0 is contained in (PNo)[*>0) = PI.20) and hence Mg C ILyp.

If S = Z, let R be a PZ-measurable partition with h(R) = 0. If R is measur-
able with respect to PYo, then the preceding argument applies. So, suppose it is
not. Then, by (1.6.28), H(R|PY0) > ¢ > 0. By Fact 1.6.39, H (R, |PN0) > ¢
for some m. Of course H (R(,,)|R) = 0. By Fact 1.7.3, for every ¢ there exists
ak € Nand a PI=%*_-measurable partition R’ € B,,, which approximates
R(m) as accurately as we need. By uniform continuity of conditional entropy
in %,,,, we can obtain R’ for which H(R'|PN0) > c and H(R'|R) < c. Since
T—"F(R') is PNo-measurable for every n > 1, we have

c< HR|PY) < H(R'| §7 TR (R)).

n=1

The last term equals h(u, T, R), the dynamical entropy of R under the action
of T*. On the other hand (no matter what action we consider), by Fact 2.3.1
and (2.4.4), we have

H(R'|R) = h(p, T*, R|R) = h(p, T*,R'V R) = h(p, T", R),

ie., h(p, TF,R) > h(p, T*,R') — H(R'|R) which, in this case, is positive
(recall, we have h(p, T*,R’) > c and H(R'|R) < ¢). This implies that under
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the action of 7%, R has positive entropy. A contradiction, because, by the
power rule, Fact 2.4.19,

h(p, T, R) < h(p, T*, R*) = kh(p, T, R) = 0.

We have proved that R is IIp-measurable.

For the last statement, note that since a partition has dynamical entropy zero
for an invertible 7" if and only if it does for T’ —1, Iy coincides with the iden-
tical sigma-algebra defined for T 1. U

Question 3.2.3 It is not known whether and how the last statement of the the-
orem (equality between the “remote future” and “remote past” sigma-algebras)
can be proved without using entropy.

Remark 3.2.4 A process whose Pinsker sigma-algebra is trivial is called a
K-system. Such systems are extremely important in classical ergodic theory
and are subject of an extensive study. Whether there exist K-systems other
than independent processes (or isomorphic to such) has been a long-standing
open problem first solved positively by Donald Ornstein [Ornstein, 1973] and
refined in a work with Paul Shields [Ornstein and Shields, 1973]. Later a much
more explicit example was constructed by Steve Kalikow [Kalikow, 1982].
His example involves a so-called skew product transformation and is popularly
known as the “T"-T-inverse” transformation. In this book K-systems will play
only a marginal role, hence we skip any detailed presentation of this class.
More detailed information on K-systems can be found in the book by Paul
Shields [Shields, 1996].

Although in Z-actions both sequences of sigma-algebras P(—°~"] and
Pln.0) decrease to I1p, their joins do not have to. This shows that the oper-
ation “join” does not commute with countable intersections of sigma-algebras.
There are for example so-called bilaterally deterministic processes of positive
entropy, in which every join P(—°=7] v/ Pl equals P%:

Example 3.2.5 We construct a bilaterally deterministic process of positive
entropy. Let A be a finite alphabet disjoint of the set of natural numbers. Let A;
be the collection of blocks of length n; = 2 over A U N of the form al, where
a € A,1 € N. Suppose, for some k& > 1, that Ay has been defined as a collection
of r, blocks over AUN, so that each member of A, has length nj, and ends with the
symbol & € N. Now we define A1 as the collection of all permutation concate-
nations over Ay, i.e., blocks of length 41 = ring, each being a concatenation of
all blocks from Ay, using each of them exactly once. In every such block we replace
the terminal symbol k by k + 1. The cardinality of Ag41 is 7x4+1 = ri!. Let X
be the (closed) set of all doubly infinite sequences over the alphabet A UN U {co}
which, for every k, are concatenations of the blocks from Ay perhaps with the last
symbol changed to some k' > k. Let P be the zero-coordinate partition of X. Let
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u be some shift-invariant ergodic measure p supported by X. Notice that the sym-
bol oo may appear in a sequence x only once. Clearly, the set of points = which
contain the infinite symbol has measure zero. We claim that the symbolic system
(AZ7 u,0,7) is bilaterally deterministic, i.e., that for u-almost every x and every
n € N, the block z[—n+1, n—1] is completely determined by the pair z(—o0o0, —n|
and z[n, 00). Indeed, assume z does not contain the infinite symbol and suppose
we see all entries of the P-name of x except on the interval [—n + 1,n — 1]. By
periodicity of the symbols from N, we can determine all natural symbols in . Let
k — 1 be the largest natural symbol in [—n + 1,n — 1]. By examining the entries
of x far enough to the left and right we will see completely all but one (the one
covering the coordinate zero) blocks from the family Ay, which constitute the block
C' from Ajy1 covering the considered interval. Because every block from Ay is
used in C' exactly once, by elimination, we will be able to determine the missing
block from Ay, and hence all symbols in z[—n + 1, n — 1]. So, the process is bilat-
erally deterministic. We leave the verification of positive entropy to the reader (see
Exercise 3.4).

Remark 3.2.6 The “bilaterally deterministic” property of a process is far
from being exceptional. Ornstein and Weiss have proved that every dynamical
system (X, 2, u, T, Z) has a bilaterally deterministic generator [Ornstein and
Weiss, 1975].

The finiteness of H(P) in Theorem 3.2.2 is essential:

Example 3.2.7 For a partition P of infinite entropy the remote future ITp defined
as oo, PI*>°) may admit a partition with positive dynamical entropy.

We begin with an arbitrary ergodic process (X, R, u, T', Z) of positive dynamical
entropy. The zero-coordinate partition is either finite or countable with finite static
entropy, and is (exceptionally) denoted by R (and will play the role of the partition
measurable with respect to the remote future), while P will denote another partition,
of infinite entropy, and finer than T'(R).

To construct P we divide X into infinitely (and of course countably) many cylin-
ders B; € RI7mo— of positive measure (such partition exists except in periodic
processes; the sequence of lengths n; of B; is then unbounded). For each ¢ we let
7; denote the random variable defined on X as the waiting time for the first visit to
the cylinder B; after time ¢: 7;(x) = min{n > i : T"x € B;}. By ergodicity this
variable is almost surely finite and by definition not smaller than <. So, there exist
integers N; > 4 such that the sets C; = {z : 7;(x) < N;} have measures converg-
ing to 1. This implies, of course, that almost every = belongs to C; for infinitely
many indices i. We can also choose N; > n;.

Now, we subdivide each B; into cylinders A; 1,..., Aim; € RI=Ni=1 (each
block A; i is obtained from B; by extending it on the left) and the partition of X
so obtained we denote by P. Any time z € C;, we know that 7"z € B; for some
n € [i, N;]. If we know the P-name of x at positions 4,7 + 1,7 + 2,. .., then we
also know the value of n and the nth P-symbol, i.e., the set A; ; containing 7" z.
But the length of A; ; is N;, so that this block extends in the R-name of z from
the position n — 1 on the right to n — N; < 0 on the left. This implies that the
coordinate 0 (with respect to R) in x is then determined, i.e., R is (conditionally
on C;) measurable with respect to Ppli-0) Byt C; also belongs to Pli->0) Since z
belongs to infinitely many sets C}, the partition R is measurable with respect to I1sp.
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Of course, R generates a process with positive dynamical entropy. We conclude that

P must have infinite static entropy, otherwise Theorem 3.2.2 would apply implying

h(R) = 0.

We apply the Pinsker sigma-algebra to demonstrate that conditional dynami-
cal entropy does not pass via countable intersections of invariant sigma-
algebras (compare (2.4.18)).

Fact 3.2.8 There exists a process (X, P, u, T, Z) and a decreasing sequence
of invariant sigma-algebras By, such that h(P|B) > h;Ign 1 h(P|By), where

B =, Br."

Proof Consider the bilateral Bernoulli shift on two symbols 0,1 with equal
probabilities 1/2,1/2. Denote B; = PZ and P; = P. Consider the map 7
sending each point z = (x,,) to the point 7z = (y,,), where

Yn = Tp—1 + Ty + Tp4q mod 2.

This map is a factor map to the same Bernoulli shift (compare Exrecise 2.1),
hence it defines an invariant sigma-algebra By = 7~ 1(B;). Now, B, has a
two-element generator

Py = 7r_1(fPl) = {[000]U[011]U[101]U[110], [001]U[010]U[100]U[111]},
and, according to the formulae (2.3.8) and (2.4.4),
h(?l‘%g) = h(?ﬂ?g) = h(?l Vv Tg) — h(Tg) = h(fpl) — h(fpg) =0,

where the last but one equality follows from the fact that Py < T[fl’l] (and
h(i])[fl’l]) = h(P3) = h(P1)) and the last equality follows from the fact that
the process generated by P is isomorphic to that generated by P; (of course,
m is not the isomorphism here). Now we apply the same map 7 again to obtain
B3 =7 1(Wy) = 7 2(B1). The conditional entropy of the process given B3
is zero, because the factor by 72 is again isomorphic to the original process.
And so on. We construct a decreasing sequence of invariant sigma-algebras
B} such that the conditional entropies h(P1|2B},) are all zeros.

Finally consider the intersection B = [, B). We claim that this sigma-
algebra is trivial, hence h(P1|B) = h(P1) = 1, so that the limit passage
fails as desired. To prove triviality of B we need the following observation.
Consider the partition Q = P2 = {[00], [01],[10], [11]}. By an elementary
verification, 7r’1(Q) is seen to be a partition into four sets, each of measure
1/4 and independent of Q. By induction, one verifies that the process generated
by Q under the Ny-action of the iterates of 7 is in fact an independent Bernoulli

1 This example is a slight modification of one suggested to the author by B. Weiss
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shift on four symbols of equal measures (for the same measure). Next, notice
that the unilateral Q-name of a point « in this process completely determines
this point (i.e., determines its bilateral P-name under the action of the shift).
Indeed, the element of Q containing « determines both zy and z;. Then, the
element of 7~1(Q) to which x belongs, tells us the values of two sums mod 2:
T_1 4+ xg+ 1 and zg + 1 + x2, which, combined with the knowledge of x
and x; determines both x_; and 2. And so on: knowing the initial k entries of
the Q-name of x we know its (original) coordinates from —k + 1 to k. We have
proved that Q generates the full sigma-algebra 25, under the Ny-action of 7,
which we can write as 81 = Q[9°) (here the exponent refers to the action of
). It is now completely obvious that By = 71 (B;) = Q1) and generally
B, = QlF—1,%°) We obtain that B (the intersection of the B*°s) coincides with
the Pinsker sigma-algebra for the process generated by Q under the Ny-action
of 7. But we already know that this process is a unilateral Bernoulli shift, and in
any Bernoulli shift the Pinsker sigma-algebra is trivial (see Exercise 3.3). [l

3.3 The Shannon—-McMillan—-Breiman Theorem

In this section we present one of the most important entropy theorems in
measurable dynamics. The traditional proof relies on the maximal inequal-
ity and then the Martingale Convergence Theorem [see e.g. Petersen, 1983].
We present a quite different approach using only the notion of length-entropy
and Lemma 1.1.13. Although this proof is not shorter than the traditional one,
in our opinion, it provides a new intuition about the mechanisms behind this
result.

Theorem 3.3.1 (Shannon-McMillan-Breiman) Let (X, P, u,T,S) be an
ergodic process on finitely or countably many states. Assume that H(P) < oo.
Forx € X and n € N denote Ipn(x) = —log u(AZ), where AY is the unique
cell of P™ which contains x (the cylinder x[0,n — 1]). Then

lim L7p.(z) =h(p,T,P) p-ae.
Proof Notice that, since A7 C T~ (A% 1), the functions
@ — liminf L Ipn (z) and « — limsup = Ipn (z)
n—00 n— 00

are subinvariant, and hence, by the Ergodic Theorem, equal almost everywhere
to some constants ¢ and C, respectively. We need to show that C' < h(P) < c.

We begin by proving h(P) < ¢ for a process generated by a finite /-element
partition P.
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By the definition of ¢, given € > 0, for every ng and almost every z there is
some n, > ng such that the cylinder W,, = A2+ (of length n, and containing
x) has measure larger than 2-ne(cte) If for each z, we choose the smallest
possible n,, then the collection {W,} becomes a countable partition {W; :
i = 1,2,...} of cylinders of various lengths n; > ng, and each cell W; has
measure larger than 27"(+¢)_ For a fixed § > 0 there is a set Z of measure
larger than 1 — & covered by a finite collection W of such cylinders W,;. We
denote by Ny the maximal length n; in this finite collection. We restrict our
attention to the set Z, the conditional measure pz and the finite partition of Z
by the sets W;. Notice that p assigns to the sets W, at least as large values
as p. The length-information function associated with the pair (p’, n), where
p = (uz(W;)) and n = (n;) satisfies

max Ip (1) + max ni <c+e+ ni < c+ 2e, 3.3.2)
i ' A 0

(for an appropriately a priori chosen ng).

By the Ergodic Theorem, for m sufficiently large, all points = from a set
X' C X of measure 1 — ¢ visit the complement of Z no more than mJd times
within the first m iterates. Assume also that Ny/m < 4. Then X’ can be
covered by some finite number C of cylinders B of length m, such that each
of them can be represented (perhaps in several ways) as a concatenation of the
blocks from W and no more than 2md other entries (at most md visits in the
complement of Z and, at the end, a possible prefix of an incomplete block W;
of length at most Ny). The structure of such a block B is shown in Figure 3.2
below.

| Wi |W2||W2| W3 || Wh | Ws ||W2||W2| Wy ||W2| ......

Figure 3.2 The structure of the block B.

For every B we fix one such representation and we let kg be the number
of component blocks in it. For each ¢ let p; be the frequency of W; in the
selected concatenation representing B, i.e., the number of components equal
to W; divided by kp. By (3.3.2) and Lemma 1.1.13, no matter what probability
vector pp = (p;) is obtained, its entropy does not exceed np, , (¢ + 2¢) (recall
that ng, , represents the weighted average length with respect to the probability
vector pg). Obviously, n,,, < m/kp, hence H(pg) < c(kp) where c(kp) =
7. (c 4 2¢). Every B can be identified with a block of length kp over the
finite alphabet W with insertions of no more than 2md symbols from P. The
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cardinality C of cylinders B covering X’ can be thus estimated as follows

m 26m
C< g::l C[1, kg, c(kp)] - <25m> 2o
where C[1, kg, c(kp)] counts the blocks of length k5 over W with H(pp) <
¢(kp) (recall the notation (2.8.1)), the “choose” symbol bounds the number of
ways the insertions can be distributed, and the last term counts the number of
ways these insertions can be filled with symbols. This sum is highly exagger-
ated; kp has a much smaller range.

By the elementary estimate (2.8.5) (and replacing the error term by 1), we
have

log C[1, kg, c(kp)] < kg(c(kp) + 1) = m(c + 2e + 22).

We have kg /m < 1/ng < e. Combining the last two displayed inequalities
we get

log C <logm + m(c+ 3e) + mH (25,1 — 25) + 2dmlogl < m(c + 4e),

for ¢ sufficiently small and large m. Since the complement of X’ is covered
by no more than [™ cylinders of length m, and by (1.4.3), the total entropy
H(P™) does not exceed

(1 =06)m(c+4e) +dmlogl+ H(4,1 — ) < m(c+ 5e).

Because H(P™) > mh(P) for every m, and ¢ is arbitrary, we have ¢ > h(P).
Now, if P is infinite countable, still with finite static entropy, we invoke the
finite partitions P,,. For each n the information function / P (z) is dom-
inated by Ip» (), thus liminf,, 17y (z) is larger than or equal to the term
sup,y, liminf, T I Pr (z), which, by the already proved part for finite parti-
tions and by Fact 2.4.12, is at least h(P) almost everywhere.
We will now proceed with proving that C' < h(P). At first we will show that

C < H(P) pae. (3.3.3)

The idea is to indicate a partition into cylinders of variable lengths whose
length-entropy is close to C. Then we will change the measure, so that the same
partition (with the same lengths) receives masses depending exponentially on
the lengths times H (P). Then we use the second part of Lemma 1.1.13.

Fix some § > 0 and ng € N. By the Ergodic Theorem, £ ;’;& Iy(T72) —
H(?P) p-almost surely, i.e., for almost every z,

n—1
% > Ip(Tz) < H(P) +6 (3.34)
7=0
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holds for any sufficiently large n. On the other hand, by the definition of C, for
almost every x,

LIpn(z) > C =4, (3.3.5)

for arbitrarily large n. Let n, be the smallest choice of an integer for which
both (3.3.4) and (3.3.5) are fulfilled at x and let W, denote the cylinder of
length n, containing x. Since both (3.3.4) and (3.3.5) depend on the initial
n coordinates of the P-name of x, it is clear that n, is constant on W,. This
implies that {W, } is in fact a partition of X into cylinders of variable lengths
(clearly, such partition is at most countable). We denote this partition by {W,}
and the corresponding lengths by n;. The inequality (3.3.5) becomes

— - log p(Wy) > C =4,

which implies that the length-entropy H (p, n), where p = (u(W;)) and n =
(n;), is larger than C' — 4.

Now we apply a different measure v on the symbolic space Po. We let v
be the product measure in which each symbol A € P maintains the measure
value p(A), but measures of longer blocks are computed by multiplication of
the measures of the symbols in the block. The inequality (3.3.4) applied for n;
and any point in W; says directly that

—5- log(v(W;)) < H(P) +3,

i.e., that v(W;) > 2—ni(H(P)+0) Because the cylinders W; are disjoint, their
measures v are summable to a number not exceeding 1 (these cylinders cover a
set of full measure p, but perhaps not of full measure v), all the more, the sum
of the numbers 2" (H(P)+8) does not exceed 1. Now, the second assertion of
Lemma 1.1.13 implies that H(P) + ¢ + 1/ng > H(p,n) > C — 4. Since §
and 1/n are arbitrarily small, we get C < H(P), as claimed.

In order to replace H(P) in (3.3.3) by (a possibly smaller term) i (%) recall
that for sufficiently large ng, - H (P™) < h(P) +¢, so it suffices to show that

no
’I’LQC S H(CP”O).
Consider the power process (X, P, p, 7" S). For a point € X, the cylin-
der of length mn( containing z in the original process is (as a set, not as a

block) the same as the cylinder of length m containing x in the power process.
We can write this as

IfP"””O (.’L') = I((})no)'m (CL‘),
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where (P™)™ denotes the partition obtained through m steps in the power
process. For n = mng — r (0 < r < ng) we have, by inclusion of the corre-
sponding sets,

LIpn(2) < Llpmng () = ™00 L[y (2),

n  mno

so, at almost every point, the upper limit C = limsup,, EL]M (x) is attained
along a subsequence of mng, and then it equals

nio limsup = J(pnoym ().
m—0o0

We have proved that the upper limit analogous to C', computed for the power
process is constant almost everywhere and equals noC'.

Although the power process need not be ergodic, the measure p has at most
no ergodic components ;) supported by disjoint sets X; (in fact of equal
measures, but here it is inessential), and = 3", u(X;)p¥). Denote by C; the
constant analogous to C' computed for 1(*) in the (now ergodic) power process.
The inequality (3.3.3) implies that

Ci < H(p,P™).

As we know, the function p — H(u, P™0) is concave (see (1.3.5)), while
the information function is convex (see (1.3.4)), and this property passes via
lim sup. So,

mC < Y X0 < P uXIH(O,5) < 7™,

and we are done. ]

The Shannon—McMillan-Breiman Theorem also has a conditional version.
Since it occurs in the literature usually in restricted generality, we have decided
to present the full version with a complete proof. The formulation involves the
notion of the conditional information function given a sigma-algebra which
relies on conditional expectation. The Martingale Convergence Theorem is
used to switch between this and a more elementary phrasing, in which we
use only the conditional information function given a partition.

Let P and ‘B be a countable partition and a sigma-algebra, respectively.
Recall (1.5.1) for the conditional information function x + Ipgs(x). If
H(P|B) (which is the integral of the conditional information function) is
finite, then the Martingale Convergence Theorem allows one to replace this
function by the almost everywhere limit over any sequence of partitions ()
generating ‘B:

Ty = lim, Ty (3.3.6)
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This is how we will understand the conditional information function in the
theorem below. The proof is fairly long and rather technical, but follows the
same scheme as the unconditional proof. We have chosen to skip it in the main
course of the book. For interested readers we attach the proof in the Appendix.

Theorem 3.3.7 Let (X, P, u, T,S) be an ergodic process on finitely or count-
ably many states and let B be a subinvariant (or invariant) sigma-algebra.
Assume that H(P|*B) < oc. Then for pi-almost every point x we have:

livrln L1501 () = h(p, T, P|B).

Proof See Theorem B.0.1 in Appendix B. O

3.4 The Ornstein—Weiss Return Times Theorem

We continue to investigate the process (X, P, u, T, S) determined by a count-
able partition P with finite static entropy. Recall that A”? denotes the cylinder
of P™ containing x. For each x € X we define its first return time to the nth
cylinder as

R, (z) = Ran(x) = min{k > 0: The € AT},

By the Poincaré Recurrence Theorem, this function is defined almost every-
where (even without ergodicity). In the language of blocks, R, (x) is the first
positive coordinate where a repetition of the block x[0,n — 1] begins in the
P-name of . Notice that in the ergodic case, in order to acquire the measure
of the cylinder A? (hence the information function I~ (x)) one needs to know
all the forward return times, to compute their density along N. Knowing only
finitely many return times allows one to obtain an approximation, while the
inverse of the first return time can be considered only a very crude estimate.
The theorem below comes from [Ornstein and Weiss, 1993]. It asserts that
this crude estimate is sufficiently good to have the same logarithmic asymp-
totic behavior as p(AZ), allowing the entropy to be calculated. It allows us
to compute the approximate value of the dynamical entropy by examining a
long enough finite portion of a single P-name. We do not even need to know
the measures of the cylinders required in the Shannon-McMillan—Breiman
Theorem.

Theorem 3.4.1 (Ornstein-Weiss) If (X, P, u, T,S) is ergodic, then

lirrln LlogRy(z) = h(p, T, P) p-ae.
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Proof Let B denote a block of length n (and its cylinder set). By ergodicity,
the skyscraper over B (the union of trajectories of points from B until their
first returns to B) covers a set of measure one. This can be written as

1
/BRn(x) du=1 or /BR,L(:E) dup = 2B

(the above is also known as the Kac Theorem, see Theorem 4.3.4). Thus
R, (z) > exp(ne)/p(B) may hold on a subset of B of measure pp at most
exp(—ne). By the Law of Total Probability, the same estimate holds globally
on X, which can be written as

p{z: LlogRy(2) > Ipn(z) + €} < exp(—ne).
Applying the Borel-Cantelli Lemma [see e.g. Feller, 1968], the Shannon—
McMillan-Breiman Theorem and because ¢ is arbitrary, we have proved that

limsup *log Ry, (z) < h(p, T, P)

n—oo

p-almost everywhere.

Because R,,(z) > R,,_1(T'z), the function liminf,, 1 logR,,(x) is subin-
variant, hence equal to a constant c. We need to show that ¢ > h(P). First of
all, notice that if P is replaced by P(,,), the corresponding return times can
only become shorter. Because of that and since h(P(,,)) / h(P), it suffices to
prove the inequality ¢ > h(P) for finite partitions. In the remaining part of the
proof [ denotes the finite cardinality of P.

Fix an ¢ > 0 and 6 > 0. For almost every x there is an n, > 1/§ such
that R,,, (2) < 27=(¢+¢) Thus, there is a set Z of measure smaller than §/2
such that Ny = max{n, : x ¢ Z} is finite. By the Ergodic Theorem, for
m sufficiently large, all points z from a set X’ of measure 1 — § visit Z no
more than md/2 times within the first m iterates. By taking m large enough
we may assume that 2V0(¢+) < 1m5/2. Then X’ can be covered by some
number D of cylinders B of length m with the following structure: each B can
be represented (perhaps in several ways) as a concatenation of some blocks W;
of lengths n; ranging between 1/4 and Ny, and no more than mJ single entries
including 2Vo(¢+¢) entries at the end, in such a way that each of the blocks W;
is repeated in B to the right at a distance 7; not larger than 2:(¢+¢)_ Figure 3.3
shows the structure of B. We count the number D of blocks B with such a
structure.

Because all blocks W; are at least 1/ long, there are no more than md of
them and hence their initial positions can be distributed in at most

omH(6,1-9) (3.4.2)

different ways (approximately, see (2.8.4)).
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oNo(e+e)

—_—

A W[ ows | wa [ ws [ wel-{we |
—r — W | Cred Ws | — o —_ Wy |

Figure 3.3 The structure of the block B. Only some repetitions are shown.

Similarly, there are no more than

2mH(57176)

ways of distributing the single entries over B and no more than

lm5

ways of filling them with symbols. Now, imagine that the initial positions of
the blocks W, are set, as well as all the places outside these blocks, and that
all positions outside these blocks, including 2Vo(¢+€) positions at the end, are
filled. Notice that now also the lengths n; of the blocks W; are determined.
What is missing to determine B completely is the contents of the blocks W;.
In a moment we will explain that, instead, it suffices to know the distances to
their first repetitions.

For each i the distance between W; and its first repetition to the right assumes
an integer value 7; not larger than 2"(+€) Globally this makes

9% nilcte) < gm(cte) (3.4.3)

possible choices of the distances r; (jointly for all blocks 7).

Once these choices have been made, the block B is completely determined,
because each entry of each block W; (proceeding from right to left) can be
copied from the entry r; positions to the right, in the already determined part
of B. Multiplying the displayed estimates (3.4.2) through (3.4.3) we obtain the
upper bound:

D< 22mH(5,1—6) . lmzi . 2m(c+e)
i.e.,
logD < 2mH (5,1 —6) + mdlogl + m(c+¢e) < m(c+ 2¢),

for an appropriate a priori choice of §. Because the complement of X’ is cov-
ered by no more than [ cylinders of length m, the entropy of P™ does not
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exceed
(1 —=0)m(c+ 2e)+ dmlogl+ H(6,1 —6) < m(c+ 3e).

Since H(P™) > mh(P) for every m, and e is arbitrary, it must hold that
¢ > h(P). O

3.5 Horizontal data compression

A data compression algorithm in information theory is an algorithm (described
in a finite number of instructions) allowing long blocks B to be replaced by
(desirably) shorter blocks ¢(B) in an injective way. It is convenient to assume
that the output blocks are binary (i.e., they consist of zeros and ones). Then the
length of the compressed block represents the effective information content in
bits. The compression rate achieved on a block B is the ratio

crip)— 1oB)
| B|log #A

between the “size” of the block after and before the compression. Usually, such
an algorithm divides B into a concatenation of relatively short subblocks A (of
constant or variable lengths) and builds a one-to-one correspondence between
the blocks A and some binary blocks ®(A), trying to save on the length as
much as possible. Eventually the image of B is obtained as the order pre-
serving concatenation of the images ®(A). The two most commonly known
such algorithms are the Huffman algorithm and the Lempel-Ziv algorithm.
The first one has been briefly described in the Introduction. It divides B into
equal length subblocks A, checks their frequencies in B and assigns images
of variable lengths, so that the most frequent A’s receive the shortest images.
The Lempel-Ziv algorithm uses component subblocks A of variable lengths
and does not require examining their frequencies in B (thus is much faster).
In order for the code to be reversible, not all blocks can be used in the role of
®(A), because one has to be able to locate the “cutting places” in the concate-
nated image. For that, a special family of image blocks is selected, a so-called
prefix-free family, with the property that no block in this family is a prefix
(beginning) of another. Within such a family, the cardinality of all blocks of
length n, for large n, nearly equals 2™ (in the sense that one-nth of log of that
cardinality is close to 1), so the calculations of the compression rate are nearly
the same as if all blocks were used.

The data compression code can also have the form of a program (finite set of
instructions) which generates long output blocks when fed by some (shorter)
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input blocks. In fact, such a program is decoding (i.e., decompressing); the
output blocks are our “originals,” while the input blocks are their compressed
counterparts. One needs to include both the length of the program and the
length of the input block in the calculations of the compression rate of the out-
put block. This leads to the notion of Kolmogorov complexity of a long block
B, as the length of the shortest program (+ input) able to generate it. We refer
the reader to the rich literature in information theory for precise description
of many variants of lossless data compression codes, Kolmogorov complexity
and related notions [see e.g. Cover and Thomas, 1991]. In this book we will
concentrate on theoretical aspects of data compression and its connection with
entropy. For an extended exposition see also [Shields, 1996].
Formally, a data compression algorithm is any injective function

oo

o U AT — U {0,1}™.
m=mg m=1

Often one is interested in finding a code which highly compresses not all
blocks, only a selected family of blocks, for example, all sufficiently long
blocks appearing with positive probabilities in some ergodic process. From
the counting argument in Theorem 2.8.9 it follows immediately that even with
such a specialized algorithm, for a fixed and big enough n, the majority of
blocks (appearing in the selected process) of sufficiently large length m can-
not achieve the compression rate essentially better than their nth combinatorial
entropy (which is close to the entropy of the process), simply because the car-
dinality of such blocks is too big to be injectively encoded by shorter blocks.
One easily derives the following

Theorem 3.5.1 Let ¢ be a compression algorithm that applies to all suffi-
ciently long blocks appearing in some ergodic process (X, P, u,T,S)
of entropy h = h(u,T,P). Let n be so large that H(u,P") < n(h + ¢).
Then the joint measure of all blocks B of length m whose compression rate is
smaller than H,,(B)/log #A tends to zero with m.

While the proof of this theorem is left to the reader (Exercise 3.9), we give
a stronger almost everywhere result whose proof uses the Shannon—-McMillan—
Breiman Theorem. It says that the compression rate of the initial block
x[0,m — 1] of a “typical” = cannot be better than the entropy of the process, if
m is large enough.

Theorem 3.5.2 (The Data Compression Theorem) Let ¢ be a data compres-
sion algorithm applied to blocks over a finite alphabet A. Let u be a shift-
invariant ergodic measure on AS of entropy h = h(p,o,Pp). For v € AS
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let
CR(x) = liminf CR(z[0,m — 1]).

m—00

Then, for p-almost every x, CR(x) > h/log #A.

Proof Fix some ¢ > 0. For mg € N let X,,,, be the set where I,,,(z) < h —
g/2for all m > my. In other words, for z € X,,,, u(z[0,m—1]) < 2-m(=3)
(here [0, m — 1] denotes the cylinder corresponding to the initial block of x).
For any m, the number of all blocks of length m compressed to lengths smaller

than m(h — ¢) (i.e., with compression rate smaller than ; O’;; ) is clearly not

larger than 27("—¢)_ Within X me» the cylinders corresponding to such blocks
occupy jointly no more than a subset of measure

2—m(h—% . 2m(h—e) < 2—m§

By summability over m (and the Borel-Cantelli Lemma), the subset of X,

where CR(z) < 10};;#5/& has measure zero. Because, by the Shannon-

McMillan-Breiman Theorem, the sets X,,,, grow to a set of full measure, the
entire set of points x satisfying CR(z) < lo};&f —+ has measure zero. The asser-
tion now follows by uniting such sets over a decreasing to zero sequence of

epsilons. O

The Data Compression Theorem 3.5.2 fails for some very exceptional
sequences, even ones which satisfy the Ergodic Theorem for . Below is an
example.

Example 3.5.3 Consider the binary sequence obtained by concatenating con-
secutively all blocks of length 1 followed by all blocks of length 2, etc., each time
ordered lexicographically, as shown below (the commas are added only to show the
structure):

z =0,1,00,01,10,11,000,001,010,011, 100, 101, 110, 111, 0000, 0001 . . .

It is not hard to see that the frequency of any block A in this sequence is the
same as its independent uniform measure p (i.e., u(A) = 27", where n is the
length of A). In other words, x satisfies the Ergodic Theorem for every cylinder
A and the measure i whose entropy is 1. So, according to the assertion of the
Data Compression Theorem 3.5.2, x should not allow for any compression. On
the other hand, since it can be completely determined in a finite set of instructions
(see Exercise 3.10), the Kolmogorov complexities of the blocks [0, m — 1] tend to
zero. This example shows that Kolmogorov complexity takes into account a much
wider variety of structural regularities than just the ones based on frequencies of
subblocks. Nevertheless, the Data Compression Theorem says that the collection of
sequences with regularities undetected by the frequency-based codes has measure
zero.

We only remark that there exist many “optimal” data compression algo-

rithms which realize the inequality CR(B) < % for all sufficiently long
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blocks (this fact for the Lempel-Ziv algorithm was proved in [Ornstein and
Weiss, 1993]).

A reflection: How is it AT ALL possible to create a data compression algo-
rithm which replaces all blocks by blocks of at most the same length (and over
the same alphabet), in an injective way, where at least one block is replaced
by a strictly shorter one? This sounds like an impossible task! Such a replace-
ment should lead inevitably to loss of information. Well... we apply the code
not exactly to all blocks, only to blocks of lengths at least m, while we allow
the coded images to be arbitrary. This creates a small space allowing us to
move some of the blocks “down the scale.” But is there much room indeed?
Of course not! Data compression is an illusion. An illusion with spectacular
practical results. Because we do not compress blocks shorter than m, we save
Yom <mg 2" = 2" shortest blocks to be used as compressed images of some
longer blocks. For a length m significantly larger than my ANY compression
with rate smaller than 1 may concern at most the relatively tiny amount 20
out of the huge amount 2™ of blocks. A randomly chosen block of length m
will usually turn out incompressible. Luckily, most computer files, due to their
organized form, fall into the tiny collection of compressible blocks. This is
why data compression works.

Exercises

3.1 Let (X,P,u,T,S) be an ergodic process with positive (and finite)
entropy. Show that for large enough n the power process (X, P™, u,
T",S) is ne-entropy independent. Is this independence trivial (see
Remark 3.1.8)? Does this translate to §-independence for some small §?

3.2 Give an example that the sequence H (P™) — H(P"|Q™) occurring in the
definition of mutually e-independent processes (formula (3.1.16)) need
not have descending nths. Notice that this strengthens Exercise 1.6.

3.3 Prove that the Pinsker sigma-algebra in an independent process is trivial.

3.4 Show that the bilaterally deterministic process constructed in Example
3.2.5 has positive entropy.

3.5 Fact 3.2.8 shows that the reversed inequality (2.4.18) need not hold even
for the actions of Z (and invariant sigma-algebras). Provide a much sim-
pler example for the actions of Ny (and subinvariant sigma-algebras).

3.6 Show that the Shannon—McMillan-Breiman Theorem for an indepen-
dent process (with not necessarily uniform measure on the symbols) is
equivalent to the Strong Law of Large Numbers [see e.g. Feller, 1968].



3.7

3.8

39

Exercises 101

Define the kth return time to the nth cylinder as
j .
R () = RP) (2) = min{j >0:3 1y (Ta) = k}
i=1

Prove that in an ergodic process (X, P, u, T, S) the variables R;’“ fulfill
the assertion of the Ornstein—Weiss Theorem, i.e., that

lim 2 log R (z) = h(P) p-ace.

Given an alphabet A of cardinality [, and € > 0, create a prefix-free
family of blocks over A in which the cardinality of blocks of length
n exceeds 2"(1°21=2) Hint: Choose carefully a block T which cannot
occur with “selfoverlapping” and compute the cardinality of all blocks
of length n in which W occurs exactly one time — at the right end. By the
way, notice that a prefix-free family of blocks is simply any collection of
blocks with variable lengths, disjoint when treated as cylinders starting
at the coordinate zero.

Prove Theorem 3.5.1.

3.10 Write a program that generates the sequence z of Example 3.5.3.
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Kolmogorov—Sinai Entropy

4.1 Entropy of a dynamical system

Let (X,2 pu,T,S) be a dynamical system. The space X can be partitioned
into finitely or countably many sets in many different ways producing many
processes (X, P, u, T, S). We will consider only partitions with finite static
entropy, since other partitions provide no information about the complexity of
the dynamics.

Definition 4.1.1 The dynamical or Kolmogorov—Sinai entropy of the system
(X, 2, 1, T,S) is defined as follows:

h(, T) = h() = h(p) = sup{h(P) : H(P) < o).
By Fact 2.4.12, it suffices to take the supremum over finite partitions P.
Moreover, using continuity of the dynamical entropy among finite partitions

one can prove that
h(A) = li]]in h(Px), (4.1.2)

where (Py) is a refining sequence of finite partitions which generates 2 (the
proof is left to the reader as Exercise 4.1). The notation used will depend on
which of the parameters are fixed and selfunderstood in the context, and which
ones are treated as variables.

Now consider two dynamical systems (X, 2, u,T,S) and (Y,B,v,S,S)
such that the latter is a factor of the former via a map . This is to say, we
identify 98 with the (sub)invariant sigma-algebra 7~1(8) < 2. We have

Fact 4.1.3 If (Y,B,v,5,S) is a factor of (X, A, u, T,S), then h(pu,T) >
h(v, S). This can be written in short as
AxB = h(A) > h(B). (4.1.4)

If two systems are isomorphic, then their entropies are equal.
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Proof BEvery partition Q of Y with finite entropy H (v, Q) lifts by 77! to a
partition P = 7~1(Q) of X, with the same static entropy H (11, P) = H(v, Q).
Then, for each n € N, by equivariance, 71(Q") = P", and again, the par-
titions Q™ and P" have the same static entropy in respective spaces. So, the
dynamical entropy of P and Q are equal. Thus, the supremum defining h(u, T")
is not smaller than that of h(v, S). The statement concerning isomorphic sys-
tems is now immediate, as each of the systems is a factor of the other. O

Definition 4.1.5 We define the conditional entropy of a dynamical system
given its factor as follows

h(p, Tlv, S) = h(A|B) = h(plv) = Sup h(P|B).

The last notation will be used frequently in Part II of this book, where this
kind of entropy is studied as a function of invariant measures. For now how-
ever, since we will work within a fixed measure space with a fixed transforma-
tion, and all factors are identified with (sub)invariant sigma-algebras, we will
mainly use the second notation. We have

Fact 4.1.6
h(A[B) + h(B) = h(A) (or h(plv)+ h(v) = h(n)).

Proof The equality is trivial when h(8) = oo. Otherwise we need to prove
the subtractive formula h(A|B) = h(2A) — h(B). Let P and Q range over all
finite 2A-measurable partitions and all finite ‘B-measurable partitions, respec-
tively. We have, using (2.4.4) and (2.4.17) in appropriate places,

h(A) — h(B) = sup h(P) —sup h(Q) = irglf sup[h(P) — h(Q)] =
P Q P

inf sup[h(P Vv Q) — h(Q)] > sup inf[A(PV Q) — h(Q)] =
Q p» Q

sup inf[h(P]Q)] = sup h(P|B) = h(A|B).
p 9 P
On the other hand,
h(A|%B) = sup igf[h(f]’\/Q)—h(Q)] > sup igf[h(f]’)—h(Q)] = h(2A)—h(B).
P P
O

If 9B is generated by a finite partition Q, then the infimum over Q can be
skipped. The alternative notation for h(u, T'|v, S) in this case is h(u, T'|Q) or
simply h(]Q).
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Now consider several factors of the master system (X, %, u, T, S), repre-
sented by (sub)invariant sigma-algebras, for example 8 and €. It is clear that
B V € is also a (sub)invariant sigma-algebra, hence represents a factor (it is a
kind of a joining, see Section 4.4 for more). The familiar list of monotonicity
and subadditivity properties holds (compare Fact 2.4.2):

Fact4.1.7 Let ‘B, &, D be subinvariant sigma-algebras. Then

h(BV €[D) = h(B|EV D) + h(€]D), (4.1.8)

B = ¢ = h(B|D) > h(¢]D), (4.1.9)
=D = h(B[€) < h(B|D), (4.1.10)
h(B V €[D) < h(B[D) + h(¢|D), @.1.11)
h(B|D) < h(B|€) + h(¢|D). (4.1.12)

Proof First of all, by conditioning all expressions in the proof of Fact 4.1.6
one obtains its conditional version

h(A|B VD) + h(B[D) = h(A|D). 4.1.13)

Since for any €-measurable partition R we have h(P V R|€) = h(P|€) (use
(2.4.3) and (1.6.28)), we also have h(B V €|C V D) = h(B|C V D). Now
(4.1.8) follows from (4.1.13) applied to € as a factor of B V €:

h(B Vv e|C VD) + h(€D) = h(B v ¢|D).

Monotonicity (4.1.9) follows from (4.1.8). The reversed monotonicity (4.1.10)
is obvious by definition. Just like in all preceding similar lists of properties,
the last two subadditivity statements are direct consequences of the first three
(compare Exercise 1.3). O

The next property we prove is the power rule:
Fact 4.1.14 For eachn € S we have h(p,T™) = |n|h(u, T).
Proof By Fact 2.4.19, for each partition P we have
B, T P) < b, T PI™) = [l (s, T, P).
Taking the supremum over all P we get

hlp, T%) < [nfh(p, T) = sup h(u, T, Q) < hip, T7).
Q:T n
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It is clear that any measure on a countable space is atomic, hence any dynam-
ics on such a space has entropy zero. This fact has also a conditional ver-
sion: every countable-to-one extension has conditional entropy zero. The proof
relies on disintegration and the conditional Shannon—-McMillan—-Breiman The-
orem (Theorem 3.3.7). With this price paid the proof is easy. Without this
machinery it is relatively easy to prove a weaker statement that the fibers are
infinite (Exercise 4.5).

Theorem 4.1.15 Let (Y,B,v,S,S) be a factor of an ergodic system
(X, U, 1, T,S) via a factor map w : X — Y. Suppose that h(A|B) > 0.
Then, for v-almost every y, ™1 (y) is uncountable.

Proof We have
h(A|B) = sup h(P|'B) > 0,
P

where P ranges over all finite 2-measurable partitions of X . Thus, there exists
a finite partition P such that A(P|B) > 0. We restrict our attention to the
system generated jointly by P and the factor on Y, i.e., we set A = PS5 v B.
We will prove that almost every y has an uncountable preimage already in this
system.

This follows immediately from the conditional Shannon—-McMillan—
Breiman Theorem 3.3.7. For almost every z in the extension the conditional
information function L Ipn g (z) converges to the conditional entropy, where
Ipni(x) = —log py (A}), where y is the factor image of x, p,, is the disinte-
gration of p and A7 is the cylinder over P of length n containing x. Whenever
{ty has an atom at = the measures of the cylinders A7 containing x do not
decrease to zero, so their minus logarithms are bounded, hence the sequence
%I pn| (x) decreases to zero. Thus, if the conditional entropy is positive, such
atoms may occur only for y with v-probability zero. U

4.2 Generators

Throughout this section we will work with dynamical systems with finite
Kolmogorov—Sinai entropy. Measure-theoretically, a generator is any partition
P such that P° equals 2 (up to measure). Nevertheless, in systems with finite
Kolmogorov-Sinai entropy we will require that the static entropy of P is finite.

Definition 4.2.1 A countable partition P will be called a generator in a sys-
tem (X, 2L, u, T, S) if it has finite static entropy and the full history P° equals
2A (after completing).
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Existence of generators is one of the issues for which the kind of the acting
semigroup may be of decisive importance. Thus we must distinguish between
unilateral generators, i.e., generating under the action of Ng: PNo = 2 and
bilateral generators, i.e., generating under the action of Z: P% = 2.

There are two key theorems concerning generators: the Kolmogorov—Sinai
Theorem [Sinai, 1959] and the Krieger Generator Theorem (or simply Krieger
Theorem) [Krieger, 1970].

Theorem 4.2.2 (Kolmogorov—Sinai) If P is a generator (unilateral or bilat-
eral) for a dynamical system (X, 2, u,T,S), then h(p, T) = h(u, T, P).

Proof For unilateral generators this is an immediate consequence of Fact
2.4.1, while for bilateral generators one needs the Exercise 2.6. O

The next theorem allows one to view every invertible system (Z-action) of
finite entropy as a process over a finite alphabet, i.e., as a symbolic system. It
plays a crucial role in our interpretation of entropy, as the amount of informa-
tion passing per unit of time. Although various proofs may be found in many
textbooks, for sake of completeness of this book we provide a full proof below.

Theorem 4.2.3 (Krieger) Let T be an ergodic automorphism of the standard
probability space (X, 2, 1) with h(u, T) < oo. Then (X, A, u, T,Z) has a
finite bilateral generator of any cardinality | > 2"T) Moreover, | = 2"(1T)
is possible if and only if 2""T) is an integer and the system is isomorphic to
the Bernoulli shift on | symbols with equal measures.

Remark 4.2.4 The Krieger Theorem solves the question about the vertical
data compression, i.e., it allows the smallest alphabet which losslessly encodes
the system in real time to be determined. Also, it provides an interpretation
of Kolmogorov—Sinai entropy in terms of the vertical data compression: if [,,
denotes the cardinality of the smallest alphabet sufficing to encode the action
of T™, then h(u,T) = liirl% logl,.

We will prove the Krieger Theorem in two steps. At first, we prove the
assertion assuming that the system has a countable generator (with finite static
entropy). The main proof will then reduce to finding a countable generator in
a Z-action with finite Kolmogorov—Sinai entropy. The proofs rely on cutting
the P-names into blocks at places that can be determined from the P-name
(i.e., using a PZ-measurable procedure) without knowing the position of the
coordinate zero (i.e., in a shift-equivariant procedure).

Lemma 4.2.5 Let (A%, u, 0,7) be an ergodic symbolic system over a count-
able alphabet such that H(Py) < oo. Denote h = h(u, o, Py). Let | be such
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thatlogl > h. Then the system (A%, u, o, Z) is isomorphic to another symbolic
system, (A%, v, 0,7), where #A = l.

Proof We let A be an alphabet of cardinality [. We will replace each A-name
by a A-name in an (almost surely) injective and shift-equivariant way. Let ¢ =
W. As we know (see Exercise 3.8) we can select one block over A, say W,
and find ng such that for every n > ng the cardinality of all blocks of length
n over A in which W occurs exactly one time — at the right end (such blocks
constitute a prefix-free family), is at least 2(1°81=¢) (which equals 2"("+2)),

Using the Shannon—-McMillan—Breiman Theorem we can enlarge ng so that
for every = in a set C' C A” of measure larger than 1/2 and any n > ny
the cylinder [0, — 1] € A™ has measure within the range 2~"("+¢)_ Notice
that for every n > ny there are at most 2"("*+) cylinders of length n which
intersect C. Now we invoke the Kakutani—-Rokhlin Lemma [see e.g. Petersen,
1983]: a set of measure at least 3/4 in AZ is occupied by a tower of height
no, i.e., by a sequence of disjoint sets A, T'(A), ..., T™ ~1(A). Notice that for
eachi = 0,...ng — 1 the first return time to 7(A) is never smaller than ng;
each orbit must leave the tower through the top and re-enter through the base.
Of course, the set B = C'NT"(A) has positive measure for at least one i. In this
way we have selected a set B (which we call a marker) with two properties:
the return time Rp is at least ng and each value n of Rp is represented by at
most 27"1¢) cylinders of length n (intersecting B). Let R,, denote the family
of blocks over A corresponding to these cylinders. For each n there is a 1-1
map ®@,, from R,, into the family of all blocks of length n over A ending with
W and in which W does not occur otherwise (because, as we have noted, there
are sufficiently many such blocks).

Now fix an z € A% whose orbit visits B infinitely many times in both the
past and the future (by the Ergodic Theorem almost every point has this prop-
erty). At times of the visits of the orbit of x to B the sequence x is cut into
a concatenation of blocks belonging to |J,,,, Rn. We define the map 7 as
the code replacing each block R from this concatenation by its image ®,,(R),
where n is the length of R. It is immediate to see that 7 is defined almost
everywhere, it is measurable, shift-equivariant and invertible (where defined):
the cutting places are determined in the image sequences by the occurrences
of W. O

In the above proof dealing with bilateral sequences is essential: in a unilat-
eral sequence the block between the coordinate zero and the first visit in B need
not belong to the family UnZno R, so we may not know how to encode it.

We can now prove the full version of the Krieger Theorem.
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Proof of Theorem 4.2.3  Consider a system (X, 2, u, T, Z) with finite entropy
h = h(u,T). We need to find any (countable) generator. There exists a
sequence (Py)ren of finite partitions such that Py = Py for each k which
together generate the sigma-algebra 2 (without even using the action of 7).
Then hy, = h(p, T,Pr) / h (see (4.1.2)). We let A be an alphabet of cardi-
nality [ such that log! > h. In the coding, we will use the countable alpha-
bet: A = AU{0,1,2,..}. We fix a decreasing to zero sequence &, such
that °, e, = W. From now on we proceed inductively. The first step is
almost identical as in the preceding proof. We choose a marker set B so that
each value n of the return time R 3, is represented by at most 2"(*1+¢1) cylin-
ders in the P;-names. The map ®,, sends these cylinders into blocks over A of

length nhfo—;? < n (there is enough of them). Next, we extend every image

block to the right by attaching n% — 1 zeros and the terminal symbol
“1,” so that the image now has the same length n as the original. The code m;
is constructed as follows: we cut each P;-name at the times of the visits to B;
into blocks R and replace each R by ®,,(R), where n is the length of R.

We now describe the second step, and we will skip a completely analogous
description of the further steps. Find no > ny such that on a set C' C B,
of measure at least half of u(Bj) the following condition holds: for every
x € C and n > no the measure of the cylinder Ry corresponding to the
block 2[0,n — 1] in the Po-name x is within the range 2~ "(2%22)_ Since the
corresponding initial cylinder R; of length n in the P;-name of = has measure
between 2~ "("1%£21) (because x € By), the intersection Ry N C splits into at
most 2"(h2—hiteite2) cylinders of the same length over P,. So, they can be
injectively mapped into blocks over A of length n%ﬁ?m. We fix such a
map (separately for each block R;) and call it ®p, .

As in the preceding proof (and step) we now select a set By C C of positive
measure with the additional property that the return time Rp, assumes only
values larger than or equal to ny. This is our new marker set. Now take any
point z € X. The times of visits to By cut both its P;-name and Ps-name
into blocks of lengths n > no. Let R; and R» be a pair of blocks that appear
between a fixed pair of markers, in these two names, respectively. Because
Bs C Bi, R; is a concatenation of (finitely many) blocks R used in the pre-
ceding step. The code 7 replaces R; by a concatenation of blocks over A in
such a way that there is a fraction

logl —hy — &3
log
of zeros (we ignore the fraction occupied by the terminal symbols 1; it can

be included in the error term £1). We use the smaller fraction %ﬂg?m
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of these cells to encode Ry given Ry. We simply “write” the block ® g, (R2)
into the empty places proceeding from left to right, still leaving some number
of the empty cells unused (see below), and we put the symbol “2” at the end of
the image of Ry so obtained, replacing the “1” put there by the code ;. This
concludes the description of the code 5. Notice that there is still a fraction

logl—hg —261 — &9
logl

of unused empty cells left. This is exactly what we need to repeat in the fol-
lowing steps: after step k there will be a fraction

logl — hy — 261 — 269 — -+ — 261 — €

log
of zeros, of which we will use

hi+1 — hi + ek + €1
log

in the following step.

Notice that throughout all countably many steps every coordinate is changed
at most once, except the terminal integers which can only grow. Thus the limit
code 7 is well defined (the symbol co may occur). Clearly, it is measurable and
shift-equivariant (as a limit of such). It is also invertible; the cutting places in
step k can be found by locating, in the image, all integer symbols larger than
or equal to k (including co). Then we know which symbols in this image were
used by the code 71, so we can reverse it and reconstruct the P;-name of the
original. Next we know which symbols in the image were used by the code
mo and knowing already the P;-name of the original, we can reconstruct its
Py-name. And so on. By reversing all the codes 75, we reverse .

The last thing to notice is that the new generating partition P, so obtained
has finite static entropy. The finitely many symbols from A have finite entropy.
The other symbols k& € Ny have probabilities not larger than 1/n, respectively
(the symbol & occurs in the image with gaps at least ng; in particular oo has
probability zero). We can easily arrange that the expectation ) kﬁ is finite.
This implies finite static entropy (see Fact 1.1.4).

We have completed the proof of the main statement of the Krieger Theorem.
It remains to check the case of equality. Clearly, if the system is isomorphic to a
Bernoulli shift on finitely many symbols of equal measures, then the entropy of
this system equals the logarithm of the cardinality of the generator transported
from the Bernoulli shift.
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Conversely, suppose a system with entropy h = log{ has an [-element gen-
erator P. Because P is a generator, we have h(P) = h. The static entropy
H(?P) is, on one hand, not larger than log !, on the other, not smaller than the
dynamical entropy h(P). So, we have equality h(P) = H(P). This condi-
tion implies that the process is independent (see Definition 2.3.15) and since
H(P) = log(#P), P is a partition into sets of equal measures. O

Note that the Krieger Theorem does not apply to actions of Ny. For example,
if T happens to be invertible, then, by Fact 2.3.12, the existence of a unilateral
generator is possible only when the dynamical entropy is zero. Even when T’
is evidently not invertible, still, it may possess an invertible factor of positive
entropy, which also makes the existence of a unilateral generator impossible.

We shall say a few words about the Pinsker factor of a dynamical system.
This notion has been defined for processes (in Section 3.2), now we are one
step away from extending it to general dynamical systems.

Definition 4.2.6 Let (X,2, u,T,S) be a dynamical system. The Pinsker
sigma-algebra is defined as IT,, = \/,, Il where P ranges over all countable
partitions with finite static entropy of X.

Clearly, this is an invariant sigma-algebra. The associated factor is called the
Pinsker factor.

Remark 4.2.7 The same Pinsker sigma-algebra will be obtained as \/- ; ILp,
where (Py) is a refining sequence of finite partitions that generate 2(. If P is a
generator in (X, 2, p, T, S), then IT,, = IIp. The proof is left to the reader as
Exercise 4.4.

Remark 4.2.8 In a system (X, 2, u, T, S) consider the “full remote future”
A = (>, T~™(2A). It is trivially observed that for automorphisms A
equals 2, while for systems having a unilateral generator P (with finite entropy)
2A>° coincides with the Pinsker sigma-algebra. The sigma-algebra 2> rep-
resents the largest invertible factor of the system. The conditional entropy
h(p|A°) is interpreted as the entropy coming from the noninvertibile dynam-
ics and is sometimes called the (measure-theoretic) preimage entropy [Cheng
and Newhouse, 2005]. We refer to Section 6.10 where the connection between

measure-theoretic and topological preimage entropy is discussed.

Theorem 4.2.9 A factor of (X, 2, 1, T, S) has entropy zero if and only if the
sigma-algebra corresponding to this factor is contained in 11,,.

Proof Let ®B be a sigma-algebra associated with some factor. Suppose the
entropy of the factor is zero. Let P be a B-measurable partition of finite static
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entropy. The process (X, P, u, T, S) has entropy zero, thus, by Theorem 3.2.2,
P < Ilp < 11,,. Thus B < I1,,.

Conversely, suppose B < II,, and let Q be a finite ®B-measurable partition.
By Remark 4.2.7, for every ¢ the partition Q can be approximated up to ¢ in
dy by a partition Q’ of the same cardinality as Q, measurable with respect to a
finite join \/f:1 Ilp, for some partitions P;. It is easy to see that this last join
equals I1p, where P = \/f:1 P;. By Theorem 3.2.2 again, h(Q") = 0 and, by
continuity of the dynamical entropy for partitions of bounded cardinality (Fact
2.4.13), h(Q) = 0. This implies that the entropy of the factor associated with
B is zero (in the supremum defining the entropy of the factor system it suffices
to use finite partitions). U

4.3 The natural extension

There is a technique which allows us to generalize many results from auto-
morphisms to endomorphisms, especially those concerning entropy. This tech-
nique is called the natural extension and we will briefly describe it in this
section.

Definition 4.3.1 Let (X, 2 u,T,Ny) be a dynamical system. The natural
extension is the system (X' ', u/, T',7Z) (or (X', ', ', T',Ny), depending
on the needs) defined as follows: X’ = X7, 2’ is the product sigma-algebra,
T’ is the shift map and 1 is defined on measurable cylinders

C=C(A_pn,...,An—1) = {(=(0))icz € X* : Vic|onn—1) 2(i) € Ai}

by

n—1
W(C)=p ( N T‘”‘i(Ai)> :

It is elementary to verify that the natural extension is a well-defined auto-
morphism, i.e., T” is invertible. The projection 7y on the coordinate zero is a
factor map from (X', ', u/, 7", Ny) to (X, 2, u, T, Np).

For unilateral symbolic systems the natural extension has a simpler (iso-
morphic) form. We just mention here the modification: X” is defined as the set
of all bilateral sequences over the same alphabet as the original system. The
measure is defined for cylinders over blocks over the alphabet by first shifting
them so that all coordinates become positive, then applying the measure from
the unilateral space.
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It is obvious that for an invertible map 7' the dynamical entropy of a partition
is the same in the Z and Ny action. The following fact is crucial:

Fact 4.3.2 For a unilateral symbolic system (AN u, 0, Ng) the dynamical
entropy is the same as that of the natural extension (A%, i, o' | Ny). More gen-
erally, the Kolmogorov-Sinai entropy of a dynamical system (X, 2, pu, T, Ny)
is the same as that of the natural extension (X', ', ', T',Ny). The condi-
tional entropy h(2'|2) is zero.

Proof The first statement is obvious, as the dynamical entropy depends exclu-
sively on the future of the process, i.e., on the partitions P™, n > 0, which gen-
erate the same probability vectors in both processes. For the latter statements
we note that (X, 2, u, T, Ny) is a factor of (X', 2, ', T',Ny), so the entropy
of the latter system is not smaller. Now, take any measurable partition P’ of X'
of finite static entropy. Then this partition can be approximated in d; by a finite
partition Q' measurable with respect to the sigma-algebra 2=~ where
is identified with the zero-coordinate sigma-algebra. We have

LH@™A) < LHEQ" AT + LHQ@" o).

1
The last term, by applying 7", becomes - H (Q"™"|Al=>°)), which is
zero, because the partition is measurable with respect to the conditioning
sigma-algebra. The first term on the right-hand side decreases to zero with
m. We have obtained that h(y/, T",Q'|2") = 0. Since 2l is subinvariant, A+
equals 2. By lower semicontinuity in d; of h(-|2() on countable partitions with
finite static entropy (see Fact 2.4.13), the conditional dynamical entropy of P’
given 2 is zero. Taking the supremum over P’ we obtain A('|2) = 0, as
claimed. As a consequence, h() = h(2). O

For a dynamical system (X, 2, 1, T, S) and a set B € 2, recall Definition
3.1.10 of the system induced on B. We conclude this section with the Abramov
Theorem, allowing us to compute the entropy of the induced system [Abramov,
1959].

Theorem 4.3.3 (Abramov) Let (X, 2L, u, T, S) be an ergodic system and let
B € U satisfy u(B) > 0. Then

h(p, T)
u(B) -

h(pp,Tp) =

The proof relies on Kac’s theorem [Kac, 1947]. We give a proof which uses
natural extensions.
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Theorem 4.3.4 (Kac) Let (X, U, 1, T,S) be an ergodic system and let B € 2
satisfy p(B) > 0. Then

Rp(z)dup = ——.
/ (B)
Proof We start by assuming 7" to be an automorphism. By ergodicity, X =
U., U?:_Ol T!({x € B : Rg(x) = n}), the union being disjoint and with
the sets in the inner union having equal measures (we are using images of
measurable sets, so invertibility is essential). Thus

1= n-p{zeB: RB(x):n}):/BRB(x)d,u.

The assertion is now obtained by dividing by p(B).

For a noninvertible T' we invoke the natural extension (X', 20, p/, T',Np).
Take a set B € 2 and then let B’ = 7, '(B) € 2. Notice that for every
x’ € B',Rp/(¢') = Rp(mp(z')). Because mp’ = p, we have

/RBd/J/:/ RB/CZ/.LI:L
B ’

Since 1/ (B’) = p(B), the integrals remain equal after appropriate normaliza-
tions. 0

Proof of Theorem 4.3.3 A point x € B visits B attimes ... n_y < n_j <
ng=0<n; <ng...,(orjustng =0<n; <ng... forS =Nj), where
nit+1 — n; = Rp(Thx). Let P be a finite partition of X. The P-name of z
can be broken as the concatenation - - - x[n_1,ng)x[ng, ni)x[ni, ng) - (or
just z[ng, n1)x[ng, ng) - - -, for S = Np). If we treat the component blocks as
symbols, we obtain a symbolic representation in which the shift corresponds to
the induced map Tz (see Figure 4.1). The new symbols correspond to atoms
of the countable partition Q of B obtained in the following two steps: First,
we partition B into the sets @, = {# € B : Rg(z) = n} and we denote
this partition by Q, then we refine Q by applying to each @,, the partition
P" (matching the index 7). This refined partition Q has finite static entropy.
Indeed, by the Kac Theorem, R 5 has finite expected value, i.e., >, nu(Qn) <
0o. By Fact 1.1.4, Q has finite entropy. Now

H(Q) = H(Q|Q) + H(Q) =) n(Qu)Hq, (P") + H(Q).

The last term is finite and the sum is dominated by log #P " nu(Qy), which
is finite, as well.
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visits in B

| C4 | Co |cl| Cs | Cs |

Figure 4.1 Symbolic representation of the process generated by P (above)
and of the process induced on B generated by Q (below).

By the Shannon-McMillan—Breiman Theorem for both the master process
and the induced process, there exists in B a cylinder A over Q such that

— L log(u(A)) = h(p, T,P) and — log(us(A)) ~ h(us,Ts,Q),

where [ denotes the length of A (under Tz) and m is the length of A treated as
a cylinder over P (under 7). This implies

h(p, T,P) 1 log(u(4))

hpp,Tp, Q) " mlog(up(A))

By the Ergodic Theorem, we also have

l
— =~ u(B
-~ uB),
while % =1+ %, which is close to 1 when the conditional

measure of A is small. Because the inaccuracies can be made arbitrarily small,

we have proved that h(u, T, P) = u(B)h(up, Ts, Q). Clearly, with P ranging
over all finite partitions of X, the partitions Q generate in the induced system,
so taking the supremum over all P completes the proof. O

The following two examples teach us caution with handling induced maps,
especially when computing the entropy of a system from an induced one.

Example 4.3.5 Consider the system constructed in the following way: We start
with any system (X, 2, p, T, S) and we selectaset A € X with0 < p(A) < 1. We
partition A into countably many sets A, so that > nu(A,) < co. Above each
A,, we imagine n copies of A,, (so-called “spacers”) equipped with the measure
copied from A,. Let Y be the union of X and the spacers with the normalized
measure denoted by v and denote ¢ = v(X). The transformation S on Y is defined
as follows: each point in A,, goes “vertically up” n times, until it reaches the top
spacer, then it returns to 7'x. Other points in X are mapped directly to T'z. The
dynamics on X advances only “from time to time” with probability c, and at other
times it “stays suspended.”
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Notice that the system induced on X is the same as the original system
(X, 2, u, T,S), hence its entropy equals h(u,T). By the Abramov Theorem, the
entropy of the system (Y, B, v, S,S) is

h(v,S) =c-h(p,T).

Example 4.3.6 Now consider a very similar looking example. In addition to the
system (X, 2, u, T, S) take any process on two symbols, i.e., Z = {A, B}® with
the shift map o and some shift-invariant measure &. Construct (Y, B, v, S, S) as the
skew product, as follows: Y = Zx X, v = Ex pu, S(z,z) = (0(2),T%(x)), where
T% =T when zo = A and T% = id when 2o = B. Let ¢ = £(A) (here A denotes
the cylinder over the block of length 1). Again, the dynamics on X advances only
“from time to time” with probability ¢, and at other times it “stays suspended.” But
in the previous example, the partition into the sets with the two types of behavior
was determined within X (i.e., was measurable with respect to ), now it is not — it
is determined within Z, hence is independent of 2. The entropy of the system can
be computed as follows: The transformation induced on A x X is the direct product
of (X, 2, u, T,S) with the system induced from Z on A. The entropy of the latter
induced system is h (€, o) /c. So, the overall entropy is:

h
n(w.8) = e(h(n,T) + MDY = g 1) + i)
We can use the Abramov Theorem to solve the maximization problem for

static entropy announced in Section 1.1, after Fact 1.1.4.

Fact4.3.7 Fix some p € (0, 1]. Among all countable probability vectors p =
(pi)ien with expected value y_.° | ip; = % the maximal entropy %H(p, 1-1p)
is attained on the geometric distribution with parameter p: p; = p(1 — p)*~!
(and only on this distribution).

Proof Take a probability vector p = (p;);cn With expected value %. Con-
sider an independent (symbolic) process (say, bilateral) on countably many
symbols a; whose probabilities are p;, respectively. Denote by B the corre-
sponding symbolic space, by Tz the shift map, and by pp the shift-invariant
measure of this process, and let P be the zero-coordinate partition. Note that
H(p) = h(pp,Tp,P). Now construct a skyscraper X over the base B hav-
ing exactly ¢ — 1 floors above each zero-coordinate cylinder set a;. The total
measure of the skyscraper equals the expected value of p, i.e., 1/p, so, after
normalization, the base B becomes a set of measure p. The transformation
T on X is standard; each point goes up until it reaches the top floor, then it
returns to the base according to T'5. Ergodicity of T with respect to the nor-
malized measure (denoted p) follows easily from the ergodicity of pp with
respect to Tz and the fact that X is the skyscraper over B. Notice that P
coincides with the partition of B determined by the values of the return time
variable. Consider the two-set partition Q of X into B and its complement.
The generated process, after inducing on B is precisely the process generated
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by the partition into level sets of the return time, i.e., by the partition P. By the
Abramov formula, its dynamical entropy (which is H (p)) equals %h(,u, T,9).
Now, h(u,T,Q) < H(Q) = H(p,1 — p), which proves the desired inequality.

Conversely, note that if we start the construction in the opposite order, with
(X,9,u,T,Z) being the independent process on two symbols 0, 1, whose
probabilites are 1 — p and p, respectively, and we define B as the cylinder
1, then the distribution p of the return time to B is geometric with the parame-
ter p and has expected value 1/p. The preceding argument now yields H(p) =

The uniqueness is obvious, because the equality implies (u, T, Q) = H(Q),
i.e., that the process on Q is independent and then the return times to B have
the geometric distribution. O

4.4 Joinings

The notion of a joining is one of the most important in both ergodic theory
and topological dynamics. We refer the reader to the book by Eli Glasner
[Glasner, 2003] for an extensive study of joinings in ergodic theory. Here we
concentrate on a few facts concerning the entropy. A joining of two systems
(X, 2, 1, T,S) and (Y,B,1, S,S) is their common extension (Z, ¢, &, R,S)
with the additional property that the two factors together exhaust it, i.e., that
¢ = AV ‘B (where now we mean the lifted sigma-algebras). In this sense,
the notion of a joining becomes synonymous with the join of (sub)invariant
sigma-algebras. The difference is in our approach: when talking about subin-
variant sigma-algebras we usually work within a fixed “master” system, where
we consider many possible factors. Now we fix two abstract systems and we
treat their joinings (common extensions) as a varying object. The environment
where all possible joinings can be found (up to isomorphism) is the product
space. Here is the formal definition.

Definition 4.4.1 Let (X, u,7,S) and (Y,B,r,5,S) be two dynamical
systems. By a joining of these systems (or equivalently of the measures p and
v) we will mean the dynamical system (X x YV, A ® B,¢,T x S,S), where
¢ is any probability measure on the product sigma-algebra, invariant under
T x S, such that its marginals (projections onto X and Y) equal p and v,
respectively. Because the only variable parameter above is the measure &, the
name “‘joining” often refers to this measure rather than the entire system.

We skip the purely measure-theoretic proof of the fact connecting the above
two approaches to joinings:
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Fact 442 Let (Z,¢,&, R,S) be a dynamical system with two subinvariant
sigma-algebras A and B contained in €. Then the factor corresponding to
AV B is a joining of the factors corresponding to U and ‘B. O

An example of a joining is the independent joining, where ¢ is the product
measure i X v. Systems admitting only one joining — the product measure, are
called disjoint (in the sense of Furstenberg) [see Furstenberg, 1967].

We briefly describe joinings over a common factor. Suppose (X, 2, i, T, S)
(Y,8,v,5,S) admit a common factor (Z’, ¢’ ¢’ R',S). Let m; and 7o, be the
respective factor maps. The product space X XY maps onto Z’ x Z’ by the map
71 X 2. The preimage of the diagonal is the set Z = {(x,y) : m1(z) = m2(y)}.
Any joining of x4 and v supported by Z is called a joining over the common
factor (Z',&',¢', R',S). Note that the map 7(z) = m1(x) (where z = (x,y))
factors Z onto Z’ and since the same map is obtained as 7 (y), the sigma-
algebra € (lifted to Z) is contained in both (lifted) 2 and (lifted) B. Joinings
over a common factor are exactly such joinings inside which the two systems
and their common factor correspond to three (sub)invariant sigma-algebras,
A, B and ¢ < AN DB.

Because joinings are simply joins of (sub)invariant sigma-algebras, all the
properties listed in Fact 4.1.7 apply. We translate some of them into the lan-
guage of joinings. The product rule follows directly from (1.6.16) and (1.4.3).

Fact 44.3 Let & be a joining of iu and v. Then
h(§) < h(p) + h(v) and h(¢|p) < h(v).
For a joining & over a common factor &', we have
h(€lE') < h(ulg) + h(v[E). (4.4.4)
For independent joinings, we have the product rule
hp x v, T x S)=h(p,T)+ h(v,S). (4.4.5)
O

(Such equality does not imply independence, for example it holds whenever
one of the processes has entropy zero.)
More interesting is the following representation statement for Z-actions:

Theorem 4.4.6 Let *B be an invariant sigma-algebra in an ergodic system
(X, 2, u, T, Z) of finite entropy. Then, for every ¢ > 0 there exists an invariant
sigma-algebra € such that A = B V € and h(€) < h(A|B) + &.
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By the Krieger Theorem the above fact can be rephrased as follows:

Theorem 4.4.7 Consider an ergodic process (X, P, u, T, Z) (where H(P) <
o0) and its factor generated by a partition Q with H(Q) < co. Then there exists
a partition R of X, such that P* = (QV R)Z (i.e., the process generated by P
is a joining of those generated by Q and R), and the processes generated by Q
and R are e-entropy limit-independent of each other.

Before the proof we state a corollary concerning a Bernoulli process in the
role of the factor (here it is inessential whether it is a Bernoulli shift or a pro-
cess isomorphic to one, because we are free to choose the generator). In this
corollary we replace e-entropy limit-independence by e-entropy independence.
This is possible, due to Fact 3.1.18. Recall that, by Fact 3.1.3, such indepen-
dence translates to the genuine (stochastic) e-independence of the processes.
We remark that every invertible system of positive entropy h has Bernoulli fac-
tors with entropies ranging in (0, h]; this fact is the Sinai Theorem (Theorem
4.5.1).

Corollary 4.4.8 Let (X, P, u, T, Z) be an ergodic process (H(P) < oo) and
let (X,Q,u,T,Z) (where Q is PZ-measurable and has finite entropy) be a
Bernoulli factor. Then, for every € > 0, there exists a partition R such that
PZ = (QV R)% and the processes generated by Q and R are c-entropy inde-
pendent. In other words, every bilateral process is an e-independent joining of
any of its Bernoulli factors (with something). O

Proof of Theorem 4.4.6 We prove the statement in the version 4.4.7 (for pro-
cesses). The assertion holds trivially if 2(Q) =0 (then we can take R = P). We
can thus assume that 2(Q) > 0. This eliminates periodic processes in the role of
the factor. It suffices to isomorphically represent the process (X, P, 1, T, S) in
a two-row symbolic form, whose first row is the process generated by Q, while
the projection onto the second row is some process of entropy not exceeding
h(P|Q) + e. Using the Krieger Theorem we can replace P and Q by finite par-
titions which generate the same processes. By replacing, if necessary, P by
P Vv Q, we can assume that P = Q.

The construction relies on the Shannon—-McMillan—Breiman Theorem. Find
n such that for points z in a set X', whose complement has measure smaller
than some preassigned & (which we specify later), the following holds

(B < 9-n(h(2)=8) .14 (A) > 9= (h(P)+d)

where A7 and B} are the cylinders defined by the inclusions x € A? € P"
and x € B? € Q™. This implies that, within X', each cylinder from Q" splits
into at most 2"("M(P19)+29) cylinders from P". Let A be a set of cardinality
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[27(M(F12)+20)] " whose elements we will call labels. These labels must be
different from the labels assigned (earlier) to the elements of P. We will also
need an extra symbol (say 0) appearing neither in A nor in the labeling of
P. Inside each cylinder B™ from Q" intersected with X’ we can injectively
label all cylinders from P™ using the symbols from A. We fix such a labeling
(separately in every B™).

By the Rokhlin Lemma (and aperiodicity), we can find a set F' measurable
with respect to Q% whose (at least) n/J preimages by consecutive iterates of
T are pairwise disjoint. By ergodicity, almost every point x visits F infinitely
many times, with gaps at least /5. We will now select some blocks of length n
in the Q-name of x and call them the marked blocks. We will do that separately
between every pair of consecutive visits of the orbit of x to F. Proceeding
from a time (say m) of such a visit, we seek for the nearest time n; > m
for which 7™z € X’. We mark the block x[n1,n1 + n — 1]. Then we seek
for the smallest ny > mq + n such that 722 € X' and we mark the block
x[n2,ng + n — 1]. We continue in this manner until we reach the next visit to
F at time, say, m’ (we do not mark the last block if it covers the position m’).
Notice that the positions not contained in the marked blocks have, in a typical
x, the density at most equal to the measure of X \ X’ plus n times the measure
of F (the sections right before the terminal m’), i.e., 26.

We are in a position to define the second row in the two-row representation
of X, which, together with the first row (containing the Q-name), completely
determines the original P-name of every z. To this end, under each marked
block of length n, say z[k, k + n — 1], in the Q-name of x we put the block
[,0,0,0,...,0] (of length n), where a € A is the label assigned to the P"-
cylinder containing 72 (within the corresponding Q"-cylinder [k, k+n — 1]
intersected with X’; notice that since the block z[k, k +n — 1] is marked, Tk
does belong to X'). Under the remaining (unmarked) positions in the Q-name
of x we put the original labels of the elements of P appearing at these places
in the P-name of x. It is clear that so defined two-row representation allows
us to reconstruct the original P-name of x, so we have constructed an iso-
morphic two-row representation of the process generated by P. It remains to
estimate the entropy of the second row. In a typical point we have here: the
original labels of P appearing along a set of density at most 24, the symbols
from A appearing with density at most %, and zeros. The entropy of such a
symbolic system is at most 26 log #P + L log #A + H(26, 2,1 — (26 + 1))
(the last term comes from dividing the time into the three cases). The mid-
dle term does not exceed h(P|Q) + 24. By choosing § small (and n large)
enough, the entropy of the second row can be made smaller than h(P|Q) +¢, as
needed. O
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Remark 4.4.9 Theorem 4.4.7 fails for actions of Ny, even if both the system
and its factor are processes, i.e., have unilateral generators (recall that an Ny-
action with finite entropy need not have a unilateral generator). Take the uni-
lateral Bernoulli shift generated by P and its factor generated by Q = T~ 1(P).
If R is such that (R v Q)No (which equals RYe v PN) equals PNo = P v PN,
then, since P is independent of PV, it must be that RNo = P. But since R0 is
subinvariant, we get R0 = (RNo)No - PNo_j e the process generated by R
is the whole process, so it cannot have small entropy.

Question 4.4.10 Our theorem does not cover the case of such Z-actions that
both the extension and the factor have infinite entropies yet the conditional
entropy is finite. We leave this case open.

4.5 Ornstein Theory*

Classical Ornstein Theory is concerned with bilateral Bernoulli processes (or
invertible Bernoulli systems) and their entropy. By a Bernoulli process we will
understand any process (X, P, u, T, Z) measure-theoretically isomorphic to an
independent process (i.e., to a Bernoulli shift). The term Bernoulli system is
used for a dynamical system (X, 2, i, T', Z) isomorphic to a Bernoulli process.
The differences between Bernoulli systems, processes, and shifts are in the
choice of a generator: when speaking about a Bernoulli system we do not fix
any generator, in a Bernoulli process we fix some (arbitrary) generator, and in
a Bernoulli shift we choose a generator for which the process is independent.
To make this terminology applicable in the infinite entropy case, we admit
Bernoulli shifts generated by partitions with infinite static entropy (which in
other situations are usually ruled out).
The central role in the theory is played by three types of statement:

e characterization of Bernoulli processes (systems);
e existence of Bernoulli factors in arbitrary positive entropy systems;

o establishing the Kolmogorov—Sinai entropy as a complete invariant in the
class of Bernoulli systems.

The first type identifies a number of properties necessary and sufficient for a
process (X, P, u, T, Z) to be isomorphic to a Bernoulli shift. As this subject
is outside the scope of the book, we only mention the terminology skipping
the definitions which require introducing more background. And so, we have
finitely determined processes, weakly Bernoulli processes and very weakly
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Bernoulli processes. These characterizations allow one to establish some natu-
ral examples of dynamical systems to be Bernoulli, for instance ergodic auto-
morphisms of compact groups, geodesic flows on manifolds of negative cur-
vature, mixing Markov shifts, and many more. The reader is referred to the
book of Paul Shields [Shields, 1996] for more information on various charac-
terizations of Bernoulli processes. The second type can be summarized in the
two theorems quoted below. The first of them belongs to Yakov Sinai [Sinai,
1962] and precedes the Ornstein theory, nevertheless, from today’s perspec-
tive, it is considered a part of this theory. The second theorem identifies factors
of Bernoulli processes [Ornstein, 1970b].

Theorem 4.5.1 (Sinai) Let (A%, v,0,7) denote a bilateral Bernoulli shift,
i.e., v is the product measure p”, where p is a probability distribution on A
(we admit infinite entropy H(p)). Let (X, P, u, T, Z) be any bilateral process
with dynamical entropy larger than or equal to h(v). Then (A%, v,0,7) is a
measure-theoretic factor of (X, P, u, T, 7). O

Theorem 4.5.2 Any nontrivial measure-theoretic factor of a Bernoulli system
is a Bernoulli system. O

A consequence of the Sinai Theorem is the so-called weak isomorphism the-
orem: two Bernoulli processes of equal entropies are weakly isomorphic, i.e.,
each is a factor of the other (this does not imply isomorphism). This statement
was essentially strengthened by Donald Ornstein in 1970 in what is now known
as the Ornstein Theorem (representing the third type of statement on our list).

Theorem 4.5.3 (Ornstein) Two Bernoulli systems of equal (finite or infinite)
entropies are isomorphic. O

Historically, the first proof of an isomorphism between Bernoulli shifts of
equal entropies goes back to Lev Mesalkin [Mesalkin, 1959], who considered
the independent processes with measures {1, 1,5, 11~ and {1, %, 5. %, £ }°
(note that both have entropy 2log2). Then Ornstein gave a proof for all
Bernoulli shifts on finite alphabets [Ornstein, 1970a], which was later general-
ized by Smorodinsky [Smorodinsky, 1972] for countable alphabets with finite
entropy. This was complemented by Ornstein again [Ornstein, 1970c], who
established that any two Bernoulli shifts of infinite entropy were isomorphic.

The original (Ornstein’s) proof of Theorem 4.5.3 is very complicated and
many alternative proofs have occurred thereafter. The most popular one belongs
to Mike Keane and Meir Smorodinsky [Keane and Smorodinsky, 1979]. It
provides an effective description of an isomorphism between two finite state
Bernoulli processes of equal entropies in terms of a finitary code, i.e., a map
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allowing one to determine (almost surely) the zero-coordinate entry in one pro-
cess by viewing only a finite block around zero in the other process.

Another class of proofs relies on investigating the space of all joinings
between a given process and a Bernoulli process and on a category argument
for the existence of factor maps (or isomorphisms). A short and elegant expo-
sition can be found in a paper by Robert Burton, Mike Keane and Jacek Serafin

[Burton er al., 2000]. They use a unified approach via joinings, which allows
stronger versions of both the Krieger and Sinai Theorems to be obtained, while
the Ornstein Theorem becomes an immediate consequence of their version of
the Sinai Theorem.

We remark that part of the Ornstein Theory for endomorphisms also exists,
although it is much less known. The Sinai Theorem in its original version
implicitly applies to endomorphisms giving the existence of a unilateral
Bernoulli factor (however, we recommend the proof given in [Ornstein and
Weiss, 1975]). Andres del Junco proved that two unilateral Bernoulli shifts
with equal entropies, each on at least three states, were finitarily weakly iso-
morphic [del Junco, 1981]. Ornstein Theorem fails for unilateral shifts, for
example, the unilateral Bernoulli shifts {1, 1,1, 13N and {1, %, 55, 51N,
although they have equal entropies, cannot be isomorphic, because almost
every point in the first process has 4 preimages, and 5 in the other.

'We now reproduce from [Downarowicz and Serafin, in print] a new, fairly
short and elementary, proof of the “Residual Sinai Theorem” (and of the result-
ing “Residual Ornstein Theorem”). In principle, it follows the lines of [Burton
et al., 2000], but it avoids any substantial quotations, in particular, invoking
explicitly any characterizations of Bernoulli systems; it relies only on standard
facts in ergodic theory. The proof below extends that of [Downarowicz and
Serafin, in print] beyond the systems with finite entropy.

Consider two ergodic dynamical systems (X, 2, 1, T, Z) and (Y, B, v, S, Z)
realized as topological dynamical systems, i.e., so that X and Y are compact
metric spaces, while 7" and .S are homeomorphisms (the existence of such
realizations with X and Y zero-dimensional, without requiring minimality or
unique ergodicity, is a standard and very easy fact). We let J(u,v) denote
the set of all joinings of x and v. It is nonempty (contains the product mea-
sure), compact in the weak-star topology (see Appendix A.2.2) and convex,
and its extreme points are precisely the ergodic joinings, whose collection we
denote by Jerg (1, ). S0, Jerg(it, ) is of type G relatively in J (u, ) (see
Appendix A.2.4), hence it is a Polish space, and the Baire Category Theorem

1 The rest of this section was added at the stage of author’s proofs. The author thanks the editors
for allowing such an extensive “correction.”
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applies to its subsets. We remark that, if ¢ : X — Y is a (measure-theoretic)
factor map then there is a canonical map from X to X x Y defined by x +—
(z, ¢x). The image of y by this map is a joining (supported by the graph of ¢)
of p and v. We will treat such a joining and the factor map as one object.

In the formulation below, (X, 2, i, T, Z) is realized as a zero-dimensional
topological dynamical system with a selected invariant measure, while the
Bernoulli shift is equipped with the standard product topology, where the alpha-
bet is either finite or it is the one-point compactification of the positive integers,
where the symbol co has measure zero.

Theorem 4.5.4 (Residual Sinai) Let (X, 2, u, T, Z) be an ergodic system of
positive (possibly infinite) entropy h(u) and let (A%, v, 0,7) be a Bernoulli
shift on a finite or countable alphabet, of entropy h(v) < h(u). Then the set of
factors from p to v is residual among all ergodic joinings of p and v.

Before we proceed with the proof, let us deduce a strengthening of the
Ornstein Theorem:

Theorem 4.5.5 (Residual Ornstein) Let (A%, p,0,7) and (A%, v,0,7) be
two Bernoulli shifts on finite or countable alphabets, with equal entropies
(finite or infinite). The set of isomorphisms between p and v is residual among
all ergodic joinings of 1w and v.

Proof Isomorphisms between these processes are characterized as joinings of
1 and v which are factors in both directions. By the Residual Sinai Theorem,
they are members of an intersection of two residual sets in a Polish space, so
they also constitute a residual set. O

Proof of Theorem 4.5.4 It is well known (and easy to see) that a joining £ of
w1 and v is a factor from p to v if and only if for every b € A (treated as a
cylinder set of length 1) there exists a set A, € A such that X x b = A, x A%
mod £. We will also use an approximate version of this condition:

Definition 4.5.6 A joining £ of i and v will be called an e-factor (from p to
v)if forevery b € A there exists aset A, € Awith £((X xb)o (A, x AL)) < ¢
(& is the symmetric difference).

Note that the set F*© of all e-factors from p to v is open in the weak-star
topology: if £ is an e-factor, then for each b there exists an £, < ¢ such that
E((X x b) © (A, x A%)) < ¢&,. The characteristic function of A, can be
approximated in L' (u) up to e, = (¢ — &) /2 by a continuous function f5, and
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then [ |fy(x) — Lp(y)| d€ < ep + €}, = £ — &},. The latter condition is open in
the weak-star topology (as 1 is continuous as well) and any joining of p and
v which satisfies it for these finitely many symbols b € A for which v(b) > &
is easily seen to be an e-factor.

It is clear that the set JF of factors from w to v is a countable intersection
of sets of the form F* and that all factor joinings are ergodic. Passing to the
relative topology on Jerg (i, ), we get that F is a countable intersection of
open sets F,, of ergodic e-joinings. We will show that each F¢,, is also dense
in Jerg (14, V). The assertion will then follow by the Baire Theorem.

From now on we assume that A is finite and that h(u) = h(v) = h
(h < 00); the reduction to this case will be provided at the end. By the
Krieger Theorem 4.2.3, (X, 2, u, T, Z) can be represented as a symbolic sys-
tem (A%, uu, 0, Z), where A is finite. The product space now consists of bilateral
two-row sequences; the rows are over A and A, respectively. Given an arbitrary
€ € Jerg(p, V), we need to find an ergodic e-factor £ nearby. We will do that
in three steps. In step 1 we construct a factor joining &’ from p to a measure
v' on AZ with h(v') almost as large as h, and such that £’ is close to & in the
weak-star topology of measures on A% x AZ. We do not hope to get v/ = v yet
(usually 2/ is not even Bernoulli), so by considering &’ we are driven outside
Jerg (11, ) into the larger space of shift-invariant measures on A% x A” In step
2 we approximate &’ (again, in this larger space) by a (not necessarily ergodic)
e-factor ¢ from y to v, and in step 3 we replace ¢ by an ergodic e-factor £”,
i.e., by a member of 75, C Jerg (11, V).

Step 1. Givene > 0, we leteg < £/3 and ng be such that shift-invariant mea-
sures on A” x A%, which agree up to 5¢q + dy on all two-row blocks of length
ng, are less than € apart in the metric d* compatible with the weak-star topol-
ogy (consult (7.3.1), the version for symbolic systems). The term &y appearing
above is defined as either 4eq/(h(§) — h) or, if h() = h, as 6eg/h (in both
cases dp tends to zero with g¢). Next, by a straightforward application of the
Ergodic Theorem (to &) and of the Shannon—-McMillan—Breiman Theorem (to
¢, wand v), we can find an Ny > ng/eo and a set G C A% x A” being a union
of two-row cylinders D of length N = Ny/(1 — o) (slightly larger than Ny),
satisfying £(G) > 1 — g¢ and the properties 1 and 2 listed below, where the
following notation is used: D and D are the single rows of D while D, Dy
and D are the prefixes of length Ny of D, Dy and D, respectively. Recall
also that fr 4 (B) is the frequency of a block B in a longer block A.

1 For all two-row blocks B of length ng and any D C G we have

[fr5(B) — &£(B)] < eo. 4.5.7)
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2 For any D C G we have (where exp is the exponential function to base 2)

exp(—=N(h(§) + €0)) <E(D) < exp(=N(h(£) — o)), (4.5.8)
exp(—N(h +¢€0)) <p(Dn), (4.5.9)
v(Da) < exp(—N(h —eg)), (4.5.10)

and analogous inequalities hold for D, Dy, Da and Ny.

We now apply to (A%, j1, 0, 7Z) a variant of the Kakutani—-Rokhlin Lemma
(we skip the easy proof; see [Downarowicz and Serafin, in print, Lemma 2.5]
for a hint): we find a positive measure set M (a “marker”), contained in the
projection G4 of G, such that the sets M, o (M), ...,cVN =1 (M) are pairwise
disjoint and the complement of their union has measure not exceeding 2eg.
Let Dy be the family of all two-row blocks of the form (x, y)[0, N — 1] with
x € M. The Ergodic Theorem implies that £-almost every (x,y) breaks as a
concatenation of the blocks D € Dy separated here and there by some inser-
tions of joint density not exceeding 2¢.

Let D C Dy denote the subfamily consisting of blocks D contained in G.
Dividing the left-hand side of (4.5.9) by the right-hand side of (4.5.8) we
obtain that every first row Dy (D € D) splits (as a cylinder set) into at least
exp(N(h(§) — h — 2g9)) blocks D € D. In other words, every first row Dy
appears in D “paired” with at least exp(N(h(§) — h — 2gg)) different sec-
ond rows D . Clearly, the prefix Dy is “paired” with even more blocks D .
Next, dividing the right-hand side of (4.5.10) (the version for D) by the left-
hand side of (4.5.8) (the version for D) we obtain that every DA appears in
D “paired” with at most exp(No(h(§) — h + 2¢¢)) blocks Dj. Clearly, every
D (as a set smaller than Dp) is “paired” with even less blocks Dy. The
reader will verify that, since Ny = N (1 — dy) and by the choice of dy, in case
h(&)—h > 0 we have N (h(§) —h—2¢0) > No(h(§) —h+2¢p). This enables
us to apply the Marriage LLemma A.3.5 to the set of prefixes D, the set of
full second rows D and the relation of being “paired” within D, providing an
injection ® assigning to every D a D “paired” with it.

If h(§) = h, we must count slightly differently. Dividing the left-hand side
of (4.5.9) (the version for D) by the right-hand side of (4.5.8) we get that
every D extends to at least exp(N (69h — 2¢¢)) full two-row blocks D. Divid-
ing the right-hand side of (4.5.10) by the left-hand side of (4.5.8) we get that
at most exp (N (2eg)) of the D’s share a common second row Da. Thus every
prefix D is “paired” with at least exp(N (§oh — 4ep)) different second rows
DAa. The other part of the counting is the same as before and now yields that
every second row D is “paired” with at most exp(Ny(22¢)) < exp(N(2¢9))
prefixes D . The choice of d in this case gives that Soh — 4eg > 2¢¢, and the
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Marriage Lemma applies. In either case, it is very important that since M C
G, the set {Dy : D € D} (the domain of ®) is the same as {Dy : D € Dy}.

We can now build the factor joining &’. In (u-almost) every x € A% we
first locate the markers (the times of visits to M), then we observe the blocks
of length IV following these markers. Every such block equals D, for some
D € Dy. Creation of the joining &’ consists in placing in the second row, below
every such D, the image by ® of the prefix Dy of Dj. At all remaining
positions of the second row we place one fixed symbol from the alphabet A.
Since the second row is uniquely determined by the first one, the joining is a
factor map ¢ from i to some measure »/ supported by AZ.

By the Ergodic Theorem (applied to &), the measure of a two-row block
B can be evaluated as the density of its occurrence in the two-row sequence
(x, ¢x) belonging to a set of full measure . We will verify that the distance
between £ and £’ is smaller than . Let B be a two-row block of length ng.
Since the two-row sequence (x, ¢z) is almost entirely covered by the blocks
D (D € D), the density of occurrence of B in (z,¢z) is nearly a weighted
average of its frequencies in the blocks D. By (4.5.7), any such average dif-
fers from £(B) by less than €. Further, £'(B) differs from such an average
by at most &g + 2e¢ + 2no/Ny, where dg + 2¢( estimates the density of the
portion of (x, ¢) not covered by the blocks D, and 2ng/Ny < 2eq estimates
the occurrences of B overlapping with, but not covered by, these blocks. So,
€(B) — €(B)| < 520 + do, implying d* (€, ¢') < .

We now estimate h(r") from below. We know that h(p) —h(v') = h(u|v') is
not larger than the entropy of any process generated by a partition Q of AZ such
that QV A (here A stands for ¢~1(A)) generates the full process (AZ, u, o, Z)
(see Lemma 4.4.3). Let Q consist of F = M Uoa(M)U---UoNo=1(M) and
the sets a N F° (a € A). To see that Q joined with A generates the full process,
note that the symbols “F” occur in the Q-name of (u-almost) every x in groups
of length Ny, the starting places of these groups allow us to locate the markers
in z. The blocks of length N, following the markers in the A-name of = can be
recovered from y = ¢x by injectivity of the code ®. The remaining symbols
in the A-name of x occur at times when z visits F'°, and these are provided
directly by the Q-name of x. Now we estimate

h(Q) < H(Q) < H(u(F), w(F)) + u(F) log #A. (4.5.11)

Note that F' consists of the “upper floors” oo (M), ..., oN=1(M) of joint
measure not exceeding (N — Ny)/N = & united with the complement of the
tower, of measure at most 2¢. The right-hand side of (4.5.11) tends to zero as
w(F°) — 0, so, by an appropriate choice of €¢ (and the resulting §y) we can
arrange that h(Q) < e implying h(v') > h — e.
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Step 2. We will now approximate the joining ¢’ (of z and ') by an e-factor ¢
from p to the Bernoulli measure . While ¢ retains its fixed value, we assume
that the first step has been performed for a much smaller parameter €; (in
place of €). And so, &' is very close to & (less than e, apart). By projecting
onto A” we get that 1/ is very close to v. This implies, in particular, that the
probability vector q assigned by v’ to the symbols in A is very close to the
analogous vector p of v. By continuity of the static entropy on probability
vectors of a fixed finite dimension, we have H(v',A) = H(q) =~ H(p) =
h(v) = h < h(V') + €1, where the last inequality has been arranged in step 1.
We have derived that the process associated with the measure v’ is (g1 +01)-
entropy independent (recall Definition 3.1.7) for some small §; decreasing to
zero with ;. This we can write as H(v',A|[A™) > H(V',A) — e — 63 or,
using the formula (1.5.4) (this is an “asterisk section”, so we feel free to use
disintegration) , as

/H(V',,A)du’(y_) >H(@{,A)—& — 01,

where Vl’/, is the disintegration measure of v/ on the atom y~ of the past A~
(such an atom can be identified with a unilateral sequence y(—oo, —1]). This
can be further rewritten as

/ H(a,-)dv'(y™) > H(q) — &1 — 1,

where q,- is the probability vector assigned by v, - to the symbols in A. By
the uniformly strict concavity of static entropy (Fact 1.1.11) combined with the
rectangle rule (Fact A.3.3), we deduce that (for small enough £1), on a set of y’s
of large measure /, the vectors q,,- are close to g, and hence also to p. Close
distributions on A admit a maximal coupling which is almost supported by the
diagonal (see Lemma A.3.6). Altogether, given €2 > 0, by a good choice of
€1 (and the associated §;) we can assure that, for y’s from a set of measure v/’
at least 1 — &9, there is a coupling £, of q,- with p giving the diagonal in
A x A amass at least 1 — 5. Since the assignment y — q,— is v’-measurable,
it is easy to make the assignment y — £, - measurable as well (for instance,
by using each time the particular coupling as in the proof of Lemma A.3.6).
Postponing the specification of 5 we will now create the e-factor . We
begin by defining a coupling ¢ of v’ and v (i.e., a not necessarily shift-invariant
measure on A% x A’ with marginals 2/ and v). We take the projections v/~
and v~ of v/ and v onto the “past” A~, respectively, and on the “joint past”
A~ x A~ we define ¢ as /= x v~. Then, on each atom (y—, z~) of the “joint
past”, we apply on the coordinate zero the maximal coupling £, - in the role of
¢ (y=,2) restricted to A x A. In this manner, we have extended the definition
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of ¢ to A(=20:0] x A(=0.0] "the sigma-algebra determined by the coordinates
from —oo to 0 in both rows. Inductively, once we have defined the coupling
on the sigma-algebra determined by the coordinates from —oo to n — 1, for
each pair of “semi-trajectories” (y(—oo,n — 1], z(—oo, n — 1]), we apply on
the coordinate 7 the coupling &~ (note that (0™y)~ is y(—oc,n — 1] with
indexation reset to (0o, —1]). Eventually we have determined a measure ¢ on
the entire product sigma-algebra, and it is obvious from the construction that
its marginals are, respectively, »/ and the product measure p% = v.
By elementary integration we get, for every j > 0,

C{(y,2) :y(h) =2()}) = (1 —e2)? > 1 — 2e5.

Furthermore, estimating the measure of an intersection by 1 minus the sum of
the measures of the complements, we obtain

CH(y, 2) i ylfsj+n—1]=zj,j+n—1]}) >1—2ne.  (45.12)

We now specify e = £0/2ng, and then, for any n < ng, the right-hand side
above is at least 1 — &¢.

The coupling ¢ can be written as | ¢, dv/(y), where (,, is the disintegration
measure of ¢ given y € AZ on the first coordinate. We can now lift ¢ against
the factor map ¢ as follows: ¢’ = [ (g, du(z). It is elementary to verify that
¢’ is a coupling of 1 and v and that it projects to ¢ by the map ¢ x Id from
A% x A% to A” x A” (Id denotes the identity map). The inequality (4.5.12)
implies that

C/({(.’IJ,Z) : ¢$[j,j +n-— 1] = Z[]m] +n— 1]}) Z 1-—- €0,
for any n < ng, which can be written as
o (Y {(x,2) : ¢z[0,n — 1] = 2[0,n —1]}) > 1 — <0. (4.5.13)

That is to say, after discarding a set of measure ¢ (¢’) at most &, all two-row
blocks (x, z)[0, n— 1] are the same as (x, ¢x)[0, n— 1]. For a given z, the latter
is the unique block admitted at this place by the joining £’. This easily implies
that for any two-row cylinder B of length ng, we have

107 (¢')(B) — €' (B)] < . (4.5.14)
Also, applying (4.5.13) for n = 1 we get that for every b € A,

o (¢) (A" x b) & (¢71(b) x A%)) < eo. (4.5.15)
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In order to replace the coupling ¢’ of u and v by a joining, we apply the
standard averaging procedure:

17

P &7
where the limit is in the weak-star topology and the existence of a convergent
subsequence follows from compactness. Clearly, the inequalities (4.5.14) and
(4.5.15) are maintained by convex combinations. Since (4.5.14) concerns two-
row cylinders (and weak inequality), it also passes via the weak-star limit and
we obtain |((B) — &'(B)| < &o. We have proved that d*((,¢’) < e, hence
d*((,€) < 2e. In order to pass with (4.5.15) over the limit, note that the set
¢~ 1(b) x AZ, although not necessarily a finite union of cylinders, depends
only on the first row, where all measures in the sequence project to the same
measure . Now it suffices to approximate this set (say, up to £g) by a finite
union of cylinders A x A” to get (4.5.15) up to 3eq for the limit measure ¢.
Since gg < £/3, C is an e-factor from p to v.

Step 3. But ¢ need not be ergodic. We will now pick ¢ from the support
of the ergodic decomposition of . For that we must, as we already did once,
maintaining the value of ¢, assume that all above procedures have been per-
formed for a much smaller 3. We now invoke continuity of the barycenter
map on compact convex sets (see Appendix A.2.3) and upper semicontinuity
of the fiber partition of a continuous map (see Appendix A.1.3). The ergodic
joining &, being extreme, is the barycenter of a unique probability distribu-
tion supported by J (u, v), namely of &, (the point mass at &). So, any join-
ing sufficiently close to & has its fiber via the barycenter map (in particular
the ergodic decomposition) contained in a small neighborhood of . Since
the mass assigned by a distribution to an open set is a lower semicontinuous
function of the distribution, any distribution sufficiently close to ¢ gives a
selected neighborhood of £ a mass close to 1. Summarizing, we can choose €3
so small that the ergodic decomposition distribution of any joining 2¢3-close
to ¢ (in particular that of ¢) is supported mainly (say, with the contribution
of “more than half” of its mass) by ergodic joinings situated within the e-
neighborhood of &. Further, the fact that ¢ is an e3-factor means 3-smallness
of one set (a symmetric difference) per symbol in A. By the rectangle rule
(Fact A.1.1), each of these sets may be larger than 2#A - €3 (which we now
declare smaller than ¢) only for ergodic components contributing to ¢ at most
1/2#A of its mass. Jointly, there is still “at least half” of the components for
which e-smallness of the corresponding set holds for all symbols b € A, i.e.,
which are e-factors. Intersecting this “at least half” with the preceding “more
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than half,” we find an ergodic component £ within ¢ from &, and which is an
e-factor. This ends the proof for finite A and equal entropies.

We continue with the remaining cases. If h(v) < h(u) < oo, then we
take the product of v with a Bernoulli shift 1y on a finite alphabet satisfying
h(vo) = h(p) —h(v). Now v X 1 is a Bernoulli shift of entropy equal to h(u).
The set Jerg(1t, v X 1) maps (by projection) onto Jerg (i, V), the projection
preserves the property of being a factor and is continuous. Thus the set of
factors from p to v (which we have shown to be always of type G) is also
dense, as the image of a dense set (of factors from p to v X 1) via a continuous
surjection.

Let us now assume that A is essentially infinite while (X,2(, u,T,Z) is
arbitrary (realized on a zero-dimensional space) with h(rv) < h(u) < oo.
Let A(,,) be obtained by uniting all but the largest m — 1 symbols, where
each of the united symbols has measure smaller than ¢. Clearly, A,,) gener-
ates a Bernoulli shift with entropy strictly smaller than h(u). There exists a
finite partition P of X into closed-and-open sets, and an m € N, such that
the e-closeness in the weak-star distance on J(u,v) can be determined by
examining only the values assumed by these measures on cylinders over the
product partition P ® A,,). We let 41/ and v denote the projections of x and
v to the processes generated by P and A(,,,). By refining P (if necessary), we
can arrange that h(y') > h(v'). Now we argue as follows: a given joining &
of 11 and v projects to a joining & of u’ and /. By the version already proved
for finite alphabets, we can find a factor ¢’ from p' to v’ which is e-close to &’.
We can lift ¢’ to an ergodic joining ¢ between y and v, and since ¢ maintains
the values on cylinders over P @ A(,,), it is e-close to £. All large symbols in
A are, modulo {, measurable with respect to 2, while the small symbols are
smaller than ¢, so ( is an e-factor. We have proved the density of fe‘ig(u, v).

In the last remaining case A is finite while h(p) = co. We argue as above,
with A in place of A(,,,). Since we have strict inequality h(v) < h(u) we will
be able to refine the partition P so that h(u’) > h(v). O

Exercises
4.1 Prove the formula (4.1.2) and its conditional analog,
h(2A%B) = lim T h(Px|B),

where (P}) is a refining sequence of finite partitions that generate 2.
4.2 Prove that the Kolmogorov—Sinai entropy and conditional entropy given
a fixed subinvariant sigma-algebra are affine functions of the measure.
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4.6

4.7

4.8

4.9

4.10

Exercises 131

Prove a conditional version of the power rule Fact 4.1.14.

Prove Remark 4.2.7 (without using Theorem 4.2.9).

Let (Y,B,,S,S) be a factor of an ergodic system (X, 2, u, T, S) via a
factor map 7 : X — Y. Suppose that h(|28) > 0. Using elementary
methods prove that 7~ (y) is infinite for v-almost every y.

In a dynamical system (X, 2, u, T, S) given are two countable partitions
P and Q. Prove the following inequality (compare (1.4.3)):

h(/% Ta ."P‘Q) < Z N’(B)h(/JBa T37 :P)
BeQ

Give an example in which the inequality is strict.
Ilustrate the following phenomenon: We start with an endomorphism
(X, 2, 1, T,Ng) of finite entropy. Its natural extension is an automor-
phism, so we can consider it as a Z-action (X', 2, u/', 7", Z). It has
the same entropy, so, by the Krieger Theorem it has a finite generator,
thus is isomorphic to a process (X', P, ', T’, Z). The factor of this pro-
cess determined by the subinvariant sigma-algebra P’ No is an endomor-
phism (a unilateral process) which has the same same natural extension.
Nevertheless, it need not be isomorphic to the the initial system.
Two sigma-algebras 2 and B are relatively independent over a third
sigma-algebra € if for any finite 2-measurable partition P and any finite
$B-measurable partition Q we have H(P Vv Q|€) = H(P|€) + H(Q|C).
A joining of two systems over a common factor is relatively independent
(over that factor) when the sigma-algebras 2l and B corresponding to
the systems within the joining system are relatively independent over the
sigma-algebra ¢’ corresponding to the common factor. Prove that then
we have equality in (4.4.4).
Prove that every automorphism (X, 2, u, T', Z) of finite entropy admits,
for every € > 0, a generator P which is e-entropy independent.
Use the Sinai Theorem to show that every system (X, 2, p, 7', S) admits
a countable partition P achieving the full dynamical entropy. Moreover,
if the entropy is finite, P can be chosen finite.
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The Ergodic Law of Series*

In this chapter we describe a relatively new result — a consequence of positive
dynamical entropy of a process. It concerns the behavior of the return time
random variables R,, () for large n, the same as treated by the Ornstein—Weiss
Return Times Theorem, but in a complementary manner. The theorem has a
very interesting interpretation, easy to articulate in a language accessible also
to nonspecialists. Yet, as usual on such occasions, one has to be very cautious
and not get enticed into pushing the conclusions too far. We begin this chapter
with a short historical note concerning the debate on the Law of Series in the
colloquial meaning. We explain how the Ergodic Law of Series contributes to
this debate. Then we pass to the mathematical proof preceded by introducing
a number of ergodic-theoretic tools.

5.1 History of the Law of Series

In the colloquial language, a “series” happens when a random event, usually
extremely rare, is observed surprisingly often throughout a period of time.
Even two repetitions, one shortly after another, are often interpreted as a
“series.” The Law of Series is the belief that such series happen more often
than they should by “pure chance” (whatever that means). This belief is usu-
ally associated with another; that there exists some unexplained force or rule
behind this “law.” A number of idioms, such as “run of good luck” or “run of
misfortune,” or proverbs like “misfortune never comes alone,” exist in nearly
all languages, which confirms that people have been noticing this kind of mys-
tery for a long time. The most commonly known examples of “series” are runs
of good luck in gambling with the famous case of Charles Wells taking the
lead (see e.g. Charles Wells (gambler) on Wikipedia).

Serial occurrences of certain types of events is perfectly understandable as
a result of physical dependence. For example, volcanic eruptions appear in
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series during periods of increased tectonic activity. Another good example
is when series of people fall ill due to a contagious disease, or very simply,
the return of certain motifs in fashion design. The dispute around the Law
of Series clearly concerns only such events for which there are no obvious
clustering mechanisms, and which are expected to appear completely indepen-
dently from each other, and yet, they do appear in series. With this restriction
the Law of Series belongs to the category of unexplained mysteries, such as
synchronicity, telepathy or even Murphy’s Law, and is often considered a man-
ifestation of paranormal forces that exist in our world and escape scientific
explanation. This might be the reason why, after the first burst of interest, seri-
ous scientists and journals refused to get involved in the investigations of this
and related topics. Below we review the list of selected scientists involved in
the debate.

Kammerer. An Austrian biologist Paul Kammerer (1880—-1926) was the first
scientist to study the Law of Series (law of seriality, in some translations). His
book Das Gesetz der Serie [Kammerer, 1919] contains many examples from
his own life and the lives of his relatives and friends. Richard von Mises in
his book [von Mises, 1981] describes that Kammerer conducted many (rather
naive) experiments, spending hours in parks noting occurrences of pedestri-
ans with certain features (glasses, umbrellas, etc.), or in shops, noting pre-
cise times of arrivals of clients, and the like. Kammerer “discovered” that the
number of time intervals (of a fixed length) in which the number of objects
under observation agrees with the average is much smaller than the num-
ber of intervals, where that number is either zero or larger than the average.
This, he argued, provided evidence for clustering. From today’s perspective,
Kammerer merely noted the perfectly normal spontaneous clustering of signals
in the Poisson process. Nevertheless, Kammerer’s book attracted some atten-
tion from the public, and even from some serious scientists, toward the phe-
nomenon of clustering. Kammerer himself lost authority due to accusations of
manipulating his biological experiments (unrelated to our topic), which even-
tually drove him to suicide.

Pauli and Jung. Examples of series are, in the popular culture, mixed with
examples of other kinds of “unbelievable” coincidences. Pioneer theories about
coincidences (including series) were postulated not only by Kammerer but also
by a noted Swiss psychologist Carl Gustav Jung (1875-1961) and a Nobel
prize winner in physics, Austrian, Wolfgang Pauli (1900-1958). They believed
that there exist undiscovered physical “attracting” forces driving objects that
are alike, or have common features, closer together in time and space (so-called
synchronicity) [see e.g. Jung and Pauli, 1955; Jung, 1977].
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Moisset. The Law of Series and synchronicity interests the investigators of
spirituality, magic and parapsychology. It fascinates with its potential to gen-
erate “meaningful coincidences.” Frenchman Jean Moisset (born 1924), a self-
educated specialist in parapsychology, wrote a number of books on synchronic-
ity, Law of Series, and similar phenomena. He connects the Law of Series with
psychokinesis and claims that it is even possible to use it for a purpose [Mois-
set, 2000].

Skeptics: Weaver, Kruskall, Diaconis and others. In opposition to the the-
ory of synchronicity is the belief, represented by many statisticians, among
others by Warren Weaver (closely collaborating with Claude Shannon), that
any series, coincidences and the like, appear exclusively by pure chance and
that there is no mysterious or unexplained force behind them. People’s per-
ception has the tendency to ignore all those sequences of events which do not
possess the attribute of being unusual, so that we largely underestimate the
size of the sample space, where the “unusual events” are observed. Human
memory registers coincidences as more frequent simply because they are more
distinctive. This is the “mysterious force” behind synchronicity.

With regard to series of repetitions of identical or similar events, the skep-
tics’ argumentation refers to the effect of spontaneous clustering. For an event,
to repeat in time by “pure chance” means to follow a trajectory of a Poisson
process. In a typical realization of a Poisson process the distribution of signals
along the time axis is far from being uniform; the gaps between signals are
sometimes bigger, sometimes smaller. Places where several smaller gaps accu-
mulate (which obviously happens here and there along the time axis) can be
interpreted as “spontaneous clusters” of signals. It is nothing but these natural
clusters that are being observed and over-interpreted as the mysterious “series.”
Richard von Mises clearly indicates that it is this kind of “seriality” that has
been seen by Kammerer in most of his experiments.

Yet another “cool-minded” explanation of synchronicity (including the Law
of Series) asserts that very often events that seem unrelated (hence should
appear independently of each other) are in fact strongly related. Many “acci-
dental” coincidences or series of similar events, after taking a closer look at the
mechanisms behind them, can be logically explained as “not quite accidental.”
Ordinary people simply do not bother to seek the logical connection. After all,
it is much more exciting to “encounter the paranormal.” This point of view is
neatly described by Robert Matthews in some of his essays. Criticism of the
ubiquitous assumption of independence in various experiments can be found
in works of William Kruskal [e.g. Kruskal, 1988]. Percy Diaconis is famous
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for proving that coin tosses in reality do not represent an i.i.d. process [e.g.
Diaconis et al., 2007].
Summarizing, the debate concentrates around the major question:

o Does there indeed exist a Law of Series or is it just an illusion, a matter of
our selective perception or memory?

So far, this debate has avoided strict scientific language; even its subject is not
precisely defined, and it is difficult to imagine appropriate repetitive experi-
ments in a controlled environment. Thus, in this approach, the dispute is prob-
ably fated to remain an exchange of speculations.

Law of series in ergodic theory. Below we describe a rigorous approach
embedded in ergodic theory. Surprisingly, the study of stochastic processes
supports the Law of Series against the skeptic point of view, of course, subject
to correct interpretation.

We begin with definitions of attracting and repelling, the tools allowing us
to formalize the subject of study. Using entropy theory we prove that in nonde-
terministic processes, for events of certain type (long cylinder sets), attracting
prevails, while repelling (almost) does not exist — this is exactly how we under-
stand the Ergodic Law of Series.

One has to be very wary about the applicability of this theory in reality. It
concerns only events of a specific form (long cylinders) and it gives no quanti-
tative lower bound on the time perspective at which the phenomenon becomes
observable. Perhaps it might be applied in genetics, computer science, or in
data transmission, where one deals with really long blocks of symbols, but
again, with extreme caution. The theory does not explain “runs of good luck,”
or why “misfortune never comes alone,” because such “series” are not repeti-
tions of one and the same long cylinder set. Nonetheless it contributes to the
general debate at the philosophic level: Properly understood Law of Series is
neither an illusion nor a paranormal phenomenon, but a rigorous mathematical
law.

5.2 Attracting and repelling in signal processes

By a signal process we will understand a continuous time (also discrete time,
when the increment of time is very small) stochastic process (X;);>¢ defined
on a probability space (€2, 2, 1) and assuming integer values, such that Xo = 0
a.s., and with nondecreasing and right-continuous trajectories ¢ — X;(w). We
say that (for given w € ) a signal (or several simultaneous signals) occurs at
time ¢ if the trajectory X;(w) jumps by a unit (or several units) at .
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Definition 5.2.1 A signal process is homogeneous if, for every t, > 0 and
every finite collection 0 < ¢; < to < --- < t,, the joint distribution of the
increments

Xty = Xty Xty — Xtgy - ooy X, — Xty 4 (5.2.2)
is the same as that of

Xiatto = Xtyttor Xtgtto — Ktattos -+ Ktptto — Xt _1+t0-

Assume that X; has an expected value E(X;) = A € (0, 00), which we call
the intensity of the signals. Using homogeneity and a standard divisibility and
monotonicity argument, one shows that then E(X;) = ¢ for every ¢ € R.

With a homogeneous signal process we associate a random variable defined
on (2 and called the waiting time:

W(w) = min{¢ : Xy(w) > 1}.

The most basic example of a homogeneous signal process is the Poisson pro-
cess [see e.g. Feller, 1968]). It is characterized by two properties: 1. the incre-
ments as described in (5.2.2) are independent, and 2. jumps by more than one

unit have probability zero. These properties imply that the distribution of X; is
—at (An*
Kl

i

the Poisson distribution with the parameter At, i.e., P{X; = k} = ¢
k=0,1,..., where A > 0 coincides with the intensity. The waiting time in a
Poisson process has the exponential distribution with the distribution function

F(t) =1—e .

The independence between the increments means that the signals arriving
before some fixed time do not influence the future signals, i.e., the signals
arrive “independently from one another.”” This pattern of signal arrivals is
exactly what is intuitively described as “by pure chance.” The Poisson process
is the reference point while defining any deviation from the “by pure chance”
scheme.

We will consider two such deviations: attracting and repelling. Intuitively,
the signals attract each other if they have the tendency to occur in groups (also
called clusters or series), separated by periods of absence. Likewise, the signals
repel each other if they have the tendency to occur more evenly distributed
along the time. We will put this intuition into a rigorous form. It turnes out that
these properties depend solely on the distribution of the waiting time.

Definition 5.2.3 We say that the signals affract each other from a distance
t>0,if

Fw(t) <1—e .
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where Fy is the distribution function of the waiting time W and A is the inten-
sity. Analogously, the signals repel each other from a distance ¢, if

Fw(t) >1- eikt.

The difference |1 —e~* — Fy ()] is called the force of attracting (or repelling)
att.

Why is attracting and repelling defined in this way? Consider the random
variable X; (the number of signals in the time period (0, t]). As we know,
E(X;) = At. On the other hand, P{X; > 0} = P{W <t} = Fw(¢). Thus

At

Forl) = E(X¢|X¢ > 0)

represents the conditional expected number of signals in the interval (0, ¢] for
these w for which at least one signal occurs there. Attracting from the distance
t, as defined above, means that Fy(¢) is smaller than the analogous distribu-
tion function (at ¢) evaluated for the reference Poisson process. This implies
that the above conditional expected number is larger in our process than in the
Poisson process (the numerators At are the same for both processes). This fact
can be further expressed as follows: If we observe the signal process for time
t and we happen to observe at least one signal, then the expected number of
all observed signals is larger than as if they arrived “by pure chance.” The first
signal “attracts” further signals (within time length ¢). By homogeneity, the
same happens in any interval (s, s + t] of length ¢, contributing to an increased
clustering effect. Repelling is the converse: the first signal lowers the expected
number of signals in the observation period, contributing to a decreased clus-
tering, and a more uniform distribution of signals in time, see Figure 5.1.

repelling ..... O PUUPON PO OO OO OO PV FUUURN FOURN 0N DN FUUUORY %
Poisson .....|........ [FN 1 RN OO IS P PO [l c]eeerec]venn] e

attracting ..... [ceornee (1 R O P oo |- [ [ooene]..

strong attracting ...... [ ]eeeemeeermmeeene e [A1]-]- ]

Figure 5.1 The distribution of signals along the time in processes with the
same intensity.

The force of attracting can be arbitrarily close to 1, which happens when the
distribution function Fw remains near zero until large values of ¢ (this implies
attracting from all distances, except very small and very large ones, where
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marginal repelling can occur). Such Fy indicates that for most w the waiting
time is very long. In particular, X; (w) = 0. Because the intensity E(X;) is a
fixed number A, there must be a small part of the space €2, where many signals
arrive within a unit of time. In other words, we observe two types of behavior:
long lasting silence observed with very high probability and rarely a swarm of
signals. This kind of behavior will be called strong attracting (we neglect to
put sharp formal bounds on Fy for this new term).

On the other hand, it is not hard to see that the distribution function Fw can-
not exceed the function min{A¢, 1} (¢ > 0), which is attained for the process
in which the signals arrive periodically in time (with gaps equal to 1/X). This
is the maximally repelling process, and the maximal force of repelling occurs
att = 1/ and equals e ! (see Figure 5.2 below).

Figure 5.2 The distribution function Fw in the Poisson, strongly attracting
and strongly repelling processes.

If a given process reveals attracting from some distance and repelling from
another, the tendency to clustering is not clear and depends on the applied time
perspective. However, if there is only attracting (without repelling), then at any
time scale we shall see the increased clustering. This type of behavior is our
subject of interest:

Definition 5.2.4 A homogeneous signal process obeys the Law of Series if
Fw(t) <1—e™,

for all ¢, and the two functions are not equal.
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In other words, the Law of Series is the conjunction of the following two
postulates:

1. There is no repelling from any distance, and
2. there is attracting from at least one distance.

In practice, we agree to accept the presence of some “marginal” repelling
with a force much smaller than the force of the existing attracting as shown
in the Figure 5.3. Let us explain at this point that the distribution function
of the waiting time is always concave (this will become clear e.g. from the
integral formula (5.3.2)), hence it cannot be drawn as just any distribution
function.

Figure 5.3 The distribution Fyw in a process that “nearly” obeys the Law of
Series.

5.3 Decay of repelling in positive entropy

In an ergodic nonperiodic process (X, P, u, T, S) (with P finite) fix a measur-
able set B and consider the signal process defined on the probability space
(X, ), where signals are occurrences of the event B, i.e.,

Xi(z) = #{n € (0,¢] : T"z € B}.

This is a discrete time homogeneous process; the homogeneity (see Definition
5.2.1) holds for integer to. By the Ergodic Theorem, the intensity A equals
w(B), and E(X;) = At holds for integer ¢. Since every nonatomic standard
probability space is isomorphic to the unit interval (and the measure in an
ergodic nonperiodic process is nonatomic), we can draw B (equipped with the
meaure ) as the interval [0, 1] and we can arrange that the return time R g ()
(recall (3.1.11) for definition) increases from left to right. Then the graph of the
return time Rp coincides with the roof of the skyscraper over B representing
the entire space X . Now, the same graph reflected about the diagonal represents
the distribution function Gg of Rg.

Notice that there is a relation between Gpg and the distribution function Fg
of the waiting time W in this process; by an elementary consideration of
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the skyscraper (which we leave to the reader) one easily verifies that, for any
integer ¢,

Fe(t) = n(B)Y_(1-Gp(i) (5.3.1)

i<t

(thus Gp(t) = 1 — W} Both functions are determined by their
values at integer arguments. Thus it is completely equivalent whether we study
the distribution of the return time variable (defined on B), or of the waiting
time variable (defined on X).

The Law of Series in occurrences of the event B can be nicely expressed
in terms of the shape of the skyscraper above B; the formula (5.3.1) translates
the inequality Fz < 1 — e~ into the following property of the shape of the
skyscraper:

e At any point ¢ € B the area above the graph of —w and below the
roof function to the left of ¢ (i.e., for s < t) must not exceed the area below
the graph of — w and above the roof function to the left of ¢.

This property is explained graphically in Figure 5.4. In particular, the graph

2

Figure 5.4 The first two skyscrapers are not admitted by the Law of Series,
the last one is. The dark-grey area must be smaller than or equal to the light-
grey area to the left.

of the roof function must start at zero tangentally to or below the line s — s/A.
For instance, the return time cannot be bounded below by a positive value.
Although the Ornstein—Weiss Theorem (Theorem 3.4.1) provides some infor-
mation about the return time Rp, where B is a “typical” long cylinder, its
precise distribution on B, i.e., the shape of the skyscraper over B is by no
means captured. Small deviations of the value % logRp(x) as x ranges over B
(allowed in the Ornstein—Weiss Theorem) mean, for large n, huge deviations
of log Rp(z) i.e., huge freedom in the proportions between Rz (x) (hence also
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of W p) at different points. In order to be able to compare the distribution func-
tion of W with the exponential distribution function 1 — e~ we will need
completely different tools.

First of all, it will be convenient to change the time unit to 1/X, i.e., to
replace Rg by Rp = p(B)Rp (and W by W = u(B)W ). We call this step
normalization because the normalized return time Rp has expected value 1
(although the normalized waiting time W g may even have infinite expected
value). This trick has many advantages: (1) the signal process in this new time
scale has intensity 1, hence the parameter A disappears from the calculations,
(2) the time of the signal process becomes nearly continuous (the increment of
time is now A = p(B), which is very small), (3) the formula (5.3.1) takes on,
for the distribution functions Fgz of Wp and Gp of R, the integral form

t
Fp(t) ~ / 1—Gg(s)ds (5.3.2)
0

(up to accuracy p(B)) and (4) we can compare the behaviors of signal pro-
cesses obtained for sets B of different measures. In particular, we can see what
happens in the limit when B represents longer and longer cylinders.

A rich literature is devoted to the subject of the limit distributions of the
normalized return (and waiting) time variables as the lengths of the cylinders
grow, in specific types of processes [see Coelho, 2000; Abadi, 2001; Abadi and
Galves, 2001; Durand and Maass, 2001; Hirata et al., 1999; Haydn et al., 2005,
and the references therein]. Here we will be mainly interested in consequences
of the sole assumption of positive entropy. For each x define

Rep, (x) = sup(Fag (t) — 1+ ™),
t>0
the maximal force of repelling of the cylinder A? € P" containing =. The
main theorem of this chapter is this [Downarowicz and Lacroix, 2011]:

Theorem 5.3.3 (The Ergodic Law of Series) Let (X, P, u, T, S) be an ergodic
process with positive entropy, where P is finite. Then

Rep,, — in L' (p).

n—oo

Because for functions bounded by a common bound the L!-convergence is the
same as the convergence in measure, the above can be equivalently expressed
as follows: for every € > 0 the measure of the union of all blocks of length n,
B € P™ which repel with force ¢, converges to zero as n grows to infinity.
The above theorem asserts that the majority of sufficiently long cylinders
reveals almost no repelling, in which they satisfy the first postulate of the Law
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of Series (phrased next to Definition 5.2.4). Examples show that arbitrarily
strong attracting is admitted by such cylinders, (and it is proved that in the
majority of processes it indeed occurs; see the last section of this chapter),
hence they satisfy also the second postulate.

Question 5.3.4 It is unknown whether Theorem 5.3.3 holds also in the almost
everywhere convergence.

5.3.1 The idea of the proof and the basic lemma

Before we turn to the formal proof of Theorem 5.3.3 we would like to fill in
some of the details of the idea behind it. First of all, by applying the natural
extension, we will assume that the process is invertible, i.e., its symbolic rep-
resentation is bilateral. We intend to estimate (from above, by 1 — =% + ¢) the
function Fp for a long cylinder B € P™. Instead of B, we can consider a con-
catenation BA € Pl="") (i.e., the cylinder set BN A with B € P~", A € P"),
where the “positive” part A has a fixed length r, while we allow the “negative”
part B to be (sufficiently) long.

There are two key ingredients leading to the estimation. The first one, con-
tained in Lemma 5.3.11, is the observation that for a fixed typical B € P~"
the process induced on B (with the conditional measure 1) generated by the
partition P” is not only a 3-independent’ process but also it is “nearly” [3-
independent of the process on (B, Q, up,Ts,Z) generated by the partition Q
depending on the return time (see Figure 5.5). The precise meaning of “nearly”
will be explained later.

coordinate 0

A_gfrerreeneneees | B |A0 || B |A1 | ......... | B |A2 || B IA3 |

Figure 5.5 The process ... A_1AgA1As ... of blocks of length r following
the copies of B is a B-independent process with additional 8-independence
properties of the positioning of the copies to B.

In addition to the random variables of the absolute and normalized return
times Rz and R let us introduce the notation for the kth return time

R () =min{i: #{0 < j <i:Tiz € B} = k},

) = u(B)Rg) (both defined on

B), with Cg) always denoting the distribution function of the latter. Because

and of the normalized kth return time ﬁg:

1 B-independent means the same as e-independent; we have changed the letter because
throughout this chapter ¢ is used for the force of repelling.
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Rg)(x) =Rp(z) +Rp(Ts(x))+---+Rp(Th '(z)), and T preserves g,
by the Kac Theorem, the expected value of Rg) is k/u(B), and that of ﬁg)
equals k.

The above-mentioned (3-independences allow us to decompose (with high
accuracy) the distribution function Gpa of the normalized return time to BA

as follows:

Gpa(t) = upa{Rpa <t} = upa{Rpa < %A)} =

B k (k)
S upaRY =k RE < b 2 S s (R =k} - pup{Ry <L}~

E>1 E>1
1 =(k)
> op(1=p)F Gyl (L), (535)
E>1
where R;B) denotes the return time of A in the process generated by P induced

on B, and p = pp(A). Because this last process is G-independent, the distribu-
tion of the kth return time is nearly geometric with parameter p — this explains
the occurrence of the term p(1 — p)*~! above.

The second key observation is contained in the elementary Lemma 5.3.6
below. We assume, for simplicity, exact equalities in (5.3.5) and (5.3.2). The
idea behind this lemma is as follows: The strongest repelling for BA occurs
when the repelling of B is the strongest, i.e., when B occurs periodically. But
if B does appear periodically, the return time of BA has nearly the geometric
distribution, because it is a return time in a S-independent process (only the
increment of time is now equal to the constant gap between the occurrences of
B). If p is small, this geometric distribution, after normalization, is nearly the
exponential law 1 — e~t. Later, in Lemma 5.3.9, we will regulate the smallness
of p by the choice of the parameter 7.

Lemma 5.3.6 Fix some p € (0,1). Let C(k) (k > 1) be a sequence of dis-
tribution functions on [0, 00) such that the expected value of the distribution

associated with C(k) equals k. Define

kl() an F = t—is S.
=Y o1 -p 6V ). and Fo = [ 1-G(s)d

k>1

Then

(1—e,"), where e, = (1 fp)_%.
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Proof We have

Zpl_ k— 1/ _C(k)(g)ds

E>1

We know that G\ (t) € [0,1] and that [ 1 — C(k)(s) ds = k (the expected
value). With such constraints, it is the indicator function 1 . that maximizes
the integrals from 0 to ¢ simultaneously for every ¢ (because the “mass” k above

the graph is, for such choice of the function C(k) , swept maximally to the left).
The rest follows by direct calculations:

) < p(l1—p kl/lk dsf/ —p)Flds =
> 0 i

k>1 k[W

t 1 —t
s 1—p)r —1 1—e
/(l—p)b]dsg( ?) R .
0 log(1 —p)» loge,

O

Notice that the maximizing distribution functions Cg) = 1[x,00) Occur, for
the normalized return time of a set B, precisely when B is visited periodically.
This is exactly what was said at the beginning of the description of the idea of
the proof.

We can now pass to the complete rigorous proof of Theorem 5.3.3.

5.3.2 The proof of Theorem 5.3.3

In course of the proof, we will make frequent use of a certain lengthy condition,
abbreviated in the following definition.

Definition 5.3.7 Given a finite partition P of a space with a probability mea-
sure p and 6 > 0, we will say that a property ®(B) holds for B € P with
u-tolerance § if

M(U{Be?:@(B)}) >1-4.

We recall an elementary estimate, which has been assigned as Exercise 1.4:
For each cell A of a finite partition P we have

H(P) < (1—p(A))log#P+ 1. (5.3.8)

We will frequently use the “rectangle rule” (see Fact A.1.2), and we give up
recalling it each time; it is accompanied by the appearance of square roots.
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Throughout the sequel we assume ergodicity and that the entropy h of the
process is positive. We begin our computations with an auxiliary lemma allow-
ing us to assume (by replacing P by some P") that the elements of the “present”
partition are small, relatively in most of B € P~" and for every n. Note that
the Shannon—-McMillan-Breiman Theorem is insufficient: for the conditional
measure the error term in that theorem depends increasingly on n, which we
do not fix.

Lemma 5.3.9 For each § there exists an v € N such that for every n € N the
following holds for B € P~™ with u-tolerance 6:

forevery A€ P up(A) <.
Proof Let a be so small that

Va < 6§ and }L;i‘g&Zlfg

and set v = «/log #P. Let r be so big that

and that there exists a collection P” of no more than 2"(**) — 1 elements of
P whose joint measure y exceeds 1 — v (by the Shannon—-McMillan—Breiman
Theorem).

Let P denote the partition into the elements of P" and the complement of
their union, and let R be the partition into the remaining elements of " and
the complement of their union, so that P" = P7 Vv R. By the power rule (2.4.19)
(in the form of Exercise 2.2) we can write rh = H (P"|P~). Further, for any n
we have

rh=H(P"|[P) < H(P|P") = H(P"VR[P") =
H(Pr|RVP") + HR|P™™) < HPT|P ™) + HR) <

" WB)Hp(PT) +yrlog #P + 1
BeP—n

(we have used (5.3.8) for the last passage). After dividing by r we obtain

S WB)LHp(PT) > h—ylog#P — L > h - 2a.
BeP—n

Because each term %H B @;) is not larger than % log #{PT’“, which was set to be
at most h + «, we deduce that

LHp(P") > h —3Va
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for B € P~ with u-tolerance v/« hence also with y-tolerance 6. On the other
hand, by (5.3.8) again, for any B and A € P it holds that

Hp(P) < (1= pp(A)log #P" +1 < (1 — up(A)r(h+a) + 1.

Combining the last two displayed inequalities we establish that, with
p-tolerance § for B € P~ and then for every A € Pr,

h—3\/a 1
1—pp(A) > hra —m21—5~

So, up(A) < 6. Because P" refines f/ﬁ, the elements of P" are also not larger
than 6. O

We continue the proof with a lemma which could be also deduced from
[Rudolph, 1978, Lemma 3], nevertheless we choose to provide a direct proof.
For o > 0 and M € N we define a special periodic subset of Z

D(M, o) = | [mM + oM, (m+1)M — aM)NZ.
meZ

Lemma 5.3.10 For fixed o and r there exists My € N such that, for every

M > My,
H(Pr|P~ v PPy > pp —
(see Figure 5.6).
Skokoskoskokokoskokok kRO O, L kkskskskoskskoskskoksksk L LLL.. L. kokokskokokokokkkkk, L kkokskokkokokkk kK, L

Figure 5.6 The circles indicate the coordinates O through r» — 1, the condi-
tioning sigma-algebra is over the coordinates marked by stars, which includes
the entire past and part of the future with gaps of size 2aeM repeated periodi-
cally with period M (the first gap is half the size and is partly covered by the
circles).

Proof First assume that » = 1. Denote also

D' (M, ) = U [mM + oM, (m+1)M) N Z.
meZ

Let M be so large that H(P1=M) < (1 —a)M(h+ ), where v = 2(1012(1)'
Then, for any m > 1,

H(g)D'(ZVI,a)ﬂ[O,mI\/I)w)f) < H(g)]D)'(M,oz)ﬂ[(),mM)) < (1 _ a)mM(h—F*}/)
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Because H(PI0™M)|P~) = mMh, the complementary part of entropy must
exceed mMh — (1 — a)mM (h + ) (which equals amM (h — «/2)), i.e., we
have

H(:P[O,m]\/l)\]DJ'(M,a)ka V .:PID)’(]W,a)ﬁ[O,m]W)) > amM(h _ %)

Expressing the last entropy term as a sum over j € [0, mM) \ D' (M, «) of the
conditional entropies of T~/ (P) given the sigma-algebra over all coordinates
left of j and all coordinates from D' (M, o) N [0, mM) right of j, and because
every such term is at most h, we deduce that more than half of these terms
reach or exceed h — .. So, a term not smaller than & — « occurs for a j within
one of the gaps in the left half of [0, mM ). Shifting by j we obtain

H(PP™ v T (@ M) > b —a,

where ¢ € [0, M) denotes the relative position of j in the gap. As we increase

m, one value ¢ repeats in this role infinitely many times, say, along a subse-
(A:PD'(M,O()ﬂ[O, m'21w

quence m/'. The partitions P~ Vv T* )) increase with m/ to
the sigma-algebra P~ Vv Ti(TD/(M *»)) and conditional static entropy passes
via increasing limits of the conditioning sigma-algebras (see (1.7.13)), hence
H(P|P~VT (PP (M:2))) > h—q. The assertion now follows because D(M, o)
is contained in ' (M, «) shifted to the left by any ¢ € [0, aM).

Finally, if » > 1, we can simply argue for P" replacing P. This will impose
that My and M are divisible by r, but it is not hard to see that for large M the
argument works without divisibility at a cost of a slight adjustment of . [

For a block B € P~" consider the process (B, P", up, T, Z) generated by
P" under the induced transformation T’z (and with the measure ;1 5). Adapting
Theorem 3.1.13 by reversing the time, replacing P by P”, and P[L" by P,
we can see that for a fixed § > 0 and n large enough, the above is a (3-
independent process for B € P~™ with p-tolerance (3. The following lemma
shows that it is also “nearly” B-independent of the induced process generated
by the return times, more precisely, it is S-independent of the entire past and a
finite number of future return times. This fact is crucial and the most difficult
item in the proof of Theorem 5.3.3.

Lemma 5.3.11 Forevery 8 > 0, r € N and K € N there exists ny such
that for every n > ng, with p-tolerance 3 for B € P~", with respect to |,
PT is B-independent of jointly the past P~ and the first K return times, Rg;)
(k € [1, K]), to the set B.

Proof We choose v > 0 so that
H(P'|Q) > H(P") —y = P 1PQ
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for any partition Q (see Fact 3.1.3). Let « satisfy
0< 22 <1, 1I8KyVa<1, V2a<y, Kya<?b.

Applying the power rule (in the form of Exercise 2.2) and the Ornstein—Weiss
Theorem 3.4.1 (in its version for the kth return time, Exercise 3.7), we can find
ng so large that for every n > ng both H(P"|P~") < rh + « and that for
every k € [1, K| with p-tolerance o for B € P~™ it holds that

MB{2n(h7a) < R(Bk) < 2n(h+a)} >1—a.

Let My > 270(h=a) be 50 large that the assertion of Lemma 5.3.10 holds for
a, r and My, and that for every M > M,

(MJrl)th%a < aM? and % <.

We can now redefine (enlarge) ng and My so that My = |[270("=) | Similarly,
for each n > ng we set M,, = |2"("~®) |, Observe that the interval, where the
first K returns of most blocks B of length n may occur (up to probability «),
is contained in [M,,, aM2] (because 27(h+2) < (M, + 1)'7"s < aM?2).

At this point we fix some n > ng. The idea is to carefully select an M
between M,, and 2M,, (hence not smaller than M), such that the initial K
returns of nearly every block of length n happen most likely inside (with all its
n symbols) the set D(M, ), so that they are “controlled” by the sigma-algebra
PPOM) Leta/ = a+n / M, so that every block of length n overlapping with
D(M, ') is completely covered by D(M, «). By the definition of M,,, we
have n < %, hence ML < %, which is smaller than «. Thus
o < 2a. To define M we will invoke the “triple Fubini Theorem” (in the
completely trivial version for discrete measures, i.e., for sums). Fix k € [1, K]
and consider the probability space

P x [M,,2M,] x N

equipped with the (discrete) measure Prob whose marginal on P~ X
[M,,,2M,,] is the product of u (more precisely, of its projection onto P~™)
with the uniform probability distribution on the integers in [M,,, 2M,,], while,
for fixed B and M, the conditional measure on the corresponding N-section
is the distribution of the random variable Rg). In this space let D be the set
whose N-section for a fixed M (and any fixed B) is the set D(M, o'). We
claim that for every | € [M,,,aM?] NN (and any fixed B) the [M,,,2M,]-
section of D has measure exceeding 1 — 16a. This is quite obvious (even for
every | € [My,,o00) and with 1 — 15q) if [M,,,2M,] is equipped with the
normalized Lebesgue measure. The details of this estimate are provided in the
description of Figure 5.7.
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Figure 5.7 The complement of D splits into thin skew strips shown in the

picture. The normalized Lebesgue measure of any vertical section of the jth
y

strip (starting at jM,, with j > 1) is at most jffaj,Q < 5%/ < 12—."‘. Each

vertical line at [ > M, intersects strips with indices j,j + 1,7 + 2 up to at

most 25 (for some 7), so the joint measure of the complement of the section

of D does not exceed 10a(5 + 747 + - + 57) < 15a.

In the discrete case, however, it might happen that the integers along some
[M,,, 2M,,]-section often “miss” the section of I leading to a decreased mea-
sure value. (For example, it is easy to see that for [ = (2M/,)! the measure
of the section of I is zero.) But because we restrict to [ < aM?2, the dis-
cretization does not affect the measure of the section of D by more than «,
and the estimate with 1 — 16« holds (see Figure 5.8 and its description for
details).

Figure 5.8 The discretization replaces the Lebesgue measure by the uniform
measure on M, integers, thus the measure of any interval can deviate from
its Lebesgue measure by at most 1/M,,. For I < aM? the corresponding
section of D (in this picture drawn horizontally) consists of at most aM,,
intervals, so its measure can deviate by no more than «.

Taking into account all other inaccuracies (the smaller than « part of D out-
side [M,,, «M?2] and the smaller than « part of D projecting onto blocks B
which do not obey the Ornstein—Weiss return time estimate) we have proved
that

Prob(D) > 1 — 18a.
This implies that for every M from a set of measure at least 1 — 18/« the

measure of the (P~" x N)-section of I is larger than or equal to 1 — \/a. For
every such M, with u-tolerance /« for B € P~", the probability g that the
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kth repetition of B falls in D(M, o’) (hence with all its n terms inside the set
D(M, «)) is at least 1 — .

Because 18K /o < 1, there exists at least one M for which the above
holds for every k € [1, K]. This is our final choice of M which from now
on remains fixed. For this M, and for cylinders B chosen with p-tolerance
K {/a, each of the considered K returns of B with probability (meaning 1)
1— ¥/« falls (with all its coordinates) inside D(M, «). Thus, for such a B, with
probability 1 — K /« the same holds simultaneously for all K return times.
In other words, there is a set B’ C B of measure up not exceeding K/«

outside of which (in B) Rg{) = lig), where ﬁg) is defined as the time of

the kth fully visible inside D(M, «) return of B. Notice that lig) is PP(Ma)
measurable.
Let us go back to our entropy estimates. We have, by Lemma 5.3.10,
> w(B)Hp (P[P v PPy = H(Pr|P v P v PPIM)) =
Bep—n
H(P|P~ v PP > ph — o > H(PT|P") — 20 =

S w(B)H(P") - 2.
BeP—n
Because Hp(P"|P~ v PPIM:a)y < Hp(P) for every B, we deduce that with
p-tolerance v/2a for B € P~" it must hold that
Hp(P"|P~ v PPy > Hp(P) — vV2a > Hp(P") — 7.

Combining this with the preceding arguments, with pu-tolerance K /o +
V2a < 3 for B € P~" both the above entropy inequality holds and we
have the estimate pp(B’) < K +/a. By the choice of ~y, we obtain that with
respect to p, P is jointly g-independent of the past and the modified return

times RSB’“) (k € [1, K]). Because up(B’) < K{/a < g, this clearly implies
[B-independence if each lifgk) is replaced by Rgc). [

To complete the proof of Theorem 5.3.3 it now remains to put the items
together.

Proof of Theorem 5.3.3  Fix ane > 0. On [0, c0), the functions
gp(t) = min{l, i (1 — e, ) +pt},

where e, = (1 — p)_%, decrease uniformly to 1 —e~% as p — 0. So, let § be
such that gs(t) < 1 — e~ ! 4 ¢ for every ¢. We also assume that

(1-26)(1-0)>1—e.
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Let r be specified by Lemma 5.3.9, so that ug(A) < ¢ for every n > 1, every
A € P" and for B € P~™ with p-tolerance §. On the other hand, once r is
fixed, the partition P" has at most (#P)" elements, so with pg-tolerance ¢ for
A e P, up(A) > §(#P)". Let Ap be the subfamily of P" (depending on
B) where this inequality holds. Let K be so large that for any p > §(#P)",

o

> op(l-pF <3,

k=K+1

and choose < § so small that
2 s
(K*+K+1)p<g.

The application of Lemma 5.3.11 now provides an ng such that for any n > nyg,
with p-tolerance 3 for B € P~", the process induced on B generated by P"
has the desired 3-independence properties involving the initial K return times
of B. So, with tolerance § + 5 < 2J we have both, the above (-independence
and the estimate up(A) < d for every A € P". Let B, be the subfamily of
P~™ where these two conditions hold. Fix some n > ny.

Let us consider a cylinder set BA € PI="") where B € B,,, A € Ag. The
length of BA is n + r, which represents an arbitrary integer larger than ng + r.
Notice that the family of such sets BA covers more than (1—20)(1—0) > 1—¢
of the space.

We will examine the distribution of the normalized first return time for BA.
Recall that Rff) denotes the return time to A in the induced process on B,
i.e., a variable defined on BA, counting the number of visits to B until the first
return to BA. Let p = pup(A) (recall, this is not smaller than 6(#P)~"). We
have

Gpa(t) = pupa{Rpa <t} = upa{Rpa < ﬁ} =

B k
S upaRY = kR < L)
k>1

The kth term of this sum equals

Lpp({Ar = AIN{Ap_1 £ AP0 N{A1 £ AJN{Ag = A}N{RY < L),

pu(B)

where A; is the block of length r following the ith copy of B (the counting
starts from O at the copy of B positioned at [—n, —1]).

By Lemma 5.3.11, for £ < K, in this intersection of sets each term is (-
independent of the intersection to its right. So, proceeding from the left, we
can replace the probabilities of the intersections by products of probabilities,
allowing an error of 3 (multiplied by some number not exceeding 1). Note that
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the last term equals pp {ﬁg) < %} = Cg“) (%) Jointly, the inaccuracy will not
exceed (K + 1)4:

B) k (k)
psa{RY = kR < ot} = p(1 - p)* 165 ()

< (K +1)B.

Similarly, we also have ‘MBA{REL‘B) =k} —p(1-— p)k_l‘ < K3, hence the

tail of the series p BA{quB) = k} summed over k > K + 1 is smaller than
K23 plus the tail of the geometric series p(1 — p)*~!, which, by the fact that
p > 0(#P)~", is smaller than 6/2. Therefore

(k
~ 3 p(1-p)F Gy (L),

k>1

up to (K2 + K +1)3 + 6/2 < 6, uniformly for every ¢. By the application of
the elementary Lemma 5.3.6, Fpa satisfies

Fga(t) < min{1 (L—e,")+6t} <gs(t) <1—e'+e

) log ep
(because p < J). We have proved that for our choice of € and an arbitrary
length m > ng+r, with p-tolerance ¢ for the cylinders BA € P™, the force of
repelling (from any distance t) of the visits to BA is at most €. This concludes
the proof of Theorem 5.3.3. O

5.4 Typicality of attracting for long cylinders

We have included this section in order to complete the picture of the Ergodic
Law of Series. We skip the proofs of the cited theorems, as they do not use
entropy. In passing we prove a statement about typicality of positive entropy.
The preceding section provides evidence that in positive entropy processes
the occurrences of a selected long cylinder, in principle, do not repel. This cor-
responds to the first postulate in the interpretation of Definition 5.2.4 of the
Law of Series. As to the second postulate (presence of attracting), of course,
it cannot be satisfied by long cylinders in all positive entropy processes. For
example, in the independent process all long cylinders occur with neither
attracting nor repelling. The same holds in sufficiently fast mixing processes
(see [Abadi, 2001] or [Hirata er al., 1999]). But such processes are in fact
exceptional; in a “typical” process many blocks reveal strong attracting. We
know that a fixed dynamical system (X, %, u,T,S) gives rise to many pro-
cesses (X, P, u, T,S), each generated by some partition P. We can thus para-
metrize the processes by the partitions and use the complete metric structure
that exists on the space of partitions to determine the meaning of “typicality”:
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Definition 5.4.1 We say that a property Y of a process is typical (Rokhlin-
typical or typical among finitely generated processes) in a certain class of mea-
sure-preserving transformations, if for every (X, 2, u, T, S) in this class, the
set of partitions P such that the generated process (X, P, u, T, S) has the prop-
erty Y, is residual (i.e., contains a dense G set) in the space By, of all count-
able partitions endowed with the metric d; (respectively, in the space Pr of all
countable partitions with finite static entropy endowed with the Rokhlin met-
ric, or, for every natural m > 2, in the space ‘J3,,, of all partitions into at most
m elements endowed with either metric).

Notice that the spaces 3, are nowhere dense in both Br and Py,, while
Pr is a first category subset of Py, , thus there is no implication between the
notions of typicality in the above three senses.

The theorem below captures the typicality of strong attracting:

Theorem 5.4.2 The following property of a process is typical in all three
senses in the class of all ergodic measure-preserving transformations: There
exists a set of lengths N C N with upper density 1, such that for every € and
sufficiently large n € N, every block of length n reveals strong attracting (with
force 1 — €) of its occurrences. O

We skip the proof, which can be found in [Downarowicz ef al., 2010]. Recall
that strong attracting automatically eliminates repelling other than
marginal. So, this theorem alone, implies that all blocks of selected lengths
obey the Law of Series. Nevertheless, blocks of other lengths may strongly
repel (but only if the entropy is zero). Examples of such systems have been
built by Paulina Grzegorek and Michal Kupsa [Grzegorek and Kupsa, 2009].
In such systems, in the overall picture, where all long cylinders are taken into
account, we can still see a mixed behavior without decisive domination of
attracting over repelling.

Remark 5.4.3 The typicality of strong attracting has been recently extended
in [Downarowicz et al., 2010] also to events which are not single cylinders but
unions of cylinders over blocks differing at a small percentage of coordinates
(d-balls in Hamming distance). An open question remains, whether an analog
of Theorem 5.3.3 holds for such events in positive entropy processes.

Now we prove the following fact concerning entropy:

Theorem 5.4.4 Positive entropy is Rokhlin-typical and typical among finitely
generated processes in the class of measure-preserving transformations with
positive Kolmogorov—Sinai entropy.
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Proof The set of partitions with finite static and positive dynamical entropy
is open (in both Pr and ‘PB,,,), which follows immediately from continuity of
dynamical entropy with respect to the Rokhlin metric (Fact 2.4.13). We need
to prove that it is dense. Because the dynamical system has positive entropy,
there exists a partition P which generates positive dynamical entropy. For
large enough n, all cells of P™ are smaller than § in measure. At least one
of these cells, say A, is not measurable with respect to the Pinsker sigma-
algebra Ilp, otherwise the process would have entropy zero. The two-element
partition Q = {A, A°} generates positive dynamical entropy (otherwise, as a
zero-entropy factor of the process generated by P it would have to be mea-
surable with respect to Ilp). The static entropy H(Q) is at most H (4,1 — ¢),
which is arbitrarily small, say, smaller than €. Now, every other partition can
be perturbed by at most € in the Rokhlin metric, to a partition with positive
dynamical entropy by simply joining it with the partition Q (this increases the
cardinality; we leave fixing this problem to the reader). [

Combining the above two facts (recall that the intersection of two resid-
ual sets is residual) with Theorem 5.3.3 of the preceding section we obtain
that in the class of ergodic measure-preserving transformations with positive
entropy, in a typical finitely generated process, long cylinders reveal almost no
repelling, while many of them reveal strong attracting. This time we do have
decisive domination of attracting over repelling. This is the full strength of the
Ergodic Law of Series.

The following example shows how the Ergodic Law of Series can manifest
itself in reality. Of course, it should be treated with due reserve.

Example 5.4.5 Consider the experiment of randomly generating independent ASCII
characters (the monkey typing”). In theory this is an independent process hence every
possible long block should appear with positive probability and it should reveal nei-
ther repelling nor attracting. In reality, however, the independence of the consecutive
outcomes is imperfect (there is no perfect physical independence between any events
in reality). We can thus consider the process as being generated by a slightly per-
turbed partition corresponding to the alphabet. Then there are high chances that the pro-

cess falls in the class of typical processes (of positive entropy) described in the above

2 This kind of experiment has fascinated people since a long time. The reader can look it up
under “The infinite monkey theorem”. The idea goes back to Aristotle and, in a more
contemporary setting, to Emile Borel and his 1913 essay “Mécanique Statistique et
Irréversibilité”. The long block in question is usually either Shakespeare’s Hamlet or the entire
book collection of the British Museum put into one long string of letters. Of course, it was
merely the possibility of randomly generating such a block that fascinated, not the Law of
Series. Hard to believe, but there have been not only attempts to simulate this on a computer,
but also experiments with real macaques!
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theorems. If so, then majority of blocks will obey the Law of Series and if we focus
on one particular long block (say the tex file of this book) it is quite likely that once it
occurs it will occur again very “soon” (compared with the expected waiting time, which
is unimaginably large).






Part II

Entropy in topological dynamics






6
Topological entropy

6.1 Three definitions of topological entropy

By a fopological dynamical system we understand the triple (X, 7T, S), where
X is a compact metric space, T : X — X is continuous and S € {Ny, Z} is
the semigroup acting on X via the iterates of 7'. Of course, Z is available only
when 7" is a homeomorphism.

Just like in the measure-theoretic case, we are interested in a notion of
entropy that captures the complexity of the dynamics, interpreted as the amount
of information transmitted by the system per unit of time. Again, the ini-
tial state carries complete information about the evolution (forward, or both
forward and backward in time, depending on the acting semigroup S), but
the observer cannot “read” all this information immediately. Since we do not
fix any particular measure, we want to use the metric (or, more generally,
the topology) to describe the “amount of information” about the initial state,
acquired by the observer in one step (one measurement). A reasonable inter-
pretation relies on the notion of topological resolution. Intuitively, resolution
is a parameter measuring the ability of the observer to distinguish between
points. A resolution is topological, when this ability agrees with the topologi-
cal structure of the space. The simplest such resolution is based on the metric
and a positive number €: two points are “indistinguishable” if they are less than
€ apart. Another way to define a topological resolution (applicable in all topo-
logical spaces) refers to an open cover of X. Points cannot be distinguished
when they belong to a common cell of the cover.

By compactness, the observer is able to “see” only some finite number N of
“classes of indistinguishability” and classify the current state of the system to
one of them. The logarithm to base 2 of N roughly corresponds to the num-
ber of binary questions, answering which is equivalent to what the observer
has learned, i.e., to the amount of acquired information. The static entropy,
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instead of an expectation (which requires a measure), will now be replaced by
the supremum over the space of this information. The rest is done just like in
the measure-theoretic case; we define the topological dynamical entropy with
respect to a resolution as the average (along the time) information acquired
per step. Finally we pass to the supremum as the resolution refines. Multiple
ways of understanding topological resolution lead to multiple ways of defining
topological entropy.

Notice that “indistinguishability” is not an equivalence relation; the “classes”
often overlap without being equal. This makes the interpretation of a topo-
logical resolution a bit fuzzy and its usage in rigorous computations — rather
complicated.! This difficulty has not occurred in measurable dynamics, where
“classes of indistinguishability” were simply the cells of a partition. Only
in zero-dimensional topological spaces do we have the comfort that arbitrar-
ily fine topological resolutions can be defined as partitions. Zero-dimensional
spaces provide a bridge between measure-theoretic and topological dynamics,
and we will learn later how this bridge is created.

6.1.1 The metric definition via separated orbits

This and the next section describe topological entropy in the sense of Dinaburg
and Bowen, using the metric [comp. Dinaburg, 1970; Bowen, 1971]. Let X be
endowed with a metric d. For n € N, by d” we will mean the metric

d"(x,y) = max{d(T'z,T'y) : i =0,...,n —1}.

Of course d! = d, d*t! > d" for each natural n, and, by compactness of X,
all these metrics are pairwise uniformly equivalent.

Following the concept of distinguishability in the resolution determined by
adistance ¢ > 0, a set F' C X is said to be (n, ¢)-separated if the distances
between distinct points of F' in the metric d™ are at least &:

Vaoyer d"(x,y) > e.

By compactness, the cardinalities of all (n,¢)-separated sets in X are finite
and bounded. By s(n, ) we will denote the maximal cardinality of an (n, ¢)-
separated set:

s(n,e) = max{#F : Fis (n,e)-separated}.

1 The phenomenon that “indistinguishability” is not an equivalence relation leads to many
misunderstandings (and abuses) in our everyday life. A typical example is that parents do not
notice how their children grow day after day. They feel surprised when some relatives exclaim
how much they have grown! Another example: Some firms try to increase profits by lowering
the quality of their products. But they do it so gradually that the regular clients do not notice.
Casual clients do.
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It is clear that s(n, ) (hence also the first two terms defined below) depends
decreasingly on €. So, we can apply the general scheme:

H, (na 5) = 1Og S(Tl, 5)7
hy(T,e) =limsup 1H;(n,e) (alternatively liminf),

n—0oo

by (T) = lim 1 (T ).

We will soon explain why the choice between limsup and liminf is
inessential.

For the interpretation, suppose we observe the system through a device
whose resolution is determined by the distance €. Then we can distinguish
between two n-orbits (z, Tz, ..., T" tz)and (y, Ty, ..., T" 'y) if and only
if for at least one i € {0,...,n — 1} the points Tz, T*y can be distinguished
(which means their distance is at least €), i.e., when the points x,y are (n, ¢)-
separated. Thus, s(n, ) is the maximal number of pairwise distinguishable
n-orbits that exist in the system. The term h; (T, ¢) is hence the rate of the
exponential growth of the number of c-distinguishable n-orbits.

6.1.2 The metric definition via spanning orbits

Let B"(x,¢) denote the e-ball around z in the metric d". We will call it the
(n, €)-ball (around x). For n = 1 we will simply write B(z, ). Notice that

B"(z,e) = ﬁ T YB(T'z,¢)).
i=0

A set Fis called (n, €)-spanning if it intersects every (n, ¢)-ball in X. Since
X is totally bounded, there exists a finite (n, £)-spanning set in X . The number
r(n, €) is defined as the smallest cardinality of an (n, €)-spanning set:

r(n,e) = min{#F : F is (n, e)-spanning }.

The number r(n, €) can be interpreted as the minimal number of n-orbits rep-
resenting up to indistinguishability all possible n-orbits (easy examples show
that this is not the same as s(n, £)). Again, the dependence on ¢ is decreasing.
Then we follow the scheme:

Hj(n,e) =logr(n,e),
hy (T, ) = limsup 1Hy(n,e) (or liminf),

n—oo

hy(T) = lim 1 ha (T €).



162 Topological entropy

6.1.3 The topological definition via covers

By a cover U we will understand an arbitrary family of open sets whose union
is X. A cover V is a refinement of another cover U, which we write as V = U,
if every element of V is contained in an element of U. Unlike for partitions, it
no longer holds that each element of U is then a union of some elements of V.
A join of two covers UV V is defined the same way as it was done for partitions
(compare (1.2.1)):

UVV={UNV:Uel,VeV}

Clearly, such a join refines both U and V. A subcover of a cover U is any sub-
family V C U which is also a cover. Note that a subcover of U is its refinement,
which might be a bit counterintuitive, because we are accustomed to thinking
of a refinement (of a partition) as having larger cardinality. By compactness,
every cover has a finite subcover. For a cover U we let N (U) denote the mini-
mal cardinality of a subcover. A subcover of this cardinality will be referred to
as optimal.

Let T : X — X be a continuous transformation. By continuity of T, if
U is a cover, then T~} (U) = {T~Y(U) : U € U} is also a cover. The map
T~ acting on covers preserves the relation = and that of being a subcover. In
particular, N(T~1(U)) < N(U).

Like for partitions, but only for a finite set D € S, we will denote

u” =\/ 77w,
ieD
and we will abbreviate U[") as U™. It is easily verified that

UxV = U" = V" (6.1.1)

In this subsection we introduce the topological entropy in the sense of Adler,
Konheim and McAndrew [comp. Adler ef al., 1965]. It relies on treating a
cover U as a topological resolution. Open covers form a directed family with
respect to the partial order =, hence can be used to index nets (see Appendix
A.1.3).

We follow the scheme:

H(U) = log N(U),
h(T,U) = ligbn LHU™),
h(T) = lilan 7 h(T,U).
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The interpretation of this definition is similar to the preceding one: N(U")
is the minimal number of n-orbits which represent up to distinguishability all
n-orbits in the system. The monotonicity of the last limit (over the net of all
covers) follows from (6.1.1) and the first observation below, while the second
limit (in n) exists by subadditivity stated in the last observation:

Fact 6.1.2  For open covers U and 'V, we have

U=V = NU) > N((V), (6.1.3)
NUvU) =N, (6.1.4)
NUVYV)<NUN(V), (6.1.5)

the sequence H(U™) is subadditive. (6.1.6)

Proof If U, is an optimal subcover of U, then for each U € U, there exists
Vi € Vsuchthat U C V. LetV, = {Viy : U € U, }. This is a subcover of V
and its cardinality is not larger than that of U,. This proves (6.1.3). Although
the join U V U usually does not equal U, it is elementary to see that it both
refines and is refined by U. Now (6.1.4) follows from (6.1.3). For (6.1.5) let U,
be an optimal subcover of U, likewise, let V,, be an optimal subcover of V. Then
U, V'V, is a subcover of U VV 'V (perhaps not even optimal) and its cardinality
is at most the product of the cardinalities of U, and V,. Subadditivity is an
immediate consequence of (6.1.5) and the inequality N(T~*(U)) < N(U),
noted earlier. O

Remark 6.1.7 In metric spaces we can always find a sequence (Uy,) of open
covers which eventually refine every cover. Replacing Uy by \/f:1 U; we can
have a sequence with the additional property U1 = Uy for all k. A sequence
of covers (Uy ) with both the above properties will be called refining or we will
say that the sequence (Uy) refines in X. The limit over the net of all covers
in the last definition can be replaced by the limit over a refining sequence of
covers. Still, in some situations, it will be better to use nets anyway.

6.1.4 Relations between the above notions

The fact below was observed already in [Bowen, 1971]:

Theorem 6.1.8 In metric spaces hy(T) = hy(T) = h(T). In particular, the
Bowen—Dinaburg definition does not depend on the metric.

This allows us to define our main notion:

Definition 6.1.9 Topological entropy h(T) of T is defined as the common
value hy (T') = hy(T) = h(T).
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Before we proceed with the proof, we introduce two parameters related to an
open cover: diam(U) and Leb(U). The first one denotes the maximal diameter
of an element of U and we will call it simply the diameter of U. This, of course,
is bounded by the (finite) diameter of X . The second one is called the Lebesgue
number of U and it is defined as the maximal number ¢ such that every open
ball of radius ¢ is contained in an element of U. It is a standard fact in metric
topology that this number is positive.

Proof of Theorem 6.1.8 A set is (n,e)-spanning if and only if the family of
the (n,¢)-balls around its members is a subcover of the cover U, ) by all
(n, e)-balls which, in turn, is a subcover of U?LE). By the definition of the
Lebesgue number, U, ) = U whenever ¢ < Leb(U). By (6.1.1) and (6.1.3),
we get

r(n,e) = NUgpo) = N(UY ) = NUY). (6.1.10)

Note that any (n,e)-separated set F' of maximal cardinality must be (n,¢)-
spanning, otherwise there would exist a point whose distances to all members
of F'in the metric d"” were larger than or equal to €. The set F' enhanced by
such a point would remain (n, €)-separated, contradicting the maximality of
F. This implies that

s(n,e) > r(n,e). (6.1.11)

Now take an open cover V with diam(V) < e. Let F be an (n, €)-separated set.
Then every cell of V" contains at most one element of F. On the other hand,
any subcover of V™ covers all elements of F. Thus

N(V") > s(n,e).
Combining the above displayed formulae, we conclude

The proof is completed by passing to the limit over a refining sequence of
covers Uy, letting £, = Leb(Uy,) and choosing a refining sequence of covers
Vi with diam(Vy) < . O

At this point we notice that the above argument works regardless of whether
we use limsup or lim inf in either definition involving e, i.e., that of hy (T, ¢)
and that of hy (T, ¢). In each case, depending on this choice, we may obtain
two slightly different values for h; (7', ) and two different values for hy (T, ¢),
but the inequalities (6.1.12) hold in any case and the differences disappear in
the last limit passage (in which € — 0), always leading to the same value of
topological entropy.
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6.2 Properties of topological entropy

The facts stated in this section show that the behavior of topological entropy
is, in many aspects, the same as that of measure-theoretic dynamical entropy.
This concerns the behavior with respect to the factor-extension relation, prod-
uct systems and power systems. In the proofs we will use the version of the
definition which is most convenient.

A topological dynamical system (Y, .S, S) is a subsystem of (X, T,S) when
Y is a closed T-invariant subset of X (meaning T(Y) C Y or T(Y) = Y
depending on whether S = Ny or Z, respectively) and S = T'|y .

Fact 6.2.1 If (Y, S,S) is a subsystem of (X, T,S), then h(S) < h(T).

Proof Every maximal (n, e)-separated setin Y is (n, ¢)-separated in X (and
here perhaps not maximal). O

A topological dynamical system (Y, S, S) is a topological factor of (X, T, S)
if there exists a continuous and equivariant surjection 7 : X — Y (recall that
equivariant means woT = Som). We also call (X, T', S) a fopological extension
of (Y, 5,S). Two systems are topologically conjugate (we just say conjugate)
if the above 7 is a homeomorphism.

Fact6.2.2 If(Y,S,S) isatopological factor of (X, T,S), then h(S) < h(T).
Conjugate systems have the same topological entropy (we say that topological
entropy is an invariant of topological conjugacy).

Proof This is obvious, since every open cover V of Y lifts against the factor
map 7 to an open cover U = 7~ (V) of X, and the numbers N (V") in the
system (Y, S,S) and N(U™) in (X, T,S) coincide (by surjectivity), so that
h(S,V) = h(T,U). Now, the limit in the definition of h(7") via covers equals
the supremum over all covers of X, including those lifted from Y, hence the
desired inequality follows. The last statement is now trivial. O

By a power system we will understand the system (X, 7"), where n € S is
fixed. We have the following power rule for topological entropy:

Fact 6.2.3
h(T") = |n|h(T).

Proof Forn = 0 the map T is the identity and the statement holds trivially.
Now take n € N. For an open cover U let V = U™ (under the action of T).
Then U™ (under the action of T") equals V™ under the action of 7. Thus,

h(T",V) = lim LH(U"™) = nh(T,U).
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Since V = U it suffices to take the supremum over all covers U (i.e., over
all covers V of the form U™) to obtain the topological entropy of the power
system.

It remains to prove that for homeomorphisms h(7T") = h(T~!). We have,
for any open cover U, that U™ (under the action of T—1) equals 77 (U") (here
U™ is under the action of 7T"). Because 1" is a homeomorphism, both covers
have the same smallest cardinality of a subcover. This implies that h(7", U) =
h(7T~1,U). Taking the supremum over all U on both sides, we complete the
proof. O

On the other hand, the following easy fact holds (compare Fact 2.4.1). The
proof is left to the reader as Exercise 6.2.

Fact 6.2.4 For any n € N we have h(T,U") = h(T,U). O

Definition 6.2.5 A cover U is called a (unilateral) fopological generator of
(X, T,S)if U™ is a refining sequence of covers (in the sense of Remark 6.1.7).
For homeomorphisms we can also define bilateral generators; we require the
sequence U= to refine.

It follows from Fact 6.2.4 that if a cover U is a generator of (X, T, S), then
h(T,U) = h(T). The same easily generalizes to bilateral generators.

Definition 6.2.6 A system (X, 7,S) is expansive when for any © # y € X
there exists an n € S with d(T™xz, T"y) > M, where M > 0 is constant.

Expansiveness strongly depends upon the acting semigroup, for example the
shift map on {0, 1}Z is Z-expansive but not Ny-expansive. Contrary to how it
is defined, expansiveness does not depend on the metric and is an invariant
of topological conjugacy. Every expansive system has a topological generator
(unilateral or bilateral, respectively to the meaning of expansiveness). The con-
verse implication fails, for example, the irrational rotation of the circle has a
generator without being expansive.

The last thing we examine in this section is how topological entropy behaves
as the transformation varies on a fixed space.

Fact 6.2.7 Let C(X, X) denote the set of all continuous transformations of
X endowed with the supremum metric. Fix an open cover U of X. Then the
map T — h(T,U) is upper semicontinuous on C(X, X ). The map T — h(T)
is of Young class LU (see Definition A.1.23 in the Appendix A.1).

Proof Fix ann > 1 and let U,, be an optimal (of the smallest possible cardi-
nality) subcover of U™ (here n refers to the action of T'). Let € be the Lebesgue
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number of U, in the metric d” (again, n refers to the action of 7). There is a
& > 0 such that if T’ € C(X, X) is within & from T', then 7" is within ¢ from
T?fori=1,...,n — 1. Fix one such map 7" and let U/, be the family of sets
obtained by the same intersections as U,, but with the action of 7" replaced by
the action of 7”. We claim that U/ covers X. Indeed, take an = € X. Then z
belongs to some member of U,, say ﬂ?;ol T~4(U;) together with the (n, €)-
ball around . In other words, for each ¢ = 0,...,n — 1 not only Tz € U,
but also y € U; whenever d(y, T'x) < e, in particular, y may be taken T'z.
This implies that = € ﬂ?:_ol T’ _i(Ui), and this set, by definition, is a member
of U.. So U, covers X. Of course, U/ is a subcover (not necessarily optimal)
of U™ where this time n refers to the action of T”. We have proved that the
(implicit) dependence of H(U™) on the map T is upper semicontinuous. Since
h(T,U) is the infimum over n of ZH(U™), this function of the map T is also
upper semicontinuous. The last assertion is now obvious, since the function
T +— h(T) is an increasing limit of T' — h(7T,Uy), where Uy is a refining
sequence of covers. U

6.3 Topological conditional and tail entropies

Copying the measure-theoretic notions, we now introduce the topological con-
ditional entropy given a cover and given a topological factor. Although the
last notion will become useful much later, we include it here in order to gather
similar ideas in one place. We begin with the appropriate static notions.

Definition 6.3.1 Let U and V be open covers of X and let ' C X . We denote
H(U|F) = log(min{#Up : Up C U, F C | JUr}),

the logarithm of the smallest cardinality of a subfamily of U covering F'. Next
we let

HU|F,V) = max{HWFNV): V eV},
HUV) = HU|X, V).

The following properties are almost the same as those of the Shannon entropy
(compare (1.6.5), (1.6.6), (1.6.7), (1.6.3), (1.6.9), (1.6.10), (1.6.11) and (1.6.12)).
The set F' will play a role much later. In the applications to this section the set
F will simply be X.
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Fact 6.3.2 For any covers W, W ,V,V' W and a set I, the following hold

UV < H(V|FU) =0, (6.3.3)
UV = HUFW) >HV|FW), HU) > H(V), (6.3.4)
VeW = HU|E V) <HUEW), (6.3.5)
H(UV V|F,W) <HUFE,VVW)+HV|F,W),  (63.6)

H(UV V|F,W) < HU|F, W) + H(V|F,W), (6.3.7)

H(UV V) < HUW) +H(V), (6.3.8)
HUVW|F,VVV)<HUF,V)+HUW|FV), (6.3.9)
H(UF,W) < H(U|F, V) + H(V|F, W), (6.3.10)

H(UV V|F,V) = H(U|F,V). (6.3.11)

Proof The first three implications are easily seen directly from the definition.
We pass to (6.3.6). Let W be the element of W such that the optimized sub-
family of U V'V needed to cover F'NW is the largest. Let Vpny be an optimal
subfamily of V covering F' N W. The cardinality of Vrny does not exceed
HMIFEW) For each V from this family, F N’V NW can be covered by a fam-
ily of at most 2HUIFVVW) elements of U. Replacing each U in this family
by U NV we obtain (without increasing the cardinality) a subfamily of U vV V
covering F'N'V N W. The union of these latter families over V' has cardinality
at most 2HUFVVW)+H(VIEW) and covers (by elements of U V V) the “most
demanding set” F' N W, so the assertion follows.

The remaining statements are direct consequences of (6.3.6) and the mono-
tonicities (6.3.4) and (6.3.5). O]

Remark 6.3.12 Note that, unlike in case of Shannon entropy, the equality
H(U Vv V) = HU|V) + H(V) need not hold. By (6.3.6) for trivial W, one
inequality does hold, but it is not enough to prove any of the inequalities
with nontrivial W (compare Exercise 1.3). This is the reason why the proof
of (6.3.6) is different and does not use the version with trivial W.

We continue the preparations to define the topological conditional entropy.
Fact 6.3.13 The sequence H(U™|V™) is subadditive.

Proof This follows immediately from the equality U™ = U™V T—™(U"™),
the analogous equality for V, (6.3. 9) and the easy observation that for any
covers U, V we have H(T~H(W)|T~1(V)) < H(U|V). O

The above obtained subadditivity implies that the limit in the definition
below exists and equals the infimum:
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Definition 6.3.14 The ropological conditional entropy of U given V is
defined as

h(T, U|V) = lim LHQU" V™).

The topological conditional entropy of the system (X,T,S) given V is
defined as

h(T|V) = sup h(T, U|V). (6.3.15)
u

The topological tail entropy of the system (X, T, S) is defined as
h*(T) = i%f h(T|V). (6.3.16)

Both the supremum in (6.3.15) and the infimum in (6.3.16) can be replaced
by monotone limits along the net of all covers or a refining sequence of covers.
It is immediate to see that

h*(T) < h(T),
and that h(T') = co = h*(T) = .

Remark 6.3.17 The notion h*(7') is a manifestation of an essential differ-
ence between measure-theoretic dynamical conditional entropy and topologi-
cal conditional entropy. Due to the formula A(P|Q) = (P V Q) — h(Q) (for
finite partitions) an analog of h*(7T") for the dynamical entropy is either zero
(for finite entropy systems) or infinity (otherwise). It is the failure of this for-
mula for topological conditional entropy, which makes h*(7") a meaningful
invariant.

Remark 6.3.18 In the older literature the topological tail entropy is called,
as the inventor M. Misiurewicz first called it, the “topological conditional
entropy” [Misiurewicz, 1976]. It is clear from the definition that this is not
a very fortunate choice of a name, as the tail entropy does not depend on any
conditioning parameter any more. Moreover, we need the term “topological
conditional entropy” in the meaning used in the book (i.e., given a cover or
given a factor). In such a meaning it stands in perfect correspondence with the
measure-theoretic conditional entropy and it is hard to imagine using a differ-
ent terminology here.

Unlike a partition in the measure-theoretic case, an open cover does not nec-
essarily lead to a topological factor. Still, we can use topological factors as the
conditioning object, as it is defined below. But first we will establish a simpli-
fication in our notation. Suppose that 7 : X — Y is a continuous map, and
A C Y. Then, when the choice of 7 is unambiguous, we will write H(U|A)
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replacing what should be formally written as H(U|7~1(A)). Similarly, for a
cover V of Y, we will write H(U|V) and h(U|V) instead of H(U|7r~1(V)))
and h(U|7~1(V)).

Definition 6.3.19 Let m : X — Y be a topological factor map between
the systems (X, T, S) and (Y, S,S). The topological conditional entropy of U
given (Y, S,S) is defined as

h(Z,U[S) = inf h(T,UV),

where V ranges over all covers of Y. Then the topological conditional entropy
of T given the factor (Y, S,S) is

h(T|S) = suph(T,U|S),
u

where U ranges over all covers of X . Similarly, if 7o : X — Z is a factor map
between (X, T, S) and another factor (Z, R, S), then we define the ropological
conditional entropy of the factor (Z, R,S) given the factor (Y, S,S):

h(RIS) = sup h(T, W|S),
W

where W ranges over all covers of Z.

In all cases, the above infima and suprema can be replaced by monotone
limits along the appropriate nets or refining sequences of covers.

Notice that h(T'|T") = 0 (where the factor map is the identity); supremum
and infimum are switched compared to the definition of h* (7).

Among the above notions most important are two: the tail entropy and the
conditional entropy given a factor. Like the (unconditional) topological entropy,
they are both subject of variational principles, which will be proved in the sub-
sequent sections. Variational principles shed a lot of light on the properties of
these notions. Meanwhile, we discuss some more elementary issues, which do
not invoke invariant measures.

When either of the two above parameters (the topological tail entropy or the
topological conditional entropy given a factor) equals zero, we are dealing with
rather distinguished situations, implying a number of further special properties
(which will be provided later). Now just the definitions:

Definition 6.3.20 The system (X, T, S) is called asymprotically h-expansive
if h*(T) = 0.

A trivial example of an asymptotically h-expansive system is an expansive
system (in particular a subshift, see the next chapter); any cover of diameter
smaller than the expansive constant M is a topological generator, hence the
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conditional entropy given this (and any finer) cover is zero. There is also a
notion of h-expansive systems, i.e., such that h(7'|V) = 0 for some finite
open cover V. This property is weaker than expansiveness and stronger than
asymptotic h-expansiveness. It will play no essential role in this book.

Definition 6.3.21 Let 7 : X — Y be a factor map between the systems
(X,T,S) and (Y, S,S). We say that (Y, S,S) is a principal factor of (X, T,S),
or that (X, T, S) is a principal extension of (Y, S,S), if h(T'|S) = 0.

6.4 Properties of topological conditional entropy

This section describes the most elementary relations between topological con-
ditional entropy, topological entropy and topological tail entropy. We begin
with the easiest ones. The familiar list is obtained directly from Fact 6.3.2 via
the limit passage.

Fact 6.4.1 For any covers U,V, W we have

U=V = h(T,UW) > h(T,V|W), (6.4.2)
VW = h(T,UV) < h(T,UW), (6.4.3)
h(T, UV VW) < h(T, UV VW) +h(T,V|W),  (64.4)

h(T,U v V|W) < h(T,U/W) + h(T, V|W), (6.4.5)
h(T,U/W) < h(T,U[V) + h(T,V|W), (6.4.6)

h(T, UV V|V) = h(T,U[V). (6.4.7)

O

We pass to analogous properties involving factors.

Fact 6.4.8 Let (X,T,S), (Y,5,S), (Z,R,S) be factors of some common
extension (we do not need to denote it). Then

T+~ S = h(T|R) > h(S|R), (6.4.9)
S R = h(T|S) < h(T|R), (6.4.10)
h(T|R) < h(T|S) + h(S|R), (6.4.11)

h(T) < h(T|S) + h(S), (6.4.12)

(an arrow between factors indicates that one of them is a factor of another).
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Proof LetU,V and W be some covers of X, Y and Z, respectively. Then, we
apply Fact (6.4.2), (6.4.3), (6.4.6), and refine the covers in the following order:
first W, then 'V, and in the end U. The last inequality is (6.4.11) for the trivial

(one-point) factor (Z, R, S). O
Fact 6.4.13 Letm : X — Y be a factor map from (X, T,S) 1o (Y, S,S).
Then

h*(S) < h(T|S) + h*(T) and h*(T) < h(T|S) + h*(S), (6.4.14)
(or simply |h*(T) — h*(S)| < h(T|S) if either h*(S) or h*(T) is finite).

Proof Consider four covers of X: two arbitrary covers U 3= U, and two
(lifted) covers V' 3= V of Y. We assume that also U = V’. We have

h(T,V'|V) < h(T,W|V) < h(T, W U) + h(T,U|V).

We disregard the middle term. Now we let these covers refine in the following
order: first U, next V', then V, and finally U. This yields the first inequality in
(6.4.14).

Next, instead of U = V', we assume U = V and we write

h(T,WU) < h(T,W[V) < h(T,W[V') + (T, V'|V).

We can ignore the middle term, and let these covers refine, this time in another
order: first V', next U, then U, and finally V. This yields the last inequality in
(6.4.14). O

Corollary 6.4.15 (comp. [Ledrappier, 1979]) Let 7 : X — Y be a principal
factor map (i.e., such that h(T|S) = 0). Then h(S) = h(T) and h*(S) =
h*(T). In other words, principal factors (or extensions) preserve topological
entropy and topological tail entropy, in particular, they preserve asymptotic
h-expansiveness. Also, the composition of principal factor maps is principal.

Remark 6.4.16 In general, the fact that (Y,S,S) is a factor of (X,T.,S)
does not imply any inequality between h*(,S) and h* (7). In particular, a fac-
tor of an asymptotically h-expansive system need not be asymptotically h-
expansive. For instance, a non-asymptotically h-expansive system may have
a symbolic (hence asymptotically h-expansive) extension. This statement will
become clear in the chapter devoted to symbolic extensions.

6.5 Topological joinings

Definition 6.5.1 Given two topological dynamical systems, (X,T,S) and
(Y, S,S), their direct product is the dynamical system (X x Y, T x S,S),
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where T' x S is defined by
(T x S)(x,y) = (Tx, Sy).

By a topological joining of (X, T,S) and (Y, S, S) we understand any subsys-
tem (a closed invariant subset) of the product system (X x Y, T x S), whose
projections on the first and second axis are surjections onto X and Y, respec-
tively.

Notice that a joining of two systems is an extension of both of them (via the
projection maps). If two systems (X, 7,S) and (Y, S,S) are already factors
of some system (Z, R,S), say, by factor maps 7; and 7, then, just like in
the measure-theoretic case (see Fact 4.4.2), one of their joinings is naturally
realized (as we shall see) within the common extension:

Definition 6.5.2 With the denotation of the paragraph above, the joining of
the factors (X, T,S) and (Y, .S, S) obtained as the set of pairs

{(mr1(2),m2(2)): 2€ Z} C X xY

with the action of the restriction of 1" x S, will be called the joining within
(Z,R,S) and denoted by T'V S.

This is a rather imperfect notation as it does not indicate the common exten-
sion. In fact the mappings 71, 2 should be indicated because a pair of systems
may “sit” in one extension in many different ways creating nonconjugate join-
ings. We will keep this notation, but we will use it exclusively when a common
extension and the pair of factor maps is clear from the context.

Fact 6.5.3 The above joining T V S is a factor of (Z, R,S), and the covers
U VYV, where U, V range over the covers lifted from X and Y, respectively,
refine in this joining.

Proof Indeed, the assignment z — (71 (z), m2(z)) sends Z onto the joining.
A pair of covers U of X and V of Y lifts in the product space to the covers
{UxY :U €U} and {X x V : V € V} The join of these lifts coincides
with the product cover U®V = {U x V : U € U,V € V}.Itis clear that such
covers refine in the product space, hence also relatively in the joining. O

Now we can generalize the remaining statements of Fact 6.4.1 involving
joinings. The proof is obvious by refining the covers.

Fact 6.5.4 Let (X,T,S), (Y,S,S) and (Z,R,S) be factors of a common
extension (which we do not denote). The joinings below refer to the joinings
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within this common extension. We have

h(T V S|R) < h(T|S V R) + h(S|R), (6.5.5)
h(T Vv S|R) < h(T|R) + h(S|R), (6.5.6)
h(T v S) < h(T) + h(S), (6.5.7)
h(T v S|S) = h(T|S) < h(T). (6.5.8)
O

It is seen from (6.5.8) that if (X, 7', S) has entropy zero, then its joining with
any other system is a principal extension of that system.
Topological entropy also satisfies the product rule:

Fact 6.5.9 Given two systems (X, T,S) and (Y, S,S), consider their product
(X xY, T x S,S). Then

h(T x S) = h(T) + h(S). (6.5.10)

Proof The inequality “<” is (6.5.7) because the product is a joining. The
other inequality is best proved using (n,)-separated sets.” In X x Y we
will use the maximum metric d((z,y), (¢, y')) = max{dx (z,2’),dy (y,y’)}.
Then any (n, £)-separated set of maximal cardinality in X producted with any
(n, €)-separated set of maximal cardinality in Y is an (n, €)-separated set in
X X Y (perhaps not even maximal), thus the term log s(n, ) for the prod-
uct action is at least the sum of the same terms evaluated for (X,7,S) and
(Y, S,S). Recall that in the definition of hy (7, &) we can choose between
lim sup and lim inf (which produces possibly two different values of h; (T, ¢),
but the difference disappears in the limit over ¢ defining the topological
entropy). We choose lim inf because it is superadditive: lim inf of a sum of
two sequences is larger than or equal to the sum of the corresponding lim inf’s.
The rest of the proof is obvious. O

We remark that all statements of Facts 6.4.8 and 6.5.4 and the product rule
can be quickly proved using the Conditional Variational Principle (Theorem
6.8.8 below) and the properties of the measure-theoretic conditional dynamical
entropy, but the topological proofs are more direct.

We devote a few lines to countable joinings. Let (X}, Tk, S) be a sequence of
dynamical systems. Their countable joining is any subsystem of the countable
product system, of which all coordinate projections are surjective. A special
type of a countable joining is an inverse limit.

2 The seemingly obvious equality N (U® V) = N(U)N(V) is false (see Exercise 6.11).

This mistake was made (and published) by R. Bowen in his first attempt to prove the
product rule.
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Definition 6.5.11 Let (X}, Tk, S) be a sequence of dynamical systems such
that for each k (X}, Tk, S) is a topological factor of (Xy 41, Tk+1,S) via a map
7. By the inverse limit of this sequence we shall mean their countable joining
(X,T,S), where

X = {(zr)ren : Vi v = T (Thg1) }-

The inverse limit (as a dynamical system) is denoted by
(X, T,8) = lim(Xy, T, S, mx,)
(with the tendency to skip the maps 7y, in the denotation).

Every countable joining (X,7,S) of a sequence of systems (X, Tk, S)
can be represented as (is conjugate to) the inverse limit ign(Yk, Sks S, k),
where (Y%, Sk, S) is the finite joining of (X;,T;,S) with ¢ = 1,..., k within
(X, T,S), while 7, is the projection of (Yx11,Sk+1,S) onto the first & coor-
dinates.

Fact 6.5.12 Ler (X, T,S) denote an inverse limit liin(Xk, Tk,S). Then the

topological entropy of (X, T,S) equals the limit of the topological entropies:
h(T) = lilgn T h(Ty).

Proof For each k let Uy, be a refining sequence of open covers in Xj,. By
lifting, these covers become a double sequence of open covers Uy, in X.
Clearly, this double sequence refines in X. Thus

h(T) = suph(T, U,,) = lién T lim 7T h(Ty, Ug,n) = lilgn 1 h(Ty).
k,n n

6.6 The simplex of invariant measures

This section supplies necessary information about the simplex of invariant
measures and the behavior of the Kolmogorov—Sinai entropy as a function
on this simplex. Elementary facts not related to entropy will be stated with-
out proofs. We will frequently refer to the material gathered in Appendix A.2.
We recommend that the reader becomes acquainted with that appendix before
proceeding.

If X is a compact metric space, then by M(X) we denote the set of all
Borel probability measures on X endowed with the weak-star topology. Any
measurable, bounded from at least one side, function f on X can be lifted as a
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function (admitting infinite values) on M (X)) by assigning p — [ f du. Such
a lift maintains continuity or semicontinuity of f and is always harmonic (see
Appendices A.2.2 and A.2.3).

Now, let (X,T,S) be a topological dynamical system. Then 7" induces a
continuous map on M (X)) by the formula Tu(B) = u(T~1(B)) (B is a Borel
subset of X). Also notice that if B belongs to the completed (with respect
to 1) Borel sigma-algebra, then 7~ !(B) belongs to the Borel sigma-algebra
completed with respect to 7'ui. Indeed, B lies between two Borel sets, say A C
B C C,where ji(A) = u(C). Then T~1(B) is between the Borel sets T~ 1(A)
and 71 (C), which also have equal measures. From now on, whenever we say
“a Borel measure,” we always mean the measure prolonged onto the completed
Borel sigma-algebra. Although the completion depends on the measure, the
transformation 7' is measurable with respect to the corresponding completions
for p and T'p. A measure p is called T-invariant if 7'y = p. It is well known
that the set M (X) of all T-invariant probability measures on X is nonempty,
compact, convex, and that ergodic measures are exactly the extreme points i.e.
the elements of exMr(X) [Kryloff and Bogoliouboff, 1937; Oxtoby, 1952].

For n € N we define a continuous map M,, : M(X) — M(X) by

n—1
1 %
Mn(p“) = n E T p.
1=0

Then, as can be easily verified, for any subsequence (ny) such that, for each k,
N1 18 a multiple of ny, the sets M, (M(X)) decrease and their (nonempty)
intersection is contained in My (X). By an easy compactness argument, this
implies:

Fact 6.6.1 IfU D Mr(X) is an open set in M(X), then M,,(M(X)) Cc U
for all sufficiently large n. O

The following fact is classical in topological dynamics [e.g. Walters, 1982,
§6.2] (consult also Appendix A.2.4 for a background on Choquet simplices):

Theorem 6.6.2 Let (X,T,S) be a topological dynamical system. The set
Mr(X) of all T-invariant Borel probability measures on X, endowed with
the weak-star topology, is a Choquet simplex. O

For y1 € Mr(X) the formula pn = [ v d¢#*, where £ is the unique probabil-
ity distribution supported on exM (X)) and with barycenter at i (see Appendix
A.2.4), coincides with the ergodic decomposition of .

Definition 6.6.3 Let (X,T,S) be a topological dynamical system. By the
entropy function we mean the function 2 : Mp(X) — [0, 00], where h(u)
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denotes the Kolmogorov-Sinai entropy (1, T') in the measure-preserving sys-
tem (X, 2, 1, T, S) and 2, stands for the (completed with respect to 1) Borel
sigma-algebra in X.

We have the following fundamental properties of the entropy function:

Fact 6.6.4 The entropy function on Mr(X) is Borel-measurable and har-
monic.

Proof Measurability is obvious by the definition of the dynamical entropy,
which involves several limits applied to sums of functions of the form n(u(A)),
where the sets A are Borel-measurable in X (although we deal with the com-
pleted Borel sigma-algebra, which depends on p, in Definition 4.1.1 it suf-
fices to take the supremum over all genuine Borel-measurable partitions P,
and these do not depend on ). That this function is harmonic, follows directly
from Theorem 2.6.4 and Fact A.2.15. Alternatively, it suffices to show that h is
an increasing limit of upper semicontinuous affine (hence harmonic, see Fact
A.2.10) functions. This will be proved later in Section 8.4 (Fact 8.4.5), where,
for affinity of the approximating functions, we will use Theorem 2.5.1 (which
requires much simpler tools than Theorem 2.6.4). O

Often we will be interested in continuity or semicontinuity of the entropy
function (under additional assumptions on the space or on a partition). The
following lemma is the key:

Lemma 6.6.5 Fix a Borel set A C X. Then the function u — u(A) defined
on M(X) is continuous at . if and only if n(OA) = 0 (the boundary of A has
measure zero).

Proof The functions p — p(A) and g — p(intA) (measures of the closure
and of the interior of A) are upper and lower semicontinuous, respectively (see
Fact A.2.7), the latter being dominated by the former. Thus

w(A) > limsup v(A) > limsup v(A) > liminf v(A) > liminf v(int4) >
v—u v—p v— i v—
wu(intA).

If u(0A) = 0, then p(A) = p(intA) = p(A), which implies equalities in the
line above. We skip the (easy) proof of the other implication, as we shall never
use it. O

Fact 6.6.6 For one or even countably many measures pi; (i € N) there always
exist arbitrarily fine partitions P such that the boundaries of the cells have
measure zero for all measures ;.
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Proof We sketch the standard construction: Fix a point z. The boundary of
the e-ball around z is contained in the e-sphere, and such spheres are dis-
joint for different radii. Thus, only countably many of these balls may have
boundaries of positive measure for some ;. By compactness, we can choose
a cover of X by finitely many balls By, Bs, ..., By of radii smaller than some
fixed € and whose boundaries have measure zero for each ;. The partition
Bl; BQ \Bl> B3 \ (Bl UBQ), ey Bk: \ (Bl UBQ U--- Ukal) has boundaries
as desired and is fine in the sense that the cells have diameters at most 2. [

Lemma 6.6.7 If P is a finite Borel-measurable partition of X and i satisfies
to(0A) = 0 forall A € P, then

(a) po is a continuity point of the function p— H (u, P) defined on M(X).

(b) If  : X — Y is continuous and Uy is the Borel sigma-algebra of ¥
lifted to X, then pg is a continuity point of the function p — H (p, P|2y)
defined on M(X).

(¢) If po is T-invariant, then the function p — h(u, T, P) defined on Mr(X)
is upper semicontinuous at [io.

(d) If (Y, S,S) is a topological factor of (X, T,S) via a factor map w, and Ay
is as above, then the function p — h(u, T, P|Uy) defined on My (X) is
upper semicontinuous at .

Proof Item (a) is an immediate consequence of Lemma 6.6.5 and continuity
of the function 7n(t) = —tlogt on [0, 1]. For the dynamical entropy in item (c)
we must also use the fact that if y is invariant and p(0A) = 0 for all A € P,
then the same holds for all A € P, for any n € N. We also need to remember

that L H (y1, P™) converge decreasingly to h(u, T, P) (and use Fact A.1.11).
We pass to proving items (b) and (d). Let 1y denote the image of pg by 7. By
Fact 6.6.6, there exists a refining sequence of partitions Q, of Y, all having the
boundaries of measure zero for . Then the lifted partitions have boundaries
of measure zero for . Thus, each of the functions p — H(u, P|Qx) (and
also pu — L H(p, P"|Qy) in the case of item (d)) are continuous at jio. With
increasing k these functions decrease to H (11, P|20y ), in this manner shown to
be upper semicontinuous as claimed in (b). Further, the upper semicontinuous
functions 1 H (11, P"|2y) decrease with n to h(p, T, P|2y ), hence (d) holds.
O

We remark that if P is a partition into sets with small boundary, i.e., with
w(0A) = 0 for all invariant measures, then the above lemma holds for all
€ Mrp(X). It is so, for example, if P is a partition into clopen sets (i.e., sets
with empty boundary). The existence of arbitrary fine partitions with small
boundaries is called the small boundary property. Not every dynamical system
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admits such partitions, for instance, the identity map on the interval does not.
The reader will find sufficient conditions in the work of Elon Lindenstrauss
[Lindenstrauss, 1999].

At the end we recall the important fact that, if (Y, S, S) is a topological factor
of (X,T,S) via a factor map 7, then the dual map 7 on invariant measures is
a surjection from Mz (X') onto Mg(Y).

6.7 Topological fiber entropy

Topological fiber entropy is a notion intermediate between measure-theoretic
fiber entropy and topological conditional entropy given a factor. It will be use-
ful as a tool in proving the variational principles in the next sections. It has
special meaning also in the discussion of the zero-dimensional case and in the
theory of symbolic extensions.

Let 7 : X — Y be a topological factor map from (X, T, S) onto (Y, S,S).

Definition 6.7.1 Foracover U of X and a point y € Y we define successively

1. HU|y) = H(U|{y}) (by convention H(U|7~1(y)), see Definition 6.3.1),
2. h(T,U]y) = limsup,,_,, %H(u"kg),
3. h(T'|y) = supy h(T, Uly).

For a (not necessarily S-invariant) measure v € M(Y) on Y, we let

4. H(Ul) = [H(Uly) dv(y),
5. h(T,U|v) = inf, LH(U"|v),
6. h(T|v) = supy h(T, U|v).

The terms defined in items 2 and 5 above are called the topological fiber
entropy of U given the point y and given the measure v, respectively. The
terms defined in items 3 and 6 are called the topological fiber entropy (of T')
given y and given v.

Since the partition of X into the fibers is upper semicontinuous (see Fact
A.1.4), it is not hard to see that the function y — H(U|y) is upper semicon-
tinuous on Y. This implies that also the functions v — H(UJv) and v —
h(T,U|v) are upper semicontinuous on the set M(Y"). Clearly, all four notions
involving the cover U defined above increase when the cover refines (while y
or v are fixed). Since S™1(Sy) > y, we easily verify that

H(T™H(Wly) < B(U|Sy). (6.7.2)
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We will prove the following:

Fact 6.7.3  For any cover U the sequence of functions (H(U"|)),, defined on
Y is a subadditive cocycle (see Definition 2.1.3).

Proof We note that U™T™ = U™ v T~ (U"), then we apply (6.3.7) (for
A = {y} and trivial W), and finally the inequality (6.7.2). O

Note that 0 < H(U|y) < a, where a = H(U). Thus, we can apply the Sub-
additive Ergodic Theorem 2.1.4 (together with the preceding remark), which
leads to the following:

Corollary 6.7.4

(a) If v is invariant under S, then the sequence H(U" |v) is subadditive, so the
inf,, in Definition 6.7.1 item 5 is in fact the limit.

(b) For an ergodic v (i.e., v € exMg(Y)), the limsup,, in Definition 6.7.1
item 2 is v-almost surely the limit and it equals h(T, U|v).

(c) Now, applying the ergodic decomposition to any v € Mg (YY), we obtain
that for v-almost every vy, in Definition 6.7.1 item 2 convergence holds.
Further, by the dominated convergence theorem, we get

h(T,Ulv) = /h(T,U\y)dV (only for v € Mg(Y)). (6.7.5)

In particular, h(T, U|") is a harmonic function on Mg(Y) (see Fact A.2.15).

(d) The suprema in Definition 6.7.1 items 3 and 6 can be realized as monotone
limits over a fixed refining sequence of covers, thus the functions h(T|-)
are Borel-measurable both on'Y and on M(Y'), and

h(T|v) = / h(T|y)dv,

for any v € Mg(Y) (thus the function v — h(T|v) is harmonic on
Ms(Y)), and

h(T|y) = h(T|v) (6.7.6)
v-almost surely, for an ergodic measure v € Mg(Y). O

We remark that although H(U|y) = H(U|d,) for any y € Y (here J,
means the measure concentrated at y), we must not confuse h(7', U]y) with
h(7',U|d,) where the latter may be smaller.

It follows from Corollary 6.7.4 item (d) and Exercise 6.8 that if U is a topo-
logical generator, then it realizes the suprema in Definition 6.7.1 items 3 and
6. In particular, the function v +— h(7T|v) is then upper semicontinuous on

Ms(Y).
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We prove the fact below:
Fact 6.7.7 Ifv € Ms(Y), then h(T, T~ (U)|v) = h(T, UJv).
Proof Indeed, we have, by (6.7.2) and (6.3.7),

H(T™H(U")ly) < HU"|Sy) = HU v T~HU"1)|Sy) <
H(U|Sy) +H(T~H(U""1)[Sy).

Integrating with respect to the invariant measure v on Y, dividing by n and
letting n — oo, we verify the assertion. O

6.8 The major Variational Principles

Variational principles equate topological notions of entropy with maxima of
the corresponding entropy functions defined (usually) on the simplex of in-
variant measures. There are nearly as many variational principles as there are
entropy notions, including those not discussed in this book, such as pressure.
This section covers four major variational principles: the “usual” Variational
Principle and the Inner, Outer and Conditional Variational Principles. Only
the Outer and Inner Variational Principles need proofs, the other two are their
immediate consequences. For an elegant direct proof of the “usual” Varia-
tional Principle, we refer the reader to Petersen’s book [Petersen, 1983] (the
proof is due to Misiurewicz). In Chapter 7 we will give another, much sim-
pler and probably not existing in the literature, proof of the Variational Prin-
ciple for zero-dimensional systems. Let us remark that the Inner Variational
Principle has been first proved (in a more general version involving pressure)
by Francois Ledrappier and Peter Walters [Ledrappier and Walters, 1977]. In
[Downarowicz and Serafin, 2002] the reader will find a version valid just for
entropy but also in nonmetrizable spaces, as well as the Outer Variational
Principle.

In Chapter 8 we shall also prove the Tail Entropy Variational Principle, but
prior to that we need to introduce several notions related to the entropy struc-
ture. In Chapter 9, we will also prove a variational principle for the topological
symbolic extension entropy. Finally in Part III the reader will find one direction
of the variational principle for Markov operators.

Theorem 6.8.1 (The Variational Principle) Let (X,T,S) be a topological
dynamical system. Then

h(T) = sup{h(p,T) : p € Mp(X)} =sup{h(y,T) : p € exMp(X)}.

Proof This is a particular case of the Inner Variational Principle (Theorem
6.8.4 below) for (Y, .5, S) being the trivial (one-point) factor. O
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Before we pass to the Outer Variational Principle we introduce an alternative
formula for the topological conditional entropy, involving the fibers.

Lemma 6.8.2 Let 7 : X — Y be factor map from (X, T,S) onto (Y, S,S).
Let U be an open cover of X. Then there exists an open cover V of Y such that
foreach'V €V there is some y € V with

H(UV) = H(Uly).
As a consequence,

h(T'|S) = supinf sup 2 H(U"|y).
u " yey

Proof 1t is clear that regardless of the choice of the cover V, one has
H(U|V) > H(U]y), whenever y € V' € V. Now, fix some y € Y and pick an
optimal (i.e., of smallest cardinality) family U, C U covering 7' (y). The set
JU, is open, hence, by Fact A.1.4, U, covers the preimage by 7 of an open
set, say V,,, containing y. The cover V of Y by the sets V}, (y € Y") so obtained
satisfies the first assertion.

We pass to proving the second assertion. For a fixed cover U and a natural
n, the first assertion implies that
sup 2H(U"|y) = inf LH(U"|V)
yey v
(we have proved the inequality “>”, while “<” is obvious for covers V of Y").
Since V™ = 'V, the right-hand side does not increase if V is replaced by V™. On
the other hand, such a substitution corresponds to taking the infimum over a
smaller set of covers (only the “nth powers” of covers), thus it cannot decrease
its value. Thus, we can write

inf sup LH(U"|y) = ir;fir\}f LE®U™ V™).

" yey

Exchanging the infima on the right leads to

inf sup LH(U" |y) = inf h(T, U|V) = h(T,U|S).
n yey V

We can now apply the supremum over U on both sides, and we are done. [

Theorem 6.8.3 (The Outer Variational Principle) Letw : X — Y be a factor
map from (X, T,S) onto (Y, S,S). Then

h(T|S)=suph(T|y)= sup h(Tlv)= sup h(T|v).
yey vEMs(Y) veexMs (Y)



6.8 The major Variational Principles 183

Proof This proof relies largely on exchanging suprema and infima. For the
first inequality “>,” by Lemma 6.8.2 and Definition 6.7.1, we need to show
sup inf sup 2H(U"|y) > supsup lim sup ZH(U"|y).
u " oy y U n—oo
By Fact 6.7.3, the sequence sup, H(U"|y) is subadditive thus the infimum on
the left-hand side is in fact a limit, hence also lim sup. Thus the inequality
follows trivially by moving the supremum over y to the left (see Appendix
A.1.5).
The next inequality “>" is also elementary: by (6.7.5), the inequality

sup h(T', Uly) = sup h(T, U[v)
Yy 1%

holds for every cover U, so we can apply supy, on both sides, and then exchange
the order of suprema.
Next, we show that sup, h(T'|v) > h(T'|S), i.e. that

sup sup h(7, U|v) > supinf sup %H(U”Ly),
vou u "oy

with the first supremum taken over all invariant measures on Y. Since we can
exchange the suprema on the left-hand side, it suffices to show that, for a fixed
cover U,

sup h(T, U|v) > inf sup LH(U" |y).
v noy

Denote the right-hand side of the last inequality by C' and suppose that the left-
hand side is smaller than C' minus some . Recall (see item (a) in Corollary
6.7.4) that on the compact set Mg(Y") the function v — h(T, U|v) is realized
as lirrln%H(U”h/), where the sequence H(U™|v) is subadditive. Thus, this limit
is decreasing along a subsequence indexed by (nj) with each ng, being a
multiple of ny. Since each H(U™|-) is an upper semicontinuous function, we
conclude that

THU"|v) < C -k,

for some positive integer n and all invariant measures v (see Fact A.1.14). Fur-
ther, by upper semicontinuity of H(U"|-) on the set M(Y") of all probability
measures, the same holds on some neighborhood U of Mg(Y). Thus, for suf-
ficiently large numbers m, the above inequality is valid for all measures of the
form

m—1
1
v =Mpn(d,) = — > bsiys
=0
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forall y € Y (see Fact 6.6.1). We can choose m so large that 2na/m < £/2,
where a = H(U) bounds the first function y — H(UJy) in the subadditive
cocycle (H(U"|y)), (see Fact 6.7.3). The inequality (2.1.7) reads

HU™"y) < Z (uU™|S'y) + 2na.
=0

:\*—‘

The sum on the right equals mH(U" M, (d)), so, dividing the above inequal-
ity by m, we get

HU™ ") < LHU™ ) < SHAUM,A(5,)) + 5 < C - 5,

m+n

for any y, that is, we can apply sup, on the left-hand side. But by definition,
C < sup, == H(U™*"|y), a contradiction.

That the supremum over all ergodic measures is not too small (it is obviously
not too large) follows immediately from the harmonic property of the function
v — h(T|v) on Mg(Y) (see (6.7.5)). This proves the last equality in the
assertion of the theorem. O

Theorem 6.8.4 (The Inner Variational Principle) Letm : X — Y be a

topological factor map between topological dynamical systems (X, T,S) and
(Y, S,S). For every v € Mg(Y') we have

h(T|V) = Sup{h(M,T|V, S) HVURS MT(X)vﬂ-(M) = V}'

Proof  Since the functions p — h(T|mu) and g — h(u|mp) are harmonic on
Mr(X), it suffices to prove the inequality “>" for ergodic p and v = 7. We
will show that h(T'|v) > h(u|v) — e, i.e., (by Definition 6.7.1 items 5 and 6,
Corollary 6.7.4 item (a), and Definitions 4.1.5, 2.3.3 and 1.4.5), that

1 1
sup lim — /H(U"\y)dy > suplim — inf H(u, P™|Q) — &,
u nn p nn Q
where Q and P range over all Borel measurable partitions of Y (lifted to X)
and over all Borel measurable partitions of X, respectively. We do so by con-

structing, for each partition P of X, a cover U such that for every sufficiently
large n there exists a partition Q of Y satisfying

/H(U"|y) dv > H(p, P"Q) — ne. (6.8.5)

Let P = {A4,..., A;}. By regularity of 4, we can enlarge each set A; to
an open set U; so that 1(G) < §, where G denotes U;zl(Uj \Aj)and 6 >0
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will be specified later. We let U be the cover by the sets U;. By the Ergodic
Theorem, the sets

X, ={z:2#{ie[0,n—-1]: Tz € G} < 6}

have measures tending to 1, so for n large enough, u(X,,) > 1 — §. We fix an
n with this property. The partition Q of Y is obtained as follows: for each y we
fix an optimal family U,, C U™ covering 7' (y). Since U is finite, there are
finitely many choices of these families. In this manner we classify the points
y into finitely many disjoint sets () (this defines the partition Q), such that
H(Uly) = H(U|Qy), where @, is determined by the inclusions y € @, € Q.
It remains to verify (6.8.5).

For an open cover U and a point « a U-name of length n of x is any sequence
Uo, ..., Un_1 of elements of U such that = € ()}—; T~*(U;). Unlike for parti-
tions, each point may admit multiple U-names. The value H(U™|V) (V C X)
is the logarithm of the minimal number of U-names of length n sufficing to
“call” all elements of V. We are going to compare H(U" |7~ 1(Q,) N X,,)
with an analogous value, denoted by H(P" |7 ~1(Q,) N X,,), the logarithm of
the number of the P-names of length n appearing in the same set. A U-name of
a point x translates to its P-name (by replacing the symbols U; by A;) except
at the coordinates n for which 7"z € G. Because each point of X,, has an
established frequency (not exceeding 4) of the visits in G in time [0,n — 1],
each U-name of length n appearing in X, splits into at most () - 1" dif-
ferent P-names of length n appearing in X, (the former factor represents the
number of possible distributions of the visits in G during the time, the latter
is the number of possible configurations of P-symbols at the corresponding
positions). We can thus write:

H(P" 7 HQy) N X,) < HW" 7~ H(Qy) N X,) +nH(S,1 —3) +ndlogl.

Further, by the elementary estimate of the static entropy of a partition by the
logarithm of the cardinality of this partition, we have

H(P" |77 H(Qy) N Xy) > He1(0,)nx, (P),

where, by convention, the right-hand side is the entropy with respect to the
conditional measure induced by p on the set appearing in the subscript. This,
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combined with other obvious passages, yields the following calculation:

[maciy)a -
[HaCE @)= [ B Q) X d >
/Hﬂ.fl(Qy)ﬂXn(?n) dv —n(H(6,1—6) + dlogl).

For an appropriate ¢ the error term does not exceed ne/2. We continue to
estimate the last integral:

/Hﬂ'—l(Qy)ﬂXn (P dv = pm Q) Hr1(g)nx, (P") >
QeQ
S 1w HQ) N Xu) H s @y, (P) + (X Hixs (P) — dmlogl >
QeQ
H(u,P"|QVR) —ndlogl > H(u,P"|Q) — H(pu,R) —ndlogl,

where the partition R = {X,,, X°} has entropy at most H(d,1 — §), which,
together with the last error term, is smaller than ne /2. The proof of the “easy”
part of the Inner Variational Principle is completed.

The proof of the other inequality follows the standard line: we will con-
struct an invariant measure p on X lifting the given measure v on Y, such
that h(u|v) > h(T|v) — e. This measure will be obtained as a weak-star
limit of certain atomic measures concentrated on (n,d)-separated sets con-
tained in the fibers. At some point we will need subadditivity of the cocycle
(u,m) — H(u, P™|B) on the space M(X) of all probability measures on X,
where B is any subinvariant sigma-algebra. We prove it now. We have

H(p, P77 B) < H(p, P™|%B) + H(p, T7™(P")|B) <
H(p, P™B)+H (p, T-™(P)[T™™(B)) = H(p, P™|B)+H(T™ i, P"|B),

which is exactly the subadditivity condition for this cocycle, as defined in
(2.1.3).

Notice that the function v — f(v) = sup{h(u|v) : mp = v} is suphar-
monic, i.e., its value at a measure v cannot be smaller than the corresponding
average with respect to the ergodic decomposition. Indeed, if [ v, d¢¥(w) is
the ergodic decomposition of v (v, are the ergodic measures on Y parametrized
by w € ) and, for each parameter w, i, is a lift of v, with h(u,|v,) >
f(vy) — €, then pp = [ p, d€¥(w) is a lift of v, and its conditional entropy
is at least | f(v,)d&”(w) — €. So, f(v) cannot be smaller than this average.
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Having verified this, recall that v — h(7T|v) is harmonic (see Corollary 6.7.4
item (d)), hence it suffices to prove the inequality f(v) > h(T|v) for ergodic
v only. We fix some ergodic v now and we fix an € > 0. We choose an open
cover U of X so that h(7,U|v) > h(T'|v) — . We let 6 = Leb(U).

It is known that for v-almost every y € Y the measures

1 m—1
=0

converge weakly-star to v. We also know (see Corollary 6.7.4 item (b)) that
for v-almost every y, ~H(U™|y) converges to h(T,Ulv). We fix some y
with both of the above properties. For each m let E;* be the maximal (m, §)-
separated set in 71 (y), and let p,," be the atomic probability measure equally
distributed over E;". We now define the measure . as a weak-star accumula-

tion point of the sequence

m—1
1 if,,m
Nm,yza ;T (Ny)

Clearly, by being a limit of longer and longer averages along orbits of mea-
sures, p is T-invariant. Since every p;" projects by 7 t0 &y, fim,y projects to
Vm,y and, by continuity of 7 on measures, (1 projects to v. It remains to com-
pare the conditional entropy of p given the sigma-algebra lifted from Y with
h(T|v).

Because 6 = Leb(U), we can apply (6.1.10) and (6.1.11) restricted to the
fiber 71 (y), which yield

Llog#E,;" > TH(U™|y).

The right-hand side converges to h(7T', U|v), so, for large m, it is larger than
h(T|v) — €. We choose a finite partition P of X satisfying two conditions:
diam(P) < ¢ and p(0A) = 0 for each element A € P. Such partitions exist,
by elementary facts in measure theory (see Fact 6.6.6). Notice that, since the
diameter of P is smaller than §, every cell of P™* (for any i > 0) contains at
most one element of any (m, ¢)-separated set, in particular, of E;” Thus, with
regard to p,’", the partition Pm+i has #E," nonzero cells of equal measures,
so that

1 m m—+i\ 1 m
o H (py', P = Slog #E)" > h(T|v) —e.
Hence, for every ¢ > 0,
LH(up, $Emi) > LH (e, ) — LH (i, 9) >
h(T|v) — e — L log #P.
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The term on the left equals %H (T py', P™) and, since the measure is sup-
ported by one fiber (precisely, by ! (S%y)), it equals - H (T" ", P™(2y ),
where 2y stands for the Borel sigma-algebra of Y lifted to X. We have proved
that

LH(T 1, P |Ay) > h(T|v) — e — L log #7P. (6.8.6)
Averaging (6.8.6) overt = 0,...,n — 1 we get
1 n—1 .
— SO H(T' ', Py = h(T|y) — & — 2 log #9. (6.8.7)
1=0

We now invoke the subadditivity of the cocycle H (-, P™|2ly-) on the space
M(X) of all probability measures on X. The formula (2.1.6) yields that the
left-hand side in the last formula is dominated by

m—1

1 .
— N H(T PRy ) + 2 log #P.
mn =0 b

By concavity of the conditional static entropy (see (1.4.8)), the above average
is dominated by + H (4t ,,, P2y ). Plugging this into (6.8.7), we obtain

LH (ftn g, P 2y) > h(Tp) — & — 22 log #2.
Now we let m grow along the subsequence for which the measures /i, , con-
verge to u, while n remains fixed. Because p is T-invariant and P has bound-

aries of measure zero, so does P™. This implies that the function H (-, P"|2y)
is continuous at p (see Lemma 6.6.7) and yields

LH(p,P"|™Ay) > h(T|v) —e.
Finally we can pass with n to infinity:
B, T, P12ly) > h(T|) — <.

The left-hand side is not smaller than h(u|2y ), which is another notation for
h(p|v). The proof is now complete. O

Combining the Inner and Outer Variational Principles, we immediately
deduce:

Theorem 6.8.8 (The Conditional Variational Principle) Letnw: X — Y bea

topological factor map between topological dynamical systems (X, T,S) and
(Y, S,S). Then

B(T|S) = sup{h(ulv) : € My (X),v =7u} (= sup h(u, TIRly) ).
HEMT(X)
O
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Note that Fact 6.4.8, proved earlier without using measures, now appears as
a consequence of the mere fact that the supremum of the sum of two functions
does not exceed the sum of their suprema. We can draw numerous similar easy
consequences of the variational principles, see Exercises 6.9 through 6.12.

An important consequence concerns the principal factors (extensions):

Corollary 6.8.9 A factor map m : X — Y is principal if and only if
h(ulmp) =0, for every € Mr(X).

In case (Y, S,S) has finite topological entropy, this is equivalent to

h(p) = h(mp), forevery p € My (X). s

Finally, we can easily deduce preservation of topological entropy by the
topological natural extension. Natural extensions have been introduced in Part
I in the measure-theoretic context. The same construction works also in the
topological context, however there is a subtlety concerning surjectivity:

Definition 6.8.10 Let (X, 7T, Ny) be a topological dynamical system with T
surjective. By the fopological natural extension we will mean the Ny-action of
the shift map 7" on the space X’ C X% (equipped with the product topology)
defined by the rule (z,)nez € X' < VpZn41 = Tx,. Notice that 77 is
a homeomorphism and (X', T, Ny) factors onto (X, T, Ny) via the projection
onto the coordinate zero.

In case T’ is not surjective, such a “perfect” natural extension need not exist.
We must choose between either admitting 7" to be not necessarily surjective
or X' to factor not precisely onto X. We prefer the first option. And so, we
first enlarge the space X (to some X;) and prolong® T to the enlarged space in
such a manner that it becomes surjective. For example, X can be the one-point
compactification of X x Ny with 77 defined by the rule

(z,n—1); n>1

(T, 1); n=0

Ty (z,n) = { ,
and with the point at infinity being fixed. Such T3 is clearly surjective, and
the subsystem on X x {0} is conjugate to (X, T, S). Next we apply the natural
extension to this enlarged surjective system X : we obtain a space X7, a home-
omorphism 77 and a factor map from X onto X;. Finally X" is defined as the
preimage of X in this factor map. The transformation 7" is the restriction of
Ty to X’ (which is forward invariant).

3 We prefer not to use the word “extend,” as it is associated with “extensions.”
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Definition 6.8.11 We call (X', T’,Ny) the natural extension of (X, T,Np).
Notice that 7" is always injective, but not necessarily surjective.

We skip the proof of the fact that in either case (of 7' surjective and not sur-
jective), each invariant measure ¢ € My (X) lifts to a unique measure y' €
My (X') and that the measure-theoretic system (X', 2,/, ', T",Ny) is the
natural extension (in the sense defined in Definition 4.3.1) of (X, ., 1, T', No).
By Fact 4.3.2, we can see that the natural extension preserves the entropy of
each invariant measure, moreover, the relevant conditional entropy is zero.
This, combined with Corollary 6.8.9, gives the following conclusion:

Fact 6.8.12 The topological natural extension is principal. O

6.9 Determinism in topological systems

In ergodic theory deterministic systems (with entropy zero) have many equiv-
alent characterizations which can be easily deduced from the definition of
Kolmogorov—Sinai entropy (Definition 4.1.1), the Krieger Generator Theorem
4.2.3, Fact 2.3.12 and Theorem 4.2.9:

1. The Kolmogorov—Sinai entropy of (X, 2, u, T, S) is zero.

2. The sigma-algebra 2 equals the Pinsker sigma-algebra II,, (recall Defini-
tion 4.2.6 and Section 3.2: T, = \/p Ip, Tlp = ), 5 P,

3. The system occurs as factor of another system (extens]on), so that the (lifted)
sigma-algebra 2l is contained in the Pinsker sigma-algebra of the extension.

4. The system occurs as factor of a process over a finite partition P, and the
(lifted) sigma-algebra 2l is contained in the Pinsker sigma-algebra IIp of
the extending process.

5. Every subinvariant sub-sigma-algebra of 2l is invariant (i.e., the transforma-
tion in every factor of the forward action (X, 2, u, T, Ny) is invertible).

There have been several attempts to create topological analogs of determin-
ism and of the notion of the Pinsker factor. Depending on which one is treated
as the starting point one obtains five classes of topological systems, analogs
of determinism. We will prove that four out of five “determinism” conditions
are mutually equivalent, providing three new characterizations of systems with
topological entropy zero. Similarly, we will define four topological analogs of
the Pinsker factor, this time however all four will turn out essentially different.
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6.9.1 Topological analogs of determinism

The most obvious analog of a measure-theoretic deterministic system is a topo-
logical dynamical system with topological entropy zero. We denote the corre-
sponding class by TEZ. It is obviously closed under taking factors.

Following Kaminski, Siemaszko and Szymanski [Kaminski e al., 2003], we
call asystem (X, T, S) topologically deterministic when in all factors (Y, S, No)
of the system (X, T,Np), S is a homeomorphism. The same authors showed
that topologically deterministic systems had entropy zero. We will denote this
class by TD. By definition, it is closed under taking factors. It can be con-
sidered the topological analog of the measure-theoretic class of deterministic
systems defined via the last characterization (item 5 in the introduction to this
section). Not all systems with topological entropy zero are topologically deter-
ministic; for instance, there are noninvertible zero-entropy systems. In other
words, we have the proper inclusion

TD C TEZ.

Before we introduce the next class of systems (and factors) we recall an
elementary definition from topological dynamics:

Definition 6.9.1 A pair of distinct points z,y in a topological dynamical
system (X, T, S) is (forward) asymptotic if
limsup d(T"z, T"y) = 0.

Suppose we want to mimic the notion of the Pinsker sigma-algebra from
ergodic theory. For a process generated by a finite partition P, this sigma-
algebra equals ITp = [),,~; Pln%0) If a function f on X is ITp-measurable,
then its value f(z) at z = (x(n))pes is (almost surely) determined by the
unilateral sequence z[n, co) starting at any positive n.

In topological dynamics an analog of a process over a finite partition is a
subshift over a finite alphabet A (see Definition 7.1.1 in the next chapter for
details). The following definition attempts to copy the measure-theoretic con-
cept of measurability (of a factor of a process generated by a finite partition
P) with respect to the Pinsker sigma-algebra IIp: the image of each point x
via the topological factor map should be determined by the unilateral sequence
x[n, 0o0) starting at any positive n.

Definition 6.9.2 Let (X, T S) be a subshift. A topological factor (Y, .5, S) of
(X,T,S) (with a factoring map 7 : X — Y') is Pinsker-like if

Vnen Ve aex x[n,00) =12'[n,00) = 7z = na'.

In other words, 7 collapses asymptotic pairs.
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The last phrasing of this condition can be applied not only to subshifts: fac-
tors that collapse asymptotic pairs can be considered in any topological dy-
namical systems. They will also be called Pinsker-like factors. There seems to
be an essential difference between Pinsker-like factor maps applied to subshifts
and to arbitrary systems. A pair x, #’ in a subshift is asymptotic whenever it is
“c-asymptotic,” i.e, when lim sup,, d(T"z,T"™z") < ¢ for a sufficiently small
epsilon. In general, asymptoticity cannot be weakened this way. The require-
ment that a factor map collapses all asymptotic pairs is stronger for subshifts
than for general systems, because it means that all “c-asymptotic” pairs are
already collapsed. So, we will distinguish between two seemingly different
classes of topological systems, as defined below, by analogy to the characteri-
zations 4 and 3 of measure-theoretic determinism listed in the introduction to
this section:

Definition 6.9.3 We will call a topological dynamical system (X,7,S)
(strongly) Pinsker-like if there exists a subshift, such that (X,T,S) is its
Pinsker-like factor. A system (X, T,S) is weakly Pinsker-like if it occurs as
a Pinsker-like factor of another topological dynamical system (not necessarily
a subshift).

The classes PL of Pinsker-like and WPL of weakly Pinsker-like systems are
both closed under taking factors, which follows from the completely trivial
observation below:

Lemma 6.9.4 Let 7 be a topological factor map (between two topological
dynamical systems) which is a composition of several factor maps, at least one
of which is Pinsker-like. Then w is Pinsker-like.

Proof Just observe that any factor map sends an asymptotic pair either to an
asymptotic pair or collapses it. O

We will now introduce yet another class of systems, defined by analogy to
the second characterization of measure-theoretic determinism (item 2 in the
introduction to this section). A measure-theoretic system is deterministic if it
is its own Pinsker factor (via the identity map). In our analogy, this would mean
that a topological system should be its own Pinsker-like factor via identity, i.e.,
that identity collapses asymptotic pairs. This is possible only in systems which
simply do not have (distinct) asymptotic pairs, leading to the following class:

Definition 6.9.5 A topological dynamical system (X, T,S) is called NAP
(no asymptotic pairs) if it has no asymptotic pairs.
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The class of NAP systems is not closed under taking factors. There is a
quite complicated example in [Blanchard er al., 2002]. Also, from the results
given below, it follows that any nonperiodic subshift of entropy zero has a NAP
extension, while nonperiodic subshifts are never NAP (this last elementary fact
goes back to [Bryant and Walters, 1969]). Below we give a very simple explicit
example:

Example 6.9.6 There exists a NAP-system (X, 7T,Z) admitting a nontrivial
factor (Y, S, Z) with all distinct pairs in Y asymptotic. We begin by describing the
factor system. We let (Y, .S, Z) be the one-point compactification of the integers
with the map n — n + 1 (and co — o0). It is obvious that all distinct pairs in
this system are asymptotic. The extension (X, T, Z) is a subsystem of the product
space Y x T, where T is the circle treated as the additive group [0, 1) with addition
modulo 1. On this space we introduce the following action: we fix an irrational
number ¢ € (0,1) and we define T by the formula

T(n,t)=(n+1,t+ 0+ L) (forn =0 we simply skip 1),

and on the invariant circle {co} x T we apply the irrational rotation by . We restrict
the system to this invariant circle and the two-sided orbit of the point zo = (0, 0).
It is easy to see that we obtain a closed invariant set X on which 7" is a homeomor-
phism, extending (Y, .S, Z). It remains to show that there are no asymptotic pairs
in X.

If a pair x, ¥’ consists of two points from the invariant circle, then the distance
between 7"z and T™x’ does not depend on n, and such a pair is not asymptotic.
If x belongs to the circle and 2’ is on the single orbit outside the circle, then the
projection of 7"z’ onto the circle rotates by the varying angle ¢ + 1/n (while =
rotates by the constant angle o). The differences 1/n decrease to zero, but form
a divergent series, so it is easy to see that this pair of points is not asymptotic
either. Finally consider a pair z, " where both points are outside the invariant circle.
Then z = T™xo, &’ = T™V*x0, for some m € Z and a positive integer k. The
projections of the points 7"z = T™* " z¢ and T"2’ = T™"** 2, onto the circle
differ by

1 1 1
ket mm tmmm t 0wt

m—+n

The finite sum of the harmonic series visible in the above formula decreases to zero
as n grows, hence the distance between such pair converges to ko (mod 1). Because
o is irrational, for any k this limit is positive. So such a pair is not asymptotic either.

Since the class of NAP systems is not closed under taking factors (which
makes it a poor analog of the measure-theoretic class of deterministic systems),
it is reasonable to enlarge the class by admitting all factors of NAP systems.
So enlarged class, denoted FNAP, is going to be our last topological analog of
determinism, corresponding to property 2 in the introduction.

The inclusion FNAP C WPL is obvious: a factor of a NAP system is its
factor via a map that collapses all asymptotic pairs (because there are none).
The inclusion PL C WPL is trivial.
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The inclusion WPL C TEZ has been proved in [Blanchard et al., 2002]:

Theorem 6.9.7 Weakly Pinsker-like systems have topological entropy zero.
O

The argument in [Blanchard er al., 2002] uses invariant measures and
measure-theoretic entropy. Its clue is an interesting observation, which we have
decided to quote (without a proof). We remark that although II,=
Vi, ?Ln’oo) (see Remark 4.2.7; P}, are as in the formulation below), in gen-
eral one cannot reverse the order of the big operators; this makes the lemma
nontrivial.

Lemma 6.9.8 Ler (X, T,S) be a topological dynamical system and let 1
be an ergodic measure on X. Fix a refining sequence of partitions Py, with
diameters of the cells decreasing to zero. Then there exists a sequence ny of
natural numbers such that

Plrte) Z11,,. O

EDL:
<3

>
Il

n=1 1

Once the lemma is proved, it suffices to notice that for every n (after dis-
carding a null set) any pair of points in the same atom of the sigma-algebra
Vie, ‘.PL”’“JF”’OO) is asymptotic. Thus any measurable map collapsing asymp-
totic pairs must be constant on such atoms, and hence 1I,-measurable. This
implies Theorem 6.9.7 (via Theorem 4.2.9 and the Variational Principle).

We repeat after the authors that a purely topological proof would be
desirable.

The inclusions TEZ C PL and TEZ C FNAP also hold. Since the proofs
need a tool developed in the next chapter, we postpone them until the end of
that chapter. Now just the formulations:

Theorem 6.9.9 Every topological dynamical system (X, T,S) with topolog-
ical entropy zero is a Pinsker-like factor of a subshift of topological entropy
zero.

Theorem 6.9.10 Every topological dynamical system (X,T,S) with topo-
logical entropy zero is a factor of a zero-dimensional NAP system.

Combining the inclusions provided above we obtain the main theorem of
this section [Downarowicz and Lacroix, in print]
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Theorem 6.9.11
FNAP = WPL = PL = TEZ. O

6.9.2 Hierarchy of maximal factors

The topological Pinsker factor (denotation TPF) of a topological dynami-
cal system is defined as the largest factor that has topological entropy zero.
Every zero-entropy factor (Y, .5,S) of (X, T,S) factors through the topologi-
cal Pinsker factor of (X, T, S). There is a nice characterization of the topologi-
cal Pinsker factor by means of the so-called entropy pairs, defined by Francois
Blanchard [Blanchard, 1993]:

Definition 6.9.12 A pair x, 2’ of points of X is an entropy pair if every open
cover U by two sets U = {U, V'}, such that z € int(U¢) and 2’ € int(V°), has
positive topological entropy h(T, Ul).

Just like in ergodic theory measure-theoretic factors correspond to subin-
variant sub-sigma-algebras, in topological dynamics topological factors cor-
respond to subinvariant closed equivalence relations (in X x X). The factor
map sends every point to its equivalence class. The analogy is rather distant,
for instance, in ergodic theory a larger sigma-algebra produces a larger factor,
while in topological dynamics the larger the relation the smaller the factor.

Theorem 6.9.13 The topological Pinsker factor corresponds to the smallest
subinvariant closed equivalence relation that contains all entropy pairs. O

We refer to the original paper [Blanchard and Lacroix, 1993] for the proof.

Corresponding to the notion of topologically deterministic systems one can
define the maximal topologically deterministic factor (denoted MTDF). It
arises as the smallest subinvariant (in fact invariant) equivalence relation such
that all subinvariant closed equivalence relations containing it are invariant.
The existence of such an equivalence relation is obvious: it is the intersection
of a nonempty family of relations with properties preserved by intersections.

We also note that every system possesses the maximal Pinsker-like factor
(denotation MPLF); it corresponds to the smallest subinvariant closed equiva-
lence relation which contains all asymptotic pairs.

Given a topological dynamical system (X, T, S), we can determine its max-
imal NAP factor (denotation MNAPF); the maximal factor which is NAP. At
first glance it is not even clear that such an object is well defined. We only
sketch the argument, which requires the Kuratowski—Zorn Lemma. First of all,
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the collection of NAP factors is nonempty; it contains at least the trivial one-
point factor. Now, given an increasing chain (i.e., a linearly ordered family)
(Y,) of NAP factors of (X, 7,S), their inverse limit Y~ (the construction of an
inverse limit applies to chains as well) is a factor of (X, T, S) and an extension
of all the factors in the chain. This inverse limit is also NAP; any asymptotic
pair projects in Y,; to either an asymptotic pair (which is impossible) or it is
collapsed. Thus such a pair is collapsed in every Y,;, which means that the pair
is in fact identical in the inverse limit space. We have shown that Y is NAP.
By the Kuratowski—Zorn Lemma [see e.g. Ciesielski, 1997], the maximal NAP
factor exists.

Unlike in the case of the corresponding classes of systems, none of the above
four types of factors coincide, so this is where the analogy to ergodic theory
ends.

Theorem 6.9.14 We have the following factorization
TPF — MPLF — MNAPF — MTDF.
These four types of factors are essentially different.

Proof Let us first explain the factorizations: The maximal Pinsker-like factor
has entropy zero (Theorem 6.9.7), so it factors through the topological Pinsker
factor. The maximal NAP factor is NAP, so the factor map leading to it must
collapse all asymptotic pairs (the image of a not collapsed asymptotic pair
would remain an asymptotic pair). So it is Pinsker-like, thus it factors through
the MPLF. The MTD factor is deterministic, so it is NAP, and hence it factors
through the maximal NAP factor.

The first arrow is not realized by the identity map in any zero-entropy sys-
tem that possesses asymptotic pairs (for example in a nonperiodic subshift of
entropy zero). The second arrow is not by identity in the Example 6.9.15 below.
The third arrow is not by identity in any NAP system which is not deterministic
(like the one in Example 6.9.6). O]

Example 6.9.15 There exists a bilateral subshift (X, o, Z) such that the maxi-
mal Pinsker-like factor (Y, S, Z) is not NAP.

Indeed, let (X, T, S) be the orbit-closure (in the Z-action) of the following (bilat-
eral) sequence over two symbols:

z =...000000011111000001110001011100011111000001111111 ...

In addition to the countable orbit of this sequence, the system contains also the
points

a=...000000111111..., b=...111111000000...
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Figure 6.1 The dynamics in the example. The backward orbit of the central
point is not shown. It is more or less symmetric to the forward orbit.

and their countable orbits, and the fixpoints
c=...000000..., d=...111111...

The dynamics of this system is shown in Figure 6.1. It is elementary to see that all
points in the orbit of a are asymptotic to the fixpoint d, and all points in the orbit
of b are asymptotic to c. The maximal factor collapsing asymptotic pairs must also
collapse the pair ¢, d, because the corresponding relation must be closed. So, all
points a, b, ¢, d and their orbits are collapsed to one point. That is all. No other col-
lapsing is necessary (we leave it to the reader). The factor so obtained looks exactly
the same as the factor (Y, S, Z) in Example 6.9.6: it is a one-point compactification
(by a fixpoint) of a single discrete bilateral orbit. As before, all pairs in this factor
are asymptotic, so this maximal factor is not NAP.

6.10 Topological preimage entropy*

A notion which attempts to capture the “purely noninvertible” complexity
of the dynamics in a topological dynamical system is fopological preimage
entropy, as introduced by Mike Hurley [Hurley, 1995], then studied by
Zbigniew Nitecki with coauthors [Nitecki and Przytycki, 1999; Fiebig et al.,
2003]. The idea is to count (n, £)-separated sets in the nth preimage of a point.
In fact, there are two versions, depending on the order of applying certain
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suprema. The third version has been defined and studied by Wen-Chao Cheng
and Sheldon Newhouse [Cheng and Newhouse, 2005] where also the measure-
theoretic notion is introduced.

Definition 6.10.1 Let7 : X — X be a continuous map of a compact space.
Let Hy(n,e|F') denote the logarithm of the maximal cardinality of an (n, ¢)-
separated set contained in F'. We define three versions of topological preimage
entropy as

h,(T) = hm 1 sup limsup *Hy (n,e|T~"{z}), (6.10.2)
xeEX n—oo
h,(T) = hm T limsup 1 sup H;(n,e|T™"{z}), (6.10.3)
h,(T) = hm T limsup 2 sup sup Hy (n, |7 *{z}). (6.10.4)
n— oo zeX k>n

Remark 6.10.5 Instead of counting (n, )-separated sets within a set we can
as well count minimal subfamilies of U™ covering that set. Then H; (n,e|F)
should be replaced by H(U™| F'). It is easy to see (using the inequalities (6.1.10)
and (6.1.11) relative to the set F) that such a change has no effect on the final
notions in the above definition, as long as the limit along ¢ is replaced by the
limit along the net of all covers.

It is elementary to see that
h,(T) < hn(T) < hye(T) < h(T). (6.10.6)

It has been proved in [Fiebig ef al., 2003] that in forward expansive systems, in
particular in unilateral subshifts, all the above notions (including topological
entropy) agree. Clearly, for homeomorphisms, all three notions of topological
preimage entropy are equal to zero, hence can be strictly smaller than topolog-
ical entropy. There are also examples for which h,(T") < hn, (7). We do not
know about the middle inequality.

Cheng and Newhouse have also introduced a measure-theoretic notion of
preimage entropy. For convenience, we repeat the definition, already cited
in Remark 4.2.8. We let A>° = (), -, T~ "(2) and we define the measure-
theoretic preimage entropy in the system (X, 1, T,S) as the usual condi-
tional entropy h(u, T'|2°°). The paper [Cheng and Newhouse, 2005] provides
a number of properties of this last notion, such as product rule, power rule,
affinity as a function of the measure and a version of the Shannon—-McMillan—
Breiman Theorem. However, all the above are immediate consequences of the
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same properties known for the conditional entropy given a subinvariant sigma-
algebra (including the conditional Shannon—McMillan—Breiman Theorem
3.3.7).

That paper, however, contains one very interesting result, a kind of varia-
tional principle:

Theorem 6.10.7 (Preimage Entropy Variational Principle) Ler (X, T,Ny) be
a topological dynamical system and let 2 denote the Borel sigma-algebra in
X. Then
hoe(T) = sup  h(u, T|A®). O
HEMT(X)

The right-hand side resembles that in the Conditional Variational Principle
(Theorem 6.8.8) except that the sigma-algebra 2°° does not represent the Borel
sigma-algebra lifted from any topological factor (at least it is not obtained in
this manner). This provokes the following question:

Question 6.10.8 Can the Preimage Entropy Variational Principle be reduced
to a variant of the Conditional Variational Principle (for instance valid for some
specific Borel-measurable factors)?

Exercises

6.1 Prove (by example) that the sequence H(U™) need not have decreasing
nths.

6.2 Prove Fact 6.2.4.

6.3 Show that if T is Lipschitz, i.e., d(Tx, Ty) < cd(x,y) for some constant
¢, then h(T") < max{0, log c}.

6.4 Show thatif T': [0, 1] — [0, 1] is piecewise monotone, with N branches
of monotonicity, then h(T") < log N.

6.5 Let (X,T,S) and (Y,S,S) be factors of some common extension.
Assume they both have finite entropies. Prove that then

[h*(S) —h*(T)| < h(T'|S) + h(S|T).

6.6  Prove the power rule for tail entropy: h*(7") = [n|h*(T) (n €S).

6.7 Prove the power rules for different kinds of fiber entropy: For
n€S we have h(T", U™ |y)=|nh(T,Uly), h(T"|y) = |n|h(T|y),
h(T™, U |v) = |n|h(T,U|v) and h(T"|v) = |n|h(T|v).

6.8 Forn € N prove h(T,U"|y) = h(T, U]y) and similarly h(7T,U"|v) =
h(T, U|v).

6.9 