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Preface

This book is designed as a comprehensive lecture on entropy in three major
types of dynamics: measure-theoretic, topological and operator. In each case
the study is restricted to the most classical case of the action of iterates of a
single transformation (or operator) on either a standard probability space or on
a compact metric space. We do not venture into studying actions of more gen-
eral groups, dynamical systems on noncompact spaces or equipped with infi-
nite measures. On the other hand, we do not restrict the generality by adding
more structure to our spaces. The most structured systems addressed here in
detail are smooth transformations of the compact interval. The primary inten-
tion is to create a self-contained course, from the basics through more advanced
material to the newest developments. Very few theorems are quoted without a
proof, mainly in the chapters or sections marked with an asterisk. These are
treated as “nonmandatory” for the understanding of the rest of the book, and
can be skipped if the reader chooses. Our facts are stated as generally as pos-
sible within the assumed scope, and wherever possible our proofs of classical
theorems are different from those found in the most popular textbooks. Several
chapters contain very recent results for which this is a textbook debut.

We assume familiarity of the reader with basics of ergodic theory, measure
theory, topology and functional analysis. Nevertheless, the most useful facts
are recalled either in the main text or in the appendix.

Some elementary statements and minor passages are left without a proof,
as an exercise for the reader. Such statements are collected at the end of each
chapter, together with other exercises of independent interest. It is planned
that solutions to selected exercises will be made available shortly after the
book has occurred in print, at the publisher’s website www.cambridge.org/
9780521888851.

www.cambridge.org/
9780521888851
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Introduction

0.1 The leitmotiv

Nowadays, nearly every kind of information is turned into digital form. Digital
cameras turn every image into a computer file. The same happens to musi-
cal recordings or movies. Even our mathematical work is registered mainly as
computer files. Analog information is nearly extinct.

While studying dynamical systems (in any understanding of this term)
sooner or later one is forced to face the following question: How can the infor-
mation about the evolution of a given dynamical system be most precisely
turned into a digital form? Researchers specializing in dynamical systems are
responsible for providing the theoretical background for such a transition.

So suppose that we do observe a dynamical system, and that we indeed
turn our observation into digital form. That means, from time to time, we pro-
duce a digital “report,” a computer file, containing all our observations since
the last report. Assume for simplicity that such reports are produced at equal
time distances, say, at integer times. Of course, due to bounded capacity of
our recording devices and limited time between the reports, our files have
bounded size (in bits). Because the variety of digital files of bounded size
is finite, we can say that at every integer moment of time we produce just
one symbol, where the collection of all possible symbols, i.e. the alphabet,
is finite.

An illustrative example is filming a scene using a digital camera. Every unit
of time, the camera registers an image, which is in fact a bitmap of some fixed
size (camera resolution). The camera turns the live scene into a sequence of
bitmaps. We can treat every such bitmap as a single symbol in the alphabet of
the “language” of the camera.

The sequence of symbols is produced as long as the observation is being
conducted. We have no reason to restrict the global observation time, and we
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can agree that it goes on forever. Sometimes (but not always), we can imagine
that the observation has been conducted since forever in the past as well. In
this manner, the history of our recording takes on the form of a unilateral or
bilateral sequence of symbols from some finite alphabet. Advancing in time by
a unit corresponds, on one hand, to the unit-time evolution of the dynamical
system, on the other, to shifting the enumeration of our sequence of symbols.
This way we have come to the conclusion that the digital form of the observa-
tion is nothing else but an element of the space of all sequences of symbols,
and the action on this space is the familiar shift transformation advancing the
enumeration.

Now, in most situations, such a “digitalization” of the dynamical system will
be lossy, i.e., it will capture only some aspects of the observed dynamical sys-
tem, and much of the information will be lost. For example, the digital camera
will not be able to register objects hidden behind other objects, moreover, it
will not see objects smaller than one pixel or their movements until they pass
from one pixel to another. However, it may happen that, after a while, each
object will eventually become detectable, and we will be able to reconstruct its
trajectory from the recorded information.

Of course, lossy digitalization is always possible and hence presents a
lesser kind of challenge. We will be much more interested in lossless
digitalization. When and how is it possible to digitalize a dynamical system
so that no information is lost, i.e., in such a way that after viewing the entire
sequence of symbols we can completely reconstruct the evolution of the
system?

In this book the task of encoding a system with possibly smallest alpha-
bet is refereed to as “data compression.” The reader will find answers to the
above question at two major levels: measure-theoretic, and topological. In the
first case the digitalization is governed by the Kolmogorov–Sinai entropy of
the dynamical system, the first major subject of this book. In the topologi-
cal setup the situation is more complicated. Topological entropy, our second
most important notion, turns out to be insufficient to decide about digitaliza-
tion that respects the topological structure. Thus another parameter, called
symbolic extension entropy, emerges as the third main object discussed in
the book.

We also study entropy (both measure-theoretic and topological) for
operators on function spaces, which generalize classical dynamical systems.
The reference to data compression is not as clear here and we concentrate
more on technical properties that carry over from dynamical systems,
leaving the precise connection with information theory open for further
investigation.
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0.2 A few words about the history of entropy

Below we review very briefly the development of the notion of entropy focus-
ing on the achievements crucial for the genesis of the basic concepts of entropy
discussed in this book. For a more complete survey we refer to the expository
article [Katok, 2007].

The term “entropy” was coined by a German physicist Rudolf Clausius from
Greek “en-” = in + “trope” = a turning [Clausius, 1850]. The word reveals anal-
ogy to “energy” and was designed to mean the form of energy that any energy
eventually and inevitably “turns into” – a useless heat. The idea was inspired by
an earlier formulation by French physicist and mathematician Nicolas Léonard
Sadi Carnot [Carnot, 1824] of what is now known as the Second Law of Ther-
modynamics: entropy represents the energy no longer capable to perform work,
and in any isolated system it can only grow.

Austrian physicist Ludwig Boltzmann put entropy into the probabilistic
setup of statistical mechanics [Boltzmann, 1877]. Entropy has also been gen-
eralized around 1932 to quantum mechanics by John von Neumann [see von
Neumann, 1968].

Later this led to the invention of entropy as a term in probability and infor-
mation theory by an American electronic engineer and mathematician Claude
Elwood Shannon, now recognized as the father of information theory. Many
of the notions have not changed much since they first occurred in Shannon’s
seminal paper A Mathematical Theory of Communication [Shannon, 1948].
Dynamical entropy in dynamical systems was created by one of the most
influential mathematicians of modern times, Andrei Nikolaevich Kolmogorov,
[Kolmogorov, 1958, 1959] and improved by his student Yakov Grigorevich
Sinai who practically brought it to the contemporary form [Sinai, 1959].

The most important theorem about the dynamical entropy, so-called
Shannon–McMillan–Breiman Theorem gives this notion a very deep mean-
ing. The theorem was conceived by Shannon [Shannon, 1948], and proved
in increasing strength by Brockway McMillan [McMillan, 1953] (L1-
convergence), Leo Breiman [Breiman, 1957] (almost everywhere convergence),
and Kai Lai Chung [Chung, 1961] (for countable partitions). In 1970 Wolfgang
Krieger obtained one of the most important results, from the point of view of
data compression, about the existence (and cardinality) of finite generators for
automorphisms with finite entropy [Krieger, 1970].

In 1970 Donald Ornstein proved that Kolmogorov–Sinai entropy was a a
complete invariant in the class of Bernoulli systems, a fact considered one
of the most important features of entropy (alternatively of Bernoulli systems)
[Ornstein, 1970a].
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In 1965, Roy L. Adler, Alan G. Konheim and M. Harry McAndrew car-
ried the concept of dynamical entropy over to topological dynamics [Adler
et al., 1965] and in 1970 Efim I. Dinaburg and (independently) in 1971 Rufus
Bowen redefined it in the language of metric spaces [Dinaburg, 1970; Bowen,
1971]. With regard to entropy in topological systems, probably the most impor-
tant theorem is the Variational Principle proved by L. Wayne Goodwyn (the
“easy” direction) and Timothy Goodman (the “hard” direction), which con-
nects the notions of topological and Kolmogorov–Sinai entropy [Goodwyn,
1971; Goodman, 1971] (earlier Dinaburg proved both directions for finite-
dimensional spaces [Dinaburg, 1970]).

The theory of symbolic extensions of topological systems was initiated by
Mike Boyle around 1990 [Boyle, 1991]. The outcome of this early work is
published in [Boyle et al., 2002]. The author of this book contributed to estab-
lishing that invariant measures and their entropies play a crucial role in com-
puting the so-called symbolic extension entropy [Downarowicz, 2001; Boyle
and Downarowicz, 2004; Downarowicz, 2005a].

Dynamical entropy generalizing the Kolmogorov–Sinai dynamical entropy
to noncommutative dynamics occurred as an adaptation of von Neumann’s
quantum entropy in a work of Robert Alicki, Johan Andries, Mark Fannes and
Pim Tuyls [Alicki et al., 1996] and then was applied to doubly stochastic oper-
ators by Igor I. Makarov [Makarov, 2000]. The axiomatic approach to entropy
of doubly stochastic operators, as well as topological entropy of Markov oper-
ators have been developed in [Downarowicz and Frej, 2005].

The term “entropy” is used in many other branches of science, sometimes
distant from physics or mathematics (such as sociology), where it no longer
maintains its rigorous quantitative character. Usually, it roughly means “disor-
der,” “chaos,” “decay of diversity” or “tendency toward uniform distribution of
kinds.”

0.3 Multiple meanings of entropy

In the following paragraphs we review some of the various meanings of the
word “entropy” and try to explain how they are connected. We devote a few
pages to explain how dynamical entropy corresponds to data compression rate;
this interpretation plays a central role in the approach to entropy in dynamical
systems presented in the book. The notation used in this section is temporary.

0.3.1 Entropy in physics

In classical physics, a physical system is a collection of objects (bodies) whose
state is parametrized by several characteristics such as the distribution of
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density, pressure, temperature, velocity, chemical potential, etc. The change
of entropy of a physical system, as it passes from one state to another, is

ΔS =
∫

dQ

T
,

where dQ denotes an element of heat being absorbed (or emitted; then it has
the negative sign) by a body, T is the absolute temperature of that body at that
moment, and the integration is over all elements of heat active in the passage.
The above formula allows us to compare entropies of different states of a sys-
tem, or to compute entropy of each state up to an additive constant (this is
satisfactory in most cases). Notice that when an element dQ of heat is trans-
mitted from a warmer body of temperature T1 to a cooler one of temperature
T2 then the entropy of the first body changes by −dQ/T1, while that of the
other rises by dQ/T2. Since T2 < T1, the absolute value of the latter fraction
is larger and jointly the entropy of the two-body system increases (while the
global energy remains the same).

A system is isolated if it does not exchange energy or matter (or even infor-
mation) with its surroundings. By virtue of the First Law of Thermodynamics,
the conservation of energy principle, an isolated system can pass only between
states of the same global energy. The Second Law of Thermodynamics intro-
duces irreversibility of the evolution: an isolated system cannot pass from a
state of higher entropy to a state of lower entropy. Equivalently, it says that
it is impossible to perform a process whose only final effect is the transmis-
sion of heat from a cooler medium to a warmer one. Any such transmission
must involve an outside work, the elements participating in the work will also
change their states and the overall entropy will rise.

The first and second laws of thermodynamics together imply that an isolated
system will tend to the state of maximal entropy among all states of the same
energy. The energy distributed in this state is incapable of any further activity.
The state of maximal entropy is often called the “thermodynamical death” of
the system.

Ludwig Boltzmann gave another, probabilistic meaning to entropy. For each
state A the (negative) difference between the entropy of A and the entropy of
the “maximal state” B is nearly proportional to the logarithm of the probability
that the system spontaneously assumes state A,

S(A) − Smax ≈ k log2(Prob(A)).

The proportionality factor k is known as the Boltzmann constant. In this
approach the probability of the maximal state is almost equal to 1, while the
probabilities of states of lower entropy are exponentially small. This provides
another interpretation of the Second Law of Thermodynamics: the system
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spontaneously assumes the state of maximal entropy simply because all other
states are extremely unlikely.

Example Consider a physical system consisting of an ideal gas enclosed in a
cylindrical container of volume 1. The state B of maximal entropy is clearly the

one where both pressure and temperature are constant (P0 and T0, respectively)
throughout the container. Any other state can be achieved only with help from out-
side. Suppose one places a piston at a position p < 1

2
in the cylinder (the left figure;

thermodynamically, this is still the state B) and then slowly moves the piston to the
center of the cylinder (position 1

2
), allowing the heat to flow between the cylinder

and its environment, where the temperature is T0, which stabilizes the temperature
at T0 all the time. Let A be the final state (the right figure). Note that both states A
and B have the same energy level inside the system.

To compute the jump of entropy one needs to examine what exactly happens
during the passage. The force acting on the piston at position x is proportional to
the difference between the pressures:

F = c

(
P0

1 − p

1 − x
− P0

p

x

)
.

Thus, the work done while moving the piston equals:

W =

1
2∫

p

F dx = cP0

(
(1 − p) ln(1 − p) + p ln p + ln 2

)
.

The function

p �→ (1 − p) ln(1 − p) + p ln p

is negative and assumes its minimal value − ln 2 at p = 1
2

.
Thus the above work W is positive and represents the amount of energy deliv-

ered to the system from outside. During the process the compressed gas on the
right emits heat, while the depressed gas on the left absorbs heat. By conserva-
tion of energy (applied to the enhanced system including the outside world), the
gas altogether will emit heat to the environment equivalent to the delivered work
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ΔQ = −W . Since the temperature is constant all the time, the change in entropy
between states B and A of the gas is simply 1/T0 times ΔQ, i.e.,

ΔS =
1

T0
· cP0

(
−(1 − p) ln(1 − p) − p ln p − ln 2

)
.

Clearly ΔS is negative. This confirms, what was already expected, that the out-
side intervention has lowered the entropy of the gas.

This example illustrates very clearly Boltzmann’s interpretation of entropy.
Assume that there are N particles of the gas independently wandering inside the
container. For each particle the probability of falling in the left or right half of the
container is 1/2. The state A of the gas occurs spontaneously if pN and (1 − p)N
particles fall in the left and right halves of the container, respectively. By elementary
combinatorics formulae, the probability of such an event equals

Prob(A) =
N !

(pN)!((1 − p)N)!
2−N .

By Stirling’s formula (ln n! ≈ n ln n − n for large n), the logarithm of Prob(A)
equals approximately

N
(
−(1 − p) ln(1 − p) − p ln p − ln 2

)
,

which is indeed proportional to the drop ΔS of entropy between the states B and
A (see above).

0.3.2 Shannon entropy

In probability theory, a probability vector p is a sequence of finitely many non-
negative numbers {p1, p2, . . . , pn} whose sum equals 1. The Shannon entropy
of a probability vector p is defined as

H(p) = −
n∑

i=1

pi log2 pi

(where 0 log2 0 = 0). Probability vectors occur naturally in connection with
finite partitions of a probability space. Consider an abstract space Ω equipped
with a probability measure μ assigning probabilities to measurable subsets of
Ω. A finite partition P of Ω is a collection of pairwise disjoint measurable
sets {A1, A2, . . . , An} whose union is Ω. Then the probabilities pi = μ(Ai)
form a probability vector pP. One associates the entropy of this vector with
the (ordered) partition P:

Hμ(P) = H(pP).

In this setup entropy can be linked with information. Given a measurable set
A, the information I(A) associated with A is defined as − log2(μ(A)). The
information function IP associated with a partition P = {A1, A2, . . . , An} is
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defined on the space Ω and it assumes the constant value I(Ai) at all points ω

belonging to the set Ai. Formally,

IP(ω) =
n∑

i=1

− log2(μ(Ai))1IAi
(ω),

where 1IAi
is the characteristic function of Ai. One easily verifies that the

expected value of this function with respect to μ coincides with the entropy
Hμ(P).

We shall now give an interpretation of the information function and entropy,
the key notions in entropy theory. The partition P of the space Ω associates with
each element ω ∈ Ω the “information” that gives an answer to the question
“in which Ai are you?”. That is the best knowledge we can acquire about the
points, based solely on the partition. One bit of information is equivalent to
acquiring an answer to a binary question, i.e., a question of a choice between
two possibilities. Unless the partition has two elements, the question “in which
Ai are you?” is not binary. But it can be replaced by a series of binary questions
and one is free to use any arrangement (tree) of such questions. In such an
arrangement, the number of questions N(ω) (i.e., the amount of information in
bits) needed to determine the location of the point ω within the partition may
vary from point to point (see the example below). The smaller the expected
value of N(ω) the better the arrangement. It turns out that the best arrangement
satisfies IP(ω) ≤ N(ω) ≤ IP(ω) + 1 for μ-almost every ω. The difference
between IP(ω) and N(ω) follows from the crudeness of the measurement of
information by counting binary questions; the outcome is always a positive
integer. The real number IP(ω) can be interpreted as the precise value. Entropy
is the expected amount of information needed to locate a point in the partition.

Example Consider the unit square representing the space Ω, where the prob-
ability is the Lebesgue measure (i.e., the surface area), and the partition P of Ω
into four sets Ai of probabilities 1

8
, 1

4
, 1

8
, 1

2
, respectively, as shown in the figure.
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The information function equals − log2(
1
8
) = 3 on A1 and A3, − log2(

1
4
) = 2 on

A2 and − log2(
1
2
) = 1 on A4. The entropy of P equals

H(P) =
1

8
· 3 +

1

4
· 2 +

1

8
· 3 +

1

2
· 1 =

7

4
.

The arrangement of questions that optimizes the expected value of the number of
questions asked is the following:

1. Are you in the left half?
The answer “no”, locates ω in A4 using one bit. Otherwise the next question is:

2. Are you in the central square of the left half?
The “yes” answer locates ω in A2 using two bits. If not, the last question is:

3. Are you in the top half of the whole square?
Now “yes” or “no” locate ω in A1 or A3, respectively. This takes three bits.

Question 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yes → Question 2

⎧⎪⎨
⎪⎩

yes → A2 (2 bits)

no → Question 3

{
yes → A1 (3 bits)
no → A3 (3 bits)

no → A4 (1 bit)

In this example the number of questions equals exactly the information function at
every point and the expected number of question equals the entropy 7

4
. There does

not exist a better arrangement of questions. Of course, such an accuracy is possible
only when the probabilities of the sets Ai are integer powers of 2; in general the
information is not integer valued.

Another interpretation of Shannon entropy deals with the notion of uncer-
tainty. Let X be a random variable defined on the probability space Ω and
assuming values in a finite set {x1, x2, . . . , xn}. The variable X generates a
partition P of Ω into the sets Ai = {ω ∈ Ω : X(ω) = xi} (called the preimage
partition). The probabilities pi = μ(Ai) = Prob{X = xi} form a probability
vector called the distribution of X. Suppose an experimenter knows the distri-
bution of X and tries to guess the outcome of X before performing the exper-
iment, i.e., before picking some ω ∈ Ω and reading the value X(ω). His/her
uncertainty about the outcome is the expected value of the information he/she
is missing to be certain. As explained above that is exactly the entropy Hμ(P).

0.3.3 Connection between Shannon and Boltzmann entropy

Both notions in the title of this subsection refer to probability and there is
an evident similarity in the formulae. But the analogy fails to be obvious. In
the literature many different attempts toward understanding the relation can be
found. In simple words, the interpretation relies on the distinction between the
macroscopic state considered in classical thermodynamics and the microscopic
states of statistical mechanics. A thermodynamical state A (a distribution of
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pressure, temperature, etc.) can be realized in many different ways ω at the
microscopic level, where one distinguishes all individual particles, their posi-
tions and velocity vectors. As explained above, the difference of Boltzmann
entropies S(A)−Smax is proportional to log2(Prob(A)), the logarithm of the
probability of the macroscopic state A in the probability space Ω of all micro-
scopic states ω. This leads to the equation

Smax − S(A) = k · I(A), (0.3.1)

where I(A) is the probabilistic information associated with the set A ⊂ Ω.
So, Boltzmann entropy seems to be closer to Shannon information rather than
Shannon entropy. This interpretation causes additional confusion, because
S(A) appears in this equation with negative sign, which reverses the direction
of monotonicity; the more information is “associated” with a macrostate A the
smaller its Boltzmann entropy. This is usually explained by interpreting what
it means to “associate” information with a state. Namely, the information about
the state of the system is an information available to an outside observer. Thus
it is reasonable to assume that this information acually “escapes” from the sys-
tem, and hence it should receive the negative sign. Indeed, it is the knowledge
about the system possessed by an outside observer that increases the usefulness
of the energy contained in that system to do physical work, i.e., it decreases the
system’s entropy.

The interpretation goes further: each microstate in a system appearing to
the observer as being in macrostate A still “hides” the information about its
“identity.” Let Ih(A) denote the joint information still hiding in the system
if its state is identified as A. This entropy is clearly maximal at the maximal
state, and then it equals Smax/k. In a state A it is diminished by I(A), the
information already “stolen” by the observer. So, one has

Ih(A) =
Smax

k
− I(A).

This, together with (0.3.1), yields

S(A) = k · Ih(A),

which provides a new interpretation to the Boltzmann entropy: it is propor-
tional to the information still “hiding” in the system provided the macrostate
A has been detected.

So far the entropy was determined up to an additive constant. We can com-
pute the change of entropy when the system passes from one state to another.
It is very hard to determine the proper additive constant of the Boltzmann
entropy, because the entropy of the maximal state depends on the level of pre-
cision of identifying the microstates. Without a quantum approach, the space
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Ω is infinite and so is the maximal entropy. However, if the space of states is
assumed finite, the absolute entropy obtains a new interpretation, already in
terms of the Shannon entropy (not just of the information function). Namely,
in such case, the highest possible Shannon entropy Hμ(P) is achieved when
P = ξ is the partition of the space Ω into single states ω and μ is the uni-
form measure on Ω, i.e., such that each state has probability (#Ω)−1. It is thus
natural to set

Smax = k · Hμ(ξ) = k log2 #Ω.

The detection that the system is in state A is equivalent to acquiring the infor-
mation I(A) = − log2(μ(A)) = − log2

(
#A
#Ω

)
. By Equation (0.3.1) we get

S(A) = k(− log2 #Ω + log2

(
#A
#Ω

)
) = k log2 #A.

The latter equals (k times) the Shannon entropy of μA, the normalized
uniform measure restricted to A. In this manner we have compared the
Boltzmann entropy directly with the Shannon entropy and we have gotten rid
of the unknown additive constant.

The whole interpretation above is a subject of much discussion, as it makes
entropy of a system depend on the seemingly nonphysical notion of “knowl-
edge” of a mysterious observer. The classical Maxwell’s paradox [Maxwell,
1871] is based on the assumption that it is possible to acquire information about
the parameters of individual particles without any expense of heat or work. To
avoid such paradoxes, one must agree that every bit of acquired information
has its physical entropy equivalent (equal to the Boltzmann constant k), by
which the entropy of the memory of the observer increases. In consequence,
erasing one bit of information from a memory (say, of a computer) at tempera-
ture T , results in the emission of heat in amount kT to the environment. Such
calculations set limits on the theoretical maximal speed of computers, because
the heat can be driven away with a limited speed only.

0.3.4 Dynamical entropy

This is the key entropy notion in ergodic theory; a version of the Kolmogorov–
Sinai entropy for one partition. It refers to Shannon entropy, but it differs
significantly as it makes sense only in the context of a measure-preserving
transformation. Let T be a measurable transformation of the space Ω, which
preserves the probability measure μ, i.e., such that μ(T−1(A)) = μ(A) for
every measurable set A ⊂ Ω. Let P be a finite measurable partition of Ω and
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let Pn denote the partition P ∨ T−1(P) ∨ · · · ∨ T−n+1(P) (the least common
refinement of n preimages of P). By a subadditivity argument, the sequence of
Shannon entropies 1

nHμ(Pn) converges to its infimum. The limit

hμ(T,P) = lim
n

1
n

Hμ(Pn) (0.3.2)

is called the dynamical entropy of the process generated by P under the action
of T . This notion has a very important physical interpretation, which we now
try to capture.

First of all, one should understand that in the passage from a physical system
to its mathematical model (a dynamical system) (Ω, μ, T ), the points ω ∈ Ω
should not be interpreted as particles nor the transformation T as the way the
particles move around the system. Such an interpretation is sometimes possi-
ble, but has a rather restricted range of applications. Usually a point ω (later
we will use the letter x) represents the physical state of the entire physical
system. The space Ω is hence called the phase space. The transformation T is
interpreted as the set of physical rules causing the system that is currently at
some state ω to assume in the following instant of time (for simplicity we con-
sider models with discrete time) the state Tω. Such a model is deterministic in
the sense that the initial state has “imprinted” the entire future evolution. Usu-
ally, however, the observer cannot fully determine the “identity” of the initial
state. The observer knows only the values of a few measurements, which give
only a rough information, and the future of the system is, from his/her stand-
point, random. In particular, the values of future measurements are random
variables. As time passes, the observer learns more and more about the evo-
lution (by repeating his measurements) through which, in fact, he/she learns
about the initial state ω. A finite-valued random variable X imposes a finite
partition P of the phase space Ω. After time n, the observer has learned the
values X(ω),X(Tω), . . . ,X(Tnω) i.e., he/she has learned which element of
the partition Pn contains ω. His/her acquired information about the “identity”
of ω equals IPn(ω), the expected value of which is Hμ(Pn). It is now seen
directly from the definition that:

• The dynamical entropy equals the average (over time and the phase space)
gain in one step of information about the initial state.

Notice that it does not matter whether in the end (at time infinity) the observer
determines the initial state completely, or not. What matters is the “gain of
information in one step.”

If the transformation T is invertible, we can also assume that the evolution
of the system runs from time −∞, i.e., it has an infinite past. In such case ω
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should be called the current state rather than initial state (in a process that runs
from time −∞, there is no initial state). Then the entropy hμ(T,P) can be
computed alternatively using conditional entropy:

hμ(T,P) = lim
n

H(P|T (P) ∨ T 2(P) · · · ∨ Tn−1(P)) = H(P|P−),

where P− is the sigma-algebra generated by all partitions Tn(P) (n ≥ 0) and
is called the past. This formula provides another interpretation:

• The dynamical entropy equals the expected amount of information about the
current state ω acquired, in addition to was already known from the infinite
past, by learning the element of the partition P to which ω belongs.

Notice that in this last formulation the averaging over time is absent.

0.3.5 Dynamical entropy as data compression rate

The interpretation of entropy given in this subsection is going to be fundamen-
tal for our understanding of dynamical entropy, in fact, we will also refer to a
similar interpretation when discussing topological dynamics.

We will distinguish two kinds of data compression: “horizontal” and “ver-
tical.” In horizontal data compression we are interested in replacing computer
files by other files, as short as possible. We want to “shrink them horizon-
tally.” Vertical data compression concerns infinite sequences of symbols inter-
preted as signals. Such signals occur for instance in any “everlasting” data
transmission, such as television or radio broadcasting. Vertical data compres-
sion attempts to losslessly translate the signal maintaining the same speed of
transmission (average lengths of incoming files) but using a smaller alphabet.
We call it “vertical” simply by contrast to “horizontal.” One can imagine that
the symbols of a large alphabet, say of cardinality 2k, are binary columns of
k zeros or ones, and then the vertical data compression will reduce not the
length but the “height” of the signal. This kind of compression is useful for
data transmission “in real time”; a compression device translates the incoming
signal into the optimized alphabet and sends it out at the same speed as the
signal arrives (perhaps with some delay).

First we discuss the connection between entropy and the horizontal data
compression. Consider a collection of computer files, each in form of a long
string B (we will call it a block) of symbols belonging to some finite alphabet
Λ. For simplicity let us assume that all files are binary, i.e., that Λ = {0, 1}.

Suppose we want to compress them to save the disk space. To do it, we
must establish a coding algorithm φ which replaces our files B by some other
(preferably shorter) files φ(B) so that no information is lost, i.e., we must
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also have a decoding algorithm φ−1 allowing us to reconstruct the original
files when needed. Of course, we assume that our algorithm is efficient, that
is, it compresses the files as much as possible. Such an algorithm allows us
to measure the effective information content of every file: a file carries s bits
of information (regardless of its original size) if it can be compressed to a
binary file of length s(B) = s. This complies with our previous interpretation
of information: each symbol in the compressed file is an answer to a binary
question, and s(B) is the optimized number of answers needed to identify the
original file B.

Somewhat surprisingly, the amount of information s(B) depends not only
on the initial size m = m(B) of the original file B but also on subtle properties
of its structure. Evidently s(B) is not the simple-minded Shannon information
function. There are 2m binary blocks of a given length m, all of them are
“equally likely” so that each has “probability” 2−m, and hence each should
carry the same “amount of information” equal to m log2 2 = m. But s(B)
does not behave that simply!

Example Consider the two bitmaps shown in this figure. They have the same

dimensions and the same “density,” i.e., the same amount of black pixels. As
uncompressed computer files, they occupy exactly the same amount of disk space.
However, if we compress them, using nearly any available “zipping” program, the
sizes of the zipped files will differ significantly. The left-hand side picture will
shrink nearly 40 times, while the right-hand side one only 8 times. Why? To quickly
get an intuitive understanding of this phenomenon imagine that you try to pass these
pictures over the phone to another person, so that he/she can literally copy it based
on your verbal description. The left picture can be precisely described in a few sen-
tences containing the precise coordinates of only two points, while the second pic-
ture, if we want it precisely copied, requires tediously dictating the coordinates of
nearly all black pixels. Evidently, the right-hand side picture carries more informa-
tion. A file can be strongly compressed if it reveals some regularity or predictability,
which can be used to shorten its description. The more random it looks, the more
information must be passed over to the recipient, and the less it can be compressed
no matter how intelligent a zipping algorithm is used.
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How can we a priori, i.e., without experimenting with compression algo-
rithms, just by looking at the file’s internal structure, predict the compression
rate s(B)/m(B) of a given block B? Here is an idea: The compression rate
should be interpreted as the average information content per symbol. Recall
that the dynamical entropy was interpreted similarly, as the expected gain of
information per step. If we treat our long block as a portion of the orbit of
some point ω representing a shift-invariant measure μ on the symbolic space
ΛN∪{0} of all sequences over Λ, then the global information carried by this
block should be approximately equal to its length (number of steps in the shift
map) times the dynamical entropy of μ. It will be only an approximation, but
it should work. The alphabet Λ plays the role of the finite partition P of the
symbolic space, and the partition Pn used in the definition of the dynamical
entropy can be identified with Λn – the collection of all blocks over Λ of length
n. Any shift-invariant measure on ΛN∪{0} assigns values to all blocks A ∈ Λn

(n ∈ N) following some rules of consistency; we skip discussing them now. It
is enough to say that a long block B (of a very large length m) nearly deter-
mines a shift-invariant measure: for subblocks A of lengths n much smaller
than m (but still very large) it determines their frequencies:

μ(B)(A) =
#{1 ≤ i ≤ m − n + 1 : B[i, i + n − 1] = A}

m − n + 1
,

i.e., it associates with A the probability of seeing A in B at a randomly cho-
sen “window” of length n. Of course, this measure is not completely defined
(values on longer blocks are not determined), so we cannot perform the full
computation of the dynamical entropy. But instead, we can use the approxi-
mate value 1

nHμ(B)(Λ
n) (see (0.3.2)), which is defined and practically com-

putable for some reasonable length n. We call it the combinatorial entropy of
the block B. In other words, we decide that the compression rate should be
approximately

s(B)
m(B)

≈ 1
n

Hμ(B)(Λ
n). (0.3.3)

As we will prove later, this idea works perfectly well; in most cases the com-
binatorial entropy estimates the compression rate very accurately. For now we
replace a rigorous proof with a simple example.

Example We will construct a lossless compression algorithm and apply it to a file
B of a finite length m. The compressed file will consist of a decoding instruction
followed by the coded image φ(B) of B. To save on the output length, the decod-
ing instruction must be relatively short compared to m. This is easily achieved
in codes which refer to relatively short components of the block B. For exam-
ple, the instruction of the code may consist of the complete list of subblocks A
(appearing in B) of some carefully chosen length n followed by the list of their
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images Φ(A). The images may have different lengths (as short as possible). The
assignment A �→ Φ(A) will depend on B, therefore it must be included in the
output file. The coded image φ(B) is obtained by cutting B into subblocks B =
A1A2 . . . Ak of length n and concatenating the images of these subblocks: φ(B) =
Φ(A1)Φ(A2) · · ·Φ(Ak). There are additional issues here: in order for such a code
to be invertible, the images Φ(A) must form a prefix free family (i.e., no block in
this family is a prefix of another). Then there is always a unique way of cutting
φ(B) back into the images Φ(Ai). But this does not affect essentially the computa-
tions. For best compression results, it is reasonable to assign shortest images to the
subblocks appearing in B with highest frequencies. For instance, consider a long
binary block

B = 010001111001111...110 = 010, 001, 111, 001, 111, ..., 110

On the right, B is shown divided into subblocks of length n = 3. Suppose that the
frequencies of the subblocks in this division are:

000 − 0% 001 − 40% 010 − 10% 011 − 10%
100 − 0% 101 − 0% 110 − 10% 111 − 30%

The theoretical value of the compression rate (obtained using the formula (0.3.3)
for n = 3) is(

−0.4 log2(0.4) − 0.3 log2(0.3) − 3 · 0.1 log2(0.1)
)
/3 ≈ 68.2%.

A binary prefix free code giving shortest images to most frequent subblocks is

001 �→ 0,

111 �→ 10,

010 �→ 110,

011 �→ 1110,

110 �→ 1111.

The compression rate achieved on B using this code equals

(0.4 × 1 + 0.3 × 2 + 0.1 × 3 + 0.1 × 4 + 0.1 × 4)/3 = 70%

(ignoring the finite length of the decoding instruction, which is simply a recording
of the above code). This code is nearly optimal (at least for this file).

We now focus on the vertical data compression. Its connection with the
dynamical entropy is easier to describe but requires a more advanced appara-
tus. Since we are dealing with an infinite sequence (the signal), we can assume
it represents some genuine (not only approximate as it was for a long but finite
block) shift-invariant probability measure μ on the symbolic space ΛZ. Recall
that the dynamical entropy h = hμ(σ, Λ) (where σ denotes the shift map) is
the expected amount of new information per step (i.e., per incoming symbol
of the signal). We intend to replace the alphabet by a possibly small one. It is
obvious that if we manage to losslessly replace the alphabet by another, say
Λ0, then the entropy h cannot exceed log2 #Λ0. Conversely, it turns out that
any alphabet of cardinality #Λ0 > 2h is sufficient to encode the signal. This
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is a consequence of the famous Krieger Generator Theorem (in this book it is
Theorem 4.2.3). Thus we have the following connection:

log2(#Λ0 − 1) ≤ h ≤ log2 #Λ0,

where Λ0 is the smallest alphabet allowing to encode the signal. In this manner
the cardinality of the optimal alphabet is completely determined by the entropy.
If 2h happens to be an integer we seem to have two choices, but there is an easy
way to decide which one to choose (see Theorem 4.2.3).

0.3.6 Entropy as disorder

The interplay between Shannon and Boltzmann entropy has led to associat-
ing with the word “entropy” some colloquial understanding. In all its strict
meanings (described above), entropy can be viewed as a measure of disorder
and chaos, as long as by “order” one understands that “things are segregated
by their kind” (e.g. by similar properties or parameter values). Chaos is the
state of a system (physical or dynamical) in which elements of all “kinds” are
mixed evenly throughout the space. For example, a container with gas is in its
state of maximal entropy when the temperature and pressure are constant. That
means there is approximately the same amount of particles in every unit of the
volume, and the proportion between slow and fast particles is everywhere the
same. States of lower entropy occur when particles are “organized”: slower
ones in one area, faster ones in another. A signal (an infinite sequence of sym-
bols) has large entropy (i.e., compression rate) when all subblocks of a given
length n appear with equal frequencies in all sufficiently long blocks. Any trace
of “organization” and “logic” in the structure of the file allows for its compres-
sion and hence lowers its entropy. These observations generated a colloquial
meaning of entropy. To have order in the house, means to have food separated
from utensils and plates, clothing arranged in the closet by type, trash segre-
gated and deposited in appropriate recycling containers, etc. When these things
get mixed together “entropy” increases causing disorder and chaos. Entropy is
a term in social sciences, too. In a social system, order is associated with clas-
sification of the individuals by some criteria (stratification, education, skills,
etc.) and assigning to them appropriate positions and roles in the system. Law
and other mechanisms are enforced to keep such order. When this classifica-
tion and assignment fails, the system falls into chaos called “entropy.” Entropy
equals lack of diversity.
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0.4 Conventions

In the main body of the book (Parts I – III) we are using a consistent notational
system. Every symbol has an assigned fixed meaning throughout the book. If
a letter is multiply used, the meanings are distinguished by font types. The
complete list of symbols is provided at the end.

The main conventions include:

• The capital letters X,Y,Z (sometimes with primes or subscripts) are
reserved to denote phase spaces of dynamical systems, lowercase x, y, z are
their elements. The lowercase Greek letters μ, ν, ξ denote probability mea-
sures, while Gothic capitals A,B, etc. stand for sigma-algebras. The let-
ters T, S,R are used for transformations of the phase space that govern the
dynamical system. Boldface T represents an operator on a function space.
Factor maps and other auxiliary maps between spaces are π, φ, ψ. Dual maps
on relevant spaces of measures are denoted by the same letter as the map on
points (exception: T ∗ denotes the dual to a Markov operator). The images
by major maps of elements of their domains are written (whenever possible)
without parentheses, for example Tx, Tμ, πμ, T f .

• The script capitals P,Q,R stand for measurable partitions with elements
(cells) denoted A,B,C, etc. The letters B and C are also used to denote
finite blocks and their associated cylinders (which in fact are cells of cer-
tain partitions of appropriate symbolic spaces). The alphabet in a symbolic
system is Λ (rarely Δ). If we need to distinguish between the alphabet and
the associated zero-coordinate partition of the symbolic space, we use PΛ

for the latter. A special meaning is reserved to the Gothic capital P (with
subscripts); it is used for various spaces whose elements are partitions.

• The letters U,V represent open covers and their cells are U, V , while F,G,H

represent finite families of functions (measurable or continuous) on X .

• The symbols Z, N, N0 and R denote the sets of all integers, positive integers
(natural numbers), nonnegative integers and real numbers, respectively. The
letter S is used as either Z or N0. We try to consistently reserve n for integers
representing the time; whereas k indexes refining sequences of partitions or
covers, while i, j, l,m (sometimes also p, q, r, s, t) are integer indices of all
kinds.

• The letters H and H are reserved to denote various notions of static entropy,
with the boldface version used for topological notions. Similarly, h and
h will be used for dynamical entropy, respectively, measure-theoretic and
topological. Calligraphic H is used for a net or sequence of functions such
as an entropy structure.
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Some other conventions:

• From now on we choose to use only logarithms to base 2. We write just log.
• A sequence will be written as (ai)i≥1 or (ai), or just “the sequence ai,”

when this is not ambiguous.
• Throughout this book, in order to avoid confusingly sounding words we

use “decreasing” and “increasing” in the meaning of “nonincreasing” and
“nondecreasing,” with the adverb “strictly” when the monotonicity is sharp.





Part I

Entropy in ergodic theory





1

Shannon information and entropy

1.1 Information and entropy of probability vectors

We agree (applying the continuous extension) that the real function

η(t) = −t log t (1.1.1)

assumes the value 0 at t = 0. It is strictly concave, i.e., η(pt + qs) > pη(t) +
qη(s) for every t, s ∈ [0, 1], where p ∈ (0, 1), q = 1 − p. Like every concave
nonnegative function on [0, 1], η satisfies the subadditivity condition

η(t + s) ≤ η(t) + η(s),

whenever t, s, t + s ∈ [0, 1] (Exercise 1.1). By iterating and by continuity, we
also obtain countable subadditivity

η
( ∞∑

i=1

ti

)
≤

∞∑
i=1

η(ti),

whenever all above arguments of η belong to [0, 1].

Let P and S denote the set of all countable probability vectors (i.e., nonneg-
ative, with sum equal to 1) and subprobability vectors (likewise, but with sum
in [0, 1]), respectively. Both sets are contained in the space �1 of all absolutely
summable sequences, and we will regard them with the �1 topology. It is an
elementary exercise to check that relatively on P this topology coincides with
the topology of the pointwise convergence (Exercise 1.2), but on S this is no
longer true. For instance P is closed in �1, while it is dense in S in the topology
of the pointwise convergence. Of course, we are mainly interested in probabil-
ity vectors. Subprobabilistic vectors will be technically useful in one place in
the proof of Fact 1.1.11, so until then we are forced to check all statements for
them as well.

Below, we define the key notions of entropy theory.
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Definition 1.1.2 If p = (pi)i∈N is a probability vector, its associated infor-
mation function Ip : N → [0,∞] is defined by

Ip(i) = − log pi.

The entropy of p is defined as

H(p) =
∞∑

i=1

piIp(i) = −
∞∑

i=1

pi log(pi) =
∞∑

i=1

η(pi).

This nonnegative value can be infinite but it is certainly finite for vectors
with at most finitely many nonzero terms and vectors tending to zero suf-
ficiently fast (see Fact 1.1.4 below). The function H can be applied to any
countable sequence with values in [0, 1] (in particular to subprobabilistic vec-
tors) and here it satisfies the following:

Fact 1.1.3 The function H is concave and on the set where H is finite the
concavity is strict.

Proof Let p = (p1, p2, . . . ), q = (q1, q2, . . . ) and r = (r1, r2, . . . ) belong
to [0, 1]N, and suppose that r = pp + qq where p ∈ (0, 1), q = 1 − p. Then
by concavity of the function η

H(r) =
∞∑

i=1

η(ppi + qqi) ≥
∞∑

i=1

(
pη(pi) + qη(qi)

)
= pH(p) + qH(q),

and since η is strictly concave and all terms of the above sums are nonnegative,
equality holds when either pi = qi for all i, or both sides are infinite.

We note the following criterion for finiteness of the function H on probabil-
ity vectors:

Fact 1.1.4 If a probability vector p = (pi) satisfies
∑∞

i=1 ipi < ∞, then
H(p) < ∞.

Proof Because the function − log t is decreasing, while −t log t is increasing
(certainly for values below 1/4), we have
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H(p) = −
∑

i

pi log(pi) =

p1 log p1 +
∑

i≥2:pi>2−i

pi(− log(pi)) +
∑

i≥2:pi≤2−i

(−pi log(pi)) ≤

p1 log p1 +
∑

i≥2:pi>2−i

pi(− log(2−i)) +
∑

i≥2:pi≤2−i

(−2−i log(2−i)) ≤

p1 log p1 +
∑

i

ipi +
∑

i

i2−i < ∞.

Moreover, for vectors as above the following holds: If we let p = 1/
∑

i ipi

(clearly, p ∈ (0, 1]), then H(p) ≤ 1
pH(p, 1−p), and equality is attained if and

only if p is the geometric distribution pi = p(1 − p)i−1. Although this fact
can be proved using analysis (constrained maximum), we will prove it using
dynamical methods much later, in Section 4.3 (Fact 4.3.7).

Let Pm (respectively, Sm) denote the subset of P (respectively, of S) con-
sisting of all m-dimensional probability (respectively, subprobability) vectors,
i.e., satisfying pi = 0 for all i > m. Obviously, Pm (and Sm) are com-
pact, and the function H is continuous (hence uniformly continuous) on these
sets, and assumes the maximal value equal to log m at the probability vector
p = ( 1

m , 1
m , . . . , 1

m , 0, 0, 0, . . . ).
Below we provide a tool very useful for handling countable vectors (and

later countable partitions):

Definition 1.1.5 For p ∈ P we let p(m) ∈ Pm denote the vector obtained
from p by taking its m − 1 largest terms and, as the mth term, the sum of
the rest, and ordering the resulting m terms decreasingly. For p ∈ S, p(m) is
defined identically, and it belongs to Sm.

It is not hard to see that the map p �→ p(m) is uniformly continuous in �1.
Moreover, we have

Fact 1.1.6

H(p) = lim
m

↑ H(p(m)).

Proof By the finite and countable subadditivity of η we have

H(p(m)) ≤ H(p(m+1)) and H(p(m)) ≤ H(p).
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On the other hand, ordering the terms pi of p decreasingly, we can write

H(p) = lim
m

m−1∑
i=1

η(pi) ≤ lim
m

H(p(m)). (1.1.7)

Combining the above fact with the uniform continuity of the map p �→ p(m)

and that of H on Pm (and on Sm), we conclude the following

Fact 1.1.8 The functions p �→ H(p(m)) are �1-uniformly continuous and
p �→ H(p) is �1-lower semicontinuous on P (and on S) (see Appendix A.1.4
for the definition of lower semicontinuity).

We shall be needing another observation:

Fact 1.1.9 For each 0 ≤ M < ∞ the set of all decreasingly ordered count-
able probability vectors p with H(p) ≤ M is compact in �1. The same holds
for subprobability vectors.

Before the proof we note that the statement does not hold without the order-
ing. Indeed, if pn is the probability vector whose all terms are 0 except the nth
term which is 1, then H(pn) = 0, and the set {pn : n ≥ 1} is 2-separated
in �1.

Proof of Fact 1.1.9 Let p be a decreasingly ordered probability vector. If
H(p) ≤ M , then for every ε > 0 the joint mass of the terms pi smaller
than 2−

M
ε is at most ε, for otherwise already the sum of −pi log pi over these

terms would exceed ε · M
ε = M . The cardinality of the terms larger than or

equal to 2−
M
ε is clearly bounded by K(ε) = 2

M
ε . Thus, p has the following

property:

• For every ε > 0 the sum of the terms above index K(ε) is at most ε.

The set of all probability vectors with this property is totally bounded in �1.
Indeed, every such vector can be, up to ε, approximated by its restriction to
the initial K(ε) terms, while the set of all subprobability vectors of dimension
K(ε) obviously has a finite ε-net. This net becomes a 2ε-net in the set in ques-
tion. On the other hand, by lower semicontinuity of H , the set of probability
vectors with H(p) ≤ M is closed in �1, and its subset of decreasing vectors
is also closed. We have shown that the set of decrasingly ordered probability
vectors p with H(p) ≤ M is closed in �1 and contained in a totally bounded
set. By completeness of the space �1, such a set is compact. The proof for
subprobability vectors is identical.
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Before we continue we need some more notation. Let ξ be a probability dis-
tribution on [0, 1]N. The barycenter of ξ is the sequence xξ = (xξ

1, x
ξ
2, . . . )

such that for each natural i, xξ
i =

∫
xi dξ(x) (here x = (x1, x2, . . . )). This

notion generalizes convex combinations of vectors, which correspond to
barycenters of finitely supported probability distributions ξ. Let pξ = (pξ

1,

pξ
2, . . . ) be the barycenter of a probability distribution ξ supported on P. We

claim that then pξ ∈ P. Indeed,

∞∑
i=1

pξ
i =

∞∑
i=1

∫
pi dξ =

∫ ∞∑
i=1

pi dξ = 1,

where the central equality follows from monotone convergence of the finite
sums to the infinite sum and linearity of the integral. By the same argument,
the barycenter of a distribution supported by S belongs to S.

A real function f on P (respectively on S) is supharmonic if for every prob-
ability distribution ξ on P (respectively on S), we have f(pξ) ≥

∫
f(p) dξ.

(The notions of barycenter and of supharmonic function are discussed in a
more general context in Appendix A.2.3.) The following holds.

Fact 1.1.10 As a concave lower semicontinuous function, the entropy H is
supharmonic on P and on S (see Fact A.2.10).

The next fact will become important in Section 3.1. It says that on the set of
probability vectors p such that H(p) ≤ M , the supharmonic property of H is
�1-uniformly strict, in the following sense:

Fact 1.1.11 Fix some positive number M . For every ε > 0 there exists δ > 0
such that whenever ξ is a probability distribution on P with barycenter pξ

such that H(pξ) ≤ M and
∫

H(p) dξ > H(pξ) − δ, then∫
‖pξ − p‖1 dξ < ε,

where ‖ · ‖1 denotes the norm in �1.

Proof The �1-uniform strictness of the concavity of H is obvious on the inter-
val [0, 1] because this set is compact, as is the set of all probability measures
supported by this set, and H (which is equal to η) is uniformly continuous and
strictly concave. This property easily passes to any finite-dimensional cube
[0, 1]m (m ∈ N) and thus to Sm.

Let us proceed to countable probability vectors, as in the assertion. We
can change the order of coordinates so that pξ becomes decreasingly ordered.
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Let m be such that
∑

i≥m pξ
i < ε

4 . Let δ be such that on Sm we have∫
H(x) dξ > H(xξ) − δ =⇒

∫
‖xξ − x‖1 dξ < ε

4 .

Suppose that
∫

H(p) dξ > H(pξ) − δ. Then, letting π(x) = (x1, x2, . . . ,

xm) ∈ Sm and φ(x) = (xm+1, xm+2, . . . ) ∈ S, we can write:

H(π(pξ)) + H(φ(pξ)) − δ = H(pξ) − δ <

∫
H(p) dξ =∫

H(π(p)) dξ +
∫

H(φ(p)) dξ ≤
∫

H(π(p)) dξ + H(φ(pξ)),

where the last inequality follows by the supharmonic property of H on S
and the fact that φ(pξ) is the barycenter of the measure ξ composed with
φ (this measure is supported on S; it is here that we actually need the set
of subprobabilistic vectors and the properties of H on this set). Cancelling
H(φ(pξ)) on both ends we obtain H(π(pξ)) − δ <

∫
H(π(p)) dξ, which

implies
∫
‖π(pξ) − π(p)‖1 dξ < ε

4 . In particular, since
∑m

i=1 pξ
i ≥ 1 − ε

4 ,
we have

∫ ∑m
i=1 pi dξ ≥ 1 − ε

2 . This implies that
∫ ∑∞

i=m+1 pi dξ ≤ ε
2 , and

finally

∫
‖pξ − p‖1 dξ ≤

∫
‖π(pξ) − π(p)‖1 dξ +

∫
‖φ(pξ) − φ(p)‖1 dξ <

ε
4 +

∞∑
i=m+1

pξ
i +

∫ ∞∑
i=m+1

pi dξ ≤ ε
4 + ε

2 + ε
4 = ε.

So far, the choice of δ depended on m hence also on pξ. Because the inequal-
ity defining the parameter m is sharp, the choice of m is stable under small
�1-perturbations of pξ, i.e., m is good for all vectors in an open set around pξ.
The same applies to the parameter δ, which depends only on m. Now, by com-
pactness of the considered set of vectors pξ ordered decreasingly (Fact 1.1.9),
there is a universal choice of δ on this whole set. Finally, notice that the terms
appearing in the assertion of the lemma are insensitive to the ordering of the
coordinates, so the lemma holds as it is stated.

Now we introduce a somewhat exotic notion of information and entropy with
respect to variable lengths. Anticipating a bit, this notion can be interpreted as
corresponding to a partition of the symbolic space into cylinder sets of different
lengths. This notion and the following lemma will be used in the proof of
one of the key theorems in classical entropy theory – the Shannon–McMillan–
Breiman Theorem, where the above interpretation will become clear.
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Definition 1.1.12 Consider a pair of vectors: a probability vector p = (pi)i∈N

and an arbitrary vector of positive integers (called lengths), n = (ni)i∈N.
With this pair we associate its length-information function Ip,n : N → [0,∞]
defined by

Ip,n(i) = − log pi

ni
.

The expected value of Ip,n will be called the length-entropy of the pair (p,n):

H(p,n) =
∞∑

i=1

piIp,n(i) =
∞∑

i=1

η(pi)
ni

.

Let np =
∑

i pini denote the “average length” (which may be infinite, but
not for vectors p with finitely many nonzero terms). We have the following:

Lemma 1.1.13 Let n = (n1, n2, . . . ) be a vector of natural numbers. Let
p be a finite-dimensional probability vector (i.e., with finitely many nonzero
terms), and p′ an arbitrary (countable) probability vector. Then

H(p)
np

≤ max
i

Ip′,n(i) + max
i

1
ni

. (1.1.14)

If c is such that
∑

i 2−cni ≤ 1, then for any countable probability vector p,

H(p,n) ≤ c + max
i

1
ni

. (1.1.15)

Proof By straightforward computations of partial derivatives it is clear that
with n fixed, the maximal length-entropy among all m-dimensional probability
vectors p is assumed for the unique p0 such that the function Ip0,n(i) − 1

ni

is constant on i ∈ {1, 2, . . . ,m}. Any other m-dimensional probability vector
p has, on one hand, a smaller length-entropy, on the other, a larger maximal
value of Ip,n(i) − 1

ni
, thus

H(p,n) ≤ H(p0,n) ≤ max
i≤m

Ip0,n(i) ≤

max
i≤m

(Ip0,n(i) − 1
ni

) + max
i≤m

1
ni

≤ max
i≤m

(Ip′
(m),n

(i) − 1
ni

) + max
i≤m

1
ni

≤

max
i≤∞

(Ip′,n(i) − 1
ni

) + max
i≤∞

1
ni

≤ max
i

Ip′,n(i) + max
i

1
ni

. (1.1.16)

(There is a subtlety in comparing Ip′
(m),n

(i) with Ip′,n(i) for i = m: on the

left-hand side we have − log(
∑

i≥m p′
i)

nm
, while on the right-hand side we have

− log p′
m

nm
. Clearly, the right-hand side is larger.) Applying this to the probability
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vector p′′ =
(

pini∑
i pini

)
i≤m

and by convexity of the function − log t, we obtain

max
i

Ip′,n(i) + max
i

1
ni

≥ H(p′′,n) =

1∑
i pini

(
−

∑
i

pi log pi −
∑

i

pi log ni + log
(∑

i

pini

))
≥ H(p)

np
.

This proves (1.1.14).
For (1.1.15) note that there is c′ ≤ c such that p′ = (2−c′ni)i is a probabil-

ity vector and then Ip′,n(i) = c′ for each i. Now (1.1.16) yields H(p,n) ≤
c′ + maxi

1
ni

≤ c + maxi
1
ni

for any finite-dimensional p. Approximating
an arbitrary probability vector p by the finite-dimensional vectors p(m) and
because

H(p,n) = sup
m

{
−

m−1∑
i=1

log pi

ni

}
≤ sup

m
H(p(m),n),

we extend the inequality to all probability vectors.

1.2 Partitions and sigma-algebras

Let (X,A, μ) be a standard probability space, i.e., a probability space iso-
morphic to a compact metric space with the Borel sigma-algebra and a Borel
probability measure (also called a Lebesgue space). The sigma-algebra A is
necessarily completed with respect to μ, i.e., every subset of a measurable set
of measure zero is agreed to be measurable. From now on, if not specified
otherwise, by a partition we will mean an at most countable partition of X

into measurable sets P = {Ai : i ∈ N}, μ(
⋃∞

i=1 Ai) = 1, and i �= j =⇒
Ai ∩ Aj = ∅. In this section we will view all finite partitions as countable
by attaching countably many copies of the empty set. Still, if all but finitely
many elements Ai have measure zero we will call P a finite partition. While
the “master” measure μ is fixed, we will identify partitions equal modulo sets
of measure μ zero and write P = Q instead of P = Q (mod μ). The elements
Ai of a partition P will be referred to as cells.

A partition P is finer than (or is a refinement of) Q, which we write as P � Q,
when each cell of P is (up to measure) contained in a cell of Q. By disjointness,
each cell of Q is then a union of some cells of P; we will also say that Q is P-
measurable.

By the join (sometimes called the least common refinement) of two partitions
P and Q we shall mean the partition
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P ∨ Q = {A ∩ B : A ∈ P, B ∈ Q}. (1.2.1)

It is easy to see that P � Q ⇐⇒ P ∨ Q = P.

We will also consider sub-sigma-algebras B of A, and call them simply
sigma-algebras, always assuming that B are completed. The fact stated below,
concerning standard probability spaces, will be of crucial importance in many
arguments throughout the book. We refer the reader to [Rokhlin, 1952] for the
proof and for more background on standard spaces.

Fact 1.2.2 Let (X,A, μ) be a standard probability space.

• If B ⊂ A is a sigma-algebra, then there exists a standard probability space
(Y,B′, ν) and a measurable map π : X → Y such that π−1(B′) = B, and
which sends the measure μ to ν “by preimage”, i.e., ν(B) = μ(π−1(B))
(B ∈ B′). We will write ν = πμ.

• If π : X → Y is a map as described above and, moreover, it is injective,
then π is an isomorphism of measure spaces (i.e., it is, up to measure, a
bimeasurable bijection).

By atoms of B we will understand the preimages π−1(y) of points y ∈ Y .
The above fact implies that any A-measurable set which is a union of atoms
of B, is B-measurable. It is so, because sets of the above kind form a sigma-
algebra contained in A and containing B, with the same atoms as B, and hence
determining the same (up to isomorphism) space (Y,B, ν) (from now on we
can identify B′ with B) and the same map π. We remark that the above fails
without assuming that A is standard, for example on the interval the sigma-
algebra A of all sets is essentially larger than the Borel sigma-algebra, while
any of its elements is a union of the atoms of the latter.

Recall that a sequence of partitions (Qk)k≥1 is said to generate the sigma-
algebra B if B is the smallest (complete) sigma-algebra which contains all
elements of each Qk. If additionally the sequence Qk is refining, i.e., such that
Qk+1 � Qk for each k, then for every B-measurable set B and every ε > 0
there is a k such that B can be approximated up to ε (in terms of the measure
of the symmetric difference) by a union of some cells of Qk; (see also (1.7.3)
below).

In a standard probability space every sigma-algebra B admits a generat-
ing sequence of finite partitions. It is convenient to denote the sigma-algebra
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generated by a sequence of partitions Qk by

B =
∞∨

k=1

Qk.

Taking Q′
k =

∨k
i=1 Qi, we can always replace an arbitrary sequence of parti-

tions by a refining one, which generates the same sigma-algebra. For
sigma-algebras B, C, the join B∨C will denote the (completed) sigma-algebra
generated by the union of B and C, while B � C is synonymous with B ⊃ C.
This notation is consistent with that for partitions if partitions are replaced by
their generated sigma-algebras. In this spirit, we can (and will) also join parti-
tions with sigma-algebras.

With each ordered countable partition P = {Ai, i ∈ N} we associate a prob-
ability vector p(μ,P) = (pi)i∈N called the distribution vector of P, defined
by pi = μ(Ai). Recall that the set of all probability vectors is convex. The
following decomposition rule, involving another countable partition Q, holds,
by the Law of Total Probability:

p(μ,P) =
∑
B∈Q

μ(B)p(μB ,P), (1.2.3)

where μB(·) = μ(· ∩B)/μ(B) is the conditional measure on B, for B of pos-
itive measure, and μB is an arbitrarily chosen probability measure supported
by B if B has measure zero.

1.3 Information and static entropy of a partition

For a partition P of a probability space (X,A, μ) we define its associated infor-
mation function Iμ,P : X → [0,∞] by

Iμ,P(x) = IP(x) = − log μ(Ax),

where Ax is the cell of P containing x. Whenever μ is fixed, we will use the
simplified notation IP(x).

Definition 1.3.1 The static (or Shannon) entropy of P with respect to μ,
H(μ,P) is defined as the expected value of the information function:

H(μ,P) =
∫

IP(x) dμ(x) = −
∑
A∈P

μ(A) log μ(A) = H(p(μ,P)).
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In considerations involving one “master measure” μ we will abbreviate
H(μ,P) as H(P), while HB(P) will stand for H(μB ,P) (for B ∈ A). One of
the fundamental estimates of the entropy of finite partitions is

H(P) ≤ log #P. (1.3.2)

We note that convexity of the function t �→ − log(t) immediately implies
that the information function of a given partition at a given point is a convex
function of the measure μ, contrary to the entropy, which is concave (this fol-
lows immediately from the concavity of H on probability vectors, see Fact
1.1.3). We gather these two facts below:

Fact 1.3.3 If μ is a convex combination of two measures, μ = pμ1 + qμ2,
where p ∈ [0, 1], q = 1 − p, then, for every countable partition P and every
point x ∈ X we have

Iμ,P(x) ≤ pIμ1,P(x) + qIμ2,P(x), (1.3.4)

H(μ,P) ≥ pH(μ1,P) + qH(μ2,P). (1.3.5)

1.4 Conditional static entropy

For given two partitions P and Q one defines the conditional information
function

Iμ,P|Q(x) = IP|Q(x) = IP∨Q(x) − IQ(x) =

− log
μ(Ax ∩ Bx)

μ(Bx)
= − log μBx

(Ax) (1.4.1)

(Ax and Bx denote the cells of P and Q containing x, respectively). This func-
tion can be interpreted as the “gain of precision” with which one can locate x

when, already knowing its position with respect to Q, one learns its position
with respect to P.

Definition 1.4.2 We define the conditional static entropy of P given Q as

H(μ,P|Q) =
∫

IP|Q(x) dμ(x).

As before, H(P|Q) will stand for H(μ,P|Q) when this causes no confusion.
Clearly, if H(Q) is finite, by (1.4.1) we have H(P|Q) = H(P ∨ Q) − H(Q).
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In order to avoid the undefined term ∞ − ∞ in the infinite case, it is always
safe to write

H(P ∨ Q) = H(P|Q) + H(Q). (1.4.3)

In any case we have

H(P|Q) = −
∑

B∈Q,A∈P

μ(A ∩ B) log μB(A) =

−
∑
B∈Q

μ(B)
∑
A∈P

μB(A) log μB(A) =
∑
B∈Q

μ(B)HB(P).

The resulting formula

H(P|Q) =
∑
B∈Q

μ(B)HB(P) (1.4.4)

(or H(μ,P|Q) =
∑

B∈Q μ(B)H(μB ,P), in the expanded version), is often
used as an alternative definition of the conditional entropy.

We will now introduce the conditional entropy given a sigma-algebra, which
generalizes the preceding notion. Let P be a countable partition and let B � A

be a sigma-algebra.

Definition 1.4.5 The conditional entropy of P given B is defined as

H(μ,P|B) = H(P|B) = inf{H(P|Q) : Q � B},

where Q ranges over all countable partitions measurable with respect to B.

For a fixed partition, conditioning partition, and a point, the conditional
information as a function of the measure, being a difference between two con-
vex functions, is in general, neither convex nor concave. Simple examples on
the four-point space show this. The conditional entropy, however, maintains
the concavity property:

Fact 1.4.6 Let μ be a convex combination of two measures, μ = pμ1 + qμ2,
where p ∈ [0, 1], q = 1 − p. Then, for any pair of countable partitions P,Q,
alternatively, for any P and a sigma-algebra B, it holds that

H(μ,P|Q) ≥ pH(μ1,P|Q) + qH(μ2,P|Q), (1.4.7)

H(μ,P|B) ≥ pH(μ1,P|B) + qH(μ2,P|B). (1.4.8)

Proof The concavity (1.4.7) follows from (1.3.5) via (1.4.4). Then (1.4.8) fol-
lows from Definition 1.4.5 and the mere fact that infimum of concave functions
is concave.
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1.5 Conditional entropy via probabilistic tools*

In this section we review some alternative definitions of the conditional entropy
given a sigma-algebra in terms of the conditional expectation and of the dis-
integration of the measure. The proofs that these definitions coincide with the
definition given at the beginning of this section rely on the Martingale Conver-
gence Theorem. We refer for example to the book by Karl Petersen [Petersen,
1983] for a more detailed exposition.

The definition of the conditional information function of P given a countable
partition Q, involves the term μBx

(Ax), which can be viewed as Eμ(1IAx
|Q)(x),

the value at x of the conditional expectation of the characteristic function of
Ax given the sigma-algebra generated by the partition Q. By pure analogy we
define

Iμ,P|B(x) = IP|B(x) = − log Eμ(1IAx
|B)(x), (1.5.1)

and call it the conditional information function of P given the sigma-algebra
B. The alternative definition of the conditional entropy of P given B is via the
integral

H(P|B) = H(μ,P|B) =
∫

IP|B(x) dμ(x).

We briefly recall the notion of disintegration of the measure μ with respect
to a sigma-algebra B � A. Fact 1.2.2 says that in a standard probability space
(X,A, μ) any sub-sigma-algebra B determines a standard probability space
(Y,B, ν) and a projection π : X → Y where the elements y ∈ Y are the
atoms of B and π is determined by the inclusion x ∈ πx. In this setup we
identify B with π−1(B) and the measure ν is the restriction of μ to B. The
disintegration of μ is the ν-almost everywhere defined assignment y �→ μy ,
where μy is a probability measure on A supported by the atom y, such that for
every A ∈ A we have

μ(A) =
∫

μy(A) dν(y), (1.5.2)

which we can write, using the Petis integral, as

μ =
∫

Y

μy dν.

The disintegration provides alternative formulae for the conditional informa-
tion function and the conditional entropy, completely analogous to (1.4.1) and



36 Shannon information and entropy

to (1.4.4):

Iμ,P|B(x) = IP|B(x) = − log μπx(Ax) (1.5.3)

H(μ,P|B) =
∫

Y

H(μy,P) dν(y). (1.5.4)

1.6 Basic properties of static entropy

In this section we fix one measure μ and drop it in the denotation, while we
treat the partition as a variable. We gather all basic properties of the static
and conditional static entropy which can be classified as “monotonicity” and
“subadditivity.” Continuity properties are gathered in the next section. The first
fact gives two very useful equalities that generalize (1.4.4) and (1.4.3).

Fact 1.6.1 Let P,Q and R be countable partitions. Then

H(P|Q ∨ R) =
∑
C∈R

μ(C)HC(P|Q), (1.6.2)

H(P ∨ Q|R) = H(P|Q ∨ R) + H(Q|R). (1.6.3)

Proof By (1.4.4) we can write:

H(P|Q ∨ R) =
∑

B∩C∈Q∨R

μ(B ∩ C)HB∩C(P) =

∑
C∈R

μ(C)
∑
B∈Q

μC(B)HB∩C(P) =
∑
C∈R

μ(C)HC(P|Q),

and then

H(P|Q ∨ R) + H(Q|R) =
∑
C∈R

μ(C)HC(P|Q) +
∑
C∈R

μ(C)HC(Q) =

∑
C∈R

μ(C)HC(P ∨ Q) = H(P ∨ Q|R).

If H(R) is finite, (1.6.3) can be gotten faster, from (1.4.3), see Exercise 1.3.
The next fact contains monotonicity properties.

Fact 1.6.4 For countable partitions P,Q and R, the following holds

P � Q ⇐⇒ H(Q|P) = 0, (1.6.5)

P � Q =⇒ H(P|R) ≥ H(Q|R), H(P) ≥ H(Q), (1.6.6)

Q � R =⇒ H(P|Q) ≤ H(P|R). (1.6.7)
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Before the proof we list some consequences of (1.6.3) and the monotonici-
ties (1.6.6) and (1.6.7). Their easy derivation is left to the reader (Exercise 1.3).
The first four of them can be viewed as various kinds of subadditivity. The last
three will be useful in the context of the Rokhlin metric later.

Corollary 1.6.8 For countable partitions P,P′,Q,Q′, and R we have

H(P ∨ Q|R) ≤ H(P|R) + H(Q|R), (1.6.9)

H(P ∨ Q) ≤ H(P) + H(Q), (1.6.10)

H(P ∨ P′|Q ∨ Q′) ≤ H(P|Q) + H(P′|Q′), (1.6.11)

H(P|R) ≤ H(P|Q) + H(Q|R), (1.6.12)

|H(P|R) − H(Q|R)| ≤ max{H(P|Q),H(Q|P)}, (1.6.13)

|H(P|Q) − H(P|R)| ≤ max{H(Q|R),H(R|Q)}, (1.6.14)

|H(P) − H(Q)| ≤ max{H(P|Q),H(Q|P)}. (1.6.15)

(in each of the last three statements we assume that at least one of the terms
on the left is finite).

Proof of Fact 1.6.4 Both directions of (1.6.5) are immediate, by the formula
(1.4.4) and the fact that H(μ,P) = 0 ⇐⇒ P is the trivial partition.

We continue by proving (1.6.7) for the trivial partition R. By (1.4.4), the
left-hand side of (1.6.7) equals the countable convex combination (with coef-
ficients μ(B)) of the values the function H assumes at the probability vec-
tors p(μB ,P). The right-hand side of (1.6.7) equals H applied to p(μ,P),
the convex combination (with the same coefficients) of the vectors p(μB ,P)
(see (1.2.3)). By the supharmonic property of the entropy on probability vec-
tors (see Fact 1.1.10), we obtain (1.6.7). For the full version of (1.6.7) assume
Q � R and, using (1.6.2) and (1.6.7) already proved for trivial R, write:

H(P|Q) = H(P|Q ∨ R) =
∑
C∈R

μ(C)HC(P|Q) ≤
∑
C∈R

μ(C)HC(P)

= H(P|R).

We move on to (1.6.6). Suppose P � Q. By (1.6.3), we have H(P|R) =
H(P ∨ Q|R) = H(P|Q ∨ R) + H(Q|R) ≥ H(Q|R). For trivial R we get the
second inequality.

Recall that two partitions are said to be stochastically independent (we will
write P⊥Q) if μ(A∩B) = μ(A)μ(B) for all A ∈ P, B ∈ Q. The following is
an immediate consequence of Fact 1.1.3:
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Fact 1.6.16 P⊥Q =⇒ H(P|Q) = H(P). If H(P) < ∞, then the converse
implication holds.

Analogously as for probability vectors, for a partition P and m ∈ N, by
P(m) we will denote the finite m-element partition obtained from P by uniting
all but the largest m − 1 cells. (In case several cells have equal measures we
fix some order among them.) We note the following convergence:

Fact 1.6.17

H(P) = lim
m

↑ H(P(m)), (1.6.18)

H(P|Q) = lim
m

↑ H(P(m)|Q). (1.6.19)

Proof (1.6.18) is literally Fact 1.1.6, while (1.6.19) follows from (1.4.4), then
(1.6.18) applied to each μB , and the mere fact that since the series in (1.1.7) is
in fact an increasing limit, the order of limits can be reversed.

Lemma 1.6.20 Suppose H(P) < ∞. Then μ(C)HC(P) tends to 0 as μ(C)
tends to 0.

Proof Let R = {C,Cc}. Because

H(P) ≥ H(P|R) = μ(C)HC(P) + μ(Cc)HCc(P),

it suffices to show that HCc(P) is larger than H(P) − ε whenever μ(Cc) is
sufficiently close to 1. This, in turn, follows from the �1 lower semicontinuity
of the entropy on probability vectors (Fact 1.1.8) and the fact that the probabil-
ity vectors p(μCc ,P) converge in �1 to p(μ,P) as the measure of μ(Cc) tends
to 1.

Fact 1.6.21 Suppose H(P) < ∞. Then

H(P|Q) = lim
m

↓ H(P|Q(m)).

Proof By (1.6.7), the sequence H(P|Q(m)) decreases. We order Q = {B1,

B2, . . . } decreasingly and let Cm denote the union of Bi over i ≥ m. Then

H(P|Q) = H(P|Q(m)) − μ(Cm)HCm
(P) +

∑
i≥m

μ(Bi)HBi
(P).

Since H(P|Q) ≤ H(P) is finite, the last sum is the tail of a convergent series.
Thus, and by the preceding lemma, we obtain H(P|Q) = limm H(P|Q(m)).

Remark 1.6.22 The above may fail if P has infinite entropy. For example, if
Q = P, then H(P|Q) = 0, while the conditional entropy of P given any finite
partition is infinite.
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Corollary 1.6.23 Fact 1.6.21 implies that in Definition 1.4.5 (of H(P|B)),
for P with finite entropy, it suffices to take the infimum over finite B-measurable
partitions Q only.

Next, we discuss properties analogous to the ones above, but involving con-
ditional entropy given a sigma-algebra.

Fact 1.6.24 For any countable partitions P and Q and any sigma-algebra B

it holds that

H(P|Q ∨ B) =
∑
B∈Q

μ(B)HB(P|B), (1.6.25)

H(P ∨ Q|B) = H(P|Q ∨ B) + H(Q|B). (1.6.26)

Proof We have, by (1.6.2),

H(P|Q ∨ B) = inf
R

H(P|Q ∨ R) = inf
R

∑
B∈Q

μ(B)HB(P|R) ≥

∑
B∈Q

μ(B) inf
R

HB(P|R) =
∑
B∈Q

μ(B)HB(P|B),

where R range over all B-measurable partitions.
We proceed with the reversed inequality. It holds trivially if the right-hand

side is infinite. In the finite case, for each B ∈ Q there is a B-measurable
partition RB which realizes the infimum in the definition of HB(P|B) up to ε.
We let R be the countable partition obtained as a refinement of Q by applying
RB relatively to each B ∈ Q. This partition is measurable with respect to
Q ∨ B. We have, by (1.6.2) again,

∑
B∈Q

μ(B)HB(P|B)+ε ≥
∑
B∈Q

μ(B)HB(P|RB) =
∑
B∈Q

μ(B)HB(P|R) =

H(P|Q ∨ R) ≥ H(P|Q ∨ B).

Elementary properties of infima (see Appendix A.1.5) and (1.6.3) imply the
inequality “≥” in (1.6.26). For the converse, take two B-measurable partitions
which nearly realize the infima defining the two terms on the right. By mono-
tonicity with respect to the conditioning partition, their join realizes both. For
this join apply (1.6.3), then apply infimum on the left.
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Fact 1.6.27

P � B ⇐⇒ H(P|B) = 0, (1.6.28)

P � Q =⇒ H(P|B) ≥ H(Q|B), (1.6.29)

B � C =⇒ H(P|B) ≤ H(P|C). (1.6.30)

As before, prior to the proof, we list a number of easy consequences of
(1.6.26) and the last two monotonicities.

Corollary 1.6.31

H(P ∨ Q|B) ≤ H(P|B) + H(Q|B), (1.6.32)

H(P ∨ P′|Q ∨ Q′ ∨ B) ≤ H(P|Q ∨ B) + H(P′|Q′ ∨ B), (1.6.33)

H(P|B) ≤ H(P|Q) + H(Q|B), (1.6.34)

H(P|R ∨ B) ≤ H(P|Q ∨ B) + H(Q|R ∨ B), (1.6.35)

|H(P|B) − H(Q|B)| ≤ max{H(P|Q),H(Q|P)}, (1.6.36)

|H(P|Q ∨ B) − H(P|R ∨ B)| ≤ max{H(Q|R),H(R|Q)} (1.6.37)

(each of the last two statements requires at least one of the terms on the left to
be finite).

Proof of Fact 1.6.27 If P is B-measurable, then H(P|B) ≤ H(P|P) = 0.
Conversely, if H(P|B) = 0, then for every δ > 0 there exists an B-measurable
partition Q such that

H(P|Q) =
∑
B∈Q

μ(B)HB(P) < δ.

This means (by the elementary “rectangle rule,” Fact A.1.1 in the Appendix
A.1) that at least 1 −

√
δ of the space is covered by cells B ∈ Q for which

HB(P) ≤
√

δ. For small δ such a B is partitioned by P nearly trivially, i.e.,
with one dominating cell A with μB(A) > 1 − ε. Every cell A of P is now
approximated (up to ε +

√
δ) by the union of those cells B of Q in which

A dominates. Since B is completed, every set which can be arbitrarily well
approximated by B-measurable sets is B-measurable.

The inequality (1.6.29) follows from (1.6.6), while (1.6.30) requires nothing
but Definition 1.4.5.

Fact 1.6.38 Assume that H(P) < ∞. Then P⊥B ⇐⇒ H(P|B) = H(P).

Proof If P⊥B, then P⊥R for any B-measurable partition R, and Fact 1.6.16
implies the entropy condition. Suppose the entropy condition holds. For a B-
measurable set A let R = {A,Ac}. Then H(P) ≥ H(P|R) ≥ H(P|B) =
H(P), so, by Fact 1.6.16, P⊥R, in particular P⊥A.
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Fact 1.6.39 For a sigma-algebra B and a countable partition P we have

H(P|B) = lim
m

↑ H(P(m)|B).

Proof Monotonicity and the inequality “≥” are obvious. We order the cells
of P decreasingly in measure, P = {A1, A2, . . . }. For every ε > 0 there exists
a subsequence mk of the natural numbers, such that the partition

P′ = {A′
1, A

′
2, . . . } = {A1 ∪ A2 ∪ · · · ∪ Am1 ,

Am1+1 ∪ Am1+2 ∪ · · · ∪ Am2 , . . . }

has entropy smaller than ε (see Exercise 1.5). By (1.6.26), and since P � P′,
we have

H(P|B) = H(P ∨ P′|B) =

H(P|P′ ∨ B) + H(P′|B) < H(P|P′ ∨ B) + ε. (1.6.40)

For each k, on each of the sets A′
j , where j ≤ k, the restrictions of P(mk) and

of P coincide. On the other hand, for j > k, the restriction of P(mk) to A′
j is

trivial. So,

H(P(mk)|B) ≥ H(P(mk)|P′ ∨ B) =
∞∑

j=1

μ(A′
j)HA′

j
(P(mk)|B) =

k∑
j=1

μ(A′
j)HA′

j
(P|B).

The last terms increase with k to

∞∑
j=1

μ(A′
j)HA′

j
(P|B) = H(P|P′ ∨ B),

which was shown in (1.6.40) to be larger than H(P|B) − ε (or infinite). We
have shown that H(P|B) ≤ limk H(P(mk)|B). By monotonicity, this ends
the proof.

Fact 1.6.41 Suppose H(P|B) < ∞. Then

H(P|Q ∨ B) = lim
m

↓ H(P|Q(m) ∨ B).

We will prove this fact near the end of the next section, as a particular case
of a more general Fact 1.7.10.
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1.7 Metrics on the space of partitions

There is a natural pseudometric between countable partitions:

d1(P,Q) =
1
2

inf
{ ∞∑

i=1

μ(Ai � Bπ(i))
}

=

1 − sup
{ ∞∑

i=1

μ(Ai ∩ Bπ(i))
}

, (1.7.1)

where P = {Ai, i ∈ N},Q = {Bi, i ∈ N}, � denotes the symmetric differ-
ence and the infimum (and supremum) runs through all permutations π of the
natural numbers. This pseudometric becomes a metric once factored to classes
of partitions modulo measure zero.

It is elementary to see that

d1(P1 ∨ P2,Q1 ∨ Q2) ≤ d1(P1,Q1) + d1(P2,Q2). (1.7.2)

One of the important features of this metric is the possibility of approximat-
ing a partition measurable with respect to

∨
k Qk by Qk-measurable partitions.

We skip the elementary measure-theoretic proof:

Fact 1.7.3 Let B =
∨∞

k=1 Qk, where Qk+1 � Qk for all k and let P be a
partition measurable with respect to B. Then for every ε there exists a k and
a Qk-measurable partition Pk with d1(P,Pk) < ε. If P is finite, then each Pk

can be made finite with the same cardinality as P.

It is a well-known fact [see e.g. Rokhlin, 1952] that in standard spaces this
metric on the set of all (classes of) countable partitions is complete and separa-
ble. The same is true for every m ∈ N and the set of all partitions with at most
m cells of positive measure. The corresponding Polish spaces of partitions will
be denoted Pℵ0 and Pm, respectively.

The following obvious fact will play a crucial role in this section.

Fact 1.7.4 The assignment P �→ P(m) from Pℵ0 → Pm is continuous in d1

at every partition P whose (m−1)st and mth largest cells differ in measure.

Note that if P is infinite, the assumption is satisfied for infinitely many m’s.

Conditional entropy gives rise to an alternative metric among partitions with
finite entropy, called the Rokhlin metric :

Definition 1.7.5

dR(P,Q) = max{H(P|Q),H(Q|P)}.
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Indeed, H(P|Q) = H(Q|P) = 0 if and only if both Q � P and P � Q, i.e.,
P = Q. The triangle inequality is (1.6.12).

Remark 1.7.6 In most texts the Rokhlin metric is defined as H(P|Q) +
H(Q|P). Ours is, of course, a uniformly equivalent version.

Fact 1.7.7 The metrics dR and d1 are uniformly equivalent on the spaces
Pm.

Proof If

H(P|Q) =
∑
B∈Q

μ(B)HB(P) ≤ δ,

where δ < 1, then, by the rectangle rule (Fact A.1.1), HB(P) <
√

δ on sets B

of joint measure at least 1−
√

δ. In such a B there is a dominating A ∈ P (we
have already used this argument in the proof of (1.6.28)). This time we will
estimate the value t = μB(A) of the dominating cell more accurately. Since√

δ < 1 it must be that t > 1
2 . Then

√
δ ≥ HB(P) ≥ −t log t − (1 − t) log(1 − t) ≥ 2t(1 − t) ≥ 1 − t.

Thus t ≥ 1 −
√

δ (we have used twice the inequality − log t ≥ 1 − t). This
easily implies that d1(Q,P∨Q) ≤ 2

√
δ (see (1.7.1)). If the same holds with the

roles of P and Q reversed, then d1(P,Q) does not exceed 4
√

δ. In case δ ≥ 1
we have d1 < 4

√
δ since d1 never exceeds 1. We have proved that

d1 ≤ 4
√

dR (1.7.8)

(we did not strive to get the best estimate here).
Conversely, let ε = d1(P,Q). Let Cc =

⋃m
n=1 An ∩ Bπ(n) where π is such

that μ(C) = ε (see (1.7.1)). Let R = {C,Cc}. Then, using (1.6.3),

H(P|Q) ≤ H(P ∨ R|Q) = H(P|R ∨ Q) + H(R|Q) ≤
μ(Cc)HCc(P|Q) + μ(C)HC(P|Q) + H(R) ≤ 0 + εHC(P) + H(ε, 1− ε),

and on Pm the term HC(P) is estimated by log m. Thus the right-hand side
decreases to zero with ε. The same estimate applies to H(Q|P).

Note that the latter direction of the equivalence between the metrics fails for
countable partitions, even if we assume that their entropies are bounded. On
nonatomic measure spaces, the trivial partition P can be approximated in d1 by
countable partitions Pn with arbitrary entropy, and then dR(Pn,P) = H(Pn)
need not converge to 0.

We pass to investigating continuity properties of the entropy with respect to
varying partitions.
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Fact 1.7.9 The functions H(·), H(·|Q) and H(·|B) (for an arbitrary fixed
countable partition Q, and an arbitrary fixed sigma-algebra B) are uniformly
continuous on Pm and lower semicontinuous on Pℵ0 .

Proof On Pm we can use the Rokhlin metric, and then (1.6.15), (1.6.13) and
(1.6.36) yield the desired uniform continuities. To prove lower semicontinu-
ity (in d1) of each of the above functions at any P ∈ Pℵ0 we first choose a
subsequence mk of integers for which the assumption of Fact 1.7.4 is satisfied
for P, and then the considered three functions become increasing limits (along
mk) of functions continuous at P (see (1.6.18), (1.6.19) and Fact 1.6.39). This
suffices for lower semicountinuity at P (see Fact A.1.11 in Appendix A.1).

Fact 1.7.10 Assume H(P|B) < ∞ where B is a sigma-algebra. Then the
function H(P| ·∨B) is uniformly continuous on Pℵ0 . For trivial B this reads:
if H(P) < ∞, then the function H(P|·) is uniformly continuous on Pℵ0 .

Proof Assume that H(P|B) is finite. Then, by (1.6.26) and (1.6.30),

H(P|Q∨B)−H(P(m)|Q∨B) = H(P|P(m)∨Q∨B) ≤ H(P|P(m)∨B) =

H(P|B) − H(P(m)|B),

so, by Fact 1.6.39, the function Q �→ H(P|Q ∨ B) is a uniform limit of the
functions Q �→ H(P(m)|Q ∨ B). It remains to prove that the considered func-
tion is uniformly continuous for a finite partition P. Regard two partitions Q

and Q′ and set δ = d1(Q,Q′). Let Cc =
⋃m

n=1 Bn ∩ B′
π(n) where π is such

that μ(C) = δ (see (1.7.1)) and let R = {C,Cc}. Then, by (1.6.26) (applied
twice to H(P ∨ R|Q ∨ B)), we get

H(P|Q ∨ B) = H(P|R ∨ Q ∨ B) + H(R|Q ∨ B) − H(R|P ∨ Q ∨ B),

and the same for Q′. Since R has small entropy depending only on δ, we can
ignore the last two terms at a cost of a uniform error ε (if δ is small enough).
Thus

∣∣H(P|Q∨B)−H(P|Q′∨B)
∣∣ ≤ ∣∣H(P|R∨Q∨B)−H(P|R∨Q′∨B)

∣∣+2ε ≤
μ(Cc)

∣∣HCc(P|Q ∨ B) − HCc(P|Q′ ∨ B)
∣∣+

+ μ(C)
∣∣HC(P|Q ∨ B) − HC(P|Q′ ∨ B)

∣∣ + 2ε.

On Cc the partitions Q and Q′ coincide, so the first term in the last line is zero.
The next term is, by (1.3.2), at most δ log #P. This ends the proof.

We can now provide the missing proof of Fact 1.6.41.
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Proof of Fact 1.6.41 Notice that Q(m) converges to Q in Pℵ0 and apply Fact
1.7.10.

Fact 1.6.41 is a particular case of a more general property:

Lemma 1.7.11 Assume that H(P) < ∞. If Qk is a refining sequence of
partitions, then

H(P|
∨
k

Qk) = lim
k

↓ H(P|Qk). (1.7.12)

More generally, for any monotone sequence of sigma-algebras Bk, we have

∀k Bk � Bk+1 =⇒ H(P|
∨
k

Bk) = lim
k

↓ H(P|Bk), (1.7.13)

∀k Bk � Bk+1 =⇒ H(P|
⋂
k

Bk) = lim
k

↑ H(P|Bk). (1.7.14)

Proof For (1.7.12), by Corollary 1.6.23, it suffices to consider finite parti-
tions Q measurable with respect to

∨
k Qk. Every such partition can be approx-

imated in d1 by Qk-measurable partitions, say Rk, of the same cardinality. By
the continuity stated in Fact 1.7.10, we can have H(P|Rk) arbitrarily close to
H(P|Q), which can be chosen close to H(P|

∨
k Qk). More precisely, we can

arrange that the following inequalities hold:

H(P|Qk) ≤ H(P|Rk) ≤ H(P|Q) + ε ≤ H(P|
∨
k

Qk) + 2ε.

This implies that infk H(P|Qk) ≤ H(P|
∨

k Qk). The other inequality is obvi-
ous, by the monotonicity (1.6.30).

To prove (1.7.13), for each k let (Rk,i)i∈N be a refining sequence of parti-
tions generating Bk. We can arrange that for fixed i, Rk+1,i � Rk,i for all
k. Consider the expressions H(P|Rk,i). The assertion follows by applying, on
one hand the infimum over the pairs (k, i), (and (1.7.12)), on the other, the
iterated infimum, first over i (and (1.7.12) again), then over k.

The statement (1.7.14) will never be used in this book, so we can afford to
sketch an argument using the tools from the “asterisk sections.” In fact one
gets both statements (1.7.13) and (1.7.14) essentially strengthened. For P with
finite entropy, since the function t �→ − log t is convex, the corresponding
sequence of conditional information functions IP|Bk

is a (forward or back-
ward) submartingale. Using the martingale theory, it can be proved that in
both cases, this submartingale converges almost everywhere and in L1(μ) to
the conditional information function given B, of which the convergence of the
conditional entropies is an immediate consequence.
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We conclude this section with the following topological statement:

Fact 1.7.15 The space PR of all countable partitions with finite static entropy
is complete and separable in dR.

Proof By (1.7.8), any dR-Cauchy sequence Pk is d1-Cauchy and by (1.6.15)
has bounded entropy. By completeness of Pℵ0 , there exists a d1-limit, P,
which, by lower semicontinuity of H(·) (Fact 1.7.9), has finite entropy. Now,
H(P|Pk) converges to zero, by the continuity of H(P|·) (Fact 1.7.10). It
remains to prove that also H(Pk|P) → 0. By the last mentioned continuity,
for each k,

H(Pk|P) = lim
k′

H(Pk|Pk′) ≤ lim
k′

dR(Pk,Pk′),

which is small for large k, by the Cauchy condition.
Separability follows from the fact that every partition with finite entropy

can be approximated in dR by a finite partition and then, by separability of the
sigma-algebra A in the standard metric “measure of the symmetric difference,”
this finite partition can be approximated in d1 (equivalently in dR), by a finite
partition with elements belonging to a preselected countable family of sets.

1.8 Mutual information*

The term addressed in the title is a notion popularly used in information theory.
Its name is a bit misleading, because it is much closer to entropy than to an
information function.

Definition 1.8.1 For two partitions P and Q, their mutual information is
defined as

I(P ;Q) =
∑

A∈P,B∈Q

μ(A ∩ B) log
μ(A ∩ B)
μ(A)μ(B)

.

Mutual information is the “missing value” when comparing the entropy of
the join with the sum of entropies: H(P)+H(Q) = H(P∨Q)+I(P ;Q), which
can be rewritten as H(P) = H(P|Q)+I(P ;Q) or H(Q) = H(Q|P)+I(P ;Q).
Mutual information is indispensable only when both H(P|Q) and H(Q|P)
are infinite, otherwise it can be expressed as a difference of entropies (condi-
tional and unconditional). In particular, mutual information allows us to deter-
mine stochastic independence without any finiteness restrictions (compare Fact
1.6.16):

Fact 1.8.2 P⊥Q ⇐⇒ I(P ;Q) = 0.
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Proof By elementary operations, directly from the definition one derives

I(P ;Q) =
∑
A∈P

[
−μ(A) log(μ(A)) +

∑
B∈Q

μ(B)μB(A) log(μB(A))
]

=

∑
A∈P

[
η(μ(A)) −

∑
B∈Q

μ(B)η(μB(A))
]
,

where η is the strictly concave function (1.1.1). Since μ(A)=
∑

B∈Q μ(B)
μB(A), for each A∈P the corresponding term in the last displayed sum is non-
negative, and it equals zero if and only if μB(A)= μ(A) for every B ∈Q.

In this book mutual information will not be used. Its usefulness as a measure
of correlation between two partitions is illustrated in the anecdote below.1

Example 1.8.3 Imagine a place on the Earth, where it rains precisely one day
per year, yet one never knows which day it is. Suppose three weather stations cover
this place. The first one uses an extremely primitive algorithm, in fact no algorithm
at all: they predict “no rain” for each day of the year. Notice that this station is wrong
only one day per year. The second station runs a simulation, which copies precisely
the strategy of the nature: they draw randomly one of 365 numbers and they predict
rain for the corresponding day. This station is wrong a little below 2 times per year
(with very small probability they may be accurate, otherwise they miss the rainy
day and they predict rain on a sunny day). There is also a third station. These guys
conduct very complicated research, study the patterns from the past, use advanced
simulations etc. Each year they obtain three equal peaks of probability for the rainy
day to occur. Their method is so good that the true rainy day always occurs in one
of the three peak days. Their official prediction is rain for each of these three days.
Notice that they are wrong full two times per year.

Judging the “reliability” by the number of errors per year, the first station is the
best, the last one is the worse. However, it is intuitively clear that only the last station
provides us with valuable information. This “valuable information” is precisely the
mutual information of two partitions: the partition of the year (365 days) into “rain”
and “no rain” predicted by the station, and similar partition occurring in reality. The
higher the mutual information, the better job done by the station.

And so, the entropy of the partition P provided by nature equals H( 1
365

, 364
365

)
(we do not really need to calculate this value). The partition Q1 provided by the
first station is the trivial partition, has entropy zero, and so is the mutual infor-
mation. The partition Q2 given by the second station is already nontrivial and has
entropy H( 1

365
, 364

365
), the same as P, still it is independent of P and the mutual

information is again zero. The partition Q3 provided by the third station has entropy
H( 3

365
, 362

365
). The joined partition P ∨ Q3 divides the year into three sets of days:

“no rain predicted and no rain” (362 days), “rain predicted but no rain” (2 days),
and “rain predicted and rain” (1 day). The mutual information is the difference

H( 1
365

, 364
365

) + H( 3
365

, 362
365

) − H( 1
365

, 2
365

, 362
365

) =
1

365

(
(365 log 365 − 364 log 364) − (3 log 3 − 2 log 2)

)
.

1 This example was told to the author over lunch by Mike Keane, who attributed it to Jack van
Lint. In van Lint’s story the place was Death Valley in California and there were just two
weather stations. The modifications are due to the author.
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By elementary calculus, this is approximately (and not less than) log 121
365

> 0.

1.9 Non-Shannon inequalities*

This section is slightly off our main course, hence we will not provide detailed
proofs of all facts quoted here. It can be treated as a mention of a kind of
curiosity in entropy theory, of which it is good to be aware.

For two or three partitions with finite entropy (or just finite, for simplicity),
the inequalities of Fact 1.6.4 (combined with the equality (1.4.3)) bound the
set of possible vectors

v(P,Q) = 〈H(P),H(Q),H(P ∨ Q)〉

(for two partitions) or

v(P,Q,R) =

〈H(P),H(Q),H(R),H(P ∨ Q),H(P ∨ R),H(Q ∨ R),H(P ∨ Q ∨ R)〉

(for three partitions). Of course, these bounds (called Shannon inequalities) are
applicable also to collections of four or more partitions; any two or three joins
composed from such a collection must obey them. Thus, the following prob-
lem arises: Are these the only restrictions? Surprisingly, the answer is positive
only for two partitions; any nonnegative vector v = 〈a, b, c〉 equals v(P,Q) for
some partitions, if and only if max{a, b} ≤ c ≤ a + b (see Exercise 1.7).
We will show that already for k = 3 the set of corresponding vectors cannot be
described by homogeneous linear inequalities (i.e., without additive constants),
because it is not invariant under positive scaling (i.e., it is not a cone).

Fact 1.9.1 The vector 〈1, 1, 1, 2, 2, 2, 2〉 can be obtained as v(P,Q,R), while
its half, 〈 1

2 , 1
2 , 1

2 , 1, 1, 1, 1〉, cannot.

Proof The first statement is seen by taking three two-element partitions of
the standard space modeled by the unit square with the Lebesgue measure: P

is the partition into the vertical halves, Q is the partition into the horizontal
halves, and R � P∨Q is the “chessboard partition” consisting of two sets: the
union of the top-left and bottom-right corner squares, and its complement.

The second statement needs some computation. Suppose the “half vector”
equals v(P,Q,R) for some partitions. Because the entropies of each pair behave
additively under joining, each pair is stochastically independent (see Fact
1.6.16). On the other hand, since joining the third partition does not increase
the entropy of the join of the other two, it follows that R � P ∨ Q (see
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Fact 1.6.16). Notice that H(P) ≤ 1/2 forces P to contain a set of measure
larger than 1/

√
2. Clearly this set is the largest in this partition. Analogously

for Q and R. Let a, b and c denote the measures of the largest sets A, B and C

in P, Q and R, respectively. Permuting, if necessary, the names of the partitions
we can assume that c ≤ a and c ≤ b. By independence, μ(A∩B) = ab > 1/2,
and since C is a union of such intersections, A∩B must be a part of C. On the
other hand μ(A ∩ C) = ac ≤ ab implies that A ∩ C = A ∩ B and similarly,
B ∩ C = A ∩ B. This yields ac = bc = ab, hence a = b = c. This also
implies that C \A∩B ⊂ Ac ∩Bc, i.e., that a− a2 ≤ (1− a)2. This quadratic
inequality solves as a ≤ 1/2 or a ≥ 1. In the first case the entropies of the
three partitions are larger than or equal to 1, in the other case they all equal
zero.

We are facing the following general problem: Consider the standard proba-
bility space (X,A, μ), and a collection of k ∈ N measurable partitions Pi of
X (i = 1, . . . , k). Associated with these is the (2k − 1)-dimensional vector of
Shannon entropies

v(P1,...,Pk) = 〈Hμ(PF ) : ∅ �= F ⊂ {1, . . . , k}〉 ,

where, PF abbreviates the join
∨

i∈F Pi, and the indexing sets F are ordered
increasingly by cardinality (so that the first k coordinates are just the entropies
of the Pi’s, the last coordinate is the entropy of the join of all of them). Describe
the set

Γk = {v(P1,...,Pk) : Pi, . . . ,Pk are countable partitions with finite entropy}.

Question 1.9.2 It is clear that the set Γ∗
k obtained by admitting, in its defini-

tion, only finite partitions (but without bounding their cardinality) is dense in
Γk. Is it the same set?

Another pathology of the set Γk, for k ≥ 3 (in spite of not being a cone) is
that it is not even closed. This will follow immediately from the example above
and the statement proved below:

Fact 1.9.3 For each k ≥ 1, the closure Γk is a cone.

Proof If v = v(P1,...,Pk) and m ∈ N, then mv also belongs to Γk. This is
seen by regarding the product space Xm with the product measure μm and
taking partitions P′

i =
∨m

j=1 P
(j)
i , where P

(j)
i is the partition Pi applied to

the jth copy of X (and crossed with the trivial partitions at other coordinates).
Now, for each ∅ �= F ⊂ {1, . . . , k}, P′

F is the join of independent copies of
PF , hence its entropy is precisely m times larger.
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Because every multiplier can be approximated by a rational one with very
large denominator, in order to prove Fact 1.9.3 it now suffices, for each v ∈ Γk,
to approximate 1

nv by an element of Γk up to an error small for large n.
So, again, assume that v = v(P1,...,Pk). Let X ′ be the product of X with the

set {1, . . . , n}, equipped with the product sigma-algebra A′ = A×{all sub-
sets} and the product measure μ′ = μ × Prob, where Prob is the normalized
counting measure on {1, . . . , n}. Now, (X ′,A′, μ′) is again a standard prob-
ability space. In this space, the set A = X × {1} has measure 1/n and the
complement B = X × {2, ..., n} has measure (n − 1)/n. Let Q = {A,B} be
the associated partition of X ′.

Now define partitions P′
i (i = 1, . . . , k) of X ′ as follows: each of them

refines the partition Q; on the small part A they are copies of Pi, respectively
(formally they are Pi × {1}), and on B they are trivial, i.e., they all contain
the large set B in one piece. We fix a nonempty set F ⊂ {1, . . . , k} and we
calculate the Shannon entropy of the join P′

F . Because Q is refined by each P′
i,

it is also refined by P′
F , thus we have

H(P′
F ) = H(P′

F ∨ Q) = H(P′
F |Q) + H(Q) =

μ′(B)HB(P′
F ) + μ′(A)HA(P′

F ) + H(Q) = n−1
n · 0 + 1

nHμ(PF ) + H(Q) =
1
nHμ(PF ) + H(Q).

The error term H(Q) of this approximation depends only on n and converges
to zero as n → ∞. This concludes the proof.

The closure Γk remains hard to describe; only for k ≤ 3 it is determined
by the Shannon inequalities. For k ≥ 4 this set is not even a polyhedral
cone, i.e., it cannot be described by a system of linear inequalities. The known
constraints (inequalities) embracing the set Γk, and not following from the
Shannon inequalities are called “non-Shannon inequalities” and are usually
highly nontrivial. The list of such inequalities is not exhausted and every now
and then new non-Shannon inequalities are being discovered [see Makarychev
et al., 2002, and references therein]. Below we replicate (without a proof) from
[Zhang and Yeung, 1997] an example of such an inequality valid for k = 4:

H(P1∨P2)+H(P1∨P3)+3(H(P2∨P3)+H(P3∨P4)+H(P2∨P4)) ≥
2H(P2)+2H(P3)+H(P4)+H(P1∨P4)+H(P1∨P2∨P3)+4H(P2∨P3∨P4).

Question 1.9.4 There is another, similar set of vectors, say Γ̃k, arising as
dynamical entropies of all possible joins composed out of k partitions, under an
action of measure-preserving transformation of the standard probability space
(see the next chapter). The definition of Γ̃k involves all possible systems of k

partitions as well as all possible transformations. Directly from the definition of
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the dynamical entropy (which is the limit of expressions of the form 1
nH(Pn),

where Pn is a partition), and from scalability of the set Γk, it is immediately
seen that this new set is contained in Γk. Whether it is closed (hence Γ̃k = Γk)
seems to be, at the moment this book was written, an open problem.

Exercises

1.1 Show that every nonnegative concave function f on [0, a] or on [0,∞) is
subadditive, i.e., f(x + y) ≤ f(x) + f(y) whenever x, y, x + y belong
to the domain.

1.2 Prove that a sequence of countable probability vectors converges in �1 to
a probability vector if and only if the convergence is coordinatewise.

1.3 Consider an abstract function H : X → [0,∞), where X is some set
equipped with an associative and commutative operation ∨. Assume that
for all a, b ∈ X, H(a∨b) ≥ H(a) and define H(a|b) as H(a∨b)−H(b).
Derive

H(a ∨ b|c) = H(a|b ∨ c) + H(b|c),
H(a ∨ b|c) ≥ H(a|c).

Assuming additionally that H(a|b) ≥ H(a|b∨c) (for all a, b, c ∈ X) and
that there exists e ∈ X such that a ∨ e = a for all a ∈ X (e is a “unity”
for ∨), derive also

H(a ∨ b|c) ≤ H(a|c) + H(b|c),
H(a ∨ b) ≤ H(a) + H(b),

H(a ∨ a′|b ∨ b′) ≤ H(a|b) + H(a′|b′),
H(a|c) ≤ H(a|b) + H(b|c),

|H(a|c) − H(b|c)| ≤ max{H(a|b),H(b|a)},
|H(a|b) − H(a|c)| ≤ max{H(b|c),H(c|b)},

|H(a) − H(b)| ≤ max{H(a|b),H(b|a)}.

1.4 Prove that for every finite-dimensional probability vector p=
{p1, . . . , pl} we have

H(p) ≤ max
1≤i≤l

(1 − pi) log l + 1.

1.5 Let p = (pi)i≥1 be a probability vector. Show that for every ε > 0 there
exists a subsequence mk of the natural numbers, such that the vector
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p′ = (p′i) where p′i =
∑mi

i=mi−1+1 pi (we set m0 = 0) has entropy
smaller than ε.

1.6 Give an example showing that mutual information is not subadditive, i.e.,
that the inequality I(P ∨ Q ;R) ≤ I(P ;R) + I(Q ;R) may fail.

1.7 Show that for any triple a, b, c ∈ [0,∞) such that max{a, b} ≤ c ≤ a+b

there exist two partitions P,Q (say, of the unit square with the Lebesgue
measure) such that H(P) = a,H(Q) = b and H(P ∨ Q) = c.



2

Dynamical entropy of a process

2.1 Subadditivity

Subadditivity is a property of real functions (we have already mentioned it for
the function η), sequences, and also sequences of functions (so-called cocy-
cles) defined on a dynamical system. Because it plays a very important role in
the theory of entropy, we isolate this short section.

We will distinguish four classes of sequences (an)n≥1 of nonnegative
numbers:

(A) the sequence (an) has decreasing increments if (an − an−1) (with a0

defined as 0) is decreasing;

(B) the sequence (an) has decreasing nths if ( 1
nan) is decreasing;

(C) the sequence (an) is subadditive if am+n ≤ an + am, for any m,n ∈ N;

(D) the sequence (an) has descending nths if ( 1
nan) converges to its

infimum.

Fact 2.1.1 (A) =⇒ (B) =⇒ (C) =⇒ (D). None of the implications can
be reversed. If (A) holds, then (an) increases and lim

n
(an+1 − an) = lim

n

1
nan.

Proof The term 1
nan is the arithmetic average of the first n increments.

Averages of a decreasing sequence decrease to the same limit, so (A) implies
(B) and equality of the appropriate limits. If (an) was not increasing, there
would be a negative increment and all following increments would be
even smaller, leading eventually to negative values of an (assumed to be
nonnegative).

Further, (B) implies 1
m+nam+n ≤ min{ 1

mam, 1
nan}, hence

1
m + n

am+n ≤ m

m + n

1
m

am +
n

m + n

1
n

an,
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which, after cancellation, yields (C). Assume (C). If m = kn + r with 0 ≤
r < n, then

am

m
≤ kan

m
+

ar

m
≤ an

n
+

na1

m
,

hence, for every n, lim supm
am

m ≤ an

n . This implies (D). Examples justifying
the last statement are elementary.

The following lemma will be used to show that some sequences have
decreasing nths.

Lemma 2.1.2 Let a = 1
n (a1+a2+ · · ·+an), b = 1

n−1 (b1+b2+ · · ·+bn−1).
If bi ≥ ai and bi ≥ ai+1, for each i = 1, 2, . . . , n − 1, then b ≥ a.

Proof

n(b1 + b2 + · · · + bn−1) =

(n − 1)b1 + [b1 + (n − 2)b2] + · · · + [(n − 2)bn−2 + bn−1] + (n − 1)bn−1≥
(n − 1)a1 + (n − 1)a2 + · · · + (n − 1)an−1 + (n − 1)an =

(n − 1)(a1 + a2 + · · · + an).

For certain sequences related to dynamical entropy, subadditivity is usually
the property most easy to verify, and sufficient for the existence of appropriate
limits. Nevertheless, in most cases, either (A) or at least (B) also holds. We
will comment on that in due course.

Now we pass to discussing subadditive cocycles.

Definition 2.1.3 Let X be any space and T : X → X any transformation.
By a subadditive cocycle on the system (X,T ) we will mean a sequence of
nonnegative functions (fn)n≥1 such that for every x ∈ X and every natural m

and n, it holds that

fm+n(x) ≤ fn(x) + fm(Tnx).

If (fn) is a subadditive cocycle such that f1 is bounded from above, then the
sequence (an) defined by an = supx∈X fn(x) is subadditive. Moreover, if the
cocycle is defined on a measure space, T is measure-preserving and each fn is
integrable, then the sequence (bn), where bn =

∫
fn dμ, is also subadditive.

Although the next theorem does not refer directly to entropy we give here
a relatively elementary proof. For a more general version see [Krengel, 1985,
Theorem 5.3]. In the formulation, we anticipate a bit our notation. It is
explained at the beginning of the next section.
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Theorem 2.1.4 (Subadditive Ergodic Theorem) Let (X,A, μ, T, S) be an
ergodic measure-preserving transformation and let (fn)n∈N be a measurable
subadditive cocycle with f1 bounded from above. Then, μ-almost surely

lim
n

1
n

fn(x) = lim
n

1
n

∫
fn dμ. (2.1.5)

The limit on the right-hand side can be replaced by the infimum.

Proof Denote by C the limit on the right, whose existence (and the last state-
ment) follows from the subadditivity of the sequence of integrals. Assume that
f1 is bounded from above by a constant a. Then, for each n ∈ N, 1

nfn is
also bounded from above by a. Fix two natural numbers, m > n and write
m = kn + l (l < n). By subadditivity of fn we have

fm(x) ≤
k−1∑
i=0

fn(Tnix) + la.

Substituting x by Tx, . . . , Tn−1x and adding on both sides we obtain

n−1∑
i=0

fm(T ix) ≤
m−1∑
i=0

fn(T ix) + nla. (2.1.6)

On the other hand, applying subadditivity again, for each 0 ≤ i < n we have

fm+n(x) ≤ fi(x) + fm(T ix) + fn−i(Tm+ix),

where the sum of the first and last terms does not exceed na. Averaging over
0 ≤ i < n and applying the previous estimate we get

fm+n(x) ≤ 1
n

n−1∑
i=0

fm(T ix) + na ≤ 1
n

m−1∑
i=0

fn(T ix) + 2na. (2.1.7)

Dividing by m and letting m → ∞ we obtain, by the ergodic theorem,

lim sup
m→∞

1
m

fm(x) ≤ 1
n

∫
fn dμ,

for μ-almost every x. Since n is arbitrary, we have, almost surely,

lim sup
m→∞

1
m

fm(x) ≤ C.

It remains to prove the reversed inequality with lim inf . Recall that a mea-
surable function g is called subinvariant (or supinvariant) if, for almost all
x∈X , g(Tx)≤ g(x) (or g(Tx)≥ g(x)), and that in ergodic systems only
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constants are subinvariant (supinvariant). So, suppose for contrary that for
some positive ε,

lim inf
n→∞

1
nfn(x) < C − 3aε (2.1.8)

on a positive measure set. Denote c = C − 3aε. By subadditivity, fn+1(x) ≤
a+fn(Tx), hence the function lim infn

1
nfn is supinvariant, and thus constant

μ-almost everywhere. This implies that the inequality (2.1.8) holds in fact on
a full measure set. In particular,

μ
( ∞⋃

n=1

{x : 1
nfn(x) < c}

)
= 1.

Then there exists n0 such that the set

E =
n0⋃

n=1

{x : fn(x) < nc} (2.1.9)

has measure larger than 1 − ε. By the Ergodic Theorem applied to the charac-
teristic function of E there exists a positive integer m0 larger than n0/ε such
that the set

F =
{

x : 1
m0

#{i : 0 ≤ i < m0, T
ix ∈ E} > 1 − ε

}
(2.1.10)

has measure also larger than 1 − ε. By the definition of C in (2.1.5) we have

m0C ≤
∫

fm0 dμ =
∫

F

fm0 dμ +
∫

X\F

fm0 dμ.

The second integral is smaller than m0aε. We will arrive at a contradiction
with (2.1.8) by estimating the first integral by m0(c + 2aε). This will be done
by showing that fm0(x) ≤ m0(c + 2aε) for every x ∈ F . We fix such an x

and proceed as follows:
We denote by i1 the smallest nonnegative integer with T i1x ∈ E and

we choose an n1 ≤ n0 with fn1(T
i1x) < n1c (see the definition of E in

(2.1.9)). Inductively, for each k > 1, we let ik be the smallest integer satis-
fying ik ≥ ik−1 + nk−1 and T ikx ∈ E, and we choose an nk ≤ n0 with
fnk

(T ikx) < nkc. We call [ik, ik + nk) a good interval. The number of posi-
tive integers smaller than m0 not contained in good intervals is at most m0ε

(see the definition of F in (2.1.10)). The length of the last incomplete part of
a good interval intersecting [0,m0) (if such exists) is at most n0, also smaller
than m0ε. The sum n1 + n2 + · · · + nk0 representing the joint length of good
intervals fully contained in [0,m0) is thus larger than m0(1 − 2ε). A final
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application of subadditivity allows us to write

fm0(x) ≤
k0∑

k=1

fnk
(T ikx) + (m0 −

k0∑
k=1

nk)a,

where the first sum comes from the good intervals and the second one estimates
the rest. Replacing each fnk

(T ikx) by nkc we obtain

fm0(x) ≤ m0c + 2m0εa < m0(c + 2aε),

as claimed.

2.2 Preliminaries on dynamical systems

We assume familiarity of the reader with basics of ergodic theory, nonethe-
less we recall the notation. Let (X,A, μ) be a standard (completed) probabil-
ity space and let T : X → X be a measurable measure-preserving map (an
endomorphism), i.e., such that T−1(A) ∈ A and μ(T−1(A)) = μ(A), for
every A ∈ A. The semigroup of nonnegative integers acts on X by iterates of
T , with the convention that T 0 is the identity map. We call T an automorphism
when, after discarding a set of measure zero, T becomes injective. Then T−1

can be defined almost everywhere, and in standard spaces it is automatically
measurable and preserves μ. In such case we can also consider the action of the
group which includes the iterates of T−1. In some aspects it is very important
to remember which action one has in mind. In case of an automorphism we
can still have two different actions and the corresponding (measure-theoretic)
dynamical systems will be denoted by (X,A, μ, T, N0) and (X,A, μ, T, Z),
respectively, or by (X,A, μ, T, S) (S ∈ {N0, Z}) if we want to include both
choices. The set S will be referred to as the acting semigroup.

Example 2.2.1 Let X be a compact metric space and let T : X → X be
a continuous map (or homeomorphism). The triple (X, T, S) is called a topolog-
ical dynamical system. It is known that the collection of T -invariant probability
measures μ on the Borel sigma-algebra AX in X is nonempty. Every such mea-
sure produces a dynamical system (X, Aμ, μ, T, S) (Aμ is the Borel sigma-algebra
completed with respect to μ).

A dynamical system (Y,B, ν, S, S) is a factor of (X,A, μ, T, S) (equiva-
lently, (X,A, μ, T, S) is an extension of (Y,B, ν, S, S)) (notice that we require
the acting semigroup to be the same) if there is a measurable map (called a
factor map) π : X → Y which is equivariant, i.e., such that π ◦ T = S ◦ π

and πμ = ν. Every factor (Y,B, ν, S, S) determines a sigma-algebra in X ,
π−1(B) � A, whenever possible also denoted by B. This sigma-algebra is
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subinvariant, i.e., T−1(B) � B or, in case S is invertible (for instance, when
S = Z), it is invariant, i.e., T−1(B) after completing equals B. Notice that by
preservation of the measure, after discarding a set of measure zero, T is a sur-
jection, hence the last condition also implies T (B) = B. Conversely, it is well
known in ergodic theory (compare Fact 1.2.2) that every subinvariant sigma-
algebra B (invariant if S = Z) defines a factor of the system (X,A, μ, T, S).
The space Y of that factor corresponds to the collection of all atoms of the
sigma-algebra B. The action on this factor is invertible if and only if B is
invariant.

Two systems (X,A, μ, T, S) and (Y,B, ν, S, S) are isomorphic if there exists
a factor map π : X → Y which is invertible. It is important to realize that a
factor of a system associated with a (sub)invariant proper sub-sigma-algebra
can be isomorphic to the whole system via another map (see Exercise 2.1).

An extremely important class of systems are symbolic dynamical systems,
in which X is the space ΛS

′
(S′ ∈ {N0, Z}) of unilateral (i.e., with S

′ = N0)
or bilateral (i.e., with S

′ = Z) sequences (xi)i∈S′ over a countable set Λ called
the alphabet. In such spaces we will always regard only one “master” sigma-
algebra, namely the completed product sigma-algebra in ΛS

′
, where each copy

of Λ is equipped with the sigma-algebra of all subsets. The transformation T

will be typically the shift transformation σ defined by σ(xi)i∈S′ = (xi+1)i∈S′ .
The measure μ can be chosen as any shift-invariant measure. In full generality
we assume that S ⊂ S

′. The remaining configuration, S
′ = N0 and S = Z, is

possible only when the shift map is invertible on unilateral sequences, which
has very strong consequences (see Fact 2.3.12). We will denote symbolic sys-
tems by (ΛS

′
, μ, σ, S), skipping the obvious sigma-algebra.

Let P be a finite or countable partition of X and let Λ be a set of labels
assigned bijectively to the elements of P. The map

x 
→ πx = (xn)n∈S ∈ ΛS

defined by the rule xn = a ⇐⇒ Tnx ∈ A, where a ∈ Λ is the label of A ∈
P, is a factor map from (X,A, μ, T, S) to the symbolic system over the alpha-
bet Λ with the shift-invariant measure πμ. This symbolic factor system will be
called the process generated by P and denoted by (X,P, μ, T, S). The reader
will easily distinguish between a dynamical system denoted by (X,A, μ, T, S)
(with the sigma-algebra in Gothic) and a process (X,P, μ, T, S), where the
emphasis is on one selected partition. The sequence (xn)n∈S corresponding to
a point x ∈ X will be referred to as the P-name of x.

Every symbolic system (ΛS
′
, μ, σ, S) is a process in the above sense, as long

as S
′ = S. It suffices to take X = ΛS and consider the zero-coordinate parti-

tion PΛ = {Aa : a ∈ Λ}, where Aa = {x ∈ ΛS : x0 = a}. Every x is now
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identical with its own PΛ-name, so the process generated by PΛ is equal to the
original system. From now on the term “process” becomes almost synonymous
with “symbolic dynamical system,” except that a process requires S

′ = S and
we want to maintain the reference to the “master” dynamical system and the
selected partition.

In a symbolic system, for (xn) ∈ ΛS and i ≤ j ∈ S, by x[i, j] we will denote
the block (xi, xi+1, . . . , xj) ∈ Λj−i+1. With each block B ∈ Λn we associate
its cylinder set, UB = {x : x[0, n − 1] = B}. In a process (X,P, μ, T, S)
generated by a partition P labeled by an alphabet Λ the cylinder is formally the
preimage of UB by π. For n ≥ 1 we will denote:

Pn =
n−1∨
i=0

T−i(P).

By convention, P0 equals the trivial partition. It is easy to see that Pn equals
the partition into the cylinder sets π−1(UB) over all blocks B ∈ Λn. From now
on we will identify the blocks B with their cylinders UB (in symbolic systems)
or with π−1(UB) (in processes) and denote by B both the block and the cylin-
der, depending on the context. We shall not use UB or π−1(UB) again. In
other words, we will identify the Cartesian product Λn with the above defined
join Pn.

We will also use the following notation: if D is a finite subset of S, then

PD =
∨
i∈D

T−i(P).

If D is infinite, PD will be used to denote the smallest completed sigma-algebra
containing all the partitions T−i(P), where i ∈ D. Intuitively, PD is the par-
tition (or sigma-algebra) with atoms determined by the entries the P-names
assume at the coordinates i ∈ D. In addition to the above introduced conven-
tion P[0,n−1] = Pn, we will also abbreviate P−n = P[−n,−1], P− = P(−∞,−1]

and P+ = P[1,∞). The partitions P−n, Pn and the sigma-algebras P−, P+ will
be called the nth past, the nth present, the full past and the full future of the
process, respectively. Of course, the notions involving the past apply only to
the invertible case with S = Z. By the full history of the process we shall mean
PS, the full completed sigma-algebra generated by P via the dynamics.

Remark 2.2.2 We apologize for not sticking to the most commonly used
notation Pn

m in place of our P[m,n]. There are two major reasons for that: (1)
we will often use partitions with a subscript, which would collide with the
“lower bound” m, (2) we will use more complicated sets D than intervals, for
which the traditional denotation is insufficient.
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2.3 Dynamical entropy of a process

Dynamical entropy of a process depends only on its future, so it is not
important whether we deal with the action of N0 or Z. Nevertheless, since some
properties related to entropy of the process do depend on the acting semigroup,
we will keep it in mind (and S in the denotation). In order to avoid repetitions of
very similar constructions and statements, we will discuss dynamical entropy
and conditional dynamical entropy at the same time.

Let (X,A, μ, T, S) be a dynamical system. As long as the transformation
and measure are fixed, we will skip them in the denotation of the entropy
notions. We will consider two countable partitions P, Q and a sigma-algebra
B which represents a factor (recall that B is subinvariant, i.e., T−1(B) � B,
in case S = N0, or invariant, i.e., T−1(B) = B, in case S = Z). We will be
interested in the following four sequences:

H(Pn), H(Pn|B), H(Pn|Qn), H(Pn|Qn ∨ B).

Subadditivity of these sequences can be immediately derived from (1.6.33),
subinvariance of B and T -invariance of the measure, and in most cases this
subadditivity would be enough for us. But in fact these sequences satisfy
stronger conditions. Since the proof in full generality seems not to occur in
other textbooks, we have decided to give it.

Fact 2.3.1 The sequences H(Pn),H(Pn|B),H(Pn|Qn),H(Pn|Qn ∨ B)
have decreasing nths. Moreover, the sequences H(Pn) and H(Pn|B) have
decreasing increments.

Proof Of course, it suffices to prove the decreasing nths for H(Pn|Qn ∨B).
This term decomposes, by (1.6.26), into n terms

H(P|Qn ∨B)+H(T−1(P)|P∨Qn ∨B)+H(T−2(P)|P2 ∨Qn ∨B)+ · · ·

· · · + H(T−(n−1)(P)|Pn−1 ∨ Qn ∨ B) =
n−1∑
i=0

H(T−i(P)|Pi ∨ Qn ∨ B),

and H(Pn−1|Qn−1 ∨ B) decomposes analogously, into n − 1 terms

n−2∑
i=0

H(T−i(P)|Pi ∨ Qn−1 ∨ B).
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Clearly, the ith term below is not smaller than the ith term above. But it is also
not smaller than the (i + 1)st term above:

H(T−i(P)|Pi∨Qn−1∨B) = H(T−(i+1)(P)|P[1,i]∨Q[1,n−1]∨T−1(B)) ≥
H(T−(i+1)P|Pi+1 ∨ Qn ∨ B).

It is now seen that a = 1
nH(Pn|Qn ∨ B) and b = 1

n−1H(Pn−1|Qn−1 ∨ B)
satisfy the requirements of Lemma 2.1.2, so b ≥ a.

The second statement is much easier (though stronger for the sequences to
which it applies). By (1.6.26), the nth increment is

H(Pn|B) − H(Pn−1|B) = H(T−n+1(P)|Pn−1 ∨ B). (2.3.2)

Similarly, the (n + 1)st increment is H(T−n(P)|Pn ∨B). Applying T−1, the
nth increment can be rewritten as H(T−n(P)|P[1,n−1] ∨ T−1(B)). Because
Pn ∨ B� P[1,n−1] ∨ T−1(B), the (n+ 1)st increment is not larger than
the nth.

We can now define the major notions of this section (and, perhaps, of the
entire book): the dynamical entropy of a process interpreted as the average
gain of information per iterate.

Definition 2.3.3 Assume H(P) < ∞. The value

h(μ, T,P) = h(P) = lim
n

↓ 1
nH(Pn)

will be called the dynamical entropy of (the process generated by) P. The sim-
plified notation will be used when the measure and the transformation are fixed.
The values

h(μ, T,P|B) = h(P|B) = lim
n

↓ 1
nH(Pn|B),

h(μ, T,P|Q) = h(P|Q) = lim
n

↓ 1
nH(Pn|Qn), and

h(μ, T,P|Q,B) = h(P|Q,B) = lim
n

↓ 1
nH(Pn|Qn ∨ B)

(assuming H(P|B) < ∞, or H(P|Q) < ∞, or H(P|Q ∨ B) < ∞, respec-
tively) are called the conditional dynamical entropy of P given B, given Q, and
given both Q and B.

Let us remark that the finiteness assumption is completely natural and nec-
essary. Without it, the corresponding dynamical entropy is infinite, even for
the action of the identity transformation, i.e., the infinite value is completely
useless for describing the “complexity” of the dynamical system.

We can derive another formula which is often used as an alternative defini-
tion of the dynamical entropy. It allows for another interpretation of h(P), as
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the expected gain of information in one step given all the information from the
future (or the past, depending on how we interpret the direction of the time) of
the process.

Fact 2.3.4 Let B denote an invariant sigma-algebra (in particular, trivial)
such that H(P|B) < ∞. Then

h(P|B) = H(P|P+ ∨ B), (2.3.5)

h(P) = H(P|P+). (2.3.6)

Proof Since now T−1(B) = B, we can rework the increment in the
sequence H(Pn|B) differently:

H(Pn+1|B)−H(Pn|B)=H(Pn+1|B)−H(T−1(Pn)|B)=H(P|P[1,n]∨B).

By Fact 2.1.1, these increments converge to the same limit as 1
nH(Pn|B),

i.e., to h(μ, T,P|B). On the other hand, by (1.7.12), their limit equals
H(P|P+ ∨ B).

We shall now explain that the last two notions in Definition 2.3.3 (condi-
tional dynamical entropy given Q and given Q,B) reduce to the preceding
notion of conditional dynamical entropy given a subinvariant sigma-algebra.

Fact 2.3.7

H(P|Q) < ∞ =⇒ h(P|Q) = h(P|QS), (2.3.8)

H(P|Q ∨ B) < ∞ =⇒ h(P|Q,B) = h(P|QS ∨ B). (2.3.9)

Notice that the terms on the right are more universal, as they require weaker
finiteness assumptions (H(P|QS) < ∞ or H(P|QS ∨ B) < ∞). Nevertheless,
the limits involving Qn rather than QS are often more convenient to use.

Proof of Fact 2.3.7 It suffices to prove (2.3.9). It follows directly from the
definition that h(P|Q,B) ≥ h(P|QS ∨ B). To get the reversed inequality for
S = N0 we write

H(Pm+n|Qm+n∨B) ≤ H(Pm|Qm+n∨B)+H(T−m(Pn)|Qm+n∨B) ≤
H(Pm|Qm+n ∨ B) + H(T−m(Pn)|T−m(Qn) ∨ T−m(B)) =

H(Pm|Qm+n ∨ B) + H(Pn|Qn ∨ B).

If S = Z, B is necessarily invariant and, then we write

H(Pm+2n|Qm+2n ∨ B) ≤
H(Pn|Qm+2n∨B)+H(T−n(Pm)|Qm+2n∨B)+H(T−n−m(Pn)|Qm+2n∨B)

≤ 2H(Pn|Qn ∨ B) + H(Pm|Q[−n,m+n−1] ∨ B).
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Dividing by m and taking infimum over m we obtain,

h(P|Q,B) ≤ inf
m

1
mH(Pm|Qm+n ∨ B) or

h(P|Q,B) ≤ inf
m

1
mH(Pm|Q[−n,m+n−1] ∨ B),

depending on the choice of S. Because this is true for every n, we can apply
infimum over n on the right. We can also reverse the order of the infima:

h(P|Q,B) ≤ inf
m

1
m inf

n
H(Pm|Qm+n ∨ B) = inf

m

1
mH(Pm|QN0 ∨ B) or

h(P|Q,B) ≤ inf
m

1
m inf

n
H(Pm|Q[−n,m+n−1] ∨ B) = inf

m

1
mH(Pm|QZ ∨ B).

Remark 2.3.10 For actions of S = Z the sigma-algebra QS is invariant (and
so is B), hence, by (2.3.5), we also have

h(P|Q,B) = H(P|P+ ∨ QS ∨ B). (2.3.11)

There is now an interesting interpretation of dynamical entropy zero related
to invertibility.

Fact 2.3.12 Consider a process (X,P, μ, T, S). The three conditions below
are equivalent:

(a) h(μ, T,P) = 0;
(b) P is P+-measurable;
(c) the shift map σ on the unilateral symbolic space (ΛN0 , πμ) is invertible,

where Λ is a set of labels bijectively assigned to the elements of the partition
P, π is the factor map sending each x to its unilateral P-name and πμ is μ

transported via π (by preimage).

Proof The condition h(μ, T,P) = 0 reads H(P|P+) = 0. The statement
(1.6.28) now establishes the equivalence between (a) and (b). If (b) holds, then
for μ-almost every x ∈ X the unilateral P-name of Tx determines the element
of P containing x. In other words, the unilateral P-name of Tx determines the
unilateral P-name of x, and this is exactly (c). In the unilateral symbolic system
(ΛN0 , πμ, σ, N0), PN0 is, by definition, the full (product) sigma-algebra. If (c)
holds, then T (P) is measurable (i.e., PN0-measurable). Applying T−1 we get
that P is P+-measurable, i.e., (b).

The above Fact 2.3.12 can be expressed as follows:

• Every zero-entropy process is in fact invertible.
• An invertible process has entropy zero if and only if PZ = P+(= P−).
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In yet other words, if a process has entropy zero, then regardless of whether
it is an action of N0 or Z, almost every point has a well-defined backward P-
name or past (. . . , x−2, x−1) and this past determines the future of x. Such
processes are often called deterministic. See also Section 3.2 devoted to the
Pinsker factor.

Example 2.3.13 Let T denote the unit circle on the complex plane and let R :
T → T be the rotation map given by R(z) = �z, where � ∈ T. We have a
topological dynamical system (T, R, S). The normalized Lebesgue measure λ is
preserved by R. So, we have a dynamical system (T, Aλ, λ, R, S). It is well known,
that this system is ergodic if and only if � is not a root of unity (then we deal
with an irrational rotation). Every partition P into two complementary arcs A0, A1

produces a so-called Sturmian process1 (T, P, λ, R, S). The past of every point
determines this point, so the process has entropy zero.

Remark 2.3.14 Since, for an invertible map, h(μ, T,P) = h(μ, T−1,P), it
follows from Fact 2.3.12 (b) that P is measurable with respect to P+ if and only
if it is measurable with respect to P−. This fact refers only to sigma-algebras
and measurability, in particular it is expressed without using the entropy. It
would be very interesting to have a proof based exclusively on manipulating
sigma-algebras. Such a proof, however, is not known. This is a good example
showing how powerful a tool the entropy theory is. See also Question 3.2.3.

The opposite class to processes of entropy zero are independent processes.

Definition 2.3.15 A process (X,P, μ, T, S) is independent if h(P) = H(P),
equivalently, H(P|P+) = H(P), i.e, P is independent of the future (see Fact
1.6.38).

Independent processes have only one possible symbolic realization – as
Bernoulli shifts.2

Let p = (p1, p2, . . . ) be a probability distribution on a countable (or finite)
set of symbols Λ, satisfying H(p) < ∞. On X = ΛS the product measure
μ = pS is shift invariant. It is easy to see that, for each n, H(Pn

Λ) = nH(p),
so h(PΛ) = H(PΛ) = H(p), so the process generated by PΛ on the symbolic
system (ΛS, μ, σ, S) is an independent process.

1 Some authors restict the name “Sturmian” only to the process generated by the partition with
cuts at 1 and �.

2 Bernoulli shifts should not be confused with Bernoulli processes (or Bernoulli systems), by
which we understand any process (system) isomorphic to a Bernoulli shift. See also Section
4.5.
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2.4 Properties of dynamical entropy

We start with a useful statement:

Fact 2.4.1 Suppose H(Q) < ∞ and Q � PN0 . Then

h(Q) ≤ h(P).

Proof Note that Q � PN0 implies Q+ � P+. By (1.6.26) and (1.6.28) we
have

h(Q) ≤ h(P ∨ Q) = H(P ∨ Q|P+ ∨ Q+) = H(P ∨ Q|P+) =

H(Q|P ∨ P+) + H(P|P+) = 0 + h(P).

Applying the decreasing limit of Definition 2.3.3 to appropriate rules for
static entropy ((1.6.26), Fact 1.6.27 and Corollary 1.6.31) we derive the list
of already familiar monotonicity and subadditivity properties, this time for
dynamical entropy. The last two statements are consequences of the preced-
ing two and the inequality h(P|Q) ≤ H(P|Q). Of course, all the statements
are valid with B replaced by a partition, or the trivial sigma-algebra. We skip
rewriting these versions, except the first one which is most frequently used.

Fact 2.4.2 Let P,Q,R be any countable partitions, and B a subinvariant
sigma-algebra. Then

h(P ∨ Q|B) = h(P|Q,B) + h(Q|B), (2.4.3)

h(P ∨ Q) = h(P|Q) + h(Q), (2.4.4)

P � Q =⇒ h(P|B) ≥ h(Q|B), (2.4.5)

B � C =⇒ h(P|B) ≤ h(P|C), (2.4.6)

h(P ∨ Q|B) ≤ h(P|B) + h(Q|B), (2.4.7)

h(P|B) ≤ h(P|Q) + h(Q|B), (2.4.8)

h(P|R,B) ≤ h(P|Q,B) + h(Q|R,B), (2.4.9)

|h(P|B) − h(Q|B)| ≤ max{H(P|Q),H(Q|P)}, (2.4.10)

|h(P|Q,B) − h(P|R,B)| ≤ max{H(Q|R),H(R|Q)}. (2.4.11)

Recall that if P is countable, then P(m) denotes the m-element partition
obtained by uniting all but the largest m − 1 cells. Because P(m) � P(m+1),
the entropies h(P(m)|Q) increase.
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Fact 2.4.12 Assume H(P|B) < ∞ (with B subinvariant). Then

h(P|B) = lim
m

↑ h(P(m)|B).

In particular, replacing B by QS or the trivial partition we get

h(P|Q) = lim
m

↑ h(P(m)|Q),

h(P) = lim
m

↑ h(P(m)).

Proof By (2.4.10), and since P � P(m), we have |h(P|B) − h(P(m)|B)| ≤
H(P|P(m)) = H(P) − H(P(m)), which by (1.6.18) decreases to zero. Mono-
tonicity is obvious by (2.4.5).

We remark that the finiteness assumption cannot be skipped. For instance, let
T be the identity map on a nonatomic space. There exist partitions with infinite
static (hence dynamical) entropy, while every finite partition has dynamical
entropy zero.

We pass to the continuity properties.

Fact 2.4.13 The functions h(·|B), where B is a fixed subinvariant sigma-
algebra, in particular h(·|Q) for any fixed partition Q, and h(·), are uniformly
continuous on PR (with the Rokhlin metric dR), while they are only lower
semicontinuous on the same space with respect to d1. If P satisfies H(P|B) <

∞, then the function h(P| · ,B), (in particular h(P|·) where H(P) < ∞) is
uniformly continuous on PR and upper semicontinuous on Pℵ0 (with respect
to d1).

Proof Uniform continuity of h(·|B) and h(P| · ,B) in dR is literally (2.4.10)
and (2.4.11), respectively.

Lower semicontinuity of h(·|B) in d1 is proved at each P separately. Since
on finite partitions the metrics dR and d1 are equivalent, h(P(m)|B) is con-
tinuous in d1 at P(m) for each m. Recall Fact 1.7.4, saying that the map
P 
→ P(m) is continuous in d1 for infinitely many indices m. For these indices
P 
→ h(P(m)|B) is continuous at P. The increasing convergence of Fact 2.4.12
implies lower semicontinuity of h(·|B) at P and thus globally.

Since h(P|Q,B) = lim
n

↓ 1
nH(Pn|Qn ∨ B), Fact 1.7.10 (d1-continuity of

H(P| · ∨B)), implies that h(P| · ,B) is upper semicontinuous in d1.

Corollary 2.4.14 If P satisfies H(P|B) < ∞, then for any countable parti-
tion Q we have

h(P|Q ∨ B) = lim
m

↓ h(P|Q(m) ∨ B).
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Proof Since Q(m) clearly converge to Q in d1, we can apply the above
upper semicontinuity to obtain h(P|Q∨B) ≥ limm h(P|Q(m)∨B). The other
inequality is trivial by the monotonicity (2.4.6).

Lack of continuity of h(·) in d1, even for partitions with bounded static
entropy (i.e., on PR), is illustrated below. The same example shows lack of
continuity in d1 of h(·|Q) and h(P|·).

Example 2.4.15 This example works for both cases of S. Consider the Bernoulli
shift on X = {0, 1}S (with the product Borel sigma-algebra), and the product mea-
sure { 1

2
, 1

2
}S. Let P denote the zero-coordinate partition PΛ (into the cylinders 0

and 1). Let Qk be the following partition: the cylinder associated with the block

0k = (000 . . . 0) is partitioned into 22k

cylinders (blocks) of the form 0kB, where

B ∈ P2k

, the rest of X is left in one piece (of measure 1 − 2−k), labeled by ∗.

Notice that the static entropy of Qk exceeds 2−k ·log 22k

= 1. Clearly, the partitions
Qk converge in d1 to the trivial partition Q = {X}. The process generated by Qk is
the factor of the full shift obtained by the following code: wherever we find a block
0k in the P-name of x, we maintain the zeros and the following 2k symbols. The
rest is replaced by the stars. Since in almost every x the gaps between the occur-
rences of the block 0k have nearly the exponential distribution with the expected
value 2k, the fraction of coordinates copied by the code has a value vk stabilizing
for large k at a positive v. It is obvious that the dynamical entropy of the factor
process generated by Qk is at least vk times h(P), hence lim supk h(Qk) ≥ v > 0.
On the other hand, Qk → Q in d1, and h(Q) = 0.

Now observe the conditional entropies h(P|Qk). Clearly Qk � PN0 which
implies h(P|Qk) = h(P ∨ Qk) − h(Qk) ≤ h(P) − h(Qk) (see Fact 2.4.1) and
thus their lim inf is at most 1 − v. On the other hand, h(P|Q) = h(P) = 1.

A convergence as in (1.7.13) holds also for dynamical conditional entropies,
generalizing Corollary 2.4.14:

Fact 2.4.16 Let P be a partition with finite static entropy. If Bk is an increas-
ing sequence of subinvariant sigma-algebras and B =

∨
k Bk, then

h(P|B) = lim
k

↓ h(P|Bk). (2.4.17)

If Bk is a decreasing sequence of subinvariant sigma-algebras, and
B =

⋂
k Bk, then

h(P|B) ≥ lim
k

↑ h(P|Bk). (2.4.18)

Proof Since the limit in Definition (2.3.3) is an infimum, we can apply (1.7.13)
(where the limit is also an infimum) and exchange the order of infima. The
inequality in (2.4.18) is obvious by monotonicity.

The inequality (2.4.18) cannot be reversed even for S = Z when all the
sigma-algebras are invariant. See Fact 3.2.8.
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We conclude this section with what we call the power rule, the calculation
of entropy in a process in which T is replaced by its iterate. There is a slight
inconvenience in the notation when regarding several transformations: the
terms of the form Pn require verbal explanation, to the action of which trans-
formation does the “power” n refer. Each time it refers to an action different
than that of T , we will explicitly say it, managing to avoid the nasty notation
of the kind PT,n.

Given a process (X,P, μ, T, S), we fix some n ∈ S and let P̄ = Pn. Next,
we consider the power process (X, P̄, μ, Tn, S). We have

Fact 2.4.19 (The Power Rule)

h(μ, Tn,P|n|) =|n|h(μ, T,P),

h(μ, Tn,P|n||B) =|n|h(μ, T,P|B),

where negative values of n require B to be invariant (otherwise it is assumed
subinvariant).

Proof For n ≥ 0 the partition P̄m, where m refers to the action of Tn,
coincides with Pnm (now in the original process). This easily implies the
assertion for such n. For actions of Z, by invariance of B, we have H(Pn|B) =
H(P−n|B), hence h(μ, T,P|B) = h(μ, T−1,P|B).

Remark 2.4.20 By the way, for actions of Z we also have H(P|P+) =
H(P|P−), which explains why entropy can be interpreted as the one step
information given the future as well as given the past.

2.5 Affinity of dynamical entropy

So far, we have been concerned with a fixed measure space, a fixed transfor-
mation, and we have been varying the partition. In this section we will change
this point of view. Given a measurable space (X,A) and a measurable trans-
formation T there may exist many probability measures on A preserved by T .
So, we can study the behavior of h(μ, T,P) as a function of μ, with the other
parameters fixed.

Theorem 2.5.1 Dynamical entropy and conditional dynamical entropy of a
fixed partition are affine functions of the invariant measure. That is, for a par-
tition P of a measurable space (X,A), a measurable transformation T of X ,
and two probability measures μ and ν preserved by T , for any p ∈ [0, 1] and
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q = 1 − p, the measure pμ + qν is preserved by T and

h(pμ + qν, T,P) = ph(μ, T,P) + qh(ν, T,P).

If B is a T -subinvariant sigma-algebra, then also

h(pμ + qν, T,P|B) = ph(μ, T,P|B) + qh(ν, T,P|B).

Proof It is obvious that pμ + qν is T -invariant. Concavity of dynamical
entropy follows from concavity of static entropy (see (1.3.5)) via the limit pas-
sage defining dynamical entropy. For convexity, consider a model in which X

is replaced by disjoint union of two copies X1, X2 of the original space X .
The transformation T on this union is defined naturally, as T inside each of
the copies. The partition P of the united space is defined by uniting the pairs
of corresponding sets A ∈ P in both copies. The measure μ is regarded as
concentrated on X1, and ν analogously on X2. Also let Q denote the partition
into the two copies. In this model, the measure pμ + qν assigns to each cell A

of P the convex combination pμ(A) + qν(A), the same as the combination of
measures does in the original model. The same holds for Pn, so the dynamical
entropy of pμ + qν in this model is the same as in the original system. In this
model, for each n, we use the monotonicity (1.6.6), the formulae (1.4.3) and
(1.4.4), and we get

H(pμ + qν,Pn) ≤
H(pμ + qν,Pn ∨ Q) = H(pμ + qν,Pn|Q) + H(pμ + qν,Q) ≤
μ(X1)HX1(pμ + qν,Pn) + μ(X2)HX2(pμ + qν,Pn) + log 2 =

pH(μ,Pn) + qH(ν,Pn) + log 2.

Dividing by n and passing to the limit we arrive at the desired convexity condi-
tion. The proof of the conditional version is identical, except that now we need
to use concavity of the conditional entropy as stated in (1.4.8), monotonicity
(1.6.29), then (1.6.26) and (1.6.25).

2.6 Conditional dynamical entropy via disintegration*

In this section we present a different approach to conditional dynamical
entropy given a subinvariant sigma-algebra, based on disintegration. This
approach will not be used in the main stream of argumentation, and we include
it for completeness purposes. Recall the formula (1.5.2) defining the disinte-
gration of μ with respect to a sigma-algebra B. If π is a factor map between
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dynamical systems (X,A, μ, T, S) and (Y,B, ν, S, S), and B = π−1(B), then
a desirable property of the disintegration is the following

Definition 2.6.1 The disintegration y 
→ μy is equivariant if

μSy = Tμy

for ν-almost every y ∈ Y .

In general, the disintegration with respect to a subinvariant sigma-algebra is
not guaranteed to be equivariant. It is so, however, when the sigma-algebra is
invariant [see e.g. Furstenberg, 1981, Proposition 5.9], or when (X,A, μ, T, S)
is a skew product extension of (Y,B, ν, S, S) [see e.g. Petersen, 1983, for the
definition of a skew product].

The following definition is a direct generalization of a function appearing
in [Abramov and Rokhlin, 1962] in the definition of the fiber entropy in skew
products:

Definition 2.6.2 Let P be a partition of X with H(P) < ∞. By the fiber
entropy of P with respect to the measure ν we shall mean the function y 
→
h(P|y) defined ν-almost everywhere on Y by the formula

h(P|y) = lim
n

↓ H(μy,P|P[1,n)).

Notice that (1.5.4) implies that H(μy,P) (hence also h(P|y)) is finite for
ν-almost every y. It is interesting to note that fiber entropy as a function of y

need not be invariant, (nor, in the ergodic case, constant). We leave finding an
example to the reader, as Exercise 2.7.

Translating to our notation, Abramov and Rokhlin have proved that

sup
P

∫
h(P|y)dν(y) = sup

P
h(P|B).

The precise meaning of the last expression will be discussed in Section 4.1.
Now we shall strengthen the Abramov–Rokhlin Theorem by showing that it
holds also for a fixed partition (i.e., that the supremum can be dropped on both
sides).

Theorem 2.6.3 If (Y,B, ν, S, S) is a factor of (X,A, μ, T, S) via a map π

such that the disintegration of μ with respect to B = π−1(B) is equivariant,
then, for every partition P of X with H(P) < ∞, we have

h(P|B) =
∫

h(P|y)dν(y).
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Proof We have∫
h(P|y)dν(y) =

∫
lim
n

H(μy,P|P[1,n])dν(y) =

lim
n

∫ [
H(μy,P[0,n]) − H(μy,P[1,n])

]
dν(y) =

lim
n

[∫
H(μy,Pn+1)dν(y) −

∫
H(μy,Pn)dν(y)

]
,

using the Lebesgue Monotone Theorem, equivariance of the disintegration and
invariance of the measure ν. Note that all these integrals are finite for almost
every y. The limit of the last sequence is the same as the limit of its averages,
which, after cancellation, reads:

lim
n

1
n

∫
H(μy,Pn)dν(y).

The integral, by the formula (1.5.4), equals H(Pn|B), so the last limit is
exactly h(P|B) (see Definition 2.3.3).

A particular case of Theorem 2.6.3 occurs when B is the sigma-algebra of
invariant sets. Clearly, this is an invariant sigma-algebra and the corresponding
disintegration is trivially equivariant. The disintegration formula μ =

∫
μy dν

then corresponds precisely to the ergodic decomposition of μ; the measures μy

are the ergodic components of μ. Since T acts on the factor corresponding to B

by identity, its dynamical entropy is zero. Thus, using appropriate monotonic-
ities and (2.4.4) we get, for any fixed partition P of finite static entropy and
any finite B-measurable partition Q, h(P) ≥ h(P|Q) ≥ h(P)− h(Q) = h(P).
Using a sequence of partitions Q which generate B, by (2.4.17), we obtain
h(P|B) = h(P). In this case Theorem 2.6.3 takes on the following form

Theorem 2.6.4 Let μ =
∫

μy dν be the ergodic decomposition of μ. Then,
for any partition P with H(μ,P) finite, the following holds

h(P) =
∫

h(P|y)dν(y).
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2.7 Summary of the properties of entropy
In the following tables we gather the major properties of static (top table) and dynamical (bottom
table) unconditional and conditional entropies treated as functions of P, Q, μ (and, in the boxes,
of B). All abbreviations and unclear terms are explained below the table. In the second table B is
subinvariant.

H(μ, P) H(μ, P|Q) H(μ, P|B) H(μ, P|Q∨ B)

P

increasing
subadditive
limit in (m)
Pm − u. cont.
Pℵ0 − l.s.c.

increasing
subadditive
limit in (m)
Pm − u. cont.
Pℵ0 − l.s.c.

increasing
subadditive
limit in (m)
Pm − u. cont.
Pℵ0 − l.s.c.

increasing
subadditive
limit in (m)
Pm − u. cont.
Pℵ0 − l.s.c.

Q
decreasing
limit in (m)∗

Pℵ0 − u. cont.∗
B

decreasing
incr. lim eq∗

decr. lim eq∗

decreasing
limit in (m)∗∗∗

Pℵ0 − u. cont.∗∗∗

μ concave concave concave concave

h(μ, T, P)∗ h(μ, T, P|Q)∗∗ h(μ, T, P|B)∗∗∗ h(μ, T, P|Q∨ B)∗∗∗∗

P

increasing
subadditive
power
limit in (m)
PR − u. cont.
d1 − l.s.c.

increasing
subadditive
power
limit in (m)
PR − u. cont.
d1 − l.s.c.

increasing
subadditive
power
limit in (m)
PR − u. cont.
d1 − l.s.c.

increasing
subadditive
power
limit in (m)
PR − u. cont.
d1 − l.s.c.

Q

decreasing
limit in (m)∗

Pm − u. cont.∗

Pℵ0 − u.s.c∗
B

decreasing
incr. lim eq∗

decr. lim ineq∗

decreasing
limit in (m)∗∗∗

Pm − u. cont.∗∗∗

Pℵ0 − u.s.c.∗∗∗

μ affine affine affine affine

The meaning of terms:
increasing (decreasing) = increasing (decreasing) as the partition (sigma-algebra) refines

subadditive = subadditive under the join of partitions

limit in (m) = equal to the limit over the partitions P(m) (or Q(m))

Pm = the space of all m-element partitions with either d1 or dR

Pℵ0 = the space of all countable partitions with d1

PR = the space of all finite entropy partitions with dR

u. cont. = uniformly continuous

l.s.c. (u.s.c.) = lower (upper) semicontinuous

incr. (decr.) lim eq = limit equality for an increasing (decreasing) sequence of sigma-algebras

decr. lim ineq = limit inequality for a decreasing sequence of sigma-algebras

power = for Pn (and Qn) under the action of T n the function grows |n| times

concave = concave under convex combinations of any Borel probability measures

affine = affine under convex combinations of invariant probability measures

* = requires the assumption H(P) < ∞
** = requires the assumption H(P|QS) < ∞
*** = requires the assumption H(P|B) < ∞
**** = requires the assumption H(P|QS ∨ B) < ∞
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2.8 Combinatorial entropy

Combinatorial entropy is a notion that mimics the idea of dynamical entropy,
but assigns entropy directly to finite blocks. It can be applied universally to
any sufficiently long block in the symbolic space, without fixing any shift-
invariant measure. The block itself provides a substitute for such a measure. In
this section the alphabet Λ is assumed finite and its cardinality is denoted by l.

Pick n ∈ N and m ∈ N much larger than n. Let B = B[0,m − 1] ∈ Λm be
a block over Λ. With each block A of length n we can associate its frequency
in B defined as

frB(A) =
#{0 ≤ i ≤ m − n : B[i, i + n − 1] = A}

m − n + 1
.

Notice that the frequencies of all blocks of length n form a probability vector

pn,B = {frB(A) : A ∈ Λn}.

With the block B we can thus associate its nth combinatorial entropy defined
as one nth of the entropy of pn,B :

Hn(B) = 1
nH(pn,B).

Another possibility, which gives slightly different values (with the differ-
ence vanishing for large m) is as follows. For a block B consider the periodic
point . . . BBB . . . in the shift space ΛZ (the infinite concatenation of copies
of B). Its orbit under the shift is (at most) m-periodic and it carries exactly
one ergodic measure, which we denote by μ(B). We can thus define the nth
periodic combinatorial entropy of B as

H(n)(B) = 1
nH(μ(B),P

n
Λ).

Given a block A of length n, the value μ(B)(A) is the frequency with which
A occurs in ...BBB..., and, for m � n, it differs from that in B by the fre-
quency of occurrences at the contact places between the concatenated copies
of B. This difference is not larger than n/m. Thus, for fixed n and with m

growing to infinity the vectors of frequencies pn,B and the vectors pn,(B) =
{μ(B)(A) : A ∈ Λn} are close, uniformly for all blocks B of length m. By
the uniform continuity of the entropy on ln-dimensional vectors this implies
that H(n)(B) and Hn(B) get together uniformly for all blocks B of length m

as m grows to infinity. This is why we can use either definition of combina-
torial entropy, depending on the convenience. The advantage of H(n) over Hn

is that the former is computed with respect to a genuine shift-invariant mea-
sure defined on the symbolic space, while the latter is computed with respect
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to a probability vector which does not represent a measure on the symbolic
space – it assigns values to short cylinders only.

As was stated in the Introduction, combinatorial entropy can be used to
estimate the compression rate. In order to make sure that there is no mistake
we are interested in counting the blocks B over an alphabet Λ, of some fixed
length m, whose compression rate does not exceed some fixed value c < 1.
The count must not exceed 2mc+1 (at least for large m) because these blocks
are supposed to be encoded (by the data compression code) in a injective way,
by binary blocks of lengths not exceeding mc, and there are 2mc+1 such binary
blocks. Let us see ...

Definition 2.8.1 By C[n,m, c] we will denote the cardinality of the collec-
tion of blocks B of length m with H(n)(B) ≤ c.

Lemma 2.8.2 Fix some n ∈ N and c > 0. Then

lim sup
m→∞

log(C[n,m, c])
m

≤ c. (2.8.3)

Proof We first prove the lemma for n = 1. In this case there is no difference
between H(n)(B) and Hn(B). Let Λ = {a1, a2, . . . , al}. The frequencies of
the symbols ai in B form a probability vector p1,B = (p1, p2, . . . , pl) with
pi = ki/m where ki is the number of times ai occurs in B. The number of
blocks B of length m producing the same vector p = p1,B is

Cp =
m!

k1! k2! · · · kl!
.

By a direct application of Stirling’s formula: log(n!) ≈ n log n − n [see e.g.
Feller, 1968] we can write

log(Cp) = −m
( l∑

i=1

pi log(pi) ± δm

)
= m(H(p) ± δm), (2.8.4)

where δm → 0 as m grows. Thus, the cardinality of all blocks B of length m

with H(p1,B) ≤ c is not larger than m(H(p) ± δm) times the cardinality of
all l-dimensional probability vectors p with rational entries with denominator
m. Now, this latter cardinality is simply ml, the logarithm of which is l log m.
Eventually, we have obtained

log(C[1,m, c]) ≤ m(c ± δm) + l log m. (2.8.5)

The assertion follows by dividing by m and letting m grow to infinity.
Now consider n > 1. Assume for a while that m is a multiple of n. By

grouping the symbols in n-tuples, the periodic sequence ...BBB... can be
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viewed as a periodic sequence . . . Bo Bo Bo . . ., where Bo is over Λn and has
length m/n. There are n possible such representations depending on the posi-
tioning of the first cut. We denote the blocks Bo so obtained by B(1), B(2), . . . ,

B(n). It is easy to see that the vector of probabilities pn,(B) = {μ(B)(A) :
A ∈ Λn} equals the arithmetic average (over i = 1, . . . , n) of the vectors
p1,B(i) = {μB(i)(A) : A ∈ Λn}, where now the blocks A are treated as single
symbols. By concavity of the entropy on probability vectors,

nc ≥ nH(n)(B) = H(pn,(B)) ≥ min
i

H(p1,B(i)) = min
i

H1(B(i)).

Consider the index i which realizes this minimum. The wanted cardinality
C[n,m, c] of all blocks B with H(n)(B) ≤ c is not larger than n times (due to
the choice of the cutting position) the estimate of the cardinality of all blocks
which can play the role of B(i). Such blocks are over the alphabet Λn, have
length m/n, and have the 1st combinatorial entropy bounded by nc, so their
cardinality is C[1, m

n , nc]. Applying (2.8.3) already proved for n = 1, we thus
have

log(C[n,m, c])
m

≤
log(nC[1, m

n , c])
m

≤ log n

m
+

ncm
n

m
.

The right-hand side converges to c as m grows to infinity. This concludes the
proof for multiples of n. For other lengths m we estimate the desired cardi-
nality by one obtained for the nearest m′ > m divisible by n. Since the ratio
m′/m tends to 1, we will obtain the same estimate for lim sup.

We shall also need a conditional version of the above facts. Let Λ = Λ1×Λ2

be a product of two finite sets having l1 and l2 elements, respectively. Let
B ∈ Λm. Such B can be viewed as a two-row block having some B1 ∈ Λm

1 in
the first row and some B2 ∈ Λm

2 in the second. We define the nth conditional
periodic combinatorial entropy of B (given the first row) as

H(n)(B|B1) = 1
nH(μ(B),P

n
Λ|Pn

Λ1
).

Since Pn
Λ is a refinement of Pn

Λ1
, it follows that

H(n)(B|B1) = H(n)(B) − H(n)(B1).

By analogy, we can also define the nth conditional combinatorial entropy of
B as

Hn(B|B1) = Hn(B) − Hn(B1).

(We will not use this term, except for n = 1, when H1 = H(1).)
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We introduce the notation for cardinalities, analogous to the one used before:

Definition 2.8.6 For D ∈ Λm
1 let CD[n,m, c] denote the cardinality of

the collection of all blocks B of length m over Λ such that B1 = D and
H(n)(B|B1) ≤ c. Next, define

Ccond[n,m, c] = sup
D∈Λm

1

CD[n,m, c].

Lemma 2.8.7 Fix some n ∈ N, c > 0. Then

lim sup
m→∞

log(Ccond[n,m, c])
m

≤ c. (2.8.8)

Proof We first prove the lemma for n = 1. Fix some m, D ∈ Λm
1 and ε > 0.

We can assume that c < log l2, otherwise the statement holds trivially for every
m. Denote by E the family of blocks whose cardinality we want to estimate:

E = {B ∈ Λm : B1 = D,H1(B|B1) < c}.

It is straightforward to see that

H1(B|B1) =
l1∑

i=1

ki

m
H1(B

(i)
2 ),

where B
(i)
2 is the block over Λ2 of a certain length ki, obtained by collecting

all positions in B2 where in the first row there appears the ith symbol of Λ1.
The numbers ki are determined by D. We fix an integer s and we divide the
interval [0, log l2) into s subintervals of equal lengths. With every block B ∈ E

we associate the formal sequence I = {[ai, bi) : i = 1, . . . , l1} of the above
subintervals determined by the inclusions ki

mH1(B
(i)
2 ) ∈ [ai, bi). Clearly, the

number of such sequences is limited by sl1 and only such I will appear (for
some B) for which

l1∑
i=1

bi ≤ c + l1
log l2

s
.

For every I we can estimate the logarithm of the number of the associated
blocks B by the sum over i of the logarithms of the quantities Qi of blocks
B

(i)
2 for which ki

mH1(B
(i)
2 ) falls in the subinterval [ai, bi). For indices i for

which ki ≤
√

m we use the trivial estimate

log Qi ≤
√

m log l2.

For the remaining indices i we apply the preceding lemma, and get

log Qi ≤ ki(m
ki

bi + ε),
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where the error term ε is small for large m. The sum of these logarithms
amounts to at most

√
ml1 log l2 + m(

∑
i

bi + ε) ≤
√

m l1 log l2 + m(c +
l1 log l2

s
+ ε) ≤

m(c +
l1 log l2

s
+ 2ε),

for large enough m. The cardinality of E is at most sl1 times larger than the
product of the Qi’s, which adds l1 log s to the logarithm, and vanishes after
dividing by m and passing with m to infinity. Since ε is arbitrarily small and s

arbitrarily large, we arrive at the hypothesis.
The proof for n > 1 is identical to the corresponding part of the proof of

Lemma 2.8.2. Suppose, for simplicity, that m is a multiple of n. After group-
ing the symbols in n-tuples, and denoting the blocks over Λn so obtained by
B(1), B(2), . . . , B(n) (depending on the first cutting place) one shows that for
at least one index i, H1(B(i)|B(i)

1 ) ≤ nc. Applying (2.8.8) already proved for
n = 1, we thus have

log(Ccond[n,m, c])
m

≤
log(nCcond[1, m

n , c])
m

≤ log n

m
+

ncm
n

m
,

which converges to c as m grows to infinity.

Also the inequality converse to (2.8.3) is valid for lim inf , hence the limit
exists (see Corollary 2.8.10 below). We will prove a slightly stronger state-
ment. (Usually, a slightly weaker statement is derived with the help of the
Shannon–McMillan–Breiman Theorem.)

Theorem 2.8.9 Let (X,P, μ, T, S) be an ergodic process with P finite.
Denote h = h(μ, T,P). Choose a ∈ (0, 1], ε > 0, and let n be so large that
H(μ,Pn) < n(h + aε). Then, for m large enough, any set A with μ(A) ≥ a

intersects at least 2m(h−2ε) blocks of length m whose nth combinatorial
entropy is smaller than h + ε.

Corollary 2.8.10 Because, for c ≤ log l (recall that l = #Λ), there exists
an independent process of any entropy h < c over the alphabet Λ, (so that
H(μ,Pn

Λ) = nh for every n), the above lemma (applied to A = X) together
with Lemma 2.8.2 implies that

lim
m

log(C[n,m, c])
m

= c.

Proof of Theorem 2.8.9 By the Ergodic Theorem, a subset X ′ of measure
1 − δ is covered by blocks B of length m generating frequency vectors pn,B
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so close to the distribution of μ on Pn that their nth combinatorial entropies
are smaller than h + aε (see Exercise 2.8). By Lemma 2.8.2, there are no
more than 2m(h+2aε) such blocks (if m is large enough), hence the conditional
entropy of Pm on any subset of X ′ cannot exceed m(h + 2aε) (we will use
this for X ′ \ A). Let Q be the partition by three sets: A ∩ X ′ (of measure at
most μ(A)), X ′ \A (of measure at most 1−μ(A)) and X \X ′ (of measure at
most δ). Then

mh ≤ H(Pm) ≤ H(Pm|Q) + H(Q) ≤
μ(A)HA∩X′(Pm) + (1 − μ(A))HX′\A(Pm) + δHX\X′(Pm) + log 3 ≤

μ(A)HA∩X′(Pm) + (1 − μ(A))m(h + 2aε) + δm log #P + log 3.

This implies that the conditional entropy of Pm on A ∩ X ′ is at least

mh − (1 − μ(A))m(h + 2aε) − δm log #P − log 3
μ(A)

≥

m
(
h − 2aε

μ(A)
+ 2ε − δ log #P

a
− log 3

ma

)
≥ m(h − 2ε),

if δ is chosen sufficiently small and m is large enough. Such entropy cannot be
achieved on fewer than 2m(h−2ε) blocks of length m. All of them intersect A

and, since they are part of X ′, have the nth combinatorial entropy smaller than
h + aε ≤ h + ε.

Exercises

2.1 Consider the Bernoulli shift (unilateral or bilateral) on two symbols 0 and
1 where each symbol has measure 1/2. Let π be the factor map given by
the code (πx)n = xn + xn+1 mod 2. Show that although the map is far
from being invertible, the factor process is isomorphic to the original.

2.2 Use the power rule to show that in a bilateral process for every n ∈ N

we have the equality H(Pn|P−)= nh(P).
2.3 Provide an example showing that the sequence H(Pn|Qn) need not have

decreasing increments; moreover, may fail to be increasing.
2.4 For subinvariant B show that h(P|Q,B) ≤ H(P|P+ ∨ QN0 ∨ B).
2.5 For subinvariant B the formula (2.3.5) need not hold. In particular, the

inequality in the preceding exercise cannot be reversed even for trivial
(hence invariant) B. Provide an appropriate example.

2.6 Prove Fact 2.4.1, i.e., h(Q) ≤ h(P) in case T is invertible and Q � PZ.
Hint: apply (2.3.11).
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2.7 Provide an example of an ergodic process (X,P, μ, T, S) and its factor,
such that the fiber entropy h(P|y) is not constant on the factor space Y .
Hint: The factor can be periodic on a two-element space.

2.8 Consider an ergodic process (X,P, μ, T, S). For x ∈ X denote Bm(x) =
x[0,m − 1]. Prove that for every n the combinatorial entropies
Hn(Bm(x)) converge almost surely to 1

nH(μ,Pn).



3

Entropy theorems in processes

3.1 Independence and ε-independence

We begin by introducing the notion of ε-independence for partitions. The goal
is to extend this notion to processes.

Recall (Fact 1.6.16) that stochastic independence between P, with H(P) <

∞, and any countable Q is equivalent to the equality H(P|Q) = H(P).

Definition 3.1.1 Two countable partitions P and Q are ε-independent (we
write P⊥εQ) if ∑

A∈P,B∈Q

|μ(A ∩ B) − μ(A) · μ(B)| ≤ ε. (3.1.2)

Note that ε-independence for all ε > 0 is equivalent to independence of the
partitions. The connection between entropy and ε-independence is captured by
the following fact.

Fact 3.1.3 For every M > 0 and ε > 0 there is δ > 0 such that for any
two countable partitions P and Q, with H(P) < M the following implications
hold:

P⊥δQ =⇒ H(P|Q) ≥ H(P) − ε,

and

H(P|Q) ≥ H(P) − δ =⇒ P⊥εQ.

Proof Assume δ-independence. The probability vector p(μ,P) associated
with the partition P can be ordered decreasingly. Reformulation of (3.1.2) with
δ replacing ε reads ∑

B∈Q

μ(B) ‖p(μB ,P) − p(μ,P)‖1 ≤ δ, (3.1.4)
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By the rectangle rule (Fact A.1.2), for a collection of B’s of joint measure at
least 1−

√
δ it holds that ‖p(μB ,P)−p(μ,P)‖1 <

√
δ. By lower semicontinu-

ity of H(·), and compactness stated in Fact 1.1.9, for such B’s, H(p(μB ,P)) >

H(p(μ,P))− ε/2, if δ is a priori (independently of P, depending only on M )
chosen small enough. Finally,

H(P|Q) =
∑
B∈Q

μ(B)H(p(μB ,P)) > (1 −
√

δ)
(
H(p(μ,P)) − ε

2

)
≥

H(P) − ε,

again, for a well chosen δ.
The second implication follows directly from Lemma 1.1.11 and the refor-

mulation (3.1.4) (with ε put back in place of δ) of the ε-independence.

Fact 3.1.3 allows one to define an alternative notion of ε-independence for a
partition P of finite entropy.

Definition 3.1.5 We say that P is ε-entropy independent of Q if

H(P|Q) ≥ H(P) − ε.

Among partitions of finite entropy this is a symmetric relation (use (1.4.3)).

Definition 3.1.6 We say that a partition P with finite entropy is ε-independent
(ε-entropy independent) of a sigma-algebra B if it is ε-independent (ε-entropy
independent) of any countable B-measurable partition Q.

Now we pass to ε-independence for processes. Recall (Definition 2.3.15)
that independent processes are characterized by the property that P is inde-
pendent of the future P+ or, equivalently, by the equality h(P) = H(P). By
analogy we will consider two notions:

Definition 3.1.7 The process (X,P, μ, T, S) is called ε-independent
(ε-entropy independent) if P is ε-independent (ε-entropy independent) of P+.

In the finite entropy case ε-entropy independence of a process can be
written as

h(P) ≥ H(P) − ε.

Remark 3.1.8 Clearly, if H(P) is smaller than ε, then the generated process
is (trivially) ε-entropy independent. It is thus natural to require, for nontrivial-
ity of the notion, that ε is much smaller than H(P).

Remark 3.1.9 If a process is ε-entropy independent for every ε > 0, then it
is an independent process.
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We will now provide examples of ε-entropy independent processes, appear-
ing naturally in processes of positive entropy. Before we continue, we recall the
notion of an induced system. Induced systems are a good source of
ε-independent processes.

Definition 3.1.10 Let (X,A, μ, T, S) be a dynamical system and let B ∈ A

be a set of positive measure. For x ∈ B we define the return time to B as

RB(x) = min{n > 0 : Tnx ∈ B} (3.1.11)

(this is well defined for μB almost every x by the Poincaré Recurrence Theo-
rem). Then the map

TB(x) = T RB(x)(x) (3.1.12)

is defined μB-almost everywhere, it is measurable and preserves the measure
μB (we skip the argument here). It is called the induced map while the sys-
tem (X,A, μB , TB , S) (in fact X can be replaced by B) is called the induced
system.

It is clear that if μ is ergodic under T so is μB under TB .

Theorem 3.1.13 Let (X,P, μ, T, S) be a process with finite positive entropy
and let ε > 0 be given. Then for n sufficiently large there is a set Xn ⊂ X of
measure at least 1− ε being a union of cylinders B ∈ P[1,n] with the property
that the process (B,P, μB , TB , S) is ε-entropy independent.

Proof Because H(P|P[1,n]) ↘ H(P|P+), for large n, H(P|P[1,n]) − ε2 <

H(P|P+). Now∑
B∈P[1,n]

μ(B)HB(P) − ε2 = H(P|P[1,n]) − ε2 < H(P|P+) =

H(P|P[1,n] ∨ P+) =
∑

B∈P[1,n]

μ(B)HB(P|P+)

(we have used (1.4.4) and (1.6.25)). Clearly, for every B, the term HB(P) dom-
inates HB(P|P+). However, the above calculation shows that the weighted
average of the first terms exceeds the weighted average of the latter terms by
no more than ε2. Thus, by the rectangle rule (Fact A.1.2),

HB(P) ≤ HB(P|P+) + ε,

except for sets B of joint measure at most ε. We let Xn be the union of the
cylinders B satisfying the above. Because the future of the induced process is
contained (as a sigma-algebra) in the full future P+, we have

HB(P|P+) ≤ h(μB , TB ,P)
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for every B. Thus for every B contained in Xn, HB(P) ≤ h(μB , TB ,P) + ε,
i.e., the process generated by P for the induced map is ε-entropy independent,
as claimed.

The process (B,P, μB , TB , Z) for B ∈ P[1,n] is illustrated in Figure 3.1;
its P-name (· · · a-1a0a1a2a3 · · · ) consists of concatenated single symbols that
precede the subsequent repetitions of the block B observed in a P-name of the
master process (X,P, μ, T, Z). (For S = N0 the picture starts at coordinate
zero and the above P-name is just (a0a1a2a3 · · · ).)

coordinate 0
↓

...a-1 B ...............a0 B ..a1 B ..........a2 B ....a3 B ....

Figure 3.1 The process generated by P for the map induced on B.

If (X,P, μ, T, S) has entropy zero, then the ε-entropy independence as stated
in Theorem 3.1.13 is trivial (see Remark 3.1.8). This means that for the major-
ity of blocks B ∈ P[1,n], the partition P restricted to B is nearly the one-
element partition, hence the process (B,P, μB , TB , S) is nearly trivial; every
name is dominated by repetitions of one symbol.

We now turn to the case of two partitions P and Q. Assume H(P) < ∞.

Definition 3.1.14 We will say that the process (X,P, μ, T, S) generated by
a partition P with finite entropy is ε-entropy limit-independent of the process
generated by Q if

h(P|Q) ≥ h(P) − ε, (3.1.15)

equivalently,

lim
n

1
n (H(Pn) − H(Pn|Qn)) ≤ ε. (3.1.16)

If Q also has finite entropy, then (3.1.15) can be rewritten as

h(P) + h(Q) − h(P ∨ Q) ≤ ε,

which proves that in such case the relation is symmetric.
Notice that ε-entropy limit-independence between two processes for every

ε > 0 does not imply the usual (stochastic) independence. For instance, a pro-
cess of entropy zero is, for every ε > 0, (trivially) ε-entropy limit-independent
of any process, even of itself. This is why we introduce a stronger notion.
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Definition 3.1.17 The process generated by P is ε-entropy independent of
the process generated by Q if

1
nH(Pn|Qn) ≥ 1

nH(Pn) − ε,

for every n.

This notion is also symmetric among finite entropy partitions. Now, ε-entropy
independence for every ε > 0 does imply stochastic independence between the
processes. As before, to avoid triviality, ε should be taken smaller than both
H(P) and H(Q).

The notions of ε-entropy independence and ε-entropy limit-independence
coincide (via change of the parameter) if one of the processes is itself an ε-
entropy independent process:

Fact 3.1.18 Suppose (X,P, μ, T, S) is an ε-entropy independent process and
that it is ε-entropy limit-independent of the process generated by another par-
tition Q. Then the first process is 2ε-entropy independent of the latter.

Proof

1
nH(Pn|Qn) ≥ h(P|Q) ≥ h(P) − ε ≥ H(P) − 2ε ≥ 1

nH(Pn) − 2ε.

Question 3.1.19 Let B be a set of positive measure and let Q = {Qn}
be the countable partition of B given by the first return time, Qn = {x ∈
B : RB(x) = n}. The following question is open: Is it true that for the
majority of sufficiently long cylinders B, the ε-entropy independent process
(B,P, μB , TB , S) of Theorem 3.1.13 is also ε-entropy limit-independent of
the process of return times (B,Q, μB , TB , S)? (If yes, then by Fact 3.1.18,
these processes are 2ε-entropy independent of one another.)

Later we will show a partial result in this direction (see Lemma 5.3.11).
A rich source of examples of pairs of mutually ε-independent processes

will be provided in the section concerning joinings, where we prove the fol-
lowing representation theorem: Given a process and its factor-process, both
with the action of Z, then the larger process is a joining of the given factor-
process with another factor-process such that the two factors are ε-entropy
limit-independent of one another (see Theorem 4.4.6).
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3.2 The Pinsker sigma-algebra in a process

Definition 3.2.1 Let (X,P, μ, T, S) be a process with finite entropy. The
Pinsker sigma-algebra of this process is ΠP =

⋂∞
n=1 P[n,∞). It is sometimes

referred to as the remote future.

It is clear that ΠP is an invariant sigma-algebra. Its meaning is explained in
the following theorem originating from [Rokhlin and Sinai, 1961].

Theorem 3.2.2 (Rokhlin–Sinai) Assume H(P) < ∞. A countable, measur-
able with respect to PS, partition R with H(R) < ∞ is ΠP-measurable if and
only if h(R) = 0. For actions of Z we also have ΠP =

⋂∞
n=1 P(−∞,−n].

Proof Assume that R is ΠP-measurable. By invariance of ΠP, the transform-
ation on the associated factor is invertible, so RZ is a well-defined invariant
sigma-algebra contained in ΠP and hence also in P+. Then, using (2.3.11), we
get h(P|R) = h(P). On the other hand, since H(R) < ∞ and P ∨ R � PN0 ,
by Fact 2.4.1 we get h(P ∨ R) = h(P) which by (2.4.4) implies h(R) = 0.

The proof of the other implication is different for the actions of N0 and Z.
For S = N0 consider a PN0-measurable partition R such that h(R) = 0.

Then, by Fact 2.3.12, R is measurable with respect to R+ and, by an easy
induction, also with respect to ΠR. Since R is measurable with respect to PN0 ,
R[n,∞) is contained in (PN0)[n,∞) = P[n,∞) and hence ΠR ⊂ ΠP.

If S = Z, let R be a PZ-measurable partition with h(R) = 0. If R is measur-
able with respect to PN0 , then the preceding argument applies. So, suppose it is
not. Then, by (1.6.28), H(R|PN0) > c > 0. By Fact 1.6.39, H(R(m)|PN0) > c

for some m. Of course H(R(m)|R) = 0. By Fact 1.7.3, for every ε there exists
a k ∈ N and a P[−k,k]-measurable partition R′ ∈ Pm which approximates
R(m) as accurately as we need. By uniform continuity of conditional entropy
in Pm, we can obtain R′ for which H(R′|PN0) > c and H(R′|R) < c. Since
T−nk(R′) is PN0-measurable for every n ≥ 1, we have

c < H(R′|PN0) ≤ H(R′|
∞∨

n=1

T−nk(R′)).

The last term equals h(μ, T k,R′), the dynamical entropy of R′ under the action
of T k. On the other hand (no matter what action we consider), by Fact 2.3.1
and (2.4.4), we have

H(R′|R) ≥ h(μ, T k,R′|R) = h(μ, T k,R′ ∨ R) − h(μ, T k,R),

i.e., h(μ, T k,R) ≥ h(μ, T k,R′) − H(R′|R) which, in this case, is positive
(recall, we have h(μ, T k,R′) > c and H(R′|R) < c). This implies that under
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the action of T k, R has positive entropy. A contradiction, because, by the
power rule, Fact 2.4.19,

h(μ, T k,R) ≤ h(μ, T k,Rk) = kh(μ, T,R) = 0.

We have proved that R is ΠP-measurable.
For the last statement, note that since a partition has dynamical entropy zero

for an invertible T if and only if it does for T−1, ΠP coincides with the iden-
tical sigma-algebra defined for T−1.

Question 3.2.3 It is not known whether and how the last statement of the the-
orem (equality between the “remote future” and “remote past” sigma-algebras)
can be proved without using entropy.

Remark 3.2.4 A process whose Pinsker sigma-algebra is trivial is called a
K-system. Such systems are extremely important in classical ergodic theory
and are subject of an extensive study. Whether there exist K-systems other
than independent processes (or isomorphic to such) has been a long-standing
open problem first solved positively by Donald Ornstein [Ornstein, 1973] and
refined in a work with Paul Shields [Ornstein and Shields, 1973]. Later a much
more explicit example was constructed by Steve Kalikow [Kalikow, 1982].
His example involves a so-called skew product transformation and is popularly
known as the “T -T -inverse” transformation. In this book K-systems will play
only a marginal role, hence we skip any detailed presentation of this class.
More detailed information on K-systems can be found in the book by Paul
Shields [Shields, 1996].

Although in Z-actions both sequences of sigma-algebras P(−∞,−n] and
P[n,∞) decrease to ΠP, their joins do not have to. This shows that the oper-
ation “join” does not commute with countable intersections of sigma-algebras.
There are for example so-called bilaterally deterministic processes of positive
entropy, in which every join P(−∞,−n] ∨ P[n,∞) equals PZ:

Example 3.2.5 We construct a bilaterally deterministic process of positive
entropy. Let Λ be a finite alphabet disjoint of the set of natural numbers. Let Λ1

be the collection of blocks of length n1 = 2 over Λ ∪ N of the form a1, where
a ∈ Λ, 1 ∈ N. Suppose, for some k ≥ 1, that Λk has been defined as a collection
of rk blocks over Λ∪N, so that each member of Λk has length nk and ends with the
symbol k ∈ N. Now we define Λk+1 as the collection of all permutation concate-
nations over Λk, i.e., blocks of length nk+1 = rknk, each being a concatenation of
all blocks from Λk using each of them exactly once. In every such block we replace
the terminal symbol k by k + 1. The cardinality of Λk+1 is rk+1 = rk!. Let X
be the (closed) set of all doubly infinite sequences over the alphabet Λ ∪ N ∪ {∞}
which, for every k, are concatenations of the blocks from Λk perhaps with the last
symbol changed to some k′ > k. Let P be the zero-coordinate partition of X . Let
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μ be some shift-invariant ergodic measure μ supported by X . Notice that the sym-
bol ∞ may appear in a sequence x only once. Clearly, the set of points x which
contain the infinite symbol has measure zero. We claim that the symbolic system
(ΛZ, μ, σ, Z) is bilaterally deterministic, i.e., that for μ-almost every x and every
n ∈ N, the block x[−n+1, n−1] is completely determined by the pair x(−∞,−n]
and x[n,∞). Indeed, assume x does not contain the infinite symbol and suppose
we see all entries of the P-name of x except on the interval [−n + 1, n − 1]. By
periodicity of the symbols from N, we can determine all natural symbols in x. Let
k − 1 be the largest natural symbol in x[−n + 1, n − 1]. By examining the entries
of x far enough to the left and right we will see completely all but one (the one
covering the coordinate zero) blocks from the family Λk which constitute the block
C from Λk+1 covering the considered interval. Because every block from Λk is
used in C exactly once, by elimination, we will be able to determine the missing
block from Λk and hence all symbols in x[−n + 1, n− 1]. So, the process is bilat-
erally deterministic. We leave the verification of positive entropy to the reader (see
Exercise 3.4).

Remark 3.2.6 The “bilaterally deterministic” property of a process is far
from being exceptional. Ornstein and Weiss have proved that every dynamical
system (X,A, μ, T, Z) has a bilaterally deterministic generator [Ornstein and
Weiss, 1975].

The finiteness of H(P) in Theorem 3.2.2 is essential:

Example 3.2.7 For a partition P of infinite entropy the remote future ΠP defined
as

⋂∞
n=1 P[n,∞) may admit a partition with positive dynamical entropy.

We begin with an arbitrary ergodic process (X, R, μ, T, Z) of positive dynamical
entropy. The zero-coordinate partition is either finite or countable with finite static
entropy, and is (exceptionally) denoted by R (and will play the role of the partition
measurable with respect to the remote future), while P will denote another partition,
of infinite entropy, and finer than T (R).

To construct P we divide X into infinitely (and of course countably) many cylin-
ders Bi ∈ R[−ni,−1] of positive measure (such partition exists except in periodic
processes; the sequence of lengths ni of Bi is then unbounded). For each i we let
τi denote the random variable defined on X as the waiting time for the first visit to
the cylinder Bi after time i: τi(x) = min{n ≥ i : T nx ∈ Bi}. By ergodicity this
variable is almost surely finite and by definition not smaller than i. So, there exist
integers Ni ≥ i such that the sets Ci = {x : τi(x) ≤ Ni} have measures converg-
ing to 1. This implies, of course, that almost every x belongs to Ci for infinitely
many indices i. We can also choose Ni ≥ ni.

Now, we subdivide each Bi into cylinders Ai,1, . . . , Ai,mi ∈ R[−Ni,−1] (each
block Ai,k is obtained from Bi by extending it on the left) and the partition of X
so obtained we denote by P. Any time x ∈ Ci, we know that T nx ∈ Bi for some
n ∈ [i, Ni]. If we know the P-name of x at positions i, i + 1, i + 2, . . . , then we
also know the value of n and the nth P-symbol, i.e., the set Ai,k containing T nx.
But the length of Ai,k is Ni, so that this block extends in the R-name of x from
the position n − 1 on the right to n − Ni ≤ 0 on the left. This implies that the
coordinate 0 (with respect to R) in x is then determined, i.e., R is (conditionally
on Ci) measurable with respect to P[i,∞). But Ci also belongs to P[i,∞). Since x
belongs to infinitely many sets Ci, the partition R is measurable with respect to ΠP .
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Of course, R generates a process with positive dynamical entropy. We conclude that
P must have infinite static entropy, otherwise Theorem 3.2.2 would apply implying
h(R) = 0.

We apply the Pinsker sigma-algebra to demonstrate that conditional dynami-
cal entropy does not pass via countable intersections of invariant sigma-
algebras (compare (2.4.18)).

Fact 3.2.8 There exists a process (X,P, μ, T, Z) and a decreasing sequence
of invariant sigma-algebras Bk such that h(P|B) > lim

k
↑ h(P|Bk), where

B =
⋂

k Bk.1

Proof Consider the bilateral Bernoulli shift on two symbols 0, 1 with equal
probabilities 1/2, 1/2. Denote B1 = PZ and P1 = P. Consider the map π

sending each point x = (xn) to the point πx = (yn), where

yn = xn−1 + xn + xn+1 mod 2.

This map is a factor map to the same Bernoulli shift (compare Exrecise 2.1),
hence it defines an invariant sigma-algebra B2 = π−1(B1). Now, B2 has a
two-element generator

P2 = π−1(P1) = {[000]∪ [011]∪ [101]∪ [110] , [001]∪ [010]∪ [100]∪ [111]},

and, according to the formulae (2.3.8) and (2.4.4),

h(P1|B2) = h(P1|P2) = h(P1 ∨ P2) − h(P2) = h(P1) − h(P2) = 0,

where the last but one equality follows from the fact that P2 � P
[−1,1]
1 (and

h(P[−1,1]
1 ) = h(P3

1) = h(P1)) and the last equality follows from the fact that
the process generated by P2 is isomorphic to that generated by P1 (of course,
π is not the isomorphism here). Now we apply the same map π again to obtain
B3 = π−1(B2) = π−2(B1). The conditional entropy of the process given B3

is zero, because the factor by π2 is again isomorphic to the original process.
And so on. We construct a decreasing sequence of invariant sigma-algebras
Bk such that the conditional entropies h(P1|Bk) are all zeros.

Finally consider the intersection B =
⋂

k Bk. We claim that this sigma-
algebra is trivial, hence h(P1|B) = h(P1) = 1, so that the limit passage
fails as desired. To prove triviality of B we need the following observation.
Consider the partition Q = P2 = {[00], [01], [10], [11]}. By an elementary
verification, π−1(Q) is seen to be a partition into four sets, each of measure
1/4 and independent of Q. By induction, one verifies that the process generated
by Q under the N0-action of the iterates of π is in fact an independent Bernoulli

1 This example is a slight modification of one suggested to the author by B. Weiss



3.3 The Shannon–McMillan–Breiman Theorem 89

shift on four symbols of equal measures (for the same measure). Next, notice
that the unilateral Q-name of a point x in this process completely determines
this point (i.e., determines its bilateral P-name under the action of the shift).
Indeed, the element of Q containing x determines both x0 and x1. Then, the
element of π−1(Q) to which x belongs, tells us the values of two sums mod 2:
x−1 + x0 + x1 and x0 + x1 + x2, which, combined with the knowledge of x0

and x1 determines both x−1 and x2. And so on: knowing the initial k entries of
the Q-name of x we know its (original) coordinates from −k+1 to k. We have
proved that Q generates the full sigma-algebra B1 under the N0-action of π,
which we can write as B1 = Q[0,∞) (here the exponent refers to the action of
π). It is now completely obvious that B2 = π−1(B1) = Q[1,∞) and generally
Bk = Q[k−1,∞). We obtain that B (the intersection of the Bk’s) coincides with
the Pinsker sigma-algebra for the process generated by Q under the N0-action
of π. But we already know that this process is a unilateral Bernoulli shift, and in
any Bernoulli shift the Pinsker sigma-algebra is trivial (see Exercise 3.3).

3.3 The Shannon–McMillan–Breiman Theorem

In this section we present one of the most important entropy theorems in
measurable dynamics. The traditional proof relies on the maximal inequal-
ity and then the Martingale Convergence Theorem [see e.g. Petersen, 1983].
We present a quite different approach using only the notion of length-entropy
and Lemma 1.1.13. Although this proof is not shorter than the traditional one,
in our opinion, it provides a new intuition about the mechanisms behind this
result.

Theorem 3.3.1 (Shannon–McMillan–Breiman) Let (X,P, μ, T, S) be an
ergodic process on finitely or countably many states. Assume that H(P) < ∞.
For x ∈ X and n ∈ N denote IPn(x) = − log μ(An

x), where An
x is the unique

cell of Pn which contains x (the cylinder x[0, n − 1]). Then

lim
n→∞

1
nIPn(x) = h(μ, T,P) μ-a.e.

Proof Notice that, since An
x ⊂ T−1(An−1

Tx ), the functions

x �→ lim inf
n→∞

1
nIPn(x) and x �→ lim sup

n→∞
1
nIPn(x)

are subinvariant, and hence, by the Ergodic Theorem, equal almost everywhere
to some constants c and C, respectively. We need to show that C ≤ h(P) ≤ c.

We begin by proving h(P) ≤ c for a process generated by a finite l-element
partition P.
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By the definition of c, given ε > 0, for every n0 and almost every x there is
some nx ≥ n0 such that the cylinder Wx = Anx

x (of length nx and containing
x) has measure larger than 2−nx(c+ε). If, for each x, we choose the smallest
possible nx, then the collection {Wx} becomes a countable partition {Wi :
i = 1, 2, . . . } of cylinders of various lengths ni ≥ n0, and each cell Wi has
measure larger than 2−ni(c+ε). For a fixed δ > 0 there is a set Z of measure
larger than 1 − δ covered by a finite collection W of such cylinders Wi. We
denote by N0 the maximal length ni in this finite collection. We restrict our
attention to the set Z, the conditional measure μZ and the finite partition of Z

by the sets Wi. Notice that μZ assigns to the sets Wi at least as large values
as μ. The length-information function associated with the pair (p′,n), where
p′ = (μZ(Wi)) and n = (ni) satisfies

max
i

Ip′,n(i) + max
i

1
ni

≤ c + ε + 1
n0

≤ c + 2ε, (3.3.2)

(for an appropriately a priori chosen n0).
By the Ergodic Theorem, for m sufficiently large, all points x from a set

X ′ ⊂ X of measure 1 − δ visit the complement of Z no more than mδ times
within the first m iterates. Assume also that N0/m ≤ δ. Then X ′ can be
covered by some finite number C of cylinders B of length m, such that each
of them can be represented (perhaps in several ways) as a concatenation of the
blocks from W and no more than 2mδ other entries (at most mδ visits in the
complement of Z and, at the end, a possible prefix of an incomplete block Wi

of length at most N0). The structure of such a block B is shown in Figure 3.2
below.

· · W1 W2 · W2 W3 · · W1 W3 · W2 · · W2 W1 · W2 · · · · · ·

Figure 3.2 The structure of the block B.

For every B we fix one such representation and we let kB be the number
of component blocks in it. For each i let pi be the frequency of Wi in the
selected concatenation representing B, i.e., the number of components equal
to Wi divided by kB . By (3.3.2) and Lemma 1.1.13, no matter what probability
vector pB = (pi) is obtained, its entropy does not exceed npB

(c + 2ε) (recall
that npB

represents the weighted average length with respect to the probability
vector pB). Obviously, npB

≤ m/kB , hence H(pB) ≤ c(kB) where c(kB) =
m
kB

(c + 2ε). Every B can be identified with a block of length kB over the
finite alphabet W with insertions of no more than 2mδ symbols from P. The
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cardinality C of cylinders B covering X ′ can be thus estimated as follows

C ≤
m∑

kB=1

C[1, kB , c(kB)] ·
(

m

2δm

)
· l2δm,

where C[1, kB , c(kB)] counts the blocks of length kB over W with H(pB) ≤
c(kB) (recall the notation (2.8.1)), the “choose” symbol bounds the number of
ways the insertions can be distributed, and the last term counts the number of
ways these insertions can be filled with symbols. This sum is highly exagger-
ated; kB has a much smaller range.

By the elementary estimate (2.8.5) (and replacing the error term by 1), we
have

log C[1, kB , c(kB)] ≤ kB(c(kB) + 1) = m(c + 2ε + kB

m ).

We have kB/m ≤ 1/n0 < ε. Combining the last two displayed inequalities
we get

log C ≤ log m + m(c + 3ε) + mH(2δ, 1 − 2δ) + 2δm log l ≤ m(c + 4ε),

for δ sufficiently small and large m. Since the complement of X ′ is covered
by no more than lm cylinders of length m, and by (1.4.3), the total entropy
H(Pm) does not exceed

(1 − δ)m(c + 4ε) + δm log l + H(δ, 1 − δ) < m(c + 5ε).

Because H(Pm) ≥ mh(P) for every m, and ε is arbitrary, we have c ≥ h(P).
Now, if P is infinite countable, still with finite static entropy, we invoke the

finite partitions P(m). For each n the information function IPn
(m)

(x) is dom-

inated by IPn(x), thus lim infn
1
nIPn(x) is larger than or equal to the term

supm lim infn
1
nIPn

(m)
(x), which, by the already proved part for finite parti-

tions and by Fact 2.4.12, is at least h(P) almost everywhere.
We will now proceed with proving that C ≤ h(P). At first we will show that

C ≤ H(P) μ-a.e. (3.3.3)

The idea is to indicate a partition into cylinders of variable lengths whose
length-entropy is close to C. Then we will change the measure, so that the same
partition (with the same lengths) receives masses depending exponentially on
the lengths times H(P). Then we use the second part of Lemma 1.1.13.

Fix some δ > 0 and n0 ∈ N. By the Ergodic Theorem, 1
n

∑n−1
j=0 IP(T jx) →

H(P) μ-almost surely, i.e., for almost every x,

1
n

n−1∑
j=0

IP(T jx) < H(P) + δ (3.3.4)
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holds for any sufficiently large n. On the other hand, by the definition of C, for
almost every x,

1
nIPn(x) > C − δ, (3.3.5)

for arbitrarily large n. Let nx be the smallest choice of an integer for which
both (3.3.4) and (3.3.5) are fulfilled at x and let Wx denote the cylinder of
length nx containing x. Since both (3.3.4) and (3.3.5) depend on the initial
n coordinates of the P-name of x, it is clear that nx is constant on Wx. This
implies that {Wx} is in fact a partition of X into cylinders of variable lengths
(clearly, such partition is at most countable). We denote this partition by {Wi}
and the corresponding lengths by ni. The inequality (3.3.5) becomes

− 1
ni

log μ(Wi) > C − δ,

which implies that the length-entropy H(p,n), where p = (μ(Wi)) and n =
(ni), is larger than C − δ.

Now we apply a different measure ν on the symbolic space PN0 . We let ν

be the product measure in which each symbol A ∈ P maintains the measure
value μ(A), but measures of longer blocks are computed by multiplication of
the measures of the symbols in the block. The inequality (3.3.4) applied for ni

and any point in Wi says directly that

− 1
ni

log(ν(Wi)) < H(P) + δ,

i.e., that ν(Wi) > 2−ni(H(P)+δ). Because the cylinders Wi are disjoint, their
measures ν are summable to a number not exceeding 1 (these cylinders cover a
set of full measure μ, but perhaps not of full measure ν), all the more, the sum
of the numbers 2−ni(H(P)+δ) does not exceed 1. Now, the second assertion of
Lemma 1.1.13 implies that H(P) + δ + 1/n0 > H(p,n) > C − δ. Since δ

and 1/n0 are arbitrarily small, we get C ≤ H(P), as claimed.
In order to replace H(P) in (3.3.3) by (a possibly smaller term) h(P) recall

that for sufficiently large n0, 1
n0

H(Pn0) ≤ h(P)+ε, so it suffices to show that

n0C ≤ H(Pn0).

Consider the power process (X,Pn0 , μ, Tn0 , S). For a point x ∈ X , the cylin-
der of length mn0 containing x in the original process is (as a set, not as a
block) the same as the cylinder of length m containing x in the power process.
We can write this as

IPmn0 (x) = I(Pn0 )m(x),
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where (Pn0)m denotes the partition obtained through m steps in the power
process. For n = mn0 − r (0 ≤ r < n0) we have, by inclusion of the corre-
sponding sets,

1
nIPn(x) ≤ 1

nIPmn0 (x) = mn0
n

1
mn0

IPmn0 (x),

so, at almost every point, the upper limit C = lim supn
1
nIPn(x) is attained

along a subsequence of mn0, and then it equals

1
n0

lim sup
m→∞

1
mI(Pn0 )m(x).

We have proved that the upper limit analogous to C, computed for the power
process is constant almost everywhere and equals n0C.

Although the power process need not be ergodic, the measure μ has at most
n0 ergodic components μ(i) supported by disjoint sets Xi (in fact of equal
measures, but here it is inessential), and μ =

∑
i μ(Xi)μ(i). Denote by Ci the

constant analogous to C computed for μ(i) in the (now ergodic) power process.
The inequality (3.3.3) implies that

Ci ≤ H(μ(i),Pn0).

As we know, the function μ �→ H(μ,Pn0) is concave (see (1.3.5)), while
the information function is convex (see (1.3.4)), and this property passes via
lim sup. So,

n0C ≤
∑

i

μ(Xi)Ci ≤
∑

i

μ(Xi)H(μ(i),Pn0) ≤ H(μ,Pn0),

and we are done.

The Shannon–McMillan–Breiman Theorem also has a conditional version.
Since it occurs in the literature usually in restricted generality, we have decided
to present the full version with a complete proof. The formulation involves the
notion of the conditional information function given a sigma-algebra which
relies on conditional expectation. The Martingale Convergence Theorem is
used to switch between this and a more elementary phrasing, in which we
use only the conditional information function given a partition.

Let P and B be a countable partition and a sigma-algebra, respectively.
Recall (1.5.1) for the conditional information function x �→ IP|B(x). If
H(P|B) (which is the integral of the conditional information function) is
finite, then the Martingale Convergence Theorem allows one to replace this
function by the almost everywhere limit over any sequence of partitions Q

generating B:

IP|B = lim
Q→B

IP|Q. (3.3.6)
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This is how we will understand the conditional information function in the
theorem below. The proof is fairly long and rather technical, but follows the
same scheme as the unconditional proof. We have chosen to skip it in the main
course of the book. For interested readers we attach the proof in the Appendix.

Theorem 3.3.7 Let (X,P, μ, T, S) be an ergodic process on finitely or count-
ably many states and let B be a subinvariant (or invariant) sigma-algebra.
Assume that H(P|B) < ∞. Then for μ-almost every point x we have:

lim
n

1
nIPn|B(x) = h(μ, T,P|B).

Proof See Theorem B.0.1 in Appendix B.

3.4 The Ornstein–Weiss Return Times Theorem

We continue to investigate the process (X,P, μ, T, S) determined by a count-
able partition P with finite static entropy. Recall that An

x denotes the cylinder
of Pn containing x. For each x ∈ X we define its first return time to the nth
cylinder as

Rn(x) = RAn
x
(x) = min{k > 0 : T kx ∈ An

x}.

By the Poincaré Recurrence Theorem, this function is defined almost every-
where (even without ergodicity). In the language of blocks, Rn(x) is the first
positive coordinate where a repetition of the block x[0, n − 1] begins in the
P-name of x. Notice that in the ergodic case, in order to acquire the measure
of the cylinder An

x (hence the information function IPn(x)) one needs to know
all the forward return times, to compute their density along N. Knowing only
finitely many return times allows one to obtain an approximation, while the
inverse of the first return time can be considered only a very crude estimate.
The theorem below comes from [Ornstein and Weiss, 1993]. It asserts that
this crude estimate is sufficiently good to have the same logarithmic asymp-
totic behavior as μ(An

x), allowing the entropy to be calculated. It allows us
to compute the approximate value of the dynamical entropy by examining a
long enough finite portion of a single P-name. We do not even need to know
the measures of the cylinders required in the Shannon–McMillan–Breiman
Theorem.

Theorem 3.4.1 (Ornstein–Weiss) If (X,P, μ, T, S) is ergodic, then

lim
n

1
n log Rn(x) = h(μ, T,P) μ-a.e.



3.4 The Ornstein–Weiss Return Times Theorem 95

Proof Let B denote a block of length n (and its cylinder set). By ergodicity,
the skyscraper over B (the union of trajectories of points from B until their
first returns to B) covers a set of measure one. This can be written as∫

B

Rn(x) dμ = 1 or
∫

B

Rn(x) dμB =
1

μ(B)

(the above is also known as the Kac Theorem, see Theorem 4.3.4). Thus
Rn(x) > exp(nε)/μ(B) may hold on a subset of B of measure μB at most
exp(−nε). By the Law of Total Probability, the same estimate holds globally
on X , which can be written as

μ{x : 1
n log Rn(x) > IPn(x) + ε} < exp(−nε).

Applying the Borel–Cantelli Lemma [see e.g. Feller, 1968], the Shannon–
McMillan–Breiman Theorem and because ε is arbitrary, we have proved that

lim sup
n→∞

1
n log Rn(x) ≤ h(μ, T,P)

μ-almost everywhere.
Because Rn(x) ≥ Rn−1(Tx), the function lim infn

1
n log Rn(x) is subin-

variant, hence equal to a constant c. We need to show that c ≥ h(P). First of
all, notice that if P is replaced by P(m), the corresponding return times can
only become shorter. Because of that and since h(P(m)) ↗ h(P), it suffices to
prove the inequality c ≥ h(P) for finite partitions. In the remaining part of the
proof l denotes the finite cardinality of P.

Fix an ε > 0 and δ > 0. For almost every x there is an nx > 1/δ such
that Rnx

(x) ≤ 2nx(c+ε). Thus, there is a set Z of measure smaller than δ/2
such that N0 = max{nx : x /∈ Z} is finite. By the Ergodic Theorem, for
m sufficiently large, all points x from a set X ′ of measure 1 − δ visit Z no
more than mδ/2 times within the first m iterates. By taking m large enough
we may assume that 2N0(c+ε) < mδ/2. Then X ′ can be covered by some
number D of cylinders B of length m with the following structure: each B can
be represented (perhaps in several ways) as a concatenation of some blocks Wi

of lengths ni ranging between 1/δ and N0, and no more than mδ single entries
including 2N0(c+ε) entries at the end, in such a way that each of the blocks Wi

is repeated in B to the right at a distance ri not larger than 2ni(c+ε). Figure 3.3
shows the structure of B. We count the number D of blocks B with such a
structure.

Because all blocks Wi are at least 1/δ long, there are no more than mδ of
them and hence their initial positions can be distributed in at most

2mH(δ,1−δ) (3.4.2)

different ways (approximately, see (2.8.4)).
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· · W1 W2 · W3 · · W4 W5 · W6 · · W7 ·

2N0(c+ε)︷ ︸︸ ︷
· · · · · · · · · · · ·

←− r1 −→| W1 | ←r5→| W5 | ←− r7 −→| W7 |

Figure 3.3 The structure of the block B. Only some repetitions are shown.

Similarly, there are no more than

2mH(δ,1−δ)

ways of distributing the single entries over B and no more than

lmδ

ways of filling them with symbols. Now, imagine that the initial positions of
the blocks Wi are set, as well as all the places outside these blocks, and that
all positions outside these blocks, including 2N0(c+ε) positions at the end, are
filled. Notice that now also the lengths ni of the blocks Wi are determined.
What is missing to determine B completely is the contents of the blocks Wi.
In a moment we will explain that, instead, it suffices to know the distances to
their first repetitions.

For each i the distance between Wi and its first repetition to the right assumes
an integer value ri not larger than 2ni(c+ε). Globally this makes

2
∑

i ni(c+ε) ≤ 2m(c+ε) (3.4.3)

possible choices of the distances ri (jointly for all blocks i).
Once these choices have been made, the block B is completely determined,

because each entry of each block Wi (proceeding from right to left) can be
copied from the entry ri positions to the right, in the already determined part
of B. Multiplying the displayed estimates (3.4.2) through (3.4.3) we obtain the
upper bound:

D ≤ 22mH(δ,1−δ) · lmδ · 2m(c+ε),

i.e.,

log D ≤ 2mH(δ, 1 − δ) + mδ log l + m(c + ε) ≤ m(c + 2ε),

for an appropriate a priori choice of δ. Because the complement of X ′ is cov-
ered by no more than lm cylinders of length m, the entropy of Pm does not
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exceed

(1 − δ)m(c + 2ε) + δm log l + H(δ, 1 − δ) < m(c + 3ε).

Since H(Pm) ≥ mh(P) for every m, and ε is arbitrary, it must hold that
c ≥ h(P).

3.5 Horizontal data compression

A data compression algorithm in information theory is an algorithm (described
in a finite number of instructions) allowing long blocks B to be replaced by
(desirably) shorter blocks φ(B) in an injective way. It is convenient to assume
that the output blocks are binary (i.e., they consist of zeros and ones). Then the
length of the compressed block represents the effective information content in
bits. The compression rate achieved on a block B is the ratio

CR(B) =
|φ(B)|

|B| log #Λ

between the “size” of the block after and before the compression. Usually, such
an algorithm divides B into a concatenation of relatively short subblocks A (of
constant or variable lengths) and builds a one-to-one correspondence between
the blocks A and some binary blocks Φ(A), trying to save on the length as
much as possible. Eventually the image of B is obtained as the order pre-
serving concatenation of the images Φ(A). The two most commonly known
such algorithms are the Huffman algorithm and the Lempel–Ziv algorithm.
The first one has been briefly described in the Introduction. It divides B into
equal length subblocks A, checks their frequencies in B and assigns images
of variable lengths, so that the most frequent A’s receive the shortest images.
The Lempel–Ziv algorithm uses component subblocks A of variable lengths
and does not require examining their frequencies in B (thus is much faster).
In order for the code to be reversible, not all blocks can be used in the role of
Φ(A), because one has to be able to locate the “cutting places” in the concate-
nated image. For that, a special family of image blocks is selected, a so-called
prefix-free family, with the property that no block in this family is a prefix
(beginning) of another. Within such a family, the cardinality of all blocks of
length n, for large n, nearly equals 2n (in the sense that one-nth of log of that
cardinality is close to 1), so the calculations of the compression rate are nearly
the same as if all blocks were used.

The data compression code can also have the form of a program (finite set of
instructions) which generates long output blocks when fed by some (shorter)
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input blocks. In fact, such a program is decoding (i.e., decompressing); the
output blocks are our “originals,” while the input blocks are their compressed
counterparts. One needs to include both the length of the program and the
length of the input block in the calculations of the compression rate of the out-
put block. This leads to the notion of Kolmogorov complexity of a long block
B, as the length of the shortest program (+ input) able to generate it. We refer
the reader to the rich literature in information theory for precise description
of many variants of lossless data compression codes, Kolmogorov complexity
and related notions [see e.g. Cover and Thomas, 1991]. In this book we will
concentrate on theoretical aspects of data compression and its connection with
entropy. For an extended exposition see also [Shields, 1996].

Formally, a data compression algorithm is any injective function

φ :
∞⋃

m=m0

Λm →
∞⋃

m=1

{0, 1}m.

Often one is interested in finding a code which highly compresses not all
blocks, only a selected family of blocks, for example, all sufficiently long
blocks appearing with positive probabilities in some ergodic process. From
the counting argument in Theorem 2.8.9 it follows immediately that even with
such a specialized algorithm, for a fixed and big enough n, the majority of
blocks (appearing in the selected process) of sufficiently large length m can-
not achieve the compression rate essentially better than their nth combinatorial
entropy (which is close to the entropy of the process), simply because the car-
dinality of such blocks is too big to be injectively encoded by shorter blocks.
One easily derives the following

Theorem 3.5.1 Let φ be a compression algorithm that applies to all suffi-
ciently long blocks appearing in some ergodic process (X,P, μ, T, S)
of entropy h = h(μ, T,P). Let n be so large that H(μ,Pn) < n(h + ε).
Then the joint measure of all blocks B of length m whose compression rate is
smaller than Hn(B)/ log #Λ tends to zero with m.

While the proof of this theorem is left to the reader (Exercise 3.9), we give
a stronger almost everywhere result whose proof uses the Shannon–McMillan–
Breiman Theorem. It says that the compression rate of the initial block
x[0,m − 1] of a “typical” x cannot be better than the entropy of the process, if
m is large enough.

Theorem 3.5.2 (The Data Compression Theorem) Let φ be a data compres-
sion algorithm applied to blocks over a finite alphabet Λ. Let μ be a shift-
invariant ergodic measure on ΛS of entropy h = h(μ, σ,PΛ). For x ∈ ΛS
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let

CR(x) = lim inf
m→∞

CR(x[0,m − 1]).

Then, for μ-almost every x, CR(x) ≥ h/ log #Λ.

Proof Fix some ε > 0. For m0 ∈ N let Xm0 be the set where Im(x) ≤ h −
ε/2 for all m ≥ m0. In other words, for x ∈ Xm0 , μ(x[0,m−1]) ≤ 2−m(h− ε

2 )

(here x[0,m− 1] denotes the cylinder corresponding to the initial block of x).
For any m, the number of all blocks of length m compressed to lengths smaller
than m(h − ε) (i.e., with compression rate smaller than h−ε

log #Λ ) is clearly not

larger than 2m(h−ε). Within Xm0 , the cylinders corresponding to such blocks
occupy jointly no more than a subset of measure

2−m(h− ε
2 ) · 2m(h−ε) ≤ 2−m ε

2 .

By summability over m (and the Borel–Cantelli Lemma), the subset of Xm0

where CR(x) ≤ h−ε
log #Λ has measure zero. Because, by the Shannon–

McMillan–Breiman Theorem, the sets Xm0 grow to a set of full measure, the
entire set of points x satisfying CR(x) ≤ h−ε

log #Λ has measure zero. The asser-
tion now follows by uniting such sets over a decreasing to zero sequence of
epsilons.

The Data Compression Theorem 3.5.2 fails for some very exceptional
sequences, even ones which satisfy the Ergodic Theorem for μ. Below is an
example.

Example 3.5.3 Consider the binary sequence obtained by concatenating con-
secutively all blocks of length 1 followed by all blocks of length 2, etc., each time
ordered lexicographically, as shown below (the commas are added only to show the
structure):

x = 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001 . . .

It is not hard to see that the frequency of any block A in this sequence is the
same as its independent uniform measure μ (i.e., μ(A) = 2−n, where n is the
length of A). In other words, x satisfies the Ergodic Theorem for every cylinder
A and the measure μ whose entropy is 1. So, according to the assertion of the
Data Compression Theorem 3.5.2, x should not allow for any compression. On
the other hand, since it can be completely determined in a finite set of instructions
(see Exercise 3.10), the Kolmogorov complexities of the blocks x[0, m− 1] tend to
zero. This example shows that Kolmogorov complexity takes into account a much
wider variety of structural regularities than just the ones based on frequencies of
subblocks. Nevertheless, the Data Compression Theorem says that the collection of
sequences with regularities undetected by the frequency-based codes has measure
zero.

We only remark that there exist many “optimal” data compression algo-
rithms which realize the inequality CR(B) ≤ Hn(B)+ε

log #Λ for all sufficiently long
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blocks (this fact for the Lempel–Ziv algorithm was proved in [Ornstein and
Weiss, 1993]).

A reflection: How is it AT ALL possible to create a data compression algo-
rithm which replaces all blocks by blocks of at most the same length (and over
the same alphabet), in an injective way, where at least one block is replaced
by a strictly shorter one? This sounds like an impossible task! Such a replace-
ment should lead inevitably to loss of information. Well... we apply the code
not exactly to all blocks, only to blocks of lengths at least m0, while we allow
the coded images to be arbitrary. This creates a small space allowing us to
move some of the blocks “down the scale.” But is there much room indeed?
Of course not! Data compression is an illusion. An illusion with spectacular
practical results. Because we do not compress blocks shorter than m0, we save∑

m<m0
2m = 2m0 shortest blocks to be used as compressed images of some

longer blocks. For a length m significantly larger than m0 ANY compression
with rate smaller than 1 may concern at most the relatively tiny amount 2m0

out of the huge amount 2m of blocks. A randomly chosen block of length m

will usually turn out incompressible. Luckily, most computer files, due to their
organized form, fall into the tiny collection of compressible blocks. This is
why data compression works.

Exercises

3.1 Let (X,P, μ, T, S) be an ergodic process with positive (and finite)
entropy. Show that for large enough n the power process (X,Pn, μ,

Tn, S) is nε-entropy independent. Is this independence trivial (see
Remark 3.1.8)? Does this translate to δ-independence for some small δ?

3.2 Give an example that the sequence H(Pn)−H(Pn|Qn) occurring in the
definition of mutually ε-independent processes (formula (3.1.16)) need
not have descending nths. Notice that this strengthens Exercise 1.6.

3.3 Prove that the Pinsker sigma-algebra in an independent process is trivial.

3.4 Show that the bilaterally deterministic process constructed in Example
3.2.5 has positive entropy.

3.5 Fact 3.2.8 shows that the reversed inequality (2.4.18) need not hold even
for the actions of Z (and invariant sigma-algebras). Provide a much sim-
pler example for the actions of N0 (and subinvariant sigma-algebras).

3.6 Show that the Shannon–McMillan–Breiman Theorem for an indepen-
dent process (with not necessarily uniform measure on the symbols) is
equivalent to the Strong Law of Large Numbers [see e.g. Feller, 1968].
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3.7 Define the kth return time to the nth cylinder as

R(k)
n (x) = R(k)

An
x
(x) = min

{
j > 0 :

j∑
i=1

1IAn
x
(T ix) = k

}
.

Prove that in an ergodic process (X,P, μ, T, S) the variables R(k)
n fulfill

the assertion of the Ornstein–Weiss Theorem, i.e., that

lim
n

1
n log R(k)

n (x) = h(P) μ-a.e.

3.8 Given an alphabet Λ of cardinality l, and ε > 0, create a prefix-free
family of blocks over Λ in which the cardinality of blocks of length
n exceeds 2n(log l−ε). Hint: Choose carefully a block W which cannot
occur with “selfoverlapping” and compute the cardinality of all blocks
of length n in which W occurs exactly one time – at the right end. By the
way, notice that a prefix-free family of blocks is simply any collection of
blocks with variable lengths, disjoint when treated as cylinders starting
at the coordinate zero.

3.9 Prove Theorem 3.5.1.
3.10 Write a program that generates the sequence x of Example 3.5.3.
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Kolmogorov–Sinai Entropy

4.1 Entropy of a dynamical system

Let (X,A, μ, T, S) be a dynamical system. The space X can be partitioned
into finitely or countably many sets in many different ways producing many
processes (X,P, μ, T, S). We will consider only partitions with finite static
entropy, since other partitions provide no information about the complexity of
the dynamics.

Definition 4.1.1 The dynamical or Kolmogorov–Sinai entropy of the system
(X,A, μ, T, S) is defined as follows:

h(μ, T ) = h(A) = h(μ) = sup{h(P) : H(P) < ∞}.
By Fact 2.4.12, it suffices to take the supremum over finite partitions P.

Moreover, using continuity of the dynamical entropy among finite partitions
one can prove that

h(A) = lim
k

h(Pk), (4.1.2)

where (Pk) is a refining sequence of finite partitions which generates A (the
proof is left to the reader as Exercise 4.1). The notation used will depend on
which of the parameters are fixed and selfunderstood in the context, and which
ones are treated as variables.

Now consider two dynamical systems (X,A, μ, T, S) and (Y,B, ν, S, S)
such that the latter is a factor of the former via a map π. This is to say, we
identify B with the (sub)invariant sigma-algebra π−1(B) � A. We have

Fact 4.1.3 If (Y,B, ν, S, S) is a factor of (X,A, μ, T, S), then h(μ, T ) ≥
h(ν, S). This can be written in short as

A � B =⇒ h(A) ≥ h(B). (4.1.4)

If two systems are isomorphic, then their entropies are equal.
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Proof Every partition Q of Y with finite entropy H(ν,Q) lifts by π−1 to a
partition P = π−1(Q) of X , with the same static entropy H(μ,P) = H(ν,Q).
Then, for each n ∈ N, by equivariance, π−1(Qn) = Pn, and again, the par-
titions Qn and Pn have the same static entropy in respective spaces. So, the
dynamical entropy of P and Q are equal. Thus, the supremum defining h(μ, T )
is not smaller than that of h(ν, S). The statement concerning isomorphic sys-
tems is now immediate, as each of the systems is a factor of the other.

Definition 4.1.5 We define the conditional entropy of a dynamical system
given its factor as follows

h(μ, T |ν, S) = h(A|B) = h(μ|ν) = sup
P

h(P|B).

The last notation will be used frequently in Part II of this book, where this
kind of entropy is studied as a function of invariant measures. For now how-
ever, since we will work within a fixed measure space with a fixed transforma-
tion, and all factors are identified with (sub)invariant sigma-algebras, we will
mainly use the second notation. We have

Fact 4.1.6

h(A|B) + h(B) = h(A) (or h(μ|ν) + h(ν) = h(μ)).

Proof The equality is trivial when h(B) = ∞. Otherwise we need to prove
the subtractive formula h(A|B) = h(A) − h(B). Let P and Q range over all
finite A-measurable partitions and all finite B-measurable partitions, respec-
tively. We have, using (2.4.4) and (2.4.17) in appropriate places,

h(A) − h(B) = sup
P

h(P) − sup
Q

h(Q) = inf
Q

sup
P

[h(P) − h(Q)] =

inf
Q

sup
P

[h(P ∨ Q) − h(Q)] ≥ sup
P

inf
Q

[h(P ∨ Q) − h(Q)] =

sup
P

inf
Q

[h(P|Q)] = sup
P

h(P|B) = h(A|B).

On the other hand,

h(A|B) = sup
P

inf
Q

[h(P∨Q)−h(Q)] ≥ sup
P

inf
Q

[h(P)−h(Q)] = h(A)−h(B).

If B is generated by a finite partition Q, then the infimum over Q can be
skipped. The alternative notation for h(μ, T |ν, S) in this case is h(μ, T |Q) or
simply h(A|Q).
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Now consider several factors of the master system (X,A, μ, T, S), repre-
sented by (sub)invariant sigma-algebras, for example B and C. It is clear that
B ∨ C is also a (sub)invariant sigma-algebra, hence represents a factor (it is a
kind of a joining, see Section 4.4 for more). The familiar list of monotonicity
and subadditivity properties holds (compare Fact 2.4.2):

Fact 4.1.7 Let B,C,D be subinvariant sigma-algebras. Then

h(B ∨ C|D) = h(B|C ∨ D) + h(C|D), (4.1.8)

B � C =⇒ h(B|D) ≥ h(C|D), (4.1.9)

C � D =⇒ h(B|C) ≤ h(B|D), (4.1.10)

h(B ∨ C|D) ≤ h(B|D) + h(C|D), (4.1.11)

h(B|D) ≤ h(B|C) + h(C|D). (4.1.12)

Proof First of all, by conditioning all expressions in the proof of Fact 4.1.6
one obtains its conditional version

h(A|B ∨ D) + h(B|D) = h(A|D). (4.1.13)

Since for any C-measurable partition R we have h(P ∨ R|C) = h(P|C) (use
(2.4.3) and (1.6.28)), we also have h(B ∨ C|C ∨ D) = h(B|C ∨ D). Now
(4.1.8) follows from (4.1.13) applied to C as a factor of B ∨ C:

h(B ∨ C|C ∨ D) + h(C|D) = h(B ∨ C|D).

Monotonicity (4.1.9) follows from (4.1.8). The reversed monotonicity (4.1.10)
is obvious by definition. Just like in all preceding similar lists of properties,
the last two subadditivity statements are direct consequences of the first three
(compare Exercise 1.3).

The next property we prove is the power rule:

Fact 4.1.14 For each n ∈ S we have h(μ, Tn) = |n|h(μ, T ).

Proof By Fact 2.4.19, for each partition P we have

h(μ, Tn,P) ≤ h(μ, Tn,P|n|) = |n|h(μ, T,P).

Taking the supremum over all P we get

h(μ, Tn) ≤ |n|h(μ, T ) = sup
Q=P|n|

h(μ, Tn,Q) ≤ h(μ, Tn).
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It is clear that any measure on a countable space is atomic, hence any dynam-
ics on such a space has entropy zero. This fact has also a conditional ver-
sion: every countable-to-one extension has conditional entropy zero. The proof
relies on disintegration and the conditional Shannon–McMillan–Breiman The-
orem (Theorem 3.3.7). With this price paid the proof is easy. Without this
machinery it is relatively easy to prove a weaker statement that the fibers are
infinite (Exercise 4.5).

Theorem 4.1.15 Let (Y,B, ν, S, S) be a factor of an ergodic system
(X,A, μ, T, S) via a factor map π : X → Y . Suppose that h(A|B) > 0.
Then, for ν-almost every y, π−1(y) is uncountable.

Proof We have

h(A|B) = sup
P

h(P|B) > 0,

where P ranges over all finite A-measurable partitions of X . Thus, there exists
a finite partition P such that h(P|B) > 0. We restrict our attention to the
system generated jointly by P and the factor on Y , i.e., we set A = PS ∨ B.
We will prove that almost every y has an uncountable preimage already in this
system.

This follows immediately from the conditional Shannon–McMillan–
Breiman Theorem 3.3.7. For almost every x in the extension the conditional
information function 1

nIPn|B(x) converges to the conditional entropy, where
IPn|B(x) = − log μy(An

x), where y is the factor image of x, μy is the disinte-
gration of μ and An

x is the cylinder over P of length n containing x. Whenever
μy has an atom at x the measures of the cylinders An

x containing x do not
decrease to zero, so their minus logarithms are bounded, hence the sequence
1
nIPn|B(x) decreases to zero. Thus, if the conditional entropy is positive, such
atoms may occur only for y with ν-probability zero.

4.2 Generators

Throughout this section we will work with dynamical systems with finite
Kolmogorov–Sinai entropy. Measure-theoretically, a generator is any partition
P such that PS equals A (up to measure). Nevertheless, in systems with finite
Kolmogorov–Sinai entropy we will require that the static entropy of P is finite.

Definition 4.2.1 A countable partition P will be called a generator in a sys-
tem (X,A, μ, T, S) if it has finite static entropy and the full history PS equals
A (after completing).
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Existence of generators is one of the issues for which the kind of the acting
semigroup may be of decisive importance. Thus we must distinguish between
unilateral generators, i.e., generating under the action of N0: PN0 = A and
bilateral generators, i.e., generating under the action of Z: PZ = A.

There are two key theorems concerning generators: the Kolmogorov–Sinai
Theorem [Sinai, 1959] and the Krieger Generator Theorem (or simply Krieger
Theorem) [Krieger, 1970].

Theorem 4.2.2 (Kolmogorov–Sinai) If P is a generator (unilateral or bilat-
eral) for a dynamical system (X,A, μ, T, S), then h(μ, T ) = h(μ, T,P).

Proof For unilateral generators this is an immediate consequence of Fact
2.4.1, while for bilateral generators one needs the Exercise 2.6.

The next theorem allows one to view every invertible system (Z-action) of
finite entropy as a process over a finite alphabet, i.e., as a symbolic system. It
plays a crucial role in our interpretation of entropy, as the amount of informa-
tion passing per unit of time. Although various proofs may be found in many
textbooks, for sake of completeness of this book we provide a full proof below.

Theorem 4.2.3 (Krieger) Let T be an ergodic automorphism of the standard
probability space (X,A, μ) with h(μ, T ) < ∞. Then (X,A, μ, T, Z) has a
finite bilateral generator of any cardinality l > 2h(μ,T ). Moreover, l = 2h(μ,T )

is possible if and only if 2h(μ,T ) is an integer and the system is isomorphic to
the Bernoulli shift on l symbols with equal measures.

Remark 4.2.4 The Krieger Theorem solves the question about the vertical
data compression, i.e., it allows the smallest alphabet which losslessly encodes
the system in real time to be determined. Also, it provides an interpretation
of Kolmogorov–Sinai entropy in terms of the vertical data compression: if ln
denotes the cardinality of the smallest alphabet sufficing to encode the action
of Tn, then h(μ, T ) = lim

n

1
n log ln.

We will prove the Krieger Theorem in two steps. At first, we prove the
assertion assuming that the system has a countable generator (with finite static
entropy). The main proof will then reduce to finding a countable generator in
a Z-action with finite Kolmogorov–Sinai entropy. The proofs rely on cutting
the P-names into blocks at places that can be determined from the P-name
(i.e., using a PZ-measurable procedure) without knowing the position of the
coordinate zero (i.e., in a shift-equivariant procedure).

Lemma 4.2.5 Let (ΛZ, μ, σ, Z) be an ergodic symbolic system over a count-
able alphabet such that H(PΛ) < ∞. Denote h = h(μ, σ,PΛ). Let l be such
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that log l > h. Then the system (ΛZ, μ, σ, Z) is isomorphic to another symbolic
system, (ΔZ, ν, σ, Z), where #Δ = l.

Proof We let Δ be an alphabet of cardinality l. We will replace each Λ-name
by a Δ-name in an (almost surely) injective and shift-equivariant way. Let ε =
log l−h

2 . As we know (see Exercise 3.8) we can select one block over Δ, say W ,
and find n0 such that for every n ≥ n0 the cardinality of all blocks of length
n over Δ in which W occurs exactly one time – at the right end (such blocks
constitute a prefix-free family), is at least 2n(log l−ε) (which equals 2n(h+ε)).

Using the Shannon–McMillan–Breiman Theorem we can enlarge n0 so that
for every x in a set C ⊂ ΛZ of measure larger than 1/2 and any n ≥ n0

the cylinder x[0, n − 1] ∈ Λn has measure within the range 2−n(h±ε). Notice
that for every n ≥ n0 there are at most 2n(h+ε) cylinders of length n which
intersect C. Now we invoke the Kakutani–Rokhlin Lemma [see e.g. Petersen,
1983]: a set of measure at least 3/4 in ΛZ is occupied by a tower of height
n0, i.e., by a sequence of disjoint sets A, T (A), . . . , Tn0−1(A). Notice that for
each i = 0, . . . n0 − 1 the first return time to T i(A) is never smaller than n0;
each orbit must leave the tower through the top and re-enter through the base.
Of course, the set B = C∩T i(A) has positive measure for at least one i. In this
way we have selected a set B (which we call a marker) with two properties:
the return time RB is at least n0 and each value n of RB is represented by at
most 2n(h+ε) cylinders of length n (intersecting B). Let Rn denote the family
of blocks over Λ corresponding to these cylinders. For each n there is a 1-1
map Φn from Rn into the family of all blocks of length n over Δ ending with
W and in which W does not occur otherwise (because, as we have noted, there
are sufficiently many such blocks).

Now fix an x ∈ ΛZ whose orbit visits B infinitely many times in both the
past and the future (by the Ergodic Theorem almost every point has this prop-
erty). At times of the visits of the orbit of x to B the sequence x is cut into
a concatenation of blocks belonging to

⋃
n≥n0

Rn. We define the map π as
the code replacing each block R from this concatenation by its image Φn(R),
where n is the length of R. It is immediate to see that π is defined almost
everywhere, it is measurable, shift-equivariant and invertible (where defined):
the cutting places are determined in the image sequences by the occurrences
of W .

In the above proof dealing with bilateral sequences is essential: in a unilat-
eral sequence the block between the coordinate zero and the first visit in B need
not belong to the family

⋃
n≥n0

Rn, so we may not know how to encode it.
We can now prove the full version of the Krieger Theorem.
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Proof of Theorem 4.2.3 Consider a system (X,A, μ, T, Z) with finite entropy
h = h(μ, T ). We need to find any (countable) generator. There exists a
sequence (Pk)k∈N of finite partitions such that Pk+1 � Pk for each k which
together generate the sigma-algebra A (without even using the action of T ).
Then hk = h(μ, T,Pk) ↗ h (see (4.1.2)). We let Δ be an alphabet of cardi-
nality l such that log l > h. In the coding, we will use the countable alpha-
bet: Λ = Δ ∪ {0, 1, 2, . . .}. We fix a decreasing to zero sequence εk such
that

∑
k εk = log l−h

2 . From now on we proceed inductively. The first step is
almost identical as in the preceding proof. We choose a marker set B1 so that
each value n of the return time RB1 is represented by at most 2n(h1+ε1) cylin-
ders in the P1-names. The map Φn sends these cylinders into blocks over Λ of
length nh1+ε1

log l < n (there is enough of them). Next, we extend every image

block to the right by attaching n log l−h1−ε1
log l − 1 zeros and the terminal symbol

“1,” so that the image now has the same length n as the original. The code π1

is constructed as follows: we cut each P1-name at the times of the visits to B1

into blocks R and replace each R by Φn(R), where n is the length of R.
We now describe the second step, and we will skip a completely analogous

description of the further steps. Find n2 > n1 such that on a set C ⊂ B1

of measure at least half of μ(B1) the following condition holds: for every
x ∈ C and n ≥ n2 the measure of the cylinder R2 corresponding to the
block x[0, n − 1] in the P2-name x is within the range 2−n(h2±ε2). Since the
corresponding initial cylinder R1 of length n in the P1-name of x has measure
between 2−n(h1±ε1) (because x ∈ B1), the intersection R1 ∩ C splits into at
most 2n(h2−h1+ε1+ε2) cylinders of the same length over P2. So, they can be
injectively mapped into blocks over Λ of length nh2−h1+ε1+ε2

log l . We fix such a
map (separately for each block R1) and call it ΦR1 .

As in the preceding proof (and step) we now select a set B2 ⊂ C of positive
measure with the additional property that the return time RB2 assumes only
values larger than or equal to n2. This is our new marker set. Now take any
point x ∈ X . The times of visits to B2 cut both its P1-name and P2-name
into blocks of lengths n ≥ n2. Let R1 and R2 be a pair of blocks that appear
between a fixed pair of markers, in these two names, respectively. Because
B2 ⊂ B1, R1 is a concatenation of (finitely many) blocks R used in the pre-
ceding step. The code π1 replaces R1 by a concatenation of blocks over Λ in
such a way that there is a fraction

log l − h1 − ε1

log l

of zeros (we ignore the fraction occupied by the terminal symbols 1; it can
be included in the error term ε1). We use the smaller fraction h2−h1+ε1+ε2

log l
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of these cells to encode R2 given R1. We simply “write” the block ΦR1(R2)
into the empty places proceeding from left to right, still leaving some number
of the empty cells unused (see below), and we put the symbol “2” at the end of
the image of R2 so obtained, replacing the “1” put there by the code π1. This
concludes the description of the code π2. Notice that there is still a fraction

log l − h2 − 2ε1 − ε2

log l

of unused empty cells left. This is exactly what we need to repeat in the fol-
lowing steps: after step k there will be a fraction

log l − hk − 2ε1 − 2ε2 − · · · − 2εk−1 − εk

log l

of zeros, of which we will use

hk+1 − hk + εk + εk+1

log l

in the following step.
Notice that throughout all countably many steps every coordinate is changed

at most once, except the terminal integers which can only grow. Thus the limit
code π is well defined (the symbol ∞ may occur). Clearly, it is measurable and
shift-equivariant (as a limit of such). It is also invertible; the cutting places in
step k can be found by locating, in the image, all integer symbols larger than
or equal to k (including ∞). Then we know which symbols in this image were
used by the code π1, so we can reverse it and reconstruct the P1-name of the
original. Next we know which symbols in the image were used by the code
π2 and knowing already the P1-name of the original, we can reconstruct its
P2-name. And so on. By reversing all the codes πk we reverse π.

The last thing to notice is that the new generating partition PΛ so obtained
has finite static entropy. The finitely many symbols from Δ have finite entropy.
The other symbols k ∈ N0 have probabilities not larger than 1/nk, respectively
(the symbol k occurs in the image with gaps at least nk; in particular ∞ has
probability zero). We can easily arrange that the expectation

∑
k 1

nk
is finite.

This implies finite static entropy (see Fact 1.1.4).
We have completed the proof of the main statement of the Krieger Theorem.

It remains to check the case of equality. Clearly, if the system is isomorphic to a
Bernoulli shift on finitely many symbols of equal measures, then the entropy of
this system equals the logarithm of the cardinality of the generator transported
from the Bernoulli shift.
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Conversely, suppose a system with entropy h = log l has an l-element gen-
erator P. Because P is a generator, we have h(P) = h. The static entropy
H(P) is, on one hand, not larger than log l, on the other, not smaller than the
dynamical entropy h(P). So, we have equality h(P) = H(P). This condi-
tion implies that the process is independent (see Definition 2.3.15) and since
H(P) = log(#P), P is a partition into sets of equal measures.

Note that the Krieger Theorem does not apply to actions of N0. For example,
if T happens to be invertible, then, by Fact 2.3.12, the existence of a unilateral
generator is possible only when the dynamical entropy is zero. Even when T

is evidently not invertible, still, it may possess an invertible factor of positive
entropy, which also makes the existence of a unilateral generator impossible.

We shall say a few words about the Pinsker factor of a dynamical system.
This notion has been defined for processes (in Section 3.2), now we are one
step away from extending it to general dynamical systems.

Definition 4.2.6 Let (X,A, μ, T, S) be a dynamical system. The Pinsker
sigma-algebra is defined as Πμ =

∨
P ΠP where P ranges over all countable

partitions with finite static entropy of X .

Clearly, this is an invariant sigma-algebra. The associated factor is called the
Pinsker factor.

Remark 4.2.7 The same Pinsker sigma-algebra will be obtained as
∨∞

k=1 ΠPk

where (Pk) is a refining sequence of finite partitions that generate A. If P is a
generator in (X,A, μ, T, S), then Πμ = ΠP. The proof is left to the reader as
Exercise 4.4.

Remark 4.2.8 In a system (X,A, μ, T, S) consider the “full remote future”
A∞ =

⋂∞
n=1 T−n(A). It is trivially observed that for automorphisms A∞

equals A, while for systems having a unilateral generator P (with finite entropy)
A∞ coincides with the Pinsker sigma-algebra. The sigma-algebra A∞ rep-
resents the largest invertible factor of the system. The conditional entropy
h(μ|A∞) is interpreted as the entropy coming from the noninvertibile dynam-
ics and is sometimes called the (measure-theoretic) preimage entropy [Cheng
and Newhouse, 2005]. We refer to Section 6.10 where the connection between
measure-theoretic and topological preimage entropy is discussed.

Theorem 4.2.9 A factor of (X,A, μ, T, S) has entropy zero if and only if the
sigma-algebra corresponding to this factor is contained in Πμ.

Proof Let B be a sigma-algebra associated with some factor. Suppose the
entropy of the factor is zero. Let P be a B-measurable partition of finite static



4.3 The natural extension 111

entropy. The process (X,P, μ, T, S) has entropy zero, thus, by Theorem 3.2.2,
P � ΠP � Πμ. Thus B � Πμ.

Conversely, suppose B � Πμ and let Q be a finite B-measurable partition.
By Remark 4.2.7, for every ε the partition Q can be approximated up to ε in
d1 by a partition Q′ of the same cardinality as Q, measurable with respect to a
finite join

∨k
i=1 ΠPi

for some partitions Pi. It is easy to see that this last join
equals ΠP, where P =

∨k
i=1 Pi. By Theorem 3.2.2 again, h(Q′) = 0 and, by

continuity of the dynamical entropy for partitions of bounded cardinality (Fact
2.4.13), h(Q) = 0. This implies that the entropy of the factor associated with
B is zero (in the supremum defining the entropy of the factor system it suffices
to use finite partitions).

4.3 The natural extension

There is a technique which allows us to generalize many results from auto-
morphisms to endomorphisms, especially those concerning entropy. This tech-
nique is called the natural extension and we will briefly describe it in this
section.

Definition 4.3.1 Let (X,A, μ, T, N0) be a dynamical system. The natural
extension is the system (X ′,A′, μ′, T ′, Z) (or (X ′,A′, μ′, T ′, N0), depending
on the needs) defined as follows: X ′ = XZ, A′ is the product sigma-algebra,
T ′ is the shift map and μ′ is defined on measurable cylinders

C = C(A−n, . . . , An−1) = {(x(i))i∈Z ∈ XZ : ∀i∈[−n,n−1] x(i) ∈ Ai}

by

μ′(C) = μ

(
n−1⋂

i=−n

T−n−i(Ai)

)
.

It is elementary to verify that the natural extension is a well-defined auto-
morphism, i.e., T ′ is invertible. The projection π0 on the coordinate zero is a
factor map from (X ′,A′, μ′, T ′, N0) to (X,A, μ, T, N0).

For unilateral symbolic systems the natural extension has a simpler (iso-
morphic) form. We just mention here the modification: X ′ is defined as the set
of all bilateral sequences over the same alphabet as the original system. The
measure is defined for cylinders over blocks over the alphabet by first shifting
them so that all coordinates become positive, then applying the measure from
the unilateral space.
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It is obvious that for an invertible map T the dynamical entropy of a partition
is the same in the Z and N0 action. The following fact is crucial:

Fact 4.3.2 For a unilateral symbolic system (ΛN0 , μ, σ, N0) the dynamical
entropy is the same as that of the natural extension (ΛZ, μ′, σ′, N0). More gen-
erally, the Kolmogorov–Sinai entropy of a dynamical system (X,A, μ, T, N0)
is the same as that of the natural extension (X ′,A′, μ′, T ′, N0). The condi-
tional entropy h(A′|A) is zero.

Proof The first statement is obvious, as the dynamical entropy depends exclu-
sively on the future of the process, i.e., on the partitions Pn, n ≥ 0, which gen-
erate the same probability vectors in both processes. For the latter statements
we note that (X,A, μ, T, N0) is a factor of (X ′,A′, μ′, T ′, N0), so the entropy
of the latter system is not smaller. Now, take any measurable partition P′ of X ′

of finite static entropy. Then this partition can be approximated in d1 by a finite
partition Q′ measurable with respect to the sigma-algebra A[−n,n−1], where A

is identified with the zero-coordinate sigma-algebra. We have

1
mH(Q′m|A+) ≤ 1

mH(Q′n|A+) + 1
mH(Q′[n,m−1]|A+).

The last term, by applying T ′−n, becomes 1
mH(Q′m−n|A[−n,∞)), which is

zero, because the partition is measurable with respect to the conditioning
sigma-algebra. The first term on the right-hand side decreases to zero with
m. We have obtained that h(μ′, T ′,Q′|A+) = 0. Since A is subinvariant, A+

equals A. By lower semicontinuity in d1 of h(·|A) on countable partitions with
finite static entropy (see Fact 2.4.13), the conditional dynamical entropy of P′

given A is zero. Taking the supremum over P′ we obtain h(A′|A) = 0, as
claimed. As a consequence, h(A′) = h(A).

For a dynamical system (X,A, μ, T, S) and a set B ∈ A, recall Definition
3.1.10 of the system induced on B. We conclude this section with the Abramov
Theorem, allowing us to compute the entropy of the induced system [Abramov,
1959].

Theorem 4.3.3 (Abramov) Let (X,A, μ, T, S) be an ergodic system and let
B ∈ A satisfy μ(B) > 0. Then

h(μB , TB) =
h(μ, T )
μ(B)

.

The proof relies on Kac’s theorem [Kac, 1947]. We give a proof which uses
natural extensions.
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Theorem 4.3.4 (Kac) Let (X,A, μ, T, S) be an ergodic system and let B ∈ A

satisfy μ(B) > 0. Then ∫
RB(x) dμB =

1
μ(B)

.

Proof We start by assuming T to be an automorphism. By ergodicity, X =⋃
n

⋃n−1
i=0 T i({x ∈ B : RB(x) = n}), the union being disjoint and with

the sets in the inner union having equal measures (we are using images of
measurable sets, so invertibility is essential). Thus

1 =
∑

n

n · μ({x ∈ B : RB(x) = n}) =
∫

B

RB(x) dμ.

The assertion is now obtained by dividing by μ(B).
For a noninvertible T we invoke the natural extension (X ′,A′, μ′, T ′, N0).

Take a set B ∈ A and then let B′ = π−1
0 (B) ∈ A′. Notice that for every

x′ ∈ B′, RB′(x′) = RB(π0(x′)). Because πμ′ = μ, we have∫
B

RB dμ =
∫

B′
RB′ dμ′ = 1.

Since μ′(B′) = μ(B), the integrals remain equal after appropriate normaliza-
tions.

Proof of Theorem 4.3.3 A point x ∈ B visits B at times . . . n−2 < n−1 <

n0 = 0 < n1 < n2 . . . , (or just n0 = 0 < n1 < n2 . . . for S = N0), where
ni+1 − ni = RB(T i

Bx). Let P be a finite partition of X . The P-name of x

can be broken as the concatenation · · ·x[n−1, n0)x[n0, n1)x[n1, n2) · · · (or
just x[n0, n1)x[n1, n2) · · · , for S = N0). If we treat the component blocks as
symbols, we obtain a symbolic representation in which the shift corresponds to
the induced map TB (see Figure 4.1). The new symbols correspond to atoms
of the countable partition Q of B obtained in the following two steps: First,
we partition B into the sets Qn = {x ∈ B : RB(x) = n} and we denote
this partition by Q, then we refine Q by applying to each Qn the partition
Pn (matching the index n). This refined partition Q has finite static entropy.
Indeed, by the Kac Theorem, RB has finite expected value, i.e.,

∑
n nμ(Qn) <

∞. By Fact 1.1.4, Q has finite entropy. Now

H(Q) = H(Q|Q) + H(Q) =
∑

n

μ(Qn)HQn
(Pn) + H(Q).

The last term is finite and the sum is dominated by log #P
∑

n nμ(Qn), which
is finite, as well.
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visits in B↓

... C-1 C0 C1 C2 C3 ....

... C-1 C0 C1 C2 C3 ...

Figure 4.1 Symbolic representation of the process generated by P (above)
and of the process induced on B generated by Q (below).

By the Shannon–McMillan–Breiman Theorem for both the master process
and the induced process, there exists in B a cylinder A over Q such that

− 1
m log(μ(A)) ≈ h(μ, T,P) and − 1

l log(μB(A)) ≈ h(μB , TB ,Q),

where l denotes the length of A (under TB) and m is the length of A treated as
a cylinder over P (under T ). This implies

h(μ, T,P)
h(μB , TB ,Q)

≈ l

m

log(μ(A))
log(μB(A))

.

By the Ergodic Theorem, we also have

l

m
≈ μ(B),

while log(μ(A))
log(μB(A)) = 1 + log(μ(B))

log(μB(A)) , which is close to 1 when the conditional
measure of A is small. Because the inaccuracies can be made arbitrarily small,
we have proved that h(μ, T,P) = μ(B)h(μB , TB ,Q). Clearly, with P ranging
over all finite partitions of X , the partitions Q generate in the induced system,
so taking the supremum over all P completes the proof.

The following two examples teach us caution with handling induced maps,
especially when computing the entropy of a system from an induced one.

Example 4.3.5 Consider the system constructed in the following way: We start
with any system (X, A, μ, T, S) and we select a set A ∈ X with 0 < μ(A) < 1. We
partition A into countably many sets An so that

∑
n nμ(An) < ∞. Above each

An we imagine n copies of An (so-called “spacers”) equipped with the measure
copied from An. Let Y be the union of X and the spacers with the normalized
measure denoted by ν and denote c = ν(X). The transformation S on Y is defined
as follows: each point in An goes “vertically up” n times, until it reaches the top
spacer, then it returns to Tx. Other points in X are mapped directly to Tx. The
dynamics on X advances only “from time to time” with probability c, and at other
times it “stays suspended.”
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Notice that the system induced on X is the same as the original system
(X, A, μ, T, S), hence its entropy equals h(μ, T ). By the Abramov Theorem, the
entropy of the system (Y, B, ν, S, S) is

h(ν, S) = c · h(μ, T ).

Example 4.3.6 Now consider a very similar looking example. In addition to the
system (X, A, μ, T, S) take any process on two symbols, i.e., Z = {A, B}S with
the shift map σ and some shift-invariant measure ξ. Construct (Y, B, ν, S, S) as the
skew product, as follows: Y = Z×X , ν = ξ×μ, S(z, x) = (σ(z), T z(x)), where
T z = T when z0 = A and T z = id when z0 = B. Let c = ξ(A) (here A denotes
the cylinder over the block of length 1). Again, the dynamics on X advances only
“from time to time” with probability c, and at other times it “stays suspended.” But
in the previous example, the partition into the sets with the two types of behavior
was determined within X (i.e., was measurable with respect to A), now it is not – it
is determined within Z, hence is independent of A. The entropy of the system can
be computed as follows: The transformation induced on A×X is the direct product
of (X, A, μ, T, S) with the system induced from Z on A. The entropy of the latter
induced system is h(ξ, σ)/c. So, the overall entropy is:

h(ν, S) = c
(
h(μ, T ) +

h(ξ, σ)

c

)
= c · h(μ, T ) + h(ξ, σ).

We can use the Abramov Theorem to solve the maximization problem for
static entropy announced in Section 1.1, after Fact 1.1.4.

Fact 4.3.7 Fix some p ∈ (0, 1]. Among all countable probability vectors p =
(pi)i∈N with expected value

∑∞
i=1 ipi = 1

p the maximal entropy 1
pH(p, 1− p)

is attained on the geometric distribution with parameter p: pi = p(1 − p)i−1

(and only on this distribution).

Proof Take a probability vector p = (pi)i∈N with expected value 1
p . Con-

sider an independent (symbolic) process (say, bilateral) on countably many
symbols ai whose probabilities are pi, respectively. Denote by B the corre-
sponding symbolic space, by TB the shift map, and by μB the shift-invariant
measure of this process, and let P be the zero-coordinate partition. Note that
H(p) = h(μB , TB ,P). Now construct a skyscraper X over the base B hav-
ing exactly i − 1 floors above each zero-coordinate cylinder set ai. The total
measure of the skyscraper equals the expected value of p, i.e., 1/p, so, after
normalization, the base B becomes a set of measure p. The transformation
T on X is standard; each point goes up until it reaches the top floor, then it
returns to the base according to TB . Ergodicity of T with respect to the nor-
malized measure (denoted μ) follows easily from the ergodicity of μB with
respect to TB and the fact that X is the skyscraper over B. Notice that P

coincides with the partition of B determined by the values of the return time
variable. Consider the two-set partition Q of X into B and its complement.
The generated process, after inducing on B is precisely the process generated
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by the partition into level sets of the return time, i.e., by the partition P. By the
Abramov formula, its dynamical entropy (which is H(p)) equals 1

ph(μ, T,Q).
Now, h(μ, T,Q) ≤ H(Q) = H(p, 1− p), which proves the desired inequality.

Conversely, note that if we start the construction in the opposite order, with
(X,Q, μ, T, Z) being the independent process on two symbols 0, 1, whose
probabilites are 1 − p and p, respectively, and we define B as the cylinder
1, then the distribution p of the return time to B is geometric with the parame-
ter p and has expected value 1/p. The preceding argument now yields H(p) =
1
pH(p, 1 − p).

The uniqueness is obvious, because the equality implies h(μ, T,Q) = H(Q),
i.e., that the process on Q is independent and then the return times to B have
the geometric distribution.

4.4 Joinings

The notion of a joining is one of the most important in both ergodic theory
and topological dynamics. We refer the reader to the book by Eli Glasner
[Glasner, 2003] for an extensive study of joinings in ergodic theory. Here we
concentrate on a few facts concerning the entropy. A joining of two systems
(X,A, μ, T, S) and (Y,B, ν, S, S) is their common extension (Z,C, ξ, R, S)
with the additional property that the two factors together exhaust it, i.e., that
C = A ∨ B (where now we mean the lifted sigma-algebras). In this sense,
the notion of a joining becomes synonymous with the join of (sub)invariant
sigma-algebras. The difference is in our approach: when talking about subin-
variant sigma-algebras we usually work within a fixed “master” system, where
we consider many possible factors. Now we fix two abstract systems and we
treat their joinings (common extensions) as a varying object. The environment
where all possible joinings can be found (up to isomorphism) is the product
space. Here is the formal definition.

Definition 4.4.1 Let (X,A, μ, T, S) and (Y,B, ν, S, S) be two dynamical
systems. By a joining of these systems (or equivalently of the measures μ and
ν) we will mean the dynamical system (X × Y,A ⊗ B, ξ, T × S, S), where
ξ is any probability measure on the product sigma-algebra, invariant under
T × S, such that its marginals (projections onto X and Y ) equal μ and ν,
respectively. Because the only variable parameter above is the measure ξ, the
name “joining” often refers to this measure rather than the entire system.

We skip the purely measure-theoretic proof of the fact connecting the above
two approaches to joinings:
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Fact 4.4.2 Let (Z,C, ξ, R, S) be a dynamical system with two subinvariant
sigma-algebras A and B contained in C. Then the factor corresponding to
A ∨ B is a joining of the factors corresponding to A and B.

An example of a joining is the independent joining, where ξ is the product
measure μ× ν. Systems admitting only one joining – the product measure, are
called disjoint (in the sense of Furstenberg) [see Furstenberg, 1967].

We briefly describe joinings over a common factor. Suppose (X,A, μ, T, S)
(Y,B, ν, S, S) admit a common factor (Z ′,C′, ξ′, R′, S). Let π1 and π2, be the
respective factor maps. The product space X×Y maps onto Z ′×Z ′ by the map
π1×π2. The preimage of the diagonal is the set Z = {(x, y) : π1(x) = π2(y)}.
Any joining of μ and ν supported by Z is called a joining over the common
factor (Z ′,C′, ξ′, R′, S). Note that the map π(z) = π1(x) (where z = (x, y))
factors Z onto Z ′ and since the same map is obtained as π2(y), the sigma-
algebra C (lifted to Z) is contained in both (lifted) A and (lifted) B. Joinings
over a common factor are exactly such joinings inside which the two systems
and their common factor correspond to three (sub)invariant sigma-algebras,
A,B and C′ � A ∩ B.

Because joinings are simply joins of (sub)invariant sigma-algebras, all the
properties listed in Fact 4.1.7 apply. We translate some of them into the lan-
guage of joinings. The product rule follows directly from (1.6.16) and (1.4.3).

Fact 4.4.3 Let ξ be a joining of μ and ν. Then

h(ξ) ≤ h(μ) + h(ν) and h(ξ|μ) ≤ h(ν).

For a joining ξ over a common factor ξ′, we have

h(ξ|ξ′) ≤ h(μ|ξ′) + h(ν|ξ′). (4.4.4)

For independent joinings, we have the product rule

h(μ × ν, T × S) = h(μ, T ) + h(ν, S). (4.4.5)

(Such equality does not imply independence, for example it holds whenever
one of the processes has entropy zero.)

More interesting is the following representation statement for Z-actions:

Theorem 4.4.6 Let B be an invariant sigma-algebra in an ergodic system
(X,A, μ, T, Z) of finite entropy. Then, for every ε > 0 there exists an invariant
sigma-algebra C such that A = B ∨ C and h(C) ≤ h(A|B) + ε.
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By the Krieger Theorem the above fact can be rephrased as follows:

Theorem 4.4.7 Consider an ergodic process (X,P, μ, T, Z) (where H(P) <

∞) and its factor generated by a partition Q with H(Q) < ∞. Then there exists
a partition R of X , such that PZ = (Q ∨ R)Z (i.e., the process generated by P

is a joining of those generated by Q and R), and the processes generated by Q

and R are ε-entropy limit-independent of each other.

Before the proof we state a corollary concerning a Bernoulli process in the
role of the factor (here it is inessential whether it is a Bernoulli shift or a pro-
cess isomorphic to one, because we are free to choose the generator). In this
corollary we replace ε-entropy limit-independence by ε-entropy independence.
This is possible, due to Fact 3.1.18. Recall that, by Fact 3.1.3, such indepen-
dence translates to the genuine (stochastic) ε-independence of the processes.
We remark that every invertible system of positive entropy h has Bernoulli fac-
tors with entropies ranging in (0, h]; this fact is the Sinai Theorem (Theorem
4.5.1).

Corollary 4.4.8 Let (X,P, μ, T, Z) be an ergodic process (H(P) < ∞) and
let (X,Q, μ, T, Z) (where Q is PZ-measurable and has finite entropy) be a
Bernoulli factor. Then, for every ε > 0, there exists a partition R such that
PZ = (Q ∨ R)Z and the processes generated by Q and R are ε-entropy inde-
pendent. In other words, every bilateral process is an ε-independent joining of
any of its Bernoulli factors (with something).

Proof of Theorem 4.4.6 We prove the statement in the version 4.4.7 (for pro-
cesses). The assertion holds trivially if h(Q) = 0 (then we can take R= P). We
can thus assume that h(Q)> 0. This eliminates periodic processes in the role of
the factor. It suffices to isomorphically represent the process (X,P, μ, T, S) in
a two-row symbolic form, whose first row is the process generated by Q, while
the projection onto the second row is some process of entropy not exceeding
h(P|Q) + ε. Using the Krieger Theorem we can replace P and Q by finite par-
titions which generate the same processes. By replacing, if necessary, P by
P ∨ Q, we can assume that P � Q.

The construction relies on the Shannon–McMillan–Breiman Theorem. Find
n such that for points x in a set X ′, whose complement has measure smaller
than some preassigned δ (which we specify later), the following holds

μ(Bn
x ) ≤ 2−n(h(Q)−δ) and μ(An

x) ≥ 2−n(h(P)+δ),

where An
x and Bn

x are the cylinders defined by the inclusions x ∈ An
x ∈ Pn

and x ∈ Bn
x ∈ Qn. This implies that, within X ′, each cylinder from Qn splits

into at most 2n(h(P|Q)+2δ) cylinders from Pn. Let Λ be a set of cardinality
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�2n(h(P|Q)+2δ)�, whose elements we will call labels. These labels must be
different from the labels assigned (earlier) to the elements of P. We will also
need an extra symbol (say 0) appearing neither in Λ nor in the labeling of
P. Inside each cylinder Bn from Qn intersected with X ′ we can injectively
label all cylinders from Pn using the symbols from Λ. We fix such a labeling
(separately in every Bn).

By the Rokhlin Lemma (and aperiodicity), we can find a set F measurable
with respect to QZ whose (at least) n/δ preimages by consecutive iterates of
T are pairwise disjoint. By ergodicity, almost every point x visits F infinitely
many times, with gaps at least n/δ. We will now select some blocks of length n

in the Q-name of x and call them the marked blocks. We will do that separately
between every pair of consecutive visits of the orbit of x to F . Proceeding
from a time (say m) of such a visit, we seek for the nearest time n1 ≥ m

for which Tn1x ∈ X ′. We mark the block x[n1, n1 + n − 1]. Then we seek
for the smallest n2 ≥ n1 + n such that Tn2x ∈ X ′ and we mark the block
x[n2, n2 + n − 1]. We continue in this manner until we reach the next visit to
F at time, say, m′ (we do not mark the last block if it covers the position m′).
Notice that the positions not contained in the marked blocks have, in a typical
x, the density at most equal to the measure of X \X ′ plus n times the measure
of F (the sections right before the terminal m′), i.e., 2δ.

We are in a position to define the second row in the two-row representation
of X , which, together with the first row (containing the Q-name), completely
determines the original P-name of every x. To this end, under each marked
block of length n, say x[k, k + n − 1], in the Q-name of x we put the block
[a, 0, 0, 0, . . . , 0] (of length n), where a ∈ Λ is the label assigned to the Pn-
cylinder containing T kx (within the corresponding Qn-cylinder x[k, k+n−1]
intersected with X ′; notice that since the block x[k, k +n− 1] is marked, T kx

does belong to X ′). Under the remaining (unmarked) positions in the Q-name
of x we put the original labels of the elements of P appearing at these places
in the P-name of x. It is clear that so defined two-row representation allows
us to reconstruct the original P-name of x, so we have constructed an iso-
morphic two-row representation of the process generated by P. It remains to
estimate the entropy of the second row. In a typical point we have here: the
original labels of P appearing along a set of density at most 2δ, the symbols
from Λ appearing with density at most 1

n , and zeros. The entropy of such a
symbolic system is at most 2δ log #P + 1

n log #Λ + H(2δ, 1
n , 1 − (2δ + 1

n ))
(the last term comes from dividing the time into the three cases). The mid-
dle term does not exceed h(P|Q) + 2δ. By choosing δ small (and n large)
enough, the entropy of the second row can be made smaller than h(P|Q)+ε, as
needed.
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Remark 4.4.9 Theorem 4.4.7 fails for actions of N0, even if both the system
and its factor are processes, i.e., have unilateral generators (recall that an N0-
action with finite entropy need not have a unilateral generator). Take the uni-
lateral Bernoulli shift generated by P and its factor generated by Q = T−1(P).
If R is such that (R ∨ Q)N0 (which equals RN0 ∨ PN) equals PN0 = P ∨ PN,
then, since P is independent of PN, it must be that RN0 � P. But since RN0 is
subinvariant, we get RN0 = (RN0)N0 � PN0 , i.e., the process generated by R

is the whole process, so it cannot have small entropy.

Question 4.4.10 Our theorem does not cover the case of such Z-actions that
both the extension and the factor have infinite entropies yet the conditional
entropy is finite. We leave this case open.

4.5 Ornstein Theory*

Classical Ornstein Theory is concerned with bilateral Bernoulli processes (or
invertible Bernoulli systems) and their entropy. By a Bernoulli process we will
understand any process (X,P, μ, T, Z) measure-theoretically isomorphic to an
independent process (i.e., to a Bernoulli shift). The term Bernoulli system is
used for a dynamical system (X,A, μ, T, Z) isomorphic to a Bernoulli process.
The differences between Bernoulli systems, processes, and shifts are in the
choice of a generator: when speaking about a Bernoulli system we do not fix
any generator, in a Bernoulli process we fix some (arbitrary) generator, and in
a Bernoulli shift we choose a generator for which the process is independent.
To make this terminology applicable in the infinite entropy case, we admit
Bernoulli shifts generated by partitions with infinite static entropy (which in
other situations are usually ruled out).

The central role in the theory is played by three types of statement:

• characterization of Bernoulli processes (systems);

• existence of Bernoulli factors in arbitrary positive entropy systems;

• establishing the Kolmogorov–Sinai entropy as a complete invariant in the
class of Bernoulli systems.

The first type identifies a number of properties necessary and sufficient for a
process (X,P, μ, T, Z) to be isomorphic to a Bernoulli shift. As this subject
is outside the scope of the book, we only mention the terminology skipping
the definitions which require introducing more background. And so, we have
finitely determined processes, weakly Bernoulli processes and very weakly
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Bernoulli processes. These characterizations allow one to establish some natu-
ral examples of dynamical systems to be Bernoulli, for instance ergodic auto-
morphisms of compact groups, geodesic flows on manifolds of negative cur-
vature, mixing Markov shifts, and many more. The reader is referred to the
book of Paul Shields [Shields, 1996] for more information on various charac-
terizations of Bernoulli processes. The second type can be summarized in the
two theorems quoted below. The first of them belongs to Yakov Sinai [Sinai,
1962] and precedes the Ornstein theory, nevertheless, from today’s perspec-
tive, it is considered a part of this theory. The second theorem identifies factors
of Bernoulli processes [Ornstein, 1970b].

Theorem 4.5.1 (Sinai) Let (ΔZ, ν, σ, Z) denote a bilateral Bernoulli shift,
i.e., ν is the product measure pZ, where p is a probability distribution on Δ
(we admit infinite entropy H(p)). Let (X,P, μ, T, Z) be any bilateral process
with dynamical entropy larger than or equal to h(ν). Then (ΔZ, ν, σ, Z) is a
measure-theoretic factor of (X,P, μ, T, Z).

Theorem 4.5.2 Any nontrivial measure-theoretic factor of a Bernoulli system
is a Bernoulli system.

A consequence of the Sinai Theorem is the so-called weak isomorphism the-
orem: two Bernoulli processes of equal entropies are weakly isomorphic, i.e.,
each is a factor of the other (this does not imply isomorphism). This statement
was essentially strengthened by Donald Ornstein in 1970 in what is now known
as the Ornstein Theorem (representing the third type of statement on our list).

Theorem 4.5.3 (Ornstein) Two Bernoulli systems of equal (finite or infinite)
entropies are isomorphic.

Historically, the first proof of an isomorphism between Bernoulli shifts of
equal entropies goes back to Lev Mešalkin [Mešalkin, 1959], who considered
the independent processes with measures { 1

4 , 1
4 , 1

4 , 1
4}Z and {1

2 , 1
8 , 1

8 , 1
8 , 1

8}Z

(note that both have entropy 2 log 2). Then Ornstein gave a proof for all
Bernoulli shifts on finite alphabets [Ornstein, 1970a], which was later general-
ized by Smorodinsky [Smorodinsky, 1972] for countable alphabets with finite
entropy. This was complemented by Ornstein again [Ornstein, 1970c], who
established that any two Bernoulli shifts of infinite entropy were isomorphic.

The original (Ornstein’s) proof of Theorem 4.5.3 is very complicated and
many alternative proofs have occurred thereafter. The most popular one belongs
to Mike Keane and Meir Smorodinsky [Keane and Smorodinsky, 1979]. It
provides an effective description of an isomorphism between two finite state
Bernoulli processes of equal entropies in terms of a finitary code, i.e., a map
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allowing one to determine (almost surely) the zero-coordinate entry in one pro-
cess by viewing only a finite block around zero in the other process.

Another class of proofs relies on investigating the space of all joinings
between a given process and a Bernoulli process and on a category argument
for the existence of factor maps (or isomorphisms). A short and elegant expo-
sition can be found in a paper by Robert Burton, Mike Keane and Jacek Serafin
[Burton et al., 2000]. They use a unified approach via joinings, which allows

stronger versions of both the Krieger and Sinai Theorems to be obtained, while
the Ornstein Theorem becomes an immediate consequence of their version of
the Sinai Theorem.

We remark that part of the Ornstein Theory for endomorphisms also exists,
although it is much less known. The Sinai Theorem in its original version
implicitly applies to endomorphisms giving the existence of a unilateral
Bernoulli factor (however, we recommend the proof given in [Ornstein and
Weiss, 1975]). Andres del Junco proved that two unilateral Bernoulli shifts
with equal entropies, each on at least three states, were finitarily weakly iso-
morphic [del Junco, 1981]. Ornstein Theorem fails for unilateral shifts, for
example, the unilateral Bernoulli shifts {1

4 , 1
4 , 1

4 , 1
4}N0 and { 1

2 , 1
8 , 1

8 , 1
8 , 1

8}N0 ,
although they have equal entropies, cannot be isomorphic, because almost
every point in the first process has 4 preimages, and 5 in the other.

1We now reproduce from [Downarowicz and Serafin, in print] a new, fairly
short and elementary, proof of the “Residual Sinai Theorem” (and of the result-
ing “Residual Ornstein Theorem”). In principle, it follows the lines of [Burton
et al., 2000], but it avoids any substantial quotations, in particular, invoking
explicitly any characterizations of Bernoulli systems; it relies only on standard
facts in ergodic theory. The proof below extends that of [Downarowicz and
Serafin, in print] beyond the systems with finite entropy.

Consider two ergodic dynamical systems (X,A, μ, T, Z) and (Y,B, ν, S, Z)
realized as topological dynamical systems, i.e., so that X and Y are compact
metric spaces, while T and S are homeomorphisms (the existence of such
realizations with X and Y zero-dimensional, without requiring minimality or
unique ergodicity, is a standard and very easy fact). We let J (μ, ν) denote
the set of all joinings of μ and ν. It is nonempty (contains the product mea-
sure), compact in the weak-star topology (see Appendix A.2.2) and convex,
and its extreme points are precisely the ergodic joinings, whose collection we
denote by Jerg(μ, ν). So, Jerg(μ, ν) is of type Gδ relatively in J (μ, ν) (see
Appendix A.2.4), hence it is a Polish space, and the Baire Category Theorem

1 The rest of this section was added at the stage of author’s proofs. The author thanks the editors
for allowing such an extensive “correction.”
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applies to its subsets. We remark that, if φ : X → Y is a (measure-theoretic)
factor map then there is a canonical map from X to X × Y defined by x �→
(x, φx). The image of μ by this map is a joining (supported by the graph of φ)
of μ and ν. We will treat such a joining and the factor map as one object.

In the formulation below, (X,A, μ, T, Z) is realized as a zero-dimensional
topological dynamical system with a selected invariant measure, while the
Bernoulli shift is equipped with the standard product topology, where the alpha-
bet is either finite or it is the one-point compactification of the positive integers,
where the symbol ∞ has measure zero.

Theorem 4.5.4 (Residual Sinai) Let (X,A, μ, T, Z) be an ergodic system of
positive (possibly infinite) entropy h(μ) and let (ΔZ, ν, σ, Z) be a Bernoulli
shift on a finite or countable alphabet, of entropy h(ν) ≤ h(μ). Then the set of
factors from μ to ν is residual among all ergodic joinings of μ and ν.

Before we proceed with the proof, let us deduce a strengthening of the
Ornstein Theorem:

Theorem 4.5.5 (Residual Ornstein) Let (ΛZ, μ, σ, Z) and (ΔZ, ν, σ, Z) be
two Bernoulli shifts on finite or countable alphabets, with equal entropies
(finite or infinite). The set of isomorphisms between μ and ν is residual among
all ergodic joinings of μ and ν.

Proof Isomorphisms between these processes are characterized as joinings of
μ and ν which are factors in both directions. By the Residual Sinai Theorem,
they are members of an intersection of two residual sets in a Polish space, so
they also constitute a residual set.

Proof of Theorem 4.5.4 It is well known (and easy to see) that a joining ξ of
μ and ν is a factor from μ to ν if and only if for every b ∈ Δ (treated as a
cylinder set of length 1) there exists a set Ab ∈ A such that X × b = Ab ×ΔZ

mod ξ. We will also use an approximate version of this condition:

Definition 4.5.6 A joining ξ of μ and ν will be called an ε-factor (from μ to
ν) if for every b ∈ Δ there exists a set Ab ∈ A with ξ((X×b)�(Ab×ΔZ)) < ε

(� is the symmetric difference).

Note that the set Fε of all ε-factors from μ to ν is open in the weak-star
topology: if ξ is an ε-factor, then for each b there exists an εb < ε such that
ξ((X × b) � (Ab × ΔZ)) < εb. The characteristic function of Ab can be
approximated in L1(μ) up to ε′b = (ε− εb)/2 by a continuous function fb, and
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then
∫
|fb(x) − 1Ib(y)| dξ < εb + ε′b = ε − ε′b. The latter condition is open in

the weak-star topology (as 1Ib is continuous as well) and any joining of μ and
ν which satisfies it for these finitely many symbols b ∈ Δ for which ν(b) ≥ ε

is easily seen to be an ε-factor.
It is clear that the set F of factors from μ to ν is a countable intersection

of sets of the form Fε and that all factor joinings are ergodic. Passing to the
relative topology on Jerg(μ, ν), we get that F is a countable intersection of
open sets Fε

erg of ergodic ε-joinings. We will show that each Fε
erg is also dense

in Jerg(μ, ν). The assertion will then follow by the Baire Theorem.
From now on we assume that Δ is finite and that h(μ) = h(ν) = h

(h < ∞); the reduction to this case will be provided at the end. By the
Krieger Theorem 4.2.3, (X,A, μ, T, Z) can be represented as a symbolic sys-
tem (ΛZ, μ, σ, Z), where Λ is finite. The product space now consists of bilateral
two-row sequences; the rows are over Λ and Δ, respectively. Given an arbitrary
ξ ∈ Jerg(μ, ν), we need to find an ergodic ε-factor ξ′′ nearby. We will do that
in three steps. In step 1 we construct a factor joining ξ′ from μ to a measure
ν′ on ΔZ with h(ν′) almost as large as h, and such that ξ′ is close to ξ in the
weak-star topology of measures on ΛZ×ΔZ. We do not hope to get ν′ = ν yet
(usually ν′ is not even Bernoulli), so by considering ξ′ we are driven outside
Jerg(μ, ν) into the larger space of shift-invariant measures on ΛZ×ΔZ. In step
2 we approximate ξ′ (again, in this larger space) by a (not necessarily ergodic)
ε-factor ζ̄ from μ to ν, and in step 3 we replace ζ̄ by an ergodic ε-factor ξ′′,
i.e., by a member of Fε

erg ⊂ Jerg(μ, ν).

Step 1. Given ε > 0, we let ε0 < ε/3 and n0 be such that shift-invariant mea-
sures on ΛZ ×ΔZ, which agree up to 5ε0 + δ0 on all two-row blocks of length
n0, are less than ε apart in the metric d∗ compatible with the weak-star topol-
ogy (consult (7.3.1), the version for symbolic systems). The term δ0 appearing
above is defined as either 4ε0/(h(ξ) − h) or, if h(ξ) = h, as 6ε0/h (in both
cases δ0 tends to zero with ε0). Next, by a straightforward application of the
Ergodic Theorem (to ξ) and of the Shannon–McMillan–Breiman Theorem (to
ξ, μ and ν), we can find an N0 > n0/ε0 and a set G ⊂ ΛZ ×ΔZ being a union
of two-row cylinders D of length N = N0/(1 − δ0) (slightly larger than N0),
satisfying ξ(G) > 1 − ε0 and the properties 1 and 2 listed below, where the
following notation is used: DΛ and DΔ are the single rows of D while D̄, D̄Λ

and D̄Δ are the prefixes of length N0 of D, DΛ and DΔ, respectively. Recall
also that frA(B) is the frequency of a block B in a longer block A.

1 For all two-row blocks B of length n0 and any D ⊂ G we have

|frD̄(B) − ξ(B)| < ε0. (4.5.7)
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2 For any D ⊂ G we have (where exp is the exponential function to base 2)

exp(−N(h(ξ) + ε0)) ≤ξ(D) ≤ exp(−N(h(ξ) − ε0)), (4.5.8)

exp(−N(h + ε0)) ≤μ(DΛ), (4.5.9)

ν(DΔ) ≤ exp(−N(h − ε0)), (4.5.10)

and analogous inequalities hold for D̄, D̄Λ, D̄Δ and N0.

We now apply to (ΛZ, μ, σ, Z) a variant of the Kakutani–Rokhlin Lemma
(we skip the easy proof; see [Downarowicz and Serafin, in print, Lemma 2.5]
for a hint): we find a positive measure set M (a “marker”), contained in the
projection GΛ of G, such that the sets M,σ(M), . . . , σN−1(M) are pairwise
disjoint and the complement of their union has measure not exceeding 2ε0.
Let D0 be the family of all two-row blocks of the form (x, y)[0, N − 1] with
x ∈ M . The Ergodic Theorem implies that ξ-almost every (x, y) breaks as a
concatenation of the blocks D ∈ D0 separated here and there by some inser-
tions of joint density not exceeding 2ε0.

Let D ⊂ D0 denote the subfamily consisting of blocks D contained in G.
Dividing the left-hand side of (4.5.9) by the right-hand side of (4.5.8) we
obtain that every first row DΛ (D ∈ D) splits (as a cylinder set) into at least
exp(N(h(ξ) − h − 2ε0)) blocks D ∈ D. In other words, every first row DΛ

appears in D “paired” with at least exp(N(h(ξ) − h − 2ε0)) different sec-
ond rows DΔ. Clearly, the prefix D̄Λ is “paired” with even more blocks DΔ.
Next, dividing the right-hand side of (4.5.10) (the version for D̄Δ) by the left-
hand side of (4.5.8) (the version for D̄) we obtain that every D̄Δ appears in
D “paired” with at most exp(N0(h(ξ) − h + 2ε0)) blocks D̄Λ. Clearly, every
DΔ (as a set smaller than D̄Δ) is “paired” with even less blocks D̄Λ. The
reader will verify that, since N0 = N(1 − δ0) and by the choice of δ0, in case
h(ξ)−h > 0 we have N(h(ξ)−h−2ε0) ≥ N0(h(ξ)−h+2ε0). This enables
us to apply the Marriage Lemma A.3.5 to the set of prefixes D̄Λ, the set of
full second rows DΔ and the relation of being “paired” within D, providing an
injection Φ assigning to every D̄Λ a DΔ “paired” with it.

If h(ξ) = h, we must count slightly differently. Dividing the left-hand side
of (4.5.9) (the version for D̄Λ) by the right-hand side of (4.5.8) we get that
every D̄Λ extends to at least exp(N(δ0h−2ε0)) full two-row blocks D. Divid-
ing the right-hand side of (4.5.10) by the left-hand side of (4.5.8) we get that
at most exp(N(2ε0)) of the D’s share a common second row DΔ. Thus every
prefix D̄Λ is “paired” with at least exp(N(δ0h − 4ε0)) different second rows
DΔ. The other part of the counting is the same as before and now yields that
every second row DΔ is “paired” with at most exp(N0(2ε0)) < exp(N(2ε0))
prefixes D̄Λ. The choice of δ0 in this case gives that δ0h − 4ε0 ≥ 2ε0, and the
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Marriage Lemma applies. In either case, it is very important that since M ⊂
GΛ, the set {D̄Λ : D ∈ D} (the domain of Φ) is the same as {D̄Λ : D ∈ D0}.

We can now build the factor joining ξ′. In (μ-almost) every x ∈ ΛZ we
first locate the markers (the times of visits to M ), then we observe the blocks
of length N following these markers. Every such block equals DΛ for some
D ∈ D0. Creation of the joining ξ′ consists in placing in the second row, below
every such DΛ, the image by Φ of the prefix D̄Λ of DΛ. At all remaining
positions of the second row we place one fixed symbol from the alphabet Δ.
Since the second row is uniquely determined by the first one, the joining is a
factor map φ from μ to some measure ν′ supported by ΔZ.

By the Ergodic Theorem (applied to ξ′), the measure of a two-row block
B can be evaluated as the density of its occurrence in the two-row sequence
(x, φx) belonging to a set of full measure ξ′. We will verify that the distance
between ξ and ξ′ is smaller than ε. Let B be a two-row block of length n0.
Since the two-row sequence (x, φx) is almost entirely covered by the blocks
D̄ (D ∈ D), the density of occurrence of B in (x, φx) is nearly a weighted
average of its frequencies in the blocks D̄. By (4.5.7), any such average dif-
fers from ξ(B) by less than ε0. Further, ξ′(B) differs from such an average
by at most δ0 + 2ε0 + 2n0/N0, where δ0 + 2ε0 estimates the density of the
portion of (x, φx) not covered by the blocks D̄, and 2n0/N0 ≤ 2ε0 estimates
the occurrences of B overlapping with, but not covered by, these blocks. So,
|ξ(B) − ξ′(B)| < 5ε0 + δ0, implying d∗(ξ, ξ′) < ε.

We now estimate h(ν′) from below. We know that h(μ)−h(ν′) = h(μ|ν′) is
not larger than the entropy of any process generated by a partition Q of ΛZ such
that Q∨Δ (here Δ stands for φ−1(Δ)) generates the full process (ΛZ, μ, σ, Z)
(see Lemma 4.4.3). Let Q consist of F = M ∪ σ(M) ∪ · · · ∪ σN0−1(M) and
the sets a∩F c (a ∈ Λ). To see that Q joined with Δ generates the full process,
note that the symbols “F ” occur in the Q-name of (μ-almost) every x in groups
of length N0, the starting places of these groups allow us to locate the markers
in x. The blocks of length N0 following the markers in the Λ-name of x can be
recovered from y = φx by injectivity of the code Φ. The remaining symbols
in the Λ-name of x occur at times when x visits F c, and these are provided
directly by the Q-name of x. Now we estimate

h(Q) ≤ H(Q) ≤ H(μ(F ), μ(F c)) + μ(F c) log #Λ. (4.5.11)

Note that F c consists of the “upper floors” σN0(M), . . . , σN−1(M) of joint
measure not exceeding (N − N0)/N = δ0 united with the complement of the
tower, of measure at most 2ε0. The right-hand side of (4.5.11) tends to zero as
μ(F c) → 0, so, by an appropriate choice of ε0 (and the resulting δ0) we can
arrange that h(Q) < ε implying h(ν′) > h − ε.
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Step 2. We will now approximate the joining ξ′ (of μ and ν′) by an ε-factor ζ̄

from μ to the Bernoulli measure ν. While ε retains its fixed value, we assume
that the first step has been performed for a much smaller parameter ε1 (in
place of ε). And so, ξ′ is very close to ξ (less than ε1 apart). By projecting
onto ΔZ we get that ν′ is very close to ν. This implies, in particular, that the
probability vector q assigned by ν′ to the symbols in Δ is very close to the
analogous vector p of ν. By continuity of the static entropy on probability
vectors of a fixed finite dimension, we have H(ν′,Δ) = H(q) ≈ H(p) =
h(ν) = h < h(ν′) + ε1, where the last inequality has been arranged in step 1.
We have derived that the process associated with the measure ν′ is (ε1+δ1)-
entropy independent (recall Definition 3.1.7) for some small δ1 decreasing to
zero with ε1. This we can write as H(ν′,Δ|Δ−) ≥ H(ν′,Δ) − ε1 − δ1 or,
using the formula (1.5.4) (this is an “asterisk section”, so we feel free to use
disintegration) , as∫

H(ν′
y− ,Δ) dν′(y−) ≥ H(ν′,Δ) − ε1 − δ1,

where ν′
y− is the disintegration measure of ν′ on the atom y− of the past Δ−

(such an atom can be identified with a unilateral sequence y(−∞,−1]). This
can be further rewritten as∫

H(qy−) dν′(y−) ≥ H(q) − ε1 − δ1,

where qy− is the probability vector assigned by νy− to the symbols in Δ. By
the uniformly strict concavity of static entropy (Fact 1.1.11) combined with the
rectangle rule (Fact A.3.3), we deduce that (for small enough ε1), on a set of y’s
of large measure ν′, the vectors qy− are close to q, and hence also to p. Close
distributions on Δ admit a maximal coupling which is almost supported by the
diagonal (see Lemma A.3.6). Altogether, given ε2 > 0, by a good choice of
ε1 (and the associated δ1) we can assure that, for y’s from a set of measure ν′

at least 1 − ε2, there is a coupling ξy− of qy− with p giving the diagonal in
Δ×Δ a mass at least 1−ε2. Since the assignment y �→ qy− is ν′-measurable,
it is easy to make the assignment y �→ ξy− measurable as well (for instance,
by using each time the particular coupling as in the proof of Lemma A.3.6).

Postponing the specification of ε2 we will now create the ε-factor ζ̄. We
begin by defining a coupling ζ of ν′ and ν (i.e., a not necessarily shift-invariant
measure on ΔZ × ΔZ with marginals ν′ and ν). We take the projections ν′−

and ν− of ν′ and ν onto the “past” Δ−, respectively, and on the “joint past”
Δ−×Δ− we define ζ as ν′−× ν−. Then, on each atom (y−, z−) of the “joint
past”, we apply on the coordinate zero the maximal coupling ξy− in the role of
ζ(y−,z−) restricted to Δ × Δ. In this manner, we have extended the definition



128 Kolmogorov–Sinai Entropy

of ζ to Δ(−∞,0] × Δ(−∞,0], the sigma-algebra determined by the coordinates
from −∞ to 0 in both rows. Inductively, once we have defined the coupling
on the sigma-algebra determined by the coordinates from −∞ to n − 1, for
each pair of “semi-trajectories” (y(−∞, n − 1], z(−∞, n − 1]), we apply on
the coordinate n the coupling ξ(σny)− (note that (σny)− is y(−∞, n−1] with
indexation reset to (∞,−1]). Eventually we have determined a measure ζ on
the entire product sigma-algebra, and it is obvious from the construction that
its marginals are, respectively, ν′ and the product measure pZ = ν.

By elementary integration we get, for every j ≥ 0,

ζ({(y, z) : y(j) = z(j)}) ≥ (1 − ε2)2 ≥ 1 − 2ε2.

Furthermore, estimating the measure of an intersection by 1 minus the sum of
the measures of the complements, we obtain

ζ({(y, z) : y[j, j + n − 1] = z[j, j + n − 1]}) ≥ 1 − 2nε2. (4.5.12)

We now specify ε2 = ε0/2n0, and then, for any n ≤ n0, the right-hand side
above is at least 1 − ε0.

The coupling ζ can be written as
∫

ζy dν′(y), where ζy is the disintegration
measure of ζ given y ∈ ΔZ on the first coordinate. We can now lift ζ against
the factor map φ as follows: ζ ′ =

∫
ζφx dμ(x). It is elementary to verify that

ζ ′ is a coupling of μ and ν and that it projects to ζ by the map φ × Id from
ΛZ × ΔZ to ΔZ × ΔZ (Id denotes the identity map). The inequality (4.5.12)
implies that

ζ ′({(x, z) : φx[j, j + n − 1] = z[j, j + n − 1]}) ≥ 1 − ε0,

for any n ≤ n0, which can be written as

σj(ζ ′)({(x, z) : φx[0, n − 1] = z[0, n − 1]}) ≥ 1 − ε0. (4.5.13)

That is to say, after discarding a set of measure σj(ζ ′) at most ε0, all two-row
blocks (x, z)[0, n−1] are the same as (x, φx)[0, n−1]. For a given x, the latter
is the unique block admitted at this place by the joining ξ′. This easily implies
that for any two-row cylinder B of length n0, we have

|σj(ζ ′)(B) − ξ′(B)| ≤ ε0. (4.5.14)

Also, applying (4.5.13) for n = 1 we get that for every b ∈ Δ,

σj(ζ ′)
(
(ΛZ × b) � (φ−1(b) × ΔZ)

)
≤ ε0. (4.5.15)
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In order to replace the coupling ζ ′ of μ and ν by a joining, we apply the
standard averaging procedure:

ζ̄ = lim
k

1
nk

nk−1∑
j=0

σj(ζ ′),

where the limit is in the weak-star topology and the existence of a convergent
subsequence follows from compactness. Clearly, the inequalities (4.5.14) and
(4.5.15) are maintained by convex combinations. Since (4.5.14) concerns two-
row cylinders (and weak inequality), it also passes via the weak-star limit and
we obtain |ζ̄(B) − ξ′(B)| ≤ ε0. We have proved that d∗(ζ̄ , ξ′) < ε, hence
d∗(ζ̄ , ξ) < 2ε. In order to pass with (4.5.15) over the limit, note that the set
φ−1(b) × ΔZ, although not necessarily a finite union of cylinders, depends
only on the first row, where all measures in the sequence project to the same
measure μ. Now it suffices to approximate this set (say, up to ε0) by a finite
union of cylinders A × ΔZ to get (4.5.15) up to 3ε0 for the limit measure ζ̄.
Since ε0 < ε/3, ζ̄ is an ε-factor from μ to ν.

Step 3. But ζ̄ need not be ergodic. We will now pick ξ′′ from the support
of the ergodic decomposition of ζ̄. For that we must, as we already did once,
maintaining the value of ε, assume that all above procedures have been per-
formed for a much smaller ε3. We now invoke continuity of the barycenter
map on compact convex sets (see Appendix A.2.3) and upper semicontinuity
of the fiber partition of a continuous map (see Appendix A.1.3). The ergodic
joining ξ, being extreme, is the barycenter of a unique probability distribu-
tion supported by J (μ, ν), namely of δξ (the point mass at ξ). So, any join-
ing sufficiently close to ξ has its fiber via the barycenter map (in particular
the ergodic decomposition) contained in a small neighborhood of δξ. Since
the mass assigned by a distribution to an open set is a lower semicontinuous
function of the distribution, any distribution sufficiently close to δξ gives a
selected neighborhood of ξ a mass close to 1. Summarizing, we can choose ε3

so small that the ergodic decomposition distribution of any joining 2ε3-close
to ξ (in particular that of ζ̄) is supported mainly (say, with the contribution
of “more than half” of its mass) by ergodic joinings situated within the ε-
neighborhood of ξ. Further, the fact that ζ̄ is an ε3-factor means ε3-smallness
of one set (a symmetric difference) per symbol in Δ. By the rectangle rule
(Fact A.1.1), each of these sets may be larger than 2#Δ · ε3 (which we now
declare smaller than ε) only for ergodic components contributing to ζ̄ at most
1/2#Δ of its mass. Jointly, there is still “at least half” of the components for
which ε-smallness of the corresponding set holds for all symbols b ∈ Δ, i.e.,
which are ε-factors. Intersecting this “at least half” with the preceding “more
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than half,” we find an ergodic component ξ′′ within ε from ξ, and which is an
ε-factor. This ends the proof for finite Δ and equal entropies.

We continue with the remaining cases. If h(ν) < h(μ) < ∞, then we
take the product of ν with a Bernoulli shift ν0 on a finite alphabet satisfying
h(ν0) = h(μ)−h(ν). Now ν×ν0 is a Bernoulli shift of entropy equal to h(μ).
The set Jerg(μ, ν × ν0) maps (by projection) onto Jerg(μ, ν), the projection
preserves the property of being a factor and is continuous. Thus the set of
factors from μ to ν (which we have shown to be always of type Gδ) is also
dense, as the image of a dense set (of factors from μ to ν×ν0) via a continuous
surjection.

Let us now assume that Δ is essentially infinite while (X,A, μ, T, Z) is
arbitrary (realized on a zero-dimensional space) with h(ν) ≤ h(μ) ≤ ∞.
Let Δ(m) be obtained by uniting all but the largest m − 1 symbols, where
each of the united symbols has measure smaller than ε. Clearly, Δ(m) gener-
ates a Bernoulli shift with entropy strictly smaller than h(μ). There exists a
finite partition P of X into closed-and-open sets, and an m ∈ N, such that
the ε-closeness in the weak-star distance on J (μ, ν) can be determined by
examining only the values assumed by these measures on cylinders over the
product partition P ⊗ Δ(m). We let μ′ and ν′ denote the projections of μ and
ν to the processes generated by P and Δ(m). By refining P (if necessary), we
can arrange that h(μ′) ≥ h(ν′). Now we argue as follows: a given joining ξ

of μ and ν projects to a joining ξ′ of μ′ and ν′. By the version already proved
for finite alphabets, we can find a factor ζ ′ from μ′ to ν′ which is ε-close to ξ′.
We can lift ζ ′ to an ergodic joining ζ between μ and ν, and since ζ maintains
the values on cylinders over P ⊗ Δ(m), it is ε-close to ξ. All large symbols in
Δ are, modulo ζ, measurable with respect to A, while the small symbols are
smaller than ε, so ζ is an ε-factor. We have proved the density of Fε

erg(μ, ν).
In the last remaining case Δ is finite while h(μ) = ∞. We argue as above,

with Δ in place of Δ(m). Since we have strict inequality h(ν) < h(μ) we will
be able to refine the partition P so that h(μ′) ≥ h(ν).

Exercises

4.1 Prove the formula (4.1.2) and its conditional analog,

h(A|B) = lim
k

↑ h(Pk|B),

where (Pk) is a refining sequence of finite partitions that generate A.
4.2 Prove that the Kolmogorov–Sinai entropy and conditional entropy given

a fixed subinvariant sigma-algebra are affine functions of the measure.
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4.3 Prove a conditional version of the power rule Fact 4.1.14.
4.4 Prove Remark 4.2.7 (without using Theorem 4.2.9).
4.5 Let (Y,B, ν, S, S) be a factor of an ergodic system (X,A, μ, T, S) via a

factor map π : X → Y . Suppose that h(A|B) > 0. Using elementary
methods prove that π−1(y) is infinite for ν-almost every y.

4.6 In a dynamical system (X,A, μ, T, S) given are two countable partitions
P and Q. Prove the following inequality (compare (1.4.3)):

h(μ, T,P|Q) ≤
∑
B∈Q

μ(B)h(μB , TB ,P).

Give an example in which the inequality is strict.
4.7 Illustrate the following phenomenon: We start with an endomorphism

(X,A, μ, T, N0) of finite entropy. Its natural extension is an automor-
phism, so we can consider it as a Z-action (X ′,A′, μ′, T ′, Z). It has
the same entropy, so, by the Krieger Theorem it has a finite generator,
thus is isomorphic to a process (X ′,P′, μ′, T ′, Z). The factor of this pro-
cess determined by the subinvariant sigma-algebra P′N0 is an endomor-
phism (a unilateral process) which has the same same natural extension.
Nevertheless, it need not be isomorphic to the the initial system.

4.8 Two sigma-algebras A and B are relatively independent over a third
sigma-algebra C if for any finite A-measurable partition P and any finite
B-measurable partition Q we have H(P ∨ Q|C) = H(P|C) + H(Q|C).
A joining of two systems over a common factor is relatively independent
(over that factor) when the sigma-algebras A and B corresponding to
the systems within the joining system are relatively independent over the
sigma-algebra C′ corresponding to the common factor. Prove that then
we have equality in (4.4.4).

4.9 Prove that every automorphism (X,A, μ, T, Z) of finite entropy admits,
for every ε > 0, a generator P which is ε-entropy independent.

4.10 Use the Sinai Theorem to show that every system (X,A, μ, T, S) admits
a countable partition P achieving the full dynamical entropy. Moreover,
if the entropy is finite, P can be chosen finite.
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The Ergodic Law of Series*

In this chapter we describe a relatively new result – a consequence of positive
dynamical entropy of a process. It concerns the behavior of the return time
random variables Rn(x) for large n, the same as treated by the Ornstein–Weiss
Return Times Theorem, but in a complementary manner. The theorem has a
very interesting interpretation, easy to articulate in a language accessible also
to nonspecialists. Yet, as usual on such occasions, one has to be very cautious
and not get enticed into pushing the conclusions too far. We begin this chapter
with a short historical note concerning the debate on the Law of Series in the
colloquial meaning. We explain how the Ergodic Law of Series contributes to
this debate. Then we pass to the mathematical proof preceded by introducing
a number of ergodic-theoretic tools.

5.1 History of the Law of Series

In the colloquial language, a “series” happens when a random event, usually
extremely rare, is observed surprisingly often throughout a period of time.
Even two repetitions, one shortly after another, are often interpreted as a
“series.” The Law of Series is the belief that such series happen more often
than they should by “pure chance” (whatever that means). This belief is usu-
ally associated with another; that there exists some unexplained force or rule
behind this “law.” A number of idioms, such as “run of good luck” or “run of
misfortune,” or proverbs like “misfortune never comes alone,” exist in nearly
all languages, which confirms that people have been noticing this kind of mys-
tery for a long time. The most commonly known examples of “series” are runs
of good luck in gambling with the famous case of Charles Wells taking the
lead (see e.g. Charles Wells (gambler) on Wikipedia).

Serial occurrences of certain types of events is perfectly understandable as
a result of physical dependence. For example, volcanic eruptions appear in
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series during periods of increased tectonic activity. Another good example
is when series of people fall ill due to a contagious disease, or very simply,
the return of certain motifs in fashion design. The dispute around the Law
of Series clearly concerns only such events for which there are no obvious
clustering mechanisms, and which are expected to appear completely indepen-
dently from each other, and yet, they do appear in series. With this restriction
the Law of Series belongs to the category of unexplained mysteries, such as
synchronicity, telepathy or even Murphy’s Law, and is often considered a man-
ifestation of paranormal forces that exist in our world and escape scientific
explanation. This might be the reason why, after the first burst of interest, seri-
ous scientists and journals refused to get involved in the investigations of this
and related topics. Below we review the list of selected scientists involved in
the debate.

Kammerer. An Austrian biologist Paul Kammerer (1880–1926) was the first
scientist to study the Law of Series (law of seriality, in some translations). His
book Das Gesetz der Serie [Kammerer, 1919] contains many examples from
his own life and the lives of his relatives and friends. Richard von Mises in
his book [von Mises, 1981] describes that Kammerer conducted many (rather
naive) experiments, spending hours in parks noting occurrences of pedestri-
ans with certain features (glasses, umbrellas, etc.), or in shops, noting pre-
cise times of arrivals of clients, and the like. Kammerer “discovered” that the
number of time intervals (of a fixed length) in which the number of objects
under observation agrees with the average is much smaller than the num-
ber of intervals, where that number is either zero or larger than the average.
This, he argued, provided evidence for clustering. From today’s perspective,
Kammerer merely noted the perfectly normal spontaneous clustering of signals
in the Poisson process. Nevertheless, Kammerer’s book attracted some atten-
tion from the public, and even from some serious scientists, toward the phe-
nomenon of clustering. Kammerer himself lost authority due to accusations of
manipulating his biological experiments (unrelated to our topic), which even-
tually drove him to suicide.

Pauli and Jung. Examples of series are, in the popular culture, mixed with
examples of other kinds of “unbelievable” coincidences. Pioneer theories about
coincidences (including series) were postulated not only by Kammerer but also
by a noted Swiss psychologist Carl Gustav Jung (1875–1961) and a Nobel
prize winner in physics, Austrian, Wolfgang Pauli (1900–1958). They believed
that there exist undiscovered physical “attracting” forces driving objects that
are alike, or have common features, closer together in time and space (so-called
synchronicity) [see e.g. Jung and Pauli, 1955; Jung, 1977].
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Moisset. The Law of Series and synchronicity interests the investigators of
spirituality, magic and parapsychology. It fascinates with its potential to gen-
erate “meaningful coincidences.” Frenchman Jean Moisset (born 1924), a self-
educated specialist in parapsychology, wrote a number of books on synchronic-
ity, Law of Series, and similar phenomena. He connects the Law of Series with
psychokinesis and claims that it is even possible to use it for a purpose [Mois-
set, 2000].

Skeptics: Weaver, Kruskall, Diaconis and others. In opposition to the the-
ory of synchronicity is the belief, represented by many statisticians, among
others by Warren Weaver (closely collaborating with Claude Shannon), that
any series, coincidences and the like, appear exclusively by pure chance and
that there is no mysterious or unexplained force behind them. People’s per-
ception has the tendency to ignore all those sequences of events which do not
possess the attribute of being unusual, so that we largely underestimate the
size of the sample space, where the “unusual events” are observed. Human
memory registers coincidences as more frequent simply because they are more
distinctive. This is the “mysterious force” behind synchronicity.

With regard to series of repetitions of identical or similar events, the skep-
tics’ argumentation refers to the effect of spontaneous clustering. For an event,
to repeat in time by “pure chance” means to follow a trajectory of a Poisson
process. In a typical realization of a Poisson process the distribution of signals
along the time axis is far from being uniform; the gaps between signals are
sometimes bigger, sometimes smaller. Places where several smaller gaps accu-
mulate (which obviously happens here and there along the time axis) can be
interpreted as “spontaneous clusters” of signals. It is nothing but these natural
clusters that are being observed and over-interpreted as the mysterious “series.”
Richard von Mises clearly indicates that it is this kind of “seriality” that has
been seen by Kammerer in most of his experiments.

Yet another “cool-minded” explanation of synchronicity (including the Law
of Series) asserts that very often events that seem unrelated (hence should
appear independently of each other) are in fact strongly related. Many “acci-
dental” coincidences or series of similar events, after taking a closer look at the
mechanisms behind them, can be logically explained as “not quite accidental.”
Ordinary people simply do not bother to seek the logical connection. After all,
it is much more exciting to “encounter the paranormal.” This point of view is
neatly described by Robert Matthews in some of his essays. Criticism of the
ubiquitous assumption of independence in various experiments can be found
in works of William Kruskal [e.g. Kruskal, 1988]. Percy Diaconis is famous
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for proving that coin tosses in reality do not represent an i.i.d. process [e.g.
Diaconis et al., 2007].

Summarizing, the debate concentrates around the major question:

• Does there indeed exist a Law of Series or is it just an illusion, a matter of
our selective perception or memory?

So far, this debate has avoided strict scientific language; even its subject is not
precisely defined, and it is difficult to imagine appropriate repetitive experi-
ments in a controlled environment. Thus, in this approach, the dispute is prob-
ably fated to remain an exchange of speculations.

Law of series in ergodic theory. Below we describe a rigorous approach
embedded in ergodic theory. Surprisingly, the study of stochastic processes
supports the Law of Series against the skeptic point of view, of course, subject
to correct interpretation.

We begin with definitions of attracting and repelling, the tools allowing us
to formalize the subject of study. Using entropy theory we prove that in nonde-
terministic processes, for events of certain type (long cylinder sets), attracting
prevails, while repelling (almost) does not exist – this is exactly how we under-
stand the Ergodic Law of Series.

One has to be very wary about the applicability of this theory in reality. It
concerns only events of a specific form (long cylinders) and it gives no quanti-
tative lower bound on the time perspective at which the phenomenon becomes
observable. Perhaps it might be applied in genetics, computer science, or in
data transmission, where one deals with really long blocks of symbols, but
again, with extreme caution. The theory does not explain “runs of good luck,”
or why “misfortune never comes alone,” because such “series” are not repeti-
tions of one and the same long cylinder set. Nonetheless it contributes to the
general debate at the philosophic level: Properly understood Law of Series is
neither an illusion nor a paranormal phenomenon, but a rigorous mathematical
law.

5.2 Attracting and repelling in signal processes

By a signal process we will understand a continuous time (also discrete time,
when the increment of time is very small) stochastic process (Xt)t≥0 defined
on a probability space (Ω,A, μ) and assuming integer values, such that X0 = 0
a.s., and with nondecreasing and right-continuous trajectories t �→ Xt(ω). We
say that (for given ω ∈ Ω) a signal (or several simultaneous signals) occurs at
time t if the trajectory Xt(ω) jumps by a unit (or several units) at t.
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Definition 5.2.1 A signal process is homogeneous if, for every t0 ≥ 0 and
every finite collection 0 ≤ t1 < t2 < · · · < tn, the joint distribution of the
increments

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn
− Xtn−1 (5.2.2)

is the same as that of

Xt2+t0 − Xt1+t0 , Xt3+t0 − Xt2+t0 , . . . , Xtn+t0 − Xtn−1+t0 .

Assume that X1 has an expected value E(X1) = λ ∈ (0,∞), which we call
the intensity of the signals. Using homogeneity and a standard divisibility and
monotonicity argument, one shows that then E(Xt) = tλ for every t ∈ R.

With a homogeneous signal process we associate a random variable defined
on Ω and called the waiting time:

W(ω) = min{t : Xt(ω) ≥ 1}.

The most basic example of a homogeneous signal process is the Poisson pro-
cess [see e.g. Feller, 1968]). It is characterized by two properties: 1. the incre-
ments as described in (5.2.2) are independent, and 2. jumps by more than one
unit have probability zero. These properties imply that the distribution of Xt is

the Poisson distribution with the parameter λt, i.e., P{Xt = k} = e−λt (λt)k

k! ,
k = 0, 1, . . . , where λ > 0 coincides with the intensity. The waiting time in a
Poisson process has the exponential distribution with the distribution function

F(t) = 1 − e−λt.

The independence between the increments means that the signals arriving
before some fixed time do not influence the future signals, i.e., the signals
arrive “independently from one another.” This pattern of signal arrivals is
exactly what is intuitively described as “by pure chance.” The Poisson process
is the reference point while defining any deviation from the “by pure chance”
scheme.

We will consider two such deviations: attracting and repelling. Intuitively,
the signals attract each other if they have the tendency to occur in groups (also
called clusters or series), separated by periods of absence. Likewise, the signals
repel each other if they have the tendency to occur more evenly distributed
along the time. We will put this intuition into a rigorous form. It turnes out that
these properties depend solely on the distribution of the waiting time.

Definition 5.2.3 We say that the signals attract each other from a distance
t > 0, if

FW(t) < 1 − e−λt.
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where FW is the distribution function of the waiting time W and λ is the inten-
sity. Analogously, the signals repel each other from a distance t, if

FW(t) > 1 − e−λt.

The difference |1−e−λt−FW(t)| is called the force of attracting (or repelling)
at t.

Why is attracting and repelling defined in this way? Consider the random
variable Xt (the number of signals in the time period (0, t]). As we know,
E(Xt) = λt. On the other hand, P{Xt > 0} = P{W ≤ t} = FW(t). Thus

λt

FW(t)
= E(Xt|Xt > 0)

represents the conditional expected number of signals in the interval (0, t] for
these ω for which at least one signal occurs there. Attracting from the distance
t, as defined above, means that FW(t) is smaller than the analogous distribu-
tion function (at t) evaluated for the reference Poisson process. This implies
that the above conditional expected number is larger in our process than in the
Poisson process (the numerators λt are the same for both processes). This fact
can be further expressed as follows: If we observe the signal process for time
t and we happen to observe at least one signal, then the expected number of
all observed signals is larger than as if they arrived “by pure chance.” The first
signal “attracts” further signals (within time length t). By homogeneity, the
same happens in any interval (s, s+ t] of length t, contributing to an increased
clustering effect. Repelling is the converse: the first signal lowers the expected
number of signals in the observation period, contributing to a decreased clus-
tering, and a more uniform distribution of signals in time, see Figure 5.1.

repelling .....|......|......|...|.....|......|.....|....|.....|....|..|....|......|..
Poisson .....|........|....|..|....|........|......|..|.......|..|.|......|......|..

attracting .....|..........|..|.|..|...........|.......||.........|.||.......|......|..
strong attracting ......|.||||...................................................||.|||..|.|..

Figure 5.1 The distribution of signals along the time in processes with the
same intensity.

The force of attracting can be arbitrarily close to 1, which happens when the
distribution function FW remains near zero until large values of t (this implies
attracting from all distances, except very small and very large ones, where
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marginal repelling can occur). Such FW indicates that for most ω the waiting
time is very long. In particular, X1(ω) = 0. Because the intensity E(X1) is a
fixed number λ, there must be a small part of the space Ω, where many signals
arrive within a unit of time. In other words, we observe two types of behavior:
long lasting silence observed with very high probability and rarely a swarm of
signals. This kind of behavior will be called strong attracting (we neglect to
put sharp formal bounds on FW for this new term).

On the other hand, it is not hard to see that the distribution function FW can-
not exceed the function min{λt, 1} (t ≥ 0), which is attained for the process
in which the signals arrive periodically in time (with gaps equal to 1/λ). This
is the maximally repelling process, and the maximal force of repelling occurs
at t = 1/λ and equals e−1 (see Figure 5.2 below).

Figure 5.2 The distribution function FW in the Poisson, strongly attracting
and strongly repelling processes.

If a given process reveals attracting from some distance and repelling from
another, the tendency to clustering is not clear and depends on the applied time
perspective. However, if there is only attracting (without repelling), then at any
time scale we shall see the increased clustering. This type of behavior is our
subject of interest:

Definition 5.2.4 A homogeneous signal process obeys the Law of Series if

FW(t) ≤ 1 − e−λt,

for all t, and the two functions are not equal.
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In other words, the Law of Series is the conjunction of the following two
postulates:

1. There is no repelling from any distance, and
2. there is attracting from at least one distance.

In practice, we agree to accept the presence of some “marginal” repelling
with a force much smaller than the force of the existing attracting as shown
in the Figure 5.3. Let us explain at this point that the distribution function
of the waiting time is always concave (this will become clear e.g. from the
integral formula (5.3.2)), hence it cannot be drawn as just any distribution
function.

Figure 5.3 The distribution FW in a process that “nearly” obeys the Law of
Series.

5.3 Decay of repelling in positive entropy

In an ergodic nonperiodic process (X,P, μ, T, S) (with P finite) fix a measur-
able set B and consider the signal process defined on the probability space
(X,μ), where signals are occurrences of the event B, i.e.,

Xt(x) = #{n ∈ (0, t] : Tnx ∈ B}.

This is a discrete time homogeneous process; the homogeneity (see Definition
5.2.1) holds for integer t0. By the Ergodic Theorem, the intensity λ equals
μ(B), and E(Xt) = λt holds for integer t. Since every nonatomic standard
probability space is isomorphic to the unit interval (and the measure in an
ergodic nonperiodic process is nonatomic), we can draw B (equipped with the
meaure μB) as the interval [0, 1] and we can arrange that the return time RB(x)
(recall (3.1.11) for definition) increases from left to right. Then the graph of the
return time RB coincides with the roof of the skyscraper over B representing
the entire space X . Now, the same graph reflected about the diagonal represents
the distribution function GB of RB .

Notice that there is a relation between GB and the distribution function FB

of the waiting time WB in this process; by an elementary consideration of
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the skyscraper (which we leave to the reader) one easily verifies that, for any
integer t,

FB(t) = μ(B)
∑
i≤t

(1 − GB(i)) (5.3.1)

(thus GB(t) = 1 − FB(t)−FB(t−1)
μ(B) ). Both functions are determined by their

values at integer arguments. Thus it is completely equivalent whether we study
the distribution of the return time variable (defined on B), or of the waiting
time variable (defined on X).

The Law of Series in occurrences of the event B can be nicely expressed
in terms of the shape of the skyscraper above B; the formula (5.3.1) translates
the inequality FB ≤ 1 − e−λt into the following property of the shape of the
skyscraper:

• At any point t ∈ B the area above the graph of − log(1−s)
λ and below the

roof function to the left of t (i.e., for s ≤ t) must not exceed the area below
the graph of − log(1−s)

λ and above the roof function to the left of t.

This property is explained graphically in Figure 5.4. In particular, the graph

Figure 5.4 The first two skyscrapers are not admitted by the Law of Series,
the last one is. The dark-grey area must be smaller than or equal to the light-
grey area to the left.

of the roof function must start at zero tangentally to or below the line s �→ s/λ.
For instance, the return time cannot be bounded below by a positive value.

Although the Ornstein–Weiss Theorem (Theorem 3.4.1) provides some infor-
mation about the return time RB , where B is a “typical” long cylinder, its
precise distribution on B, i.e., the shape of the skyscraper over B is by no
means captured. Small deviations of the value 1

n log RB(x) as x ranges over B

(allowed in the Ornstein–Weiss Theorem) mean, for large n, huge deviations
of log RB(x) i.e., huge freedom in the proportions between RB(x) (hence also
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of WB) at different points. In order to be able to compare the distribution func-
tion of WB with the exponential distribution function 1 − e−λt we will need
completely different tools.

First of all, it will be convenient to change the time unit to 1/λ, i.e., to
replace RB by RB = μ(B)RB (and WB by WB = μ(B)WB). We call this step
normalization because the normalized return time RB has expected value 1
(although the normalized waiting time WB may even have infinite expected
value). This trick has many advantages: (1) the signal process in this new time
scale has intensity 1, hence the parameter λ disappears from the calculations,
(2) the time of the signal process becomes nearly continuous (the increment of
time is now λ = μ(B), which is very small), (3) the formula (5.3.1) takes on,
for the distribution functions FB of WB and GB of RB , the integral form

FB(t) ≈
∫ t

0

1 − GB(s) ds (5.3.2)

(up to accuracy μ(B)) and (4) we can compare the behaviors of signal pro-
cesses obtained for sets B of different measures. In particular, we can see what
happens in the limit when B represents longer and longer cylinders.

A rich literature is devoted to the subject of the limit distributions of the
normalized return (and waiting) time variables as the lengths of the cylinders
grow, in specific types of processes [see Coelho, 2000; Abadi, 2001; Abadi and
Galves, 2001; Durand and Maass, 2001; Hirata et al., 1999; Haydn et al., 2005,
and the references therein]. Here we will be mainly interested in consequences
of the sole assumption of positive entropy. For each x define

Repn(x) = sup
t≥0

(FAn
x
(t) − 1 + e−t),

the maximal force of repelling of the cylinder An
x ∈ Pn containing x. The

main theorem of this chapter is this [Downarowicz and Lacroix, 2011]:

Theorem 5.3.3 (The Ergodic Law of Series) Let (X,P, μ, T, S) be an ergodic
process with positive entropy, where P is finite. Then

Repn −→
n→∞

0 in L1(μ).

Because for functions bounded by a common bound the L1-convergence is the
same as the convergence in measure, the above can be equivalently expressed
as follows: for every ε > 0 the measure of the union of all blocks of length n,
B ∈ Pn which repel with force ε, converges to zero as n grows to infinity.

The above theorem asserts that the majority of sufficiently long cylinders
reveals almost no repelling, in which they satisfy the first postulate of the Law
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of Series (phrased next to Definition 5.2.4). Examples show that arbitrarily
strong attracting is admitted by such cylinders, (and it is proved that in the
majority of processes it indeed occurs; see the last section of this chapter),
hence they satisfy also the second postulate.

Question 5.3.4 It is unknown whether Theorem 5.3.3 holds also in the almost
everywhere convergence.

5.3.1 The idea of the proof and the basic lemma

Before we turn to the formal proof of Theorem 5.3.3 we would like to fill in
some of the details of the idea behind it. First of all, by applying the natural
extension, we will assume that the process is invertible, i.e., its symbolic rep-
resentation is bilateral. We intend to estimate (from above, by 1− e−t + ε) the
function FB for a long cylinder B ∈ Pn. Instead of B, we can consider a con-
catenation BA ∈ P[−n,r) (i.e., the cylinder set B∩A with B ∈ P−n, A ∈ Pr),
where the “positive” part A has a fixed length r, while we allow the “negative”
part B to be (sufficiently) long.

There are two key ingredients leading to the estimation. The first one, con-
tained in Lemma 5.3.11, is the observation that for a fixed typical B ∈ P−n

the process induced on B (with the conditional measure μB) generated by the
partition Pr is not only a β-independent1 process but also it is “nearly” β-
independent of the process on (B,Q, μB , TB , Z) generated by the partition Q

depending on the return time (see Figure 5.5). The precise meaning of “nearly”
will be explained later.

coordinate 0↓

... B A−1
............. B A0

.. B A1
......... B A2

.... B A3
....

Figure 5.5 The process . . . A−1A0A1A2 . . . of blocks of length r following
the copies of B is a β-independent process with additional β-independence
properties of the positioning of the copies to B.

In addition to the random variables of the absolute and normalized return
times RB and RB let us introduce the notation for the kth return time

R(k)
B (x) = min{i : #{0 < j ≤ i : T jx ∈ B} = k},

and of the normalized kth return time R
(k)
B = μ(B)R(k)

B (both defined on

B), with G
(k)

B always denoting the distribution function of the latter. Because

1 β-independent means the same as ε-independent; we have changed the letter because
throughout this chapter ε is used for the force of repelling.
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R(k)
B (x) = RB(x)+RB(TB(x))+ · · ·+RB(T k−1

B (x)), and TB preserves μB ,

by the Kac Theorem, the expected value of R(k)
B is k/μ(B), and that of R

(k)
B

equals k.
The above-mentioned β-independences allow us to decompose (with high

accuracy) the distribution function GBA of the normalized return time to BA

as follows:

GBA(t) = μBA{RBA ≤ t} = μBA{RBA ≤ t
μ(BA)} =∑

k≥1

μBA{R(B)
A = k, R(k)

B ≤ t
pμ(B)} ≈

∑
k≥1

μBA{R(B)
A = k} · μB{R

(k)
B ≤ t

p}≈

∑
k≥1

p(1 − p)k−1 · G(k)

B ( t
p ), (5.3.5)

where R(B)
A denotes the return time of A in the process generated by Pr induced

on B, and p = μB(A). Because this last process is β-independent, the distribu-
tion of the kth return time is nearly geometric with parameter p – this explains
the occurrence of the term p(1 − p)k−1 above.

The second key observation is contained in the elementary Lemma 5.3.6
below. We assume, for simplicity, exact equalities in (5.3.5) and (5.3.2). The
idea behind this lemma is as follows: The strongest repelling for BA occurs
when the repelling of B is the strongest, i.e., when B occurs periodically. But
if B does appear periodically, the return time of BA has nearly the geometric
distribution, because it is a return time in a β-independent process (only the
increment of time is now equal to the constant gap between the occurrences of
B). If p is small, this geometric distribution, after normalization, is nearly the
exponential law 1−e−t. Later, in Lemma 5.3.9, we will regulate the smallness
of p by the choice of the parameter r.

Lemma 5.3.6 Fix some p ∈ (0, 1). Let G
(k)

(k ≥ 1) be a sequence of dis-
tribution functions on [0,∞) such that the expected value of the distribution

associated with G
(k)

equals k. Define

G(t) =
∑
k≥1

p(1 − p)k−1G
(k)

( t
p ), and F(t) =

∫ t

0

1 − G(s) ds.

Then

F(t) ≤ 1
log ep

(1 − e−t
p ), where ep = (1 − p)−

1
p .
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Proof We have

F(t) =
∑
k≥1

p(1 − p)k−1

∫ t

0

1 − G
(k)

( s
p )ds.

We know that G
(k)

(t) ∈ [0, 1] and that
∫ ∞
0

1 − G
(k)

(s) ds = k (the expected
value). With such constraints, it is the indicator function 1[k,∞) that maximizes
the integrals from 0 to t simultaneously for every t (because the “mass” k above

the graph is, for such choice of the function G
(k)

, swept maximally to the left).
The rest follows by direct calculations:

F(t) ≤
∑
k≥1

p(1 − p)k−1

∫ t

0

1[0,k)( s
p ) ds =

∫ t

0

∞∑
k=� s

p �
p(1 − p)k−1ds =

∫ t

0

(1 − p)�
s
p �ds ≤ (1 − p)

t
p − 1

log(1 − p)
1
p

=
1 − e−t

p

log ep
.

Notice that the maximizing distribution functions G
(k)

B = 1[k,∞) occur, for
the normalized return time of a set B, precisely when B is visited periodically.
This is exactly what was said at the beginning of the description of the idea of
the proof.

We can now pass to the complete rigorous proof of Theorem 5.3.3.

5.3.2 The proof of Theorem 5.3.3

In course of the proof, we will make frequent use of a certain lengthy condition,
abbreviated in the following definition.

Definition 5.3.7 Given a finite partition P of a space with a probability mea-
sure μ and δ > 0, we will say that a property Φ(B) holds for B ∈ P with
μ-tolerance δ if

μ
(⋃

{B ∈ P : Φ(B)}
)
≥ 1 − δ.

We recall an elementary estimate, which has been assigned as Exercise 1.4:
For each cell A of a finite partition P we have

H(P) ≤ (1 − μ(A)) log #P + 1. (5.3.8)

We will frequently use the “rectangle rule” (see Fact A.1.2), and we give up
recalling it each time; it is accompanied by the appearance of square roots.
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Throughout the sequel we assume ergodicity and that the entropy h of the
process is positive. We begin our computations with an auxiliary lemma allow-
ing us to assume (by replacing P by some Pr) that the elements of the “present”
partition are small, relatively in most of B ∈ P−n and for every n. Note that
the Shannon–McMillan–Breiman Theorem is insufficient: for the conditional
measure the error term in that theorem depends increasingly on n, which we
do not fix.

Lemma 5.3.9 For each δ there exists an r ∈ N such that for every n ∈ N the
following holds for B ∈ P−n with μ-tolerance δ:

for every A ∈ Pr, μB(A) ≤ δ.

Proof Let α be so small that
√

α ≤ δ and h−3
√

α
h+α ≥ 1 − δ

2

and set γ = α/log #P. Let r be so big that

1
r ≤ α, 1

r(h+α) ≤ δ
2 ,

and that there exists a collection Pr of no more than 2r(h+α) − 1 elements of
Pr whose joint measure μ exceeds 1−γ (by the Shannon–McMillan–Breiman
Theorem).

Let P̃r denote the partition into the elements of Pr and the complement of
their union, and let R be the partition into the remaining elements of Pr and
the complement of their union, so that Pr = P̃r∨R. By the power rule (2.4.19)
(in the form of Exercise 2.2) we can write rh = H(Pr|P−). Further, for any n

we have

rh = H(Pr|P−) ≤ H(Pr|P−n) = H(P̃r ∨ R|P−n) =

H(P̃r|R ∨ P−n) + H(R|P−n) ≤ H(P̃r|P−n) + H(R) ≤∑
B∈P−n

μ(B)HB(P̃r) + γr log #P + 1

(we have used (5.3.8) for the last passage). After dividing by r we obtain∑
B∈P−n

μ(B) 1
r HB(P̃r) ≥ h − γ log #P − 1

r ≥ h − 2α.

Because each term 1
r HB(P̃r) is not larger than 1

r log #P̃r, which was set to be
at most h + α, we deduce that

1
r HB(P̃r) ≥ h − 3

√
α



146 The Ergodic Law of Series*

for B ∈ P−n with μ-tolerance
√

α, hence also with μ-tolerance δ. On the other
hand, by (5.3.8) again, for any B and A ∈ P̃r it holds that

HB(P̃r) ≤ (1 − μB(A)) log #P̃r + 1 ≤ (1 − μB(A))r(h + α) + 1.

Combining the last two displayed inequalities we establish that, with
μ-tolerance δ for B ∈ P−n and then for every A ∈ P̃r,

1 − μB(A) ≥ h−3
√

α
h+α − 1

r(h+α) ≥ 1 − δ.

So, μB(A) ≤ δ. Because Pr refines P̃r, the elements of Pr are also not larger
than δ.

We continue the proof with a lemma which could be also deduced from
[Rudolph, 1978, Lemma 3], nevertheless we choose to provide a direct proof.
For α > 0 and M ∈ N we define a special periodic subset of Z

D(M,α) =
⋃

m∈Z

[mM + αM, (m + 1)M − αM) ∩ Z.

Lemma 5.3.10 For fixed α and r there exists M0 ∈ N such that, for every
M ≥ M0,

H(Pr|P− ∨ PD(M,α)) ≥ rh − α

(see Figure 5.6).

∗∗∗∗∗∗∗∗∗∗∗◦◦..∗∗∗∗∗∗∗∗∗∗∗∗..........∗∗∗∗∗∗∗∗∗∗∗∗..........∗∗∗∗∗∗∗∗∗∗∗∗..........

Figure 5.6 The circles indicate the coordinates 0 through r − 1, the condi-
tioning sigma-algebra is over the coordinates marked by stars, which includes
the entire past and part of the future with gaps of size 2αM repeated periodi-
cally with period M (the first gap is half the size and is partly covered by the
circles).

Proof First assume that r = 1. Denote also

D
′(M,α) =

⋃
m∈Z

[mM + αM, (m + 1)M) ∩ Z.

Let M be so large that H(P(1−α)M ) < (1−α)M(h + γ), where γ = α2

2(1−α) .
Then, for any m ≥ 1,

H(PD
′(M,α)∩[0,mM)|P−) ≤ H(PD

′(M,α)∩[0,mM)) < (1 − α)mM(h + γ).
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Because H(P[0,mM)|P−) = mMh, the complementary part of entropy must
exceed mMh− (1−α)mM(h + γ) (which equals αmM(h−α/2)), i.e., we
have

H(P[0,mM)\D
′(M,α)|P− ∨ PD

′(M,α)∩[0,mM)) > αmM(h − α
2 ).

Expressing the last entropy term as a sum over j ∈ [0,mM) \D
′(M,α) of the

conditional entropies of T−j(P) given the sigma-algebra over all coordinates
left of j and all coordinates from D

′(M,α) ∩ [0,mM) right of j, and because
every such term is at most h, we deduce that more than half of these terms
reach or exceed h− α. So, a term not smaller than h− α occurs for a j within
one of the gaps in the left half of [0,mM). Shifting by j we obtain

H
(
P|P− ∨ T i(PD

′(M,α)∩[0, mM
2 ))

)
≥ h − α,

where i ∈ [0, αM) denotes the relative position of j in the gap. As we increase
m, one value i repeats in this role infinitely many times, say, along a subse-

quence m′. The partitions P− ∨ T i(PD
′(M,α)∩[0, m′M

2 )) increase with m′ to
the sigma-algebra P− ∨ T i(PD

′(M,α)) and conditional static entropy passes
via increasing limits of the conditioning sigma-algebras (see (1.7.13)), hence
H(P|P−∨T i(P D

′(M,α))) ≥ h−α. The assertion now follows because D(M,α)
is contained in D

′(M,α) shifted to the left by any i ∈ [0, αM).
Finally, if r > 1, we can simply argue for Pr replacing P. This will impose

that M0 and M are divisible by r, but it is not hard to see that for large M the
argument works without divisibility at a cost of a slight adjustment of α.

For a block B ∈ P−n consider the process (B,Pr, μB , TB , Z) generated by
Pr under the induced transformation TB (and with the measure μB). Adapting
Theorem 3.1.13 by reversing the time, replacing P by Pr, and P[1,n] by P−n,
we can see that for a fixed β > 0 and n large enough, the above is a β-
independent process for B ∈ P−n with μ-tolerance β. The following lemma
shows that it is also “nearly” β-independent of the induced process generated
by the return times, more precisely, it is β-independent of the entire past and a
finite number of future return times. This fact is crucial and the most difficult
item in the proof of Theorem 5.3.3.

Lemma 5.3.11 For every β > 0, r ∈ N and K ∈ N there exists n0 such
that for every n ≥ n0, with μ-tolerance β for B ∈ P−n, with respect to μB ,
Pr is β-independent of jointly the past P− and the first K return times, R(k)

B

(k ∈ [1,K]), to the set B.

Proof We choose γ > 0 so that

H(Pr|Q) ≥ H(Pr) − γ =⇒ Pr⊥βQ
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for any partition Q (see Fact 3.1.3). Let α satisfy

0 < 2α
h−α < 1, 18K

√
α < 1,

√
2α < γ, K 4

√
α < β

2 .

Applying the power rule (in the form of Exercise 2.2) and the Ornstein–Weiss
Theorem 3.4.1 (in its version for the kth return time, Exercise 3.7), we can find
n0 so large that for every n ≥ n0 both H(Pr|P−n) < rh + α and that for
every k ∈ [1,K] with μ-tolerance α for B ∈ P−n it holds that

μB{2n(h−α) ≤ R(k)
B ≤ 2n(h+α)} > 1 − α.

Let M0 ≥ 2n0(h−α) be so large that the assertion of Lemma 5.3.10 holds for
α, r and M0, and that for every M ≥ M0,

(M + 1)1+
2α

h−α < αM2 and log(M+1)
M(h−α) < α.

We can now redefine (enlarge) n0 and M0 so that M0 = �2n0(h−α)�. Similarly,
for each n ≥ n0 we set Mn = �2n(h−α)�. Observe that the interval, where the
first K returns of most blocks B of length n may occur (up to probability α),
is contained in [Mn, αM2

n] (because 2n(h+α) ≤ (Mn + 1)1+
2α

h−α < αM2
n).

At this point we fix some n ≥ n0. The idea is to carefully select an M

between Mn and 2Mn (hence not smaller than M0), such that the initial K

returns of nearly every block of length n happen most likely inside (with all its
n symbols) the set D(M,α), so that they are “controlled” by the sigma-algebra
PD(M,α). Let α′ = α+n/Mn, so that every block of length n overlapping with
D(M,α′) is completely covered by D(M,α). By the definition of Mn, we
have n ≤ log(Mn+1)

h−α , hence n
Mn

≤ log(Mn+1)
Mn(h−α) , which is smaller than α. Thus

α′ < 2α. To define M we will invoke the “triple Fubini Theorem” (in the
completely trivial version for discrete measures, i.e., for sums). Fix k ∈ [1,K]
and consider the probability space

P−n × [Mn, 2Mn] × N

equipped with the (discrete) measure Prob whose marginal on P−n ×
[Mn, 2Mn] is the product of μ (more precisely, of its projection onto P−n)
with the uniform probability distribution on the integers in [Mn, 2Mn], while,
for fixed B and M , the conditional measure on the corresponding N-section
is the distribution of the random variable R(k)

B . In this space let D be the set
whose N-section for a fixed M (and any fixed B) is the set D(M,α′). We
claim that for every l ∈ [Mn, αM2

n] ∩ N (and any fixed B) the [Mn, 2Mn]-
section of D has measure exceeding 1 − 16α. This is quite obvious (even for
every l ∈ [Mn,∞) and with 1 − 15α) if [Mn, 2Mn] is equipped with the
normalized Lebesgue measure. The details of this estimate are provided in the
description of Figure 5.7.
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Figure 5.7 The complement of D splits into thin skew strips shown in the
picture. The normalized Lebesgue measure of any vertical section of the jth
strip (starting at jMn with j ≥ 1) is at most 4α′j

j2−α′2 ≤ 5α′

j
≤ 10α

j
. Each

vertical line at l ≥ Mn intersects strips with indices j, j + 1, j + 2 up to at
most 2j (for some j), so the joint measure of the complement of the section
of D does not exceed 10α( 1

j
+ 1

j+1
+ · · · + 1

2j
) ≤ 15α.

In the discrete case, however, it might happen that the integers along some
[Mn, 2Mn]-section often “miss” the section of D leading to a decreased mea-
sure value. (For example, it is easy to see that for l = (2Mn)! the measure
of the section of D is zero.) But because we restrict to l ≤ αM2

n, the dis-
cretization does not affect the measure of the section of D by more than α,
and the estimate with 1 − 16α holds (see Figure 5.8 and its description for
details).

D

↙ ↓ ↘
|..........................................................................................|
Mn 2Mn

Figure 5.8 The discretization replaces the Lebesgue measure by the uniform
measure on Mn integers, thus the measure of any interval can deviate from
its Lebesgue measure by at most 1/Mn. For l ≤ αM2

n the corresponding
section of D (in this picture drawn horizontally) consists of at most αMn

intervals, so its measure can deviate by no more than α.

Taking into account all other inaccuracies (the smaller than α part of D out-
side [Mn, αM2

n] and the smaller than α part of D projecting onto blocks B

which do not obey the Ornstein–Weiss return time estimate) we have proved
that

Prob(D) > 1 − 18α.

This implies that for every M from a set of measure at least 1 − 18
√

α the
measure of the (P−n × N)-section of D is larger than or equal to 1 −√

α. For
every such M , with μ-tolerance 4

√
α for B ∈ P−n, the probability μB that the
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kth repetition of B falls in D(M,α′) (hence with all its n terms inside the set
D(M,α)) is at least 1 − 4

√
α.

Because 18K
√

α < 1, there exists at least one M for which the above
holds for every k ∈ [1,K]. This is our final choice of M which from now
on remains fixed. For this M , and for cylinders B chosen with μ-tolerance
K 4
√

α, each of the considered K returns of B with probability (meaning μB)
1− 4

√
α falls (with all its coordinates) inside D(M,α). Thus, for such a B, with

probability 1 − K 4
√

α the same holds simultaneously for all K return times.
In other words, there is a set B′ ⊂ B of measure μB not exceeding K 4

√
α

outside of which (in B) R(k)
B = R̃

(k)

B , where R̃
(k)

B is defined as the time of

the kth fully visible inside D(M,α) return of B. Notice that R̃
(k)

B is PD(M,α)-
measurable.

Let us go back to our entropy estimates. We have, by Lemma 5.3.10,∑
B∈P−n

μ(B)HB(Pr|P− ∨ PD(M,α)) = H(Pr|P−n ∨ P− ∨ PD(M,α)) =

H(Pr|P− ∨ PD(M,α)) ≥ rh − α ≥ H(Pr|P−n) − 2α =∑
B∈P−n

μ(B)HB(Pr) − 2α.

Because HB(Pr|P− ∨ PD(M,α)) ≤ HB(Pr) for every B, we deduce that with
μ-tolerance

√
2α for B ∈ P−n it must hold that

HB(Pr|P− ∨ PD(M,α)) ≥ HB(Pr) −
√

2α ≥ HB(Pr) − γ.

Combining this with the preceding arguments, with μ-tolerance K 4
√

α +√
2α < β for B ∈ P−n both the above entropy inequality holds and we

have the estimate μB(B′) ≤ K 4
√

α. By the choice of γ, we obtain that with
respect to μB , Pr is jointly β

2 -independent of the past and the modified return

times R̃
(k)

B (k ∈ [1,K]). Because μB(B′) ≤ K 4
√

α < β
2 , this clearly implies

β-independence if each R̃
(k)

B is replaced by R(k)
B .

To complete the proof of Theorem 5.3.3 it now remains to put the items
together.

Proof of Theorem 5.3.3 Fix an ε > 0. On [0,∞), the functions

gp(t) = min{1, 1
log ep

(1 − e−t
p ) + pt},

where ep = (1− p)−
1
p , decrease uniformly to 1− e−t as p → 0+. So, let δ be

such that gδ(t) ≤ 1 − e−t + ε for every t. We also assume that

(1 − 2δ)(1 − δ) ≥ 1 − ε.
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Let r be specified by Lemma 5.3.9, so that μB(A) ≤ δ for every n ≥ 1, every
A ∈ Pr and for B ∈ P−n with μ-tolerance δ. On the other hand, once r is
fixed, the partition Pr has at most (#P)r elements, so with μB-tolerance δ for
A ∈ Pr, μB(A) ≥ δ(#P)−r. Let AB be the subfamily of Pr (depending on
B) where this inequality holds. Let K be so large that for any p ≥ δ(#P)−r,

∞∑
k=K+1

p(1 − p)k < δ
2 ,

and choose β < δ so small that

(K2 + K + 1)β < δ
2 .

The application of Lemma 5.3.11 now provides an n0 such that for any n ≥ n0,
with μ-tolerance β for B ∈ P−n, the process induced on B generated by Pr

has the desired β-independence properties involving the initial K return times
of B. So, with tolerance δ + β < 2δ we have both, the above β-independence
and the estimate μB(A) < δ for every A ∈ Pr. Let Bn be the subfamily of
P−n where these two conditions hold. Fix some n ≥ n0.

Let us consider a cylinder set BA ∈ P[−n,r) where B ∈ Bn, A ∈ AB . The
length of BA is n+ r, which represents an arbitrary integer larger than n0 + r.
Notice that the family of such sets BA covers more than (1−2δ)(1−δ) ≥ 1−ε

of the space.
We will examine the distribution of the normalized first return time for BA.

Recall that R(B)
A denotes the return time to A in the induced process on B,

i.e., a variable defined on BA, counting the number of visits to B until the first
return to BA. Let p = μB(A) (recall, this is not smaller than δ(#P)−r). We
have

GBA(t) = μBA{RBA ≤ t} = μBA{RBA ≤ t
μ(BA)} =∑

k≥1

μBA{R(B)
A = k, R(k)

B ≤ t
pμ(B)}.

The kth term of this sum equals

1
pμB({Ak =A}∩{Ak−1 �=A}∩· · ·∩{A1 �=A}∩{A0 =A}∩{R(k)

B ≤ t
pμ(B)}),

where Ai is the block of length r following the ith copy of B (the counting
starts from 0 at the copy of B positioned at [−n,−1]).

By Lemma 5.3.11, for k ≤ K, in this intersection of sets each term is β-
independent of the intersection to its right. So, proceeding from the left, we
can replace the probabilities of the intersections by products of probabilities,
allowing an error of β (multiplied by some number not exceeding 1). Note that
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the last term equals μB{R
(k)
B ≤ t

p} = G
(k)

B ( t
p ). Jointly, the inaccuracy will not

exceed (K + 1)β:∣∣∣μBA{R(B)
A = k, R(k)

B ≤ t
pμ(B)} − p(1 − p)k−1G

(k)

B ( t
p )

∣∣∣ ≤ (K + 1)β.

Similarly, we also have
∣∣∣μBA{R(B)

A = k} − p(1 − p)k−1
∣∣∣ ≤ Kβ, hence the

tail of the series μBA{R(B)
A = k} summed over k ≥ K + 1 is smaller than

K2β plus the tail of the geometric series p(1 − p)k−1, which, by the fact that
p ≥ δ(#P)−r, is smaller than δ/2. Therefore

GBA(t) ≈
∑
k≥1

p(1 − p)k−1G
(k)

B ( t
p ),

up to (K2 + K + 1)β + δ/2 ≤ δ, uniformly for every t. By the application of
the elementary Lemma 5.3.6, FBA satisfies

FBA(t) ≤ min{1, 1
log ep

(1 − e−t
p ) + δt} ≤ gδ(t) ≤ 1 − et + ε

(because p ≤ δ). We have proved that for our choice of ε and an arbitrary
length m ≥ n0 +r, with μ-tolerance ε for the cylinders BA ∈ Pm, the force of
repelling (from any distance t) of the visits to BA is at most ε. This concludes
the proof of Theorem 5.3.3.

5.4 Typicality of attracting for long cylinders

We have included this section in order to complete the picture of the Ergodic
Law of Series. We skip the proofs of the cited theorems, as they do not use
entropy. In passing we prove a statement about typicality of positive entropy.

The preceding section provides evidence that in positive entropy processes
the occurrences of a selected long cylinder, in principle, do not repel. This cor-
responds to the first postulate in the interpretation of Definition 5.2.4 of the
Law of Series. As to the second postulate (presence of attracting), of course,
it cannot be satisfied by long cylinders in all positive entropy processes. For
example, in the independent process all long cylinders occur with neither
attracting nor repelling. The same holds in sufficiently fast mixing processes
(see [Abadi, 2001] or [Hirata et al., 1999]). But such processes are in fact
exceptional; in a “typical” process many blocks reveal strong attracting. We
know that a fixed dynamical system (X,A, μ, T, S) gives rise to many pro-
cesses (X,P, μ, T, S), each generated by some partition P. We can thus para-
metrize the processes by the partitions and use the complete metric structure
that exists on the space of partitions to determine the meaning of “typicality”:
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Definition 5.4.1 We say that a property Υ of a process is typical (Rokhlin-
typical or typical among finitely generated processes) in a certain class of mea-
sure-preserving transformations, if for every (X,A, μ, T, S) in this class, the
set of partitions P such that the generated process (X,P, μ, T, S) has the prop-
erty Υ, is residual (i.e., contains a dense Gδ set) in the space Pℵ0 of all count-
able partitions endowed with the metric d1 (respectively, in the space PR of all
countable partitions with finite static entropy endowed with the Rokhlin met-
ric, or, for every natural m ≥ 2, in the space Pm of all partitions into at most
m elements endowed with either metric).

Notice that the spaces Pm are nowhere dense in both PR and Pℵ0 , while
PR is a first category subset of Pℵ0 , thus there is no implication between the
notions of typicality in the above three senses.

The theorem below captures the typicality of strong attracting:

Theorem 5.4.2 The following property of a process is typical in all three
senses in the class of all ergodic measure-preserving transformations: There
exists a set of lengths N ⊂ N with upper density 1, such that for every ε and
sufficiently large n ∈ N , every block of length n reveals strong attracting (with
force 1 − ε) of its occurrences.

We skip the proof, which can be found in [Downarowicz et al., 2010]. Recall
that strong attracting automatically eliminates repelling other than
marginal. So, this theorem alone, implies that all blocks of selected lengths
obey the Law of Series. Nevertheless, blocks of other lengths may strongly
repel (but only if the entropy is zero). Examples of such systems have been
built by Paulina Grzegorek and Michal Kupsa [Grzegorek and Kupsa, 2009].
In such systems, in the overall picture, where all long cylinders are taken into
account, we can still see a mixed behavior without decisive domination of
attracting over repelling.

Remark 5.4.3 The typicality of strong attracting has been recently extended
in [Downarowicz et al., 2010] also to events which are not single cylinders but
unions of cylinders over blocks differing at a small percentage of coordinates
(δ-balls in Hamming distance). An open question remains, whether an analog
of Theorem 5.3.3 holds for such events in positive entropy processes.

Now we prove the following fact concerning entropy:

Theorem 5.4.4 Positive entropy is Rokhlin-typical and typical among finitely
generated processes in the class of measure-preserving transformations with
positive Kolmogorov–Sinai entropy.
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Proof The set of partitions with finite static and positive dynamical entropy
is open (in both PR and Pm), which follows immediately from continuity of
dynamical entropy with respect to the Rokhlin metric (Fact 2.4.13). We need
to prove that it is dense. Because the dynamical system has positive entropy,
there exists a partition P which generates positive dynamical entropy. For
large enough n, all cells of Pn are smaller than δ in measure. At least one
of these cells, say A, is not measurable with respect to the Pinsker sigma-
algebra ΠP, otherwise the process would have entropy zero. The two-element
partition Q = {A,Ac} generates positive dynamical entropy (otherwise, as a
zero-entropy factor of the process generated by P it would have to be mea-
surable with respect to ΠP). The static entropy H(Q) is at most H(δ, 1 − δ),
which is arbitrarily small, say, smaller than ε. Now, every other partition can
be perturbed by at most ε in the Rokhlin metric, to a partition with positive
dynamical entropy by simply joining it with the partition Q (this increases the
cardinality; we leave fixing this problem to the reader).

Combining the above two facts (recall that the intersection of two resid-
ual sets is residual) with Theorem 5.3.3 of the preceding section we obtain
that in the class of ergodic measure-preserving transformations with positive
entropy, in a typical finitely generated process, long cylinders reveal almost no
repelling, while many of them reveal strong attracting. This time we do have
decisive domination of attracting over repelling. This is the full strength of the
Ergodic Law of Series.

The following example shows how the Ergodic Law of Series can manifest
itself in reality. Of course, it should be treated with due reserve.

Example 5.4.5 Consider the experiment of randomly generating independent ASCII

characters (the monkey typing2). In theory this is an independent process hence every

possible long block should appear with positive probability and it should reveal nei-

ther repelling nor attracting. In reality, however, the independence of the consecutive

outcomes is imperfect (there is no perfect physical independence between any events

in reality). We can thus consider the process as being generated by a slightly per-

turbed partition corresponding to the alphabet. Then there are high chances that the pro-

cess falls in the class of typical processes (of positive entropy) described in the above

2 This kind of experiment has fascinated people since a long time. The reader can look it up
under “The infinite monkey theorem”. The idea goes back to Aristotle and, in a more
contemporary setting, to Émile Borel and his 1913 essay “Mécanique Statistique et
Irréversibilité”. The long block in question is usually either Shakespeare’s Hamlet or the entire
book collection of the British Museum put into one long string of letters. Of course, it was
merely the possibility of randomly generating such a block that fascinated, not the Law of
Series. Hard to believe, but there have been not only attempts to simulate this on a computer,
but also experiments with real macaques!
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theorems. If so, then majority of blocks will obey the Law of Series and if we focus

on one particular long block (say the tex file of this book) it is quite likely that once it

occurs it will occur again very “soon” (compared with the expected waiting time, which

is unimaginably large).





Part II

Entropy in topological dynamics





6

Topological entropy

6.1 Three definitions of topological entropy

By a topological dynamical system we understand the triple (X,T, S), where
X is a compact metric space, T : X → X is continuous and S ∈ {N0, Z} is
the semigroup acting on X via the iterates of T . Of course, Z is available only
when T is a homeomorphism.

Just like in the measure-theoretic case, we are interested in a notion of
entropy that captures the complexity of the dynamics, interpreted as the amount
of information transmitted by the system per unit of time. Again, the ini-
tial state carries complete information about the evolution (forward, or both
forward and backward in time, depending on the acting semigroup S), but
the observer cannot “read” all this information immediately. Since we do not
fix any particular measure, we want to use the metric (or, more generally,
the topology) to describe the “amount of information” about the initial state,
acquired by the observer in one step (one measurement). A reasonable inter-
pretation relies on the notion of topological resolution. Intuitively, resolution
is a parameter measuring the ability of the observer to distinguish between
points. A resolution is topological, when this ability agrees with the topologi-
cal structure of the space. The simplest such resolution is based on the metric
and a positive number ε: two points are “indistinguishable” if they are less than
ε apart. Another way to define a topological resolution (applicable in all topo-
logical spaces) refers to an open cover of X . Points cannot be distinguished
when they belong to a common cell of the cover.

By compactness, the observer is able to “see” only some finite number N of
“classes of indistinguishability” and classify the current state of the system to
one of them. The logarithm to base 2 of N roughly corresponds to the num-
ber of binary questions, answering which is equivalent to what the observer
has learned, i.e., to the amount of acquired information. The static entropy,
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instead of an expectation (which requires a measure), will now be replaced by
the supremum over the space of this information. The rest is done just like in
the measure-theoretic case; we define the topological dynamical entropy with
respect to a resolution as the average (along the time) information acquired
per step. Finally we pass to the supremum as the resolution refines. Multiple
ways of understanding topological resolution lead to multiple ways of defining
topological entropy.

Notice that “indistinguishability” is not an equivalence relation; the “classes”
often overlap without being equal. This makes the interpretation of a topo-
logical resolution a bit fuzzy and its usage in rigorous computations – rather
complicated.1 This difficulty has not occurred in measurable dynamics, where
“classes of indistinguishability” were simply the cells of a partition. Only
in zero-dimensional topological spaces do we have the comfort that arbitrar-
ily fine topological resolutions can be defined as partitions. Zero-dimensional
spaces provide a bridge between measure-theoretic and topological dynamics,
and we will learn later how this bridge is created.

6.1.1 The metric definition via separated orbits

This and the next section describe topological entropy in the sense of Dinaburg
and Bowen, using the metric [comp. Dinaburg, 1970; Bowen, 1971]. Let X be
endowed with a metric d. For n ∈ N, by dn we will mean the metric

dn(x, y) = max{d(T ix, T iy) : i = 0, . . . , n − 1}.

Of course d1 = d, dn+1 ≥ dn for each natural n, and, by compactness of X ,
all these metrics are pairwise uniformly equivalent.

Following the concept of distinguishability in the resolution determined by
a distance ε > 0, a set F ⊂ X is said to be (n, ε)-separated if the distances
between distinct points of F in the metric dn are at least ε:

∀x,y∈F dn(x, y) ≥ ε.

By compactness, the cardinalities of all (n, ε)-separated sets in X are finite
and bounded. By s(n, ε) we will denote the maximal cardinality of an (n, ε)-
separated set:

s(n, ε) = max{#F : F is (n, ε)-separated}.
1 The phenomenon that “indistinguishability” is not an equivalence relation leads to many

misunderstandings (and abuses) in our everyday life. A typical example is that parents do not
notice how their children grow day after day. They feel surprised when some relatives exclaim
how much they have grown! Another example: Some firms try to increase profits by lowering
the quality of their products. But they do it so gradually that the regular clients do not notice.
Casual clients do.
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It is clear that s(n, ε) (hence also the first two terms defined below) depends
decreasingly on ε. So, we can apply the general scheme:

H1(n, ε) = log s(n, ε),

h1(T, ε) = lim sup
n→∞

1
nH1(n, ε) (alternatively lim inf),

h1(T ) = lim
ε→0

↑ h1(T, ε).

We will soon explain why the choice between lim sup and lim inf is
inessential.

For the interpretation, suppose we observe the system through a device
whose resolution is determined by the distance ε. Then we can distinguish
between two n-orbits (x, Tx, . . . , Tn−1x) and (y, Ty, . . . , Tn−1y) if and only
if for at least one i ∈ {0, . . . , n − 1} the points T ix, T iy can be distinguished
(which means their distance is at least ε), i.e., when the points x, y are (n, ε)-
separated. Thus, s(n, ε) is the maximal number of pairwise distinguishable
n-orbits that exist in the system. The term h1(T, ε) is hence the rate of the
exponential growth of the number of ε-distinguishable n-orbits.

6.1.2 The metric definition via spanning orbits

Let Bn(x, ε) denote the ε-ball around x in the metric dn. We will call it the
(n, ε)-ball (around x). For n = 1 we will simply write B(x, ε). Notice that

Bn(x, ε) =
n−1⋂
i=0

T−i(B(T ix, ε)).

A set F is called (n, ε)-spanning if it intersects every (n, ε)-ball in X . Since
X is totally bounded, there exists a finite (n, ε)-spanning set in X . The number
r(n, ε) is defined as the smallest cardinality of an (n, ε)-spanning set:

r(n, ε) = min{#F : F is (n, ε)-spanning}.

The number r(n, ε) can be interpreted as the minimal number of n-orbits rep-
resenting up to indistinguishability all possible n-orbits (easy examples show
that this is not the same as s(n, ε)). Again, the dependence on ε is decreasing.
Then we follow the scheme:

H2(n, ε) = log r(n, ε),

h2(T, ε) = lim sup
n→∞

1
nH2(n, ε) (or lim inf),

h2(T ) = lim
ε→0

↑ h2(T, ε).
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6.1.3 The topological definition via covers

By a cover U we will understand an arbitrary family of open sets whose union
is X . A cover V is a refinement of another cover U, which we write as V � U,
if every element of V is contained in an element of U. Unlike for partitions, it
no longer holds that each element of U is then a union of some elements of V.
A join of two covers U∨V is defined the same way as it was done for partitions
(compare (1.2.1)):

U ∨ V = {U ∩ V : U ∈ U, V ∈ V}.

Clearly, such a join refines both U and V. A subcover of a cover U is any sub-
family V ⊂ U which is also a cover. Note that a subcover of U is its refinement,
which might be a bit counterintuitive, because we are accustomed to thinking
of a refinement (of a partition) as having larger cardinality. By compactness,
every cover has a finite subcover. For a cover U we let N(U) denote the mini-
mal cardinality of a subcover. A subcover of this cardinality will be referred to
as optimal.

Let T : X → X be a continuous transformation. By continuity of T , if
U is a cover, then T−1(U) = {T−1(U) : U ∈ U} is also a cover. The map
T−1 acting on covers preserves the relation � and that of being a subcover. In
particular, N(T−1(U)) ≤ N(U).

Like for partitions, but only for a finite set D ∈ S, we will denote

UD =
∨
i∈D

T−i(U),

and we will abbreviate U[0,n) as Un. It is easily verified that

U � V =⇒ Un � Vn. (6.1.1)

In this subsection we introduce the topological entropy in the sense of Adler,
Konheim and McAndrew [comp. Adler et al., 1965]. It relies on treating a
cover U as a topological resolution. Open covers form a directed family with
respect to the partial order �, hence can be used to index nets (see Appendix
A.1.3).

We follow the scheme:

H(U) = log N(U),

h(T,U) = lim
n

1
nH(Un),

h(T ) = lim
U

↑ h(T,U).
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The interpretation of this definition is similar to the preceding one: N(Un)
is the minimal number of n-orbits which represent up to distinguishability all
n-orbits in the system. The monotonicity of the last limit (over the net of all
covers) follows from (6.1.1) and the first observation below, while the second
limit (in n) exists by subadditivity stated in the last observation:

Fact 6.1.2 For open covers U and V, we have

U � V =⇒ N(U) ≥ N(V), (6.1.3)

N(U ∨ U) = N(U), (6.1.4)

N(U ∨ V) ≤ N(U)N(V), (6.1.5)

the sequence H(Un) is subadditive. (6.1.6)

Proof If Uo is an optimal subcover of U, then for each U ∈ Uo there exists
VU ∈ V such that U ⊂ VU . Let Vo = {VU : U ∈ Uo}. This is a subcover of V

and its cardinality is not larger than that of Uo. This proves (6.1.3). Although
the join U ∨ U usually does not equal U, it is elementary to see that it both
refines and is refined by U. Now (6.1.4) follows from (6.1.3). For (6.1.5) let Uo

be an optimal subcover of U, likewise, let Vo be an optimal subcover of V. Then
Uo ∨ Vo is a subcover of U ∨ V (perhaps not even optimal) and its cardinality
is at most the product of the cardinalities of Uo and Vo. Subadditivity is an
immediate consequence of (6.1.5) and the inequality N(T−1(U)) ≤ N(U),
noted earlier.

Remark 6.1.7 In metric spaces we can always find a sequence (Uk) of open
covers which eventually refine every cover. Replacing Uk by

∨k
i=1 Ui we can

have a sequence with the additional property Uk+1 � Uk for all k. A sequence
of covers (Uk) with both the above properties will be called refining or we will
say that the sequence (Uk) refines in X . The limit over the net of all covers
in the last definition can be replaced by the limit over a refining sequence of
covers. Still, in some situations, it will be better to use nets anyway.

6.1.4 Relations between the above notions

The fact below was observed already in [Bowen, 1971]:

Theorem 6.1.8 In metric spaces h1(T ) = h2(T ) = h(T ). In particular, the
Bowen–Dinaburg definition does not depend on the metric.

This allows us to define our main notion:

Definition 6.1.9 Topological entropy h(T ) of T is defined as the common
value h1(T ) = h2(T ) = h(T ).
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Before we proceed with the proof, we introduce two parameters related to an
open cover: diam(U) and Leb(U). The first one denotes the maximal diameter
of an element of U and we will call it simply the diameter of U. This, of course,
is bounded by the (finite) diameter of X . The second one is called the Lebesgue
number of U and it is defined as the maximal number ε such that every open
ball of radius ε is contained in an element of U. It is a standard fact in metric
topology that this number is positive.

Proof of Theorem 6.1.8 A set is (n, ε)-spanning if and only if the family of
the (n, ε)-balls around its members is a subcover of the cover U(n,ε) by all
(n, ε)-balls which, in turn, is a subcover of Un

(1,ε). By the definition of the
Lebesgue number, U(1,ε) � U whenever ε ≤ Leb(U). By (6.1.1) and (6.1.3),
we get

r(n, ε) = N(U(n,ε)) ≥ N(Un
(1,ε)) ≥ N(Un). (6.1.10)

Note that any (n, ε)-separated set F of maximal cardinality must be (n, ε)-
spanning, otherwise there would exist a point whose distances to all members
of F in the metric dn were larger than or equal to ε. The set F enhanced by
such a point would remain (n, ε)-separated, contradicting the maximality of
F . This implies that

s(n, ε) ≥ r(n, ε). (6.1.11)

Now take an open cover V with diam(V) < ε. Let F be an (n, ε)-separated set.
Then every cell of Vn contains at most one element of F . On the other hand,
any subcover of Vn covers all elements of F . Thus

N(Vn) ≥ s(n, ε).

Combining the above displayed formulae, we conclude

h(T,V) ≥ h1(T, ε) ≥ h2(T, ε) ≥ h(T,U). (6.1.12)

The proof is completed by passing to the limit over a refining sequence of
covers Uk, letting εk = Leb(Uk) and choosing a refining sequence of covers
Vk with diam(Vk) ≤ εk.

At this point we notice that the above argument works regardless of whether
we use lim sup or lim inf in either definition involving ε, i.e., that of h1(T, ε)
and that of h2(T, ε). In each case, depending on this choice, we may obtain
two slightly different values for h1(T, ε) and two different values for h2(T, ε),
but the inequalities (6.1.12) hold in any case and the differences disappear in
the last limit passage (in which ε → 0), always leading to the same value of
topological entropy.
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6.2 Properties of topological entropy

The facts stated in this section show that the behavior of topological entropy
is, in many aspects, the same as that of measure-theoretic dynamical entropy.
This concerns the behavior with respect to the factor-extension relation, prod-
uct systems and power systems. In the proofs we will use the version of the
definition which is most convenient.

A topological dynamical system (Y, S, S) is a subsystem of (X,T, S) when
Y is a closed T -invariant subset of X (meaning T (Y ) ⊂ Y or T (Y ) = Y

depending on whether S = N0 or Z, respectively) and S = T |Y .

Fact 6.2.1 If (Y, S, S) is a subsystem of (X,T, S), then h(S) ≤ h(T ).

Proof Every maximal (n, ε)-separated set in Y is (n, ε)-separated in X (and
here perhaps not maximal).

A topological dynamical system (Y, S, S) is a topological factor of (X,T, S)
if there exists a continuous and equivariant surjection π : X → Y (recall that
equivariant means π◦T = S◦π). We also call (X,T, S) a topological extension
of (Y, S, S). Two systems are topologically conjugate (we just say conjugate)
if the above π is a homeomorphism.

Fact 6.2.2 If (Y, S, S) is a topological factor of (X,T, S), then h(S) ≤ h(T ).
Conjugate systems have the same topological entropy (we say that topological
entropy is an invariant of topological conjugacy).

Proof This is obvious, since every open cover V of Y lifts against the factor
map π to an open cover U = π−1(V) of X , and the numbers N(Vn) in the
system (Y, S, S) and N(Un) in (X,T, S) coincide (by surjectivity), so that
h(S,V) = h(T,U). Now, the limit in the definition of h(T ) via covers equals
the supremum over all covers of X , including those lifted from Y , hence the
desired inequality follows. The last statement is now trivial.

By a power system we will understand the system (X,Tn), where n ∈ S is
fixed. We have the following power rule for topological entropy:

Fact 6.2.3

h(Tn) = |n|h(T ).

Proof For n = 0 the map T 0 is the identity and the statement holds trivially.
Now take n ∈ N. For an open cover U let V = Un (under the action of T ).
Then Unm (under the action of T ) equals Vm under the action of Tn. Thus,

h(Tn,V) = lim
m

1
mH(Unm) = nh(T,U).
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Since V � U it suffices to take the supremum over all covers U (i.e., over
all covers V of the form Un) to obtain the topological entropy of the power
system.

It remains to prove that for homeomorphisms h(T ) = h(T−1). We have,
for any open cover U, that Un (under the action of T−1) equals Tn(Un) (here
Un is under the action of T ). Because T is a homeomorphism, both covers
have the same smallest cardinality of a subcover. This implies that h(T,U) =
h(T−1,U). Taking the supremum over all U on both sides, we complete the
proof.

On the other hand, the following easy fact holds (compare Fact 2.4.1). The
proof is left to the reader as Exercise 6.2.

Fact 6.2.4 For any n ∈ N we have h(T,Un) = h(T,U).

Definition 6.2.5 A cover U is called a (unilateral) topological generator of
(X,T, S) if Un is a refining sequence of covers (in the sense of Remark 6.1.7).
For homeomorphisms we can also define bilateral generators; we require the
sequence U[−n,n] to refine.

It follows from Fact 6.2.4 that if a cover U is a generator of (X,T, S), then
h(T,U) = h(T ). The same easily generalizes to bilateral generators.

Definition 6.2.6 A system (X,T, S) is expansive when for any x = y ∈ X

there exists an n ∈ S with d(Tnx, Tny) ≥ M , where M > 0 is constant.

Expansiveness strongly depends upon the acting semigroup, for example the
shift map on {0, 1}Z is Z-expansive but not N0-expansive. Contrary to how it
is defined, expansiveness does not depend on the metric and is an invariant
of topological conjugacy. Every expansive system has a topological generator
(unilateral or bilateral, respectively to the meaning of expansiveness). The con-
verse implication fails, for example, the irrational rotation of the circle has a
generator without being expansive.

The last thing we examine in this section is how topological entropy behaves
as the transformation varies on a fixed space.

Fact 6.2.7 Let C(X,X) denote the set of all continuous transformations of
X endowed with the supremum metric. Fix an open cover U of X . Then the
map T �→ h(T,U) is upper semicontinuous on C(X,X). The map T �→ h(T )
is of Young class LU (see Definition A.1.23 in the Appendix A.1).

Proof Fix an n ≥ 1 and let Uo be an optimal (of the smallest possible cardi-
nality) subcover of Un (here n refers to the action of T ). Let ε be the Lebesgue
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number of Uo in the metric dn (again, n refers to the action of T ). There is a
δ > 0 such that if T ′ ∈ C(X,X) is within δ from T , then T ′i is within ε from
T i for i = 1, . . . , n − 1. Fix one such map T ′ and let U′

o be the family of sets
obtained by the same intersections as Uo, but with the action of T replaced by
the action of T ′. We claim that U′

o covers X . Indeed, take an x ∈ X . Then x

belongs to some member of Uo, say
⋂n−1

i=0 T−i(Ui) together with the (n, ε)-
ball around x. In other words, for each i = 0, . . . , n − 1 not only T ix ∈ Ui,
but also y ∈ Ui whenever d(y, T ix) < ε, in particular, y may be taken T ′ix.
This implies that x ∈

⋂n−1
i=0 T ′−i(Ui), and this set, by definition, is a member

of U′
o. So U′

o covers X . Of course, U′
o is a subcover (not necessarily optimal)

of Un where this time n refers to the action of T ′. We have proved that the
(implicit) dependence of H(Un) on the map T is upper semicontinuous. Since
h(T,U) is the infimum over n of 1

nH(Un), this function of the map T is also
upper semicontinuous. The last assertion is now obvious, since the function
T �→ h(T ) is an increasing limit of T �→ h(T,Uk), where Uk is a refining
sequence of covers.

6.3 Topological conditional and tail entropies

Copying the measure-theoretic notions, we now introduce the topological con-
ditional entropy given a cover and given a topological factor. Although the
last notion will become useful much later, we include it here in order to gather
similar ideas in one place. We begin with the appropriate static notions.

Definition 6.3.1 Let U and V be open covers of X and let F ⊂ X . We denote

H(U|F ) = log(min{#UF : UF ⊂ U, F ⊂
⋃

UF }),

the logarithm of the smallest cardinality of a subfamily of U covering F . Next
we let

H(U|F,V) = max{H(U|F ∩ V ) : V ∈ V},
H(U|V) = H(U|X,V).

The following properties are almost the same as those of the Shannon entropy
(compare (1.6.5), (1.6.6), (1.6.7), (1.6.3), (1.6.9), (1.6.10), (1.6.11) and (1.6.12)).
The set F will play a role much later. In the applications to this section the set
F will simply be X .
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Fact 6.3.2 For any covers U,U′,V,V′,W and a set F , the following hold

U � V ⇐⇒ H(V|F,U) = 0, (6.3.3)

U � V =⇒ H(U|F,W) ≥ H(V|F,W), H(U) ≥ H(V), (6.3.4)

V � W =⇒ H(U|F,V) ≤ H(U|F,W), (6.3.5)

H(U ∨ V|F,W) ≤ H(U|F,V ∨ W) + H(V|F,W), (6.3.6)

H(U ∨ V|F,W) ≤ H(U|F,W) + H(V|F,W), (6.3.7)

H(U ∨ V) ≤ H(U) + H(V), (6.3.8)

H(U ∨ U′|F,V ∨ V′) ≤ H(U|F,V) + H(U′|F,V′), (6.3.9)

H(U|F,W) ≤ H(U|F,V) + H(V|F,W), (6.3.10)

H(U ∨ V|F,V) = H(U|F,V). (6.3.11)

Proof The first three implications are easily seen directly from the definition.
We pass to (6.3.6). Let W be the element of W such that the optimized sub-
family of U∨V needed to cover F ∩W is the largest. Let VF∩W be an optimal
subfamily of V covering F ∩ W . The cardinality of VF∩W does not exceed
2H(V|F,W). For each V from this family, F ∩V ∩W can be covered by a fam-
ily of at most 2H(U|F,V∨W) elements of U. Replacing each U in this family
by U ∩ V we obtain (without increasing the cardinality) a subfamily of U ∨ V

covering F ∩ V ∩W . The union of these latter families over V has cardinality
at most 2H(U|F,V∨W)+H(V|F,W) and covers (by elements of U ∨ V) the “most
demanding set” F ∩ W , so the assertion follows.

The remaining statements are direct consequences of (6.3.6) and the mono-
tonicities (6.3.4) and (6.3.5).

Remark 6.3.12 Note that, unlike in case of Shannon entropy, the equality
H(U ∨ V) = H(U|V) + H(V) need not hold. By (6.3.6) for trivial W, one
inequality does hold, but it is not enough to prove any of the inequalities
with nontrivial W (compare Exercise 1.3). This is the reason why the proof
of (6.3.6) is different and does not use the version with trivial W.

We continue the preparations to define the topological conditional entropy.

Fact 6.3.13 The sequence H(Un|Vn) is subadditive.

Proof This follows immediately from the equality Um+n = Um∨ T−m(Un),
the analogous equality for V, (6.3.9) and the easy observation that for any
covers U,V we have H(T−1(U)|T−1(V)) ≤ H(U|V).

The above obtained subadditivity implies that the limit in the definition
below exists and equals the infimum:
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Definition 6.3.14 The topological conditional entropy of U given V is
defined as

h(T,U|V) = lim
n

1
nH(Un|Vn).

The topological conditional entropy of the system (X,T, S) given V is
defined as

h(T |V) = sup
U

h(T,U|V). (6.3.15)

The topological tail entropy of the system (X,T, S) is defined as

h∗(T ) = inf
V

h(T |V). (6.3.16)

Both the supremum in (6.3.15) and the infimum in (6.3.16) can be replaced
by monotone limits along the net of all covers or a refining sequence of covers.
It is immediate to see that

h∗(T ) ≤ h(T ),

and that h(T ) = ∞ =⇒ h∗(T ) = ∞.

Remark 6.3.17 The notion h∗(T ) is a manifestation of an essential differ-
ence between measure-theoretic dynamical conditional entropy and topologi-
cal conditional entropy. Due to the formula h(P|Q) = h(P ∨ Q) − h(Q) (for
finite partitions) an analog of h∗(T ) for the dynamical entropy is either zero
(for finite entropy systems) or infinity (otherwise). It is the failure of this for-
mula for topological conditional entropy, which makes h∗(T ) a meaningful
invariant.

Remark 6.3.18 In the older literature the topological tail entropy is called,
as the inventor M. Misiurewicz first called it, the “topological conditional
entropy” [Misiurewicz, 1976]. It is clear from the definition that this is not
a very fortunate choice of a name, as the tail entropy does not depend on any
conditioning parameter any more. Moreover, we need the term “topological
conditional entropy” in the meaning used in the book (i.e., given a cover or
given a factor). In such a meaning it stands in perfect correspondence with the
measure-theoretic conditional entropy and it is hard to imagine using a differ-
ent terminology here.

Unlike a partition in the measure-theoretic case, an open cover does not nec-
essarily lead to a topological factor. Still, we can use topological factors as the
conditioning object, as it is defined below. But first we will establish a simpli-
fication in our notation. Suppose that π : X → Y is a continuous map, and
A ⊂ Y . Then, when the choice of π is unambiguous, we will write H(U|A)
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replacing what should be formally written as H(U|π−1(A)). Similarly, for a
cover V of Y , we will write H(U|V) and h(U|V) instead of H(U|π−1(V)))
and h(U|π−1(V)).

Definition 6.3.19 Let π1 : X → Y be a topological factor map between
the systems (X,T, S) and (Y, S, S). The topological conditional entropy of U

given (Y, S, S) is defined as

h(T,U|S) = inf
V

h(T,U|V),

where V ranges over all covers of Y . Then the topological conditional entropy
of T given the factor (Y, S, S) is

h(T |S) = sup
U

h(T,U|S),

where U ranges over all covers of X . Similarly, if π2 : X → Z is a factor map
between (X,T, S) and another factor (Z,R, S), then we define the topological
conditional entropy of the factor (Z,R, S) given the factor (Y, S, S):

h(R|S) = sup
W

h(T,W|S),

where W ranges over all covers of Z.

In all cases, the above infima and suprema can be replaced by monotone
limits along the appropriate nets or refining sequences of covers.

Notice that h(T |T ) = 0 (where the factor map is the identity); supremum
and infimum are switched compared to the definition of h∗(T ).

Among the above notions most important are two: the tail entropy and the
conditional entropy given a factor. Like the (unconditional) topological entropy,
they are both subject of variational principles, which will be proved in the sub-
sequent sections. Variational principles shed a lot of light on the properties of
these notions. Meanwhile, we discuss some more elementary issues, which do
not invoke invariant measures.

When either of the two above parameters (the topological tail entropy or the
topological conditional entropy given a factor) equals zero, we are dealing with
rather distinguished situations, implying a number of further special properties
(which will be provided later). Now just the definitions:

Definition 6.3.20 The system (X,T, S) is called asymptotically h-expansive
if h∗(T ) = 0.

A trivial example of an asymptotically h-expansive system is an expansive
system (in particular a subshift, see the next chapter); any cover of diameter
smaller than the expansive constant M is a topological generator, hence the
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conditional entropy given this (and any finer) cover is zero. There is also a
notion of h-expansive systems, i.e., such that h(T |V) = 0 for some finite
open cover V. This property is weaker than expansiveness and stronger than
asymptotic h-expansiveness. It will play no essential role in this book.

Definition 6.3.21 Let π : X → Y be a factor map between the systems
(X,T, S) and (Y, S, S). We say that (Y, S, S) is a principal factor of (X,T, S),
or that (X,T, S) is a principal extension of (Y, S, S), if h(T |S) = 0.

6.4 Properties of topological conditional entropy

This section describes the most elementary relations between topological con-
ditional entropy, topological entropy and topological tail entropy. We begin
with the easiest ones. The familiar list is obtained directly from Fact 6.3.2 via
the limit passage.

Fact 6.4.1 For any covers U,V,W we have

U � V =⇒ h(T,U|W) ≥ h(T,V|W), (6.4.2)

V � W =⇒ h(T,U|V) ≤ h(T,U|W), (6.4.3)

h(T,U ∨ V|W) ≤ h(T,U|V ∨ W) + h(T,V|W), (6.4.4)

h(T,U ∨ V|W) ≤ h(T,U|W) + h(T,V|W), (6.4.5)

h(T,U|W) ≤ h(T,U|V) + h(T,V|W), (6.4.6)

h(T,U ∨ V|V) = h(T,U|V). (6.4.7)

We pass to analogous properties involving factors.

Fact 6.4.8 Let (X,T, S), (Y, S, S), (Z,R, S) be factors of some common
extension (we do not need to denote it). Then

T �→ S =⇒ h(T |R) ≥ h(S|R), (6.4.9)

S �→ R =⇒ h(T |S) ≤ h(T |R), (6.4.10)

h(T |R) ≤ h(T |S) + h(S|R), (6.4.11)

h(T ) ≤ h(T |S) + h(S), (6.4.12)

(an arrow between factors indicates that one of them is a factor of another).
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Proof Let U, V and W be some covers of X , Y and Z, respectively. Then, we
apply Fact (6.4.2), (6.4.3), (6.4.6), and refine the covers in the following order:
first W, then V, and in the end U. The last inequality is (6.4.11) for the trivial
(one-point) factor (Z,R, S).

Fact 6.4.13 Let π : X → Y be a factor map from (X,T, S) to (Y, S, S).
Then

h∗(S) ≤ h(T |S) + h∗(T ) and h∗(T ) ≤ h(T |S) + h∗(S), (6.4.14)

(or simply |h∗(T ) − h∗(S)| ≤ h(T |S) if either h∗(S) or h∗(T ) is finite).

Proof Consider four covers of X: two arbitrary covers U′ � U, and two
(lifted) covers V′ � V of Y . We assume that also U′ � V′. We have

h(T,V′|V) ≤ h(T,U′|V) ≤ h(T,U′|U) + h(T,U|V).

We disregard the middle term. Now we let these covers refine in the following
order: first U′, next V′, then V, and finally U. This yields the first inequality in
(6.4.14).

Next, instead of U′ � V′, we assume U � V and we write

h(T,U′|U) ≤ h(T,U′|V) ≤ h(T,U′|V′) + h(T,V′|V).

We can ignore the middle term, and let these covers refine, this time in another
order: first V′, next U′, then U, and finally V. This yields the last inequality in
(6.4.14).

Corollary 6.4.15 (comp. [Ledrappier, 1979]) Let π : X → Y be a principal
factor map (i.e., such that h(T |S) = 0). Then h(S) = h(T ) and h∗(S) =
h∗(T ). In other words, principal factors (or extensions) preserve topological
entropy and topological tail entropy, in particular, they preserve asymptotic
h-expansiveness. Also, the composition of principal factor maps is principal.

Remark 6.4.16 In general, the fact that (Y, S, S) is a factor of (X,T, S)
does not imply any inequality between h∗(S) and h∗(T ). In particular, a fac-
tor of an asymptotically h-expansive system need not be asymptotically h-
expansive. For instance, a non-asymptotically h-expansive system may have
a symbolic (hence asymptotically h-expansive) extension. This statement will
become clear in the chapter devoted to symbolic extensions.

6.5 Topological joinings

Definition 6.5.1 Given two topological dynamical systems, (X,T, S) and
(Y, S, S), their direct product is the dynamical system (X × Y, T × S, S),
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where T × S is defined by

(T × S)(x, y) = (Tx, Sy).

By a topological joining of (X,T, S) and (Y, S, S) we understand any subsys-
tem (a closed invariant subset) of the product system (X × Y, T × S), whose
projections on the first and second axis are surjections onto X and Y , respec-
tively.

Notice that a joining of two systems is an extension of both of them (via the
projection maps). If two systems (X,T, S) and (Y, S, S) are already factors
of some system (Z,R, S), say, by factor maps π1 and π2, then, just like in
the measure-theoretic case (see Fact 4.4.2), one of their joinings is naturally
realized (as we shall see) within the common extension:

Definition 6.5.2 With the denotation of the paragraph above, the joining of
the factors (X,T, S) and (Y, S, S) obtained as the set of pairs

{(π1(z), π2(z)) : z ∈ Z} ⊂ X × Y

with the action of the restriction of T × S, will be called the joining within
(Z,R, S) and denoted by T ∨ S.

This is a rather imperfect notation as it does not indicate the common exten-
sion. In fact the mappings π1, π2 should be indicated because a pair of systems
may “sit” in one extension in many different ways creating nonconjugate join-
ings. We will keep this notation, but we will use it exclusively when a common
extension and the pair of factor maps is clear from the context.

Fact 6.5.3 The above joining T ∨ S is a factor of (Z,R, S), and the covers
U ∨ V, where U, V range over the covers lifted from X and Y , respectively,
refine in this joining.

Proof Indeed, the assignment z �→ (π1(z), π2(z)) sends Z onto the joining.
A pair of covers U of X and V of Y lifts in the product space to the covers
{U × Y : U ∈ U} and {X × V : V ∈ V}. The join of these lifts coincides
with the product cover U⊗V = {U ×V : U ∈ U, V ∈ V}. It is clear that such
covers refine in the product space, hence also relatively in the joining.

Now we can generalize the remaining statements of Fact 6.4.1 involving
joinings. The proof is obvious by refining the covers.

Fact 6.5.4 Let (X,T, S), (Y, S, S) and (Z,R, S) be factors of a common
extension (which we do not denote). The joinings below refer to the joinings
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within this common extension. We have

h(T ∨ S|R) ≤ h(T |S ∨ R) + h(S|R), (6.5.5)

h(T ∨ S|R) ≤ h(T |R) + h(S|R), (6.5.6)

h(T ∨ S) ≤ h(T ) + h(S), (6.5.7)

h(T ∨ S|S) = h(T |S) ≤ h(T ). (6.5.8)

It is seen from (6.5.8) that if (X,T, S) has entropy zero, then its joining with
any other system is a principal extension of that system.

Topological entropy also satisfies the product rule:

Fact 6.5.9 Given two systems (X,T, S) and (Y, S, S), consider their product
(X × Y, T × S, S). Then

h(T × S) = h(T ) + h(S). (6.5.10)

Proof The inequality “≤” is (6.5.7) because the product is a joining. The
other inequality is best proved using (n, ε)-separated sets.2 In X × Y we
will use the maximum metric d((x, y), (x′, y′))= max{dX(x, x′), dY (y, y′)}.
Then any (n, ε)-separated set of maximal cardinality in X producted with any
(n, ε)-separated set of maximal cardinality in Y is an (n, ε)-separated set in
X × Y (perhaps not even maximal), thus the term log s(n, ε) for the prod-
uct action is at least the sum of the same terms evaluated for (X,T, S) and
(Y, S, S). Recall that in the definition of h1(T, ε) we can choose between
lim sup and lim inf (which produces possibly two different values of h1(T, ε),
but the difference disappears in the limit over ε defining the topological
entropy). We choose lim inf because it is superadditive: lim inf of a sum of
two sequences is larger than or equal to the sum of the corresponding lim inf’s.
The rest of the proof is obvious.

We remark that all statements of Facts 6.4.8 and 6.5.4 and the product rule
can be quickly proved using the Conditional Variational Principle (Theorem
6.8.8 below) and the properties of the measure-theoretic conditional dynamical
entropy, but the topological proofs are more direct.

We devote a few lines to countable joinings. Let (Xk, Tk, S) be a sequence of
dynamical systems. Their countable joining is any subsystem of the countable
product system, of which all coordinate projections are surjective. A special
type of a countable joining is an inverse limit.

2 The seemingly obvious equality N(U⊗ V) = N(U)N(V) is false (see Exercise 6.11).
This mistake was made (and published) by R. Bowen in his first attempt to prove the
product rule.
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Definition 6.5.11 Let (Xk, Tk, S) be a sequence of dynamical systems such
that for each k (Xk, Tk, S) is a topological factor of (Xk+1, Tk+1, S) via a map
πk. By the inverse limit of this sequence we shall mean their countable joining
(X,T, S), where

X = {(xk)k∈N : ∀k xk = πk(xk+1)}.

The inverse limit (as a dynamical system) is denoted by

(X,T, S) =
←−
lim

k
(Xk, Tk, S, πk)

(with the tendency to skip the maps πk in the denotation).

Every countable joining (X,T, S) of a sequence of systems (Xk, Tk, S)

can be represented as (is conjugate to) the inverse limit
←−
lim

k
(Yk, Sk, S, πk),

where (Yk, Sk, S) is the finite joining of (Xi, Ti, S) with i = 1, . . . , k within
(X,T, S), while πk is the projection of (Yk+1, Sk+1, S) onto the first k coor-
dinates.

Fact 6.5.12 Let (X,T, S) denote an inverse limit
←−
lim

k
(Xk, Tk, S). Then the

topological entropy of (X,T, S) equals the limit of the topological entropies:
h(T ) = lim

k
↑h(Tk).

Proof For each k let Uk,n be a refining sequence of open covers in Xk. By
lifting, these covers become a double sequence of open covers Uk,n in X .
Clearly, this double sequence refines in X . Thus

h(T ) = sup
k,n

h(T,Uk,n) = lim
k

↑ lim
n

↑ h(Tk,Uk,n) = lim
k

↑ h(Tk).

6.6 The simplex of invariant measures

This section supplies necessary information about the simplex of invariant
measures and the behavior of the Kolmogorov–Sinai entropy as a function
on this simplex. Elementary facts not related to entropy will be stated with-
out proofs. We will frequently refer to the material gathered in Appendix A.2.
We recommend that the reader becomes acquainted with that appendix before
proceeding.

If X is a compact metric space, then by M(X) we denote the set of all
Borel probability measures on X endowed with the weak-star topology. Any
measurable, bounded from at least one side, function f on X can be lifted as a
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function (admitting infinite values) on M(X) by assigning μ �→
∫

f dμ. Such
a lift maintains continuity or semicontinuity of f and is always harmonic (see
Appendices A.2.2 and A.2.3).

Now, let (X,T, S) be a topological dynamical system. Then T induces a
continuous map on M(X) by the formula Tμ(B) = μ(T−1(B)) (B is a Borel
subset of X). Also notice that if B belongs to the completed (with respect
to μ) Borel sigma-algebra, then T−1(B) belongs to the Borel sigma-algebra
completed with respect to Tμ. Indeed, B lies between two Borel sets, say A ⊂
B ⊂ C, where μ(A) = μ(C). Then T−1(B) is between the Borel sets T−1(A)
and T−1(C), which also have equal measures. From now on, whenever we say
“a Borel measure,” we always mean the measure prolonged onto the completed
Borel sigma-algebra. Although the completion depends on the measure, the
transformation T is measurable with respect to the corresponding completions
for μ and Tμ. A measure μ is called T -invariant if Tμ = μ. It is well known
that the set MT (X) of all T -invariant probability measures on X is nonempty,
compact, convex, and that ergodic measures are exactly the extreme points i.e.
the elements of exMT (X) [Kryloff and Bogoliouboff, 1937; Oxtoby, 1952].

For n ∈ N we define a continuous map Mn : M(X) → M(X) by

Mn(μ) =
1
n

n−1∑
i=0

T iμ.

Then, as can be easily verified, for any subsequence (nk) such that, for each k,
nk+1 is a multiple of nk, the sets Mnk

(M(X)) decrease and their (nonempty)
intersection is contained in MT (X). By an easy compactness argument, this
implies:

Fact 6.6.1 If U ⊃ MT (X) is an open set in M(X), then Mn(M(X)) ⊂ U

for all sufficiently large n.

The following fact is classical in topological dynamics [e.g. Walters, 1982,
§6.2] (consult also Appendix A.2.4 for a background on Choquet simplices):

Theorem 6.6.2 Let (X,T, S) be a topological dynamical system. The set
MT (X) of all T -invariant Borel probability measures on X , endowed with
the weak-star topology, is a Choquet simplex.

For μ ∈ MT (X) the formula μ =
∫

ν dξμ, where ξμ is the unique probabil-
ity distribution supported on exMT (X) and with barycenter at μ (see Appendix
A.2.4), coincides with the ergodic decomposition of μ.

Definition 6.6.3 Let (X,T, S) be a topological dynamical system. By the
entropy function we mean the function h : MT (X) → [0,∞], where h(μ)
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denotes the Kolmogorov–Sinai entropy h(μ, T ) in the measure-preserving sys-
tem (X,Aμ, μ, T, S) and Aμ stands for the (completed with respect to μ) Borel
sigma-algebra in X .

We have the following fundamental properties of the entropy function:

Fact 6.6.4 The entropy function on MT (X) is Borel-measurable and har-
monic.

Proof Measurability is obvious by the definition of the dynamical entropy,
which involves several limits applied to sums of functions of the form η(μ(A)),
where the sets A are Borel-measurable in X (although we deal with the com-
pleted Borel sigma-algebra, which depends on μ, in Definition 4.1.1 it suf-
fices to take the supremum over all genuine Borel-measurable partitions P,
and these do not depend on μ). That this function is harmonic, follows directly
from Theorem 2.6.4 and Fact A.2.15. Alternatively, it suffices to show that h is
an increasing limit of upper semicontinuous affine (hence harmonic, see Fact
A.2.10) functions. This will be proved later in Section 8.4 (Fact 8.4.5), where,
for affinity of the approximating functions, we will use Theorem 2.5.1 (which
requires much simpler tools than Theorem 2.6.4).

Often we will be interested in continuity or semicontinuity of the entropy
function (under additional assumptions on the space or on a partition). The
following lemma is the key:

Lemma 6.6.5 Fix a Borel set A ⊂ X . Then the function μ �→ μ(A) defined
on M(X) is continuous at μ if and only if μ(∂A) = 0 (the boundary of A has
measure zero).

Proof The functions μ �→ μ(A) and μ �→ μ(intA) (measures of the closure
and of the interior of A) are upper and lower semicontinuous, respectively (see
Fact A.2.7), the latter being dominated by the former. Thus

μ(A) ≥ lim sup
ν→μ

ν(A) ≥ lim sup
ν→μ

ν(A) ≥ lim inf
ν→μ

ν(A) ≥ lim inf
ν→μ

ν(intA) ≥

μ(intA).

If μ(∂A) = 0, then μ(A) = μ(intA) = μ(A), which implies equalities in the
line above. We skip the (easy) proof of the other implication, as we shall never
use it.

Fact 6.6.6 For one or even countably many measures μi (i ∈ N) there always
exist arbitrarily fine partitions P such that the boundaries of the cells have
measure zero for all measures μi.
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Proof We sketch the standard construction: Fix a point x. The boundary of
the ε-ball around x is contained in the ε-sphere, and such spheres are dis-
joint for different radii. Thus, only countably many of these balls may have
boundaries of positive measure for some μi. By compactness, we can choose
a cover of X by finitely many balls B1, B2, . . . , Bk of radii smaller than some
fixed ε and whose boundaries have measure zero for each μi. The partition
B1, B2 \B1, B3 \ (B1∪B2), . . . , Bk \ (B1∪B2∪· · ·∪Bk−1) has boundaries
as desired and is fine in the sense that the cells have diameters at most 2ε.

Lemma 6.6.7 If P is a finite Borel-measurable partition of X and μ0 satisfies
μ0(∂A) = 0 for all A ∈ P, then

(a) μ0 is a continuity point of the function μ �→ H(μ,P) defined on M(X).
(b) If π : X → Y is continuous and AY is the Borel sigma-algebra of Y

lifted to X , then μ0 is a continuity point of the function μ �→ H(μ,P|AY )
defined on M(X).

(c) If μ0 is T -invariant, then the function μ �→ h(μ, T,P) defined on MT (X)
is upper semicontinuous at μ0.

(d) If (Y, S, S) is a topological factor of (X,T, S) via a factor map π, and AY

is as above, then the function μ �→ h(μ, T,P|AY ) defined on MT (X) is
upper semicontinuous at μ0.

Proof Item (a) is an immediate consequence of Lemma 6.6.5 and continuity
of the function η(t) = −t log t on [0, 1]. For the dynamical entropy in item (c)
we must also use the fact that if μ is invariant and μ(∂A) = 0 for all A ∈ P,
then the same holds for all A ∈ Pn, for any n ∈ N. We also need to remember
that 1

nH(μ,Pn) converge decreasingly to h(μ, T,P) (and use Fact A.1.11).
We pass to proving items (b) and (d). Let ν0 denote the image of μ0 by π. By

Fact 6.6.6, there exists a refining sequence of partitions Qk of Y , all having the
boundaries of measure zero for ν0. Then the lifted partitions have boundaries
of measure zero for μ0. Thus, each of the functions μ �→ H(μ,P|Qk) (and
also μ �→ 1

nH(μ,Pn|Qk) in the case of item (d)) are continuous at μ0. With
increasing k these functions decrease to H(μ,P|AY ), in this manner shown to
be upper semicontinuous as claimed in (b). Further, the upper semicontinuous
functions 1

nH(μ,Pn|AY ) decrease with n to h(μ, T,P|AY ), hence (d) holds.

We remark that if P is a partition into sets with small boundary, i.e., with
μ(∂A) = 0 for all invariant measures, then the above lemma holds for all
μ ∈ MT (X). It is so, for example, if P is a partition into clopen sets (i.e., sets
with empty boundary). The existence of arbitrary fine partitions with small
boundaries is called the small boundary property. Not every dynamical system
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admits such partitions, for instance, the identity map on the interval does not.
The reader will find sufficient conditions in the work of Elon Lindenstrauss
[Lindenstrauss, 1999].

At the end we recall the important fact that, if (Y, S, S) is a topological factor
of (X,T, S) via a factor map π, then the dual map π on invariant measures is
a surjection from MT (X) onto MS(Y ).

6.7 Topological fiber entropy

Topological fiber entropy is a notion intermediate between measure-theoretic
fiber entropy and topological conditional entropy given a factor. It will be use-
ful as a tool in proving the variational principles in the next sections. It has
special meaning also in the discussion of the zero-dimensional case and in the
theory of symbolic extensions.

Let π : X → Y be a topological factor map from (X,T, S) onto (Y, S, S).

Definition 6.7.1 For a cover U of X and a point y ∈ Y we define successively

1. H(U|y) = H(U|{y}) (by convention H(U|π−1(y)), see Definition 6.3.1),
2. h(T,U|y) = lim supn→∞

1
nH(Un|y),

3. h(T |y) = supU h(T,U|y).

For a (not necessarily S-invariant) measure ν ∈ M(Y ) on Y , we let

4. H(U|ν) =
∫

H(U|y) dν(y),
5. h(T,U|ν) = infn

1
nH(Un|ν),

6. h(T |ν) = supU h(T,U|ν).

The terms defined in items 2 and 5 above are called the topological fiber
entropy of U given the point y and given the measure ν, respectively. The
terms defined in items 3 and 6 are called the topological fiber entropy (of T )
given y and given ν.

Since the partition of X into the fibers is upper semicontinuous (see Fact
A.1.4), it is not hard to see that the function y �→ H(U|y) is upper semicon-
tinuous on Y . This implies that also the functions ν �→ H(U|ν) and ν �→
h(T,U|ν) are upper semicontinuous on the set M(Y ). Clearly, all four notions
involving the cover U defined above increase when the cover refines (while y

or ν are fixed). Since S−1(Sy) � y, we easily verify that

H(T−1(U)|y) ≤ H(U|Sy). (6.7.2)
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We will prove the following:

Fact 6.7.3 For any cover U the sequence of functions (H(Un|·))n defined on
Y is a subadditive cocycle (see Definition 2.1.3).

Proof We note that Um+n = Um ∨ T−m(Un), then we apply (6.3.7) (for
A = {y} and trivial W), and finally the inequality (6.7.2).

Note that 0 ≤ H(U|y) ≤ a, where a = H(U). Thus, we can apply the Sub-
additive Ergodic Theorem 2.1.4 (together with the preceding remark), which
leads to the following:

Corollary 6.7.4

(a) If ν is invariant under S, then the sequence H(Un|ν) is subadditive, so the
infn in Definition 6.7.1 item 5 is in fact the limit.

(b) For an ergodic ν (i.e., ν ∈ exMS(Y )), the lim supn in Definition 6.7.1
item 2 is ν-almost surely the limit and it equals h(T,U|ν).

(c) Now, applying the ergodic decomposition to any ν ∈ MS(Y ), we obtain
that for ν-almost every y, in Definition 6.7.1 item 2 convergence holds.
Further, by the dominated convergence theorem, we get

h(T,U|ν) =
∫

h(T,U|y)dν (only for ν ∈ MS(Y )). (6.7.5)

In particular, h(T,U|·) is a harmonic function on MS(Y ) (see Fact A.2.15).
(d) The suprema in Definition 6.7.1 items 3 and 6 can be realized as monotone

limits over a fixed refining sequence of covers, thus the functions h(T |·)
are Borel-measurable both on Y and on M(Y ), and

h(T |ν) =
∫

h(T |y)dν,

for any ν ∈ MS(Y ) (thus the function ν �→ h(T |ν) is harmonic on
MS(Y )), and

h(T |y) = h(T |ν) (6.7.6)

ν-almost surely, for an ergodic measure ν ∈ MS(Y ).

We remark that although H(U|y) = H(U|δy) for any y ∈ Y (here δy

means the measure concentrated at y), we must not confuse h(T,U|y) with
h(T,U|δy) where the latter may be smaller.

It follows from Corollary 6.7.4 item (d) and Exercise 6.8 that if U is a topo-
logical generator, then it realizes the suprema in Definition 6.7.1 items 3 and
6. In particular, the function ν �→ h(T |ν) is then upper semicontinuous on
MS(Y ).
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We prove the fact below:

Fact 6.7.7 If ν ∈ MS(Y ), then h(T, T−1(U)|ν) = h(T,U|ν).

Proof Indeed, we have, by (6.7.2) and (6.3.7),

H(T−1(Un)|y) ≤ H(Un|Sy) = H(U ∨ T−1(Un−1)|Sy) ≤
H(U|Sy) + H(T−1(Un−1)|Sy).

Integrating with respect to the invariant measure ν on Y , dividing by n and
letting n → ∞, we verify the assertion.

6.8 The major Variational Principles

Variational principles equate topological notions of entropy with maxima of
the corresponding entropy functions defined (usually) on the simplex of in-
variant measures. There are nearly as many variational principles as there are
entropy notions, including those not discussed in this book, such as pressure.
This section covers four major variational principles: the “usual” Variational
Principle and the Inner, Outer and Conditional Variational Principles. Only
the Outer and Inner Variational Principles need proofs, the other two are their
immediate consequences. For an elegant direct proof of the “usual” Varia-
tional Principle, we refer the reader to Petersen’s book [Petersen, 1983] (the
proof is due to Misiurewicz). In Chapter 7 we will give another, much sim-
pler and probably not existing in the literature, proof of the Variational Prin-
ciple for zero-dimensional systems. Let us remark that the Inner Variational
Principle has been first proved (in a more general version involving pressure)
by François Ledrappier and Peter Walters [Ledrappier and Walters, 1977]. In
[Downarowicz and Serafin, 2002] the reader will find a version valid just for
entropy but also in nonmetrizable spaces, as well as the Outer Variational
Principle.

In Chapter 8 we shall also prove the Tail Entropy Variational Principle, but
prior to that we need to introduce several notions related to the entropy struc-
ture. In Chapter 9, we will also prove a variational principle for the topological
symbolic extension entropy. Finally in Part III the reader will find one direction
of the variational principle for Markov operators.

Theorem 6.8.1 (The Variational Principle) Let (X,T, S) be a topological
dynamical system. Then

h(T ) = sup{h(μ, T ) : μ ∈ MT (X)} = sup{h(μ, T ) : μ ∈ exMT (X)}.

Proof This is a particular case of the Inner Variational Principle (Theorem
6.8.4 below) for (Y, S, S) being the trivial (one-point) factor.
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Before we pass to the Outer Variational Principle we introduce an alternative
formula for the topological conditional entropy, involving the fibers.

Lemma 6.8.2 Let π : X → Y be factor map from (X,T, S) onto (Y, S, S).
Let U be an open cover of X . Then there exists an open cover V of Y such that
for each V ∈ V there is some y ∈ V with

H(U|V ) = H(U|y).

As a consequence,

h(T |S) = sup
U

inf
n

sup
y∈Y

1
nH(Un|y).

Proof It is clear that regardless of the choice of the cover V, one has
H(U|V ) ≥ H(U|y), whenever y ∈ V ∈ V. Now, fix some y ∈ Y and pick an
optimal (i.e., of smallest cardinality) family Uy ⊂ U covering π−1(y). The set⋃

Uy is open, hence, by Fact A.1.4, Uy covers the preimage by π of an open
set, say Vy , containing y. The cover V of Y by the sets Vy (y ∈ Y ) so obtained
satisfies the first assertion.

We pass to proving the second assertion. For a fixed cover U and a natural
n, the first assertion implies that

sup
y∈Y

1
nH(Un|y) = inf

V

1
nH(Un|V)

(we have proved the inequality “≥”, while “≤” is obvious for covers V of Y ).
Since Vn � V, the right-hand side does not increase if V is replaced by Vn. On
the other hand, such a substitution corresponds to taking the infimum over a
smaller set of covers (only the “nth powers” of covers), thus it cannot decrease
its value. Thus, we can write

inf
n

sup
y∈Y

1
nH(Un|y) = inf

n
inf
V

1
nH(Un|Vn).

Exchanging the infima on the right leads to

inf
n

sup
y∈Y

1
nH(Un|y) = inf

V
h(T,U|V) = h(T,U|S).

We can now apply the supremum over U on both sides, and we are done.

Theorem 6.8.3 (The Outer Variational Principle) Let π : X → Y be a factor
map from (X,T, S) onto (Y, S, S). Then

h(T |S) = sup
y∈Y

h(T |y) = sup
ν∈MS(Y )

h(T |ν) = sup
ν∈exMS(Y )

h(T |ν).
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Proof This proof relies largely on exchanging suprema and infima. For the
first inequality “≥,” by Lemma 6.8.2 and Definition 6.7.1, we need to show

sup
U

inf
n

sup
y

1
nH(Un|y) ≥ sup

y
sup
U

lim sup
n→∞

1
nH(Un|y).

By Fact 6.7.3, the sequence supy H(Un|y) is subadditive thus the infimum on
the left-hand side is in fact a limit, hence also lim sup. Thus the inequality
follows trivially by moving the supremum over y to the left (see Appendix
A.1.5).

The next inequality “≥” is also elementary: by (6.7.5), the inequality

sup
y

h(T,U|y) ≥ sup
ν

h(T,U|ν)

holds for every cover U, so we can apply supU on both sides, and then exchange
the order of suprema.

Next, we show that supν h(T |ν) ≥ h(T |S), i.e. that

sup
ν

sup
U

h(T,U|ν) ≥ sup
U

inf
n

sup
y

1
nH(Un|y),

with the first supremum taken over all invariant measures on Y . Since we can
exchange the suprema on the left-hand side, it suffices to show that, for a fixed
cover U,

sup
ν

h(T,U|ν) ≥ inf
n

sup
y

1
nH(Un|y).

Denote the right-hand side of the last inequality by C and suppose that the left-
hand side is smaller than C minus some ε. Recall (see item (a) in Corollary
6.7.4) that on the compact set MS(Y ) the function ν �→ h(T,U|ν) is realized
as lim

n

1
nH(Un|ν), where the sequence H(Un|ν) is subadditive. Thus, this limit

is decreasing along a subsequence indexed by (nk) with each nk+1 being a
multiple of nk. Since each H(Un|·) is an upper semicontinuous function, we
conclude that

1
nH(Un|ν) < C − ε,

for some positive integer n and all invariant measures ν (see Fact A.1.14). Fur-
ther, by upper semicontinuity of H(Un|·) on the set M(Y ) of all probability
measures, the same holds on some neighborhood U of MS(Y ). Thus, for suf-
ficiently large numbers m, the above inequality is valid for all measures of the
form

ν = Mm(δy) =
1
m

m−1∑
i=0

δSiy,
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for all y ∈ Y (see Fact 6.6.1). We can choose m so large that 2na/m ≤ ε/2,
where a = H(U) bounds the first function y �→ H(U|y) in the subadditive
cocycle (H(Un|y))n (see Fact 6.7.3). The inequality (2.1.7) reads

H(Um+n|y) ≤ 1
n

m−1∑
i=0

H(Un|Siy) + 2na.

The sum on the right equals mH(Un|Mm(δy)), so, dividing the above inequal-
ity by m, we get

1
m+nH(Um+n|y) ≤ 1

mH(Um+n|y) ≤ 1
nH(Un|Mm(δy)) + ε

2 ≤ C − ε
2 ,

for any y, that is, we can apply supy on the left-hand side. But by definition,
C ≤ supy

1
m+nH(Um+n|y), a contradiction.

That the supremum over all ergodic measures is not too small (it is obviously
not too large) follows immediately from the harmonic property of the function
ν �→ h(T |ν) on MS(Y ) (see (6.7.5)). This proves the last equality in the
assertion of the theorem.

Theorem 6.8.4 (The Inner Variational Principle) Let π : X → Y be a
topological factor map between topological dynamical systems (X,T, S) and
(Y, S, S). For every ν ∈ MS(Y ) we have

h(T |ν) = sup{h(μ, T |ν, S) : μ ∈ MT (X), π(μ) = ν}.

Proof Since the functions μ �→ h(T |πμ) and μ �→ h(μ|πμ) are harmonic on
MT (X), it suffices to prove the inequality “≥” for ergodic μ and ν = πμ. We
will show that h(T |ν) ≥ h(μ|ν) − ε, i.e., (by Definition 6.7.1 items 5 and 6,
Corollary 6.7.4 item (a), and Definitions 4.1.5, 2.3.3 and 1.4.5), that

sup
U

lim
n

1
n

∫
H(Un|y)dν ≥ sup

P
lim
n

1
n

inf
Q

H(μ,Pn|Q) − ε,

where Q and P range over all Borel measurable partitions of Y (lifted to X)
and over all Borel measurable partitions of X , respectively. We do so by con-
structing, for each partition P of X , a cover U such that for every sufficiently
large n there exists a partition Q of Y satisfying∫

H(Un|y) dν ≥ H(μ,Pn|Q) − nε. (6.8.5)

Let P = {A1, . . . , Al}. By regularity of μ, we can enlarge each set Aj to
an open set Uj so that μ(G) < δ, where G denotes

⋃l
j=1(Uj \ Aj) and δ > 0
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will be specified later. We let U be the cover by the sets Uj . By the Ergodic
Theorem, the sets

Xn = {x : 1
n#{i ∈ [0, n − 1] : T ix ∈ G} < δ}

have measures tending to 1, so for n large enough, μ(Xn) > 1 − δ. We fix an
n with this property. The partition Q of Y is obtained as follows: for each y we
fix an optimal family Uy ⊂ Un covering π−1(y). Since U is finite, there are
finitely many choices of these families. In this manner we classify the points
y into finitely many disjoint sets Q (this defines the partition Q), such that
H(U|y) = H(U|Qy), where Qy is determined by the inclusions y ∈ Qy ∈ Q.
It remains to verify (6.8.5).

For an open cover U and a point x a U-name of length n of x is any sequence
U0, . . . , Un−1 of elements of U such that x ∈

⋂n−1
i=0 T−i(Ui). Unlike for parti-

tions, each point may admit multiple U-names. The value H(Un|V ) (V ⊂ X)
is the logarithm of the minimal number of U-names of length n sufficing to
“call” all elements of V . We are going to compare H(Un|π−1(Qy) ∩ Xn)
with an analogous value, denoted by H(Pn|π−1(Qy) ∩ Xn), the logarithm of
the number of the P-names of length n appearing in the same set. A U-name of
a point x translates to its P-name (by replacing the symbols Uj by Aj) except
at the coordinates n for which Tnx ∈ G. Because each point of Xn has an
established frequency (not exceeding δ) of the visits in G in time [0, n − 1],
each U-name of length n appearing in Xn splits into at most

(
n
δn

)
· lδn dif-

ferent P-names of length n appearing in Xn (the former factor represents the
number of possible distributions of the visits in G during the time, the latter
is the number of possible configurations of P-symbols at the corresponding
positions). We can thus write:

H(Pn|π−1(Qy) ∩ Xn) ≤ H(Un|π−1(Qy) ∩ Xn) + nH(δ, 1 − δ) + nδ log l.

Further, by the elementary estimate of the static entropy of a partition by the
logarithm of the cardinality of this partition, we have

H(Pn|π−1(Qy) ∩ Xn) ≥ Hπ−1(Qy)∩Xn
(Pn),

where, by convention, the right-hand side is the entropy with respect to the
conditional measure induced by μ on the set appearing in the subscript. This,
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combined with other obvious passages, yields the following calculation:∫
H(Un|y) dν =∫

H(Un|π−1(Qy)) dν ≥
∫

H(Un|π−1(Qy) ∩ Xn) dν ≥∫
Hπ−1(Qy)∩Xn

(Pn) dν − n(H(δ, 1 − δ) + δ log l).

For an appropriate δ the error term does not exceed nε/2. We continue to
estimate the last integral:∫

Hπ−1(Qy)∩Xn
(Pn) dν =

∑
Q∈Q

μ(π−1(Q))Hπ−1(Q)∩Xn
(Pn) ≥

∑
Q∈Q

μ(π−1(Q) ∩ Xn)Hπ−1(Q)∩Xn
(Pn) + μ(Xc

n)HXc
n
(Pn) − δn log l ≥

H(μ,Pn|Q ∨ R) − nδ log l ≥ H(μ,Pn|Q) − H(μ,R) − nδ log l,

where the partition R = {Xn,Xc
n} has entropy at most H(δ, 1 − δ), which,

together with the last error term, is smaller than nε/2. The proof of the “easy”
part of the Inner Variational Principle is completed.

The proof of the other inequality follows the standard line: we will con-
struct an invariant measure μ on X lifting the given measure ν on Y , such
that h(μ|ν) ≥ h(T |ν) − ε. This measure will be obtained as a weak-star
limit of certain atomic measures concentrated on (n, δ)-separated sets con-
tained in the fibers. At some point we will need subadditivity of the cocycle
(μ, n) �→ H(μ,Pn|B) on the space M(X) of all probability measures on X ,
where B is any subinvariant sigma-algebra. We prove it now. We have

H(μ,Pm+n|B) ≤ H(μ,Pm|B) + H(μ, T−m(Pn)|B) ≤
H(μ,Pm|B)+H(μ, T−m(Pn)|T−m(B)) = H(μ,Pm|B)+H(Tmμ,Pn|B),

which is exactly the subadditivity condition for this cocycle, as defined in
(2.1.3).

Notice that the function ν �→ f(ν) = sup{h(μ|ν) : πμ = ν} is suphar-
monic, i.e., its value at a measure ν cannot be smaller than the corresponding
average with respect to the ergodic decomposition. Indeed, if

∫
νω dξν(ω) is

the ergodic decomposition of ν (νω are the ergodic measures on Y parametrized
by ω ∈ Ω) and, for each parameter ω, μω is a lift of νω with h(μω|νω) ≥
f(νω) − ε, then μ =

∫
μω dξν(ω) is a lift of ν, and its conditional entropy

is at least
∫

f(νω) dξν(ω) − ε. So, f(ν) cannot be smaller than this average.
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Having verified this, recall that ν �→ h(T |ν) is harmonic (see Corollary 6.7.4
item (d)), hence it suffices to prove the inequality f(ν) ≥ h(T |ν) for ergodic
ν only. We fix some ergodic ν now and we fix an ε > 0. We choose an open
cover U of X so that h(T,U|ν) > h(T |ν) − ε. We let δ = Leb(U).

It is known that for ν-almost every y ∈ Y the measures

νm,y =
1
m

m−1∑
i=0

δSiy

converge weakly-star to ν. We also know (see Corollary 6.7.4 item (b)) that
for ν-almost every y, 1

mH(Um|y) converges to h(T,U|ν). We fix some y

with both of the above properties. For each m let Em
y be the maximal (m, δ)-

separated set in π−1(y), and let μm
y be the atomic probability measure equally

distributed over Em
y . We now define the measure μ as a weak-star accumula-

tion point of the sequence

μm,y =
1
m

m−1∑
i=0

T i(μm
y ).

Clearly, by being a limit of longer and longer averages along orbits of mea-
sures, μ is T -invariant. Since every μm

y projects by π to δy , μm,y projects to
νm,y and, by continuity of π on measures, μ projects to ν. It remains to com-
pare the conditional entropy of μ given the sigma-algebra lifted from Y with
h(T |ν).

Because δ = Leb(U), we can apply (6.1.10) and (6.1.11) restricted to the
fiber π−1(y), which yield

1
m log #Em

y ≥ 1
mH(Um|y).

The right-hand side converges to h(T,U|ν), so, for large m, it is larger than
h(T |ν) − ε. We choose a finite partition P of X satisfying two conditions:
diam(P) < δ and μ(∂A) = 0 for each element A ∈ P. Such partitions exist,
by elementary facts in measure theory (see Fact 6.6.6). Notice that, since the
diameter of P is smaller than δ, every cell of Pm+i (for any i ≥ 0) contains at
most one element of any (m, δ)-separated set, in particular, of Em

y . Thus, with
regard to μm

y , the partition Pm+i has #Em
y nonzero cells of equal measures,

so that
1
mH(μm

y ,Pm+i) = 1
m log #Em

y > h(T |ν) − ε.

Hence, for every i ≥ 0,

1
mH(μm

y ,P[i,m+i−1]) ≥ 1
mH(μm

y ,Pm+i) − 1
mH(μm

y ,Pi) >

h(T |ν) − ε − i
m log #P.
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The term on the left equals 1
mH(T iμm

y ,Pm) and, since the measure is sup-
ported by one fiber (precisely, by π−1(Siy)), it equals 1

mH(T iμm
y ,Pm|AY ),

where AY stands for the Borel sigma-algebra of Y lifted to X . We have proved
that

1
mH(T iμm

y ,Pm|AY ) ≥ h(T |ν) − ε − i
m log #P. (6.8.6)

Averaging (6.8.6) over i = 0, . . . , n − 1 we get

1
mn

n−1∑
i=0

H(T iμm
y ,Pm|AY ) ≥ h(T |ν) − ε − n

m log #P. (6.8.7)

We now invoke the subadditivity of the cocycle H(·,Pm|AY ) on the space
M(X) of all probability measures on X . The formula (2.1.6) yields that the
left-hand side in the last formula is dominated by

1
mn

m−1∑
i=0

H(T iμm
y ,Pn|AY ) + n

m log #P.

By concavity of the conditional static entropy (see (1.4.8)), the above average
is dominated by 1

nH(μm,y,Pn|AY ). Plugging this into (6.8.7), we obtain

1
nH(μm,y,Pn|AY ) ≥ h(T |ν) − ε − 2n

m log #P.

Now we let m grow along the subsequence for which the measures μm,y con-
verge to μ, while n remains fixed. Because μ is T -invariant and P has bound-
aries of measure zero, so does Pn. This implies that the function H(·,Pn|AY )
is continuous at μ (see Lemma 6.6.7) and yields

1
nH(μ,Pn|AY ) ≥ h(T |ν) − ε.

Finally we can pass with n to infinity:

h(μ, T,P|AY ) ≥ h(T |ν) − ε.

The left-hand side is not smaller than h(μ|AY ), which is another notation for
h(μ|ν). The proof is now complete.

Combining the Inner and Outer Variational Principles, we immediately
deduce:

Theorem 6.8.8 (The Conditional Variational Principle) Let π : X → Y be a
topological factor map between topological dynamical systems (X,T, S) and
(Y, S, S). Then

h(T |S) = sup{h(μ|ν) : μ ∈ MT (X), ν = πμ}
(
= sup

μ∈MT (X)

h(μ, T |AY )
)
.
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Note that Fact 6.4.8, proved earlier without using measures, now appears as
a consequence of the mere fact that the supremum of the sum of two functions
does not exceed the sum of their suprema. We can draw numerous similar easy
consequences of the variational principles, see Exercises 6.9 through 6.12.

An important consequence concerns the principal factors (extensions):

Corollary 6.8.9 A factor map π : X → Y is principal if and only if

h(μ|πμ) = 0, for every μ ∈ MT (X).

In case (Y, S, S) has finite topological entropy, this is equivalent to

h(μ) = h(πμ), for every μ ∈ MT (X).

Finally, we can easily deduce preservation of topological entropy by the
topological natural extension. Natural extensions have been introduced in Part
I in the measure-theoretic context. The same construction works also in the
topological context, however there is a subtlety concerning surjectivity:

Definition 6.8.10 Let (X,T, N0) be a topological dynamical system with T

surjective. By the topological natural extension we will mean the N0-action of
the shift map T ′ on the space X ′ ⊂ XZ (equipped with the product topology)
defined by the rule (xn)n∈Z ∈ X ′ ⇐⇒ ∀n xn+1 = Txn. Notice that T ′ is
a homeomorphism and (X ′, T ′, N0) factors onto (X,T, N0) via the projection
onto the coordinate zero.

In case T is not surjective, such a “perfect” natural extension need not exist.
We must choose between either admitting T ′ to be not necessarily surjective
or X ′ to factor not precisely onto X . We prefer the first option. And so, we
first enlarge the space X (to some X1) and prolong3 T to the enlarged space in
such a manner that it becomes surjective. For example, X1 can be the one-point
compactification of X × N0 with T1 defined by the rule

T1(x, n) =

{
(x, n − 1); n ≥ 1

(Tx, 1); n = 0
,

and with the point at infinity being fixed. Such T1 is clearly surjective, and
the subsystem on X ×{0} is conjugate to (X,T, S). Next we apply the natural
extension to this enlarged surjective system X1: we obtain a space X ′

1, a home-
omorphism T ′

1 and a factor map from X ′
1 onto X1. Finally X ′ is defined as the

preimage of X in this factor map. The transformation T ′ is the restriction of
T ′

1 to X ′ (which is forward invariant).

3 We prefer not to use the word “extend,” as it is associated with “extensions.”
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Definition 6.8.11 We call (X ′, T ′, N0) the natural extension of (X,T, N0).
Notice that T ′ is always injective, but not necessarily surjective.

We skip the proof of the fact that in either case (of T surjective and not sur-
jective), each invariant measure μ ∈ MT (X) lifts to a unique measure μ′ ∈
MT ′(X ′) and that the measure-theoretic system (X ′,Aμ′ , μ′, T ′, N0) is the
natural extension (in the sense defined in Definition 4.3.1) of (X,Aμ, μ, T, N0).
By Fact 4.3.2, we can see that the natural extension preserves the entropy of
each invariant measure, moreover, the relevant conditional entropy is zero.
This, combined with Corollary 6.8.9, gives the following conclusion:

Fact 6.8.12 The topological natural extension is principal.

6.9 Determinism in topological systems

In ergodic theory deterministic systems (with entropy zero) have many equiv-
alent characterizations which can be easily deduced from the definition of
Kolmogorov–Sinai entropy (Definition 4.1.1), the Krieger Generator Theorem
4.2.3, Fact 2.3.12 and Theorem 4.2.9:

1. The Kolmogorov–Sinai entropy of (X,A, μ, T, S) is zero.

2. The sigma-algebra A equals the Pinsker sigma-algebra Πμ (recall Defini-
tion 4.2.6 and Section 3.2: Πμ =

∨
P ΠP, ΠP =

⋂
n≥0 P[n,∞)).

3. The system occurs as factor of another system (extension), so that the (lifted)
sigma-algebra A is contained in the Pinsker sigma-algebra of the extension.

4. The system occurs as factor of a process over a finite partition P, and the
(lifted) sigma-algebra A is contained in the Pinsker sigma-algebra ΠP of
the extending process.

5. Every subinvariant sub-sigma-algebra of A is invariant (i.e., the transforma-
tion in every factor of the forward action (X,A, μ, T, N0) is invertible).

There have been several attempts to create topological analogs of determin-
ism and of the notion of the Pinsker factor. Depending on which one is treated
as the starting point one obtains five classes of topological systems, analogs
of determinism. We will prove that four out of five “determinism” conditions
are mutually equivalent, providing three new characterizations of systems with
topological entropy zero. Similarly, we will define four topological analogs of
the Pinsker factor, this time however all four will turn out essentially different.
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6.9.1 Topological analogs of determinism

The most obvious analog of a measure-theoretic deterministic system is a topo-
logical dynamical system with topological entropy zero. We denote the corre-
sponding class by TEZ. It is obviously closed under taking factors.

Following Kaminski, Siemaszko and Szymanski [Kamiński et al., 2003], we
call a system (X,T, S) topologically deterministic when in all factors (Y, S, N0)
of the system (X,T, N0), S is a homeomorphism. The same authors showed
that topologically deterministic systems had entropy zero. We will denote this
class by TD. By definition, it is closed under taking factors. It can be con-
sidered the topological analog of the measure-theoretic class of deterministic
systems defined via the last characterization (item 5 in the introduction to this
section). Not all systems with topological entropy zero are topologically deter-
ministic; for instance, there are noninvertible zero-entropy systems. In other
words, we have the proper inclusion

TD ⊂ TEZ.

Before we introduce the next class of systems (and factors) we recall an
elementary definition from topological dynamics:

Definition 6.9.1 A pair of distinct points x, y in a topological dynamical
system (X,T, S) is (forward) asymptotic if

lim sup
n→∞

d(Tnx, Tny) = 0.

Suppose we want to mimic the notion of the Pinsker sigma-algebra from
ergodic theory. For a process generated by a finite partition P, this sigma-
algebra equals ΠP =

⋂
n≥1 P[n,∞). If a function f on X is ΠP-measurable,

then its value f(x) at x = (x(n))n∈S is (almost surely) determined by the
unilateral sequence x[n,∞) starting at any positive n.

In topological dynamics an analog of a process over a finite partition is a
subshift over a finite alphabet Λ (see Definition 7.1.1 in the next chapter for
details). The following definition attempts to copy the measure-theoretic con-
cept of measurability (of a factor of a process generated by a finite partition
P) with respect to the Pinsker sigma-algebra ΠP: the image of each point x

via the topological factor map should be determined by the unilateral sequence
x[n,∞) starting at any positive n.

Definition 6.9.2 Let (X,T, S) be a subshift. A topological factor (Y, S, S) of
(X,T, S) (with a factoring map π : X → Y ) is Pinsker-like if

∀n∈N ∀x,x′∈X x[n,∞) = x′[n,∞) =⇒ πx = πx′.

In other words, π collapses asymptotic pairs.
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The last phrasing of this condition can be applied not only to subshifts: fac-
tors that collapse asymptotic pairs can be considered in any topological dy-
namical systems. They will also be called Pinsker-like factors. There seems to
be an essential difference between Pinsker-like factor maps applied to subshifts
and to arbitrary systems. A pair x, x′ in a subshift is asymptotic whenever it is
“ε-asymptotic,” i.e, when lim supn d(Tnx, Tnx′) < ε for a sufficiently small
epsilon. In general, asymptoticity cannot be weakened this way. The require-
ment that a factor map collapses all asymptotic pairs is stronger for subshifts
than for general systems, because it means that all “ε-asymptotic” pairs are
already collapsed. So, we will distinguish between two seemingly different
classes of topological systems, as defined below, by analogy to the characteri-
zations 4 and 3 of measure-theoretic determinism listed in the introduction to
this section:

Definition 6.9.3 We will call a topological dynamical system (X,T, S)
(strongly) Pinsker-like if there exists a subshift, such that (X,T, S) is its
Pinsker-like factor. A system (X,T, S) is weakly Pinsker-like if it occurs as
a Pinsker-like factor of another topological dynamical system (not necessarily
a subshift).

The classes PL of Pinsker-like and WPL of weakly Pinsker-like systems are
both closed under taking factors, which follows from the completely trivial
observation below:

Lemma 6.9.4 Let π be a topological factor map (between two topological
dynamical systems) which is a composition of several factor maps, at least one
of which is Pinsker-like. Then π is Pinsker-like.

Proof Just observe that any factor map sends an asymptotic pair either to an
asymptotic pair or collapses it.

We will now introduce yet another class of systems, defined by analogy to
the second characterization of measure-theoretic determinism (item 2 in the
introduction to this section). A measure-theoretic system is deterministic if it
is its own Pinsker factor (via the identity map). In our analogy, this would mean
that a topological system should be its own Pinsker-like factor via identity, i.e.,
that identity collapses asymptotic pairs. This is possible only in systems which
simply do not have (distinct) asymptotic pairs, leading to the following class:

Definition 6.9.5 A topological dynamical system (X,T, S) is called NAP

(no asymptotic pairs) if it has no asymptotic pairs.
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The class of NAP systems is not closed under taking factors. There is a
quite complicated example in [Blanchard et al., 2002]. Also, from the results
given below, it follows that any nonperiodic subshift of entropy zero has a NAP

extension, while nonperiodic subshifts are never NAP (this last elementary fact
goes back to [Bryant and Walters, 1969]). Below we give a very simple explicit
example:

Example 6.9.6 There exists a NAP-system (X, T, Z) admitting a nontrivial
factor (Y, S, Z) with all distinct pairs in Y asymptotic. We begin by describing the
factor system. We let (Y, S, Z) be the one-point compactification of the integers
with the map n �→ n + 1 (and ∞ �→ ∞). It is obvious that all distinct pairs in
this system are asymptotic. The extension (X, T, Z) is a subsystem of the product
space Y ×T, where T is the circle treated as the additive group [0, 1) with addition
modulo 1. On this space we introduce the following action: we fix an irrational
number � ∈ (0, 1) and we define T by the formula

T (n, t) = (n + 1, t + � + 1
n
) (for n = 0 we simply skip 1

n
),

and on the invariant circle {∞}×T we apply the irrational rotation by �. We restrict
the system to this invariant circle and the two-sided orbit of the point x0 = (0, 0).
It is easy to see that we obtain a closed invariant set X on which T is a homeomor-
phism, extending (Y, S, Z). It remains to show that there are no asymptotic pairs
in X .

If a pair x, x′ consists of two points from the invariant circle, then the distance
between T nx and T nx′ does not depend on n, and such a pair is not asymptotic.
If x belongs to the circle and x′ is on the single orbit outside the circle, then the
projection of T nx′ onto the circle rotates by the varying angle � + 1/n (while x
rotates by the constant angle �). The differences 1/n decrease to zero, but form
a divergent series, so it is easy to see that this pair of points is not asymptotic
either. Finally consider a pair x, x′ where both points are outside the invariant circle.
Then x = T mx0, x′ = T m+kx0, for some m ∈ Z and a positive integer k. The
projections of the points T nx = T m+nx0 and T nx′ = T m+n+kx0 onto the circle
differ by

k� + 1
m+n

+ 1
m+n+1

+ · · · + 1
m+n+k−1

.

The finite sum of the harmonic series visible in the above formula decreases to zero
as n grows, hence the distance between such pair converges to k� (mod 1). Because
� is irrational, for any k this limit is positive. So such a pair is not asymptotic either.

Since the class of NAP systems is not closed under taking factors (which
makes it a poor analog of the measure-theoretic class of deterministic systems),
it is reasonable to enlarge the class by admitting all factors of NAP systems.
So enlarged class, denoted FNAP, is going to be our last topological analog of
determinism, corresponding to property 2 in the introduction.

The inclusion FNAP ⊂ WPL is obvious: a factor of a NAP system is its
factor via a map that collapses all asymptotic pairs (because there are none).
The inclusion PL ⊂ WPL is trivial.
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The inclusion WPL ⊂ TEZ has been proved in [Blanchard et al., 2002]:

Theorem 6.9.7 Weakly Pinsker-like systems have topological entropy zero.

The argument in [Blanchard et al., 2002] uses invariant measures and
measure-theoretic entropy. Its clue is an interesting observation, which we have
decided to quote (without a proof). We remark that although Πμ =∨

k

⋂
n P

[n,∞)
k (see Remark 4.2.7; Pk are as in the formulation below), in gen-

eral one cannot reverse the order of the big operators; this makes the lemma
nontrivial.

Lemma 6.9.8 Let (X,T, S) be a topological dynamical system and let μ

be an ergodic measure on X . Fix a refining sequence of partitions Pk with
diameters of the cells decreasing to zero. Then there exists a sequence nk of
natural numbers such that

∞⋂
n=1

∞∨
k=1

P
[nk+n,∞)
k = Πμ.

Once the lemma is proved, it suffices to notice that for every n (after dis-
carding a null set) any pair of points in the same atom of the sigma-algebra∨∞

k=1 P
[nk+n,∞)
k is asymptotic. Thus any measurable map collapsing asymp-

totic pairs must be constant on such atoms, and hence Πμ-measurable. This
implies Theorem 6.9.7 (via Theorem 4.2.9 and the Variational Principle).

We repeat after the authors that a purely topological proof would be
desirable.

The inclusions TEZ ⊂ PL and TEZ ⊂ FNAP also hold. Since the proofs
need a tool developed in the next chapter, we postpone them until the end of
that chapter. Now just the formulations:

Theorem 6.9.9 Every topological dynamical system (X,T, S) with topolog-
ical entropy zero is a Pinsker-like factor of a subshift of topological entropy
zero.

Theorem 6.9.10 Every topological dynamical system (X,T, S) with topo-
logical entropy zero is a factor of a zero-dimensional NAP system.

Combining the inclusions provided above we obtain the main theorem of
this section [Downarowicz and Lacroix, in print]
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Theorem 6.9.11

FNAP = WPL = PL = TEZ.

6.9.2 Hierarchy of maximal factors

The topological Pinsker factor (denotation TPF) of a topological dynami-
cal system is defined as the largest factor that has topological entropy zero.
Every zero-entropy factor (Y, S, S) of (X,T, S) factors through the topologi-
cal Pinsker factor of (X,T, S). There is a nice characterization of the topologi-
cal Pinsker factor by means of the so-called entropy pairs, defined by Francois
Blanchard [Blanchard, 1993]:

Definition 6.9.12 A pair x, x′ of points of X is an entropy pair if every open
cover U by two sets U = {U, V }, such that x ∈ int(U c) and x′ ∈ int(V c), has
positive topological entropy h(T,U).

Just like in ergodic theory measure-theoretic factors correspond to subin-
variant sub-sigma-algebras, in topological dynamics topological factors cor-
respond to subinvariant closed equivalence relations (in X × X). The factor
map sends every point to its equivalence class. The analogy is rather distant,
for instance, in ergodic theory a larger sigma-algebra produces a larger factor,
while in topological dynamics the larger the relation the smaller the factor.

Theorem 6.9.13 The topological Pinsker factor corresponds to the smallest
subinvariant closed equivalence relation that contains all entropy pairs.

We refer to the original paper [Blanchard and Lacroix, 1993] for the proof.
Corresponding to the notion of topologically deterministic systems one can

define the maximal topologically deterministic factor (denoted MTDF). It
arises as the smallest subinvariant (in fact invariant) equivalence relation such
that all subinvariant closed equivalence relations containing it are invariant.
The existence of such an equivalence relation is obvious: it is the intersection
of a nonempty family of relations with properties preserved by intersections.

We also note that every system possesses the maximal Pinsker-like factor
(denotation MPLF); it corresponds to the smallest subinvariant closed equiva-
lence relation which contains all asymptotic pairs.

Given a topological dynamical system (X,T, S), we can determine its max-
imal NAP factor (denotation MNAPF); the maximal factor which is NAP. At
first glance it is not even clear that such an object is well defined. We only
sketch the argument, which requires the Kuratowski–Zorn Lemma. First of all,
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the collection of NAP factors is nonempty; it contains at least the trivial one-
point factor. Now, given an increasing chain (i.e., a linearly ordered family)
(Yκ) of NAP factors of (X,T, S), their inverse limit Y (the construction of an
inverse limit applies to chains as well) is a factor of (X,T, S) and an extension
of all the factors in the chain. This inverse limit is also NAP; any asymptotic
pair projects in Yκ to either an asymptotic pair (which is impossible) or it is
collapsed. Thus such a pair is collapsed in every Yκ, which means that the pair
is in fact identical in the inverse limit space. We have shown that Y is NAP.
By the Kuratowski–Zorn Lemma [see e.g. Ciesielski, 1997], the maximal NAP

factor exists.
Unlike in the case of the corresponding classes of systems, none of the above

four types of factors coincide, so this is where the analogy to ergodic theory
ends.

Theorem 6.9.14 We have the following factorization

TPF �→ MPLF �→ MNAPF �→ MTDF.

These four types of factors are essentially different.

Proof Let us first explain the factorizations: The maximal Pinsker-like factor
has entropy zero (Theorem 6.9.7), so it factors through the topological Pinsker
factor. The maximal NAP factor is NAP, so the factor map leading to it must
collapse all asymptotic pairs (the image of a not collapsed asymptotic pair
would remain an asymptotic pair). So it is Pinsker-like, thus it factors through
the MPLF. The MTD factor is deterministic, so it is NAP, and hence it factors
through the maximal NAP factor.

The first arrow is not realized by the identity map in any zero-entropy sys-
tem that possesses asymptotic pairs (for example in a nonperiodic subshift of
entropy zero). The second arrow is not by identity in the Example 6.9.15 below.
The third arrow is not by identity in any NAP system which is not deterministic
(like the one in Example 6.9.6).

Example 6.9.15 There exists a bilateral subshift (X, σ, Z) such that the maxi-
mal Pinsker-like factor (Y, S, Z) is not NAP.

Indeed, let (X, T, S) be the orbit-closure (in the Z-action) of the following (bilat-
eral) sequence over two symbols:

x = . . . 000000011111000001110001011100011111000001111111 . . .

In addition to the countable orbit of this sequence, the system contains also the
points

a = . . . 000000111111 . . . , b = . . . 111111000000 . . .
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Figure 6.1 The dynamics in the example. The backward orbit of the central
point is not shown. It is more or less symmetric to the forward orbit.

and their countable orbits, and the fixpoints

c = . . . 000000 . . . , d = . . . 111111 . . .

The dynamics of this system is shown in Figure 6.1. It is elementary to see that all
points in the orbit of a are asymptotic to the fixpoint d, and all points in the orbit
of b are asymptotic to c. The maximal factor collapsing asymptotic pairs must also
collapse the pair c, d, because the corresponding relation must be closed. So, all
points a, b, c, d and their orbits are collapsed to one point. That is all. No other col-
lapsing is necessary (we leave it to the reader). The factor so obtained looks exactly
the same as the factor (Y, S, Z) in Example 6.9.6: it is a one-point compactification
(by a fixpoint) of a single discrete bilateral orbit. As before, all pairs in this factor
are asymptotic, so this maximal factor is not NAP.

6.10 Topological preimage entropy*

A notion which attempts to capture the “purely noninvertible” complexity
of the dynamics in a topological dynamical system is topological preimage
entropy, as introduced by Mike Hurley [Hurley, 1995], then studied by
Zbigniew Nitecki with coauthors [Nitecki and Przytycki, 1999; Fiebig et al.,
2003]. The idea is to count (n, ε)-separated sets in the nth preimage of a point.
In fact, there are two versions, depending on the order of applying certain
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suprema. The third version has been defined and studied by Wen-Chao Cheng
and Sheldon Newhouse [Cheng and Newhouse, 2005] where also the measure-
theoretic notion is introduced.

Definition 6.10.1 Let T : X → X be a continuous map of a compact space.
Let H1(n, ε|F ) denote the logarithm of the maximal cardinality of an (n, ε)-
separated set contained in F . We define three versions of topological preimage
entropy as

hp(T ) = lim
ε

↑ sup
x∈X

lim sup
n→∞

1
nH1(n, ε|T−n{x}), (6.10.2)

hm(T ) = lim
ε

↑ lim sup
n→∞

1
n sup

x∈X
H1(n, ε|T−n{x}), (6.10.3)

hpre(T ) = lim
ε

↑ lim sup
n→∞

1
n sup

x∈X
sup
k≥n

H1(n, ε|T−k{x}). (6.10.4)

Remark 6.10.5 Instead of counting (n, ε)-separated sets within a set we can
as well count minimal subfamilies of Un covering that set. Then H1(n, ε|F )
should be replaced by H(Un|F ). It is easy to see (using the inequalities (6.1.10)
and (6.1.11) relative to the set F ) that such a change has no effect on the final
notions in the above definition, as long as the limit along ε is replaced by the
limit along the net of all covers.

It is elementary to see that

hp(T ) ≤ hm(T ) ≤ hpre(T ) ≤ h(T ). (6.10.6)

It has been proved in [Fiebig et al., 2003] that in forward expansive systems, in
particular in unilateral subshifts, all the above notions (including topological
entropy) agree. Clearly, for homeomorphisms, all three notions of topological
preimage entropy are equal to zero, hence can be strictly smaller than topolog-
ical entropy. There are also examples for which hp(T ) < hm(T ). We do not
know about the middle inequality.

Cheng and Newhouse have also introduced a measure-theoretic notion of
preimage entropy. For convenience, we repeat the definition, already cited
in Remark 4.2.8. We let A∞ =

⋂
n≥1 T−n(A) and we define the measure-

theoretic preimage entropy in the system (X,A, μ, T, S) as the usual condi-
tional entropy h(μ, T |A∞). The paper [Cheng and Newhouse, 2005] provides
a number of properties of this last notion, such as product rule, power rule,
affinity as a function of the measure and a version of the Shannon–McMillan–
Breiman Theorem. However, all the above are immediate consequences of the
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same properties known for the conditional entropy given a subinvariant sigma-
algebra (including the conditional Shannon–McMillan–Breiman Theorem
3.3.7).

That paper, however, contains one very interesting result, a kind of varia-
tional principle:

Theorem 6.10.7 (Preimage Entropy Variational Principle) Let (X,T, N0) be
a topological dynamical system and let A denote the Borel sigma-algebra in
X . Then

hpre(T ) = sup
μ∈MT (X)

h(μ, T |A∞).

The right-hand side resembles that in the Conditional Variational Principle
(Theorem 6.8.8) except that the sigma-algebra A∞ does not represent the Borel
sigma-algebra lifted from any topological factor (at least it is not obtained in
this manner). This provokes the following question:

Question 6.10.8 Can the Preimage Entropy Variational Principle be reduced
to a variant of the Conditional Variational Principle (for instance valid for some
specific Borel-measurable factors)?

Exercises

6.1 Prove (by example) that the sequence H(Un) need not have decreasing
nths.

6.2 Prove Fact 6.2.4.
6.3 Show that if T is Lipschitz, i.e., d(Tx, Ty) ≤ cd(x, y) for some constant

c, then h(T ) ≤ max{0, log c}.
6.4 Show that if T : [0, 1] → [0, 1] is piecewise monotone, with N branches

of monotonicity, then h(T ) ≤ log N .
6.5 Let (X,T, S) and (Y, S, S) be factors of some common extension.

Assume they both have finite entropies. Prove that then

|h∗(S) − h∗(T )| ≤ h(T |S) + h(S|T ).

6.6 Prove the power rule for tail entropy: h∗(Tn) = |n|h∗(T ) (n ∈ S).
6.7 Prove the power rules for different kinds of fiber entropy: For

n∈ S we have h(Tn,U|n||y)= |n|h(T,U|y), h(Tn|y)= |n|h(T |y),
h(Tn,U|n||ν) = |n|h(T,U|ν) and h(Tn|ν) = |n|h(T |ν).

6.8 For n ∈ N prove h(T,Un|y) = h(T,U|y) and similarly h(T,Un|ν) =
h(T,U|ν).

6.9 Derive the inequality h(T |ν) + h(ν) ≤ h(T ).
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6.10 Consider the composition of factor maps: φ : X → Y and ψ : Y → Z.
Fix some invariant measure ξ on Z. Derive h(T |ξ) ≤ h(T |S)+h(S|ξ).

6.11 Give an example of covers U and V (of two spaces) such that N(U⊗V) <

N(U)N(V).
6.12 Let (X,T, S) be a topological joining of (Y, S, S) and (Z,R, S). Show

that then

1. h(T |z) ≤ h(S), (z ∈ Z);
2. h(T |ξ) ≤ h(S), (ξ ∈ MR(Z)).
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Dynamics in dimension zero

7.1 Zero-dimensional dynamical systems

Due to the existence of arbitrarily fine covers which are at the same time parti-
tions (by disjoint open sets – we call them “clopen covers”) , zero-dimensional
dynamical systems allow us to switch between the topological and measure-
theoretic dynamical notions easier than any other systems.

In order to understand zero-dimensional dynamical systems it suffices to
understand subshifts and their countable joinings.

Definition 7.1.1 By a subshift we mean a topological dynamical system
(X,T, S), where X is a closed, shift-invariant subset of ΛS

′
, Λ is a finite set

(called alphabet), and T denotes the shift map σ restricted to X . Both S
′ and

S stand for either N0 or Z but we require that S ⊂ S
′ . Shift-invariance of X is

understood as σ(X) ⊂ X or σ(X) = X , depending on whether S = N0 or Z,
respectively.

Note that S
′ = Z implies that T is injective.

Definition 7.1.2 By a symbolic array system we will mean a topological dy-
namical system (X,T, S), where X consists of symbolic arrays of the form
x = (xk,n)k∈N,n∈S′ (S ⊂ S

′ like for subshifts), where for each k, n, xk,n

belongs to a finite set Λk not depending on n or x ∈ X , called the alphabet
in row k. The transformation T is the restriction to X of the left shift map on
arrays

(Tx)k,n = (xk,n+1).

The above definition implicitly requires that X be closed and invariant under
T (recall that the meaning of invariance depends on S). The fact below is com-
pletely elementary.
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Fact 7.1.3 The following terms are synonyms (up to topological conjugacy):
zero-dimensional dynamical system, countable joining of subshifts, inverse
limit of subshifts, symbolic array system.

7.2 Topological entropy in dimension zero

We begin by providing a more direct formula for the topological entropy of
a subshift and then of a general zero-dimensional topological dynamical sys-
tem. It is based on the topological version of the definition of the topological
entropy.

Fact 7.2.1 If (X,T, S) is a subshift over a finite alphabet Λ, then

h(T ) = lim
n

1
n log #{B ∈ Λn : B ∩ X �= ∅}, (7.2.2)

where the blocks B are identified with the corresponding cylinder sets over the
coordinates 0, . . . , n − 1.

The above cardinality is interpreted as the number of blocks of length n

appearing in the subshift, by which we mean appearing as a subblock in some
x ∈ X .

Proof In a symbolic system, the zero-coordinate partition PΛ is clopen, so
it is also a cover. The same is true for Pn

Λ. Because this cover consists of dis-
joint sets, subcovers can be obtained only by discarding the empty sets. So,
H(Pn

Λ) = log #Pn
Λ (where we ignore the empty sets). This is exactly the

number of blocks of length n that appear in the system. We have proved that
the right-hand side of (7.2.2) equals h(PΛ, T ). The assertion is now a conse-
quence of the remark following Definition 6.2.5 because in the symbolic space
the cover PΛ is a topological generator.

We can now formulate the “topological vertical data compression” statement
for subshifts:

Theorem 7.2.3 A subshift (X,T, S) over an alphabet Λ with topological
entropy h has a principal extension (Y, S, S) which is a bilateral subshift over
an alphabet ΛY of cardinality lY = �2h� + 1.

Proof First observe that the natural extension of (X,T, S) (recall Definitions
6.8.10 and 6.8.11; the action need not be surjective but it is always injective)
can be realized as a bilateral shift (see Exercise 7.2). This extension is principal
and has the same topological entropy h. It remains to prove the statement for
bilateral subshifts (X,T, S).
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Notice that log lY > h. Let n be such that

log #{B ∈ Λn : B ∩ X �= ∅} < n log lY .

We replace (X,T, S) by its direct product with the n-periodic orbit of the
sequence obtained by repeating 000 . . . 01 (with n− 1 zeros). We imagine this
new subshift (X ′, T ′, S) as having two rows. The collection B′ of all blocks in
X ′, of length n and starting with 1 in the second row, has the same cardinality
as that of all blocks of length n in X . Thus there exists an injective map Φ from
B′ into Λn

Y and, if n is large enough, we can arrange that there exists a specific
block W over ΛY such that every block in the range of Φ ends with W and W

does not occur in it anywhere else (see Exercise 3.8; the same trick has already
been used in the proof of Lemma 4.2.5). Now we can define a conjugacy φ

between (X ′, T ′, S) and a subshift (Y, S, S) over ΛY : each element x′ of X ′

is a concatenation of blocks B′ ∈ B′ and we let φ(x′) be the corresponding
concatenation of the blocks Φ(B′). Invertibility of this map is easy to see; the
block W allows us to determine the cutting places in every image, and then we
can reverse the map Φ on each component block.

We can now deduce semicontinuity properties of the entropy function on the
invariant measures in dimension zero.

Fact 7.2.4 If (X,T, S) is a subshift, then the entropy function μ 	→ h(μ, T )
on MT (X) is upper semicontinuous. In particular, there exists an invariant
measure of maximal entropy. If (X,T, S) is zero-dimensional, then this fun-
ction is of Young class LU.

Proof We begin with a subshift (X,T, S). Because the characteristic function
of a clopen set is continuous, the functions μ 	→ 1

nH(Pn
Λ) are continuous on

M(X). On MT (X), these functions decrease to the entropy function, implying
the assertion.

For zero-dimensional systems the assertion now follows from the inverse

limit representation, (X,T, S) =
←−
lim

k
(Xk, Tk, S), where each (Xk, Tk, S) is a

subshift. Fact 6.5.12 yields that μ 	→ h(μ, T ) is an increasing limit of upper
semicontinuous functions.

7.3 The invariant measures in dimension zero

This short section is not about entropy. It provides some elementary facts about
invariant measures in zero-dimensional systems, especially in subshifts, which
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allows us to better understand the connection between measures and blocks (or
rectangles) in the symbolic space.

We know that the weak-star topology on measures can be endowed with a
metric, involving a linearly dense sequence of continuous functions on X (see
(A.2.6)). In the zero-dimensional case, the role of this sequence is played by
the characteristic functions of the cylinder sets corresponding to rectangular
blocks in the symbolic array representation. More specifically, let (ki, ni) be
a sequence of integer-valued vectors such that both coordinates increase to
infinity as i grows, and let Ri denote the collection of all rectangles with ki

rows and ni columns (recall that each row number k has its own finite alphabet
Λk). Then we define

d∗(μ, ν) =
∑

i

2−i
∑

R∈Ri

|μ(R) − ν(R)|. (7.3.1)

In symbolic spaces (with one row only), we replace the rectangles by blocks
of length ni.

Now we will focus on subshifts. As it was explained in Section 2.8, with
each block B we associate the invariant measure μ(B) supported by the peri-
odic orbit of the sequence . . .BBB. . . (or BBB. . . for unilateral shifts).
This measure assigns to a block A much shorter than B the value roughly
equal to the frequency with which A occurs in B. If we want to acquire an
approximative distance between μ(B), where B is very long, and some other
measure μ, we only need to compare the values for not too long blocks A, and
for such blocks use the approximation of μ(B)(A) by the frequencies. Below
we state a number of facts concerning such measures and their distances. The
proofs are standard applications of the above observation (on how to acquire
an approximation of the distance), and will be skipped.

Fact 7.3.2 We fix an alphabet Λ. For every ε > 0 and r ∈ N the following
hold for n sufficiently large:

1. d∗(μ(C),
1
q

∑q
i=1 μB(i)) < ε, where C = B(1)B(2) . . . B(q) is a concate-

nation of an arbitrary number q of blocks of length n;

2. d∗(μ(B), μ(C)) < ε, where C is a subblock of length n − r of a block B of
length n;

3. d∗(μ(B),
1
n

∑n−1
i=0 δT ix) < ε, where x ∈ ΛS

′
, T is the shift map, and

B = x[0, n − 1].
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7.4 The Variational Principle in dimension zero

Although we have already proved the Variational Principle (as a special case
of the Inner Variational Principle), we give its direct proof in dimension zero
just because of its striking simplicity. We begin with subshifts.

Proof of the Variational Principle for subshifts Let X ⊂ ΛS
′

and let μ be a
shift-invariant measure on X . Clearly, for any n, H(μ,Pn

Λ) ≤ log #Pn
Λ =

H(Pn
Λ). Thus h(μ, T ), which equals h(μ, T,PΛ), is not larger than h(T,PΛ),

which equals h(T ).
The converse inequality is just a bit harder. We will construct an invariant

measure with the dynamical entropy equal to the topological entropy. Let
n ∈ N and let Bn = {B ∈ Λn : B ∩ X �= ∅} be the collection of all blocks
of length n appearing in the system. Let Xn be the collection of all (unilateral
or bilateral, depending on the meaning of S

′) sequences concatenated of the
blocks from Bn, one such block starting at the coordinate zero. Clearly, Xn

is closed and Tn-invariant, and it supports the Tn-invariant Bernoulli mea-
sure μn,0 assigning equal masses to all blocks in Bn. The entropy h(μn,0, T

n)
equals log #Bn. For i ∈ {1, 2, . . . , n − 1}, consider the set T i(Xn). This is
again a Tn-invariant set and the map Tn−i factors the system (T i(Xn), Tn, S)
back onto (Xn, Tn, S). The measure μn,0 lifts to some Tn-invariant measure
μn,i supported by T i(Xn). Clearly, h(μn,i, T

n) ≥ h(μn,0, T
n) = log #Bn.

Now, the measure μn = 1
n

∑n−1
i=0 μn,i is T -invariant and

h(μn, T ) =
1
n

h(μn, Tn) =
1
n2

n−1∑
i=0

h(μn,i, T
n) ≥ 1

n
log #Bn.

Let μ be an accumulation point of the sequence (μn) (say, along nk) in the
simplex of all shift-invariant measures of the full shift on ΛS

′
. By upper semi-

continuity of the entropy function in symbolic systems,

h(μ, T ) ≥ lim sup
k→∞

h(μnk
, T ) ≥ lim

k

1
nk

log #Bnk
= h(T ).

The last thing to do is to verify that μ is supported by X . Consider an open set
disjoint of X . This set is a union of countably many cylinders C not appearing
in X . Let C be such a cylinder and let n0 be its length. We need to show
that μ(C) = 0. The block C does not occur in any block B ∈ Bn for any
length n ≥ n0. This implies that the cylinder over C is disjoint of Xn and of
T i(Xn) for 0 ≤ i ≤ n − n0 (the block C can occur in concatenations of the
blocks from Bn only at the contact places of the concatenated blocks). Thus
μn(C) ≤ n0/n. Since C is clopen, μ 	→ μ(C) is a continuous function on
measures (see Fact 6.6.5), hence μ(C) = lim

n
μn(C) = 0, as needed.
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Proof of the Variational Principle in dimension zero Having proved the Vari-
ational Principle for subshifts, in order to generalize it to all zero-dimensional
dynamical systems, we first apply Fact 6.5.12 to get that the topological entropy
equals the limit of h(Tk), the topological entropies of the subshifts of which
the system is an inverse limit. Then we combine two other facts about the
measure-theoretic entropy: (1) the entropy of every invariant measure is the
limit of its projections to the involved subshifts, hence it does not exceed the
topological entropy, and (2), the measure of maximal entropy on the subshift
Xk lifts to some measure on the entire system and this lift has entropy at least
h(Tk). Thus there are measures with entropies arbitrarily close to the topolog-
ical entropy. (This time, however, the measure of maximal entropy need not
exist.)

7.5 Tail entropy and asymptotic h-expansiveness in
dimension zero

The notion of tail entropy simplifies for zero-dimensional systems and asymp-
totic h-expansiveness admits a nice characterization for zero-dimensional
Z-actions. This is due, roughly speaking, to the fact that in dimension zero
the system admits enough topological factors, which can replace the refining
conditioning covers in the definition of the tail entropy.

Fact 7.5.1 Let = (X,T, S) =
←−
lim

k
(Xk, Tk, S) be a zero-dimensional dynam-

ical system represented as an inverse limit of subshifts. Then

h∗(T ) = lim
k

↓ h(T |Tk) = lim
k

↓ lim
j

↑ h(Tj |Tk). (7.5.2)

Proof The first equality follows easily from the combination of the following
facts:

1. The zero-coordinate partitions PΛk
are at the same time clopen covers and

they have the property that for any ε there exist k and n such that the cover
Pn

Λk
has diameter smaller than ε. Hence every open cover U is refined by

one of these covers, which implies that the topological conditional entropy
given U is not larger than that given Pn

Λk
.

2. The topological conditional entropy of (X,T ) given Pn
Λk

is the same as that
given PΛk

.
3. For a cover consisting of disjoint clopen sets, the topological conditional

entropy given this cover is the same as the topological conditional entropy
given the factor generated by this cover.
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The second equality in (7.5.2) follows from the definition of h(T |Tk) and
the above argument 1: any open cover U is refined by some Pn

Λj
.

Why is it so important to replace the topological conditional entropy given
a cover by the topological conditional entropy given a factor? This replace-
ment is specifically significant for bilateral shifts, for which it allows one
to represent the system as a joining of the factor with an “almost indepen-
dent” system, i.e., one of entropy just a bit larger than the conditional entropy
(see Theorem 7.5.3 below). We recall that in the measure-theoretic setup an
analogous representation-by-joining theorem holds for all systems with finite
entropy (see Theorem 4.4.6). In topological dynamics such representation is
possible (in general) for bilateral subshifts, and, like in the measure-theoretic
case, it fails for the actions of N0. To see this take Example 4.4.9; we just need
to replace the Bernoulli shift by a full shift. Eventually, Theorem 7.5.3 will be
used to characterize zero-dimensional asymptotically h-expansive Z-actions
(Theorem 7.5.9).

Theorem 7.5.3 Let (Y, S, Z) be a subshift and a topological factor of another
subshift (X,T, Z). Then, for every ε > 0, the system (X,T, Z) is conjugate
to a topological joining of the factor subshift (Y, S, Z) with another factor
subshift (Y ′, S′, Z) of topological entropy not exceeding h(T |S) + ε.

The proof relies on a lemma, which replaces the Rokhlin Lemma in zero-
dimensional topological dynamics. This is probably one of the most important
observations concerning zero-dimensional dynamics. The lemma appears in
print for the first time in a paper of M. Boyle [Boyle, 1983] (in a version for
bilateral shifts), where it is attributed to W. Krieger. Some generalizations can
be found in [Downarowicz, 2006, 2008].

Lemma 7.5.4 Let (X,T, Z) be a zero-dimensional topological dynamical
system. For every n ≥ 1 and ε > 0 there exists a clopen set F such that:

(i) T−i(F ) are pairwise disjoint for i = 0, 1, . . . , n − 1, and

(ii) T−i(F ) for i = −n + 1, . . . , 0, . . . , n − 1 cover the set X \ P ε
n ,

where P ε
n denotes the ε-neighborhood of the set Pn of all periodic points with

periods not exceeding n.

Proof The set Pn is closed, so replacing if necessary P ε
n by a smaller neigh-

borhood we can assume that P ε
n is clopen. For a given n every point x ∈ X\P ε

n

belongs to a clopen set Ux ⊂ X \ P ε
n such that its n consecutive preim-

ages T−i(Ux) (0 ≤ i ≤ n − 1) are pairwise disjoint. Choose a finite cover
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U = {Uj}1≤j≤m of X \ P ε
n consisting of some of the sets Ux. Define induc-

tively

F1 = U1

Fj = Fj−1 ∪
(
Uj \

⋃
−n+1≤i≤n−1

T i(Fj−1)
)

(j = 2, . . . , m)

and define F = Fm. Because this construction involves finite set operations
applied to clopen sets, all the sets Fj (1 ≤ j ≤ m) are clopen. It is also clear
that the sets Fj ascend. Every x ∈ X \P ε

n belongs to some Uj (1 ≤ j ≤ m). If
x ∈ Fj , then x ∈ T−i(F ) for i = 0. The only way x may not belong to Fj is
that j > 1 and x belongs to

⋃
−n+1≤i≤n−1 T i(Fj−1). In such case, however,

x ∈ T−i(Fj−1) ⊂ T−i(F ) for some i ∈ [−n + 1, n − 1]. In either case x

belongs to T−i(F ) with some i ∈ [−n + 1, n − 1], as required in (ii).
For (i), suppose that T−i(F ) and T−i′(F ) are not disjoint for some 0 ≤

i < i′ ≤ n − 1. Equivalently, F and T i′−i(F ) are not disjoint. From now
on i replaces i′ − i and ranges between 1 and n − 1. Let x ∈ F ∩ T−i(F ).
Let j be the smallest index for which x ∈ Fj and let j′ be the smallest index
for which T ix ∈ Fj′ . Assume for a while that j′ ≤ j. Then x belongs to Uj

(because Fj is a union of Fj−1 to which x does not belong, and a part of Uj).
Since Fj′ ⊂ Fj , we also have T ix ∈ Fj . Here, T ix falls either in Fj−1 or in a
part of Uj , however, by the choice of the sets Uj , it cannot happen that both x

and T ix belong to Uj . So, T ix ∈ Fj−1. But then x falls into the set subtracted
from Uj in the construction of Fj , a contradiction. If j′ ≥ j, we replace i by
−i (now ranging between −n + 1 and 1), and switch the roles of x and T ix,
which brings us to the preceding case.

Remark 7.5.5 The set F is called an n-marker. Because F is clopen, the
factor generated by the partition into F and its complement is a topological
factor in the form of a subshift over two symbols (“marker” and “no marker”).
For x ∈ X the markers occur exactly at the coordinates n such that Tnx ∈ F .

Corollary 7.5.6 If (X,T, Z) is a subshift, then, using any metric in the sym-
bolic space, the statement of the above lemma implies that given natural n and
k there exists a clopen set F such that for every x ∈ X either T ix ∈ F (x has
a marker at i) for some i ∈ [−n + 1, n − 1] or the block x[−n − k, n + k] is
periodic with a period p ≤ n (i.e., x(i) = x(i+p) for −n−k ≤ i ≤ n+k−p).
If there is a larger gap between the markers, say from a to b > a + 2n + 2k,
then all subblocks of length 2n + 2k + 1 of x[a, b] are periodic, each with a
period not exceeding n. It is an easy exercise to check that then the entire block
x[a, b] must be periodic with one such period.
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Proof of Theorem 7.5.3 Initially we represent (X,T, Z) as a joining inside
(X,T, Z) of (Y, S, Z) with some other subshift (for instance with (X,T, Z)),
this joining realized as a two-row subshift with Y in the first row. Let l be the
cardinality of the alphabet used in the second row. We can assume that this
alphabet does not contain natural numbers. By the definition of the topological
conditional entropy, there exists a length n0 such that any block C of any
length n ≥ n0 appearing in Y admits m(C) ≤ 2n(h(T |S)+ ε

3 ) different two-row
completions appearing in X . For each C we order the corresponding blocks
available in the second row and we denote them as BC,j (1 ≤ j ≤ m(C)).
We would like to replace the completing blocks of the second row by blocks
belonging to a smaller family. We apply the markers of Corollary 7.5.6 with
respect to the system (X,T, Z), n0 and k satisfying

1
k (log n0 + n0 log l) ≤ ε

3 . (7.5.7)

The gaps between the n0-markers are never smaller than n0 and, if a gap is
longer than 2n0, the entire block (both in the first and second row) extending
at least k positions to the left and right around the gap, is periodic with some
period not exceeding n0.

Now, we modify the second row of each x: if two markers appear at a dis-
tance smaller than or equal to 2n0, and C and BC,j are the blocks between
these markers (say including a position of the marker on the left and excluding
that on the right) in the first and second row, respectively, then we replace BC,j

by the block j00 . . . 0 (of length the same as that of C). At the remaining places
we maintain the original symbols. The alphabet used in the new second row is
enhanced by the symbol 0 and a finite number of integers j. It is obvious that
the above procedure is a continuous invertible code (when applied to the two-
row elements of X), hence it produces a conjugate two-row representation of
(X,T, Z). Notice that the markers coincide with the integers j > 0 in the new
second row, so the two-symbol subshift of the markers is a topological factor of
the subshift appearing in the second row. We will estimate the topological con-
ditional entropy of the new second row given the process of markers. We count
the number of possible blocks B of length k in the new second row assuming
some fixed positions of the markers in the first row. Recall that if there exists
a section of length larger than 2n0 without markers, then the entire block B

is periodic with period not exceeding n0 (a periodic section extends at least k

positions in both directions from any place in the gap, hence it covers B). It
is possible that inside B there are still pairs of markers less than 2n0 apart. In
such places in the new second row we have introduced the blocks j00 . . . 0, but
everywhere else the new second row fits to one periodic pattern. Clearly, there
exist at most n0l

n0 periodic patterns of periods not exceeding n0. Wherever
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we see a block j00 . . . 0, the integer j does not exceed 2n(h(T |S)+ ε
3 ), where n

is the length of this block. Jointly, there are no more than 2k(h(T |S)+ ε
3 ) possi-

bilities at all such places. Together, the number of all possible blocks of length
k in the new second row, with a fixed structure of the markers does not exceed

n0l
n0 · 2k(h(T |S)+ ε

3 ).

Taking the logarithm and dividing by k and applying (7.5.7) we get that the
topological conditional entropy of the second row given the factor of markers
is at most

h(T |S) + ε
3 + 1

k (log n0 + n0 log l) ≤ h(T |S) + 2ε
3

In order to pass from the topological conditional to unconditional entropy
of the subshift appearing in the new second row, we apply the formula (6.4.12)
with regard to this subshift and the subshift of markers, which is its factor.
The markers occur with gaps at least n0, hence the topological entropy of the
subshift of markers is at most H( 1

n0
, 1 − 1

n0
). If we start the construction

by choosing n0 large enough, we can assure that this number is smaller than
ε/3. Then the entropy of the new second row does not exceed h(T |S) + ε, as
claimed.

Question 7.5.8 We leave the validity of Theorem 7.5.3 for zero-dimensional
Z-actions other than subshifts open. It can be asked for systems with finite
entropy or when the topological conditional entropy is finite.

Later we resolve the above question in two special cases: when either
(X,T, Z) is asymptotically h-expansive or when it is a principal extension
of (Y, S, Z) (see Theorem 7.5.10).

We will now provide the characterization of zero-dimensional asymptoti-
cally h-expansive Z-actions. It originates from [Downarowicz, 2001] but is in
fact a joint work with M. Boyle.

Theorem 7.5.9 A zero-dimensional Z-action (X,T, Z) is asymptotically
h-expansive if and only if it is conjugate to a countable joining of subshifts
(X ′

k, T ′
k, Z) (k ∈ N) whose topological entropies form a summable sequence.

Proof Suppose the latter condition holds. Letting Tk =
∨k

j=1 T ′
j we represent

(X,T, Z) as the inverse limit of subshifts (Xk, Tk, Z). Using (6.4.11) and Fact
7.5.1 (second equality), we deduce asymptotic h-expansiveness of (X,T, Z).
(This works in fact also for actions of N0.)
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We begin the proof of the other implication with fixing any inverse limit rep-

resentation (X,T, Z) =
←−
lim

k
(Xk, Tk, Z). By Fact 7.5.1, asymptotic h-expan-

siveness translates to

lim
k

↓ h(T |Tk) = 0.

In the inverse limit representation we can replace the sequence of subshifts by
any subsequence, and we can do it so that the entropies h(T |Tk) (along that
subsequence) are summable. From now on, k indexes such a subsequence.
The sequence h(Tk+1|Tk) is also summable. We can now define the sub-
shifts (X ′

k, T ′
k, Z) inductively. We let (X ′

1, T
′
1, Z) = (X1, T1, Z). Suppose

that (Xk, Tk, Z) is represented as a joining of subshifts
∨k

j=1 T ′
j , satisfying,

for every 2 ≤ j ≤ k, the inequality h(T ′
j) ≤ h(Tj |Tj−1) + 2−j . Recall

that (Xk, Tk, Z) is a topological factor of (Xk+1, Tk+1, Z), hence, by The-
orem 7.5.3, the latter can be represented as a joining of (Xk, Tk, Z) with
a subshift (X ′

k+1, T
′
k+1, Z) of entropy not exceeding h(Tk+1|Tk) + 2−k−1.

Now (Xk+1, Tk+1, Z) satisfies the inductive assumption for k + 1. The whole
inverse limit is hence a countable joining with summable entropies, as in the
assertion.

Necessity fails for actions of N0: the full bilateral shift (as an action of N0)
is asymptotically h-expansive, and it can be represented as the inverse limit of
unilateral shifts, where each of the bonding maps is the shift map. As indicated
earlier, the corresponding extension cannot be replaced by a joining with a
system of small entropy. Perhaps it can be represented as a countable joining
of other unilateral subshifts, but never with decreasing entropies. We skip the
full proof.

Now we return to Theorem 7.5.3 and prove it for zero-dimensional Z-actions
assuming that the extension is principal or that the larger system (X,T, S) is
asymptotically h-expansive.

Theorem 7.5.10 Let (X,T, Z) and (Y, S, Z) be zero-dimensional systems
such that (Y, S, Z) is a topological factor of (X,T, Z). Suppose that either
(X,T, Z) is a principal extension of (Y, S, Z) or that (X,T, Z) is asymptoti-
cally h-expansive. Then, for every ε > 0, the system (X,T, Z) is conjugate
to a topological joining of (Y, S, Z) with another zero-dimensional system
(Y ′, S′, Z) of topological entropy not exceeding h(T |S) + ε.

Proof Let (X,T, Z) =
←−
lim

k
(Xk, Tk, Z) and (Y, S, Z) =

←−
lim

k
(Yk, Sk, Z) be

some inverse limit representations. We have

h(T |S) = lim
k

↑ lim
j

↓ h(Tk|Sj). (7.5.11)
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If the extension is principal, then this iterated limit is zero, hence for every k

the second limit is zero. Let εk be a sequence of positive numbers with sum
ε/2. For each k let j(k) be such that h(Tk|Sj(k)) < εk. In the inverse limit
representation of (Y, S, Z) we can replace the sequence Sj by the subsequence
Sj(k) and call it Sk. Next, each (Xk, Tk, Z) can be replaced by its joining with
(Yk, Sk, Z) (this does not change the conditional entropy, see (6.5.8)), so we
can assume that (Yk, Sk, Z) is a factor of (Xk, Tk, Z) satisfying h(Tk|Sk) <

εk. By Theorem 7.5.3, the subshift (Xk, Tk, Z) is a joining of (Yk, Sk, Z) with
a subshift (Y ′

k, S′
k, Z) of entropy at most 2εk. Thus, (X,T, Z) is a joining of

(Y, S, Z) with the countable joining (Y ′, S′, Z) of the systems (Y ′
k, S′

k, Z). The
entropy of (Y ′, S′, Z) clearly does not exceed

∑
k 2εk = ε.

Now assume that (X,T, Z) is asymptotically h-expansive. By Theorem
7.5.9, we can represent (X,T, Z) as a countable joining

∨∞
k=1 T ′

k of subshifts
with summable topological entropies. We can build an inverse limit represen-
tation of (X,T, Z) by taking for (Xk, Tk, Z) the finite joining

∨k
j=1 T ′

j . We
can pick k0 so large that

∞∑
j=k0+1

h(T ′
j) <

ε

4
,

and, by (7.5.11), also that

lim
j

↓ h(Tk0 |Sj) < h(T |S) + ε
4 .

We find j0 such that h(Tk0 |Sj0) < h(T |S) + ε/2, which, by (6.5.8), we can
write as h(Tk0 ∨ Sj0 |Sj0) < h(T |S) + ε/2. Applying Theorem 7.5.3, we can
represent Tk0 ∨ Sj0 as a joining of (Yj0 , Sj0 , Z) with another subshift (fac-
tor of (X,T, Z)), say (Z,R, Z), of entropy not exceeding h(T |S) + 3ε/4.
Let (Y ′, S′, Z) be the joining inside (X,T, Z) of (Z,R, Z) with the count-
able joining

∨∞
j=k0+1 T ′

j . This zero-dimensional system has entropy equal to
at most the sum of the entropies of the joined systems, which does not exceed
h(T |S) + ε. The joining S ∨ S′ extends Sj0 ∨ S′ which equals

Sj0 ∨ R ∨
∨

j=k0+1

T ′
j = Tj0 ∨

∨
j=k0+1

T ′
j = T.

So, the joining of (Y, S, Z) with (Y ′, S′, Z) equals (X,T, Z).

7.6 Principal zero-dimensional extensions

In this section we prove, using elementary methods, that every topological
dynamical system has a principal zero-dimensional extension. This fact has
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been long known for homeomorphism of finite entropy as a consequence of
the theory of mean dimension created by Elon Lindenstrauss and Benjy Weiss
[Lindenstrauss and Weiss, 2000; Lindenstrauss, 1999]. Briefly, any homeo-
morphism of finite entropy which admits a nonperiodic minimal factor (we
refrain from discussing minimality here) has the small boundary property (this
notion has been mentioned at the end of Section 6.6), and then it is very easy
to construct a zero-dimensional extension which is not only principal, but even
isomorphic for every invariant measure. The existence of a minimal factor can
be easily achieved replacing the system by its product with any minimal system
of entropy zero (such a product is a principal extension).

Here we will replicate from [Downarowicz and Huczek, in print] a new
proof which produces just the principal extension (no small boundary property
or isomorphic extension), but without assuming anything about the system.

Theorem 7.6.1 Let (X,T, S) be a topological dynamical system. Then there
exists a zero-dimensional system (Y, S, S) and a factor map π : Y → X such
that h(ν|μ) = 0 for every invariant measure ν ∈ MS(Y ) and μ = πν.

Remark 7.6.2 By the Conditional Variational Principle (Theorem 6.8.8),
such an extension is principal, i.e., the topological conditional entropy h(S|T )
is zero. This fact does not follow directly from the proof below, as we do not
examine covers of X .

Proof of Theorem 7.6.1 We begin by explaining why it suffices to prove the
theorem for homeomorphisms T only. In case T is surjective we simply replace
the system by its natural extension. In the not surjective case we need to go
back to the construction of the natural extension (preceding Definition 6.8.11).
In the intermediate system (X ′

1, T
′
1, N0) the map is a homeomorphism and

this system factors onto (X1, T1, N0) containing (X,T, N0) as a subsystem.
If we prove that (X ′

1, T
′
1, N0) has a principal zero-dimensional extension, then

this extension is also a principal zero-dimensional extension of (X1, T1, N0).
The preimage of the original space X becomes a principal zero-dimensional
extension of (X,T, S).

So, it suffices to work with systems (X,T, S) where T is a homeomorphism.
The initial part of the proof consists of two lemmas, the first one being quite
general and fairly well known. By T we denote the torus (circle) obtained from
the interval [0, 1] by the identification 0 = 1. By λ we denote the normalized
Lebesgue measure on T.

Lemma 7.6.3 For every invariant measure μ ∈ MT (X) there exists an irra-
tional rotation R on (T, λ) which is disjoint of μ (in the sense of Furstenberg,
i.e., such that the only (T × R)-invariant joining of μ and λ is μ × λ).
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Proof This follows from three elementary facts in ergodic theory:

1. For an invariant measure μ, in order not to be disjoint of some ergodic mea-
sure ν, it is necessary that the ergodic measures not disjoint of ν contribute
a positive mass in the ergodic decomposition of μ.

2. An ergodic μ is not disjoint of the rotation by � if and only if enπi� is an
eigenvalue for μ (under T ) for some natural n.

3. Every ergodic measure has at most countably many eigenvalues.

We leave the easy deduction of the assertion from these facts to the reader.

For each μ ∈ MT (X) we fix one rotation disjoint of μ and denote it by
Rμ. Now recall the notation introduced near the statement of Fact 6.6.1: if
μ′ ∈ M(X) (i.e., μ′ is a probability measure on X , usually not invariant under
T ), then Mn(μ′) denotes the average 1

n

∑n−1
i=0 T i(μ′). Fact 6.6.1 states that,

regardless of the starting measure, long enough averages are close to the set of
invariant measures. We will need the following:

Lemma 7.6.4 Let μ ∈ MT (X) be not supported by a finite set. Then, for
any neighborhood W of μ × λ in M(X × T), there exists a neighborhood
Uμ of μ in M(X) such that for any (x, t) ∈ X × I and any n ∈ N the
condition Mn(δx) ∈ Uμ implies that Mn(δ(x,t)) ∈ W , where the averaging in
the product is with respect to the map T × Rμ.

Proof Suppose the statement of the lemma is not true. Then there exists
a sequence of measures of the form Mnk

(δ(xk,tk)) such that the measures
Mnk

(δxk
) converge to μ yet all the averages Mnk

(δ(xk,tk)) lie outside U .
Because μ is not supported by a finite set, the parameters nk in this sequence
must grow to infinity. Any accumulation point of the sequence Mnk

(δ(xk,tk))
is a T × Rμ-invariant measure which is outside U and whose marginals are μ

(being the limit of Mnk
(δxk

)) and λ (being the only Rμ-invariant measure on
I). But the only T × Rμ-invariant measure with marginals μ and λ is μ × λ,
which is in U , a contradiction.

We return to the main proof, which we start by extending the system
(X,T, S) to its direct product with an odometer to a base (pk)k∈N (see Defini-
tion A.3.1; for each k, pk+1 is a multiple of pk). Each measure μ ∈ MT (X)
lifts to (possibly many) joinings of μ with the unique invariant measure on the
odometer. Since the odometer has entropy zero, all such lifts have zero condi-
tional entropy given μ (see (4.4.3)). So, it suffices to construct the extension
(with properties as in the hypothesis) of this product. From now on (X,T, S)
denotes the product. Note that the system has no periodic orbits (and hence
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no invariant measures supported on finite sets). Lifting from the odometer the
cylinder corresponding to the symbol 1 in row k, we obtain in X a clopen
marker set Fk such that every orbit visits Fk in equal distances pk of the time.
The sets Fk decrease in k.

In the next step we consider the product space X × T. We now describe the
construction of a partition AF of the product space X × T, associated with a
finite family F of functions f : X → [0, 1]. The same construction will be used
later, in the section devoted to entropy structures and in Part III, so it might be
worthwhile to memorize it.

Definition 7.6.5 Let f : X → [0, 1] be a continuous function. With f we
associate the two-set partition Af of X × (0, 1] into the sets “below” and
“above” the graph of f :

Af =
{
{(x, t) : 0 < t ≤ f(x)}, {(x, t) : 1 ≥ t > f(x)}

}
.

If F is a finite family of continuous functions f : X → [0, 1], then we let

AF =
∨

f∈F

Af .

By the identification 0 = 1, the above partition can be applied to X × T, as
well. Clearly, we have

AF1∪F2 = AF1 ∨ AF2 and F2 ⊃ F1 =⇒ AF2 � AF1 .

We are in a position to establish the alphabets in the consequent rows of
the symbolic array space of our future zero-dimensional extension. We pick an
increasing (with respect to inclusion) sequence (Fk)k∈N of families of contin-
uous functions f : X → [0, 1]. We can easily arrange that the corresponding
partitions refine in the product X × T, i.e., the diameters of AFk

decrease
to zero. We also make sure that Fk contains the characteristic function of the
marker set Fk; this function is continuous since Fk is clopen. This implies that
the set Fk × T is measurable (i.e., is a union of cells) with respect to the par-
tition AFk

. In practice, this means that in any dynamics on X × T lifting T ,
the pk-markers in the AFk

-names are “built in” single symbols. We let Λk be
a set of labels assigned to the partition AFk

and we imagine the symbols cor-
responding to the cells contained in Fk ×T to look like “|a” (while others just
look like “a”); the vertical bar visualizes the marker.

Our symbolic array space will consist of arrays (yk,n)k∈N,n∈Z which, for
every k ∈ N, in row number k have symbols from Λk. Moreover, we will
restrict the symbolic space to the arrays y = (yk,n) whose columns satisfy a
certain column condition:
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• For every n the projections onto X of the cells of AFk
labeled yk,n have

nonempty intersection over k ∈ N.

Since the diameters of these cells decrease to zero with k (for n fixed), the
above intersection is a single point in X . We denote this point by πX,n(y).
Clearly, the map πX,n is continuous on its domain. We let Yc be the collection
of all arrays y satisfying the column condition and such that T (πX,n(y)) =
πX,n+1(y) for every n ∈ Z. It is obvious that Yc is a closed set of arrays,
invariant under the horizontal shift S, and that the map πX = πX,0 is a topo-
logical factor from (Yc, S, S) onto (X,T, S). This system will be our “working
environment” inside of which we will select much more delicate extensions of
(X,T, S). Since every subsystem of (Yc, S, S) will have the same action (the
iterates n ∈ S of the horizontal shift S) we will denote it by one letter only,
(for instance Y0, Y1, etc.) skipping the transformation S and the semigroup
S. Below we will consistently denote the measures on X by the letter μ (with
subscripts, superscripts, etc.), similarly, the letter ν is reserved for the measures
on the symbolic array system Yc, while the letter ξ is used for the measures on
the product space X × T. Exception: μ × λ also denotes a measure on this
product.

In the product space X ×T we introduce (temporarily) the “trivial” dynam-
ics of T × Id, where Id denotes the identity map; this is a principal extension
of (X,T, S). Every point (x, t) in the product space has its array-name with
respect to the sequence of partitions AFk

: in row number k we see the (bilat-
eral) name of (x, t) with respect to AFk

. This array-name obviously belongs to
Yc. Recall that we have Fk ⊂ Fk+1 which translates to AFk

� AFk+1 , which
in turn means that every symbol in the array-name of (x, t) determines all the
symbols above it in the same column (i.e., with the same n and smaller k). Also
notice that every such array is marked to base (pk) (see Definition A.3.2): in
row number k we have periodically repeated pk-markers visualized as verti-
cal bars. The k-rectangles (see Definition A.3.3) in these arrays stand in 1-1
correspondence with the cells of A

pk

Fk
(the “power” is with respect to T × Id)

contained in the marker set Fk × T. They will be called fundamental k-cells.
Indeed, whenever a pair (x, t) belongs to a fundamental k-cell C ∈ A

pk

Fk
, its

array-name has a specific k-rectangle at positions 0 through pk − 1 and rows 1
through k. We will denote this k-rectangle by Ĉ.

Because the cells of the partitions AFk
are not closed, the collection of all

array-names is not closed, either. We take the closure of this collection (in the
symbolic array space) and denote it Y0. Notice that Y0 maintains the follow-
ing three properties: it is a subset of Yc, it consists of arrays marked to base
(pk), and every symbol determines the symbols above it. The system Y0 is



7.6 Principal zero-dimensional extensions 217

not only an extension of (X,T, S) (via πX ) but also of the product system
(X × T, T × Id, S) (via a map which we denote by π0). The situation is
pictured on the commuting diagram:

Y0

π0

����
��

��
��

�

πX

��

X × T

π(1)

����
��

��
��

�

X

(here π(1) is simply the projection on the first axis).
The symbolic array extension via π0 is 1-1 except on points in X×T, whose

orbits visit the boundaries of the cells, (i.e., the graphs of the involved functions
f ). In general we have no guarantee that Y0 is a principal extension (of the
product system or, equivalently, of (X,T, S)) because (some of) the graphs of
the functions in the families Fk may happen to have positive measure for some
(T × Id)-invariant measures, and then we have no control over the entropy of
the lifted measures. Among measures in the product system, whose any lift has
guaranteed conditional entropy zero are the product measures μ × λ. It is so,
because the graphs of the involved functions f have measure zero for every
such measure, so the extension is 1-1 almost everywhere for such measures.
We denote by M0 the set of lifts against π0 of the product measures.

We will construct the desired extension Y as a subsystem of Yc which
will be (in some sense) a limit of an auxiliary sequence of mutually conju-
gate subsystems Yk. We will define Yk inductively, by constructing the maps
Φk : Yk−1 → Yk (these maps will be block codes defined on the (k + 1)-
rectangles). The main goal is to ensure that for any k the set MS(Yk) is con-
tained within an open set Vk ⊂ MS(Yc), where the sequence Vk (which we
will also define inductively) is decreasing and satisfies the following property:

For any k > 0 and any measure ν ∈ Vk , h(ν,Λk−1|AX) < εk , (7.6.6)

where Λk−1 means the partition of the symbolic array space corresponding to
the alphabet in the row number k−1 (for k = 1 that will be the trivial partition),
AX is the sigma-algebra lifted from X and εk is a preassigned decreasing to
zero sequence of positive numbers.

We have already constructed Y0. Suppose, for some k ≥ 1 we have con-
structed the systems Y0, Y1, . . . , Yk−1 (all contained in Yc) related as in the
next diagram.
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Y0
�� Φ1 ��

π0

����
��

��
��

�

πX

��

Y1

πX

����
��
��
��
��
��
��
�

�� Φ2 �� · · ·Yk−2

πX

����������������������
�� Φk−1 �� Yk−1

πX

		�����������������������������

X × T

π(1)

����
��

��
��

�

X

We assume that the maps Φi (i = 1, . . . , k− 1) are topological conjugacies by
block-codes replacing the i-rectangles occurring in Yi−1 by other i-rectangles
(also occurring in Yi−1) in a way depending only on the (i+1)-rectangle, and
leaving the rows i + 1, i + 2, . . . intact. Such codes lose the property that each
symbol determines the symbols above it, but still, the last (unchanged) row of
a (i+1)-rectangle completely determines its image. We will soon define the
code Φk on the (k+1)-rectangles.

On X × T we select the product measures μ × λ where μ ∈ MT (X), and
we let Mk−1 denote the set of their lifts to Yk−1 (against the composition of
maps that leads from Yk−1 to X × T). As we said, for any ν ∈ M0 we have
h(ν|AX) = 0. Since each Φi is a conjugacy, we also have h(ν|AX) = 0 for
any ν ∈ Mk−1. In particular, for such measures,

h(ν,Λk−1|AX) = 0.

Since the partition Λk−1 is clopen, the function ν 	→ h(ν,Λk−1|AX) is upper
semicontinuous on invariant measures (see Fact 6.6.7 item (d) with X in the
role of the factor), and thus there is an open set Vk in MS(Yc) containing
Mk−1 and contained in Vk−1 (we are assuming inductively that MS(Yk−1) ⊂
Vk−1), on which h(ν,Λk−1|AX) < εk. We can assume that Vk is a ball around
Mk−1 of some positive radius ρ. Since the metric between measures in zero-
dimensional spaces (see (7.3.1)) is convex and Mk−1 is convex, so is Vk. It is
easy to see that there exists some j ≥ k and δ > 0 such that two measures
are less than ρ apart whenever their values on every j-rectangle differ by less
than 3δ. Without loss of generality we can assume that j = k (we can achieve
this by skipping the families Fk,Fk+1, . . . ,Fj−1 in the construction; they are
contained in Fj anyway). Summarizing, we have arranged that if ν0 ∈ Mk−1

and ν ∈ MS(Yc), then

|ν(Ĉ) − ν0(Ĉ)| < 3δ for all k-rectangles Ĉ =⇒ ν ∈ Vk. (7.6.7)

Now we get back to the product system X × T. For every measure μ ∈
MT (X) the product measure μ × λ gives the value zero to the boundaries of
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the cells C of the partition A
pk

Fk
. This implies that μ × λ is a continuity point

of the map ξ 	→ ξ(C) for measures ξ on the product system. So, the condition

|ξ(C) − (μ × λ)(C)| < δ for all C ∈ A
pk

Fk
(7.6.8)

holds on some neighborhood W of μ × λ in M(X × T). By Lemma 7.6.4,
there is a neighborhood Uμ of μ in M(X) such that whenever Mn(δx) ∈ Uμ,
then Mn(δ(x,t)) satisfies (7.6.8) in the role of ξ. Out of the sets Uμ, we select
a finite cover, say Uμ1 , . . . , Uμr

, of MT (X) in M(X). The union of this cover
is an open set U around MT (X).

Without loss of generality we can assume that pk+1 is so large that Fact 6.6.1
holds for any n ≥ pk+1. That is to say, every measure of the form Mpk+1(δx)
is already contained in U , so it is contained in some Uμi

, hence Mpk+1(δ(x,t))
satisfies (7.6.8) in the role of ξ and with μi in the role of μ.

Now we go to the symbolic array space again. Let D̂ be a (k + 1)-rectangle
in Yk−1. The last row of this rectangle is unchanged (the same as in its preim-
age in Y0) so it corresponds to a fundamental (k + 1)-cell (denoted by D).
Choose a point (xD, tD) from this fundamental (k + 1)-cell and a measure
μD = μi such that Mpk+1(δxD

) belongs to Uμi
. Recall that the fundamental

k-cells partition the set Fk×T, which is invariant under the map (T ×RμD
)pk .

Thus (xD, tD) has a name under the action of (T × RμD
)pk on Fk × T with

respect to the partition into the fundamental k-cells. Take the initial block of
length q = pk+1/pk of this name. It is an ordered list of q fundamental k-cells,
each associated with a unique k-rectangle in Yk−1, so we have a sequence
of k-rectangles Ĉ1, . . . , Ĉq . Observe that the number of times a k-rectangle
Ĉ occurs in this list equals the number of times (xD, tD) visits the corre-
sponding fundamental k-cell C under the action of (T × RμD

)pk . This num-
ber equals pk+1Mpk+1(δ(xD,tD))(C). As we know, Mpk+1(δ(xD,t)D

) satisfies
(7.6.8) along with μD, i.e.,

|Mpk+1(δ(xD,tD))(C) − (μD × λ)(C)| < δ,

hence

the number of occurrences of Ĉ on the list is pk+1

(
(μD × λ)(C) ± δ

)
.

(7.6.9)

At this point we define the image of D̂ under Φk as follows: In rows 1
through k it has the ordered list of k-rectangles Ĉ1, . . . , Ĉq described above
and in the row k + 1 it retains the original contents of D̂. Observe that Φk(D̂)
satisfies the column condition; the projections of the cells corresponding to the
symbols in column n of this rectangle all contain the point TnxD.
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Figure 7.1 The code Φk.

The idea of the construction of the code Φk is shown in Figure 7.1. The
bases of the three large rectangles are the sets Fk, T (Fk), . . . , T pj−1(Fk). For
simplicity, we imagine the transformation T as the rigid translation between
these sets, except on the last one, which is mapped somehow back to Fk.
The large rectangles are Cartesian products with T (shown as the interval).
The family Fk consists, in this example, of the characteristic functions of
T i(Fk) (i = 0, 1, 2) and of two more functions (the black curves). The par-
tition AFk

of X × T is labeled {0, 1, . . . , 9}. The resulting fundamental k-
cells (enclosed by black and grey curves) are labeled 047, 048, . . . , 359 (these
are our k-rectangles). The fundamental (k + 1)-cell D in X × T correspond-
ing to the selected (k + 1)-rectangle D̂ is shown in grey (with pieces of the
enclosing functions from F

pk+1
k+1 ) and the point (xD, tD) is inside. The kth row

of D̂ is obtained by reading the labels of the fundamental k-cells along the
trajectory of (xD, tD) for q iterates of (T × Id)pk (the black dots). In this
example it starts with |057|257|258|258|057| . . . The code Φk changes this
row (and the ones above) by following the orbit of (xD, tD) under the action
of (T × RμD

)pk (the grey dots). In this example the kth row of Φk(D̂) begins
with |057|357|359|258|157| . . . Notice that the projection of the nth symbol
in both names contains the point TnxD.

For any point y ∈ Yk−1 we define its image, Φk(y), by replacing every
(k + 1)-rectangle D̂ in y by Φk(D̂). We let Yk = Φk(Yk−1). The column
condition and the fact that Φk preserves rows from k + 1 onwards ensure that
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Yk ⊂ Yc, and that Φk is a conjugacy. The crucial thing in this construction is
that the applied rotation changes from (k + 1)-rectangle to (k + 1)-rectangle
and is usually inconsistent with the rotation applied in the earlier rows. The
arrays in Yk could not be obtained as array-names for any fixed dynamics on
the product space.

We will now verify that MS(Yk) ⊂ Vk. The statement (7.6.9) can now be
interpreted as an approximation of the number of occurrences of Ĉ in Φk(D̂)
(because of the markers, Ĉ cannot occur in Φk(D̂) at a position not divisible
by pk). Further, since pk+1 is very large, the corresponding frequency (the
number of occurrences divided by the length pk+1) is nearly equal to the value
μ(Φk(D̂))(Ĉ) (recall that μ(Φk(D̂)) is the periodic measure supported by the

orbit of the sequence . . .Φk(D̂)Φk(D̂)Φk(D̂). . . ). So, (7.6.9) yields

|μ(Φk(D̂))(Ĉ) − (μD × λ)(C)| < 2δ,

for all k-rectangles Ĉ. Let νD denote the lift of μD × λ to Yk. Of course
νD ∈ Mk. Each C has null boundary for μD × λ, hence the cell C lifts to Ĉ

up to the measure νD and thus (μD × λ)(C) = νD(Ĉ). Eventually, we have

|μ(Φk(D̂))(Ĉ) − νD(Ĉ)| < 2δ.

The rest of the argument is easier. Let ν ∈ MS(Yk). In order to decide whether
ν ∈ Vk we only need to observe the values of ν on k-rectangles (see (7.6.7)).
It suffices to examine the projection of ν onto the symbolic factor of Yk consti-
tuted by the first k + 1 rows. Since Vk is convex, it suffices to examine ergodic
ν only. Every such projected ergodic measure can be approximated by periodic
measures μ(B) where B is a long rectangle occurring in the first k + 1 rows
of Yk. We can choose B as a concatenation of the (k + 1)-rectangles. The
(k + 1)-rectangles occurring in Yk have the form Φk(D̂). By Fact 7.3.2, the
periodic measure μ(B) can be very accurately replaced by the convex combi-
nation of the measures μ(Φk(D̂)). By making pk+1 large enough, we can make
all the inaccuracies affect the values on k-rectangles by no more than another
δ. In the end we get

|ν(Ĉ) − ν0(Ĉ)| < 3δ,

for all k-rectangles Ĉ, where ν0 is a convex combination of the measures νD

and still belongs to the (convex) set Mk. By the criterion (7.6.7), we have
shown that ν ∈ Vk.
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Having defined the sequence of systems Yk (subsets of Yc), we let

Y =
∞⋂

m=1

∞⋃
k=m

Yk.

In other words, Y is the set of all arrays y such that y = lim
k

yk, yk ∈ Yk.

It is easy to see that this is a closed subsystem of Yc and an extension of X .
The important observation is that any invariant measure ν on Y is in every Vk.
This follows by the same argument as the one used to show that the invariant
measures on Yk are in Vk; that argument depended only on the properties of
the (k +1)-rectangles occurring in Yk, and Y has the same (k +1)-rectangles.

To show that Y is a principal extension of X we need to show that the
conditional entropy of Y given AX is 0 for every invariant measure ν ∈
MS(Y ). For any 0 < k < k′ we have h(ν,Λk|AX) ≤ h(ν,Λk′−1|AX),
(because Λk′−1 � Λk). On the other hand, since ν ∈ Vk′ , we know that
h(ν,Λk′−1|AX) < εk′ (this is (7.6.6)). It follows that h(ν,Λk|AX) < εk′ ,
and since k′ is arbitrary, h(ν,Λk|AX) = 0. Taking the supremum over k, we
conclude that h(ν|AX) = 0.

Remark 7.6.10 Notice that the elements of the extension Y are (regardless
of surjectivity of T ) marked symbolic arrays with bilateral rows. This fact will
be used in the construction of symbolic extensions.

As an immediate application of Theorem 7.6.1 we can generalize the second
statement of Fact 7.2.4 to all systems:

Corollary 7.6.11 The entropy function μ 	→ h(μ) on MT (X) is of Young
class LU, for any dynamical system (X,T, S).

Proof We pass to the principal zero-dimensional extension. Here, the second
statement of Fact 7.2.4 holds. Since the extension is principal, the entropy func-
tion on MT (X) equals the push-down of the entropy function on the extension
(see Definition A.1.25 for the meaning of “pushing down”). It is elementary to
see that push-down preserves Young class LU.

Remark 7.6.12 Theorem 7.6.1 and the elementary proof of the Variational
Principle in dimension zero provide an alternative way of proving the “harder”
direction of the Variational Principle for general systems, as follows: Take any
system (X,T, S) and its extension (Y, S, S) as in Theorem 7.6.1. Then h(S) ≥
h(T ). By the Variational Principle in dimension zero, there exists an invariant
measure ν ∈ MS(Y ) such that h(ν, S) ≥ h(S) − ε. The image μ = πν then
satisfies h(μ, T ) = h(ν, S) ≥ h(S) − ε ≥ h(T ) − ε.
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We cannot deduce the other direction this way, because without the Vari-
ational Principle we do not know whether the extension built in the proof of
Theorem 7.6.1 preserves topological entropy (unless we reexamine the con-
struction for that).

We close this chapter by providing the missing proofs of Theorem 6.9.9 and
Theorem 6.9.10 from the preceding chapter.

Proof of Theorem 6.9.9 The task is to show that a system (X,T, S) whose
topological entropy is zero has an extension (Y, S, S), in form of a bilateral
subshift, via a map that collapses asymptotic pairs. We also need to show
that the topological entropy of (Y, S, S) is zero. The construction of sym-
bolic extensions is in general a difficult task, discussed at length in Chapter
9. This proof is an exercise on constructing symbolic extensions in the easiest
case of zero-entropy systems. By Theorem 7.6.1, Remark 7.6.10 and Lemma
6.9.4, we can immediately assume that (X,T, S) is zero-dimensional and its
elements are bilateral marked symbolic arrays. Let Rk,n denote the family of
all rectangles of height k and length n appearing in the first k rows of X .
Because the system has entropy zero, the cardinalities of these families grow
subexponentially with n, in particular for each k there exists nk such that
log #Rk,nk

< nk2−k (and the right-hand side is an integer). By dropping
some of the markers we can easily arrange that nk = pk, the length of the k-
rectangles. Now we let Rk denote the family of all k-rectangles, and we have
#Rk < 2pk2−k

. This implies that there exists an injective function (code) Φk

from all k-rectangles into the family of all binary (i.e., over {0, 1}) blocks of
length pk2−k. We can now create the symbolic extension. Initially it will be
not precisely symbolic, as its elements will consist of a pair: an element of the
odometer and a symbolic row. For each x ∈ X we create its “preimage,” y,
as follows: we take the same element of the odometer as is represented by the
markers in x. The symbolic row of y is filled inductively: Above the left half
of each 1-rectangle R of x we put in y the image of R via the code Φ1 (this
image has length exactly half of the length of R). After this step “half” of y

is filled with zeros and ones, leaving the rest to be filled in the steps to come.
In the following steps we apply an additional twist: the image Φk(R) of each
k-rectangle R in x is placed not above R but, instead, above the neighboring
k-rectangle (to the right). The contents of Φk(R) are written there into the con-
secutive free slots in that sector (starting from the left). This will use only half
of the free slots available, leaving the rest to be used in the steps to come (see
Figure 7.2).

It is easy to see that after all steps are completed, depending on the position-
ing of the markers, the symbolic row of y is either completely filled, or there
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Figure 7.2 First three steps of the construction of the symbolic preimage y
of x. The arrows show where the information is stored.

remain some unfilled slots. We fill these slots in every possible way, producing
multiple preimages for x; for this reason (Y, S, S) is not conjugate to (X,T, S),
only a topological extension. We skip the standard description of the factor
map from Y to X , which relies on simply uncoding all the k-rectangles from
the contents of appropriate places in y, located with the help of the odometer
part of y.

Now consider two different arrays x and x′ in X . If they have different
positioning of the markers, then they factor to two distinct elements of the
odometer. Any pair of their preimages y and y′ contains the same distinct pair
of elements of the odometer. Since the action on the odometer is an isometry
in an appropriate metric, such elements are never asymptotic. Now suppose x

and x′ have the same structure of markers. They must still differ at at least one
position (k, n). This implies that for every k′ ≥ k the k′-rectangles covering
this position in x and x′ are different. Then they have different images by Φk′ .
It is thus clear that the symbolic preimages y of x and y′ of x′ (any choice
of a pair of such preimages) will differ at infinitely many positions tending
toward infinity. In other words, y and y′ cannot be (forward) asymptotic. We
have proved that asymptotic pairs y, y′ must be collapsed in X .

Now we calculate the topological entropy of the extension (Y, S, S). Clearly
the odometer has entropy zero, so we only need to compute the entropy of
the symbolic row, and here it suffices to count the blocks occurring between
neighboring pairs of pk-markers (see Exercise 7.1). Take a block B in some
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y ∈ Y lying between two consecutive pk-markers. Its contents is almost com-
pletely determined by the k-rectangle of the image x positioned directly below
B. This rectangle determines all but pk2−k−1 entries in B. This implies that
the number of all such blocks B is at most the number of all k-rectangles in X

(which is not larger than 2pk2−k

) times 2pk2−k−1
. The logarithm of this product

divided by the length pk goes to zero with k. Thus h(S) = 0.
To complete the construction we must replace the odometer in the construc-

tion of Y by a symbolic system. The standard method is to extend the odome-
ter to a binary Toeplitz system of entropy zero, as described in Example A.3.4.
Such an extension induces an extension of Y to a symbolic system with two
rows; the element of the odometer will be now replaced by a symbolic row
containing the elements of the Toeplitz system. By Lemma 6.9.4, after this
modification of Y , the property that the factor map onto X collapses asymp-
totic pairs will be preserved. This ends the proof.

Proof of Theorem 6.9.10 For an arbitary system (X,T, S) with zero topolog-
ical entropy we need to find its zero-dimensional extension which is NAP (pos-
sesses no asymptotic pairs). Let (X,T, S) be the initial system (of entropy
zero). By Theorem 6.9.9, there exists a bilateral subshift extension, also of
entropy zero, say (Y1, S1, S), via a map π0 that collapses asymptotic pairs.
Applying the same theorem again, (Y1, S1, S) has a bilateral subshift exten-
sion (Y2, S2, S) via a map π1 that collapses asymptotic pairs. And so on. We
obtain a sequence of bilateral subshifts (Yk, Sk, S) bound by factor maps πk

that collapse asymptotic pairs. The zero-dimensional extension is obtained as
the corresponding inverse limit of subshifts (see Definition 6.5.11). Suppose
this inverse limit has an asymptotic pair y �= y′. By the definition of an inverse
limit, there is k such that the images yk and y′

k of y and y′ in Yk are different.
Then analogously defined yk+1 and y′

k+1 are also different in Yk+1. On the
other hand, the last pair is asymptotic, which implies that it is collapsed by πk,
i.e., that yk = y′

k, a contradiction.

Exercises

7.1 Consider a subshift which factors to the odometer to base (pk). We
can visualize this factor as a system of pk-periodic markers. Let Bk

denote the family of all blocks occurring between the pk-markers (called
k-blocks). Prove that the topological entropy of this subshift equals
limk

1
pk

log #Bk.
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7.2 Describe explicitly the natural extension of a unilateral subshift. Con-
sider separately the surjective and non-surjective cases.

7.3 Prove that every bilateral (i.e., injective) zero-dimensional dynamical
system (X,T, S) without periodic points is conjugate to a subshift over
the countable alphabet N0 ∪{∞}. (This exercise is harder than the aver-
age. The restriction on periodic points can be weakened, but not skipped.)

7.4 Using the marker technique prove that if (X,T, S) is a bilateral subshift
and has no periodic points, then it is conjugate to a subshift (Y, S, S)
over an alphabet of cardinality �2h� + 1 (as in Theorem 7.2.3).

7.5 Show by example that the assumption about periodic points in the pre-
ceding exercise cannot be skipped.
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The entropy structure

The topological entropy of a dynamical system is a rather crude measure-
ment of its complexity. In order to thoroughly understand the dynamics it
is essential not only to replace the topological entropy by the entropy func-
tion μ �→ h(μ, T ) on invariant measures, but also to replace the topological
entropy detectable in a given resolution, say h1(T, ε) or h2(T, ε), by some
function, say μ �→ h(μ, T, ε), reflecting the dynamical entropy of each mea-
sure detectable in that resolution. Such a function has not been presented in this
book yet. As we shall see, there is an essential difference between entropy of
a measure with respect to a measurable resolution, i.e., a partition (even if we
require that the cells have diameters bounded by ε) and the entropy of a mea-
sure with respect to a topological resolution, which we are about to define. The
difference is in semicontinuity properties and in the “type of convergence” to
the entropy function as the resolution refines. This type of convergence turns
out to be the most important feature in the part of entropy theory leading to
digitalization and data compression of topological dynamical systems.

The material in this section is based mainly on the paper [Downarowicz,
2005a].

8.1 The type of convergence

In this section we will try to understand what it means, for two monotone nets
of real-valued functions converging to the same limit function, to converge
“the same way,” or to represent the same “type of convergence.” We will try
to capture a kind of “multilayer defect of uniformity” in this convergence. The
common domain of the functions will be denoted by X. In the application to the
theory of entropy structure the role of X will be played by the set MT (X) of
all T -invariant measures of a topological dynamical system (X,T, S). In this
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section the letter x refers, exceptionally, to an element of X and not of X . Let
us recall that in order to avoid confusingly sounding words we use increasing
and decreasing in the meaning nondecreasing and nonincreasing, respectively.

8.1.1 Introduction to defect theory

The notions discussed in this section do not belong to the standard apparatus
in the theory of dynamical systems and may be new to many of the readers.
We will hence provide more details, intuition and elementary examples, than
in other sections.

The main subject here is an increasing net of nonnegative functions defined
on some abstract domain X,

H = (hκ)κ∈K ,

where κ ranges over a directed family K (see Appendix A.1.3) and, for all
ι, κ ∈ K,

ι ≥ κ =⇒ hι ≥ hκ .

If K is fixed, we will just write (hκ). (We could have managed with sequences,
but sometimes it will be more convenient to use nets.)

We also assume that this net converges at every point x ∈ X to a finite
limit, which we denote by h(x). By the limit function we will understand the
resulting function h : X → [0,∞). The convergence hκ ↗ h may happen to
be uniform (i.e., such that for every ε there is κ such that hκ ≥ h − ε) but in
general it is not. We are interested in classifying the nonuniform cases. Later
we will restrict our attention exclusively to the case where the domain X is
compact and metric. However, many statements of this section are valid in a
wider generality and, whenever it is possible without additional effort, we will
give the more general version.

The net H determines both its limit function h and the associated net of tails
(θκ)κ∈K, where θκ = h−hκ. Note that the net of tails converges decreasingly
to zero. Conversely, h and the net of tails determine H. In what follows we will
often switch between net H and the net of tails, and we will identify the “type
of convergence” (whatever it means) of (hκ) to h with that of (θκ) to the zero
function.

And so, the nonuniformity of the convergence hκ ↗ h (equivalently, of
the convergence θκ ↘ 0) is very crudely measured by the global defect of
uniformity:

DX = lim
κ∈K

↓ sup
x∈X

θκ(x).
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If X is a metric space, we can define the local defect of uniformity at a point:

Dx = inf
ε>0

lim
κ∈K

↓ sup
y∈B(x,ε)

θκ(y) (8.1.1)

(recall that B(x, ε) is the ε-ball around x). It is clear that Dx ≤ DX for every
x ∈ X. If Dx = 0 for all x, then we say that the convergence is locally uniform.
In general, this does not imply uniform convergence, but it does in the most
interesting, for us, case of a compact domain (see Theorem 8.1.3 below).

Somewhat surprisingly, the local defect of uniformity has to do with upper
semicontinuity. It suffices to confront the formula (8.1.1) (with the infima in
reversed order) with the definition of the upper semicontinuous envelope (see
Appendix, (A.1.18)) to see that in case when h is locally bounded (bounded on
a neighborhood of every point), each θκ is also locally bounded, and we have,
at each point,

Dx = lim
κ∈K

↓ eθκ(x). (8.1.2)

This observation leads us to studying upper semicontinuity properties of the
net of tails. These upper semicontinuity properties become the key tool in the
classification of the “types of convergence.” We begin by proving

Theorem 8.1.3 If X is compact, then

DX = sup
x∈X

Dx.

Proof We have already noted that Dx ≤ DX for every x ∈ X. If Dx =
∞ at some point, then the assertion holds. Otherwise for each x there is a
neighborhood Ux � x and an index κx such that θκx

is bounded on Ux. By
compactness, we can find a threshold index κ0 above which the functions θκ

are bounded. Then

DX = lim
κ≥κ0

↓ sup
x∈X

θκ(x) ≤ lim
κ≥κ0

↓ sup
x∈X

eθκ(x) = sup
x∈X

lim
κ≥κ0

↓ eθκ(x) =

sup
x∈X

Dx ≤ DX,

where the change of the order of sup and lim ↓ is validated by the elementary
property of decreasing nets of upper semicontinuous functions (see Appendix,
Fact A.1.24).

In some situations the local defect Dx and the global defect DX can be used
to estimate the defect of upper semicontinuity of the limit function. Recall (see
(A.1.20)) that the defect of upper semicontinuity of a function f is defined as
the difference function

...

f = ef − f .
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Fact 8.1.4 Let (hκ) be an increasing net converging to a locally bounded
limit function h on a metric space X. Assume that all functions hκ are upper
semicontinuous. Then, at every point x ∈ X we have

...

h(x) ≤ Dx,

in particular

sup
x

...

h(x) ≤ DX.

Proof Fix some x ∈ X and let U be an open neighborhood of x. Fix an ε > 0.
For any κ we have hκ(x) ≤ h(x) < h(x) + ε, so, by upper semicontinuity
of hκ, there is an open neighborhood Uκ ⊂ U of x on which hκ < h(x) + ε.
This neighborhood contains a point x′ for which h(x′) ≥ eh(x) − ε = h(x) +
...

h(x) − ε. We have

sup
y∈U

(h−hκ)(y) ≥ h(x′)−hκ(x′) > h(x)+
...

h(x)−ε−(h(x)+ε) =
...

h(x)−2ε.

Because this is true for any κ, U � x and ε > 0, we get Dx ≥
...

h(x), as needed.
The last statement follows from the inequality supx Dx ≤ DX.

The function Dx still captures only very roughly the nonuniformity of the
convergence. In fact, it captures what we call the “defect of the first order.”
The following example (more precisely, class of examples) shows that there is
something more, some “defect of higher order,” to which the function Dx is
insensitive. This makes necessary the creation of further, more delicate, tools
for our classification. The understanding of this class of examples is crucial
in the theory of entropy structures. Although it shows only an easy sample of
how complicated the defect of uniformity can be, we recommend digesting this
example thoroughly before proceeding further.

Example 8.1.5 (The pick-up sticks game) A class of examples is created in
the following manner: The space X is countable and compact. We choose an infinite
subset A ⊂ X (it can be the whole space) and order it (completely arbitrarily)
A = {x1, x2, . . . }. The net H is, in this class of examples, the sequence (hk)
defined as hk = 1I{x1,x2,...,xk}. Notice that each of these functions is upper semi-
continuous, each difference function hk −hk−1 (equal to 1I{xk}) is upper semicon-
tinuous, and the sequence converges to the function h = 1IA. The peculiar name
of the example comes from observing the tails θk = 1IA − 1I{x1,x2,...,xk}. If we
draw the “solid graph” of h by attaching to each point of A a vertical “stick” of unit
height, then the functions θk are obtained by removing the sticks one after another,
following the ordering. This resembles the pick-up sticks game.

In this class, the variety of different types of defects depends solely on the
structure of the set A and how it “sits” in X (it does not depend on the ordering
of the space). We present three cases, of increasing intricacy.
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Game 1. In the first game, the space X consists of a sequence A= {x1, x2, . . . }
(grey dots in Figure 8.1) converging to a limit point x0 ∈ X\A (the black dot).
The function θk is obtained by removing the first k sticks.

Figure 8.1 The simplest pick-up sticks game. The top picture shows the func-
tion h (the starting position for the game). The bottom picture shows the
defect function Dx.

The defect Dx is zero except at x0 where it equals 1. Notice that the same
defect function will be obtained if we include x0 in the set A (and assign to it
some position in the enumeration). This will change the limit function h; there
will be one more stick attached to the black dot, but it will be removed in a
finite move and from that moment the game will be the same as before.

Game 2. The second game is this:

Figure 8.2 The second game. The function h and the defect function.

The space is as before plus to each point xn (n ≥ 1) we attach a sequence
xn,k converging to xn. We do it so that no other accumulation points are cre-
ated. The set A now consists of all the newly added points (the grey dots in
Figure 8.2). For each black dot (except the rightmost, x0), locally the game
is a copy of that in the preceding example, hence the defect occurs at each xn
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and equals 1. Since there are infinitely many grey sticks also near the rightmost
point x0, the defect at that point also occurs and equals 1.

Game 3. The third game is played on the same space X as the preceding one,
but we change the set A, including in it all points except the rightmost point
x0. In Figure 8.3, the game is played with both dark-grey and light-grey sticks
(in any order).

Figure 8.3 The third pick-up sticks game has a different function h, but the
same defect function as the preceding game.

Each light-grey stick is removed in a finite step, and from this step onward
the game looks locally the same as in the preceding example. So, the defect
function is the same as in the preceding example. This argument does not apply
to x0, near which the game never looks the same as before, because now there
are infinitely many light-grey sticks. Nevertheless, the defect at x0 also occurs
and equals 1. So, the entire defect function is identical as in the preceding
example.

Although the function Dx is the same in the second and third games, there
is an essential difference in the “type of nonuniformity,” undetected by Dx.
Namely, if we look at the support of the defect function and observe the game
on this set only (without seeing what happens outside), then in the second
game we see nothing happening. The function h is zero here. This means that
all the defect “comes from outside.” If we do the same in the third game, the
function h will be nonzero. In fact, we will see exactly the same situation as in
the first game, which generates the defect at x0. So, in addition to the defect
“coming from outside,” there will be also a defect “coming from inside,” a
feature not present in the preceding two games. We will call it the defect of
the second order. In this game, this defect (as a function) is the characteristic
function of {x0}.

The defect of uniformity (of a convergence) of higher orders is best under-
stood in terms of defects of upper semicontinuity. Recall that a function f is
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upper semicontinuous if and only if its defect
...

f equals zero at every point. By
analogy, we introduce a new term:

Definition 8.1.6 A net of functions fκ is said to be asymptotically upper
semicontinuous if

lim
κ∈K

...

f κ(x) = 0

at every point x ∈ X.

Observe that in case of h locally bounded, by (8.1.2) we have

Dx = lim
κ∈K

↓ eθκ(x) = lim
κ∈K

↓ eθκ(x) − lim
κ∈K

↓ θκ(x) = lim
κ∈K

↓
...

θκ(x).

So, we can interpret Dx also as the “defect of asymptotic upper semicontinu-
ity” of the net of tails.

The following paragraphs contain an intuitive discussion of terms defined
formally in the next subsection.

Consider a locally bounded function f which is not upper semicontiunuous.
We can “repair it,” i.e., “make it upper semicontinuous” by adding to it its
defect function, because f +

...

f = ef is already upper semicontinuous. In fact,
...

f is the smallest nonnegative such “repair function.” By analogy, we will say
that a nonnegative function u “repairs” a net (fκ) if the net (u + fκ) is asymp-
totically upper semicontinuous. Sometimes there is no such finite function u

and the only way to “repair” a net is to add the infinity function. By repairing
a net we cannot hope to make it uniformly convergent, but at least we make
it “better” from the point of view of semicontinuity properties. The pointwise
infimum of all repair functions will be shown to be a repair function as well.
This smallest repair function (which is either finite or infinite everywhere) will
be the object of our highest interest.

Now we can illuminate the difference between the second and third pick-up
sticks games. In the second game the defect function Dx repairs the sequence
of tails (θk): all the functions Dx + θk are easily seen to be upper semicon-
tinuous (not only asymptotically, but immediately). The function Dx is in fact
the smallest repair function for this net. All this is easily seen by consulting
Figure 8.2: since all defects “come from outside” the defect function fills in all
the “bad jumps”, without creating new ones. In the third game it does not work
that way. The function Dx repairs all the defects “coming from outside,” but it
cannot repair the “defect coming from inside,” because it only shifts up the bad
jump, which remains a bad jump. The smallest repair function is, in this case,
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the sum of Dx and “defect of the second order,” the characteristic function of
{x0}. Consult Figure 8.4 below to see this.

Figure 8.4 The function Dx (black) plus 1I{x0} (dashed) repairs the net in
game 3.

8.1.2 Repair functions and superenvelopes

A superenvelope is simply a repair function plus the limit function. We will
frequently switch between one and another, depending on the convenience.
Let us verbalize the notions.

Definition 8.1.7 A function u such that (u + θκ) is asymptotically upper
semicontinuous will be called a repair function for the net (θκ), and E =
u+h will be called a superenvelope of H. By convention, the constant infinity
function is both a repair function and a superenvelope.

Except the infinity, every other repair function (and superenvelope) is finite.

Lemma 8.1.8 Any finite repair function u is upper semicontinuous.

Proof 0 = lim
κ∈K

“

˜(u + θκ) − (u + θκ)
”

= lim
κ∈K

˜(u + θκ) − u ≥ eu − u ≥ 0,

hence
...
u = 0.

Definition 8.1.9 Let uH denote the infimum of all repair functions. We let
EH = uH + h.

Lemma 8.1.10 The function uH is a (the smallest) repair function (i.e., EH
is the smallest superenvelope).

Proof The statement holds if uH ≡ ∞. If not, fix an x ∈ X and let u

be a repair function such that (u − uH)(x) < ε. Next, let κ be such that
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.............

(u + θκ)(x) < ε. Then

................

(uH + θκ)(x) = ˜(uH + θκ)(x) − (uH + θκ)(x) ≤
˜(u + θκ)(x) − (u + θκ)(x) + (u − uH)(x) < 2ε.

Among the monotone nets H we distinguish those which satisfy a special
additional semicontinuity condition.

Definition 8.1.11 An increasing net H = (hκ) of nonnegative functions is
said to have upper semicontinuous differences if for every pair of indices κ2 >

κ1 the difference function hκ2 − hκ1 (equivalently θκ1 − θκ2) is upper semi-
continuous.

In the special case of upper semicontinuous differences we have the follow-
ing easy characterization of finite repair functions (and superenvelopes):

Lemma 8.1.12 Let H = (hκ) have upper semicontinuous differences. Then
u ≥ 0 is a finite repair function for (θκ) if and only if u + θκ is upper semi-
continuous for every κ ∈ K. The above translates that E ≥ h is a finite
superenvelope if and only if E − hκ is upper semicontinuous for each κ.

Proof If the latter condition is satisfied, then u is obviously a repair function.
Conversely, let u be a finite repair function of (θκ). Fix some κ ∈ K. For every
κ′ > κ we have (using A.1.21)
.............

(u + θκ) =
.........................................

((u + θκ′) + (θκ − θκ′)) ≤
..............

(u + θκ′) +
...............

(θκ − θκ′) =
..............

(u + θκ′).

The right-hand side converges to zero pointwise with κ′, so
.............

(u + θκ) = 0.

Corollary 8.1.13 If, in addition, at least one function hκ is upper semicon-
tinuous, then every finite superenvelope E (including EH) can be represented
as a sum of upper semicontinuous functions, E = (E −hκ)+hκ, so it is itself
an upper semicontinuous function.

Although uH is usually not equal to 0 everywhere (equality holds only for
uniformly convergent nets, see Corollary 8.1.20 below), on complete metric
spaces the equality uH(x) = 0 holds on a residual set:

Theorem 8.1.14 Let H = (hκ) be an increasing net of nonnegative functions
on a metric domain, with a finite limit function h. If the function uH is finite,
then the set {x : uH(x) > 0} is of first category in X.
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Proof Recall that uH is upper semicontinuous, so, for any ε > 0, the set
{x : uH(x) ≥ ε} is closed. We will show that this set does not contain any
open set. This clearly implies the hypothesis. Suppose uH(x) ≥ ε on an open
set U . There exists a nonzero continuous function f ≤ ε which is zero outside
U . Let u = uH − f . We have u ≥ 0 and

............

(u + θκ) =
.......................

(uH + θκ − f) ≤
................

(uH + θκ) +
.....

(−f) =
................

(uH + θκ).

The last term converges to zero with κ, so u is a repair function, smaller than
uH, a contradiction.

We discuss one very special case of H, when the computation of EH is very
easy. It is the continuous case. It justifies the name “superenvelope.”

Fact 8.1.15 If all functions hκ in H are continuous, then EH = eh. If there
exists κ0 ∈ K such that hκ − hκ0 is continuous for all κ ≥ κ0, then EH =
hκ0 + eθκ0 .

Proof In the first case Corollary 8.1.13 applies, hence EH is upper semicon-
tinuous. It majorates h, so, it also majorates eh. On the other hand, for every
κ, h̃ − hκ is upper semicontinuous, so h̃ is a superenvelope. The latter case
is seen by considering the net H′ = (h′

κ)κ≥κ0 where h′
κ = hκ − hκ0 , which

falls into the first case. So, we have EH′ = h̃ − hκ0 = eθκ0 . Now we add back
the function hκ0 to both h′

κ and EH′. Since the differences do not change, we
easily see that EH′ + hκ0 is the minimal superenvelope of H.

8.1.3 The transfinite sequence

This section describes a tool allowing to determine uH (and thus EH) more
effectively, using transfinite induction. It will be widely used in the forthcom-
ing applications. The domain is some metric space X.

Definition 8.1.16 Let H = (hκ)κ∈K be an increasing net of nonnegative
functions converging to a finite limit function h. Recall that the net of tails
θκ = h − hκ is decreasing and consists of nonnegative functions. We define
the transfinite sequence associated with H by setting

u0 = uH
0 ≡ 0,

then, for an ordinal α such that uβ is already defined for all β < α, we let

uα = uH
α = lim

κ∈K
↓ å( sup

β<α
uβ + θκ).
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Notice that for each α the function uα is either the constant infinity function,
or it is finite everywhere. Clearly, the transfinite sequence (uα) is increasing.
If α has a predecessor, then in the above definition we can replace supβ<α uβ

by uα−1.
It is obvious that if uα+1 = uα on an open set U , then uβ = uα on U

for all ordinals β ≥ α. It is a trivial observation that the sequence (uα) must
stop growing at some ordinal (for instance, the cardinality of all real functions
cannot be exceeded).

Definition 8.1.17 The smallest ordinal α such that uα+1 = uα on X will be
denoted by αH

0 or simply α0 and called the order of accumulation of H.

Notice that if uα ≡ ∞ for some α, then α0 is the smallest ordinal for which
this happens. The most interesting case occurs when uα0 is finite.

Remark 8.1.18 In the papers [Boyle and Downarowicz, 2004; Downarowicz,
2005a] the definition of uα was different for limit ordinals α:

uα = s̃up
β<α

uβ.

The new definition has two advantages: it is consistent for all ordinals, and it
gives a nicer estimate in Theorem 8.1.29 below.

We will now try to interpret the transfinite sequence. First observe that the
function u1 equals lim

κ∈K
↓ eθκ, which is the same as the defect function Dx (see

(8.1.2)). We can hope that (like in our first two examples of the pick-up sticks
game) this will be the repair function for the net of tails. If not, then we look at
the “unsuccessfully repaired” net (u1 + θκ)κ and find its “defect of asymptotic
upper semicontinuity,”

lim
κ∈K

..............

(u1 + θκ) = lim
κ∈K

˜(u1 + θκ) − lim
κ∈K

(u1 + θκ) = u2 − u1.

We can try to repair the net of tails by adding both u1 plus this last function,
i.e., jointly by adding u2. In other words, u2 is the “second attempted repair
function.” In our third example this was the right function. If this fails, we can
continue in the same manner. The functions uα can be interpreted as consecu-
tive “attempted repair functions.” The key theorem below says that eventually,
in step number α0, we will succeed!

Theorem 8.1.19 Let H be an increasing net of nonnegative functions on a
metric space X, converging to a finite limit h. Then

uα0 = uH i.e., EH = uα0 + h.
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Proof At first we show that if u is any repair function, then uα ≤ u for every
α. This inequality holds for α = 0. Suppose it holds for all β < α. Then we
have

uα = lim
κ∈K

å( sup
β<α

uβ + θκ) ≤ lim
κ∈K

˜(u + θκ) = lim
κ∈K

..............

(u + θκ)+ lim
κ∈K

(u+θκ) = u.

Next we will show that uα0 is a repair function. Indeed, we can assume that
uα0 is finite everywhere (otherwise it is infinity everywhere, and what we need
is obvious), and then

................

(uα0 + θκ) = ˜(uα0 + θκ) − uα0 − θκ,

which converges pointwise to uα0+1 − uα0 = 0.

The now obvious statement below concerns a very special case:

Corollary 8.1.20 The following conditions are equivalent for an increasing
net H = (hκ) of nonnegative functions on a compact metric domain, with a
limit function h:

1. hκ → h uniformly,
2. uH ≡ 0,
3. u1 ≡ 0,
4. α0 = 0,
5. EH ≡ h.

8.1.4 Uniform equivalence

The transfinite sequence effectively captures the defects of asymptotic upper
semicontinuity, or, if one prefers, the defects of uniformity of all orders. There
is a natural equivalence relation among increasing nets of real-valued func-
tions H = (hκ)κ∈K, which preserves the above mentions defects. The equiv-
alence classes can be interpreted as “types of convergence.” The definition is
so general that it does not even require the space X to possess any topological
structure.

Definition 8.1.21 Let H = (hκ)κ∈K and H′ = (h′
ι)ι∈J be two increasing

nets of functions on a common domain X. We say that H is uniformly equiva-
lent to H′ if for every γ > 0, every κ ∈ K and every ι ∈ J there exist indices
κ1 ∈ K and ι1 ∈ J such that hκ1 > h′

ι − γ and h′
ι1 > hκ − γ at all points of

the domain. For decreasing nets of nonnegative functions (θκ), uniform equiv-
alence is defined analogously, with reversed inequalities: θκ1 < θ′ι + γ and
θ′ι1 < θκ + γ.
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Roughly speaking, two increasing (decreasing) nets are uniformly equiv-
alent if each element of one of them is nearly majorated (minorated) by an
element of the other. Note that we admit the two nets to be indexed by differ-
ent sets of indices. It is immediate to see that uniform equivalence is in fact an
equivalence relation separately among increasing and among decreasing nets
of functions on some domain X. We leave the easy verification to the reader
(Exercise 8.6).

Recall that any increasing or decreasing net of functions converges point-
wise to its pointwise supremum or infimum, respectively, called the limit
function (which a priori admits infinite values). It is clear that uniformly equiv-
alent nets share a common limit function. The limit function is hence an invari-
ant of the uniform equivalence relation. Soon we will provide a wider list of
such invariants when the domain is a metric space.

The example below justifies our choice of the name for the uniform equiv-
alence relation: uniformly convergent nets constitute an equivalence class, the
most fundamental one, in fact. The verification is immediate.

Fact 8.1.22 An increasing net H = (hκ) converges uniformly to its limit h if
and only if it is uniformly equivalent to the constant net (hι) where the indices
ι belong to an arbitrary directed family, and hι = h for every ι.

It follows directly from the definition of a subnet (see (A.1.6)) that any sub-
net of a monotone net of functions is uniformly equivalent to the whole net.
However, if we take a sub-net (i.e., a “false subnet”) obtained by restricting the
net to a subfamily of indices which is internally directed (i.e., satisfies (A.1.5))
but does not satisfy the condition (A.1.6), then the resulting net need not be
uniformly equivalent to the original net.

Example 8.1.23 Fix some nonzero function h0 ≥ 0 and let H be the “self-
indexed” net of all functions 0 ≤ h ≤ h0 not equal to h0, ordered by the usual
inequality. It is easy to see that this net converges uniformly to h0, however, it
contains many sub-nets converging to other limit functions, as well as sub-nets
converging to h0, but not uniformly. None of these sub-nets is a genuine subnet.

The key fact, which we use later to establish uniform equivalence between
some specific nets of functions on a compact domain, is the following one:

Lemma 8.1.24 Let H= (hκ)κ∈K be an increasing net of nonnegative
functions defined on a compact domain X, having a finite limit h and upper
semicontinuous differences (Definition 8.1.11). Let K′ ⊂ K be a directed sub-
family of K not necessarily indexing a subnet. Then the corresponding sub-net
H′ = (hκ′)κ′∈K′ is uniformly equivalent to H if and only if it converges to h.
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Proof One implication is obvious since uniformly equivalent nets have the
same limit function. It is also obvious that every element of the net H′ is dom-
inated by one from the net H, namely by itself. For the converse, we fix some
κ ∈ K and for each κ′ ∈ K′ we choose in K a successor of both κ and κ′,
denoted κ∨ κ′. By assumption, hκ′ converge with κ′ to h. The function hκ∨κ′

lies between hκ′ and h, so the net (hκ∨κ′)κ′∈K′ also converges to h. Thus
the functions hκ∨κ′ − hκ′ converge to 0 with κ′. Also, by assumption, they
are upper semicontinuous. This convergence, however, need not be monotone.
We let

gκ′ = inf
κ′′≤κ′

(hκ∨κ′′ − hκ′′).

This is already a decreasing to zero net of nonnegative upper semicontinuous
functions on a compact domain. By compactness and Fact A.1.14, it converges
uniformly, which implies that for every γ > 0 there exists some κ′ ∈ K′ with
gκ′ < γ. Since hκ∨κ′′ ≥ hκ and hκ′′ ≤ hκ′ for every κ′′ ≤ κ′, we have
gκ′ ≥ hκ − hκ′ (the right-hand side no longer needs to be nonnegative, but it
does not matter). This implies that hκ − hκ′ < γ, i.e., hκ′ > hκ − γ.

Now comes the feature of the uniform equivalence relation that is most
important for us: preservation of superenvelopes and of the entire transfinite
sequence. We gather here all other invariants (that we know) of the uniform
equivalence relation. Easy examples show that this set of invariants is not com-
plete.

Theorem 8.1.25 Let H = (hκ)κ∈K and H′ = (h′
ι)ι∈J be a pair of uniformly

equivalent increasing nets of nonnegative functions defined on a metric space
X, with finite limit functions h and h′, respectively. Then

1. h = h′,

2. H and H′ have the same superenvelopes (and repair functions),

3. uH
α = uH′

α for every ordinal α,

4. αH
0 = αH′

0 ,

5. EH = EH′.

Proof The common limit function statement is obvious. The infinite repair
function is common to all nets. Consider a finite repair function u for the net
of tails of H. Fix a point x ∈ X and a γ > 0. Let κ be such that both hκ(x) >

h(x)−γ and
.............

(u + θκ)(x) < γ. Let ι be such that h′
ι > hκ −γ, i.e., hκ −h′

ι <

γ (at all points). Then ˜(hκ − h′
ι) ≤ γ. Since h′

ι(x) ≤ h(x), we also have
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h′
ι(x) − hκ(x) < γ. Letting θ′ι = h − h′

ι we write

..............

(u + θ′ι)(x) ≤
.............

(u + θκ)(x) +
...............

(hκ − h′
ι)(x) =

.............

(u + θκ)(x) + ˜(hκ − h′
ι)(x) − (hκ(x) − h′

ι(x)) ≤ 3γ.

We have proved that u is a repair function for the net of tails (θ′ι) of H′.
To see that H and H′ produce the same transfinite sequence first note that

uniform equivalence of H and H′ implies uniform equivalence of their corre-
sponding nets of tails, (θκ) and (θ′ι), which in turn implies the uniform equiva-
lence of the nets (eθκ) and (eθ′ι). Since uniformly equivalent nets have the same
limit, the function u1 is common. Next we proceed by an obvious induction,
using one more trivial observation, that if we add a common function to two
uniformly equivalent nets, we obtain two uniformly equivalent nets.

The last two statements are direct consequences of the preceding ones.

8.1.5 The order of accumulation*

Although the order of accumulation α0 does not play a crucial role in the fol-
lowing sections, when applied to the entropy structure it becomes a new invari-
ant of topological conjugacy (as we will show in the sequel), allowing us to
classify all topological dynamical systems into ω1 classes. Such classification
was completely unknown until recently, and hence the order of accumulation
may have some independent interest of its own [see e.g. Burguet and McGoff,
in print; McGoff, in print].

Given an increasing net H of nonnegative functions on a metric space X, we
can refine the notion of the order of accumulation α0 of H, so that it becomes
a function on X:

Definition 8.1.26 For each point x ∈ X we define the order of accumulation
of H at x, denoted α0(x), as the smallest ordinal α such that uα(x) = uα0(x).

It is obvious that α0 = supx∈X α0(x).

The following theorem motivates the terminology “order of accumulation
of H.” We begin by a slight modification of a definition from general topology
(see e.g. Cantor–Bendixson level in [Hart et al., 2004, section g-2 Scattered
Spaces]):

Definition 8.1.27 A point x in a topological space X has topological order of
accumulation 0 when it is an isolated point, i.e., when {x} is open. Inductively,
for an ordinal α, x is (an accumulation point) of topological order α if it is an
isolated point relatively in the (closed) set of all points which are not of order
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smaller than α. The topological order of accumulation of a point x will be
denoted by ord(x).

The above induction starts only in spaces with isolated points, otherwise
no point has a defined order of accumulation. Among compact spaces, only
countable spaces have this order defined everywhere. The function x �→ ord(x)
is then upper semicontinuous, hence attains its maximum (this is true also for
functions with ordinal values) denoted ord(X) and called the topological order
of accumulation of X, which is a countable ordinal (we skip the proofs of these
purely topological facts).

Remark 8.1.28 The above can be expressed in terms of the Cantor–Bendixson
derivative [see e.g. Sierpinski, 1952], as follows. Given a set A ⊂ X, the derived
set A′ is A minus the isolated (relatively in A) points of A. We let X0 = X and
if Xα is defined for an ordinal α, then we let Xα+1 = (Xα)′. For a limit ordinal
α, Xα is defined as the intersection

T

β<α Xβ. Clearly, there exists an ordinal
α0 (called the Cantor–Bendixson rank of X) such that Xα0 = Xα0+1, i.e., Xα0

is a perfect set (which, of course, can be empty). The topological order of accu-
mulation of a point x is defined outside this perfect set and coincides with the
largest ordinal α such that x ∈ Xα. The Cantor–Bendixson Theorem [see e.g.
Sierpinski, 1952] asserts that in a separable metric space (in particular, compact
metric), the perfect part is either empty or uncountable, while its complement
is at most countable. If X is countable, then its perfect part is empty, and then
ord(X) coincides either with the Cantor–Bendixson rank of X (if the latter is a
limit ordinal), or else with that rank minus one.

Theorem 8.1.29 Let X be a compact metric space. Let H be an increasing
net of nonnegative functions on X. Then at each point x, such that ord(x) is
defined, the order of accumulation of H at x does not exceed the topological
order of accumulation of x: α0(x) ≤ ord(x). In particular, if X is countable,
we have αH

0 ≤ ord(X).

Proof We will prove that every point x, at which ord(x) is defined, has an
open neighborhood Ux where uord(x)+1 = uord(x). This clearly implies that
the transfinite sequence at x does not grow above uord(x), as claimed.

If x is an isolated point, then Ux = {x} is a neighborhood of x and, since
eθκ(x) = θκ(x) for every κ, we have u1(x) = 0, i.e., uord(x)+1 = uord(x)

on Ux.
Take an ordinal α and assume we have proved that every point y with

ord(y) < α has a neighborhood on which uord(y)+1 = uord(y). As we have
noted, then the transfinite sequence does not grow at y above uord(y), in par-
ticular, uα+1(y) = uα(y). Now take a point x with ord(x) = α. There is a
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neighborhood Ux of x which contains only x and points y of topological order
of accumulation smaller than α, for which uα+1(y) = uα(y). Thus, it remains
to check that uα+1 = uα at the point x. We have

uα+1(x) = lim
κ∈K

↓ ˜(uα + θκ)(x) = lim
κ∈K

↓ inf
V

sup
y∈V

(uα + θκ)(y) =

inf
V

lim
κ∈K

↓ sup
y∈V

(uα + θκ)(y),

where V ranges over all neighborhoods of x. It suffices to take V such that
V ⊂ Ux.

Consider two cases: (a) For some V there is a subnet such that for each index
κ in this subnet, the supremum over y is attained at x. Restricting to this V and
this subnet, we can write

uα+1(x) ≤ lim
κ∈K

↓ (uα + θκ)(x) = uα(x).

In the complementary case (b), for every V and all sufficiently large κ, we can
replace the supremum over V by the (perhaps larger) supremum over V \ {x}.
On the latter set uα(y) = uord(y)(y) where ord(y) < α, so uα = supβ<α uβ.
Thus

uα+1(x)= lim
κ∈K

↓ inf
V

sup
y∈V

(uα + θκ)≤ inf
V

lim
κ∈K

↓ sup
y∈V \{x}

(sup
β<α

uβ + θκ)(y)≤

≤ inf
V

lim
κ∈K

↓ sup
y∈V

å( sup
β<α

uβ + θκ)(y).

Since V is compact, we can apply Fact A.1.24 to the last expression. This
yields

uα+1(x) ≤ inf
V

sup
y∈V

lim
κ∈K

↓ å( sup
β<α

uβ + θκ)(y) = inf
V

sup
y∈V

uα(y) =

Ýuα(x) = uα(x),

where the last equality follows from upper semicontinuity of uα.

The reason we are mostly interested in countable ordinals is in the theorem
below:

Theorem 8.1.30 If H is an increasing net of nonnegative functions on a
compact metric space X, then αH

0 is countable.

Proof Let Xα = {(x, t) ∈ X × [0,∞] : 0 ≤ t ≤ uα(x)}. Since uα is upper
semicontinuous, this is a compact set. The space of all compact subsets of
X × [0,∞] is compact (in the Hausdorff metric dist), and α < β < γ implies
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dist(Xα,Xβ) ≤ dist(Xα,Xγ) (by inclusion). Therefore, for any positive ε,
there can be only finitely many α such that dist(Xα,Xα+1) > ε. Together,
there are at most countably many α such that dist(Xα,Xα+1) > 0, hence
dist(Xα0 ,Xα0+1) = 0 for some countable ordinal α0 (which is equivalent to
uα0 = uα0+1).

We end this section with a statement proved in [Burguet and McGoff, in
print], whose proof is too long and too complicated to be included in this book.

Fact 8.1.31 For every countable ordinal α there exists a countable compact
space X with ord(X) = α, and an increasing sequence H = (hk)k∈N of upper
semicontinuous nonnegative functions with upper semicontinuous differences,
converging to a bounded limit, such that α0(x) = ord(x) at every point. In
particular, αH

0 = α.

8.2 U.s.d.a.-sequences on simplices

This section is devoted to the special case of so-called u.s.d.a.-sequences de-
fined on a Choquet simplex K. The abbreviation stands for upper semicon-
tinuous differences and affine. In fact, we assume also that the functions hk

alone are upper semicontinuous. This additional assumption can be replaced by
the usual upper semicontinuous differences condition for the sequence (hk)k≥0

enhanced by h0 ≡ 0. We neglect to articulate this additional requirement in
the abbreviation. Below we prove a number of further facts concerning such
sequences, which will be extensively used later for entropy structures.

Definition 8.2.1 By a u.s.d.a.-sequence we shall mean an increasing
sequence H = (hk)k∈N of upper semicontinuous affine functions with upper
semicontinuous differences, defined on a Choquet simplex K.

8.2.1 Alternative computation of EH
The first fact does not use affinity assumption. Recall that the other assump-
tions alone imply that any finite function E ≥ h is a superenvelope if and only
if all difference functions E − hk are upper semicontinuous, and E is upper
semicontinuous and hence bounded (see Lemma 8.1.13 and Corollary 8.1.12).

Definition 8.2.2 Let H = (hk)k≥0 be the sequence enhanced by h0 ≡ 0.
By a topping of H we shall mean any sequence G = (gk)k≥1 of continuous
functions satisfying gk ≥ hk − hk−1. By ΣG we will mean the sum

P∞
k=1 gk.
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Fact 8.2.3 If H is an increasing sequence of nonnegative upper semicon-
tinuous functions with upper semicontinuous differences defined on a compact
domain X, then

EH = inf
G
ÝΣG,

where the infimum is taken over all toppings G of H. There exists a topping G
such that

sup
x∈X

EH(x) = sup
x∈X

ΣG(x).

Proof Notice that the set of all toppings of H is a directed family: G = (gk) is
a successor of G′ = (g′k) when gk ≤ g′k for every k, and the common successor
of two toppings G,G′ is obtained as the sequence of the pointwise infima of gk

and g′k. Thus the infimum in the first assertion of the theorem is in fact the limit
of a decreasing net (indexed by G). Fix a k. We have

lim
G

↓ ÝΣG = lim
G

↓
“

X

i≤k

gi + ˜
X

i>k

gi

”

= lim
G

↓
“

X

i≤k

gi

”

+ lim
G

↓
“

˜
X

i>k

gi

”

(we are using the easy fact that a continuous function can be pulled off the
upper semicontinuous envelope). For a fixed i, gi decreases (with G) to the
upper semicontinuous function hi − hi−1, hence the first limit equals
P

i≤k(hi − hi1) = hk. So, the displayed formula shows that lim
G
ÝΣG − hk is

upper semicontinuous (the last displayed limit is either finite and upper semi-
continuous or both sides are constant infinite). Thus, the function lim

G
ÝΣG is a

superenvelope of H, and hence it is not smaller than EH. We need to show
the reversed inequality. Suppose EH is finite (otherwise the case is trivial). Let
g ≥ EH be continuous. We will construct a topping G with ΣG ≤ g. This
will end the proof because then also ÝΣG ≤ g and, taking infimum over g,
ÝΣG ≤ EH (since EH is upper semicontinuous, it equals the infimum of all
such functions g).

We proceed inductively: It is clear that

h1 − h0 = h1 ≤ g − (EH− h1),

and the assumptions of the Sandwich Theorem A.2.26 hold for the inequality.
Thus there is a continuous g1 in between. Suppose we have found continuous
functions g1, g2, . . . , gk such that gi ≥ hi − hi−1 (i = 1, 2, . . . , k), and

X

i≤k

gi ≤ g − (EH− hk)



246 The entropy structure

(this was true for k = 1). This can be rewritten as

hk+1 − hk ≤ g −
X

i≤k

gi − (EH− hk+1),

and again, the assumptions of the Sandwich Theorem are fulfilled. Thus, a
continuous gk+1 exists between the sides. The inductive assumption is now
satisfied for k + 1. In this manner a topping G = (gk) of H has been con-
structed. Since each EH − hk is nonnegative,

P

i≤k gi ≤ g holds for each k,
and so ΣG ≤ g, as desired.

The proof of the second assertion of the theorem consists in applying the
last argument to the constant function g = supx∈X EH(x).

In the sequel we shall use the full strength of the u.s.d.a.-sequences. We say a
topping G of H is offset if gk > hk−hk−1 (at each point) for every k. A topping
is affine simply when it consists of affine functions. Recall that bf denotes the
upper semicontinuous concave envelope of f (see Definition A.2.2)

Fact 8.2.4 Let H be a u.s.d.a.-sequence defined on a Choquet simplex K. The
following equalities hold:

EH = inf
GA

ÝΣGA = inf
GA

ÓΣGA = inf
G′

A

ÓΣG′
A = lim

G′
A

↓ ÓΣG′
A,

where GA ranges over all affine toppings of H, and G′
A ranges over all affine

offset toppings of H. The function EH is concave.

Proof Obviously, in the formula EH = infG ÝΣG of Fact 8.2.3, we can take
the infimum only over offset toppings. Then (using the Combined Separation
Theorem A.2.29), every such topping dominates an affine topping GA. This
proves the first equality. The second equality holds because the function ΣGA

is either finite and then affine or it attains infinity at some point, hence, in both
cases, the applications of e and of b produce the same function (see Fact
A.2.5). At this point we note that EH is concave (if finite), and then by upper
semicontinuity, supharmonic. The third equality is obvious and the last one
follows because (by Theorem A.2.29 again) the affine offset toppings form a
directed family.

Another function of interest to us in this case is

EAH = inf
EA

EA,

the pointwise infimum of all affine superenvelopes of H. This is also a concave
nonnegative upper semicontinuous function. But this is in fact not a new object.
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Theorem 8.2.5 For a u.s.d.a.-sequence on a Choquet simplex K we have

EAH = EH, inf
EA

sup
x∈K

EA(x) = sup
x∈K

EH(x).

Remark 8.2.6 Note that since the affine superenvelopes usually do not form
a directed family (see Example 8.2.17), the second equality is not a direct con-
sequence of the first by simply exchanging suprema and infima (Fact A.1.24).

Proof of Theorem 8.2.5 The inequalities “≥” are obvious and equalities hold
if EH ≡ ∞. Suppose EH is finite (hence bounded) and let g be an affine
continuous function above the (finite) sum of some fixed affine topping: g ≥
ΣGA, GA = (gk)k≥1. We will find an affine superenvelope EA below g. Set

EA = g − (ΣGA − h).

This EA is an affine function not larger than g. Moreover, for each k ∈ N,

EA − hk = (g − ΣGA) +
∞
X

i=k+1

(hi − hi−1) =

g −
k
X

i=1

gi −
∞
X

i=k+1

(gi − (hi − hi−1)) ,

which is nonnegative (see middle expression) and upper semicontinuous (each
gi − (hi −hi−1) is lower semicontinuous and so is the sum as a nondecreasing
limit). So, EA is an affine superenvelope of H. Thus EAH ≤ ÓΣGA. But this is
true for any affine topping GA, so, by Fact 8.2.4, EAH ≤ EH.

For the second statement let g ≡ supx∈K EH(x) + ε. Using the elementary
Fact A.1.14 and the fact that the family of all affine offset toppings is directed,
we can find an affine offset topping G′

A with gΣG′
A < g. The above argument

now produces an affine superenvelope EA below supx∈K EH(x) + ε, which
ends the proof.

8.2.2 The case of a Bauer simplex

Recall that a Bauer simplex is a Choquet simplex whose set of extreme points
is compact. We will use the harmonic prolongation and the barycenter map.
All these notions are explained in the Appendices A.2.4 and A.2.5.

Fact 8.2.7 If H is a u.s.d.a.-sequence defined an a Bauer simplex K, then the
restriction map is a 1-1 correspondence between all affine superenvelopes of
H and all superenvelopes of H|exK.



248 The entropy structure

Proof We begin with any superenvelope E (defined on exK) of H|exK.
Applying the harmonic prolongation and since hk = (hk|exK)har for every
k, we get Ehar − hk = (E − hk|exK)har, which is nonnegative and upper
semicontinuous. So, Ehar is a superenvelope of H and it is clearly affine. Con-
versely, if E′ is an affine superenvelope of H on K, then, by restricting the
upper semicontinuous differences E′ − hk to exK, we obtain upper semicon-
tinuous functions E′|exK − h|exK. So, E′|exK is a superenvelope of H|exK. If
E′ is obtained from the initial E by harmonic prolongation, then, by the 1-1
correspondence on upper semicontinuous functions, E′|exK = E.

The above implies, in particular, that among affine superenvelopes of H
there exists the smallest one (it is the harmonic prolongation of the smallest
superenvelope of H|exK). Combining this with Theorem 8.2.5 we conclude:

Theorem 8.2.8 If H is a u.s.d.a.-sequence defined on a Bauer simplex K,
then

EH = (E(H|exK))har.

In particular, EH is affine.

In Example 8.2.17 we will show that for general Choquet simplices the situ-
ation may be significantly different: the smallest affine superenvelope need not
exist, even more: every affine superenvelope may exceed the pointwise supre-
mum of EH. This example will also show that affine superenvelopes need not
form a directed family (because the limit would equal the smallest superenve-
lope and it would be affine).

Now, we take a look at the transfinite sequence and the order of accumu-
lation of a sequence H defined on a Bauer simplex K. If f is a measurable,

bounded from at least one side, function defined on exK, then ( ef)
har

= gfhar

(this follows by the 1-1 correspondence of Fact A.2.25). It is thus very easy to
see (tracing the transfinite construction) that:

Fact 8.2.9 If K is a Bauer simplex, H is a sequence of nonnegative measur-
able functions on exK and H′ is defined on K as the harmonic prolongation of
H (or, we can start with a sequence H′ of harmonic functions on K and define
H by restriction to exK, see Fact A.2.19), then, for every ordinal α, we have
uH′

α = (uH
α )har. In particular, the order of accumulation of H′ is the same as

that of H.
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8.2.3 Lifting and push-down techniques

We return to u.s.d.a.-sequences defined on a general Choquet simplex K. There
is a natural Bauer simplex M associated with K namely the simplex of all prob-
ability measures carried by the compact set exK. The barycenter map bar(·)
is an affine continuous map from M onto K. In the statements provided in
this section, we will use this (larger) simplex and take advantage of the simple
form of the smallest superenvelope on a Bauer simplex shown in the preceding
section to prove facts about the smallest superenvelope on K.

For a function f on K, by fM we denote the lift of f to M against the
barycenter map, i.e., the composition f ◦ bar. For a function f defined on M,
on K we define the push-down f [K] of f by the formula

f [K](x) = sup{f(ξ) : ξ ∈ M, bar(ξ) = x}

(see also Appendix A.1.6).

Theorem 8.2.10 Let H be a u.s.d.a.-sequence on a simplex K. Then

sup
x∈K

EH(x) = sup
x∈exK

EH(x).

From the proof we isolate a lemma, which we will use once more, later.

Lemma 8.2.11 We have

EH = (E(HM))[K].

Proof If E is a superenvelope of HM, then the push-down function E[K] is a
superenvelope of H. Indeed, since each of the functions hM

k in the lift HM is
constant on the fibers by the barycenter map, (E−hk)[K] equals E[K]−hk. On
the other hand, as a push-down of an upper semicontinuous function it is upper
semicontinuous (see Fact A.1.26). So, E[K] is a superenvelope of H. Applying
this to E(HM) we get that the right-hand side function in the assertion of the
lemma is a superenvelope of H. Also, it must be the minimal one since if there
were a smaller one, its lift to M would become a superenvelope of HM, strictly
smaller, at some point, than E(HM), which is impossible.

Proof of Theorem 8.2.10 By Theorem 8.2.8, the assertion holds on Bauer
simplices. For a general simplex K we write

sup
x∈K

EH(x) ≥ sup
x∈exK

EH(x) = sup
x∈exK

(E(HM))[K](x) ≥ sup
y∈exM

E(HM)(y)

= sup
y∈M

E(HM)(y) = sup
x∈K

(E(HM))[K](x) = sup
x∈K

EH(x),
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applying Lemma 8.2.11, the theorem already proved for the Bauer simplex M,
and Lemma 8.2.11 again.

In Example 8.2.18 we will show that the closure mark over exK in the for-
mulation of the theorem cannot be dropped (unless K is Bauer, of course).

We can further refine the above statements (Theorem 8.2.10 and Lemma
8.2.11), by providing a formula allowing us to fully retrieve EH from the
smallest superenvelope of H restricted to exK. The formula combines all the
techniques used by us so far in the context of simplices (restriction, harmonic
prolongation and push-down; lifting is also used implicitly by treating the
points in exK as the extreme points of M, and will be used explicitly in the
proof). Despite their unpleasant graphic appearance, this formula, and that in
the next lemma, are very useful.

Theorem 8.2.12 If H is a u.s.d.a.-sequence on a simplex K, then

EH =
“

`

E(H|exK)
´harM

”[K]

,

where ·harM denotes the harmonic prolongation of a function defined on exK

onto the Bauer simplex M, and ·[K] is the push-down onto K via the barycenter
map from M to K.

Proof By Theorem 8.2.8, on M, the smallest superenvelope E(HM) equals
(E(HM|exM))harM . But exM = exK and HM|exM equals H|exK, so we can
write

E(HM) =
`

E(H|exK)
´harM .

Now we apply the push-down operation ·[K] to both sides, and, using Lemma
8.2.11, replace the left-hand side by EH.

We continue with the technical lemmas.

Lemma 8.2.13 Let h be a harmonic function on a simplex K. Let h0 be
defined as h · 1IexK. Then, with the notation established above,

eh =
“

`

h̃|exK
´harM

”[K]

=
“

`

h̃0|exK
´harM

”[K]

,

where the upper semicontinuous envelope is relative on the set exK.

Proof Let x ∈ K. One of the measures supported by exK with barycenter
at x is ξx (the unique measure supported by exK with barycenter at x), so the

right-hand term evaluated at x is not smaller than
`

h̃0|exK
´harM(ξx), which is

not smaller than
`

h0|exK
´harM(ξx) which equals

R

h0 dξx, which is the same
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as
R

h dξx. Because h is harmonic, this is h(x). So the right-hand side function
is not smaller than h and since it is upper semicontinuous (use Fact A.2.25
and Fact A.1.26) it is not smaller than eh. Clearly, the right-hand side is not

larger than the middle expression, which, evaluated at x equals
`

h̃|exK
´harM(ξ)

for some ξ supported by exK with barycenter at x (the attainment follows
from upper semicontinuity and since the fiber of x by the barycenter map is
compact). The latter equals

Z

h̃|exK dξ.

Notice that the meaning of e here is different than when we write eh. Here, one
has to consider majorating continuous functions defined only on exK. Thus, at

each point of exK, h̃|exK is not larger than eh (which is evaluated in the wider

context of K). Thus the last integral does not exceed
R

eh dξ, which, by the

supharmonic property of eh (see Fact A.2.5) does not exceed eh(x).

Below we give an effective way of determining that a particular function
is a repair function. This applies not only to u.s.d.a.-sequences, but to any
sequence defined on a simplex, for which the tails θk are harmonic. This lemma
will become essential later, when dealing with symbolic extensions of smooth
interval maps.

Lemma 8.2.14 Let (θk)k∈N be a decreasing to zero (pointwise) sequence of
nonnegative harmonic functions on a simplex K. Let u be a nonnegative upper
semicontinuous harmonic function on K. Suppose that for every x ∈ exK and
every γ > 0 the inequality

θk(y) ≤ u(x) − u(y) + γ (8.2.15)

holds for some k (depending on x) and all y ∈ exK belonging to some open
neighborhood of x. Then u is a repair function for the sequence (θk).

Proof Denote θk,0 = θk ·1IexK. For x ∈ exK the assumption (8.2.15) implies

(θk,0 + u)(y) ≤ u(x) + γ, (8.2.16)

for all y ∈ exK near x. For non-extreme y near x, by the upper semicontinuity
of u, we have u(y) ≤ u(x) + γ, which we can also write as (8.2.16), because
now θk,0(y) = 0. Altogether, on exK, we have obtained

˜(θk,0 + u)(x) ≤ u(x) + γ.

The above is valid if e is taken on exK only. Passing to the limit, we get

lim
k

˜(θk,0 + u) = u
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pointwise on exK. Via the Lebesgue Dominated Theorem, this implies

lim
k

`

˜θk,0 + u
´harM = (u|exK)harM = uM,

where the last equality is a simple consequence of u being harmonic. On each
fiber (which is compact) of the barycenter map from M to K, we have obtained
a decreasing sequence of upper semicontinuous functions (the harmonic pro-
longation preserves upper semicontinuity on Bauer simplices), so, we can use
the elementary Fact A.1.24 to get

lim
k

“

`

˜θk,0 + u
´harM

”[K]

= (uM)[K] = u.

Now we invoke Lemma 8.2.13: Because θk + u is harmonic and

θk + u ≥ θk,0 + u ≥ (θk + u)0

(where (θk + u)0 = (θk + u) · 1IexK), we have

“

`

˜θk,0 + u
´harM

”[K]

= ˜(θk + u),

withe on the right taken already on K. We have proved the pointwise conver-
gence on K:

lim
k

˜(θk + u) = u.

Now we subtract θk + u from both sides and since θk → 0 pointwise, we get
............

(θk + u) → 0,

i.e., u is a repair function for the sequence (θk).

We end this section with examples of some pathologies.
Note that if H is u.s.d.a.-sequence on a simplex which is not Bauer, then EH

is a concave function, without necessarily being affine. This is the case where
the minimal affine superenvelope does not exist. The next example shows an
even worse scenario.1

Example 8.2.17 There exists a u.s.d.a.-sequence H for which

sup
x∈K

EA(x) > sup
x∈K

EH(x),

for every affine superenvelope EA of H. Moreover, in this example EH = eh, which
implies that supx∈K EH(x) = supx∈K h(x).

1 The idea of this example was suggested by R. Phelps.
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Let K be the Choquet simplex whose set of extreme points consists of a point
b1, a sequence (an)n≥1 converging to b1, and a sequence (bn)n≥2 converging to

b =

∞
X

n=1

2−nan.

Define H = (hk), by letting hk = (1I{b1,b2,...,bk})
har (see Figure 8.5).

Figure 8.5 The extreme points of K and the point b. The shaded area sym-
bolizes the “span” of the points an, to which b belongs. On the restriction to
this set we play the pick-up sticks game with the black sticks.

Since both h1 and the differences hk − hk−1 for k ≥ 2 are harmonic prolon-
gations of the upper semicontinuous and convex functions 1I{bk}, they are, by Fact
A.2.20, upper semicontinuous (and obviously affine). So H is a u.s.d.a.-sequence.
To compute EH we will use Theorem 8.2.12. The restriction of H to exK is pre-
cisely the pick-up sticks game as in Example 8.1.5, Game 1, and its smallest superen-

velope equals 1 at each bn and at the limit point b. This is precisely h̃|
exK

. So, EH

equals
ĂĂ

h̃|
exK

ŁharM
Ł[K]

which, by the first equation in Lemma 8.2.13, equals eh.

In particular, the maximal value of EH is 1.
Now suppose EA is an affine superenvelope of H not exceeding 1. Clearly,

EA(bn) = 1 for each n ≥ 1. By upper semicontinuity, EA(b) = 1. Because

1 = EA(b) =

∞
X

n=1

2−nEA(an),

EA must equal 1 at all points an (n ≥ 1). But now EA − h1 is not upper semi-
continuous, because it has a “bad” jump at b1. We have proved that every affine
superenvelope exceeds 1 at some point. This concludes the proof of the desired
properties. (It is easy to see what an affine superenvelope looks like: it slightly
exceeds 1 at some point an0 , which allows it to decrease to zero at the points an

with large n.)

Example 8.2.18 Here is an easy example of a u.s.d.a.-sequence H such that

sup
x∈K

EH(x) > sup
x∈exK

EH(x).

Consider a simplex whose extreme points consist of two elements a0, a1 and a
sequence (an)n≥2 converging to b = 1

2
(a0 + a1). Set hk = (1I{a0,a1,a2,...,ak})

har
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(so that h1(a0) = h1(a1) = h1(b) = 1). The restriction to exK is a sequence
whose smallest superenvelope equals 1 on exK and 2 at b (just like in Example
8.1.5, Game 1, the version with x0 included in the set A). This is preserved by the
harmonic prolongation to M and then by the push-down to K. By Theorem 8.2.12
we have just proved that EH equals 1 at all the extreme points of K and 2 at the
(unique) nonextreme point b belonging to the closure of exK.

8.3 Entropy of a measure with respect to a topological
resolution

There are numerous ways to define the entropy of a measure with respect to
a topological resolution. As we know, the resolution itself can be represented
in many ways: either by a positive distance ε, or by an open cover, or even
(as we shall explain) by a family of continuous functions. For some of these,
there are still multiple ways to define the notion. But, as we will show, all of
these notions, treated as nets indexed by the resolution, are mutually uniformly
equivalent on the simplex of invariant measure.

8.3.1 Three definitions

We begin with entropy of a measure with respect to an open cover as defined
by Pierre-Paul Romagnoli [Romagnoli, 2003]. Let U be an open cover of X .
For an invariant measure μ, we define:

Definition 8.3.1

H(μ,U) = inf{H(μ,P) : P � U},
h(μ, T,U) = lim

n

1
nH(μ,Un),

where P denotes a measurable partition and P � U means that each element
of P is contained in some element of U.

Note that the limit defining h(μ, T,U) is the same as the infimum, because
the corresponding sequence is easily seen to be subadditive (Exercise 8.10).

Since the family of all open covers is directed, we have in fact a net of fun-
ctions on MT (X), indexed by U. It is obvious that this net increases.

Remark 8.3.2 In the above definitions we can replace the topological resolu-
tion associated with the cover U by one associated with the distance ε > 0. For
that, the condition P � U should be replaced by diam(P) < ε. In this manner
one obtains a variant of the above notion, h(μ, T, ε), the entropy of a measure
with respect to ε. This time the subadditivity need not hold, so the limit must
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be replaced by, say, lim sup. Now we have a net indexed by the directed family
of positive numbers ε (ordered by the reversed inequality). It is easy to see that
this net also increases. See also Exercise 8.11.

Assume that U = {U1, . . . , Ul} is a finite open cover of X . By PU we will
denote the partition generated by U, i.e., the partition by the sets of the form

AF =
\

i∈F

Ui ∩
\

i/∈F

U c
i , (8.3.3)

where F is a finite subset of {1, 2, . . . , l}. The following fact is important.

Fact 8.3.4 If U is a finite cover, then the infimum in the definition of H(μ,U)
is achieved on a partition P measurable with respect to PU.

Remark 8.3.5 [Romagnoli, 2003] contains a stronger fact: the infimum is
achieved on a partition of the form

P = {U1, U2 \ U1, U3 \ (U1 ∪ U2), . . . , Ul \ (U1 ∪ · · · ∪ Ul−1)},

where {U1, . . . , Ul} is some ordering of U.

Proof of Fact 8.3.4 First notice that the infimum of the entropy is attained on
partitions P having at most l elements, each element of the cover containing at
most one element of the partition. Indeed, two elements of the partition con-
tained in the same element of the cover can be added together, which produces
a new partition inscribed in U, and of lower entropy.

We order every such a partition P = {A1, . . . , Al} (some of the sets Ai

may be empty) in the unique way satisfying Ai ⊂ Ui for each i. Notice that
P induces a partition of every set AF (defined in (8.3.3)) by the sets AF,i =
AF ∩ Ai such that i ∈ F . In fact, this is a 1-1 correspondence; if we partition
each of the sets AF arbitrarily into some sets AF,i indexed by i ∈ F , then
the (disjoint) unions Ai =

S

F�i AF,i form a partition P of X as above. The
vectors of values assigned by the measure μ to all partitions {AF,i : i ∈ F} of
AF form a compact convex set (simplex) whose extreme points correspond to
trivial partitions, i.e., such that AF = AF,i up to measure zero, for some i ∈ F .
It is now clear that the probability vectors corresponding to all partitions P

form a compact convex set (but not a simplex any more), whose extreme points
correspond to partitions which are trivial on each set AF , i.e., measurable with
respect to PU. (In fact, if the measure has atoms, then we will obtain only a
subset of this convex set, but it always contains all the extreme partitions.) The
last thing to notice is that the entropy, being continuous and concave, attains
its infimum over a compact convex set at (at least) one of its extreme points
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(here this is completely trivial, because the set of extreme points is finite; the
quoted fact holds more generally, see Exercise 8.8).

It is worth mentioning (although we will not use it) that for homeomorphisms
Romagnoli proved the following variational principle [Romagnoli, 2003, The-
orem 2]:

Theorem 8.3.6

sup
μ∈MT (X)

h(μ, T,U) = h(T,U).

Our next notion is the local entropy of a measure. It was originally in-
troduced by S. Newhouse [Newhouse, 1989, 1990] as a refinement of Misi-
urewicz’s “conditional entropy given an epsilon” and provided an upper bound
for the defect of upper semicontinuity of the entropy function individually at
each measure. The dependence on the ergodic measure μ is achieved by run-
ning an infimum over sets F of large measure μ. Contrary to Romagnoli’s
notion, this one reflects the entropy not detected in a given resolution, i.e., a
kind of conditional entropy given the resolution. In the finite entropy case, one
can think of local entropy as the difference between the entropy and entropy
with respect to the given resolution. The definition below differs slightly from
the original; we change the notation a little, we rid it of some unnecessary
technicalities, and we give priority to the version with covers.

Definition 8.3.7 Let U and V be open covers. Let F ⊂ X be a measurable set.
The item (a) coincides with the Definition 6.3.1, we repeat it for convenience.
We define successively:

(a) H(U|F,V) =
log max{min{#UF∩V : UF∩V ⊂ U, F ∩ V ∈ SUF∩V } : V ∈ V};

(b) h(T,U|F,V) = lim supn
1
nH(Un|F,Vn);

(c) h(T |F,V) = supU h(T,U|F,V);
(d) h(T |μ,V) = limσ→1 inf{h(T |F,V) : μ(F ) > σ}.

The last term is called the local entropy of μ given V. We apply the formula (d)
only to ergodic measures μ and for other invariant measures we use the har-
monic prolongation (see (A.2.15)).

Remark 8.3.8 The notion (d) has bad affinity properties on nonergodic mea-
sures. For example, on a combination of two ergodic measures it assumes the
maximum of the two values, nothing close to their corresponding combination.
This is why we employ the harmonic prolongation.
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Remark 8.3.9 The reason why μ occurs in (d) on the condition’s side is
purely accidental; it replaces F (which clearly is a conditioning object). As we
shall see in zero-dimensional spaces, local entropy corresponds to conditional
entropy which is denoted with μ on the other side of the bar. The notation as
in (d) has been used already in several papers, so we decided to keep it.

Remark 8.3.10 Local entropy can be adapted to the other type of topological
resolution: the cover V can be replaced by the scale defined by the distance ε –
one needs to replace the cover Vn in (b) by the cover created by the (n, ε)-balls.
This leads in (d) to a notion h(T |μ, ε).

We can also replace the resolution U by a distance δ. This time the final
notion will not change. We leave the details to the reader as Exercise 8.13.

The last type of entropy of a measure with respect to a topological reso-
lution presented in this book is based on the same approach that was already
used in the construction of principal zero-dimensional extensions. In this defi-
nition we are dealing with a somewhat artificial type of topological resolution
determined by the family of continuous functions, nevertheless, as we shall
soon see, this entropy notion enjoys the best topological properties among all
notions introduced in this section. It will play a crucial role in proving many
asymptotic (as the resolution refines) properties of the other notions as well.

Definition 8.3.11 Let F be a finite family of continuous functions f : X →
[0, 1]. For an invariant measure μ, we define the entropy of μ with respect to
F by

h(μ, T,F) = h(μ × λ, T × Id,AF),

where AF is the partition of X × [0, 1] introduced in Definition 7.6.5, and λ

denotes the Lebesgue measure on [0, 1].

The collection of all finite families F as above is clearly a directed family
(with respect to inclusion), so, once again, we are dealing with a net of fun-
ctions. Obviously, this net is also increasing.

There are more ways to compute the entropy of a measure with respect
to a topological resolution. Anatole Katok introduced such a notion based
on counting the minimal number of (n, ε)-balls whose union achieves cer-
tain positive measure value σ [Katok, 1980]. Another definition, by Misha
Brin and A. Katok uses an analog of the Shannon–McMillan–Breiman
Theorem: for each ergodic measure μ, 1

n th of the logarithm of the measure
of the (n, ε)-ball around x converges almost surely in n, and this limit is used
to define h(μ, ε) [Brin and Katok, 1983]. We refer the reader to [Downarowicz,
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2005a] for a detailed discussion of these and other notions and the inequalities
between them.

In this book, we will use one more notion of this kind. It computes the
(unconditional) entropy with respect to a cover (just like Romagnoli’s notion
in Definition 8.3.1), but in a manner somewhat analogous to the way Newhouse
local entropy computes the conditional entropy given a cover: the dependence
on the ergodic measure is achieved by running an infimum over sets F of
positive measure.

Definition 8.3.12 Let (X,T, S) be a topological dynamical system and let
μ ∈ MT (X) be ergodic. We let

h(μ, T,U) = inf{h(T,U|F ) : μ(F ) > 0},

where h(T,U|F ) is h(T,U|F,V) of Definition 8.3.7 for trivial V. For noner-
godic measures we prolong h(μ, T,U) using the harmonic prolongation. This
notion will be called variant entropy of μ with respect to U.

Question 8.3.13 As we shall soon see (Lemma 8.4.13), the above notion con-
verges over refining covers to the same limit (the entropy of μ) as Romagnoli’s
notion. We do not know whether these notions are identical before taking the
limit, i.e., whether h(μ, T,U) = h(μ, T,U) for any μ ∈ MT (X) and any open
cover U.

8.3.2 Properties of the above notions

For each of the first three notions of entropy with respect to a topological
scale (treated as functions on invariant measures) we will take a brief look
at the semicontinuity and affinity properties. Then we will examine how these
notions behave under topological extensions. Throughout this section
(X ′, T ′, S) is a topological extension of (X,T, S) via a map π.

Lemma 8.3.14 Let U be a finite cover of X . The function μ �→ h(μ, T,U) is
upper semicontinuous and concave.

Proof Concavity is obvious, since we are dealing with an infimum (applied
two times) of the concave functions H(μ,P) (see (1.3.5)). We sketch the proof
of the semicontinuity. We fix a measure μ and a partition P measurable with
respect to the sigma-algebra generated by U, which realizes the infimum in the
definition of H(μ,U) (use Fact 8.3.4). Now, using regularity of the measure,
we can modify the cover U to U′ inscribed in U, by making each element of
U slightly smaller (so that the measure of the difference is small), and with
boundary of measure zero. The partition P′ obtained from U′ by the same set
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operations as P is obtained from U is inscribed in U′ (hence in U), and its
1-distance from P is small. So, H(μ,P′) is smaller than H(μ,U) + ε, while
the function H(·,P′) is continuous at μ (see Lemma 6.6.7). This proves that
H(μ,U) is upper semicontinuous at μ. Upper semicontinuity of the function
h(·, T,U) is now clear, since, by subadditivity, this is the infimum of the upper
semicontinuous functions 1

nH(·,Un).

It seems rather hard to check whether the difference h(·, T,U) − h(·, T,V),
where U � V, is upper semicontinuous, and whether the function h(·, T,U)
is affine. Fortunately, as it will soon turn out, we can afford to skip this verifi-
cation. We pass to studying the behavior of h(μ, T,U) under extensions. The
next lemma originates from [Romagnoli, 2003].

Lemma 8.3.15 If U is a finite cover of X and U′ is the cover of X ′ obtained
by lifting U against π, then

h(μ, T,U) = h(μ′, T ′,U′)

for any μ ∈ MT (X) and μ′ ∈ MT ′(X ′) such that πμ′ = μ.

Proof Since U′ is lifted from X , so is U′n (where the iterates are with respect
to the action of T ′), so is PU′n , the partition generated by it, and any partition
measurable with respect to the last one. By Fact 8.3.4, only such partitions are
needed to compute h(μ′, T ′,U′) which then obviously equals h(μ, T,U).

Lemma 8.3.16 If U and V are two covers of X , then, for any μ ∈ MT (X),

h(μ, T,U) ≤ h(μ, T,V) + h(T,U|V).

Proof It suffices to prove that H(μ,U) ≤ H(μ,V)+H(U|V) and then apply
this to the covers Un and Vn, divide both sides by n and pass to the limit over
n. Let P be a finite partition inscribed in V. For each A ∈ P choose a V ∈ V

containing A. The set V is covered by a family of at most 2H(U|V) sets of the
form U ∩ V , where U ∈ U. Thus, we can partition A into at most that many
disjoint sets, each contained entirely in one of the above sets U ∩ V . In this
manner we have defined a refinement of P, say P′, inscribed in U and such that
H(μ,P′|P) ≤ H(U|V). Because H(μ,P′|P) = H(μ,P′)−H(μ,P), we have
obtained

H(μ,P′) ≤ H(μ,P) + H(U|V).

The left-hand side can be replaced by the not larger term H(μ,U). Now, on
the right, we can apply the infimum over all partitions P inscribed in V.

The next fact is completely obvious, by the elementary monotonicity (1.6.6)
(or, alternatively, by Fact 8.3.4):
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Lemma 8.3.17 If U is a finite cover of X by disjoint clopen sets, then
h(μ, T,U) = h(μ, T,P), where P is U treated as a partition.

Next we pass to the local entropy. Directly by the last step of Definition
8.3.7 (and using Fact A.2.15), the corresponding function h(T |μ,V) on in-
variant measures is harmonic, and hence affine. Semicontinuity properties of
this function seem rather difficult to check. Moreover, it would be much more
important to check upper semicontinuity of the difference function h(T |μ,V)−
h(T |μ,V′), where V′ � V, which seems even more difficult. Fortunately, as
it will turn out soon, we will manage to proceed without verifying these prop-
erties for this particular notion. We pass immediately to the behavior under
extensions.

Lemma 8.3.18 If V is a finite cover of X and V′ is the cover of X ′ obtained
by lifting V, then

h(T |μ,V) ≤ h(T ′|μ′,V′) ≤ h(T |μ,V) + h(T ′|T ), (8.3.19)

for any μ ∈ MT (X) and any of its lifts μ′ ∈ MT ′(X ′). If (X ′, T ′, S) is a
principal extension of (X,T, S), then h(T |μ,V) = h(T ′|μ′,V′).

Proof First notice that we can restrict the infimum in Definition 8.3.7 (d) to
closed sets F only. On one hand, such infimum is obviously not smaller, on
the other, by regularity, in each measurable set F there is a closed subset G

with nearly the same measure as F , and then h(T |F,V) ≥ h(T |G,V), so the
infimum over the closed sets is not larger.

Consider a closed set F ′ ∈ X ′ and let G = π(F ′) and G′ = π−1(G). We
say that G′ is a fiber saturation of F . Since F ′ is compact and π is continuous,
G and G′ are compact too, in particular, measurable. Now it is clear that if
U,U′ denote some cover of X and its lift, respectively, then h(T,U|G,V) =
h(T ′,U′|G′,V′). Also, it is clear that h(T ′,U′|F ′,V′) = h(T ′,U′|G′,V′)
since any family of lifted sets covering some set also covers its fiber satura-
tion. This implies the first inequality in (8.3.19), because the term h(T ′|μ′,V′)
is a supremum over all covers U′ of X ′, including the lifted ones.

For the second inequality, let U′ now denote an arbitrary cover of X ′, and
let W be a cover of X with a lift W′. For any closed set F ′ ∈ X ′ and its fiber
saturation G′ we have (using (6.3.10) with permuted covers)

H(U′|F ′,V′) ≤ H(U′|G′,V′) ≤ H(W′|G′,V′) + H(U′|W′).

Note that H(W′|G′,V′) = H(W′|F ′,V′). The proof is completed by applying
the above to the covers raised to “power” n, dividing by n and passing to
lim sup over n (note that the sum of lim sup’s is not smaller than lim sup of the
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sums), refining W and next U′, and finally letting the set F vary as instructed
in Definition 8.3.7.

The last statement in the lemma now becomes obvious.

Lemma 8.3.20 If V and W are two covers of X , then, for any μ ∈ MT (X),

h(T, |μ,W) ≤ h(T |μ,V) + h(T,V|W).

Proof By (6.3.10), for any open cover U and a measurable set F we have
H(U|F,W) ≤ H(U|F,V) +H(V|W). We apply the above to Un, Vn and Vn,
divide by n, pass to lim sup over n, take the supremum over all covers U and
the infimum over all sets F with large measure, to obtain the hypothesis.

Lemma 8.3.21 Let X be zero-dimensional. If V is a cover by disjoint clopen
sets, then

h(T |μ,V) = h(μ, T |Q),

where Q is V treated as a partition.

Proof Since both sides are harmonic functions of μ, it suffices to work with
ergodic measures. The proof uses the Shannon–McMillan–Breiman Theorem
for both directions. We choose an ε > 0. We fix a cover U by disjoint clopen
sets, finer than V, such that h(μ, T,P) ≥ h(μ, T )−ε, where P is U treated as a
partition (if μ has infinite entropy, this requirement is replaced by h(μ, T,P) >

1/ε; the rest of the proof should be modified accordingly). Now we choose
1/2 < σ < 1, and we let nσ be so large that the set G exceeds σ in measure,
where G consists of the points which satisfy, up to ε and for every n ≥ nσ ,
the hypothesis of the Shannon–McMillan–Breiman Theorem for the processes
generated by the partitions P and Q. Consider a cell V ∈ Vn not disjoint of
G. Its measure ranges within 2−n(h(μ,T,Q)±ε). For at least one of such cells,
say for V0, the measure of its intersection with G is at least σ2−n(h(μ,T,Q)+ε),
hence at least 2−n(h(μ,T,Q)+2ε). Any cell of Un containing a point from G

has measure in the range 2−n(h(μ,T,P)±ε), a cell intersecting V is contained
in it, and different cells of Un are disjoint. This implies that the number of
such cells needed to cover any V ∩ G is at most 2n(h(μ,T,P)−h(μ,T,Q)+2ε),
while for V0 ∩ G it is at least 2n(h(μ,T,P)−h(μ,T,Q)−3ε). In both estimates we
can replace h(μ, T,P) by h(μ, T ) at a cost of another ε. Because Q is finite,
the difference h(μ, T ) − h(μ, T,Q) equals the conditional entropy h(μ, T |Q)
(recall Fact 4.1.6). We have proved that h(T,U|G,V) = h(μ, T |Q) ± 4ε.
Since the covers U of the considered type generate, we obtain that h(T |G,V)
ranges within h(μ, T |Q) ± 4ε. The infimum over all sets F (in place of G)
with measure at least σ is not larger. This clearly implies the inequality “≤”
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in the assertion. For the reversed inequality notice that any measurable set F

of measure sufficiently close to 1 contains a subset G′ of the set G defined
above, of measure slightly smaller than σ. For G′ the above estimate still holds:
h(T |G′,V) ≥ h(μ, T |Q)− 4ε, and clearly, h(T |F,V) is not smaller. Thus the
infimum over all large enough sets F is not smaller than this estimate.

Let us now address the notion h(μ, T,F). First of all, this is the usual
dynamical entropy (under the action of T × Id) of an invariant measure (in
this case μ × λ) with respect to a finite partition of the space (here it is AF,
a partition of X × [0, 1]). So, all formulae valid for the dynamical entropy
apply, with the join of partitions and the relation � replaced by the ordinary
union and inclusion of the families of continuous functions, respectively. In
particular, denoting

h(μ, T,F|G) = h(μ, T,F ∪ G) − h(μ, T,G) (8.3.22)

the monotonicity and subadditivity formulae gathered in Fact 2.4.2 hold.
Both h(μ, T,F) and h(μ, T,F|G) are affine functions of the measure (The-
orem 2.5.1). Now, we pass to semicontinuity.

Lemma 8.3.23 Let F ⊂ G be two finite families of continuous functions
f : X → [0, 1]. Then the functions μ �→ h(μ, T,F) and μ �→ h(μ, T,G) −
h(μ, T,F) are upper semicontinuous on MT (X).

Proof The first assertion has already been noted and used in the construction
of the principal zero-dimensional extension. We recall the idea. By definition,
h(μ, T,F) = h(μ × λ, T × Id,AF). The boundaries of the cells of AF are
contained in the graphs of the functions in F, and these graphs have measure
zero for any measure of the form μ × λ. Thus Lemma 6.6.7 applies to every
such measure. The second assertion follows by noticing that

H(μ × λ,An
G) − H(μ × λ,An

F) = H(μ × λ,An
G|An

F).

The left-hand side divided by n is a sequence of continuous functions of μ

converging to h(μ, T,G) − h(μ, T,F). The right-hand side shows that this
sequence is decreasing (see Fact 2.3.1) hence upper semicontinuity follows.

We also note the completely obvious fact concerning extensions:

Lemma 8.3.24 Let F be a finite family of continuous functions f : X →
[0, 1] and let F′ be its lift to X ′. Then h(μ, T,F) = h(μ′, T ′,F′) for any
μ ∈ MT (X) and any of its lifts μ′ ∈ MT ′(X ′).
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Lemma 8.3.25 If P is a finite partition of X into clopen sets and F is the
family of the characteristic functions of the cells of P (such functions are con-
tinuous), then, for every μ ∈ MT (X), we have

h(μ, T,F) = h(μ, T,P).

Proof This is immediate, since in this case AF is the partition of X × [0, 1]
obtained by lifting P against the projection map, which sends μ × λ to μ.

8.4 Entropy structure

From now on we will assume that the system (X,T, S) has finite topologi-
cal entropy. Entropy structure, although it can be also defined for systems with
infinite topological entropy, plays the most important role in the theory of sym-
bolic extensions, and this theory is void for systems with infinite entropy.

Before we say what the entropy structure is, we prove the key fact concern-
ing the various notions of entropy of a measure with respect to a topological
resolution introduced in the preceding section.

Theorem 8.4.1 Let (X,T, S) be a topological dynamical system with finite
topological entropy. The following three increasing nets of nonnegative fun-
ctions, defined on the simplex MT (X) of all T -invariant measures on X , are
unifomly equivalent:HRom =

`

h(μ, T,U)
´

U
,HNew =

`

h(μ, T )−h(T |μ,V)
´

V

and Hfun =
`

h(μ, T,F)
´

F
.

Remark 8.4.2 By virtue of Exercises 8.11 and 8.12, the nets
`

h(μ, T, ε)
´

ε

and
`

h(μ, T ) − h(T |μ, ε)
´

ε
can be added to the above collection.

Proof of Theorem 8.4.1 At first assume that the space X is zero-dimensional.
Then the family of finite disjoint covers by clopen sets is a subnet of the net
of all covers (it fulfills the condition (A.1.6)). Now, by Lemmas 8.3.17, 8.3.21
and 8.3.25, for such covers the notions h(μ, T,U), h(μ, T ) − h(T |μ,U) and
h(μ, T,FU), coincide (here FU is the family of the characteristic functions of
the cells of U). Because subnets of monotone nets are always uniformly equiv-
alent to the whole net, we obtain that the first two (of the three discussed) full
nets are uniformly equivalent. We cannot claim it yet for the full net h(μ, T,F)
because the subfamily FU does not satisfy (A.1.6) among all finite families of
continuous functions ordered by inclusion, so, in this case, we are not deal-
ing with a subnet (only a sub-net). Here, however, we can use Lemmas 8.3.23
and 8.1.24: the net indexed by FU converges to the finite entropy function, the
same as the full net h(μ, T,F), the full net has upper semicontinuous differ-
ences, and the domain is compact. Thus, these nets are uniformly equivalent.



264 The entropy structure

The general case (of not necessarily zero-dimensional systems) of the theo-
rem will follow immediately from the existence of zero-dimensional principal
extensions (Theorem 7.6.1) and Lemma 8.4.3 provided below.

Lemma 8.4.3 Let (X ′, T ′, S) be a principal extension of a system (X,T, S)
with finite topological entropy. Then the three above discussed nets: HRom,
HNew and Hfun defined on MT (X) and lifted to MT ′(X ′) are uniformly equiv-
alent to the corresponding nets defined directly on MT ′(X ′).

Proof We begin with the first two nets. By Lemma 8.3.15, the net h(μ, T,U)
lifted to MT ′(X ′) becomes h(μ′, T ′,U′), where U′ is the lift of U. Similarly,
by Lemma 8.3.18, h(T |μ,U) becomes h(T ′|μ′,U′). In the extension, the fam-
ily of all covers lifted from X is a sub-net usually without being a subnet, so,
we only have one (trivial) direction of the inequality needed to prove uniform
equivalence: every function h(μ′, T ′,U′) (or h(μ′, T ′) − h(T ′|μ′,U′)) in the
net indexed by the lifted covers is dominated by a member of the correspond-
ing full net (namely by itself). We need to show the converse (up to some fixed
ε > 0). So, choose an arbitrary open cover W′ of X ′ (not necessarily lifted
from X). Because we are dealing with a principal extension, there is a cover U

of X such that h(T ′,W′|U′) < ε. Then, by Lemmas 8.3.16 and 8.3.20 (both
with accordingly permuted covers), we get the inequalities h(μ′, T ′,W′) ≤
h(μ′, T ′,U′) + ε and h(T ′|μ′,U′) ≤ h(T ′|μ′,W′) + ε. Using finite topolog-
ical entropy we can rewrite the last inequality as h(μ′, T ′) − h(T ′|μ′,W′) ≤
h(μ′, T ′)−h(T ′|μ′,U′) + ε. This concludes the proof of uniform equivalence
for the first two nets.

The uniform equivalence of the net h(μ, T,F) and the analogous net in the
extension is proved as follows: IfF′ denotes the familyF lifted toX ′, then, by the
trivial Lemma 8.3.24, h(μ, T,F) = h(μ′, T ′,F′). We have obtained, as before,
only a sub-net (not subnet) of the net on MT ′(X ′) indexed by all finite families
of continuous functions onX ′. But we know that before lifting this net converges
to the finite entropy function on MT (X), and since the extension is principal,
the lift of this function coincides with the entropy function on MT ′(X ′). Now
Lemmas 8.3.23 and 8.1.24 imply that the sub-net is uniformly equivalent to the
whole net, because it has the same finite limit function, the whole net has upper
semicontinuous differences, and the domain is compact.

The three nets of Theorem 8.4.1 determine one and the same class of uni-
form equivalence. This class becomes our master entropy invariant in topolog-
ical dynamics.

Definition 8.4.4 Let (X,T, S) be a topological dynamical system with finite
topological entropy. The entropy structure is defined as the class of the uniform
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equivalence between increasing nets of nonnegative functions defined on
MT (X), containing the three above discussed nets: HRom,HNew and Hfun.

By convention, any member of this class is also called an entropy structure
(instead of saying that it belongs to we say that it is an entropy structure). This
causes no ambiguity. The entropy structure will be denoted by HT or simply
by H, if the considered system is fixed.

The statement below shows the importance of the notion of entropy of a
measure with respect to a family of functions. It explains why we could neglect
the verification of affinity or upper semicontinuity of the differences for the
other two notions. Observe that on any compact space there exists a sequence
Fk of finite families of continuous functions from X to [0, 1] such that the
associated partitions AFk

refine in the product space X × [0, 1]. Using such
a sequence and the properties proved in Lemma 8.3.23 we easily deduce the
first part of Fact 8.4.5 below. Corollary 8.1.13 and Lemma 8.1.8, combined
with Theorem 8.1.25 (which says that EH does not depend on the choice of
the representative sequence as the entropy structure), yield the following:

Fact 8.4.5 Let (X,T, S) be a topological dynamical system with finite topo-
logical entropy. Then the entropy structure H of this system contains a u.s.d.a.-
sequence. If EH is finite, then EH and the smallest repair function uH =
EH− h are upper semicontinuous.

Although the realization theorem quoted below is of high importance in the
theory of entropy structures, we have decided not to rewrite its lengthy and
technical proof in this book. We refer the reader to the original paper [Dow-
narowicz and Serafin, 2003].

Theorem 8.4.6 Every uniform equivalence class defined on a Choquet sim-
plex containing a u.s.d.a.-sequence represents (up to affine homeomorphism)
the entropy structure of some topological dynamical system. Moreover, the sys-
tem can be chosen zero-dimensional, minimal and invertible.

The entropy structure carries the information about the “type of conver-
gence” (to the entropy function) of the net of functions representing the entropy
of invariant measures with respect to topological resolutions, as the resolution
refines. It is an invariant of topological conjugacy in the sense of the following
theorem, which is an immediate consequence of Lemma 8.4.3 and the fact that
topological conjugacy is a case of a principal extension.

Theorem 8.4.7 Let (X,T, S) and (Y, S, S) be two topologically conjugate
systems with finite topological entropy, where π : Y → X is the conjugating
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homeomorphism. Let H = (hκ) be an entropy structure of the system (X,T, S).
Then the net H′ = (h′

κ) on MS(Y ), where h′
κ(ν) = hκ(πν), is an entropy

structure of the system (Y, S, S).

Invariants of the uniform equivalence relation applied to the entropy struc-
ture become invariants of topological conjugacy. Some of them have very
important interpretation in terms of symbolic extensions, which will be dis-
cussed in the next chapter. And so, we obtain superenvelopes of the entropy
structure, the smallest superenvelope of the entropy structure denoted by EHT

or just EH, the smallest repair function uH, the transfinite sequence associated
with the entropy structure whose elements will be denoted by uT

α or just uα,
the order of accumulation of this sequence, called for short the order of accu-
mulation of entropy and denoted just by α0, and its refinement, the function
on invariant measures representing for each μ ∈ MT (X) the order of accu-
mulation of entropy at μ, denoted by α0(μ). The superenvelopes and specif-
ically the function EHT (or h + uH) will be given a special meaning as the
symbolic extension entropy function, and its supremum over all invariant mea-
sures equals the parameter called the topological symbolic extension entropy,
an extremely important invariant of topological conjugacy, responsible for the
“vertical data compression,” the subject of the next chapter.

We already know that the entropy structure of a principal extension coin-
cides with the lift of the entropy structure of the original system. This clearly
implies that any lifted superenvelope is a superenvelope in the extension. How-
ever, there may be other superenvelopes in the extension (not constant on the
fibers of invariant measures). The next lemma explains the relation.

Lemma 8.4.8 Let (X ′, T ′, S) be a principal extension of (X,T, S). Let E be
a superenvelope of the entropy structure H = (hk) of (X,T, S), and let E′ be
a superenvelope of the entropy structure H′ = (h′

k) of (X ′, T ′, S). Then the lift

of E to MT ′(X ′) is a superenvelope of H′, while the push-down E′[MT (X)] is
a superenvelope of H. The smallest superenvelope EH′ equals the lift of EH.

Proof We know that H′ is the lift of H (see Lemma 8.4.3). We also know that
the entropy structures in both systems can be chosen to be u.s.d.a.-sequences,
hence, by Lemma 8.1.12, the superenvelopes can be tested by upper semicon-
tinuity of E − hk (and analogously for the extension). Now the first statement
in the assertion is immediate as the lift of E − hk is, on one hand, upper semi-
continuous, on the other, it equals the lift of E minus h′

k (because the latter
equals the lift of hk). The second statement holds by symmetric reasons: the
push-down (E′ −h′

k)[MT (X)] is, on one hand, upper semicontinuous (see Fact
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A.1.26), on the other it equals E′[MT (X)] − hk. The last claim of the lemma
follows, for example, from the transfinite characterization of EH (Theorem
8.1.19); for a sequence H′ which is a lift (via a continuous map) of H, all the
functions in the transfinite sequence uT ′

α are equal to the lifted functions uT
α,

correspondingly. So, EH′ equals the lift of EH.

The entropy structure HT also allows several familiar entropy invariants to
be recovered: the limit function h coincides with the entropy function on in-
variant measures, the supremum of this function over all invariant measures
equals the topological entropy of the system. In the next theorem we will also
show that the topological tail entropy h∗(T ) can be recovered as the maximum
over all invariant measures of the function uT

1 , the first one in the transfinite
sequence associated with the entropy structure.

Theorem 8.4.9 (Tail Entropy Variational Principle2) In a topological dy-
namical system (X,T, S) with finite topological entropy we have

h∗(T ) = sup
μ∈MT (X)

uT
1 (μ).

Proof As in many cases before, it suffices to prove this for zero-dimensional
systems. Then, for other systems we apply the principal zero-dimensional ex-
tension. Since both h∗(T ) (see Corollary 6.4.15) and the entropy structure
with its invariants, in particular the function u1, are preserved by principal
extensions, the proof will be complete.

In zero-dimensional systems h∗(T ) is characterized by Equation (7.5.2):

h∗(T ) = lim
k

↓ h(T |Tk),

where Tk is the subshift factor generated by a finite partition PΛk
. By the

conditional variational principle (Theorem 6.8.8), we can write

h∗(T ) = inf
k

sup
μ∈MT (X)

h(μ|μk),

which, by the finite entropy assumption can be rewritten as

h∗(T ) = inf
k

sup
μ∈MT (X)

(h(μ) − h(μ, T,PΛk
)).

The partitions PΛk
are clopen and they can be chosen to refine in X , the

sequence of functions H = (hk) on MT (X), where hk(μ) = h(μ, T,PΛk
),

is an entropy structure for (X,T, S), and the functions h(μ) − h(μ, T,PΛk
)

2 This theorem was first proved in [Downarowicz, 2005a] for homeomorphisms, and
generalized to continuous maps in [Burguet, 2009]. Here, the general version is derived
directly, using zero-dimensional extensions.
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are the tails θk. So, we have h∗(T ) = infk supμ θk(μ). Because the pointwise
supremum of a function is the same as that of its upper semicontinuous enve-
lope, we can write as well h∗(T ) = infk supμ

eθk(μ). Now, we have a decreas-
ing sequence of upper semicontinuous functions on a compact domain, so the
elementary Fact A.1.24 allows to switch the supremum and infimum, to obtain
h∗(T ) = supμ infk

eθk(μ), where the right-hand side equals supμ uT
1 (μ), as

claimed.

Corollary 8.4.10 Combining the above theorem with the interpretation of
the function u1 = Dx, and with Theorem 8.1.3, we obtain the following inter-
pretation of the topological tail entropy: h∗(T ) equals the global defect of
uniformity of the convergence of the entropy structure to the entropy function.

Corollary 8.4.11 Since the entropy structure contains a net consisting of
upper semicontinuous functions (namely the u.s.d.a.-sequence h(μ, T,Fk)),
we can apply Fact 8.1.4 to obtain that u1(μ) estimates from above the defect
of upper semicontinuity of the entropy function at the point μ. Using the sec-
ond part of that fact and Corollary 8.4.10 we recover the well-known fact that
h∗(T ) estimates from above the global defect of upper semicontinuity of the
entropy function [Misiurewicz, 1976].

Corollary 8.4.12 The notion of an asymptotically h-expansive system receives
a new interpretation: A system (X,T, S) is asymptotically h-expansive (this
condition implies finite topological entropy) if and only if the entropy structure
converges uniformly to the entropy function, i.e., when any of the equivalent
conditions of Corollary 8.1.20 holds for the entropy structure. We recover the
well-known fact that in such case the entropy function is upper semicontinuous.

We end this section with a somewhat incomplete statement concerning the
fourth notion introduced in the preceding section, the variant entropyh(μ, T,U)
(recall Definition 8.3.12). It is true that the corresponding net (indexed by U) is
uniformly equivalent to the other three nets discussed here, hence it provides yet
another explicit example of an entropy structure. Because we will not use the full
strength of this uniform equivalence, we will just prove that the net converges
to the entropy function, giving up the verification of the type of convergence
(which is rather technical, [see Downarowicz, 2005a]).

Lemma 8.4.13 For every invariant measure μ, supU h(μ, T,U) = h(μ, T ).

Proof One inequality is easy. Given a cover U there exists a finite partition P

inscribed in U. By the Shannon–McMillan–Breiman Theorem, for each ε > 0
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there is a set F of positive measure which, for every large enough n, is cov-
ered by no more than 2n(h(μ,T,P)+ε) cylinders from Pn. Obviously, F can be
covered by the same amount of elements of Un. This implies

h(T,U|F ) ≤ h(μ, T,P) + ε.

The left-hand side is larger than or equal to h(μ, T,U) (see Definition 8.3.12),
the right-hand side is not larger than h(μ, T ) + ε. Since U and ε are arbitrary,
we get supU h(μ, T,U) ≤ h(μ, T ).

For the converse inequality we will show that for any finite partition P with
boundaries of measure μ zero, and any δ > 0, there exists a cover U such that
for any set F of positive measure,

h(T,U|F ) > h(μ, T,P) − δ. (8.4.14)

Since the entropy h(μ, T ) can be approximated by the entropies h(μ, T,P) of
the above kind, this will imply the hypothesis.

By regularity of μ, there exists an open set U of measure smaller than γ ≥ 0
(how small we will decide in a moment), which contains the boundaries of all
the cells of P. We define the open cover as

U = {A ∪ U : A ∈ P}.

Given a set F of positive measure, by making it a bit smaller, we can assume
that all points in F satisfy the Ergodic Theorem for the set U , that is, for each
sufficiently large n, every n-orbit starting from F visits U at most nγ times.
Also, by Theorem 2.8.9, we know that, for large enough n, F intersects at least
2n(h(μ,T,P)−γ) different cylinders from Pn, in other words, at least that many
blocks B ∈ Pn occur as x[0, n−1] for some x ∈ F . For every x ∈ F , let us put
a marker (say, a ∗) above these coordinates i ∈ [0, n−1] in the block x[0, n−1]
for which T ix ∈ U . Now observe that two points belong to a common set of
the cover Un if and only if their blocks x[0, n − 1] disagree only at places
where at least one of them has a star. This implies that each cylinder B (from
the family intersecting F ) intersects (within F ) at most as many sets in Un as
there are blocks that can be obtained from B by altering not more than 2nγ of
its symbols. The logarithm of this number is approximately n(H(2γ, 1−2γ)+
2γ log l), where l is the cardinality of P. This amount estimates the difference
between the logarithms of the cardinality of all blocks B intersecting F and of
the smallest cardinality of a subfamily of Un needed to cover F . The logarithm
of the latter is hence at least n(h(μ, T,P) − γ − H(2γ, 1 − 2γ) + 2γ log l),
which, by an appropriate choice of γ can be made larger than n(h(μ, T,P)−δ).
Dividing by n and passing with n to infinity we get the inequality (8.4.14).
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Exercises

8.1 Let X = [0, 1] and set hk = 1I{x1,x2,...,xk}, where (xi) is a sequence
dense in [0, 1]. What is EH? What is α0?

8.2 Prove that uH(x) ≤ ord(x)u1(x), at every point of finite topological
order of accumulation.

8.3 Let X = {x1, x2, . . . } be a countable compact space. Assume that ord(x)
is finite at every point. Fix an arbitrary sequence of positive real numbers
a0, a1, . . . and let h(x) = aord(x). Let hk = h1I{x1,x2,...,xk}. Verify that
the values of uα(x) depend on ord(x) as in the table below (we skipped
the function u0 which is zero everywhere and the isolated points, where
all uα equal zero). This is a tedious exercise. You can try it just for
ord(x) = 2.

ord(x) 1 2 3 ··· n

u1(x) a0 max{a0,a1} max{a0,a1,a2} ... max{a0,a1,...,

an−1}

u2(x) a0 a0+a1 max{a0+a1,a0+a1, ... max{a0+a1,...,

a1+a2} an−2+an−1}

u3(x) a0 a0+a1 a0+a1+a2 ... max{a0+a1+a2,...,

an−3+an−2+an−1}

...
...

...
...

...
...
...

...
un(x) a0 a0+a1 a0+a1+a2 ... a0+a1+···+an−1

8.4 Assume that H consists of upper semicontinuous functions (on a metric
space). Prove that EH = eh implies α0 ≤ 1.

8.5 (David Burguet) Check that the superenvelopes of H are precisely the

fixpoints of the monotone operator f �→ limκ ↓ (f̃ + θκ) defined on
the complete lattice of nonnegative upper semicontinuous functions on
X (including the constant infinity function), and use the Tarski–Knaster
Theorem [Tarski, 1955] to deduce the existence of the smallest superen-
velope.

8.6 Check that uniform equivalence is indeed an equivalence relation among
increasing (decreasing) nets of nonnegative functions.

8.7 Check that if (θκ) is uniformly equivalent to (θ′ι) (both defined on a met-
ric space), then (eθκ) is uniformly equivalent to (eθ′ι). Does the converse
hold?

8.8 Prove that an upper semicontinuous convex function defined on a com-
pact convex set attains its maximum at an extreme point. Hint: Use the
Choquet Theorem.
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8.9 Deduce, using Lemma 8.2.13, that if H is defined on a Choquet sim-
plex K and consists of harmonic functions, then for each ordinal α the

function uH
α is determined by its restriction to exK, which equals u

H|
exK

α .
In particular, the order of accumulation of H is the same as that of H|exK.

8.10 Show that the sequence H(μ,Un) (see Definition 8.3.1) is subadditive.
8.11 Verify that for every invariant measure μ and any cover U, two versions

of Romagnoli’s entropy (see Definition 8.3.1 and Remark 8.3.2) satisfy

h(μ, T, diam(U)) ≤ h(μ, T,U) ≤ h(μ, T, Leb(U)).

8.12 Similarly, check that two versions of the Newhouse local entropy (see
Definition 8.3.7 and Remark 8.3.10) satisfy

h(T |μ, diam(V)) ≥ h(T |μ,V) ≥ h(T |μ, Leb(V)).

8.13 For δ > 0 let h(T, δ|F,V) =

lim sup
n→∞

1
n

log max{#E : E is (n, δ)-separated, E ⊂ F ∩ V, V ∈ Vn}.

Show that supδ h(T, δ|F,V) = h(T |F,V) (see Definition 8.3.7).
8.14 Verify that the function μ �→ h(T |μ,V) in Definition 8.3.7(d) is measur-

able (in fact, it is of Young class LU).
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Symbolic extensions

Given a topological dynamical system (X,T, S) of finite entropy, we are inter-
ested in computing the “amount of information” per unit of time transferred in
this system. Suppose we want to compute verbatim the vertical data compres-
sion, as described in the Introduction (Section 0.3.5): the logarithm of the min-
imal cardinality of the alphabet allowing the system to be losslessly encoded
in real time. Since we work with topological dynamical systems, we want the
coding to respect not only the measurable, but also the topological, structure.
There is nothing like the Krieger Generator Theorem in topological dynamics.
A topological dynamical system of finite entropy (even invertible) need not
be conjugate to a subshift over a finite alphabet. Thus, we must first create its
lossless digitalization, which has only one possible form: a subshift, in which
the original system occurs as a factor. In other words, we are looking for a sym-
bolic extension. Only then can we try to optimize the alphabet. It turns out that
such a vertical data compression is not governed by the topological entropy
only by a different (possibly much larger) parameter.

9.1 What are symbolic extensions?

First of all, notice that if a system has infinite topological entropy, it simply
does not have any symbolic extensions, as these have finite topological entropy.
We do not accept extensions in form of subshifts over infinite alphabets, even
countable, like N0 ∪ ∞. It follows from Theorem 7.6.1 and Exercise 7.3 that
every system has such an extension which is principal. Alas, these extensions
are useless in terms of vertical data compression. So, in all we are about to
say, we assume that (X,T, S) has finite topological entropy and a symbolic
extension always means a subshift over a finite alphabet.
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Next, we want to explain that in either case of S we are always going to look
for a symbolic extension in the form of a bilateral subshift, i.e., a subset of ΛZ,
never of ΛN0 . Without any assumptions, the system may happen to possess an
invertible factor of positive topological entropy, which eliminates the existence
of unilateral symbolic extensions. To be specific, a unilateral subshift clearly
has a unilateral measure-theoretic generator for every invariant measure. Any
invertible factor must be measurable with respect to A∞, which, in subshifts,
equals the Pinsker sigma-algebra. Thus the factor cannot have positive zero.

So, if we want a unified theory of symbolic extensions, we should agree on
the definition of a symbolic extension given below:

Definition 9.1.1 Let (X,T, S) be a topological dynamical system. By a sym-
bolic extension of (X,T, S) we understand a bilateral subshift (Y, S, S), where
Y ⊂ ΛZ (Λ - finite), together with a topological factor map φ : Y → X .

The construction of symbolic extensions with minimized topological entropy
relies on controlling the measure-theoretic entropies of the measures in the
extension. This leads to the following notion:

Definition 9.1.2 Let (Y, S, S) be an extension of (X,T, S) via a map φ :
Y → X . The extension entropy function is defined on MT (X) as

hφ
ext(μ) = sup{h(ν, S) : ν ∈ MS(Y ), φν = μ} = (h(·, ν))[MT (X)](μ),

where h denotes the entropy function on MS(Y ) and the push-down is with
respect to φ : MS(Y ) → MT (X).

An alternative formula uses topological fiber entropy:

hφ
ext(μ) = h(μ, T ) + h(S|μ), (9.1.3)

which is obtained by the elementary Fact (4.1.6) (and applying the appropriate
supremum on both sides) and the Inner Variational Principle (Theorem 6.8.4)
with the roles of (X,T, S) and (Y, S, S) reversed.

We now introduce the key notions of this chapter:

Definition 9.1.4 Let (X,T, S) be a topological dynamical system. The sym-
bolic extension entropy function is defined on MT (X) as

hsex(μ)= hsex(μ, T )= inf{hφ
ext(μ) : φ is a symbolic extension of (X,T, S)}.

The topological symbolic extension entropy of (X,T, S) is

hsex(T ) = inf{h(S) : (Y, S, S) is a symbolic extension of (X,T, S)}.

In both cases, the supremum over the empty set is ∞.
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A system has no symbolic extensions if and only if hsex(T ) = ∞ if and
only if hsex(μ, T ) = ∞ for all (equivalently, some) invariant measures.

If hsex(T ) is finite, we can create a symbolic extension whose topological
entropy is only a bit larger, for example, smaller than log(�2hsex(T )� + 1). By
Theorem 7.2.3, the alphabet in this symbolic extension can be optimized to
contain �2hsex(T )�+1 elements. On the other hand, there is no way to do better
than that. In this manner the symbolic extension entropy controls the vertical
data compression in the topological sense.

Historically, in the first attempt to capture the “entropy jump” when pass-
ing a to symbolic extension Mike Boyle defined topological residual entropy
which, in our notation, is the difference

hres(T ) = hsex(T ) − h(T ), (9.1.5)

[see Boyle, 1991; Boyle et al., 2002]. Following this line, one defines the resid-
ual entropy function on invariant measures as

hres(μ) = hsex(μ) − h(μ). (9.1.6)

Using (9.1.3), the latter notion can be expressed as the infimum of fiber
entropies over symbolic extensions. By the Symbolic Extension Entropy Vari-
ational Principle (see the next section), the residual entropy is the difference
of suprema of two functions, and there are easy examples (see Exercise 9.1)
that it need not equal the supremum of the difference functions. Hence there is
no such thing as “residual entropy variational principle.” As we shall see later,
residual entropy function corresponds precisely to the smallest repair function
of the net of tails of the entropy structure. To reduce the multitude of notions,
we will try to avoid using residual entropy in the sequel.

We remark that searching for symbolic extensions is, in terms of entropy,
equivalent to searching for expansive extensions (where expansiveness is under-
stood under the action of Z) or asymptotically h-expansive extensions. On one
hand, every bilateral subshift is expansive, on the other, every asymptotically
h-expansive system has a principal symbolic extension – this will follow from
Theorem 9.3.3.

9.2 The Symbolic Extension Entropy Theorem

This section contains the main theorem about symbolic extension entropy
[Boyle and Downarowicz, 2004]. It connects this notion with the entropy struc-
ture, in which it strongly refers to invariant measures.
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Theorem 9.2.1 (Symbolic Extension Entropy Theorem) Let (X,T, S) denote
a topological dynamical system with finite entropy h(T ) < ∞ and with entropy
structure H = (hk). For a function E : MT (X) → [0,+∞) the following con-
ditions are equivalent:

1. E is a bounded affine superenvelope of H.
2. There exists a symbolic extension φ : (Y, S, S) → (X,T, S) with hφ

ext = E.

In particular, hsex ≡ EH, or, equivalently, hres ≡ uH (the smallest repair
function).

As a direct consequence of the last statement and Theorem 8.2.5, we get

Corollary 9.2.2 (The Symbolic Extension Entropy Variational Principle)

hsex(T ) = sup{hsex(μ) : μ ∈ MT (X)} = sup{EH(μ) : μ ∈ MT (X)}.

Question 9.2.3 We do not know whether and how it is possible to compute
hsex(T ) in purely topological terms, i.e., without using invariant measures (not
counting the purely topological, but useless, articulation of the definition).

Proof of Theorem 9.2.1 One direction of the proof is fairly easy and we start
with it. Choose the entropy structure of (X,T, S) to be the sequence Hfun =
(hk), with hk = h(·, T,Fk), where Fk are such families of continuous func-
tions that the associated partitions AFk

refine in X × [0, 1]. It follows from
Fact 8.3.23 that our particular entropy structure is a u.s.d.a.-sequence. This
allows us to identify all superenvelopes E by the criterion that E−hk is upper
semicontinuous for each k (see Lemma 8.1.12).

Let φ : (Y, S, S) → (X,T, S) be a symbolic extension and let Λ denote the
alphabet of Y . Since the zero-coordinate partition PΛ generates the sigma-
algebra for every invariant measure ν ∈ MS(Y ), on MS(Y ) the entropy func-
tion h(·, S) coincides with h(·, S,PΛ) = h(·, S,FΛ), where FΛ is the family
of the (continuous) characteristic functions of the symbols in Λ (i.e., of the
cylinders of length 1). Moreover, for every k we can lift the family Fk from X

to Y , and then h(·, S) = h(·, S,FΛ ∪Fk). Combining this with Lemma 8.3.23
we get that the difference h(·, S) − h(·, S,Fk) is upper semicontinuous (and
affine) on MS(Y ). By pushing down these functions to MT (X) and applying
the elementary Fact A.2.22 (note that the factor map on measures preserves
ergodicity) we obtain that for each k the function

(h(·, S) − h(·, S,Fk))[MT (X)] = (h(·, S))[MT (X)] − h(·, T,Fk) = hφ
ext − hk

is upper semicontinuous and affine. So, hφ
ext is an affine superenvelope of H

and the easy direction is done.
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The proof of the other direction is complex. It will be interrupted by numer-
ous auxiliary definitions and lemmas.

Given a bounded affine superenvelope EA of the entropy structure H, we
need to construct a symbolic extension φ : (Y, S, S) → (X,T, S) such that
hφ

ext = EA. We will construct a symbolic extension (Y, S, S) of a principal
zero-dimensional extension (X ′, T ′, S) of (X,T, S). As we know, the entropy
structure H′ of the principal extension is obtained by lifting the original entropy
structure H, and the lift of the superenvelope EA is a superenvelope of H′. If
we match the extension entropy function of the extension φ′ from Y to X ′

with the (lifted) superenvelope EA, then the extension entropy function of the
composition φ = π ◦ φ′ (here π denotes the factor map from X ′ onto X) will
match EA on MT (X).

Using Theorem 7.6.1 we can replace our system (X,T, S) by its zero-dimen-
sional principal extension whose elements are bilateral symbolic marked arrays
(see Remark 7.6.10). In other words, we can assume that our system (X,T, S)
is already a marked symbolic array system (see Definition A.3.2): (X,T, S)
is represented as the shift transformation on a closed shift-invariant family of
arrays

x = (xk,n)k∈N,n∈Z.

The alphabet in row number k is Δk and each element has in this row pk-
periodically repeated pk-markers visualized as vertical bars. We are free to
choose the base (pk) of the odometer according to our needs, and we will
specify it in Stage 2. We let

xk = (xs,n)s≤k,n∈Z

denote the projection of x onto the first k rows. In this setting, (Xk, Tk, S) is
the (bilateral) symbolic system obtained from (X,T, S) by the projection πk

onto the first k rows. The alphabet of Xk is the product Λk = Δ1 × · · · ×Δk.
The zero-coordinate partitions PΛk

are in fact clopen covers and together,
under the action of T , they generate the sigma-algebra for every invariant mea-
sure supported by X . So, the sequence of functions μ �→ hk(μ, T,PΛk

) is an
entropy structure for (X,T, Z). Moreover, it is a u.s.d.a.-sequence and EA is
its affine superenvelope, so we know that EA − hk is affine and upper semi-
continuous for every k. This fact will be extensively exploited in the proof.

For given k, the blocks B of length pk over the alphabet Δk, ending with a
marker, will be called k-blocks and their collection will be denoted by Bk. The
k-rectangles (see Definition A.3.3) occur in rows 1 through k between pairs
of consecutive markers in row k. A 1-rectangle is synonymous with 1-block,
while each (k +1)-rectangle is a concatenation D = R(1)R(2) · · ·R(qk) of
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qk = pk+1/pk k-rectangles with a (k+1)-block added as a new row, which we
will write as

R =

Ć

R(1)R(2) . . . R(qk)

B

Ň

=

Ć

D

B

Ň

.

Note that a k-rectangle is in fact a block over Λk. We let Rk denote the
collection of all possible (formal) k-rectangles over the alphabet Λk, while
Rk(X) stands for the collection of all k-rectangles that actually occur in X .

The proof is organized in three major stages. In stage 1, given an affine
superenvelope EA, we construct a certain integer-valued function on k-
rectangles called the oracle (see below for the definition). In stage 2, given
an oracle, we construct the symbolic extension. Stage 3 is the verification that
the extension entropy function indeed matches EA.

Definition 9.2.4 An oracle is a sequence of functions Ok : Rk �→ N such
that Ok(R) = 0 if and only if R /∈ Rk(X), and

Ok(R(1))Ok(R(2)) · · · Ok(R(qk)) ≥
X

B∈Bk+1

Ok+1

Ć

R(1)R(2) . . . R(qk)

B

Ň

.

STAGE 1. Constructing an oracle from an affine superenvelope.

From an affine superenvelope of the particular entropy structure H = (hk),
where hk(μ) = h(μ, T,PΛk

), we are going to derive an oracle. To simplify the
writing we introduce some shortcut notation:

K = MT (X), Kk = MTk
(Xk), μk = πkμ.

Notice that the projections πk (understood as maps on invariant measures) send
K onto Kk, and since each measure μ on X depends on its values on cylin-
ders corresponding to rectangular blocks of finite size, each measure μ is deter-
mined by the sequence of its images μk. This is to say that the fibers π−1

k (πkμ)
decrease to the one-point intersection {μ}.

In this context, we make the following general observation. Although the
lemma is applicable in a much wider context, for easier reference, we denote
the space by K and its elements by μ.

Lemma 9.2.5 Let K and Kk (k ∈ N) be compact metric spaces and assume
that πk : K → Kk are continuous surjections such that for every μ ∈ K

the fibers π−1
k (πkμ) decrease to the one-point intersection {μ}. Suppose that



278 Symbolic extensions

f : K → [−∞,∞) is an upper semicontinuous function. Set fk = f [Kk]

regarded (by lifting) as a function on K (formally, fk(μ)= sup{f(ν) :
πkν = πkμ}). Then f = lim

k
↓ fk.

Proof It is clear from the definition of the push-down, that the functions fk

are above f and decrease. Since compact sets decreasing to a one-point set
must shrink in diameter to zero, it follows from the definition of upper semi-
continuity (Definition A.1.7) that, at each μ, f(μ) ≥ lim

k
fk(μ).

We return to our specific context of the entropy structure H and its affine
superenvelope EA. Note that for each k we have hk(μ) = h(μk), so hk is
in fact defined on Kk from where it is lifted to K. Moreover, for each k, the
map πk (which originates as the projection onto the first k rows of the arrays)
can be applied not only to K but also to Kj for each j > k. In this manner,
by the appropriate lifting, hk is also defined on Kj . These remarks will help
us approximate the upper semicontinuous function EA − h by a decreasing
sequence of rather carefully chosen functions:

Lemma 9.2.6 There exists a sequence gk of affine continuous functions, each
defined on Kk, such that regarded as functions on K they satisfy the following
conditions:

lim
k

↓ gk = EA − h, (9.2.7)

∀k gk > EA − hk, (9.2.8)

∀k gk − gk+1 > hk+1 − hk. (9.2.9)

Proof Recall that EA and all EA − hk are upper semicontinuous. By Lemma
9.2.5, the functions

Ek = E
[Kk]
A

decrease to EA on K. Thus Ek−hk decrease to EA−h. Since hk is lifted from
Kk, the difference Ek − hk can be written as (EA − hk)[Kk], which, by the
properties of pushing-down and lifting (Fact A.1.26 and Fact A.2.22) is upper
semicontinuous and affine on K.

By the elementary Fact A.1.11, we can represent each function Ek − hk

as a decreasing limit (in i) of some continuous functions fk,i defined on Kk.
By adding small constants, we can assume that the sequence decreases strictly.
Since, for i ≤ k, the function fi,k (the exchange of indices is not a mistake) can
be lifted to Kk, on Kk we can define fk = inf{f1,k, f2,k, . . . , fk,k}. Lifting
each fk to K, we obtain a strictly decreasing sequence of continuous functions.
Since, for i ≤ k, fi,k > Ei − hi ≥ Ek − hk, we have fk > Ek − hk. On the
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other hand, for each i, lim
k

fk ≤ lim
k

fi,k = Ei−hi, hence lim
k

fk ≤ lim
k

Ek−hk,

so we have equality, i.e., lim
k

fk = EA − h. The functions fk nearly satisfy our

requirements, but we still need to make them affine and take care of (9.2.9).
We will do that inductively.

By the Combined Separation Theorem A.2.29 (on K1), we can replace f1

by a smaller continuous and affine function g1 still strictly larger than E1−h1.
The condition (9.2.9) refers to g2, so we will take care of it in the following
steps. Once we have defined gk (on Kk), we lift it to Kk+1, where gk + hk ≥
Ek ≥ Ek+1, and thus gk − (hk+1 −hk)> Ek+1 −hk+1. Also fk+1 >Ek+1−
hk+1, so

min{gk − (hk+1 − hk), fk+1} > Ek+1 − hk+1.

On the left-hand side we have a lower semicontinuous function and on the right
an affine upper semicontinuous function. Using Theorem A.2.29 one more
time, we can find an affine continuous function gk+1, defined on Kk+1, which
satisfies gk+1 > Ek+1 − hk+1 (and thus the inductive assumption (9.2.8)) and
gk+1 < gk − (hk+1 − hk) (this is (9.2.9); in particular this condition implies
that the sequence gk strictly decreases). Since also gk+1 ≤ fk+1, the functions
gk (lifted to K) converge to EA − h, as required in (9.2.7).

Since the left-hand side of (9.2.9) is continuous and the right-hand side is
upper semicontinuous, there exists a positive εk such that

gk − gk+1 − 3εk > hk+1 − hk.

We can arrange the numbers εk so that they decrease to zero.
Now, we will choose the base (pk) of the odometer (i.e., a sequence satisfy-

ing pk+1 = qkpk) growing rapidly enough to satisfy several conditions. First,
note that the functions μ �→ Hn(μk+1|μk) = 1

nH(μ,Pn
Λk+1

|Pn
Λk

) are contin-
uous and decrease (in n) to hk+1 − hk (this is Fact 2.3.1). By the elementary
Fact A.1.14 this sequence eventually (for indices above some nk) lies strictly
below gk − gk+1 − 3εk. We can choose pk larger than nk, and then

gk(μ) − gk+1(μ) − 3εk > Hpk
(μk+1|μk), (9.2.10)

for all k and μ ∈ K (in fact all terms depend on the projection of μ denoted
μk+1 ∈ Kk+1). We suspend the construction for a while, as the sequel requires
a technicality. (We are still imposing conditions upon the base (pk).)

The next lemma supplements our calculations of Section 2.8. We will prove
a direct consequence of the conditional data compression Lemma 2.8.7. For
this, we return to the setup and use the notation introduced in Definition 2.8.6
and above it.
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Lemma 9.2.11 Let Λ = Λ1 × Λ2 be a product alphabet. Then for every
n ∈ N and ε > 0 there exists an m(n,ε) ∈ N such that for every m ≥ m(n,ε)

the following holds

sup
D∈Λm

1

X

B∈Λm:B1=D

2−mHn(B|B1) ≤ 2mε,

where B1 ∈ Λm
1 denotes the block appearing in the first row of B.

Proof Fix an m ∈ N and D ∈ Λm
1 . Consider the family

BD = {B ∈ Λm : B1 = D}

as a probability space with the uniform probability Prob(B) = 1/#BD = p

(note that p ≥ l−m, where l is the cardinality of Λ) with defined on it random
variable X(B) = Hn(B|B1). The expression to estimate equals 1

pE(2−mX)
(where E denotes the expected value). By Lemma 2.8.7, we have for every
t ≥ 0 that Ccond[n,m, t] ≤ 2m(t+ε), i.e., that

#{B ∈ BD : Hn(B|B1) ≤ t} ≤ 2m(t+ε)

for m sufficiently large and every D of length m. Clearly, the above cardinality
does not exceed #BD, and it is zero for t < 0. Eventually, we can write

p · #{B ∈ BD : Hn(B|B1) ≤ t} ≤
(

0 , t < 0;

min(p2m(t+ε), 1) , t ≥ 0.

This can be interpreted as saying that the distribution function of X, given by
FX(t) = Prob{X ≤ t}, is below the distribution function FY of Y, where Y is
a random variable with density

f(t) = pm ln 2 · 2m(t+ε)

on the interval [0, − log p
m − ε], and with an atom of mass p2mε at zero. This

means that the mass of probability of the distribution of X is moved to the right
compared to that of Y. Because the function 2−mx is decreasing, the expected
value E(2−mX) is not larger than E(2−mY), while

E(2−mY) = pm ln 2 · 2mε(− log p
m − ε) + 1 · p2mε

≤ pm ln 2 · 2mε(log l − ε + 1
m ln 2 ).

For large m, by slightly enlarging ε in the exponent, we can ignore all terms
which depend subexponentially on m. What remains is just p2mε. Dividing by
p we obtain the required estimate 1

pE(2−mX) ≤ 2mε.
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We get back to the construction, where we are still making assumptions on
the speed of growth of the base (pk) of the odometer. Here are the next (and
not last) two requirements:

pk+1 ≥ m(pk,εk) (9.2.12)

as defined in Lemma 9.2.11 applied to the product Λk × Δk+1 (= Λk+1),

2pk+1(b+εk) ≥ �2pk+1b� for every b ≥ 0, (9.2.13)

where �·� denotes the integer ceiling. (For the last condition it suffices that
2pk+1εk ≥ 2.)

Observe that Kk+1 is a subset of the set of all shift-invariant probability
measures on the symbolic space over the alphabet Λk+1. The function μ �→
Hpk

(μk+1|μk) is well defined (as entropy) and continuous on this larger set.
Using the Hahn–Banach Theorem [see e.g. Rudin, 1991], for each k we find a
continuous and affine prolongation of gk (denoted by the same letter) to the set
of all invariant measures on the symbolic space over the alphabet Λk, which,
by lifting, is defined also on invariant measures on the symbolic space over the
alphabet Λk+1, where we also have a prolongation of gk+1. Here the inequality
(9.2.10) holds on some open neighborhood Uk+1 of Kk+1.

Recall that the periodic measure μ(R) carried by the orbit of ...RRR...,
where R is any sufficiently long block appearing in Xk+1 (i.e., a rectangle),
is in Uk+1 (this follows easily from Fact 6.6.1 and Fact 7.3.2 item 3). Replac-
ing a rectangle by its periodic measure, we can apply the functions Hpk

, gk

and gk+1 directly to such rectangles. We may specify two more requirements
on the speed of growth of the numbers pk. First, take the length pk+1 of a
(k+1)-rectangle so large that

if R is a (k+1)-rectangle, then μ(R) is in Uk+1 (9.2.14)

(and then (9.2.10) applies to μ(R)). Finally, by appeal to gk being uniformly
continuous (their domain is compact) and affine, we take pk large enough
to imply that the value of gk on any concatenation R(1)R(2) . . . R(q) of k-
rectangles is close to the corresponding convex combination of values (see
Fact 7.3.2 item 1):

˛

˛

˛gk(R(1)R(2) . . . R(q)) − 1
q

q
X

i=1

gk(R(i))
˛

˛

˛ < εk . (9.2.15)

We can now define the desired oracle. For a k-rectangle R appearing in X

we let

Ok(R) =
˚

2pkgk(R)
ˇ

. (9.2.16)
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We need to verify the condition in Definition 9.2.4 of an oracle. Let D =
R(1)R(2) . . . R(qk) be a concatenation of k-rectangles appearing in X . If D

does not occur in X , then the right side of the condition in Definition 9.2.4 is
zero and the inequality holds trivially; so suppose D occurs in X . Then, using
(9.2.13), (9.2.10) (which we can, by (9.2.14)), and (9.2.15), for the consecutive
inequalities, we can write

X

B∈Bk+1

Ok+1

Ć

D

B

Ň

=
X

B∈Bk+1

l

2pk+1gk+1(D
B)
m

≤

X

B∈Bk+1

2pk+1(gk+1(D
B)+εk) ≤

X

B∈Bk+1

2pk+1(gk(D)−Hpk((D
B)|D)−2εk)

= 2pk+1(gk(D)−2εk)
X

B∈Bk+1

2−pk+1Hpk((D
B)|D) ≤

2pk

Pqk
i=1

gk(R(i)) · 2−pk+1εk

X

B∈Bk+1

2−pk+1Hpk((D
B)|D).

The first term in the last expression above is not larger than

Ok(R(1))Ok(R(2)) · · · Ok(R(qk)).

By (9.2.12) and Lemma 9.2.11, the remaining part of that expression is not
larger than 2−pk+1εk · 2pk+1εk = 1. This verifies the condition in Definition
9.2.4.

STAGE 2. Constructing a symbolic extension from an oracle.

We now describe the construction of a symbolic extension (Y, S, S) of
(X,T, S) given an oracle. Initially, the extension Y will be not exactly sym-
bolic, as it will have the form of a joining of a symbolic system over some
finite alphabet Λ with the odometer to the base (pk) represented by the sym-
bolic marked array system with “empty” rows, i.e., containing only the markers
and empty cells (like on the Figure A.2 with zeros representing the empty cells
and ones being the markers). Each element y of Y will be pictured as having
the symbolic sequence in row number 0, and the element of the odometer in
rows numbered 1, 2, . . . . In Y , by k-blocks we will understand the blocks of
length pk occurring in the zero row between the coordinates where the mark-
ers occur in the row number k. Later the odometer will be replaced by another
symbolic system of entropy zero.

The factor map from Y to X will preserve the odometer, i.e., the config-
uration of the markers in all rows numbered 1, 2, . . . The Λ-contents of the
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zero row will be constructed in the inductive steps below. Roughly speaking,
we will gradually restrict the freedom as to what can appear in the preimage
y of a point x “above” (i.e., at the same coordinates as) a k-rectangle in x.
In each step we will construct an extension (Yk, Sk, S) of a system slightly
larger than Xk, namely of the space Xk of all bi-infinite concatenations of all
k-rectangles occurring in Xk. The intersection of the systems Yk will turn out
to be an extension of X .

Step 1.
Note that R1 = B1. Let lY ∈ N be such that lp1

Y ≥PR∈R1
O1(R), and let Λ

be an alphabet with cardinality lY .
For each R ∈ R1 pick a family E1(R) of O1(R) different blocks C of length

p1 over Λ (for R not appearing in X this family is empty). The cardinality of
Λ allows it to be done so that for different blocks R the families E1(R) are
disjoint. We let E1 be the union of all families E1(R). The set Y1 is defined as
the collection of all marked arrays such that all 1-blocks in the zero row belong
to E1 (and the other rows contain just the odometer). The map φ1 is first defined
on the 1-blocks and it sends each 1-block B to the unique 1-rectangle R such
that B ∈ E1(R), then φ1 is defined on Y1 as the block code by replacing the
1-blocks by their image 1-rectangles. We skip the standard verification that so
defined Y1 is closed, shift invariant, and that φ1 is continuous onto X1. We
emphasize that, while constructing a preimage of some x1, above each 1-block
R we are free to choose any out of O1(R) elements of E1(R), independently
of what is chosen to the left and right.

Step k+1.
Suppose the task has been completed for some k. That means, for all k-
rectangles R we have selected disjoint collections Ek(R), each of exactly
Ok(R) blocks of length pk over Λ. The union of Ek(R) over all k-rectangles R

is denoted by Ek. The set Yk consists of all such marked arrays y (with the zero
row containing the symbols from Λ and other rows containing just the mark-
ers) that all the k-blocks in the zero row of that array belong to Ek. The map
φk acts on Yk onto Xk as the code replacing each k-block B by the unique
k-rectangle R such that B ∈ Ek(R). We need to go one step further.

Consider a concatenation D = R(1)R(2) . . . R(qk) of k-rectangles. Assume
that this concatenation occurs in Xk between the (k +1)-markers. Above it, in
Yk, there occur exactly as many as

Ok(R(1))Ok(R(2)) · · · Ok(R(qk))

blocks, namely all possible concatenations of blocks: first from Ek(R(1)), next
from Ek(R(2)), and so on. By the inequality in Definition 9.2.4 of an oracle,
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it is thus possible, for each (k +1)-rectangle R =
`

D
B

´

occurring in Xk+1,
to select from these concatenations a family Ek+1(R) of cardinality Ok+1(R)
in such a way that the families corresponding to different blocks B (with the
same contents of the first k rows) are disjoint. Note that if two (k+1)-rectangles
differ already in the first k rows, then their families are chosen from disjoint
collections of concatenations, so obviously they are disjoint. We let Ek+1 be
the union of the families Ek+1(R) over all (k+1)-rectangles R. As before, we
let Yk+1 be the collection of all arrays whose all (k+1)-blocks in the zero row
belong to Ek+1. The map φk+1 acts on Yk+1 onto Xk+1 as the code replacing
each (k+1)-block B by the unique (k+1)-rectangle R such that B ∈ Ek+1(R).
The task has been now completed for k+1.

Notice the obvious fact that the sets Yk decrease with k and the maps φk

are consistent: for y ∈ Yk+1, φk(y) = πk ◦ φk+1(y) (here πk denotes the
projection to the first k rows).

When this induction is completed, we define Y as the intersection
T

k Yk,
and the map φ by the rule, that φ(y) is the marked array x for which πk(x) =
φk(y), for every k. This is a factor map from (Y, S, S) onto a system (X,T , S)
containing (X,T, S) as a subsystem. (To be precise, X may contain some
arrays whose left “half” is taken from one element of X and the right “half”
from another.) Of course, this presents no problem, as we can always restrict φ

to the preimage of X . In the calculations of the extension entropy, in the end,
we care only about the measures μ supported by X , and any lift of such a μ to
Y is automatically supported by this preimage.

The last step in order to obtain a genuine symbolic extension of (X,T , S)
(and of (X,T, S)) is replacing the odometer in the representation of (Y, S, S)
by its symbolic extension of entropy zero. As in the proof of Theorem 6.9.9,
we can use a regular Toeplitz system (see Example A.3.4). This completes the
construction of a symbolic extension of (X,T, S) using a given oracle.

STAGE 3. Entropy calculation

It remains to verify that for μ ∈ MT (X) we have the equality hφ
ext(μ) =

EA(μ), or, equivalently (see (9.1.3)), that h(S|μ) = (EA − h)(μ), where
h(S|μ) is the topological fiber entropy with respect to the extension φ. We
begin with a lemma.

Lemma 9.2.17 With the notation as used throughout the above construction,
let μ ∈ MT (X) and let μk denote πkμ. Then

h(S|μ) = lim
k

↓ h(Sk|μk)

(recall that Sk is the shift map on Yk).
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Proof The proof reduces to a simple exchange of suprema and infima for
upper semicontinuous functions. Fix μ ∈ MT (X) (this fixes all the measures
μk). Let Mk be the set of all invariant measures ν supported by Yk and mapped
by φk to μk. The function ν �→ h(ν|μk) is upper semicontinuous on Mk. If ν ∈
Mk+1, then also ν ∈ Mk (because φk = πk◦φk+1) and h(ν|μk+1) ≤ h(ν|μk)
(because h(ν|μk) = h(ν) − h(μk), and analogously for k + 1, while μk is a
factor of μk+1). The sets Mk are compact and their (decreasing) intersection
is precisely the set M of these invariant measures supported by Y which map
via φ to μ. Moroever, for ν ∈ M we have h(ν|μ) = lim

k
↓ h(ν|μk) (because

h(μ) = lim
k

↑ h(μk)).

Summarizing, we have a decreasing sequence of compact sets Mk, and on
each of them a nonnegative upper semicontinuous function, say fk, so that
fk+1 ≤ fk on Mk+1. On the intersection M of Mk all these functions are well
defined and their (decreasing) limit is some upper semicontinuous function f .
What we want, is that the suprema over Mk of fk converge to the supremum
over M of f . But this follows immediately from the exchange of suprema and
infima Fact A.1.24. All we need, is to unify the domains of the functions fk.
This can easily be done by prolonging each fk and the limit function f to
the largest domain M1 by simply assigning the value 0 where the functions
were not defined. These functions remain upper semicontinuous and now the
sequence fk decreases to f on M1, so Fact A.1.24 applies. Of course, the added
value zero does not affect the pointwise suprema of the functions, so we obtain
the desired equality.

In view of the preceding lemma, all we need is to compute h(Sk|μk) (for
the factor map φk : Yk → Xk) for any invariant measure μk supported by
Xk. Following the Definition 6.7.1 we must begin with H(Pn

Λ|xk), where
xk ∈ Xk. By definition, this is the logarithm of the cardinality of the family of
blocks y[0, n − 1] as y ranges over the fiber φ−1

k (xk). If n is much larger than
pk, then the block xk[0, n−1] can be broken as A1R

(1)R(2) . . . R(q)A2, where
each R(i) is a k-rectangle, while A1, A2 are some incomplete k-rectangles,
i.e., blocks over Λk each not exceeding pk in length. By the construction
of φk, in the preimages of xk, above each R(i) there are admitted precisely
Ok(R(i)) different blocks, independently from what occurs above the neigh-
boring blocks, so together this amounts to Ok(R(1))Ok(R(2)) · · · Ok(R(q))
possibilities above R(1)R(2) . . . R(q). The number of blocks above A1 and A2

does not exceed l2pk

Y . Taking the logarithm and dividing by n, we get

1
n
H(Pn

Λ|xk) ≈ 1
n

q
X

i=1

log(Ok(R(i))),
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where the error is at most 2pk

n log lY and decreases to zero with n. By the
formula (9.2.16) defining our particular oracle and by (9.2.13) we can write
log(Ok(R(i))) = pk(gk(R(i))+δi), where each δi is at most εk. Consequently,

1
n
H(Pn

Λ|xk) ≈ qpk

n
· 1
q

q
X

i=1

(gk(R(i)) + δi).

Since qpk ≈ n and the function gk (hence the above average) is bounded, we
can ignore qpk/n at a cost of another error vanishing as n grows. We have

1
n
H(Pn

Λ|xk) =
`1
q

q
X

i=1

gk(R(i))
”

+δ,

where δ is the average of δi (plus the last inaccuracy) and does not exceed 2εk.
Now we apply (9.2.15), and get

1
nH(Pn

Λ|xk) = gk(R(1)R(2) . . . R(q)) + δ

(now the term δ is at most 3εk). Recall that gk applies to measures, and
R(1)R(2) . . . R(q) stands for the periodic measure μ(R(1)R(2)...R(q)). By the ele-
mentary Fact 7.3.2 (items (1) and (2)) this measure is, for large n, very close
to 1

n

Pn−1
i=0 δT ix, so close that under the uniformly continuous function gk

(which we have prolonged to all invariant measures on the symbolic space ΛS

k)
the inaccuracy is, once again, negligible:

1
n
H(Pn

Λ|xk) = gk

“ 1
n

n−1
X

i=0

δT ix

”

+ δ.

Now it is time to integrate with respect to μk:

1
n
H(Pn

Λ|μk) =
1
n

Z

H(Pn
Λ|xk) dμk =

Z

gk

“ 1
n

n−1
X

i=0

δT ix

”

dμk + δ.

(this time δ is the average error term, still not exceeding 3εk). The function gk

is affine and continuous, hence harmonic, so we can pull it outside the integral.
Inside, we are left with the average of μk and its n− 1 images by T , which, by
invariance, is μk again. We conclude that

1
nH(Pn

Λ|μk) = gk(μk) + δ,

and, passing with n to infinity, that

h(PΛ|μk) = gk(μk) + δ. (9.2.18)
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The partition (and cover) PΛ generates only the zero row in Yk. In order to
compute h(Sk|μk) we should refine PΛ with a sequence of clopen covers lifted
from the other rows, i.e., lifted from the odometer. However, using (6.3.7),
and since the odometer has topological entropy zero, we can easily see that
h(Sk|μk) = h(PΛ|μk) = gk(μk) + δ.

The proof of the equivalence between 1 and 2 in the formulation of the theo-
rem is concluded by the application of Lemma 9.2.17. W take μ ∈ MT (X) (in
particular it belongs to MT (X)). By the lemma, h(S|μ) = lim

k
↓ h(Sk|μk).

Since the error term δ in (9.2.18) vanishes as k grows, and since for measures
μ ∈ MT (X) we have (9.2.7), we can write (using (9.1.3)):

hφ
ext(μ) = h(μ) + h(S|μ) = h(μ) + lim

k
↓ h(Sk|μk) =

h(μ) + lim
k

gk(μk) = h(μ) + lim
k

gk(μ) = h(μ) + (EA − h)(μ) = EA(μ).

The claim hsex ≡ EH now becomes obvious, by the appropriate definitions.

9.3 Properties of symbolic extension entropy

We discuss some fundamental properties of the function hsex and the parameter
hsex(T ). We begin with the statements concerning attainability. The first fact is
a direct consequence of Theorem 9.2.1. The last statement then follows from
Theorem 8.2.8.

Theorem 9.3.1 Let (X,T, S) be a topological dynamical system with finite
symbolic extension entropy. There exists a symbolic extension φ : Y → X such
that hφ

ext ≡ hsex if and only if the smallest superenvelope EH of the entropy
structure is affine on MT (X). In particular, it is always so, when MT (X) is a
Bauer simplex.

(We remark, however, that we do not know of any general dynamical criterion
to check whether MT (X) is a Bauer simplex, except by individual investiga-
tion or in obvious cases when there are finitely many ergodic measures.)

Attainability of the topological symbolic extension entropy hsex(T ),
although it might be considered more important in terms of applications, does
not translate to any clear condition concerning the superenvelopes of the
entropy structure. Of course, hsex(T ) is attained as topological entropy of a
symbolic extension whenever the attainability of Theorem 9.3.1 holds, but
there is a range of less restrictive examples as well. Direct application of
Theorem 9.2.1 yields the (somewhat vague) criterion below.
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Theorem 9.3.2 Let (X,T, S) be a topological dynamical system with finite
symbolic extension entropy. There exists a symbolic extension (Y, S, S) of
(X,T, S) such that h(S) = hsex(T ) if and only if there exists an affine super-
envelope EA of the entropy structure such that

sup
μ∈MT (X)

EA(μ) = sup
μ∈MT (X)

EH(μ).

The attainability Theorem 9.3.1 has another, very important consequence.
Suppose hsex ≡ h < ∞ for some system. By the Symbolic Extension Entropy
Theorem 9.2.1 this is the same as EH ≡ h. We already know, that this
is equivalent to asymptotic h-expansiveness (see Corollaries 8.4.12 and 8.1.20).
On the other hand, since h is affine on invariant measures, so is EH, and then,
by Theorem 9.3.1, it is attained, i.e., equals hφ

ext for some symbolic extension.
An extension satisfies hφ

ext ≡ h if and only if it is a principal extension. Con-
versely, the existence of a principal symbolic extension implies (directly, with-
out invoking any theorems) that hsex ≡ h, which is equivalent to asymptotic
h-expansiveness. In this manner, we have given asymptotic h-expansiveness a
new, spectacular meaning, in terms of symbolic extensions.

Theorem 9.3.3 A topological dynamical system (X,T, S) is asymptotically
h-expansive if and only if it has a principal symbolic extension.

The above fact in full generality was first established in [Boyle et al., 2002]
(by a slightly different method, without using entropy structures).

We remark that principal symbolic extensions are particularly nice in terms
of vertical data compression. They realize a digitalization which is not only
lossless, but also “gainless,” at least as far as entropy of invariant measures is
concerned. In every other case, the encoding involves some “unwanted” extra
complexity (in form of entropy) for orbits representing at least one invariant
measure.

The next statement is a direct translation of Theorem 8.2.10 and relaxes the
Symbolic Extension Entropy Variation Principle.

Theorem 9.3.4 Let (X,T, S) be a topological dynamical system. Then

hsex(T ) = sup{hsex(μ) : μ ∈ exMT (X)}.

Immediate, though ineffective, examples of systems with hsex not affine
(even with its supremum over ergodic measures smaller than the global supre-
mum), or such that every affine superenvelope exceeds hsex(T ), are provided
via the realization Theorem 8.4.6 by the Examples 8.2.17 and 8.2.18 of abstract
u.s.d.a.-sequences on simplices. We remark also that all examples of increasing
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sequences H of nonnegative functions on a compact domain X (without any
convex structure; see Section 8.1) also produce examples of entropy structures
in dynamical systems. It suffices to take the Bauer simplex K = M(X) of
all Borel probability measures on X and prolong the sequence H via the har-
monic prolongation onto K. Such procedure preserves, for instance, the order
of accumulation (see Fact 8.2.9). Then we can apply the realization theorem to
the extended H on K. Of course, this method produces only systems (X,T, S)
for which MT (X) is a Bauer simplex, so that the attainability holds.

In spite of this indirect technique, it might be of interest to see directly
some examples of dynamical systems with various types of behavior of the
entropy structure. This is why we replicate from [Boyle and Downarowicz,
2004] two explicit zero-dimensional examples in the form of symbolic array
systems. In each of them, by default, we take the entropy structure H = (hk),
where hk(μ) = h(μk) with μk being the image of μ by the projection onto
Xk (the subshift in the first k rows). The construction of a third example
of this kind, where the supremum of hsex(μ) over all invariant measures is
strictly larger than the supremum over all ergodic measures, is left to the reader
as Exercise 9.4. We emphasize that this last pathology makes the symbolic
extension entropy function hsex exceptional among entropy-related functions
on invariant measures. For most of other known entropy-like functions the
supremum equals the supremum over ergodic measures.

Example 9.3.5 This is a very simple example with hsex(T ) strictly larger than
h(T ). The strategy is simply to construct a system with H essentially as in the
abstract Example 8.1.5, Game 1, (the version with x0 included in A).

Let (X0, S, Z) denote an ergodic bilateral subshift with a unique invariant mea-
sure μ0 and entropy 1 (this eliminates periodic systems). Let Bk (k ≥ 2) be a
sequence of blocks occurring in X0 of lengths increasing with k and such that
μ(Bk) → μ0 (in a uniquely ergodic system such convergence is in fact automatic).
Let T denote the shift map on the set X of all symbolic arrays x = (xk,n)k∈N,n∈Z

satisfying the following conditions:

1 The first row x1 of x either belongs to X0 or it is x(Bk) = . . . BkBkBk . . . for
some k ≥ 2. By taking closure we must also admit that x1 may have the form
y(−∞, m]y′[m + 1,∞) for some y, y′ ∈ X0, m ∈ Z.

2 If the first row is x(Bk), then the kth row of x is an element of X0.
3 All other rows are filled with zeros.

The set of arrays constructed in this way is closed and invariant under the horizontal
shift. The structure of invariant measures is as follows: there is one measure sup-
ported by matrices having nonperiodic first row and all other rows filled with zeros;
this measure is isomorphic to the original μ0 (hence we denote it also by μ0), its
entropy is 1 and hk(μ0) = 1 for k ≥ 1. Moreover, for each k > 1, there are finitely
many measures μk,i supported by arrays having nonzero kth row and periodic first
row (μk,i is a joining of μ(Bk) and μ0, and there are finitely many such joinings).
Again, each of these measures has entropy 1, with hj(μk,i) = 1 for j ≥ k and
hj(μk,i) = 0 for j < k. With increasing k the measures μk,i accumulate at μ0.
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The entropy function h is 1 on all measures, so h(T ) = 1, while EH = 1 + 1har
{μ0},

hence hsex(T ) = 2.

Example 9.3.6 In this example htop(S) > hsex(T ) for every symbolic exten-
sion (Y, S, S) of (X, T, S). This is achieved while EH = eh (which implies order
of accumulation of entropy 1, see Exercise 8.4). The idea is to obtain a system for
which the entropy structure behaves essentially as in the abstract Example 8.2.17.

Let Bk be as in the previous example: blocks of increasing lengths occurring
in a strictly ergodic subshift X0. Let Ck (k ≥ 2; we skip k = 1 only in order to
better match the enumeration of Example 8.2.17) be the block with the following
structure:

Ck = B2B2 . . . . . . . . . . . . . . . . . . B2, B3B3 . . . B3, · · · , Bk−1Bk−1, Bk,

where the repetitions of Bi occupy roughly 2−i−1 of the length of Ck, and the
precision of these proportions improves with k (the number of repetitions for each i
increases with k). As before, x(Bk), x(Ck), μ(Bk), μ(Ck) denote respective periodic
sequences and the corresponding periodic measures. It is seen that the measures
μ(Ck) converge weakly-star to

P∞
k=1 2−kμ(Bk+1). Let T be the shift map on the

space X of all symbolic arrays x = (xk,n)k∈N,n∈Z satisfying the conditions:

1 The first row x1 of x either belongs to X0 or it has the form x(Bk) or x(Ck) for
some k ≥ 2. By taking closure we must additionally admit sequences of the forms
y1(−∞, m]y2[m + 1,∞) with y1, y2 ∈ X0, x(Bk)(−∞, m]x(Bk+1)[m + 1,∞),
and y1(−∞, m]x(B2)[m + 1,∞).

2 If the first row is x(Ck), then the kth row of x is an element of X0.
3 All other rows are filled with zeros.

The structure of invariant measures is now the following: the measure μ0 is as in
the previous example, and h1 is the (harmonic prolongation of) the characteristic
function at μ0 (μ0 corresponds to the point b1 in Example 8.2.17). This measure
is approached by periodic measures μk supported by arrays with x(Bk) in the first
row and zeros otherwise (these measures have entropy zero; they correspond to the
points ak in Example 8.2.17). In addition, for each k ≥ 2, we have finitely many
measures νk,j supported by arrays with x(Ck) in the first row and a nonperiodic kth
row. Then hk − hk−1 is the (harmonic prolongation of the) characteristic function
of the set of measures νk,j . With increasing k, these latest measures approach the
combination

P∞
k=1 2−kμk+1 (like the points bk in Example 8.2.17, which are now

replaced by “groups of points”). The behavior of H of the example in Example
8.2.17 is hence copied.

The rest of this section is devoted to examining how the function hsex and the
parameter hsex behave under joinings (including products) and inverse limits.
We obtain formulae similar to those for the usual entropy. The results come
from [Boyle and Downarowicz, 2006].

Theorem 9.3.7 (Joinings and Products) Suppose (Z,R, S) is the direct prod-
uct of (X,T, S) and (Y, S, S). Let ξ ∈ MR(Z) and let μ ∈ MT (X), ν ∈
MS(Y ) be the respective projections of ξ (ξ is a joining of μ and ν). Then

hsex(ξ,R) ≤ hsex(μ, T ) + hsex(ν, S). (9.3.8)
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If ξ = μ × ν, then

hsex(ξ,R) = hsex(μ, T ) + hsex(ν, S). (9.3.9)

As a result,

hsex(R) = hsex(T ) + hsex(S). (9.3.10)

Proof We fix an ε > 0 and let ξ, μ and ν be as in the formulation of the
theorem. Let (Xo, T o, S) and (Y o, So, S) be symbolic extensions of (X,T, S)
and (Y, S, S) via maps φ and ψ, respectively, such that

hφ
ext(μ) < hsex(μ, T ) + ε

2 ,

and analogously for ν. Then the product system on Xo × Y o is a symbolic
extension of Z via π = φ × ψ, and any lift of ξ is a joining of a lift of μ

with a lift of ν. By subadditivity of entropy for joinings (see (4.1.11)), and
by applying supremum over all such lifts, we obtain hπ

ext(ξ) < hsex(μ, T ) +
hsex(ν, S) + ε. Since ε is arbitrary, we arrive at (9.3.8).

The equality for the product measure ξ = μ × ν is much less trivial. We
need to use the entropy structures. Let (Fk) and (Gk) be sequences of families
of continuous functions giving rise to entropy structures Hfun on (X,T, S) and
(Y, S, S), respectively. Then the families (Fk∪Gk) (the union of lifted families)
give rise to an entropy structure in the product system (Z,R, S).

We have simply h(ξ) = h(μ) + h(ν) and hk(ξ) = hk(μ) + hk(ν), hence
also θk(ξ) = θk(μ) + θk(ν). We will complete the proof by showing, using
transfinite induction, that for every ordinal α

uα(ξ) ≥ uα(μ) + uα(ν).

This inequality is trivial for α = 0. Next we suppose it holds for all β < α for
some ordinal α ≥ 1. Since the supremum supβ<α uβ is in fact an increasing
limit (over the ordinals β < α), we have

sup
β<α

uβ(ξ) ≥ sup
β<α

uβ(μ) + sup
β<α

uβ(ν).

Fix k ∈ N. Pick sequences μi → μ and νi → ν (i ∈ N) such that

lim
i

( sup
β<α

uβ + θk)(μi) = å( sup
β<α

uβ + θk)(μ), and

lim
i

( sup
β<α

uβ + θk)(νi) = å( sup
β<α

uβ + θk)(ν).
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Then

å( sup
β<α

uβ + θk)(ξ) ≥ lim sup
i→∞

( sup
β<α

uβ + θk)(μi × νi) ≥

lim sup
i→∞

“

sup
β<α

uβ(μi) + sup
β<α

uβ(νi) + θk(μi) + θk(νi)
”

=

å( sup
β<α

uβ + θk)(μ) + å( sup
β<α

uβ + θk)(ν).

We conclude that

uα(ξ) ≥ uα(μ) + uα(ν).

This completes the transfinite induction. By the product rule for measure-
theoretic entropy (4.4.5) and the transfinite characterization of EH (Theorem
8.1.19), we get

EHR(ξ) ≥ EHT (μ) + EHS(ν).

The identity hsex = EH (Theorem 9.2.1) and the Symbolic Extension Entropy
Variational Principle (Corollary 9.2.2) imply the missing inequalities in (9.3.9)
and (9.3.10), respectively.

As to inverse limits, we only comment that in general the limit passage anal-
ogous to that for the usual entropy (Fact 6.5.12) does not hold. For instance,
every zero-dimensional system is an inverse limit of symbolic systems, for
which the symbolic extension entropy function obviously equals the entropy
function. But there are zero-dimensional systems with symbolic extension
entropy function strictly larger than the entropy function.

We pass to power systems. A subtlety here is that the power system usually
supports more invariant measures than the original. The comparison of the
symbolic extension entropy can only be made for measures invariant under T ,
and for the topological notion. Below are the relevant power rules.

Theorem 9.3.11 (Powers) Fix some n ∈ S. For any system (X,T, S) the
restriction of hsex( · , Tn) to MT (X) equals |n|hsex( · , T ) and

hsex(Tn) = |n|hsex(T ).

Proof If S = Z, then the systems (X,Tn, Z) and (X,T−n, Z) have the same
invariant measures and the same symbolic extensions (with the left shift S

and right shift S−1, respectively) and since for each invariant measure ν on
the extension we have h(ν, S, Z) = h(ν, S−1, Z), the systems (X,Tn, Z) and
(X,T−n, Z) determine the same symbolic extension entropy function. As a
consequence, we need to consider nonnegative n only (in either case of S). The
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case n = 0 is trivial; systems with entropy zero have zero symbolic extension
entropy as well.

Now assume n > 0 and suppose that φ : (Y, S, S) → (X,T, S) is a sym-
bolic extension. Let φn denote the same map φ regarded as a factor map
from (Y, Sn, S) onto (X,Tn, S). Suppose ν ∈ MS(Y ) and φν = μ. Then
ν ∈ MSn(Y ) and h(ν, Sn) = nh(ν, S). Therefore nhφ

ext(μ) ≤ hφn
ext (μ) (we

cannot claim equality, as μ may have other Sn-invariant lifts, which are not
S-invariant). It follows that nhsex(μ, T ) ≤ hsex(μ, Tn).

Conversely, suppose ψ : (Y, S, S) → (X,Tn, S) is a symbolic extension.
Define Y ′ = Y × {0, 1, . . . , n− 1} and define S′ : Y ′ → Y ′ by the following
rules: (y, i) �→ (y, i + 1) if 0 ≤ i < n − 1, and (y, n − 1) �→ (Sy, 0). Then
(Y ′, S′, S) is a symbolic system (it is an easy exercise to find its symbolic
representation) and it is elementary to verify that the map ψ′ : Y ′ → X given
by (y, i) �→ (T i ◦ ψ)(y) is a topological extension (a symbolic extension of
T ). Let μ ∈ MT (X) ⊂ MT n(X) and let ν be a lift of μ via ψ. Let ν′ be
the product of ν ∈ MS(Y ) with the equidistributed probability measure on
{0, 1, . . . , n − 1}. Then ν′ ∈ MS′(Y ′), ψ′ν′ = μ and h(ν′, S′) = 1

nh(ν, S).
Therefore hψ

ext(μ) ≤ nhψ′

ext(μ). It follows that hsex(μ, Tn) ≤ nhsex(μ, T ). This
completes the proof of power rule in Theorem 9.3.11 concerning the symbolic
extension entropy function. Next, this power rule and the Symbolic Extension
Entropy Variational Principle together yield that

nhsex(T ) = sup{hsex(μ, Tn) : μ ∈ MT (X)} ≤ hsex(Tn).

On the other hand, for any ε > 0 there exists a symbolic extension (Y, S, S) of
(X,T, S) with h(S) < hsex(T ) + ε. Then (Y, Sn, S) is a symbolic extension
of (X,Tn, S), whose topological entropy is nh(S) < nhsex(T ) + nε. Since ε

is arbitrary (and n fixed), it follows that hsex(Tn) ≤ nhsex(T ).

9.4 Symbolic extensions of interval maps

In order to fully appreciate the theory of entropy structures we need an
example of an important class of systems for which this theory allows us to
compute (or at least estimate) the symbolic extension entropy and hence the
vertical data compression, while explicit construction of symbolic extensions,
in the same generality, seems inaccessible. A spectacular such example is the
class of smooth transformations of the interval (or of the circle). We can not
only estimate the symbolic extension entropy function in terms of more famil-
iar parameters, such as the integral of the derivative, but even indicate a con-
crete function that is realized as the entropy function in a symbolic extension.
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All this is done purely theoretically, without actually building any symbolic
extensions.

Let f be a C1 transformation of the interval or of the circle X . In either case,
the derivative f ′ is a real-valued continuous function defined on the interval (in
case of the circle we mean the derivative f ′ of the covering function f : R →
R; although the covering function is given only up to an integer constant, the
derivative is unique and satisfies f ′(x + 1) = f ′(x), hence it is determined by
its restriction to the interval). Let μ ∈ M(X). We denote

χ(μ) =
Z

log |f ′(x)| dμ.

Clearly, χ is a harmonic and upper semicontinuous function of the measure. It
need not be continuous, as log |f ′| may assume −∞ (see also Remark A.1.10).
In fact, if f has a critical point (i.e., such that f ′(x) = 0), then χ(μ) = −∞ on
a dense set of probability measures (all, not only invariant). For ergodic mea-
sures, χ(μ) is called the Lyapunov exponent of μ. We let χ+ = max{0, χ}
(the positive part of χ), and by χ+ we denote the harmonic prolongation of χ+

onto the simplex Mf (X) of f -invariant measures. (Note that in general χ+(μ)
is not the same as the integral of log+ |f ′(x)|; the harmonic prolongation is
with respect to the ergodic decomposition, and such equality fails already for
ergodic measures.) In the one-dimensional case, the Margulis–Ruelle inequal-
ity asserts that

h(μ) ≤ χ+(μ), (9.4.1)

for every f -invariant measure. We will use this fact in this section; the proof
will be provided in the next chapter.

We also denote L(f) = supx∈X log+ |f ′(x)| < ∞. (For C1-maps this num-
ber coincides with the maximum of zero and the logarithm of the Lipschitz
constant.) It is easy to see, by the chain rule, that the sequence L(fn) (where
fn denotes the composition power of f ) is subadditive. Thus the limit

R(f) = lim
n→∞

1
nL(fn)

exists and equals the infimum. It is obvious (by the ergodic theorem and har-
monicity) that the function χ (hence also χ+ and the entropy function h)
restricted to invariant measures is bounded from above by the constant R(f).
The advantage of R(f) over L(f) is that while L(f) clearly depends on the
choice of the metric on X , both R(f) and the function χ are invariants of C1

conjugacy (we leave the easy verification of this statement to the reader).
We define the degree of smoothness r of f inductively: f is of class Cr for

r ≤ 1 if it is r-Hölder, i.e., there exists a constant c such that |f(x) − f(y)| ≤
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c|x−y|r. For r > 1 we require that f is differentiable, and f ′ is of class Cr−1.
Our definition is slightly weaker than usual, as for integer r we do not require
differentiability r times, only r − 1 times, with the last derivative Lipschitz.
We make one exception: by C1 we will understand the class of differentiable
functions with continuous derivative.

We are in a position to formulate the main theorem of this section
[Downarowicz and Maass, 2009].

Theorem 9.4.2 Let f be a Cr transformation of the interval or of the circle
X , where r > 1. Then, the function

EA = h +
χ+

r − 1

is an affine superenvelope of the entropy structure, hence it is realized as the
extension entropy function for some symbolic extension.

Corollary 9.4.3 As an immediate consequence of the above we get the first
inequality below, and combining it with the Variational Principle, the estimate
of χ(μ) by R(f), and the Margulis–Ruelle inequality (9.4.1), we get the second
one:

hsex(μ) ≤ h(μ) +
χ+(μ)
r − 1

for μ ∈ Mf (X), and (9.4.4)

hsex(f) ≤ h(f) +
R(f)
r − 1

≤ rR(f)
r − 1

. (9.4.5)

The proof of Theorem 9.4.2 will be performed by showing that the function
u = χ+

r−1 fulfills the assumption of Lemma 8.2.14, where (θk) is the sequence
of tails in the entropy structure determined by the Newhouse local entropy (see
Definitions 8.4.4 and 8.3.7). That lemma will imply that u is a repair function,
that is, h + u is a superenvelope of the entropy structure. Clearly, it is also
affine.

We start with a counting lemma.1

Lemma 9.4.6 Let g : [0, 1] → R be a Cr function, where r > 0. Then
there exists a constant c > 0 such that for every 0 < s < 1 the number of
the connected components of the set {x : g(x) �= 0} on which |g| reaches or
exceeds the value s is at most c · s− 1

r .

1 D. Burget generalized it to higher dimensions [Burguet, 2010].
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Proof For 0 < r ≤ 1, g is Hölder, i.e., there exists a constant c1 > 0 such
that |g(x) − g(y)| ≤ c1|x − y|r. If |g(x)| > s and y is a zero point for g, then

|x − y| > c1
− 1

r · s 1
r .

The component containing x is at least that long and the number of such com-
ponents is at most c · s− 1

r , where c = c1
1
r .

For larger r we proceed inductively: suppose that the lemma holds for r−1.
Let g be of class Cr. Consider only such components I = (aI , bI) of the set
{x : g(x) �= 0}, on which |g| reaches or exceeds s. By elementary considera-
tions of the graph of g, with every such component we can disjointly associate
an interval (xI , yI), so that xI ∈ I is the rightmost point at which |g| attains
its maximum on I , while yI is the leftmost critical point lying to the right of I

(see Figure 9.1).

Figure 9.1 The intervals (xI , yI) for I = 1, 2, 3. It may happen that yI = bI

or that yI = xI+1, but the intervals (xI , yI) remain disjoint.

There are two possible cases: either

(a) yI − xI > s
1
r , or (b) yI − xI ≤ s

1
r .

Clearly, the number of components I satisfying (a) is smaller than s−
1
r . If

a component satisfies (b), then, by the mean value theorem, |g′| attains on
(xI , bI) a value at least s · s− 1

r = s
r−1

r . Because g′ is of class Cr−1, by the
inductive assumption, the number of such intervals (xI , yI) (hence of compo-
nents I) does not exceed c · (s r−1

r )−
1

r−1 = c · s− 1
r . Jointly, the number of the

considered components I is at most 3 + (c + 1) · s− 1
r ≤ c1 · s−

1
r (recall that

s < 1). The number 3 is added because the above argument need not apply to
the first, last and last but one component (if there are such); the first and last
component need not contain a critical point.
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For g = f ′ we obtain the following

Corollary 9.4.7 Let f : [0, 1] → [0, 1] be a Cr function, where r > 1. Then
there exists a constant c > 0 such that for every 0 < s < 1 the number of
branches of monotonicity of f on which |f ′| reaches or exceeds s is at most
c · s− 1

r−1 .

Next we apply the above to counting possible ways by which a point (with a
specific derivative for the composition power of f ) may traverse the branches
of monotonicity. We make a formal definition.

Definition 9.4.8 Let f : [0, 1] → [0, 1] be a function of class C1. Let I =
(I1, I2, . . . , In) be a finite sequence of branches of monotonicity of f , (i.e., any
formal finite sequence whose elements belong to the countable set of branches,
admitting repetitions). Denote

ai = min{−1, max{log |f ′(x)| : x ∈ Ii}}. (9.4.9)

Choose S ≤ −1. We say that I admits the value S if

1
n

n
X

i=1

ai ≥ S.

Notice that if there exist points yi ∈ Ii with log |f ′(yi)| ≤ −1 for each i

satisfying 1
n

Pn
i=1 log |f ′(yi)| ≥ S, then I admits the value S.

Lemma 9.4.10 Let f : [0, 1] → [0, 1] be a Cr function, where r > 1. Fix
ε > 0. Then there exists Sε ≤ −1 such that for every n and S < Sε the
logarithm of the number of sequences I of length n which admit the value S is
at most

n
−S

r − 1
(1 + ε).

Proof Without loss of generality assume that S is a negative integer. Consider
a sequence of n branches of monotonicity which admits the value S. Such a
sequence determines the sequence of numbers (ai) defined in (9.4.9). Denote
ki = �ai�. Then (−ki) is a sequence of n positive integers with sum at most
n(1 − S). Now, in a given sequence (ki), each value ki may be realized by
any branch of monotonicity on which max log |f ′| lies between ki and ki + 1
(or just exceeds −1 if ki = −1). From Corollary 9.4.7 it follows that there

are no more than c2
−ki
r−1 such branches for each ki. Jointly the logarithm of

the number of sequences of branches of monotonicity corresponding to one
sequence (ki) is at most

n log c − 1
r − 1

n
X

i=1

ki ≤ n log c +
n

r − 1
(1 − S).
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For large values of −S, the first term and the last constant term 1 can be
skipped at a cost of multiplying the remaining term − n

r−1S by (1 + ε/2).
The sequences (−ki) with sum not exceeding n(1 − S) stand in a 1-1 cor-
respondence with the increasing sequences of their partial sums, which are
n-element subsets of {1, 2, . . . , n(1 − S)}. Thus their cardinality is at most
the binomial coefficient

`

n(1−S)
n

´

, whose logarithm is approximately n(1 −
S)H( 1

1−S , −S
1−S ). For large enough −S, the latter expression equals −nS times

a small number, say smaller than ε
2(r−1) . So, the logarithm of the cardinality of

all sequences of branches of monotonicity which admit the value S is, regard-
less of n, estimated from above as in the assertion.

As we have explained earlier, regardless of whether f is a transformation of
the interval or of the circle X , the derivative f ′ can be regarded as a function
defined on the interval [0, 1]. Let C = {x : f ′(x) = 0} be the set of the
critical points of f . Fix ε > 0. Fix some open neighborhood V of C on which
log |f ′| < Sε. Then V c can be covered by finitely many open intervals on
which f is monotone. Let V be the cover consisting of V and these intervals.

Lemma 9.4.11 Let f be a Cr transformation of the interval or of the circle
X , where r > 1. Let V and V be as described above. Let ν be an ergodic
measure and let

S(ν) =
Z

V

log |f ′| dν. (9.4.12)

Then the local entropy (recall Definition 8.3.7) satisfies

h(X|ν,V) ≤ −S(ν)
r − 1

(1 + ε). (9.4.13)

Proof Let F be the set of points on which the nth Cesaro means of the func-
tion 1IV log |f ′| are close to S(ν), (we need the relative error to be small) for
n larger than some threshold integer (we are using the ergodic theorem; such
a set F can have measure larger than 1 − σ). To estimate the local entropy we
will use the variant of its definition based on counting (n, δ)-separated sets in
elements of the cover Vn intersected with F (see Exercise 8.13).

And so, for x ∈ F and large n consider a set

V n
x = V0 ∩ T−1(V1) ∩ · · · ∩ T−n+1(Vn−1)

containing x, with Vi ∈ V (so that V n
x ∈ Vn). Consider the finite subsequence

of times 0 ≤ ij ≤ n − 1 when Vij
= V . Let nζ denote the length of this

subsequence and assume ζ > 0. For a fixed δ, let E be an (n, δ)-separated set
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in V n
x ∩ F and let y ∈ E. The sequence (ij) contains only (usually not all)

times i when f i(y) ∈ V . Thus, since y ∈ F , we have,

S(ν) ≤ 1
n

“

X

j

log |f ′(T ij (y))| + A(y)
”

+ β,

where A(y) is the similar sum over the times of visits to V not included in the
sequence (ij), while β is a small error term associated with the choice of the
set F . Clearly A(y) ≤ 0, so it can be skipped. Dividing by ζ we obtain

S(ν) − β

ζ
≤ 1

nζ

X

j

log |f ′(T ij (y))|.

The right-hand side above is smaller than Sε (defined in Lemma 9.4.10). This
implies that along the subsequence (ij) the trajectory of y traverses a sequence
I (of length nζ) of branches of monotonicity of f admitting the value S(ν)−β

ζ

smaller than Sε. By Lemma 9.4.10, the logarithm of the number of such
sequences I is dominated by

n
−S(ν) + β

r − 1
(1 + ε). (9.4.14)

By a small adjustment of ε, we can skip β in the numerator.
For indices i other than ij the set Vi contains only one branch of mono-

tonicity, so if two points from V n
x ∩ F traverse the same sequence of branches

during the times (ij), then they traverse the same full sequence of branches
during all times i = 0, 1, . . . , n − 1. The number of (n, δ)-separated points
which, during all times i = 0, 1, . . . , n − 1, traverse the same given sequence
of branches of monotonicity is at most n/δ + 1. This follows from the easy
observation that any collection of n monotone functions on the interval can
δ-separate at most n/δ + 1 points: look at the intervals between neighboring
separated points. Each of them must be stretched to at least length δ by one of
the functions. By monotonicity, each function can strech at most 1/δ of these
intervals, because their images are disjoint. Together, at most n/δ intervals
can be stretched, which limits the cardinality of the points to n/δ + 1. The
logarithm of n/δ + 1 should be added to the estimate (9.4.14). The proof is
concluded by dividing by n, and letting n → ∞ and then formally passing
with δ to zero.

Proof of Theorem 9.4.2 Fix an invariant measure μ and some γ > 0. In order
to use Lemma 8.2.14 we only need to consider ergodic measures ν close to μ.
If χ(μ) < 0, then, by upper semicontinuity of the function χ, for ν sufficiently
close to μ, χ(ν) < 0, in which case ν has entropy zero (which follows e.g.
from (9.4.1)), and hence h(X|ν,V) = 0 for any open cover V.
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What remains is the case χ(μ) ≥ 0 and then we only need to consider
ergodic ν with χ(ν) > 0. Clearly, then μ(C) = 0. Since log |f ′| is μ-integrable,
the open neighborhood V of C (on which log |f ′| < Sε) can be made so small
that the (negative) integral of log |f ′| over the closure of V is very close to zero
(say, closer than ε). Then

Z

V
c
log |f ′(x)| dμ < χ(μ) + ε. (9.4.15)

The above integral is an upper semicontinuous function of the measure (it
is so because V

c
is an open set on which log |f ′| is finite and continuous and

negative on the boundary), hence (9.4.15) remains valid when the integration
on the left-hand side is with respect to any invariant measure ν contained in a
sufficiently small neighborhood of μ. All the more

Z

V c

log |f ′(x)| dν < χ(μ) + ε

(we have included the boundary in the set of integration, and the function is
negative on that boundary). Then, with the notation of (9.4.12), we have

−S(ν) =
Z

V c

log |f ′(x)| dν − χ(ν) ≤ χ(μ) − χ(ν) + ε. (9.4.16)

We define the cover V with the above choice of the set V (recall that V

consists of V and some intervals on which f is monotone). We can now apply
Lemma 9.4.11. Substituting (9.4.16) into (9.4.13) we get

h(X|ν,V) ≤ χ(μ) − χ(ν) + ε

r − 1
(1 + ε).

Because the function χ+

r−1 is bounded, the contribution of the error terms ε can
be made smaller than any preassigned additive term γ (as it appears in the next
displayed formula).

Since χ+ is obviously convex and upper semicontinuous, it is subharmonic
(see (A.2.10)), hence χ(μ) = χ+(μ) ≤ χ+(μ), while at an ergodic ν we have
equality. We can thus write.2

h(X|ν,V) ≤ χ+(μ) − χ+(ν)
r − 1

+ γ. (9.4.17)

2 This inequality is of independent interest; it estimates local entropy in terms of Lyapunov
exponents. It is called The Antarctic Theorem [Downarowicz and Maass, 2009]
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We have proved that the harmonic function u = χ+

r−1 satisfies the assumptions
of Lemma 8.2.14, where θk = h(X|ν,Vk) is the tail function of the entropy
structure given by the local entropy and a refining sequence of open covers (the
diameter of Vk will eventually, for large k, become smaller than the Lebesgue
number of V, so (9.4.17) will apply to Vk). The lemma now implies that u is a
repair function, i.e., that h + u is a superenvelope.

Corollary 9.4.3 implies that for C∞ maps, hsex ≡ h (i.e., the system is
asymptotically h-expansive). This is a special case of a theorem proved by J.
Buzzi for all C∞ transformations of compact Riemannian manifolds of any
dimension [Buzzi, 1997], which will be discussed in slightly more detail in the
following section.

Returning to the interval, a natural question arises: Are the estimates of
Corollary 9.4.3 optimal? David Burguet provided a partial positive answer,
by proving the following facts (the constructions are by far too complicated to
be included in this book, see the original paper [Burguet, 2010]):

Theorem 9.4.18 For any integer r ≥ 1 there exists a Cr interval map fr

such that hsex(μ, fr) = h(μ)+ L(fr)
r−1 at at least one ergodic invariant measure

μ. Moreover, for every ε > 0 there exists a Cr map fr,ε with L(fr,ε) ≥ log 2,
satisfying hsex(μ, fr,ε) ≥ h(fr,ε) + L(fr)

r−1 − ε.

Because L(fr) ≥ χ+(μ), the first inequality proves sharpness of the esti-
mate (9.4.4) at at least one measure. The last inequality proves sharpness of
the estimate (9.4.5). For r = 1, using either statement, we obtain an example
of a C1 map without any symbolic extension. The question, in its most radical
form, remains still open:

Question 9.4.19 For r > 1, does there exist a Cr interval map f with positive

entropy, such that the repair function χ+(μ)
r−1 is the smallest?

Exercises

9.1 Among the examples provided in this section find one for which the
topological residual entropy hres(T ) is strictly smaller than the residual
entropy hres(μ) of some invariant measure.

9.2 Construct a principal symbolic extension of an irrational rotation of the
circle.

9.3 Construct a principal symbolic extension of the identity map on the unit
interval. Note that this is already a highly nontrivial subshift.
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9.4 Build an explicit example of a system on marked symbolic arrays with
entropy structure copying the behavior of Example 8.2.18, so that the
supremum of hsex(μ) over ergodic measures is strictly smaller than
hsex(T ).

9.5 Build an explicit example of a finite entropy system without symbolic
extensions.
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A touch of smooth dynamics*

Smooth dynamics is concerned with smooth transformations of Riemannian
manifolds. It is one of the most exploited areas of dynamical systems, and
many papers and books are devoted to this branch. We refer the reader to
the book [Katok and Hasselblatt, 1995] as a primary reference. These stud-
ies require background in smooth geometry, hyperbolic dynamics, foliation
theory, and many more. Also here the entropy is one of the most important
subjects.

As this book is designed to be self-contained, and there is obviously no room
to provide all that background, deprived of the basic tools, we will actually be
able to do very little. In fact we will prove only one rather elementary fact: an
estimate of the measure-theoretic entropy in terms of characteristic exponents,
a weaker version of the Margulis–Ruelle estimate of entropy for ergodic mea-
sures. Besides that, we will only state several results without a proof: the Pesin
Entropy Formula, the Buzzi–Yomdin estimate of the topological tail entropy
for Cr maps, and some results and questions concerning symbolic extensions.

10.1 Margulis–Ruelle Inequality and Pesin Entropy Formula

Let T : M → M be a C1 transformation of a compact Riemannian mani-
fold M of dimension dim. We refrain from providing the detailed definition
of the derivative DxT of T at x, which is a transformation defined on the tan-
gent bundle of M. The details can be found in any textbook on differential
topology [see e.g. Hirsch, 1994]. For our purposes an intuitive and approx-
imative understanding should suffice. Roughly speaking, the transformation
T between a small neighborhood of x and a small neighborhood of Tx in
appropriate local coordinate systems (centered at x and Tx, respectively) is
nearly a linear map, which equals DxT . By ‖DxT‖ we will understand the
norm (the maximal length of the image of a unit vector) of DxT . For C1 maps
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this parameter depends continuously on x. Just like for interval maps, we let
L(T ) = max{0, log ‖DxT‖ : x ∈ M}. This number is finite and equals the
maximum of zero and the logarithm of the Lipschitz constant, for an appropri-
ately chosen metric. What we need to know is that the cocycle

(x, n) �→ log ‖DxTn‖

is subadditive, i.e., log ‖DxTn+m‖ ≤ log ‖DxTn‖ + log ‖DT nxTm‖. Thus,
the limit

R(T ) = lim
n→∞

1
nL(Tn)

exists and equals the infimum. Further, applying the Subadditive Ergodic The-
orem (see Theorem 2.1.4), for every (T -invariant Borel probability) ergodic
measure μ on M, we have the almost everywhere convergence

lim
n→∞

1
n log ‖DxTn‖ = inf

n

1
n

∫
log ‖DxTn‖ dμ = χ(μ). (10.1.1)

The parameter χ(μ) is called the maximal Lyapunov (or characteristic) expo-
nent of the measure μ. Clearly, χ(μ) ≤ R(T ). In fact, the celebrated Oseledets
Theorem [Oseledets, 1968] provides as many as dim Lyapunov exponents
(counting with multiplicities) of which χ(μ) is the largest; here we will restrict
ourselves to the applications of the maximal exponent only. Using it, we can
prove a simplified version of the Margulis–Ruelle Inequality, giving an esti-
mate for the entropy of each ergodic measure. We abbreviate χ+(μ)=
max{0, χ(μ)}.

Theorem 10.1.2 Let T : M → M be a C1 transformation of a compact
Riemannian manifold M of dimension dim. Let μ be an ergodic measure. Then

h(μ, T ) ≤ dim · χ+(μ).

In particular, h(T ) ≤ dim · R(T ) < ∞.

Proof The last statement follows directly from the first one and the Varia-
tional Principle.

Since we fix μ, we can abbreviate χ+(μ) as χ+. In view of the almost every-
where convergence (10.1.1), for δ > 0 there exists a set M ⊂ M and n ∈ N

such that μ(M) > 1 − γ (where γ depends on δ and some constants, and will
be specified later) and 1

n log ‖DxTn‖ ≤ χ+ + δ for all x ∈ M . Because the
derivative of Tn is uniformly continuous (T and hence Tn are of class C1),
there is a positive ε0 such that log ‖DyTn‖ < n(χ+ + 2δ) for all y in the
ε0-ball around each point x ∈ M .
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We will observe S = Tn rather than T . Now, we must resolve the standard
obstacle: μ need not be ergodic under S. But, under S, μ has at most n ergodic
components μ(i) with the same entropy h(μ(i), S) = nh(μ, T ), and for at least
one of them the set M has measure larger than 1 − γ. By μ0 we will denote
a component μ(i) which satisfies the last condition. Suppose we prove that
h(μ0, S) ≤ n dim · (χ+ + 3δ). This will imply h(μ, T ) ≤ dim · (χ+ + 3δ),
and since δ is arbitrary, we will get h(μ, T ) ≤ dim · χ+, as in the assertion. In
virtue of Lemma 8.4.13, it now suffices to prove that for any open cover U

h(μ0, S,U) ≤ n dim · (χ+ + 3δ) (10.1.3)

(we are using the variant entropy of a measure with respect to a cover, see
Definition 8.3.12). Let F be a set of positive measure, such that every m-orbit
(under S) starting in F visits the complement of M no more than mγ times,
for every m greater than some threshold integer m0. Fix an open cover U and
let ε denote the Lebesgue number of U. We may assume that ε < ε0. Now take
an m larger than m0 (how much larger, we will say in a moment), and let

εm = ε · 2−mn(χ++3δ).

The whole manifold can be covered by a constant times (1/εm)dim balls of
radius εm/2 (locally the manifold looks like R

n). Let B be one such ball con-
taining a point x ∈ F . Note that the diameter of B does not exceed εm.

Observe the images of this ball under Sk for k = 0, 1, . . . ,m − 1. Each
time when Skx ∈ M , and as long as diam(Sk(B)) < ε0, the norm of the
derivative of S is bounded by 2n(χ++2δ) on the entire set Sk(B), hence the fol-
lowing image, Sk+1(B), has diameter at most 2n(χ++2δ) times diam(Sk(B)).
Otherwise, the analogous proportion can be estimated by 2nL(T ). By making
m large enough (this makes εm very small), we can arrange that even applying
the second (larger) proportion throughout the initial m0 steps, the diameters
of the images Sk(B) remain smaller than ε (which is smaller than ε0). For
larger k we already control the proportion of times, when the first and second
growth rates are applied, and then we can estimate the diameter of Sk(B) more
precisely:

diam(Sk(B)) ≤ diam(B) · 2k(1−γ)n(χ++2δ) · 2kγnL(T ).

This estimate holds inductively, as long as the right-hand side does not exceed
ε0. We have

log diam(Sk(B)) ≤ log ε−mn(χ+ +3δ)+kn((1−γ)(χ+ +2δ)+γL(T )).

Now is the moment we specify γ: We require that the convex combination
(1 − γ)(χ+ + 2δ) + γL(T ) does not exceed χ+ + 3δ. In such case
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log diam(Sk(B)) ≤ log ε − (m − k)n(χ+ + 3δ),

hence diam(Sk(B)) < ε (which is indeed smaller than ε0) for all observed
times k ≤ m. This last estimate implies that every such image Sk(B) is con-
tained in an element of the cover U, hence B is fully contained in some element
of Um (the “power” refers to the action of S). Thus, F can be covered by as
many elements of Um as there are balls B that it intersects, i.e., at most a con-
stant times ε−dim · 2mndim·(χ++3δ). Taking the logarithm, dividing by m and
letting m grow to infinity, we obtain the desired estimate (10.1.3).

For the sake of completeness, below we state the Margulis–Ruelle Inequality
in its most general form [see e.g. Qian et al., 2009].

Theorem 10.1.4 (Margulis–Ruelle Inequality) Let M be a compact
Riemannian manifold and T a Cr-map (r > 1). Let μ be an invariant measure.
Then

h(μ, T ) ≤
∫ ∑

ki(x)χ+
i (x) dμ

(the sum includes all positive Lyapunov exponents χ+
i (x) with multiplicities

ki(x)).

We do not explain precisely what Lyapunov exponents at points χi(x) are,
this is part of the Oseledets Theorem [Oseledets, 1968]. For an ergodic measure
μ, these exponents (and multiplicities) are constant μ-almost everywhere, so
the expression on the right can be written as

∑
ki(μ)χ+

i (μ). This sum for
an ergodic μ is obviously not larger than dim times the maximal Lyapunov
exponent (or zero) χ+(μ), appearing in Theorem 10.1.2, hence that theorem is
a weakening of the Margulis–Ruelle Inequality. The assertions are equivalent
in dimension 1, where χ(μ) =

∫
|f ′(x)| dμ(x) (in dimension 1 we denote the

map by f and the derivative by f ′).
In certain situations the Margulis–Ruelle Inequality becomes an equality,

providing an alternative way to compute the entropy. This is the case of smooth
measures, i.e., measures which are absolutely continuous with respect to the
Lebesgue measure with a C2 density function. The corresponding theorem is
known as the Pesin Entropy Formula [Pesin, 1977] (for automorphisms) and
[Liu, 1998] (for endomorphisms):

Theorem 10.1.5 (Pesin Entropy Formula) Let T be a Cr map (r > 1) of a
compact Riemannian manifold M and let μ be a smooth invariant measure on
M. Then

h(μ, T ) =
∫ ∑

ki(x)χ+
i (x) dμ.
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10.2 Tail entropy estimate

We state here a result proved by Jerome Buzzi estimating the topological tail
entropy h∗(T ) in case of a Cr map on a compact manifold [Buzzi, 1997]. The
proof relies on an estimate of volume growth proved by Y. Yomdin [Yomdin,
1987].

Theorem 10.2.1 Let T be a Cr map (r > 1) of a compact Riemannian
manifold M of dimension dim. Then

h∗(T ) ≤ dim · R(T )
r

.

A similar estimate was obtained much earlier by Sheldon Newhouse [New-
house, 1989], with h∗(T ) replaced by another term hloc(T ), defined as the
supremum over all invariant measures of the Newhouse local entropy.
Nowadays, using the entropy structure theory (the Tail Entropy Variational
Principle and the fact that local entropy gives rise to an entropy structure) we
know that hloc(T ) equals h∗(T ). This equality was not known in 1989.

A spectacular consequence of Theorem 10.2.1 is asymptotic h-expansive-
ness of C∞ maps, which, combined with Theorem 9.3.3 gives a statement in
terms of symbolic extensions. This was first observed in [Boyle et al., 2002].
According to our leading interpretation, it says that C∞-maps allow for a dig-
italization which is both “lossless and gainless.”

Corollary 10.2.2 Every C∞ transformation of a compact Riemannian mani-
fold M is asymptotically h-expansive, i.e., admits a principal symbolic
extension.

Theorem 10.2.1 was refined by D. Burguet to the level of individual invariant
measures [Burguet, 2008] (Theorem 10.2.1 follows from Theorem 10.2.3 given
below via Theorem 8.4.9). Recall that uT

1 denotes the first function in the trans-
finite sequence associated with the entropy structure and equals limk ↓ θ̃k, and
its supremum is h∗(T ).

Theorem 10.2.3 Let T be a Cr map (r > 1) of a compact Riemannian
manifold M of dimension dim. Then for all invariant measures μ

uT
1 (μ) ≤ dim · χ+(μ)

r
.

Remark 10.2.4 On manifolds of dimension 1 (interval or circle), Theorem
10.2.3 and hence also Theorem 10.2.1 can be derived, without invoking
Yomdin’s algebraic machinery, from the Antarctic Theorem (9.4.17) and the
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(simplified) Margulis–Ruelle inequality (Theorem 10.1.2): by upper semicon-
tinuity of χ+, for measures ν in a neighborhood of μ, the function

ν �→ min
{χ+(μ) − χ+(ν)

r − 1
, χ+(μ)

}

does not exceed χ+(μ)
r (plus a small error term). Next use the definition of u1.

Except for C∞ maps, the estimate of Theorem 10.2.1 or even that of
Theorem 10.2.3 do not provide any information about symbolic extension
entropy. This is due to the fact that whenever h∗(T ) is positive, hsex(T ) can be
arbitrarily large, even infinite. The limitations on hsex(T ) in smooth systems
on manifolds of dimension higher than 1 are summarized in the next section.

10.3 Symbolic extensions of smooth systems

The one-dimensional case can be considered (almost) completely solved.
Theorem 9.4.2 and the following Corollary 9.4.3 give an upper bound for the
function hsex and the number hsex(f), and by Burguet’s example (Theorem
9.4.18) these estimates cannot be improved. In higher dimensions the situation,
with a few exceptions, is open. One of the exceptions is the case of C∞ maps,
which have principal symbolic extensions, i.e., hsex ≡ h (Theorem 10.2.1).
It is believed that Cr transformations of compact Riemannian manifolds have
symbolic extensions for any r > 1, and that an analog of Corollary 9.4.3 holds:

Conjecture 10.3.1 [Downarowicz and Newhouse, 2005] Let T be a Cr

transformation of a compact Riemannian manifold M of dimension dim, with
r > 1. Then

hsex(T ) ≤ h(T ) +
dim · R(T )

r − 1
.

We can refine this conjecture to the level of measures:

Conjecture 10.3.2 Let T and M be as above. Then, on MT (M),

hsex(μ) ≤ h(μ) +
dim · χ+(μ)

r − 1
.

Perhaps, this can be further improved by replacing the numerator dim·χ+(μ)
by the integral of the sum of the positive Lyapunov exponents with multiplici-
ties, the same as in the Margulis–Ruelle Inequality or Pesin Entropy Formula.
In case the above conjecture is true (in either version), one can ask whether the
function on the right is, like in the one-dimensional case, a superenvelope.
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At least we know that such estimates would be sharp. Chronologically, the
first examples occur in [Downarowicz and Newhouse, 2005] and are more than
just examples; the results show the behavior of a typical map in a class:

Theorem 10.3.3 Let M be a compact surface (Riemannian manifold of
dimension 2). Among C1 area-preserving non-Anosov diffeomorphisms T :
M → M there is a residual set of mappings which do not have symbolic
extensions.

Theorem 10.3.4 Let M be a compact surface. Let r ≥ 2 be an integer. In the
set of all Cr diffeomorphisms T : M → M those which satisfy

hsex(T ) ≥ h(T ) +
R(T )
r − 1

contain an intersection of an open set and a residual set.

Notice that, compared to Conjecture 10.3.1, the factor dim is missing, and
the theorems do not cover dimension 1. These faults are fixed by Burguet’s
example of a smooth interval map (Theorem 9.4.18). By a straightforward pas-
sage to product actions (and the product rule (9.3.10) for symbolic extension
entropy), his example can be used to easily produce Cr mappings on higher-
dimensional tori showing that the estimate in Conjecture 10.3.1 (if valid) is
optimal in the class of all maps. Optimality for invertible maps is open. Opti-
mality of the individual estimate in Conjecture 10.3.2 at each invariant mea-
sure (as well, of course, as the validity of the estimate) also remains an open
question.

Let us mention one of the positive results considered a significant step for-
ward. It is due to D. Burguet and it proves Conjecture 10.3.1 for C2 surface
diffeomorphisms [Burguet, in print].

Theorem 10.3.5 Let T : M → M be a C2 diffeomorphism of a compact
surface. Then

hsex(T ) ≤ h(T ) + 2R(T ).

In particular, such a T always has a symbolic extension.

Remark 10.3.6 It is believed that the above estimate can be improved by
removing the factor 2. This is motivated by the fact that for surface diffeo-
morphisms each ergodic measure has at most one positive Lyapunov expo-
nent. Burguet’s technique used in the proof does not allow this constant to be
removed.





Part III

Entropy theory for operators
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Measure-theoretic entropy of
stochastic operators

11.1 A few words on operator dynamics

Definition 11.1.1 A continuous linear operator T on L1(μ), where (X,A, μ)
is a standard probability space, is called doubly stochastic when it satisfies
three conditions

(i) T f is a nonnegative function whenever f is nonnegative,

(ii) T 1I = 1I, where 1I is the constant function equal everywhere to 1,

(iii)
∫

T f dμ =
∫

f dμ for every f ∈ L1(μ).

Definition 11.1.2 A continuous linear operator T on the space C(X) of all
continuous real functions on a compact metric space X which satisfies the
above conditions (i) and (ii) is called a Markov operator.

It is elementary to see that every doubly stochastic operator is a contraction
(i.e., Lipschitz with the constant 1) on L1(μ), while every Markov operator is
a contraction in the uniform norm. The reader will find more information on
operators in the book [Neveu, 1965].

Every measure-preserving transfromation T of a probability space (X,A, μ)
induces a doubly stochastic operator on L1(μ) by composition: T f = f ◦ T .
Similarly, every continuous transformation T of a compact metric space X

defines by composition a Markov operator on C(X). Thus, doubly stochastic
operators are generalizations of measure-theoretic dynamical systems, while
Markov operators generalize topological dynamical systems.

An important class of examples of operator dynamics is provided by stochas-
tic processes generated by so-called transition probabilities. A transition prob-
ability is a map x �→ P (x, ·) associating to each point a probability measure
on the relevant sigma-algebra in such a way that for each measurable set A the
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function x �→ P (x,A) is measurable. Then the operator given by

T f(x) =
∫

f(y)P (x, dy) (11.1.3)

is doubly stochastic on L1(μ) for every T -invariant measure μ, i.e., such
that

∫
P (x,A) dμ = μ(A) for each measurable set A. We can interpret the

“dynamics” associated with such an operator so that the system that is cur-
rently in state x does not evolve to the predetermined state Tx (as happens in
case of transformations) but chooses its next state randomly, according to the
probability measure P (x, ·).

It is known, for instance, that every Markov operator is associated with a
transition probability, namely P (x, ·) = T ∗δx, where T ∗ denotes the dual
operator acting on C∗(X) identified (via the Riesz Theorem) with the space
of all finite signed measures on X , and δx is the point-mass at x. Every
Markov operator (just like every continuous map on a compact space) has at
least one invariant probability measure μ (i.e., such that T ∗μ = μ). For such
a measure the formula (11.1.3) defines a doubly stochastic operator on L1(μ).
We will refer to this fact when discussing the variational principle for Markov
operators. Transition probabilities will also occur in our examples.

Now we will try to say what we expect the entropy of operator dynamics to
be. We focus on the measure-theoretic case. Suppose the phase space comes
with a finite partition P = {A1, . . . , Al} and suppose the initial state of the
system is some x whose “identity” is unknown to us. In a deterministic system
(here we mean pointwise generated, i.e., associated with a transformation of
the phase space) in each step we acquire the information in form of the label
i of the cell Ai visited by Tnx, equivalently, the label of the cell of T−n(P)
containing x. This allows us to locate the initial point in a specific cylinder,
shrinking as n grows. The average “speed” (on the logarithmic scale) at which
the cylinder shrinks is the dynamical entropy. In the operator case, in each step
we only learn the values T n1IAi

(x) (i = 1, 2, . . . , l). These values form a prob-
ability vector and each of them can be interpreted as the probability that the
system starting from the state x will, after n steps, evolve to a state belonging
to the cell Ai. Such information also helps us better identify the initial state.
Usually we cannot locate it in a specific cylinder set, but our “uncertainty”
about where the initial state might be should reduce, and the entropy should
measure the exponential speed of this reduction.

For example, if the operator is such that the images of every function tend
to some invariant function, the entropy of such an operator should be zero,
because eventually we keep acquiring almost no new information. In this
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manner we are led to the following two postulates, which any reasonable notion
of operator entropy should satisfy:

• If T is pointwise generated, then its operator entropy should coincide with
the classical notion (either Kolmogorov–Sinai entropy, or topological
entropy).

• If T has trivial behavior on functions, i.e., T nf converges (to some function)
for each f in the domain, then the operator entropy should be zero.

At this point we would like to illuminate the huge difference between so
understood operator dynamics (and its entropy) and the dynamics of the associ-
ated transformation on trajectories. It is decisive for the correct understanding
of operator entropy. Suppose that a doubly stochastic operator T is given by a
transition probability x �→ P (x, ·) and a T -invariant measure μ on X . Then
one can create a shift-invariant probability distribution Probμ on the space of
all trajectories XN0 (this is roughly the Ionescu-Tulcea Theorem, see [Ionescu-
Tulcea, 1949]). In this manner, we obtain a classical dynamical system with a
measure-preserving transformation (the shift). For a Markov operator T on
C(X) we can similarly pass to a continuous transformation (the shift) on a
certain shift-invariant subset Y of XN0 interpreted as the collection of all pos-
sible trajectories. Moreover, in both cases, the system on trajectories allows
us to reconstruct the operator by the projection onto the coordinate zero. So,
it seems that operator dynamics is just a particular case of pointwise dynam-
ics. Well... yes, but not for our interpretation of information and entropy. In
order to replace the operator dynamics by the dynamics of the shift transfor-
mation, we must essentially change the phase space, from X to XN0 . Unless
T is a composition with a transformation, the initial state x does not determine
its trajectory in XN0 , hence such a change replaces the states by something
whose “identity” requires much more information. This is why the entropy of
the operator dynamics has very little to do with the entropy of the associated
shift map on trajectories.

Let us give a very simple example illustrating this difference. Consider a
transition probability in which P (x, ·) = μ does not depend on x. It is clear
that the associated stochastic operator T sends every function f to the constant
function g ≡

∫
f dμ, invariant under T . According to the second postulate, the

operator entropy is immediately zero. On the other hand, in this example the
Ionescu-Tulcea system on the space of trajectories is simply the independent
process with the product measure Probμ = μN0 , and independent processes
have positive Kolmogorov–Sinai entropy, infinite whenever μ is nonatomic.

In the literature one can find several attempts to define entropy for opera-
tors. In the measure-theoretic case, the most deeply investigated notion is the



316 Measure-theoretic entropy ofstochastic operators

quantum dynamical entropy introduced by R. Alicki, J. Andries, M. Fannes
and P. Tuyls (see [Alicki et al., 1996] for the full course on this type of entropy)
based on von Neumann’s definition of entropy of a density matrix. A simi-
lar definition formulated for doubly stochastic operators (called there Markov
operators) on the space of integrable functions was given by I. I. Makarov
in [Makarov, 2000]. A quite different approach was presented by E. Ghys,
R. Langevin and P. Walczak, in [Ghys et al., 1986] and then studied by
Kaminski and de Sam Lazaro [Kamiński and de Sam Lazaro, 2000].

The only topological entropy applicable to Markov operators on C(X)
known to us was defined by Langevin and Walczak in [Langevin and
Walczak, 1994]. All these definitions satisfy the above two postulates. No other
relations between them were ever established before [Downarowicz and Frej,
2005].

In this book we will exploit the most recent approach provided in
[Downarowicz and Frej, 2005] to both measure-theoretic and topological
entropies, allowing us, among other things, to establish equality between all of
the preceding notions for doubly stochastic operators, and allowing us to prove
a number of good properties not known earlier. The theory is under construc-
tion; we conclude Part III of this book by listing a number of open problems
that await solution.

11.2 The axiomatic measure-theoretic definition

This section presents an axiomatic approach to measure-theoretic entropy.
Accepting certain basic properties of entropy of measure-preserving transfor-
mations as indispensable, five construction steps and four axioms are formu-
lated, which a general entropy of an action on functions should follow. Then
we present the full proof of the fact that all entropy notions satisfying the
axioms coincide on doubly stochastic operators. In particular, this establishes
the equality, on such operators, between all the above-mentioned measure-
theoretic entropies introduced by independent teams of authors.

11.2.1 The axioms

Given a standard probability space (X,A, μ), consider an operator (even not
necessarily linear) T : L → L on some collection L of measurable functions
with range contained in [0,1] (of course, doubly stochastic operator fall in this
category). Any reasonable way to define the entropy hμ(T ) of T with respect
to μ would have to follow the major steps listed below:
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(1◦) One needs to specify F, a collection of selected finite families F of func-
tions belonging to L. These families can be either ordered, admitting
repetitions, or unordered i.e., treated as sets (hence without repetitions).
The collection F should be T -invariant, i.e., such that F ∈ F implies
T (F) ∈ F, where T (F) = {T f : f ∈ F}. This collection should also
contain a special trivial family O invariant under T .

(2◦) One has to specify an associative and commutative operation � (called
join) on these families, so that F�G ∈ F whenever F ∈ F and G ∈ F, and
with the cardinality of the joined family bounded by a number depending
on the cardinalities of the components. For every F ∈ F we should have
F � O = F. In case the families are ordered, all above statements are
understood up to permutation.

(3◦) One needs to define the static entropy with respect to μ on F; a nonnega-
tive (and finite) function F �→ Hμ(F), which is zero for the trivial family.

(4◦) Denoting

Fn =
n−1⊔
i=0

T i(F)

one then defines the operator entropy of F under the action of T as

hμ(F) = hμ(T ,F) = lim sup
n→∞

1
nHμ(Fn).

(5◦) Eventually one sets

hμ(T ) = sup
F∈F

hμ(T ,F).

For example, Kolmogorov–Sinai entropy for measurable maps uses F

defined as families of characteristic functions corresponding to finite measur-
able partitions, and the join is obtained by pointwise multiplication “each by
each” or equivalently by the application of pointwise infima. Some other, more
general, definitions [e.g. Alicki et al., 1996; Ghys et al., 1986] use for F the
measurable partitions of unity, F = {f1, . . . , fr} with each fi nonnegative and
with

∑
i fi = 1 (actually

∑
i f2

i = 1 in [Alicki et al., 1996]). In both cases the
joins are performed via pointwise multiplication. In the definition in Section
11.3 we let F consist of all finite sets of measurable functions with range in
[0, 1], and the join is simply the union.

We remark that the construction of topological entropy (the version via cov-
ers) follows the same five steps. The only difference is the lack of reference to
any measure. We leave matching the objects to the reader.

The construction consisting of steps (1◦)–(5◦) is usually accompanied by
some definition of a conditional static entropy – a tool useful in verifying
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properties of entropy. At this level of generality we define this quantity by
the formula analogous to (1.4.3)

Hμ(F|G) = Hμ(F � G) − Hμ(G). (11.2.1)

The notion of static entropy should posses some elementary “nice” proper-
ties known for the Shannon static entropy of measurable partitions. This leads
to formulation of several conditions which we call axioms of static entropy.

(A) Monotonicity axiom (compare (1.6.6), (1.6.7))
For F, G and H belonging to F we require that

Hμ(F|H) ≤ Hμ(F � G|H), (11.2.2)

Hμ(F|G � H) ≤ Hμ(F|G). (11.2.3)

Remark 11.2.4 We are used to the situation where the monotonicities are
with respect to some partial order among the objects on which the static entropy
is defined: the relation of refining. To make our axiom (A) compatible with
such an approach it suffices to agree that a family F is a refinement of G if and
only if G = F � H for some H.

(B) Continuity axiom
For two families F = {f1, . . . , fr} and G = {g1, . . . , gr} of the same
length r we define their L1(μ)-distance as

dist(F,G) = min
π

{
max
1≤i≤r

‖fi − gπ(i)‖
}

(‖ · ‖ denotes the norm in L1(μ)), where the minimum ranges over all
permutations π of the set {1, . . . , r}. If the lengths of the families are
different, we enhance the smaller family by adding to it the appropriate
number of zero functions. (The distance dist generalizes d1 on partitions,
see Section 1.7.) In this axiom we require that for every r ≥ 1 and ε > 0
there is a δ > 0 such that if F, G and H have cardinalities at most r and
dist(F,G) < δ, then

|Hμ(F|H) − Hμ(G|H)| < ε and (11.2.5)∣∣Hμ(H|F) − Hμ(H|G)
∣∣ < ε. (11.2.6)

(compare Facts 1.7.9 and 1.7.10).1

1 In [Downarowicz and Frej, 2005] this axiom also requires continuity (in dist) of the operation
�. The version given here is weaker while it has the same practical consequences.
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(C) Partitions axiom
If P is a measurable partition of X , then 1IP = {1IA : A ∈ P} denotes
the family of the corresponding characteristic functions. We require that
characteristic functions of measurable sets belong to L and that F contains
the families 1IP of all finite measurable partitions P of X . The entropy Hμ

should coincide on partitions with the Shannon entropy:

Hμ(1IP) = H(μ,P)
(

= −
∑
A∈P

μ(A) log μ(A)
)
,

Hμ

( n⊔
k=1

1IPk

)
= H

(
μ,

n∨
k=1

Pk

)
.

The next (and last) axiom is rather technical. Roughly speaking, it asserts
that the entropy of each family F must be majorated by the entropy of some
finite partition.

(D) Domination axiom
Each family of functions F ∈ F together with a partition κ of the unit
interval determine the following partition of X:

F−1(κ) =
∨

f∈F

f−1(κ). (11.2.7)

This axiom requires that for every r ≥ 1 and ε > 0 there exists γ > 0 such
that every family F of cardinality not exceeding r and every partition κ

of [0, 1] into finitely many subintervals of lengths not exceeding γ satisfy

Hμ(F|1IF−1(κ) � Oκ) < ε,

where Oκ ∈ F is some auxiliary family of functions, depending only on
κ, satisfying

lim
n

1
n

Hμ

(
n−1⊔
i=0

Oκ

)
= 0.

The family Oκ is added in order to allow some of the definitions of operator
entropy to comply with the axioms. Usually Oκ is either trivial, which means
it can be skipped, or it is a family of some constant functions.

By a brief inspection we verify that all the mentioned examples of notions
of entropy indeed follow the construction steps (1◦)–(5◦), and that the asso-
ciated notions of static entropy satisfy the axioms (see lemmas 11.1 and 11.4
in [Alicki et al., 1996] for axiom (A) with regard to the quantum entropy,
the axiom (D) is implicitly included in the proof of Theorem 11.2 there; see
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[Kamiński and de Sam Lazaro, 2000] for the axiom (A) with regard to the
entropy of [Ghys et al., 1986] and the proof of the main theorem in [Ghys
et al., 1986] for axiom (D); the rest is either obvious or explicit).

11.2.2 Elementary properties of operator entropy

In spite of the fact that the axioms completely determine the final notion
obtained in step (5◦) (see Theorem 11.2.32), each of them, especially the first
one, has its own set of consequences, which we now review.

Definition 11.2.1 of conditional entropy alone (without any help of the
axioms) easily implies the analog of (1.6.3) (compare Exercise 1.3)

Hμ(F � G|H) = Hμ(F|G � H) + Hμ(G|H). (11.2.8)

This, and the monotonicities of axiom (A) (and in one case the existence of
the trivial family), imply the familiar subadditivity formulae (compare (1.6.9)
through (1.6.12)):

Fact 11.2.9

Hμ(F � G|H) ≤ Hμ(F|H) + Hμ(G|H), (11.2.10)

Hμ(F � G) ≤ Hμ(F) + Hμ(G), (11.2.11)

Hμ(F � F′|G � G′) ≤ Hμ(F|G) + Hμ(F′|G′), (11.2.12)

Hμ(F|H) ≤ Hμ(F|G) + Hμ(G|H). (11.2.13)

Remark 11.2.14 It is not hard to verify that (11.2.2) and (11.2.10) imply
(11.2.3) (we leave it as Exercise 11.1). In [Downarowicz and Frej, 2005] the
monotonicity axiom was given in an equivalent form consisting of (11.2.2)
and (11.2.10). Here we have made a cosmetic change to make the axiom more
homogeneous.

The formula (11.2.11) easily implies that for every l ≥ 1

hμ(T ,T lF) = hμ(T ,F), (11.2.15)

where hμ(T ,F) is defined in step (4◦). The verification is left to the reader
as Exercise 11.2; we will use this equality in due time. The next immediate
consequence of the sole axiom (A) is the power rule. Again, the proof is left
as Exercise 11.3.
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Fact 11.2.16 For any doubly stochastic operator T , n ∈ N and F ∈ F,

hμ(T n,Fn) = nhμ(T ,F), and

hμ(T n) = nhμ(T ).

We remark that operators are usually not invertible, so we do not consider
negative iterates (and actions of Z). It can be easily proved (Exercise 11.4) that
all invertible doubly stochastic operators or Markov operators are pointwise
generated.

We proceed with other consequences of the axioms. The following funda-
mental fact establishes the first major postulate listed in the introduction to
Part III.

Theorem 11.2.17 If T is a composition with a measure-preserving trans-
formation T on a probability space, then any notion of entropy following the
construction steps (1◦)–(5◦) and with the associated static entropy satisfying
axioms (A)–(D) coincides with the Kolmogorov–Sinai entropy.

Proof Axiom (C) implies that h(μ, T ) ≤ hμ(T ), while axioms (D) and (A)
give the reversed inequality. The easy details are left to the reader.

Notice that we do not assume Hμ(F) = Hμ(TF), hence, in general, we
do not have subadditivity of the sequence Hμ(Fn) and we do not have the
alternative formula hμ(T ,F) = lim

n
Hμ(F|F[1,n]). Neither do we assume that

F�F = F (or even that Hμ(F|F) = 0). This is the reason why axiom (A) alone
is insufficient to even prove that T -invariant families have dynamical entropy
zero, and axioms (A) and (B) together do not imply the same for families
whose orbits converge. In order to prove the second major postulate we need
to involve the other axioms as well (actually (B) is not used).

Theorem 11.2.18 If T is a doubly stochastic operator and F consists of fun-
ctions f such that their orbits T nf converge in L1(μ), then hμ(F) = 0. In
particular, if the orbits of all functions converge, then hμ(T ) = 0.

Proof Fix some ε > 0. Take a family F of cardinality r which fulfills the
assumption of the theorem. Let γ be as specified in axiom (D) for r and ε

and fix a finite partition κ of [0, 1] into subintervals of lengths smaller than
γ. Choose a large integer l and set F0 = T lF. We know that hμ(F) =
hμ(F0). We will show the latter to be arbitrarily small. We will abbreviate
κi = 1I(T iF0)−1(κ). Using (11.2.1), and then axiom (A) in the form of an
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iterated version of (11.2.12) and (11.2.11), we get

1
n

Hμ(F0
n) =

1
n

Hμ

(
F0

n
∣∣∣ n−1⊔

i=0

(κi � Oκ)
)

+
1
n

Hμ

( n−1⊔
i=0

(κi � Oκ)
)
≤

1
n

n−1∑
i=0

Hμ(T iF0|κi � Oκ) +
1
n

Hμ

( n−1⊔
i=0

κi

)
+

1
n

Hμ

( n−1⊔
i=0

Oκ

)
.

By axiom (D), the average in the last line above does not exceed ε and the
last term converges to zero with n. The middle term involves partitions, so by
axiom (C), it equals the Shannon entropy

1
n

H
( n−1∨

i=0

(T iF0)−1(κ)
)
.

By (1.4.3) and (1.6.9), this is not larger than

1
n

H(F0
−1(κ)) +

1
n

n−1∑
i=1

H((T iF0)−1(κ)|F0
−1(κ)).

If l is large, the families T iF0 are all close to F0 in the pseudometric dist,
which easily implies that the partitions (T iF0)−1(κ) are close to F−1

0 (κ) in
d1. By the elementary property H(P|P) = 0 of the Shannon entropy (see
(1.6.5); this is what we do not assume for the operator entropy) and its d1-
continuity of Fact 1.7.9, the last displayed expression is (for large l) smaller
than ε. Now we let n grow to infinity, which yields hμ(F) = hμ(F0) < 2ε.

11.2.3 Asymptotic lattice stability

This subsection has nothing to do with entropy. It describes a general property
of doubly stochastic operators on L1(μ). Throughout the rest of this section T

denotes a doubly stochastic operator on L1(μ).
We will treat L1(μ) as a lattice, that is, we will consider the lattice opera-

tions ∨ (maximum of two functions) and ∧ (minimum of two functions). These
operations are uniformly continuous in the L1(μ)-norm; it is elementary to
see that

‖f1 ∨ f2 − g1 ∨ g2‖ ≤ ‖f1 − g1‖ + ‖f2 − g2‖ (11.2.19)

(and similarly for ∧). It is known that pointwise generated doubly stochastic
operators are exactly those which preserve the lattice operations (see Exercise
11.5). We will show that doubly stochastic operators are, in a sense, not that
different; they “eventually almost preserve” the lattice operations (we call this
property asymptotic lattice stability).
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Lemma 11.2.20 Let f , g be two bounded measurable functions on X . For
every δ > 0 there exists l0 ∈ N such that for every l ≥ l0 and any n ∈ N,

‖T n(T lf ∨ T lg) − (T n+lf ∨ T n+lg)‖ < δ

and

‖T n(T lf ∧ T lg) − (T n+lf ∧ T n+lg)‖ < δ.

Proof Clearly, we have T (f ∨ g) ≥ T f and T (f ∨ g) ≥ T g. This and a
symmetric argument imply

T (f ∨ g) ≥ T f ∨ T g ≥ T f ∧ T g ≥ T (f ∧ g). (11.2.21)

Since T preserves the measure, for each n ∈ N we obtain∫
T nf ∨ T ng dμ =

∫
T (T nf ∨ T ng) dμ ≥

∫
T n+1f ∨ T n+1g dμ ≥∫

T n+1f ∧ T n+1g dμ ≥
∫

T nf ∧ T nf dμ,

producing two sequences of integrals: on the left a decreasing sequence and on
the right an increasing one. Both sequences must converge. Given δ > 0 one
can find l0 so large that for every l ≥ l0 and every n ∈ N

0 ≤
∫

T lf ∨ T lg dμ −
∫

T n+lf ∨ T n+lg dμ ≤ δ.

Since T n preserves the measure and the pointwise inequality (11.2.21) holds
between T n(T lf ∨T lg) and T n+lf ∨T n+lg, the above difference represents
the desired L1-distance. The proof for minima is symmetric.

By an r-argument lattice polynomial we shall mean any finite formal expres-
sion involving a sequence of arguments f1, . . . , fr (not necessarily all of them),
bound by the lattice operations (and brackets). An example of a 3-argument
lattice polynomial is

ϑ(f, g, h) = (f ∨ g) ∧ (g ∨ h) ∧ (f ∨ h).

Note that at each point x the lattice polynomial chooses one of the values fi(x)
depending only on the order of the numbers f1(x), . . . , fr(x). Thus there are
only finitely many different r-argument lattice polynomials treated as functions
(L1(μ))r → L1(μ).

Definition 11.2.22 We say that a finite (ordered) family F = {f1, . . . , fr}
of functions in L1(μ) is lattice δ-stable under T (for some δ > 0) if for any
r-argument lattice polynomial ϑ and any n ≥ 1 the following holds

‖T n(ϑ(F)) − ϑ(T n(F))‖ < δ.
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Theorem 11.2.23 For every finite family F = {f1, . . . , fr} ⊂ L1(μ), and
any δ > 0, there exists an integer l0 ≥ 0 such that for each l ≥ l0 the family
Fl = T l(F) is lattice δ-stable under T .

Proof Since there are only finitely many r-argument lattice polynomials, it
suffices to prove the stability under each lattice polynomial separately. The
proof is by induction over the number of lattice operations in the polynomial.
For lattice polynomials with zero operations the statement is trivial. For those
with one operation (∨ of ∧), the assertion coincides with Lemma 11.2.20.
Every lattice polynomial can be broken as

ϑ(F) = ϑ1(F) ∨ ϑ2(F) or ϑ1(F) ∧ ϑ2(F),

where ϑ1 and ϑ2 have strictly less operations than ϑ. Since the proof in either
case is identical, we consider the first option only. By the inductive assumption,
we can find an integer l′ such that the family F′ = T l′(F) is δ/5-stable under
both ϑ1 and ϑ2. Lemma 11.2.20 applied to the functions f = ϑ1(F′) and
g = ϑ2(F′) with the parameter δ/5 produces an integer l′0. We set l0 = l′ + l′0.
Now, for l ≥ l0 and any n ≥ 1 we have

ϑ(T n(Fl)) = ϑ1(T n(Fl)) ∨ ϑ2(T n(Fl)) ≈

T n+l−l′(ϑ1(F′))∨T n+l−l′(ϑ2(F′))≈T n
(
T l−l′(ϑ1(F′))∨T l−l′(ϑ2(F′))

)
≈

T n
(
ϑ1(T l−l′(F′)) ∨ ϑ2(T l−l′(F′))

)
= T n(ϑ(Fl)),

where the first approximation is up to 2δ/5 in the norm and follows from the
δ/5-stability of F′ and (11.2.19), the second approximation is up to δ/5 and
follows from the inequality l − l′ ≥ l′0 and the way we employed Lemma
11.2.20. The last approximation is up to 2δ/5 again, and follows by the same
reasons as the first one, plus the fact that T n is a contraction in the norm.
Jointly, the approximation is up to δ, as we need.

By an r-argument lattice expression we will understand a lattice polynomial
with some finite number s of arguments applied to functions g1, . . . , gs being
linear combinations of the functions 1, f1, . . . , fr (with some fixed constant
coefficients). An example of a 2-argument lattice expression is

Θ(f, g) = ((2f − 1) ∨ 3) ∧ (f + 2g + 1).

Since T is linear and preserves the constants, the application of T to the func-
tions fi is equivalent to the application of T to the functions gj . Thus we derive
the following consequence of Theorem 11.2.23:
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Corollary 11.2.24 For every finite family F = {f1, . . . , fr} ⊂ L1(μ), any
r-argument lattice expression Θ, and any δ > 0, there exists an integer l ≥ 0
such that the family F0 = T l(F) satisfies, for all n ≥ 1,

‖T n(Θ(F0)) − Θ(T n(F0))‖ < δ.

Since the number of r-argument lattice expressions is infinite, we cannot
claim the existence of a common l for all such expressions.

Now we say how a characteristic function of the set {t < f < s} (formally
{x : t < f(x) < s}, where t, s ∈ [0, 1]) can be approximated by 1-argument
lattice expressions. The fact below is completely obvious and the verification
is left to the reader as Exercise 11.6:

Lemma 11.2.25 Fix f ∈ L1(μ) and a pair of real numbers s > t. For m ∈ N

let

Θm,t,s(f) = (m((f − t) ∧ (s − f)) ∨ 0) ∧ 1.

Then

Θm,t,s(f) ≤ 1I{t<f<s} and (11.2.26)

‖1I{t<f<s} − Θm,t,s(f)‖ ≤ μ{f ∈ (t, t + 1
m ] ∪ [s − 1

m , s)}. (11.2.27)

We now give the key technical tool to prove the uniqueness Theorem 11.2.32.

Lemma 11.2.28 Fix a family F = {f1, . . . , fr} of bounded measurable func-
tions, also fix γ > 0 and δ > 0. Then there exists an l ∈ N and a finite partition
κ of the range by intervals of lengths between γ/2 and γ such that for every
n ∈ N and F0 = T l(F) it holds that

dist(T n(1IF−1
0 (κ)), 1I(T n(F0))−1(κ)) < δ.

Proof For simplicity assume that the range of all fi is contained in [0, 1]. We
fix some integer m (we will say later how large). Let κ0 be the partition of [0, 1]
into m equal intervals and denote by tj (j = 0, . . . , m) their endpoints ordered
increasingly. We can shift the endpoints by insignificant distances to assure
that none of the functions T nfi (n ∈ N, i = 1, . . . , r) assumes any of the val-
ues tj with positive probability. We take all lattice polynomials with as many
arguments as there are triples (i, j, k) with i = 1, . . . , r, 0 ≤ j < k ≤ m,
and we apply them to the functions 1I{tj<fi<tk}. In this manner we obtain
the characteristic functions of all sets in the algebra generated by F−1(κ0).
Next, in each of these polynomials, we replace 1I{tj<fi<tk} by Θm,tj ,tk

(fi)
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(for all i, j, k). We have created a finite family of r-argument lattice expres-
sions applied to F. We pick an l for which the assertion of Corollary 11.2.24
is satisfied with δ′ = 1/

√
m for all lattice expressions in this family (which

includes the 1-argument lattice expressions Θm,tj ,tk
(fi)). We let F0 = T l(F).

Recall that we have arranged that for each f ∈ F0 the measures of the
sets {f ∈ (tj , tj+1]} do not depend on including or excluding the endpoints.
Clearly, with f fixed, only at most

√
m of these sets can have measure equal

to or larger than 1/
√

m. So, all but (at most) 2r
√

m points tj satisfy both

μ{f ∈ (tj , tj+1]} < 1√
m

and μ{f ∈ [tj−1, tj)} < 1√
m

(11.2.29)

for all f ∈ F0. Choosing (at the start) m large enough we can guarantee that
each interval of length γ/2 contains at least one such “good” point tj . We
can now easily select a subset of the “good” points tj which partitions [0, 1]
into subintervals of lengths between γ/2 and γ. We denote these points by
sk (k = 1, . . . , r′) and we let κ denote the corresponding partition. It now
suffices to verify the assertion of the lemma.

Combining (11.2.27) and (11.2.29) we get

‖1I{sk<f≤sk+1} − Θm,sk,sk+1(f)‖ < 2√
m

(11.2.30)

for each k and f ∈ F0.
For a moment we fix f ∈ F0. The sum over k of the functions Θm,sk,sk+1(f)

is majorated by the sum of the characteristic functions 1I{sk<f≤sk+1}, which
is 1 everywhere. The integral of the first sum is at least 1 − 2

γ
2√
m

. This is pre-
served by T n, i.e, the integral of the sum of the functions T n(Θm,sk,sk+1(f))
is also at least 1 − 2

γ
2√
m

. By the choice of l, if we apply T n “inside” rather

than “outside,” the integral of the sum will change by at most 2
γ

1√
m

, i.e., the

integral of the sum of the functions Θm,sk,sk+1(T
nf) is at least 1 − 2

γ
3√
m

.
Each of the latter functions is majorated by 1I{sk<T nf≤sk+1}, and the sum of
these last characteristic functions also equals 1 everywhere. Thus, for each k

(and every f ), we have proved

‖1I{sk<T nf≤sk+1} − Θm,sk,sk+1(T
nf)‖ ≤ 2

γ
3√
m

. (11.2.31)

Now fix a characteristic function 1IA of a set A ∈ F−1
0 (κ). This function

equals a lattice polynomial ϑ applied to the functions 1Isk<f≤sk+1 , which we
abbreviate as ϑ{1I{sk<f≤sk+1} : f, k}. Then ϑ{1I{sk<T nf≤sk+1} : f, k} is the



11.2 The axiomatic measure-theoretic definition 327

characteristic function of a set A′ ∈ (T n(F0))−1(κ). We have

‖T n(1IA) − 1IA′‖ =

‖T n(ϑ{1I{sk<f≤sk+1} : f, k}) − ϑ{1I{sk<T nf≤sk+1} : f, k}‖ ≤
‖T n(ϑ{1I{sk<f≤sk+1} : f, k}) − T n(ϑ{Θm,sk,sk+1(f) : f, k})‖+
‖T n(ϑ{Θm,sk,sk+1(f) : f, k}) − ϑ{Θm,sk,sk+1(T

nf) : f, k}‖+
‖ϑ{Θm,sk,sk+1(T

nf) : f, k} − ϑ{1I{sk<T nf≤sk+1} : f, k}‖.

The first of the last three distances does not exceed 2/
√

m · K, where K is
the maximal number of operations in all considered lattice polynomials ϑ (and
depends only on r and γ), by using (11.2.30), (11.2.19) and the fact that T n

is a contraction. The second distance is at most 1/
√

m because the composi-
tion of ϑ with the expressions Θm,sk,sk+1 is among the lattice expressions for
which l was selected (using Corollary 11.2.24) for this very estimate to hold
on F0 = T l(F). The last distance does not exceed 2

γ
3√
m

·K, by (11.2.31) and

again (11.2.19). Jointly the initial distance is at most C/
√

m, where C depends
on r and γ. The number of functions 1IA ∈ F−1

0 (κ) does not exceed another
constant also depending only on r and γ. We conclude that with an appropri-
ate a priori choice of m (and the resulting choice of l), the distance between
the families as in the assertion of the lemma can be made smaller than δ, as
required.

11.2.4 Uniqueness of entropy for doubly stochastic operators

The next theorem says that there is in fact a unique reasonable definition of
entropy for doubly stochastic operators. It implies that the quantum dynami-
cal entropy introduced by R. Alicki, J. Andries, M. Fannes and P. Tuyls, the
operator entropy defined by I. I. Makarov, and that by E. Ghys, R. Langevin
and P. Walczak, coincide on doubly stochastic operators (because they are built
along the steps (1◦)–(5◦) and satisfy the axioms). This collection is joined by
the notion introduced in the next section. We remark that B. Frej proved that
another notion (built not along the construction steps (1◦)–(5◦)) defined in
[Maličký and Riečan, 1987] coincides (on doubly stochastic operators) with
the other four [Frej, 2006].

Theorem 11.2.32 If T is a doubly stochastic operator on L1(μ), then axioms
(A)–(D) (along with the construction steps (1◦)–(5◦)) completely determine
the value of hμ(T ).

Proof Consider an entropy definition following the construction steps (1◦)–
(5◦) and satisfying axioms (A)–(D). Fix ε > 0 and find a family F ∈ F (of
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some cardinality r) such that

hμ(T ) < hμ(T ,F) + ε (11.2.33)

(see step (5◦)). Let γ be as specified in the domination axiom (D) for the car-
dinality r of F and ε. Let δ be as specified in the axiom (B) for the cardinality
r′ = (2/γ)r and ε. Find l so large that the assertion of Lemma 11.2.28 holds
for F0 = T l(F), γ and δ, and let κ be the corresponding partition of [0, 1].
Recall that κ is a partition by intervals not longer than γ, hence it can be used
in the domination axiom (D) with any family of cardinality r. Let Oκ be the
family (depending only on κ) specified in that axiom. For each i ∈ N the
axiom (D) applied to T i(F0) and κ reads

Hμ(T i(F0)|1I(T i(F0))−1(κ) � Oκ) < ε.

Using (11.2.12) (iterated n−1 times) we get, for each n,

Hμ

(
Fn

0

∣∣∣n−1⊔
i=0

(1I(T i(F0))−1(κ) � Oκ)

)
< nε.

By (11.2.8) and the inequalities of Fact 11.2.9, the above implies

Hμ(Fn
0 ) < Hμ

(
n−1⊔
i=0

1I(T i(F0))−1(κ)

)
+ Hμ

(n−1⊔
i=0

Oκ

)
+ nε.

Since lim
n

1
nHμ(

⊔n−1
i=0 Oκ) = 0, applying step (4◦), we obtain

hμ(T ,F0) ≤ lim sup
n→∞

1
n

Hμ

(
n−1⊔
i=0

1I(T i(F0))−1(κ)

)
+ ε. (11.2.34)

Denoting the right-hand side expression (without “+ε”) by hμ(T ,F0, κ), and
noting that, by (11.2.15), the family F0 also satisfies (11.2.33), we have
obtained

hμ(T ) ≤ hμ(T ,F0, κ) + 2ε.

Notice that hμ(T ,F0, κ) involves joinings and entropies exclusively of par-
titions hence is completely determined by the partitions axiom (C) (it also
depends on the careful selection of the partition κ, but this one was done inde-
pendently of any notion of entropy).

On the other hand, Lemma 11.2.28 reads, for each i ∈ N,

dist(T i(1IF−1
0 (κ)), 1I(T i(F0))−1(κ)) < δ.
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Notice that the cardinality of both families does not exceed r′ = (2/γ)r. By
the choice of δ, the second inequality in the axiom (B) yields

Hμ

(
1I(T i(F0))−1(κ)

∣∣T i(1IF−1
0 (κ))

)
< Hμ

(
1I(T i(F0))−1(κ)

∣∣1I(T i(F0))−1(κ)

)
+ ε.

By the axiom (C) and the elementary property (1.6.5) of the Shannon entropy
the right-hand side is just ε. Using (11.2.12) and step (4◦) again, we deduce
that

hμ(T ,F0, κ) ≤ hμ(T , 1IF−1
0 (κ)) + ε ≤ hμ(T ) + ε.

We have proved that

hμ(T ,F0, κ) − ε ≤ hμ(T ) ≤ hμ(T ,F0, κ) + 2ε.

In this manner hμ(T ) is completely determined by the terms hμ(T ,F0, κ),
which are completely determined by the axioms.

Remark 11.2.35 It might seem that the term hμ(T ,F0, κ) allows one to
define the operator entropy exclusively by means of partitions. Unfortunately,
the approximation obtained at the end of the preceding proof is valid only for
very carefully selected partitions κ, depending on F0. There are examples that
if we choose κ just to be any partition into intervals of appropriately bounded
lengths, the term hμ(T ,F0, κ) may be way too large (see Exercise 11.7 or
[Downarowicz and Frej, 2005, Example 3.2]).

11.3 An explicit measure-theoretic definition

In this section we introduce a definition of operator entropy which follows the
construction steps (1◦)–(5◦), and with static entropy fulfilling axioms (A)–(D).
It uses a very natural and effective way of quantifying the exponential growth
of “information content” in an evolution of a finite family of functions by trac-
ing the partitions of X×[0, 1] determined by graphs of the functions. The same
idea has been already used to define entropy of a transformation via families of
functions (see Definition 8.3.11). In addition to the axioms, the static entropy
used in this approach enjoys some other desirable properties.

Before we proceed, we advise to go back to Definition 7.6.5 of the partition
AF associated with a finite family F of functions from X into [0, 1]; it will be
used again in a moment. Obviously, the requirement that each f ∈ F is contin-
uous can be dropped. We will assume the functions to be measurable. Notice
that AF depends only on F treated as a set and is insensitive to both the order
and possible repetitions. Observe that the procedure described below coincides
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with that used to define the entropy h(μ, T,F) of a family of continuous func-
tions in case T is a continuous transformation in Definition 8.3.11. By L we
denote all functions in L1(μ) with range in [0, 1]. The definition below applies
to any (not even linear) transformation T : L → L.

(1◦) We let F be the collection of all finite families F ⊂ L.
(2◦) For F and G, F � G is defined as the union F ∪ G.
(3◦) We define Hμ(F) = H(μ×λ,AF), where λ is the Lebesgue measure on

the unit interval.
(4◦) hμ(T ,F) = lim supn→∞

1
nHμ(Fn).

(5◦) hμ(T ) = supF∈F hμ(T ,F).

The verification that so defined static entropy satisfies axioms (A)–(C) is
immediate. At some point we must use the easy fact that the passage F �→ AF

is continuous with respect to dist and d1. For (D), fix a partition κ of [0, 1]
into intervals with small lengths and endpoints tj . For i = 1, . . . , r define
simple functions gi by the rule gi(x) = tj ⇐⇒ tj ≤ fi(x) < tj+1. Denote
G = {g1, . . . , gr}. Since dist(F,G) is small, the (already proved) axiom (B)
implies that Hμ(F|G) = H(μ × λ,AF|AG) is also small, and, all the more,
H(μ × λ,AF|F−1(κ) × κ) is small (because F−1(κ) × κ � AG). The last
term equals Hμ(F|1IF−1(κ)�Oκ), where Oκ is the family of constant functions
with values at the endpoints tj of κ (this place is in fact the only reason why we
have involved the family Oκ in the axiom (D)). It is also obvious that whenever
� is the set union the condition lim

n

1
nHμ(

⊔n−1
k=0 Oκ) = 0 holds not only for Oκ ,

but in fact for any finite family of functions.
Summarizing, we have provided a way to define particular notions of static

and dynamical entropy of a family of functions F, leading to the entropy hμ(T )
(by uniqueness, the same as using any other method within the scope). We now
discuss some “good” properties of these notions.

First of all, we notice that whenever � is the set union the static entropy
enjoys the very natural, in view of the information origins of entropy, property

Hμ(F|F) = 0.

It is not implied by the axioms, and it is satisfied neither for the entropy intro-
duced in [Ghys et al., 1986] [see Kamiński and de Sam Lazaro, 2000, corollary
following Proposition 1] nor for the quantum entropy (try the two point space
with the measure {1

2 , 1
2}, and the operational partition consisting of functions

( 1√
2
, 0) and ( 1√

2
, 1)).

Since our particular static entropy of a family F is just the Shannon entropy
of the associated partition, it is very easy to deduce its uniform continuity
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as a function of F of cardinality bounded by some m. This, combined with
(11.2.12), and the fact that T is a contraction in the L1(μ)-norm, yields the
continuity of our particular notion of the dynamical entropy as a function of F,
as well:

dist(F,G) < δ =⇒ |hμ(T ,F) − hμ(T ,G)| < ε. (11.3.1)

We pass to listing the properties of the operator entropy hμ(T ) analogous to
those of the Kolmogorov–Sinai entropy, which are best derived with the help
of the particular definition introduced in this section (but, by the uniqueness,
enjoyed by the operator entropy regardless of the method of defining it). We
start with the behavior of the entropy under factors.

Definition 11.3.2 Let (X,A, μ) and (Y,B, ν) be two probability spaces. Let
T and S be doubly stochastic operators acting on L1(μ) and L1(ν), respec-
tively. We say that

(i) S is a factor of T if there is a measurable map φ : X → Y satisfying
φμ = ν, and for every f ∈ L1(ν), (Sf) ◦ φ = T (f ◦ φ).

(ii) T and S are isomorphic if the map φ defined above is invertible.

Fact 11.3.3 Let T and S be doubly stochastic operators acting on L1(μ) and
L1(ν), respectively.

(i) If S is a factor of T , then hν(S) ≤ hμ(T ).
(ii) If T and S are isomorphic, then their entropies are equal.

Proof Let φ : X → Y be a factor map. Let F ⊂ L1(ν) be a finite family of
functions with ranges in [0, 1] and let

Fφ = {f ◦ φ : f ∈ F}

denote the lifted family of functions on X . By the definition of the factor we
have (Fφ)n = (Fn)φ. The particular way of computing the entropy (via par-
titions AF) yields that Hν(S,F)= Hμ(T ,Fφ), and similarly, Hν(S,Fn) =
Hμ(T , (Fφ)n). Thus (i) is now a consequence of the limit step in (4◦) and
because in (5◦) applied to hμ(T ) the supremum runs over all finite families of
functions, which includes all the families lifted from Y .

Once (i) is proved, (ii) follows immediately.

We state the next property without a proof. We refer the interested reader
to the original paper [Frej and Frej, preprint]. The proof refers to another def-
inition of entropy (satisfying the axioms) not discussed in this book. Given
two doubly stochastic operators T and S acting on L1(μ) and L1(ν) (on two
probability spaces (X,A, μ) and (Y,B, ν), respectively) we can create their
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product T × S acting on L1(μ × ν) as follows: For a “product function”
h(x, y) = f(x)g(y) we let (T × S)h(x, y) = T f(x)Sg(y). We prolong
this operator linearly to all linear combinations of the product functions, and
then, from this dense set, continuously to all of L1(μ × ν). We skip the stan-
dard details. The theorem below generalizes the product rule for independent
joinings of measure-preserving transformations (see (4.4.5)).

Theorem 11.3.4 hμ×ν(T × S) = hμ(T ) + hν(S).

11.4 Not so bad properties of the operator entropy

Now we discuss some differences between the operator entropy of doubly
stochastic operators as defined in the preceding section and the Kolmogorov–
Sinai (or Shannon) entropy for measure-preserving transformations.

First of all, unlike measure-preserving transformations, doubly stochastic
operators need not preserve the static entropy Hμ. Moreover, their application
can increase the static entropy, as illustrated in the simple example below.

Example 11.4.1 Let T be the doubly stochastic operator on the unit interval
(equipped with the Lebesgue measure) defined by T f(x) = 1

2
(f(x) + f(1 − x)).

Take F consisting of the characteristic functions 1I[0, 1
4 ] and 1I( 1

4 ,1]. Then Hμ(F) =

2 log 2 − 3
4

log 3 < log 2, while Hμ(T F) = 3
2

log 2. Note that the pathology
cannot be removed by the sometimes useful trick of joining F with some set of
constant functions.

Nevertheless, an asymptotic invariance of Hμ does hold:

Lemma 11.4.2 Let T be a doubly stochastic operator. For every ε > 0 there
exists l ∈ N such that for every n∣∣∣Hμ

(
T l+nF

)
− Hμ

(
T lF

)∣∣∣ < ε.

Proof Notice that the sets in AF are enclosed by graphs of functions obtained
via lattice polynomials applied to F. The assertion now follows from the asymp-
totic lattice stability (Theorem 11.2.23) and the continuity axiom (11.2.5).

One of the key disadvantages of operator dynamics is the lack of subadditiv-
ity of the sequence Hμ(Fn). By the axiom (A) (more precisely, by (11.2.11)),
we do have

Hμ(Fn+m) ≤ Hμ(Fn) + Hμ(T nFm),

but we cannot drop T n. The following result is a substitute of the subadditivity
property valid for doubly stochastic operators. We call it quasi-subadditivity.
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We skip the technical proof, which can be found in [Downarowicz and Frej,
2005].

Lemma 11.4.3 Let T be a doubly stochastic operator. For every ε > 0 there
exists l ∈ N and a constant c such that for every n ∈ N and m ≥ l we have

Hμ

(
Fn+m

)
≤ Hμ (Fn) + Hμ (Fm) + mε + c.

Quasi-subadditivity allows us to prove another similarity to the classical
notion, but only for the notion introduced in the preceding section. We include
it here for the context, for the proof see [Downarowicz and Frej, 2005].

Theorem 11.4.4 If T is a doubly stochastic operator, then the upper limit in
step (4◦) of the construction of the entropy is in fact a limit.

The limit no longer needs to coincide with the corresponding infimum.
We conclude this section (and chapter) with the interesting observation that

the operator entropy generalizes the Kolmogorov–Sinai entropy in an essen-
tial way; in addition to the pointwise type dynamics, it captures also some
pure “operator dynamics,” not associated with any pointwise behavior. Recall
that the Sinai Theorem (Theorem 4.5.1) asserts that all of the entropy of any
measure-preserving system comes from a Bernoulli factor. The example below
shows that operator entropy need not even come from any pointwise generated
factor.

Example 11.4.5 There exists a doubly stochastic operator with positive entropy,
which admits no nontrivial pointwise generated factors (i.e., factors which are iso-
morphic to some measure-preserving transformations).

Let (X, A, μ) be the set of one-sided 0-1 sequences X = {0, 1}N with the
product sigma-algebra and with the uniform product measure μ = { 1

2
, 1

2
}N. Let

ν be the geometric distribution on natural numbers N given by ν(k) = 2−k. The
element (x, k) of the product space X × N can be visualized as the 0-1-valued
sequence (x1, x2, . . . , x

∗
k, xk+1, . . . ) with a marker (star) over the position k. As

usual, σ stands for the shift transformation on X . Moreover, for each finite block
B = (b1, b2, . . . , bk) ∈ {0, 1}k we define the map σB : X → X by

(σBx)n =

{
bn for n ≤ k
xn+1 for n > k

.

Next we define the operator T on L1(μ × ν) as follows:

T f((x, k)) = f((σx, k − 1)) if k > 1,

T f((x, 1)) =

∞∑
k=1

2−k
∑

B∈{0,1}k

2−kf((σBx, k)).

The corresponding transition probability P ((x, k), ·) can be described as the shift
map (also shifting the position of the marker) on points with marker further to the
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right, while points with the marker over the first position are shifted, and then the
initial block of length k (chosen according to the geometric distribution) is replaced
by a random block of length k. A marker is added over the last position of the
replaced block. Our first claim is that T is doubly stochastic with respect to the
product measure μ × ν. To see this consider the characteristic function f = 1IC of
a cylinder of the form

C = C(y1, y2, . . . , y
∗
k, yk+1, . . . yn) = {(x, k) : ∀i=1,...,n xi = yi},

where k ≤ n and y1, . . . , yn are fixed (it suffices to consider such cylinders because
they generate in the product). Clearly, the integral of f is 2−(k+n). All points in
both cylinders C(x0, y1, y2, . . . , y

∗
k, yk+1, . . . yn) (with x0 = 0 or x0 = 1) are

sent deterministically into C. So, T f = 1 on these two cylinders. The integral of
T f over these cylinders thus equals 2·2−(n+1) ·2−(k+1) = 2−(k+n+1) (the marker
appears at the position k + 1). Also, each point in any cylinder C(x∗

0, x1, . . . , xk,
yk+1, . . . , yn) (with any choice of x0, . . . , xk) contributes with probability 2−2k to
C (via the map σB , where B = (y1, y2, . . . , yk)), so T f at such points is 2−2k. The
integral of T f over the union of such cylinders equals 2k+1 ·2−2k ·2−(n+1) ·2−1 =

2−(k+n+1). The sum of both parts equals the integral of f , so T is doubly stochastic
with respect to μ × ν.

Now, suppose T has a pointwise generated factor. This factor corresponds to a
sub-sigma-algebra B with the property P ((x, k), A) = 0 or 1 for each A ∈ B

and almost every x. Consider a pair of cofinal points (x, k), (x′, k′), i.e., such that
xn = x′

n for n larger than some k′′. We can assume k′′ > k and k′′ > k′.
Consider also a point (x′′, k′′) which coincides with both x and x′ above the index
k′′ where it has the marker. Both points (x′′, k′′) and (x, k) are accessible with
positive transition probabilities from the point (0x, 1) = 0∗x (which has 0∗ at the
first position and then looks like x shifted to the right). This means (unless 0∗x falls
in some zero measure set) that the factor identifies (x′′, k′′) with (x, k). Similarly,
it identifies (x′′, k′′) with (x′, k′), and hence (x, k) with (x′, k′). We have shown
that the factor identifies (almost surely) cofinal points regardless of the positioning
of the markers in them. This implies that B is (up to measure μ) contained in the tail
sigma-algebra of {0, 1}Z. By the Kolmogorov 0-1 Law [see e.g. Feller, 1968], such
sigma-algebra is trivial with respect to the measure μ. So, T admits no nontrivial
pointwise (measure-theoretic) factors.

Finally, we will show that hμ(T ) ≥ log 2. Consider the 0-1-valued function
fi((x, k)) = xi. We will show that

T nfi((x, k)) = α 1
2

+ (1 − α)xi+n, (11.4.6)

with α ≤ 2−(i−1). This is obvious if n < k (then α = 0), because such T n

is deterministic at (x, k). Now consider n = k. This is the first time the point
(x, k) is actually spread, and notice that with respect to P n((x, k), ·) the posi-
tion of the marker has the geometric distribution ν. In the next step n + 1, with
probability 1/2, the markers will be shifted (creating half of the same geomet-
ric distribution) and with probability 1/2, spread again (with the same geometric
distribution). As a result, the distribution of the marker’s position with respect to
P n+1((x, k), ·) remains the same. This applies to all further steps. We have proved
that for n ≥ k the position of the marker has the geometric distribution with respect
to P n((x, k), ·). Now, the points in the support of P n((x, k), ·) whose markers fall
below the coordinate i have the value xi+n at the position i because this position
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has never been altered (only shifted). This happens with probability

i−1∑
j=1

2−j = 1 − 2−(i−1),

contributing a factor (1 − 2−(i−1))xi+n to T nfi((x, k)). Otherwise the value at
the position i is 0 or 1 with equal chances, contributing the factor 2−(i−1) 1

2
. We

have proved the formula (11.4.6) for n ≥ k with α equal to 2−(i−1).
From what we have derived it is seen that the images of fi behave almost as

the functions fi+n, except that instead of oscillating with amplitude 1 they oscil-
late with (nonconstant) amplitude not smaller than 1 − 2−(i−1). For large i such
functions generate entropy arbitrarily close to log 2.

Exercises

11.1 Prove that (11.2.2) and (11.2.10) imply (11.2.3).
11.2 Prove formula (11.2.15).
11.3 Prove the power rule of Fact 11.2.16.
11.4 Prove that any invertible doubly stochastic operator is pointwise

generated.
11.5 Prove that a doubly stochastic operator is pointwise generated if and only

if it preserves the lattice operations if and only if it sends characteristic
functions to characteristic functions.

11.6 Prove Lemma 11.2.25.
11.7 Let (X,A, μ) be the set of one-sided 0-1 sequences X = {0, 1}N with

the product σ-algebra and with the uniform product measure μ=
{ 1

2 , 1
2}N. Define the doubly stochastic operator T by

T f(x) =
1
2

(
f(σx) +

∫
X

f(x)dμ

)
,

where σ denotes the shift (xn) �→ (xn+1) on X . Let F contain only
one function, namely f(x) = x0, and consider the partition of the unit
interval κ =

{
[0, 1

2 ], ( 1
2 , 1]

}
. Prove that hμ(T ) = 0 while hμ(T ,F, κ)

(the term appearing in (11.2.34)) equals log 2. (This example shows that
without carefully specifying the partitions κ the terms hμ(T ,F, κ) can-
not be used to define the operator entropy).
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Topological entropy of a Markov operator

12.1 Three definitions

For Markov operators we will explore three natural ways of defining topo-
logical entropy. All three of them lead to the same quantity h(T ), called the
topological operator entropy. As we will show, this notion satisfies both basic
postulates: (1) For operators associated with continuous maps it coincides with
the classical topological entropy of this map, and (2) for trivial actions (such that
T nf converges for every f ∈C(X)) the topological operator entropy is zero.

Throughout this chapter X is a compact Hausdorff space and T denotes a
Markov operator acting on C(X). Assuming metrizability of X brings neither
simplification nor strengthening of any results.

Our first definition of topological entropy of T takes after the notion of
measure-theoretic entropy of a stochastic operator introduced in the preceding
chapter. The covers Uε

F are obtained by “thickening” the sets in AF. The sec-
ond definition uses continuity of functions in F to transport open covers from
the unit interval to X . In the third one we make use of a certain pseudometric
on X induced by a finite collection of functions. This leads us to the definition
similar to Bowen’s definition of entropy. Let us proceed.

For a continuous function f : X → [0, 1] we define

Uε
<f = {(x, t) ∈ X × [0, 1] : t < f(x) + ε} ,

Uε
>f = {(x, t) ∈ X × [0, 1] : t > f(x) − ε} ,

Uε
f =

{
Uε

<f , Uε
>f

}
.

For a finite family F ⊂ C(X) of functions with range in [0, 1], we create a
finite open cover of the product space X × [0, 1] by the formula

Uε
F =

∨
f∈F

Uε
f .
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If V is a finite open cover of the unit interval, then we let

F−1(V) =
∨

f∈F

f−1(V).

Recall that for any open cover U the symbol N(U) denotes the minimal
cardinality of a subcover of U. As before, we denote Fn =

⋃n
i=0 T i(F), where

T i(F) = {T if : f ∈ F}.

Definition 12.1.1 Let F ⊂ C(X) be a finite collection of functions with
range in [0, 1] and let ε be a positive number. We define

(i) H1(F, ε) = log N(Uε
F),

(ii) h1(T ,F, ε) = lim sup
n→∞

1
nH1(Fn, ε),

(iii) h1(T ) = sup
F

sup
ε

h1(T ,F, ε).

Definition 12.1.2 Let V be a cover of [0, 1].

(i) H2(F,V) = log N(F−1(V)),
(ii) h2(T ,F,V) = lim sup

n→∞
1
nH2(Fn,V),

(iii) h2(T ) = sup
F

sup
V

h2(T ,F,V).

Given F we define a pseudometric on X by

dF(x, y) = sup
f∈F

|f(x) − f(y)| .

We say that a subset of X is (dF, ε)-separated if it is ε-separated in the pseudo-
metric dF. Since the space X is compact, there exists a finite (dF, ε)-separated
subset of maximal cardinality in X . We denote the number of elements of this
subset by s(dF, ε).

Definition 12.1.3 For F and ε we define

(i) H3(F, ε) = log s(dF, ε),
(ii) h3(T ,F, ε) = lim sup

n→∞
1
nH3(Fn, ε),

(iii) h3(T ) = sup
F

sup
ε

h3(T ,F, ε).

Theorem 12.1.4 For every Markov operator T we have

h1(T ) = h2(T ) = h3(T ).
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Proof We begin by showing that h1(T ) ≤ h2(T ). Choose ε > 0 and let V

be a finite open cover of the unit interval consisting of sets having diameters
not greater than ε. We claim that the cover defined by the formula

Wn =
{

U × V : U ∈ (Fn)−1(V), V ∈ V
}

is inscribed in Uε
Fn . Indeed, for each U × V ∈ Wn we let

F′ = {f ∈ Fn : ∀x∈U f(x) ≥ inf V } ,

and it is not hard to verify that

U × V ⊂
⋂

f∈F′

Uε
<f ∩

⋂
f∈Fn\F′

Uε
>f ∈ Uε

Fn .

Thus,

N(Uε
Fn) ≤ N(Wn) ≤ N

(
(Fn)−1(V)

)
· N(V)

and since N(V) is independent of n

h1(T ,F, ε) ≤ h2(T ,F,V).

The desired inequality follows by taking appropriate suprema.
Now, we prove that h2(T ) ≤ h3(T ). Let V be a finite open cover of the unit

interval. Denote its Lebesgue number by δ and let E be a maximal (dFn , δ
2 )-

separated set in X . It follows from the maximality of E that the collection{
B(x, δ

2 ) : x ∈ E
}

of balls in the pseudometric dFn constitutes a finite open
cover of X . For every f ∈ Fn and x ∈ E the interval (f(x)− δ

2 , f(x) + δ
2 ) is

contained in some element Vf (x) of V. Hence,

B(x, δ
2 ) =⋂

f∈Fn

f−1
((

f(x) − δ
2 , f(x) + δ

2

))
⊂

⋂
f∈Fn

f−1(Vf (x)) ∈ (Fn)−1(V)

and

N((Fn)−1(V)) ≤ #{B(x, δ
2 ) : x ∈ E} = s(dFn , δ

2 ),

which implies h2(T ) ≤ h3(T ).
We end the proof showing that h3(T ) ≤ h1(T ). Let E ⊂ X be a (dF, ε)-

separated set of maximal cardinality. Put γ = ε/6 and define

F◦ =
{

1
2f + iγ : f ∈ F, i ∈ Z, 0 ≤ i ≤ 1

2γ

}
.

We will show that the cover U
γ
F◦ separates points of E ×

{
1
2

}
in the sense

that each element of the cover contains at most one point from E ×
{

1
2

}
.
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Consider two elements x, y of E. We can choose a function f ∈ F satisfying
|f(x) − f(y)| ≥ ε and, since both x and y play the same role in the formula,
we may assume that f(x) + ε ≤ f(y). Since 1

2f(x) ranges between 0 and
1
2 − 3γ, there exists an integer 0 ≤ i ≤ 1

2γ such that f◦ = 1
2f + iγ ∈ F◦

satisfies
1
2 − 2γ ≤ f◦(x) ≤ 1

2 − γ.

Since f◦(y) is by at least ε
2 = 3γ larger than f◦(x), we have

1
2 + γ ≤ f◦(y),

which implies that (y, 1
2 ) belongs to Uγ

<f◦ and not to Uγ
>f◦ , while, on the

contrary, (x, 1
2 ) belongs to Uγ

>f◦ and not to Uγ
<f◦ . Since every element of U

γ
F◦

is contained either in Uγ
<f◦ or in Uγ

>f◦ , this proves that the cover separates
points of E×

{
1
2

}
. Moreover, every subcover of U

γ
F◦ has the same property, so

s(dF, ε) ≤ N(Uγ
F◦).

Recall that T , as a Markov operator, is linear and preserves constants. This
implies that (Fn)◦ = (F◦)n, so we can replace F with Fn obtaining

s(dFn , ε) ≤ N
(
U

γ
(F◦)n

)
.

The proof is ended by taking upper limits and suprema.

12.2 Properties of the topological operator entropy

In the sequel we will use the symbol h(T ) to denote the common value of
h1(T ), h2(T ) and h3(T ). According to the next result, the coincidence with
the notation for the topological entropy of continuous maps is reasonable. We
prove the first basic postulate.

Theorem 12.2.1 If T f = f ◦ T is an operator generated by a continuous
map T : X → X , then the operator entropy h(T ) is equal to the topological
entropy h(T ).

The proof relies on the next lemma which is a straightforward observation.

Lemma 12.2.2 If T is a pointwise generated Markov operator (by a contin-
uous transformation T ), F is a finite family of continuous functions with values
in [0, 1], and V is a finite open cover of the unit interval, then

(Fn)−1(V) = (F−1(V))n,
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where the former exponent n refers to the action of the operator T on C(X),
and the latter, to the action of the continuous map T on X .

Proof of Theorem 12.2.1 We will exploit Definition 12.1.2 of h2(T ). For
every ε > 0, using Urysohn functions, it is easy to produce a finite family
of continuous functions and a cover V of the unit interval, so that all cells of
the cover F−1(V) have diameters smaller than ε. It follows that the covers of
this form refine in X and thus the topological entropy is the supremum over
such covers only. The assertion now follows directly from Lemma 12.2.2, by
comparing the definition of the topological entropy h(T ) via open covers (see
Section 6.1.3) with Definition 12.1.2 of the topological operator entropy.

Next we prove that the second basic postulate is fulfilled.

Theorem 12.2.3 If for every f ∈ F the sequence T nf converges uniformly,
(to some gf ∈ C(X)), then h3(T ,F, ε) = 0 for every ε > 0. If such conver-
gence holds for all f ∈ C(X), then h(T ) = 0.

Proof Denote G = {gf : f ∈ F}. For every ε there exists N such that for
every f ∈ F, x ∈ X and n ≥ N it holds that |T nf(x) − gf (x)| < ε

3 . Then,
for every x, y ∈ X we have

|T nf(x) − T nf(y)| ≤
|T nf(x) − gf (x)| + |gf (x) − gf (y)| + |gf (y) − T nf(y)| ≤

2ε

3
+ |gf (x) − gf (y)|,

implying that

∀n≥N s(dFn , ε) ≤ s(dFN∪G, ε
3 ),

where the right-hand side does not depend on n. The rest now is obvious.

We can define a topological factor of a Markov operator the same way as it
was done in the measure-theoretic Definition 11.3.2, replacing only the words
“measure-preserving” by “continuous surjection.” Two operators are conjugate
if the relevant factor map is a homeomorphism. We will say that a compact set
Y is invariant under T if for any two functions f, f ′ ∈ C(X) with f |Y = f ′|Y
the equality T f(y) = T f ′(y) holds at every point y ∈ Y . Then we can easily
define a Markov operator on C(Y ), which may be treated as a restriction of
T . The proofs of the following statements concerning topological entropy are
standard and will be omitted (see Exercise 12.1).
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Theorem 12.2.4 The following facts hold

(i) The entropy of a factor of a Markov operator T is smaller than or equal
to the entropy of T .

(ii) Two conjugate Markov operators have equal entropies.

(iii) If Y is a compact invariant subset of X , then the entropy of the Markov
operator T restricted to C(Y ) is smaller than or equal to the entropy of
T on C(X).

(iv) For every n ∈ N, h(T n) = nh(T ) (the power rule).

12.3 Half of the variational principle

In this section we prove the analog of the “easier” inequality in the variational
principle: the topological operator entropy of a Markov operator dominates
its measure-theoretic operator entropy with respect to each invariant regular
Borel probability measure μ. The converse inequality completing the operator
variational principle remains an open question.

Theorem 12.3.1 Let X be a compact Hausdorff space and let T be a
Markov operator acting on C(X). For every invariant regular Borel proba-
bility measure μ on X we have

hμ(T ) ≤ h(T ).

Proof We will refer to hμ as defined in Section 11.3. By (11.3.1) and regular-
ity, for calculations of measure-theoretic entropy it suffices to consider families
F of continuous functions with range in [0, 1]. Let F be such a family of cardi-
nality r. Choose a positive number ε such that 2rε log(2rε) < 1/2r. For every
A ∈ AF we denote by F≥A the set of all functions in F, for which f(x) ≥ t

whenever (x, t) ∈ A. Analogously, F<A is the set of all functions from F, such
that f(x) < t if (x, t) ∈ A. It is easy to see that the union of F<A and F≥A is
the whole F. We define a new partition Bε

F of X × [0, 1] consisting of compact
sets

BA = Bε
A,F ={

(x, t) : ∀f∈F≥A
t ≤ f(x) − ε

}
∩ {(x, t) : ∀f∈F<A

t ≥ f(x) + ε} ,

where A belongs to AF, and the open set

B̃ = B̃ε
F =

⋂
A∈AF

BA
c = {(x, t) : ∃f∈F |f(x) − t| < ε} .
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Notice that A ∩ BA′ = BA if and only if A = A′. Otherwise the intersection
A ∩ BA′ is empty. Thus,

H(μ × λ,AF|Bε
F) = H(μ × λ,AF ∨ Bε

F) − H(μ × λ,Bε
F) =

−
∑

A∈AF

(μ × λ)(A ∩ B̃) log((μ × λ)(A ∩ B̃)).

Since (μ × λ)(B̃) < 2rε and AF has at most 2r elements, we get (by the
choice of ε) that

H(μ × λ,AF|Bε
F) < 1.

Similarly, for every natural number i

H(μ × λ,AT iF|Bε
T iF) < 1,

because ε was chosen according only to the cardinality of F. We will abbreviate∨n−1
i=0 Bε

T iF
by Bn (note that this is not equal to Bε

Fn). Using the above esti-
mates and the elementary Fact 1.6.11 for the entropy of partitions, we derive:

H(μ × λ,AFn |Bn) < n,

and thus

H(μ × λ,AFn) < H(μ × λ,Bn) + n.

Since the entropy of a partition is always less than or equal to the logarithm of
its cardinality we need to estimate the number of sets in Bn.

Let U′ be an optimal subcover of Uε
Fn . Obviously,

#Bn ≤
∑

U∈U′

# {B ∈ Bn : B ∩ U �= ∅} .

Every U ∈ Uε
Fn has the form

⋂n−1
i=0 Ui, where Ui ∈ Uε

T iF
. For each Ui there

exists A ∈ AT iF such that Ui is contained in the union of Bε
A,T iF

and B̃ε
T iF

.
This implies that

# {B ∈ Bn : B ∩ U �= ∅} ≤ 2n

and hence

#Bn ≤ 2n · N(Uε
Fn).

Thus finally, we have

H(μ × λ,AFn) < log N(Uε
Fn) + n log 2 + n

implying

hμ(T ) ≤ h(T ) + log 2 + 1.
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Repeating the argument for T n replacing T and using Fact 11.2.16 and
Theorem 12.2.4 (iv) we complete the proof by writing

hμ(T ) = 1
nhμ(T n) ≤ 1

n (h(T n) + log 2 + 1) ≤ h(T ) + log 2+1
n

for an arbitrary n.

Exercises

12.1 Prove Theorem 12.2.4.
12.2 Let X = {0, 1}Z. Consider the Markov operator on C(X) given by

transition probabilities

P (x, ·) = 1
2 (δσx + δσ2x).

This operator can be thought of as the average of the shift map and its
iterative square (the shift by two positions): T f = 1

2 (f ◦ σ + f ◦ σ2).
Notice that both the shift and its square have positive entropies. What
is the topological operator entropy of T ? Every shift invariant measure
on X is invariant under T . What are entropies of T treated as a doubly
stochastic operator with respect to any such measure?

12.3 Let X be a compact metric space. Any Markov operator T on C(X)
induces a transformation T ∗ on the compact space M(X) of all Borel
probability measures on X . Simply, T ∗ is the dual operator restricted to
probability measures. Provide an example that the topological entropy
of T ∗ is not a good candidate to define the operator entropy of T . Hint:
Consider the operator T pointwise generated by the unilateral shift over
the alphabet {0, 1}. Prove that T ∗ has infinite topological entropy1 (so
it violates the first postulate of operator entropy).

12.4 Prove the product rule for Markov operators.

1 Glasner and Weiss showed that whenever a transformation T had positive entropy, then the
entropy of T ∗ on measures was infinite [Glasner and Weiss, 2003].
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Open problems in operator entropy

There are clearly some gaps in the theory of entropy for operators. At least
as long as we seek for similarities with the analogous theory for dynamical
systems. It can be hoped that these similarities reach further than we know.

13.1 Questions on doubly stochastic operators

In the entropy theory of doubly stochastic operators, the fundamental missing
issue is a relevant information theory. The notion of operator entropy is created
without reference to any reasonable notion of information function. Clearly, it
is most desirable that such a function depends on the family of functions F and
is defined directly on the phase space X , however, a compromise solution with
this function defined on the product X × [0, 1] seems also acceptable. In any
case, the static entropy should be the integral of the information function with
respect to the appropriate measure (μ or μ × λ, respectively). Needless to say,
the notion should coincide with the classical one for a family of characteristic
functions of a partition. Of course, the best justification of this notion would be
an analog (generalization) of the Shannon–McMillan–Breiman Theorem. Let
us verbalize the problem:

Question 13.1.1 Is there a meaningful notion of an information function with
respect to a family of functions, such that the static entropy is its integral? Does
a generalization of the Shannon–McMillan–Breiman Theorem hold for doubly
stochastic operators?

A number of further questions can be asked:

Question 13.1.2 How can conditional operator entropy (given a factor) for
doubly stochastic operators be defined? Which of the relevant facts known for
measure-preserving transformations can be generalized?
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Question 13.1.3 Is there an analog of the notion of a generator for a doubly
stochastic operator?

Question 13.1.4 Is there an analog of the Pinsker factor of a doubly stochas-
tic operator?

Question 13.1.5 What is the interpretation of operator entropy zero? Does it
make the operator “deterministic” in any sense?

We stop here although the list can be continued.

Let us mention one interesting question which is not in the spirit of copy-
ing facts from the theory of transformations. Conversely, the question makes
sense only for operators: The space of doubly stochastic operators on L1(μ) is
convex (which is not true for measure-preserving transformations). It is easy
to see that operator entropy is not affine: there are easy examples of two trans-
formations with positive entropy whose average has operator entropy zero (see
Exercise 12.2). But we can still ask:

Question 13.1.6 Is the entropy of doubly stochastic operators a convex
function?

13.2 Questions concerning Markov operators

The first problem concerns uniqueness of topological entropy. We do not even
know this:

Question 13.2.1 Does the notion of topological operator entropy h(T ) pre-
sented (in three ways) in Section 12.1 coincide with the notion introduced in
[Langevin and Walczak, 1994]?

In the context of Exercise 12.3, a natural question arises:

Question 13.2.2 Is the entropy of an arbitrary Markov operator T equal to the
entropy of the dual operator T ∗ restricted to the smallest compact T ∗-invariant
subset of M(X) containing all Dirac measures?

The next obvious question concerns the missing inequality in the varia-
tional principle. Of course, its positive solution would provide a good reason
for establishing the uniqueness of the “good” notion of topological operator
entropy.
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Question 13.2.3 Does the “harder” inequality of the variational principle
hold for Markov operators?

The difficulties with proving this inequality arise from the lack of subadditiv-
ity of the sequence Hμ(Fn). The interested reader will find more exhaustive
comments in [Downarowicz and Frej, 2005].

Just like doubly stochastic operators, Markov operators form a convex set.
The same examples show that topological operator entropy is not affine under
convex combinations of Markov operators. We repeat the same question as was
asked for doubly stochastic operator:

Question 13.2.4 Is the topological operator entropy a convex function?

Parallel to the search for a generator for a doubly stochastic operator
(Question 13.1.3) should be the search for an analog of a symbolic Markov
operator (or having a topological generator). Once this is done, one can ask
about symbolic extensions of a Markov operator T . On the other hand, the
notion of an entropy structure for T can be literally copied from topologi-
cal dynamics, and the function EH can be computed without any modifica-
tion in its construction. Would there be a relation between this function and
the entropy of symbolic operator extensions of T (whatever they are)? Briefly
speaking, the question is

Question 13.2.5 Is there a theory of symbolic extensions for Markov opera-
tors? What is the interpretation of EH?
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Toolbox

A.1 Elementary tools

A.1.1 The rectangle rule

We begin with a simple fact concerning integrals with respect to probability
measures (in particular weighted averages), a standard argument proving that
in probability spaces the L1-convergence and the convergence in measure coin-
cide. Because we will make repeated use of it, for easy reference, we isolate
this fact and call it the rectangle rule. The name refers to the idea of the proof
(by contradiction) relying on finding a (δ × γ)-rectangle under the graph of f .
We skip the easy details.

Fact A.1.1 Let (Ω,A, μ) be a probability space and let f ≥ 0 be a mea-
surable function on Ω such that

∫
f dμ < γδ for some γ > 0 and δ > 0.

Then

μ{ω ∈ Ω : f(ω) ≥ γ} < δ.

Applying the above to the difference of two functions we get:

Fact A.1.2 Let (Ω,A, μ) be a probability space and let f ≤ g be two mea-
surable real functions on Ω. If

∫
f dμ >

∫
g dμ − γδ,

for some γ > 0 and δ > 0, then

μ{ω ∈ Ω : f(ω) ≤ g(ω) − γ} < δ.
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A.1.2 Upper semicontinuous partitions

Definition A.1.3 A partition κ (we do not assume it is countable) of a topo-
logical space X is upper semicontinuous if the cells of κ are closed and for
every closed set F the union of all cells having nonempty intersection with F

(so-called κ-saturation of F ) is closed.

Let π : X → Y be a map from one space to another. By the fibers we mean
preimages by π of the points of Y . The collection of all fibers is a partition of
X . The following elementary fact holds:

Fact A.1.4 Let κ be a partition of a compact metric space X . Then κ is
upper semicontinuous if and only if there exists a continuous map π : X → Y

into another topological space such that κ coincides with the partition into
fibers determined by π.

Proof First, let π : X → Y be a continuous map and let κ be the partition
of X by the fibers. Let F be a closed (hence compact) set in X . By continuity,
π(F ) is also compact, hence closed in Y . By continuity again, the preimage of
π(F ) is closed in X . But π−1(π(F )) is precisely the κ-saturation of F , where
κ is the fiber partition.

For the converse implication assume that κ is an upper semicontinuous par-
tition of X , set Y = κ, and define the topology by the condition: V ⊂ κ

is open if and only if
⋃

V is open in X . The map π is defined naturally, by
πx = A ⇐⇒ x ∈ A (A ∈ κ). We skip the elementary verification of the
correctness of so defined topology and of the continuity of π.

A.1.3 Nets

By a net we will understand a family (of some objects) indexed by a partially
ordered set K satisfying the condition for being a directed family, as follows:

∀κ1,κ2∈K ∃κ3∈K κ3 ≥ κ1, κ3 ≥ κ2. (A.1.5)

In particular the ordering can be by the natural numbers, in which case we are
dealing with a usual sequence.

A subnet of a net is its restriction indexed by a subset K′ of K satisfying

∀κ∈K ∃κ′∈K′ κ′ ≥ κ. (A.1.6)

The family K′ is then automatically directed. Unlike for sequences, the restric-
tion to an infinite subfamily K′ ⊂ K which is directed, need not be a subnet.
An example here is any net indexed by the halfline [0,∞) ordered by the usual
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inequality, and its subfamily indexed by the interval [0, 1). Such “false sub-
nets,” obtained by restricting a net to a directed subfamily of indices which do
not necessarily satisfy (A.1.6), will be called sub-nets (with the dash).

Recall that in compact Hausdorff spaces every net of points has a convergent
subnet.

A.1.4 Semicontinuous functions

Definition A.1.7 A function f : X → [−∞,∞) defined on a topological
space X is called upper semicontinuous at the point x if for every ε > 0 there
is a neighborhood U � x such that f(y) < f(x) + ε (or f(y) < −1/ε in case
f(x) = −∞) for every y ∈ U . This is equivalent to

f(x) = inf
U

sup
y∈U

f(y), (A.1.8)

where U ranges over open neighborhoods of x.

The expression on the right will be written as lim sup
y→x

f(y).

Definition A.1.9 A function f : X → [−∞,∞) is upper semicontinuous if
it is upper semicontinuous at every point. An equivalent condition for f to be
upper semicontinuous is that for each t ∈ R the set {x : f(x) ≥ t} is closed.

Figure A.1 Discontinuities admitted and not admitted in upper semicon-
tinuous functions.

For example, the characteristic function of a closed set is upper semicon-
tinuous, as well as a characteristic function of an open set U multiplied by a
continuous function negative on the boundary of U .

Notice the obvious facts that the infimum of any family of upper semicon-
tinuous functions is again an upper semicontinuous function and that both the
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sum and the supremum of finitely many upper semicontinuous functions are
upper semicontinuous functions.

Remark A.1.10 Usually, one defines upper semicontinuity for real-valued
functions. The reason why we admit −∞ in the range of f is the remark
above: we want the family of upper semicontinuous functions to be closed
under infima (of any cardinality). We do not admit ∞, because we want all
upper semicontinuous functions to be bounded from above on compact sets.
Also, on compact metric spaces, so defined upper semicontinuity is main-
tained by the map μ →

∫
f dμ defined on Borel probability measures on X

endowed with the weak-star topology (see Section A.2.2). This fails if we do
not admit −∞ or admit ∞ in the range of f .

We skip the purely topological proof of the fact below. To avoid excessive
and unnecessary generality we assume that X is metric.

Fact A.1.11 A function f : X → [−∞,∞) is upper semicontinuous at x if
and only if f = lim

k
↓ fk, where (fk) is a decreasing sequence of real-valued

functions continuous at x. A function f : X → [−∞,∞) is upper semicon-
tinuous if and only if

f = inf{g : g ≥ f, g is continuous}. (A.1.12)

By taking finite infima, we also have

f = lim
κ

↓ fκ,

where (fκ) is a decreasing net of real-valued functions continuous at x. Since
X is metric, the net can be taken a sequence.

Since every continuous function on a compact set is bounded, we get

Corollary A.1.13 Every upper semicontinuous function is bounded from
above on every compact set.

The following statement will be useful:

Fact A.1.14 If f = limκ ↓ fκ is the limit of a decreasing net of upper
semicontinuous functions on a compact metric space and g is a continuous
function strictly larger (at each point) than f , then g is strictly larger than fκ

for sufficiently large κ.

Proof For each κ the function fκ − g is upper semicontinuous. Thus the
set {x : fκ(x) ≥ g(x)} is closed. These sets decrease with κ, so if they all
were nonempty they would form a centered family, and thus have a nonempty
intersection, on which f(x) ≥ g(x), a contradiction.
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Corollary A.1.15 If f in the fact above is continuous (in particular constant),
then the convergence is necessarily uniform.

Proof Apply Fact A.1.14 to the function g = f + ε.

Definition A.1.16 Let f be a function defined on a metric space X into
[−∞,∞). By f̃ we will denote the upper semicontinuous envelope of f , i.e.,

f̃ = inf{g : g ≥ f, g is continuous}

(compare (A.1.12)). If there are no such functions g, we set f̃ ≡ ∞.

The following fact is almost immediate:

Fact A.1.17 The condition f̃ �≡ ∞ is equivalent to f being locally bounded,
i.e., bounded from above on some neighborhood of every point x. Assuming
local boundedness, we have:

f̃(x) = lim sup
y→x

f(y) (A.1.18)

(which equals infU supy∈U f(y), where U ranges over open neighborhoods

of x; compare (A.1.8)). Moreover, f̃ is an upper semicontinuous function and
any upper semicontinuous function g ≥ f satisfies g ≥ f̃ . The function f is
upper semicontinuous at a point x if and only if f̃(x) = f(x).

It is immediately seen directly from the definition that

Fact A.1.19 For any functions f and g,

f̃ + g ≤ f̃ + g̃.

If either f or g is continuous, then above we have equality.

Definition A.1.20 For a real-valued function f on a metric domain X , the
difference function

...

f = f̃ − f

is called the defect of upper semicontinuity (or, for short, the defect).

Like f̃ , the defect function
...

f is either finite at every point (when f is locally
bounded) or it is infinite everywhere. It is always nonnegative.

Subadditivity analogous to that in Fact A.1.19 holds also for the defect
functions

..........

(f + g) ≤
...

f +
...
g , (A.1.21)

and equality holds when g (or f ) is continuous (then
...
g = 0 and

..........

(f + g) =
...

f ).
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It is not hard to see that for a locally bounded function f ,
...

f (x) = 0 if and
only if f is upper semicontinuous at x.

We will also use lower semicontinuous functions.

Definition A.1.22 A function f : X → (−∞,∞] defined on a topological
space X is called lower semicontinuous if −f is upper semicontinuous.

We skip rewriting the facts about lower semicontinuous functions, which are
symmetric to the facts concerning upper semicontinuous functions.

In the theory of entropy some functions are increasing limits of sequences
of upper semicontinuous functions. We follow the notation of [Young, 1910]:

Definition A.1.23 We say that a function f belongs to the Young class LU if
f = lim

k
↑ fk, where each fk is upper semicontinuous.

Functions in LU are, in general, neither upper nor lower semicontinuous.
Yet, on compact metric spaces, they belong to the second Baire class, hence
the class LU is relatively small among all Borel-measurable functions. It is
known that any function which is an increasing limit of first Baire class func-
tions is of Young class LU. On the other hand, every nonnegative LU function
can be represented as a sum of a series of nonnegative upper semicontinuous
functions. We refer the reader to [Natanson, 1950] for more information on
this class.

A.1.5 Exchanging suprema and infima

Many arguments in this book, especially in the proofs of variational principles,
rely on exchanging suprema and infima. Some of these exchanges are com-
pletely trivial, others work only under very special circumstances. We recall
the trivial ones here. If f(a, b) is any function of two variables a ∈ A, b ∈ B

and “term” stands for either sup, inf , lim sup, lim inf , or lim (if it exists), we
always have

term
a∈A

sup
b∈B

f(a, b) ≥ sup
b∈B

term
a∈A

f(a, b),

and

term
a∈A

inf
b∈B

f(a, b) ≤ inf
b∈B

term
a∈A

f(a, b).

In particular, the order of two suprema (or two infima) can be exchanged. Other
inequalities usually fail, unless we have the following situation:
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Fact A.1.24 Let (fκ)κ be a decreasing net of upper semicontinuous functions
on a compact domain X . Then

sup
x∈X

inf
κ

fκ(x) = inf
κ

sup
x∈X

fκ(x).

Proof The inequality ≤ is trivial. For the converse, note that the function
f = limκ ↓ fκ is upper semicontinuous, and its pointwise supremum, say M

is the left-hand side of the equality to be proved. Then, for every ε, M + ε is
a constant (hence continuous) function strictly larger than f . By Fact A.1.14,
for large enough κ, the entire function fκ (hence also its pointwise supremum)
is below M + ε. The inequality follows by passing with ε to zero.

A.1.6 Lifting and pushing down functions

Let π : X → Y be a map between two spaces. Consider functions f : X →
[−∞,∞] and g : Y → [−∞,∞]. We learn how to “switch” the domains of
these functions using the map π.

Definition A.1.25 The lift of g (via π) is defined on X as the composition
gX = g ◦π. In most situations we will denote the lift by the same letter g. This
usually does not lead to ambiguity (as lifting preserves all properties which we
need). If π is a surjection, then the push-down f [Y ] of f (via π) is defined on
Y by the formula

f [Y ](y) = sup{f(x) : πx = y}.

The easy proof of the fact below is left to the reader.

Fact A.1.26 Suppose X and Y are topological spaces and π is continuous.
Then the operation “lift” preserves both upper and lower semicontinuity of
g. If X is compact metric and π is onto, then the operation “push-down”
preserves upper semicontinuity of f .

A.2 Convex analysis tools

Let B be a Banach space. By elementary properties of the norm, the balls in
this space are convex sets, so the space is locally convex. We will consider a
compact convex subset K of B. We assume the reader understands the notions
of an affine, convex or concave function on B (or on K), even when f assumes
values in the extended real line.
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A.2.1 Concave upper semicontinuous functions

The fact below can be found in [Choquet, 1969, Prop. 2.18]:

Fact A.2.1 If f : K → [−∞,∞) is concave and upper semicontinuous, then

f = inf{g : g ≥ f, g is affine and continuous}.

The construction and properties of the upper semicontinuous concave enve-
lope are analogous to those of the upper semicontinuous envelope. The only
difference is that, in place of continuous functions, it uses continuous affine
functions:

Definition A.2.2 Let f be a function defined on K into [−∞,∞). By f̂ we
denote the upper semicontinuous concave envelope of f , i.e.,

f̂ = inf{g : g ≥ f, g is affine and continuous}.

If there are no such functions g, then we let f̂ ≡ ∞.

The following fact is almost trivial:

Fact A.2.3 If f̂ is not infinite, then f̂ is upper semicontinuous concave and
any upper semicontinuous concave function g satisfying g ≥ f satisfies also
g ≥ f̂ . A function f is upper semicontinuous and concave if and only if
f = f̂ .

It is immediately seen directly from the definition that:

Fact A.2.4 For any functions f and g

f̂ + g ≤ f̂ + ĝ.

If either f or g is continuous and affine, then above we have equality.

Clearly, f ≤ f̃ ≤ f̂ , and

sup
x∈X

f(x) = sup
x∈X

f̃(x) = sup
x∈X

f̂(x).

Fact A.2.5 If f is affine, then f̃ is concave, hence f̃ = f̂ .

Proof If f̃ ≡ ∞, then the case is trivial. Otherwise, let x = px1 + qx2 (q =
1− p) and choose sequences xi,n → xi, (i = 1, 2) such that f(xi,n) → f̃(xi).
Then

f̃(x) ≥ lim
n

f(px1,n+qx2,n) = lim
n

[pf(x1,n)+qf(x2,n)] = pf̃(x1)+qf̃(x2).



A.2 Convex analysis tools 355

A.2.2 The weak-star topology

Let X be a compact metric space. The collection of all Borel probability mea-
sures on X will be denoted by M(X). Such measures can be identified with
the nonnegative functionals of norm one on the space C(X) of all continuous
real functions on X with the supremum norm (the Riesz Theorem [see e.g.
Rudin, 1974]). Thus M(X) is naturally endowed with the weak-star topology:
a sequence of measures μi converges to μ if and only if

∫
f dμi →

∫
f dμ for

every f ∈ C(X). Because X is metric and compact, C(X) is separable, hence
the weak-star topology on M(X) is metrizable, and, by the Banach–Alaoglu
Theorem [see e.g. Rudin, 1991], also compact. The standard metric compatible
with the weak-star topology is given by

d∗(μ, ν) =
∞∑

i=1

2−i
∣∣∣∫ fi dμ −

∫
fi dν

∣∣∣, (A.2.6)

where {fi, i ∈ N} is some (in fact arbitrary) fixed linearly dense sequence con-
tained in the unit ball of C(X). Notice that M(X) contains (a homeomorphic
copy of) X realized as measures concentrated at one point. Every function f

on X (measurable and bounded from at least one side) prolongs to a function
on M(X) by assigning μ →

∫
f dμ.

The fact below is completely elementary and we leave the proof to the
reader.

Fact A.2.7 The function μ →
∫

f dμ is continuous, upper semicontinuous,
lower semicontinuous, or Borel-measurable, respectively, if and only if f is.

It is obvious that M(X) is convex and that for any f the above map μ →∫
f dμ is affine. In most of the considerations of this book, it is either M(X)

or the set of T -invariant measures MT (X) in a topological dynamical system
(X,T, S) that plays the role of the compact convex set K addressed in this
section of the appendix.

A.2.3 The barycenter map, harmonic functions

We continue to assume that K is a compact convex subset of some Banach
space. Let ξ be a probability distribution on the Borel subsets of K (“distribu-
tion” is synonymous with “measure”; we use this word here in order to dis-
tinguish such distributions (supported by the convex set K) from the measures
defined on the space X (which, in general, lacks any convex structure).
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Definition A.2.8 The barycenter of ξ is defined as the Pettis integral

bar(ξ) =
∫

K

x dξ,

i.e., as the unique point xξ ∈ K such that f(xξ) =
∫

f(x) dξ(x) for every
continuous and affine real function f on K.

The existence and uniqueness of such an x follows from the general theory
of Banach spaces [see e.g. Phelps, 2001]. The barycenter map is a continu-
ous affine surjection from M(K), the set of all probability distributions on K

endowed with the weak-star topology, onto K.

Definition A.2.9 A Borel-measurable function f : K → [−∞,∞] will be
called harmonic if

f(bar(ξ)) =
∫

f dξ

for every probability distribution ξ on K. (This statement includes the assump-
tion that all such integrals are well defined, which is equivalent to saying that f

is bounded from at least one side.) If, instead of equality, we have the inequal-
ity ≤ (or ≥), then we say that f is subharmonic (or supharmonic).

The above terminology is motivated by the classical notion of “harmonic
functions” in real analysis; such functions enjoy the “mean value property”
which is the same as our “barycenter property” applied to the Lebesgue mea-
sure on spheres (and also balls) in R

n.
Since convex combinations are integrals with respect to atomic probability

measures, it is immediate to see that the terms “harmonic,” “subharmonic”
and “supharmonic” used with respect to a function are stronger than “affine,”
“convex” and “concave”, respectively. For some functions the converse also
holds:

Fact A.2.10 Let f be a function defined on K, which is either continu-
ous or upper semicontinuous, or lower semicontinuous. Then f is harmonic,
subharmonic, or supharmonic if and only if it is affine, convex or concave,
respectively.

Proof Of course, the latter conditions are weaker, as they require the same as
the former ones, but for finitely supported distributions only. Continuous affine
functions are harmonic directly by the definition of the barycenter map. An
upper semicontinuous concave function is, by Fact A.2.1, an infimum of a fam-
ily of some harmonic functions, and it is immediate to see that such infima are
supharmonic. We will now prove that an upper semicontinuous convex func-
tion is subharmonic. Let ξ be a probability distribution on K with barycenter
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at x. We can partition K into a finite number of disjoint sets Ki of diameter
smaller than ε, then compute the barycenters xi of the conditional measures
ξKi

, and finally create a finitely supported measure ξε =
∑

i ξ(Ki)δxi
. It is

clear that ξε has its barycenter at x. By convexity,
∫

f dξε ≥ f(x). It is also
immediate to see that, as ε → 0, the measures ξε converge to ξ in the weak-
star topology. Since f is upper semicontinuous, so is the map assigning to a
measure the integral of f . Thus∫

f dξ ≥ lim
ε→0

∫
f dξε ≥ f(x),

and f is shown subharmonic. The remaining cases follow trivially (by chang-
ing, where necessary, the sign of f ).

A.2.4 Choquet simplices

If K is as in the preceding section, the set exK of extreme points in K is Borel-
measurable (it is of type Gδ) and it need not be closed. The Choquet theorem
states that the map bar(·) sends the distributions supported by exK onto K

[Phelps, 2001]. A special case occurs when this map is bijective.

Definition A.2.11 A Choquet simplex is a compact convex subset K ∈ B

such that every point x ∈ K is the barycenter of a unique probability distribu-
tion supported by exK. This unique distribution will be denoted by ξx.

The following is proved by standard methods [see e.g. Phelps, 2001]:

Fact A.2.12 The mapping from K to M(K) given by x → ξx is Borel mea-
surable.

Remark A.2.13 The above mapping usually fails to be continuous.

Remark A.2.14 For a more general definition of a Choquet simplex see
[Phelps, 2001]. What we use as definition is a characterization of Choquet
simplices valid in separable locally convex spaces (known as the Choquet Rep-
resentation Theorem (or just Choquet Theorem, see [Phelps, 2001]).

Fact A.2.15 If f : K → [−∞,∞] is a Borel measurable function defined on
a Choquet simplex, then f is harmonic if and only if, for each x0 ∈ K,

f(x0) =
∫

f dξx0 (A.2.16)
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(this statement includes that all such integrals are well defined, i.e., that f is
measurable and bounded from at least one side). Also, f is subharmonic if and
only if ∫

f dξ ≤
∫

f dξx0 (A.2.17)

for every x0 ∈ K and ξ with barycenter at x0.

Proof Let ξ be any probability distribution on K with barycenter x0. Consider
the probability distribution ξ0 on K defined by

ξ0(A) =
∫

ξx(A) dξ(x)

(which exists, by measurability of the map x → ξx). Using harmonicity of
affine continuous functions one easily checks that the barycenter of ξ0 is the
same as that of ξ, i.e., x0. Clearly, ξ0 is supported by exK (because each ξx is),
so, by uniqueness, ξ0 = ξx0 . Thus, for any integrable function we have∫

f dξx0 =
∫ (∫

f dξx

)
dξ.

If f satisfies (A.2.16), then the left-hand side above is f(x0) while the right-
hand side equals

∫
f(x) dξ, and f is proved harmonic (the converse implica-

tion is obvious). If f is subharmonic, then the right-hand side is not smaller
than

∫
f(x) dξ and (A.2.17) is fulfilled (also here the converse implication is

obvious).

We can try to apply the integral as in (A.2.16) to an arbitrary (measurable)
function f defined on the simplex K. In fact, it suffices that f is defined on
exK. The resulting function agrees with f on exK. Thus, if it happens to be
well defined on the whole set K, then, by the above fact, it is harmonic. It will
be called the harmonic prolongation of f :

Definition A.2.18 Let f be a measurable function defined on a simplex K

(or just on exK) into [−∞,∞], bounded from at least one side. We define the
harmonic prolongation of f as the following function on K:

fhar(x) =
∫

f dξx,

where ξx is the unique probability distribution on exK with barycenter at x.

By measurability of the map x → ξx, the harmonic prolongation of a mea-
surable function is measurable. By Fact A.2.15, each harmonic function is the
harmonic prolongation of its own restriction to the set of the extreme points.
Thus we have the following:
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Fact A.2.19 The restriction map f → f |exK provides a bijection (the inverse
is the harmonic prolongation) between the collection of all harmonic functions
on K and all measurable functions on exK bounded from at least one side.

Unfortunately, the harmonic prolongation of a continuous function need not
be continuous or even semicountinuous (the reason is given in Remark A.2.13).
We will prove, however, the preservation of upper semicontinuity for convex
functions:

Fact A.2.20 Let f be a convex upper semicontinuous function defined on
a simplex K into [−∞,∞). Then the harmonic prolongation fhar of f is an
upper semicontinuous harmonic function on K and fhar ≥ f .

Proof To begin with, take any upper semicontinuous function f on K. Then
ξ →

∫
f dξ defines an upper semicontinuous function on the set M(K) of

all probability distributions on K (see Fact A.2.7). The barycenter map sends
continuously M(K) onto K, so the corresponding push-down function

f [K](x) = sup
{∫

f dξ : bar(ξ) = x
}

(A.2.21)

is upper semicontinuous on K as well (this is the second statement of Fact
A.1.26). Now, if the initial function f on K is (in addition to being upper
semicontinuous) also convex, then f is subharmonic (see Fact A.2.10) and
the above supremum is achieved for ξ = ξx (see (A.2.17)). Thus f [K](x) =
fhar(x). This implies that the latter function is also upper semicontinuous. As
we already know, it is harmonic. It dominates f because the supremum in
(A.2.21) includes the point mass at x.

The next fact has important applications to invariant measures of dynamical
systems.

Fact A.2.22 Let π : M → K be an affine surjection between convex sets.
Then the operation “lift” preserves affinity, convexity and concavity of any
function g defined on K. The operation “push-down” preserves concavity of
any function f defined on M. If, moreover, M and K are Choquet simplices, π

is continuous and preserves the extreme points (i.e., π(exM) ⊂ exK), then the
operation “push-down” preserves affinity of f .

Proof The properties of the lifting operation are obvious. We pass to investi-
gating the push-down.

Let x = px1 + qx2 in K (p ∈ (0, 1), q = 1 − p). Clearly

π−1(x) ⊃ {py1 + qy2 : y1 ∈ π−1(x1), y2 ∈ π−1(x2)}, (A.2.23)
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hence concavity of f [K] for a concave f follows.
For the last statement (with all the additional assumptions) it suffices to

prove the reversed inclusion in (A.2.23). We will employ the Choquet Repre-
sentation Theorem and the Radon–Nikodym Theorem. First of all, notice that
since π is affine and continuous, it is harmonic, i.e., the barycenter of the image
πζ by π of a distribution ζ on M coincides with the image of the barycenter of
ζ. Moreover, since π sends exM to exK, any distribution supported by exM is
sent to a distribution supported by exK.

Let ξ1 and ξ2 be the unique probability distributions supported by exK with
barycenters at x1 and x2, respectively. Clearly, ξ = pξ1 + qξ2 is supported by
exK and has barycenter at x, so it is the unique such distribution. Each ξi (i =
1, 2) is absolutely continuous with respect to ξ. Let fi denote the corresponding
Radon–Nikodym derivative defined on exK. Note that pf1 + qf2 = 1 ξ-a.e.
Fix some y ∈ π−1(x) and let ζ be the probability distribution on exM with
the barycenter at y. Let ξ′ be the image of ζ via the map π. By what was said
about π, the barycenter of ξ′ is πy = x and ξ′ is supported by exK, so ξ′ = ξ.

Now consider the distributions ζi on exM defined by dζi = (fi ◦π)dζ (here
we use again the assumption π(exM) ⊂ exK). We have

ζi(exM) =
∫

fi ◦ π dζ =
∫

fi dξ′ =
∫

fi dξ = 1,

which shows that each ζi is a probability distribution. Then we let yi be the
barycenter of ζi. The image πyi coincides with the barycenter of πζi, and it is
straightforward to verify that πζi = ξi, hence πyi = xi (i = 1, 2). Finally,

pdζ1 + qdζ2 = ((pf1 + qf2) ◦ π)dζ = dζ,

hence, passing to barycenters, we get py1 + qy2 = y, which completes the
proof.

A.2.5 Bauer simplices

Definition A.2.24 A Bauer simplex is a Choquet simplex K whose set of
extreme points is closed (hence compact).

Like in every simplex, the collection of all (Borel) probability distributions
on exK is sent by the barycenter map bijectively, affinely and continuously
onto K, but now the domain is compact, so the map is an affine homeomor-
phism. In other words, the simplex can be identified with the collection of all
Borel probability distributions on the compact metric space exK. Conversely,
the set M(X) of all Borel probability measures on any compact metric space
X is a Bauer simplex.
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If now f is a continuous or upper semicontinuous function on exK, then fhar

is also continuous or upper semicontinuous, respectively (this is not guaranteed
on general simplices). Thus, the following fact holds:

Fact A.2.25 Let K be a Bauer simplex. The restriction map f → f |exK pro-
vides a bijection (the inverse is ·har) between the collection of affine continuous
(hence harmonic, see Fact A.2.10) functions on K and all continuous functions
on exK, and between all affine upper semicontinuous (hence harmonic) func-
tions on K and all upper semicontinuous functions on exK.

A.2.6 Separation theorems

Essential for us are various results, collected below, on separating lower semi-
continuous and upper semicontinuous functions, and their variants for concave
and convex functions.

Theorem A.2.26 (Sandwich Theorem) Suppose h and f are functions defined
on a compact metric space X, h ≤ f , h is upper semicontinuous and f is
lower semicontinuous. Then there exists a continuous function g such that
h ≤ g ≤ f .

Proof [See Tong, 1952] (The result holds for a topological space X if and
only if X is normal).

Theorem A.2.27 (Separation of Disjoint Epigraphs) Suppose h and f are
functions defined on a compact convex subset K of a locally convex linear
space, h < f , h is upper semicontinuous and f is lower semicontinuous.

1. If h is concave and f is convex, then there exists an affine continuous func-
tion g such that h < g < f .

2. If h is concave, then there exists a concave continuous function g such that
h < g < f .

Proof 1. This is [Choquet, 1969, Theorem 21.20], which we include for con-
text. 2. The concave upper semicontinuous function h is the pointwise infimum
of the continuous affine functions g′ such that h < g′ (see Fact A.2.1). Because
f is lower semicontinuous with h < f , it follows that for each x ∈ K there
is an open neighborhood V and an affine function g′V such that h < g′V and
g′V (y) < f(y) for y ∈ V . Then g defined as min g′V , where the minimum is
over a finite cover of K by such sets V , satisfies h < g < f .

Theorem A.2.28 (Edwards Separation Theorem) Suppose h and f are func-
tions defined on a Choquet simplex K, h ≤ f , h is convex and f is concave
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lower semicontinuous. Then there exists an affine continuous function g such
that h ≤ g ≤ f .

Proof [See Asimow and Ellis, 1980, Theorem 7.6].

Theorem A.2.29 (Combined Separation Theorem) Suppose h and f are
functions defined on a Choquet simplex, h < f , h is affine upper semicon-
tinuous and f is lower semicontinuous. Then there exists an affine continuous
function g such that h < g < f .

Proof Choose ε > 0 such that h + ε < f . By Theorem A.2.27 item 2, there
exists a concave continuous function g1 such that h+ε < g1 < f . By Theorem
A.2.28, there exists an affine continuous function g2 such that h+ε ≤ g2 ≤ g1.
Then g = g2 is the required function.

A.3 Miscellanies

A class of particularly simple and useful zero-dimensional systems which are
not conjugate to subshifts (because they are not expansive) are odometers.

Definition A.3.1 Let (pk)k∈N be an increasing sequence of natural numbers
such that 1 < pk+1/pk = qk ∈ N. Let (Xk, Tk, S) be the periodic cycle of pk

points. For each k the system (Xk, Tk, S) is a factor of (Xk+1, Tk+1, S) via the
obvious map πk whose fibers are the orbits under T pk

k+1. The odometer to base
(pk) is defined as the inverse limit of the systems (Xk, Tk, S) via the maps πk.

The above odometer is conjugate to the set of all sequences (jk)k∈N, satis-
fying jk ∈ {0, 1, . . . , pk − 1} and jk+1 = jk mod pk, for every k, with the
product topology, with T corresponding to adding 1 mod pk to each coordi-
nate jk. In fact, this set is a compact topological group, but we will not use its
algebraic properties.

Odometers have the following symbolic-array representation (one of many
possibilities): Each array x has only two symbols, say 0 and 1. In row number
k the symbol 1 occurs periodically every pk positions, otherwise the row is
filled with zeros. The symbol 1 in row k +1 is allowed to occur only under the
symbols 1 in row k (one out of qk of them; see Figure A.2).

The positioning of the symbols 1 in the array representing an element of an
odometer is often used to introduce “markers” allowing an abstract array to be
cut into nice rectangular blocks. We make the following definitions.

Definition A.3.2 A symbolic array x is marked to base (pk) if it has the
following form: each row is over an alphabet Λk × {0, 1}, the pairs (a, 0) are
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· · · 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 · · ·
· · · 10 00 00 10 00 00 10 00 00 10 00 00 10 00 00 10 00 00 · · ·
· · · 10 00 00 00 00 00 10 00 00 00 00 00 10 00 00 00 00 00 · · ·
· · · 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 · · ·

Figure A.2 An element of the odometer to base (pk) starting with
2, 6, 12, 36, . . .

written as a (a ∈ Λk), the pairs (a, 1) are written as |a. The symbols 1 (the
vertical bars) occur in the row number k of x periodically, every pk positions.
The bars in row k + 1 are allowed to occur only under the bars in row k (see
Figure A.3).

Definition A.3.3 Any (k × pk)-matrix occurring in an array marked to base
(pk), extending vertically through rows 1 to k and horizontally between the
positions of two neighboring vertical bars in the row k, will be called a k-
rectangle.

Every bilateral marked symbolic array has the property that for every k the
initial k rows (together) are an infinite concatenation of k-rectangles. It is very
easy to see that a zero-dimensional system (X,T, S) has an odometer to base
(pk) as a topological factor if and only if (X,T, S) admits a symbolic-array
representation in which every x ∈ X is an array marked to base (pk).

. . . 0 1 1 1 00 01 00 01 10 11 1 0 1 1 0 1 1 . . .

. . . 1 2 0 1 20 11 20 02 12 10 1 2 0 0 2 0 1 . . .

. . . 0 1 3 0 21 31 20 10 12 03 2 1 3 0 3 1 2 . . .
. . . 2 1 1 1 0 2 1 2 0 1 2 2 2 0 2 1 1 1 0 2 1 1 0 . . .

...
...

...

Figure A.3 An array marked to base (pk) starting with (2, 6, 12, . . . ). The
boldface numbers form a 3-rectangle.

At some point we will need to replace an odometer by its topological exten-
sion in the form of a bilateral subshift of entropy zero. Below we describe the
most elementary such extension: the Toeplitz system with one hole. The reader
can find more about Toeplitz systems in [Downarowicz, 2005b].

Example A.3.4 Let (X, T, S) be the odometer to base (pk), as described in
Definition A.3.1. The binary Toeplitz system with one hole over the base (pk) is the
binary (i.e., over {0, 1}) bilateral symbolic system (Y, S, S) whose elements y are
characterized by the following recursive property:
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• there exists 0 ≤ j1 < p1 such that y(n) = 1 for all n ∈ Z except when n =
j1 mod p1;

• there exists 0 ≤ jk < pk, jk = jk−1 mod pk−1 such that y(n) = k mod 2, for all
n ∈ Z such that n = jk−1 mod pk except when n = jk mod pk.

Practically, every element y of the system Y can be constructed as follows: we let
y(n) = 1 for all coordinates n ∈ Z except along a p1-periodic set containing one
coordinate in every period. In the next step we fill all the unfilled places with the
symbols 0 except along a p2-periodic set containing one coordinate in every period.
Then we fill all the remaining places again with 1’s, except along an analogous p3-
periodic set. We continue inductively, using alternately 0’s and 1’s depending on
the parity of the step.

. . . 111011101111111011101111111011101111111011101110111011101111111 . . .

Figure A.4 A binary Toeplitz sequence to base (4, 12, 48, . . . ). The entries
filled in step k are underlined k − 1 times.

In the end either the entire bilateral sequence y will become completely filled or there

will remain one unfilled coordinate. In the latter case we are allowed to fill this place

with either 0 or 1 (both sequences belong to the Toeplitz system). The collection of y’s

so obtained is closed, and shift invariant. The system is minimal and it factors to the

odometer via the map y �→ (jk)k∈N, where each jk is defined in the itemized recursive

description above. This system has one invariant measure and is measure-theoretically

isomorphic (via the just described factor map) to the odometer. In particular, it has

entropy zero.

The following two lemmas are used in Section 4.5 on Ornstein Theory:

Lemma A.3.5 (Variant of the Marriage Lemma) Let A and B be two finite
sets and R ⊂ A × B a relation. If there exists a positive integer K ≥ 1 such
that every a ∈ A is in relation with at least K elements of B and every b ∈ B is
in relation with at most K elements of A then the relation contains an injective
function from A into B.

Proof The assumption of the lemma will be called, for short, the K-condition.
The characteristic function of the relation is a binary matrix (also denoted by
R) with columns indexed by the elements a ∈ A and rows indexed by the ele-
ments b ∈ B. The K-condition is expressed in terms of column and row sums.
Notice that the K-condition implies #B ≥ #A.

First assume #B = #A. Then the K-condition easily yields that all column
and row sums equal K. So, the matrix R equals K times a doubly stochas-
tic matrix. It is well known that every doubly stochastic matrix is a convex
combination of some permutation matrices,1 hence R is a linear combination

1 This fact is known as the Birkhoff–von Neumann Theorem [Birkhoff, 1946].
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(with positive coefficients) of some permutation matrices. Any permutation
matrix P participating in this combination provides a bijection contained in R.

In other cases we proceed by a double induction. The outer induction is over
K, while for each K we run an induction over the cardinality of B.

The case K = 1 is trivial: any way of assigning to each a a b related to
a produces an injection. Suppose the lemma holds for some K − 1 ≥ 1 and
assume the K-condition. The assertion is true if #B = K (then we have a
square matrix all filled with 1’s). Suppose it holds for #B = m ≥ K. We
need to check the case #B = m + 1 > #A. By discarding excessive 1’s from
every column we can make all column sums equal to K; this can only lower
the row sums, so the K-condition will be maintained. Clearly, now, at most
#A rows may have sums equal to K. If there are no such rows, the (K−1)-
condition is satisfied and the assertion follows from the inductive assumption
(of the induction over K). Otherwise we consider the sub-matrix Q constituted
by the rows with sum K. The transposed matrix QT has all column sums K

while the row sums are at most K, so it satisfies the K-condition. The larger
dimension of QT is #A ≤ m. By the inductive assumption (over m), QT

contains an injection. By transposition, we have found within Q an injection
from part of B into A. We now discard from the matrix R the 1’s corresponding
to this function, replacing them with 0’s. By doing so we lower by a unit sums
in precisely these rows where the sum was initially K, so after this step all row
sums are at most K − 1. On the other hand, we have lowered the column sums
by at most a unit, hence after this step the matrix satisfies the (K−1)-condition
and again, by the inductive assumption over K, the assertion holds.

Let p and q be two probability distributions on a countable space Δ. Their
coupling is any probability ξ on Δ × Δ with respective marginals p and q.
It is clear that for any b ∈ Δ, ξ(b, b) must not exceed min{p(b),q(b)}. The
coupling is called maximal if it assigns exactly these maximal possible values
on the diagonal.

Lemma A.3.6 For any two probability distributions p and q on a countable
space Δ there exists at least one maximal coupling.

Proof Let s ≤ 1 denote the total mass of the vector min{p,q}. Then the
maximal coupling is defined as the sum of min{p,q} distributed along the
diagonal and 1

1−s ((p−min{p,q})× (q−min{p,q})) on the remaining part
of Δ × Δ. The verification is straightforward.

Notice that a maximal coupling assigns to the diagonal the mass 1− 1
2‖p−q‖1

(which goes to 1 as q approaches p).



Appendix B

Conditional S–M–B

We give the full conditional version of the Shannon–McMillan–Breiman The-
orem valid for endomorphisms and subinvariant conditioning sigma-algebras.
The generating partition is admitted countable and we only assume finiteness
of its conditional static entropy.

Theorem B.0.1 Let (X,P, μ, T, S) be an ergodic process on finitely or count-
ably many states and let B be a subinvariant (or invariant) sigma-algebra.
Assume that H(P|B) < ∞. Then for μ-almost every point x we have:

lim
n

1
nIPn|B(x) = h(P|B).

Proof The proof follows the same guidelines as the proof of the usual (uncon-
ditional) Shannon–McMillan–Breiman Theorem. However, the presence of the
conditioning sigma-algebra (especially if we want it only subinvariant) adds
some intricacy. First of all, unless B is invariant, the functions

x �→ lim inf
n→∞

1
nIPn|B(x) and x �→ lim sup

n→∞
1
nIPn|B(x)

need not be subinvariant, as it was in the unconditional case. Thus, we will
consider functions defined by slightly more complicated expressions

x �→ sup
k≥1

lim sup
n→∞

1
nIPn|B(T kx) and x �→ inf

k≥1
lim inf
n→∞

1
nIPn|B(T kx).

The former is clearly subinvariant and the latter is supinvariant, hence they
are equal almost everywhere to some constants C and c, respectively, where
C ≥ c. We begin by showing that c ≥ h(P|B). First consider the case of
a finite partition P. Its cardinality will be denoted by l. Fix some ε > 0 and
δ > 0. There exist some k, two integers n0 < N0 both larger than k/δ, and a
set Z of measure larger than 1 − δ, such that for every x ∈ Z

1
nIPn|B(T jx) < c + ε,

for some j ≤ k and some n between n0 and N0 (both j and n depend on x).
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Recall (see (3.3.6)) that the Martingale Convergence Theorem allows one
to replace the conditional information function by the almost everywhere limit
over any sequence of partitions Q generating B. And so, there exists a finite
B-measurable partition Q such that (making the set Z slightly smaller, but still
of measure larger than 1 − δ) the above holds on Z with 1

nIPn|B replaced by
1
nIPn|Q:

1
nIPn|Q(T jx) < c + ε. (B.0.2)

Like in the proof of the unconditional Shannon–McMillan–Breiman Theo-
rem, we will need a partition into cylinders of varying lengths, such that the
associated length-information function is bounded from above by c+ε. Finding
such a partition becomes a bit complicated due to the presence of the iterates
T j . We remark that if the sigma-algebra B is invariant (not only subinvariant),
then the iterate T j can be skipped in (B.0.2) (we can set j = 0 for every x ∈ Z)
and the following portion of the proof can be simplified.

Let J be the set of points for which j can be chosen 0. Since each point of
Z falls into J under at most k iterates, we have μ(J) > 1−δ

k . For x ∈ J there
exists a length nx, between n0 and N0, such that the cylinder Wx of length
nx over P containing x satisfies μQ(Wx) > 2−nx(c+ε), where Q is the cell of
Q containing x. If we choose nx minimal, then the sets Wx ∩ Q ∩ J become
pairwise disjoint. For a fixed Q ∈ Q we obtain a finite partition of Q ∩ J

by the sets Wx ∩ Q ∩ J , which we denote {WQ,i} (i ranges over a finite set
depending on Q, so we prefer not to mark it) together with an associated vector
of lengths (nQ,i) (where nQ,i = nx for WQ,i = Wx ∩ Q ∩ J). It is crucial
to notice that if x ∈ Q ∩ J , then every point y in Wx ∩ Q also belongs to
J , hence Wx ∩ Q ∩ J = Wx ∩ Q. This implies that the conditional measure
μQ∩J assigns to Wx a value larger than or equal to μQ(Wx) (i.e., larger than
2−nx(c+ε)). Thus, the length-information function associated with the partition
{WQ,i} of Q ∩ J is dominated by c + ε.

By the Ergodic Theorem, for large enough m, all points in a set X ′ ⊂ X of
measure larger than 1 − δ visit the complement of Z no more than mδ times
within the first m iterates. We can require that N0/m ≤ δ. Then X ′ can be
covered by cylinders B corresponding to two-row blocks of length m (where
the first row contains the P-name and the second row contains the Q-name)
having the following structure: in the first row we have the blocks WQ,i (with
varying Q) preceded by portions of lengths not exceeding k (corresponding
to the “waiting time” of a point in Z to enter the set J) and no more than
2mδ extra entries (at most mδ visits in the complement of Z and, at the end,
a possible prefix of an incomplete WQ,i of length at most N0). In the sec-
ond row, under the first entry of each block WQ,i, there occurs the symbol
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Q, the same as the first index of WQ,i. (We remark that by viewing the block
WQ,i alone we may not be able to determine neither Q nor i. Once we read
Q from the second row, we can also determine i.) The structure of such a
block B is shown on Figure B.1. Of course, a block B may admit many such
divisions.

WQ1,1 · · WQ1,3 WQ3,1 · · · WQ2,1 · WQ3,2 · · · ·

....Q1.................Q1................Q3.....................Q2.....................Q3...............

Figure B.1 The structure of the block B. The small rectangles have lengths
at most k and correspond to the “waiting time” of a point in Z to enter J .

For each B we fix one such division and for each Q ∈ Q we let pQ = (pQ,i)
be the vector of frequencies of WQ,i among all blocks with the first index Q in
this division. By Lemma 1.1.13 and since 1/n0 < ε, no matter what probability
vector is obtained, its entropy (not length-entropy but the usual entropy) does
not exceed npQ

(c+2ε), where npQ
= is the average length of the blocks with

the first index Q.
We want to estimate the cardinality C of all such blocks B with a fixed

second row. At first we establish the “entry times” to the set J , i.e., the start-
ing places of the blocks WQ,i. Since the gaps between these times are at
least n0 (the inverse of which is at most δ), the logarithm of the cardinal-
ity of all possibilities is at most (roughly) mH(δ, 1 − δ). Fixing these entry
times corresponds to “marking” some entries in the second row. For each
Q ∈ Q we let kQ be the cardinality of the marked entries equal to Q. Next,
we must fill in the blocks WQ,i starting at the marked positions, so that their
first indices agree with the marked entries in the second row. Every such fill-
ing can be done in steps numbered by the blocks Q ∈ Q: in each step we
fill only the kQ blocks with this particular first index Q (and varying i). We
must do it so that the corresponding vector of frequencies pQ has entropy at
most cQ = npQ

(c + 2ε). The number of possibilities in step Q is at most
C[1, kQ, cQ] and log(C[1, kQ, cQ]) ≤ kQ(npQ

(c+2ε)+1) (see (2.8.5)). The
filling must be such that the number of the remaining places in the first row
does not exceed 3mδ (mδ for the visits outside Z, mδ for the ending, and at
most km/n0 ≤ mδ for the waiting periods to enter J .) These places can be
filled in l3mδ ways. Jointly, the logarithm of the number of all possibilities
satisfies

log(C) ≤ mH(δ, 1 − δ) +
∑
Q∈Q

kQ(npQ
(c + 2ε) + 1) + 3mδ log l.
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Note that kQnpQ
is the joint length of all blocks with the first index Q, so∑

Q kQnpQ
≤ m. Also note that

∑
Q kQ ≤ m/n0 ≤ mε. So,

log(C) ≤ m (H(δ, 1 − δ) + c + 3ε + 3δ log l) ≤ m(c + 4ε)

(for an appropriate a priori choice of δ).
We have proved that the conditional entropy of Pm on each of the cylin-

ders of Qm contained in X ′ does not exceed m(c + 4ε). Since the conditional
entropy on the remaining cylinders of Qm does not exceed m log l, the overall
conditional entropy H(Pm|Qm) does not exceed m((1− δ)(c+4ε)+ δ log l).
Since ε and δ are arbitrarily small, and 1

mH(Pm|Qm) ≥ h(P|Q), we have
proved that c ≥ h(P|Q), as desired.

Now, if P is infinite countable, still with finite conditional static entropy
given B, we invoke the finite partitions P(m). For each n the conditional infor-
mation function IPn

(m)|B associated with the partition P(m) is dominated by

the analogous function associated with P, thus it is clear that lim infn
1
nIPn|B

is not smaller than supm lim infn
1
nIPn

(m)|B, which, by the already proved part

for finite partitions and by Fact 2.4.12, is at least h(P|B) almost everywhere.
In the second part of the proof we will need a small lemma. Recall that we

are using the Martingale Convergence Theorem to establish the almost every-
where convergence IP|Q(x) → IP|B(x) along any sequence (Q) of countable
partitions generating B (to avoid introducing another index we will treat (Q)
as a “self-indexed” sequence). Notice that since we are assuming H(P|B) <

∞, and (by Definition 1.4.5) H(P|B) = infQ H(P|Q), we can choose the
sequence (Q) so that also the entropies H(P|Q) converge to H(P|B). Then
we have convergence of the information functions and of their integrals, which
implies that the convergence holds in L1(μ). For any fixed n the ergodic aver-
ages SQ,n = 1

n

∑n−1
i=0 IP|Q(T ix) converge (with Q) in L1(μ) to the ergodic

average 1
n

∑n−1
i=0 IP|B(T ix), which, for large n, is close (on a large set) to

H(P|B). On the other hand, with increasing n (while Q is fixed) the ergodic
averages SQ,n converge to H(P|Q), which, for fine Q, is also close to H(P|B).
The lemma below will allow us to assume that we have convergence of the
double sequence SQ,n to H(P|B).

Lemma B.0.3 Let fk be a sequence of functions converging in L1(μ) to
some function f . Then there exists a subsequence km such that the double
sequence Skm,n = 1

n

∑n−1
i=0 fkm

(T ix) converges with (m,n) almost every-
where to

∫
f dμ.

Proof The proof uses a standard Borel–Cantelli type argument. We only out-
line it. The subsequence is chosen so that the sequence of L1(μ)-distances
‖f − fkm

‖ is summable. Then we let gm =
∑∞

i=m |f − fki
|. Now, we fix m0
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such that
∫

gm0 dμ < ε. For almost every x ∈ X there exists n0 such that
for n ≥ n0 the nth ergodic average of gm0 is smaller than ε. Obviously, by
monotonicity of the sequence gm, the same holds for gm with any m > m0

(and for any n ≥ n0). Since the ergodic average of gm estimates from above
the difference between the ergodic average of fkm

and that of f , we obtain the
double convergence, as declared.

We now proceed to proving that C ≤ h(P|B) starting with the easier
inequality

C ≤ H(P|B). (B.0.4)

We shall now fix a number of constants, in a carefully chosen order (so that
the way they depend on each other does not loop), according to the interplay
between two convergences.

Fix some δ > 0. Recall that

C = sup
k≥1

lim sup
n→∞

1
nIPn|B(T kx)

almost everywhere. So there exists some k such that the above supremum taken
only up to k is larger than C − δ for points x belonging to a large set, say, of
measure larger than 1 − δ. Notice that each point of this large set falls, after at
most k iterates, into the set J of points satisfying

lim sup
n→∞

1
nIPn|B(x) > C − δ.

Thus, the measure of J is larger than 1−δ
k .

By Lemma B.0.3, we can find a sequence of refining B-measurable par-
titions Q, such that the double convergence of the ergodic averages SQ,n =
1
n

∑n−1
i=0 IP|Q(T ix) to H(P|B) holds almost everywhere. Thus, there exist n′

and Q0 such that for any Q (in the selected sequence) finer than Q0 we have
SQ,n(x) < H(P|B) + δ, for any n ≥ n′ and all x in some large set X ′, say,
of measure at least 1 − δ′, where δ′ is negligibly small compared with 1−δ

k .
We select an integer n0 larger than both n′ and log 2k

δ . For each x ∈ J there
exists an nx ≥ n0 for which 1

nx
IPnx |B(x) > C − δ. Making the set J a bit

smaller (still of measure larger than 1−δ
k ) we can assume that all values of nx

for x ∈ J are bounded from above by some constant N0.
Because the partitions QN0 also generate B, the Martingale Theorem holds

along this sequence as well. So, we have

1
nx

IPnx |QN0 (x) > C − δ (B.0.5)
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for a sufficiently fine partition Q, finer than Q0 and belonging to the formerly
chosen sequence, for each x ∈ J after another negligible modification
(restriction) of the set J . We now enlarge J to be the set of points for which just
(B.0.5) is fulfilled for some nx ∈ [n0, N0], and agree that nx is the smallest
possible choice for x ∈ J . Notice that nx is constant on the whole cell Wx∩Q

of Pnx ∨QN0 which contains x. In particular this cell is entirely contained in J

and such cells form a partition of J . If, moreover, x belongs to X ′, then, since
nx ≥ n′ and by the choice of Q, we also have

1
nx

nx−1∑
i=0

IP|Q(T ix) ≤ H(P|B) + δ. (B.0.6)

This condition holds on the (containing x) cell Wx ∩ Qx of Pnx ∨ Qnx , in
particular on the smaller cell Wx ∩ Q. At this moment we replace J by the
union of all these cells Wx ∩ Q contained in J , on which (B.0.6) holds. The
measure of J has dropped only insignificantly, by at most δ′, so we can safely
write that μ(J) ≥ 1/2k.

For every Q ∈ QN0 such that Q ∩ J �= ∅ we have obtained an at most
countable partition of Q ∩ J by the sets Wx ∩ Q, where x ∈ Q and Wx is the
cylinder of length nx over P containing x. We denote this partition by {WQ,i}
and the corresponding lengths (of the cylinders Wx) by nQ,i.

We need to estimate the length-entropy of the partition {WQ,i} for just one
(suitable) set Q ∈ QN0 . There exists at least one Q such that its intersection
with J occupies at least the fraction 1/2k of Q in measure. For this particular
Q the conditional measures of the cells Wx∩Q relative to Q∩J are at most 2k

times larger than their conditional measures relative to Q. These last measures
are, by (B.0.5), at most 2−nQ,i(C−δ). Thus, the length-entropy of {WQ,i} (rel-
ative to conditional measure μQ∩J ) is at least C − δ − log 2k

n0
, which, by the

choice of n0, is larger than C − 2δ.
Now we want to find another measure leading to exponential length-entropy

for the same partition with the same lengths. Take the same Q as before (it
has essential intersection with J). Notice that for each x ∈ Q ∩ J the sum on
the left-hand side of (B.0.6) equals − log(νQx

(Wx)) (recall that Wx ∩ Qx ∈
Pnx ∨ Qnx ), where ν is the product (i.e., Bernoulli) measure on the formal
product space (P∨Q)N0 , and each pair of symbols (A,B) ∈ P∨Q has measure
μ(A ∩ B). So,

νQx
(Wx) ≥ 2−nx(H(P|B)+δ). (B.0.7)

Since in the independent process the conditional measures do not change as we
add conditions from the future, the same value will occur for the conditional
measure νQ(Wx) (note that the block corresponding to the cylinder Q ∈ QN0
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is an extension to the right of that corresponding to Qx). Now we are deal-
ing with the sets Wx ∩ Q which were denoted as WQ,i, and (B.0.7) can be
rewritten as

νQ(WQ,i) ≥ 2−nQ,i(H(P|B)+δ). (B.0.8)

Since the sets WQ,i are disjoint and contained in Q ∩ J (this does not depend
on the measure), their measures νQ add over i to at most 1 and so do the
numbers 2−nQ,i(H(P|B)+δ). The second assertion of Lemma 1.1.13 implies
that H(P|B) + δ + 1/n0 > C − 2δ. Since δ and 1/n0 are arbitrarily small,
C ≤ H(P|B), as claimed.

The way we replace H(P|B) by h(P|B) is slightly more delicate than in
the unconditional case. The new difficulty is that the conditional information
function (at a given point, with respect to a fixed partition and given a condi-
tioning sigma-algebra) is no longer a convex function of the measure, hence the
passage to the (not necessarily ergodic) power process requires more attention.

We start the same way as in the nonconditional proof. By Definition 2.3.3,
for large n0 we have 1

n0
H(Pn0 |B) ≤ h(P|B) + ε, so it suffices to prove that

n0C ≤ H(Pn0 |B).

Consider the power process (X,Pn0 , μ, Tn0 , S). For a point x ∈ X , the cylin-
der of length mn0 containing x in the original process is (as a set) the same
as the cylinder of length m containing x in the power process. We can write
this as

IPmn0 |B(x) = I(Pn0 )m|B(x),

where (Pn0)m denotes the partition obtained through m steps in the power
process. For n = mn0 − r (0 ≤ r < n0), by simple inclusion of the cylinders,
we have

1
nIPn|B(x) ≤ 1

nIPmn0 |B(x) = mn0
n

1
mn0

IPmn0 |B(x),

so, at almost every point x, the upper limit C = lim supn
1
nIPn|B(x) is

attained along a subsequence of mn0, and then it equals

1
n0

lim sup
m→∞

1
mI(Pn0 )m|B(x).

We have proved that the upper limit analogous to C, computed for the power
process is constant almost everywhere and equals n0C.

If the power process is ergodic, we simply apply the just proved inequality
(B.0.4) to the power process, and obtain

n0C ≤ H(Pn0 |B),

which is exactly what we needed to complete the proof.
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We pass to the nonergodic case. To make things easier, we can always agree
that n0 has been chosen a prime number. Then the measure μ in the power
process (if it is not ergodic) has precisely n0 ergodic components μ(i) (i =
1, 2, . . . , n0) supported by disjoint sets Xi of equal measures 1/n0, and the
power process factors to the cycle of n0 points. We let Ci denote the constants
analogous to C computed for the ergodic processes (X,Pn0 , μ(i), Tn0 , S). We
have another choice of two possibilities: either the factor system associated
with the subinvariant sigma-algebra B is disjoint (in the sense of Furstenberg,
see Section 4.4) from the cyclic factor or not. If not, then we argue as follows:
The only way for a system to not be disjoint of a cycle of a prime length is
to contain it as a factor (this is an elementary fact in ergodic theory). That is,
the ergodic sets Xi are measurable with respect to B. This implies that the
conditional information function IPmn0 |B(x) computed for the measure μ is
the same as the analogous function computed for μ(ix) where ix is the index
for which x ∈ Xi. As a consequence, Ci = n0C for each i. Applying (B.0.4)
to the ergodic power process we obtain

n0C = Ci ≤ H(μ(i),Pn0 |B).

Now, by concavity of conditional entropy and since μ is the arithmetic average
of the measures μ(i), we get

n0C ≤ 1
n0

∑
H(μ(i),Pn0 |B) ≤ H(μ,Pn0 |B),

and we are done.
What remains is the case of disjoint factors. Here, every B-measurable Q is

independent of the partition into the sets Xi, i.e., it is cut by them into parts of
equal measure μ. But this implies that the conditional measure μQ (μ restricted
to Q and normalized) remains the arithmetic average of the conditional mea-
sures μ

(i)
Q . In this case the conditional information function behaves (for this

particular combination of measures) like a convex function, and we can apply
the same argument as in the nonconditional proof:

n0C ≤ 1
n0

∑
i

Ci ≤
1
n0

∑
i

H(μ(i),Pn0 |B) ≤ H(μ,Pn0 |B).
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|a symbol with marker, 215, 363
‖ · ‖ norm in L1(μ), 318
‖ · ‖1 norm in �1, 27
‖DxT‖ norm of the derivative map, 303
# cardinality of a set, 33
⊥ independence relation, 37
⊥ε ε-independence relation, 80
� refining relation

for covers, 162
for partitions, 30
for sigma-algebras, 32

� join of families of functions, 317
∨ join

of covers, 162
of partitions, 31
of sigma-algebras, 32

∨,∧ lattice operations, 322
1IA characteristic function of a set, 35
1IP family of characteristic functions of cells

of a partition, 319

An
x = x[0, n − 1] the cell of Pn containing

x, 89
AF partition of X × [0, 1] associated with a

family of functions, 215
A⊗ B product sigma-algebra, 116
AX , AY Borel sigma-algebras, 57, 178
Aμ completed Borel sigma-algebra, 57, 177

bar(ξ) barycenter of a distribution, 356
Bn(x, ε) (n, ε)-ball, 161
Bn collection of all blocks of length n, 205
Bk family of all k-blocks, 225
B Banach space, 353

Ĉ, D̂ k-rectangles associated with
fundamental k-cells C, D,
respectively, 216

C(X) space of all continuous real functions
on X , 313, 355

C(X, X) set of all continuous
transformations of X , 166

CR(B) compression rate of a block, 97
CR(x) compression rate of a symbolic

sequence, 99
Ccond[n, m, c] cardinality of the collection of

two-row blocks B of length m with
H(n)(B|B1) ≤ c, 76

C[n, m, c] cardinality of the collection of
blocks B of length m with
H(n)(B) ≤ c, 74

d∗ metric on M(X), 204, 355
d1 distance between partitions, 42
dn maximum distance between n-orbits, 160
dR Rokhlin distance between partitions, 43
diam(U) diameter of a cover, 164
dim dimension of a manifold, 303
dist(F, G) distance between families of

functions, 318
Dx local defect of uniformity, 229
DX global defect of uniformity, 228
DΛ, DΔ, D̄, D̄Λ, D̄Δ the rows and prefixes

of a two-row block D, 124
D,D0 families of two-row blocks, 125

exK set of extreme points of a convex set, 357
exMT (X) set of ergodic measures of a

system, 176
EA affine superenvelope, 246
EH smallest superenvelope, 234
EHT = EH smallest superenvelope of the

entropy structure, 266
E(X) expected value of a random variable, 136
Eμ conditional expectation, 35



List of symbols 375

Ek(R) family of blocks in the preimage of a
k-rectangle, 283

f ′ derivative of f , 294
f̃ upper semicontinuous envelope, 351
...
f defect of upper semicontinuity, 229, 351
f̂ upper semicontinuous concave envelope,

354
f |A restriction of a function to a set, 165
fhar harmonic prolongation of a function, 358
f [K] push-down along the barycenter map,

249, 359
f [Y ] push-down of a function, 353
fM lift against the barycenter map, 249
frB(A) frequency of a block A in a block B,

73
FB distribution function of WB , 139
FB distribution function of WB , 141
FNAP class of all factors of systems with no

asymptotic pairs, 193
FW distribution function of the waiting time,

137
F, G, H finite families of functions, 215, 317
F−1(V) preimage of a cover by a family of

functions, 337
F−1(κ) preimage of a partition by a family of

functions, 319
Fn family of functions joined through n

iterates, 317
Fφ lifted family of functions, 331
F set of factor joinings, 124
Fε set of ε-factors, 123
Fε

erg set of ergodic ε-factors, 124
F collection of finite families of functions, 317

GB distribution function of RB , 139
GB distribution function of RB , 141
G topping of H, 244
GA affine topping, 246

hφ
ext extension entropy function, 273

hres residual entropy function, 274
hsex symbolic extension entropy function, 273
h(T |μ, V) local entropy of a measure given a

cover, 256
h(μ, T ) = h(A) = h(μ) Kolmogorov–Sinai

entropy of a dynamical system, 102
h(μ, T, F) entropy of a measure with respect

to a family of functions, 257
h(μ, T, F|G) conditional entropy of a

measure with respect to a family of
functions given a family of functions, 262

h(μ, T, P) = h(P) dynamical entropy of a
process, 61

h(μ, T, P|B) = h(P|B) conditional
dynamical entropy of a process given a
sigma-algebra, 61

h(μ, T, P|Q) = h(P|Q) conditional
dynamical entropy of a process given
another process, 61

h(μ, T, P|Q, B) = h(P|Q, B) conditional
dynamical entropy of a process given
another process and a sigma-algebra, 61

h(μ, T, U) entropy of a measure with respect
to a cover, 254

h(μ, T |ν, S) = h(A|B) = h(μ|ν)
conditional Kolmogorov–Sinai entropy of
a dynamical system given a factor, 103

hμ(T ) operator entropy, 317
hμ(T , F) = hμ(F) operator entropy of a

family of functions, 317
h∗(T ) topological tail entropy, 169
hm(T ),hp(T ),hpre(T ) topological preimage

entropy, 198
hres(T ) topological residual entropy, 274
hsex(T ) topological symbolic extension

entropy, 273
h(T ) topological entropy of T , 162, 163
h(T |F, V) topological conditional entropy of

T given a set and a cover, 256
h(T |S) topological conditional entropy of T

given a factor, 170
h(T, U) topological entropy of a cover, 162
h(T, U|F, V) topological conditional entropy

of a cover given a set and a cover, 256
h(T, U|S) topological conditional entropy of

a cover given a factor, 170
h(T, U|V) topological conditional entropy of

a cover given a cover, 169
h(T, U|y) topological fiber entropy of a

cover, 179
h(T, U|ν) topological fiber entropy of a cover

given a measure, 179
h(T |V) topological conditional entropy of T

given a cover, 169
h(T |y) topological fiber entropy, 179
h(T |ν) topological fiber entropy of given a

measure, 179
h(T ) topological operator entropy, 339
h(μ, T, U) variant entropy of a measure with

respect to a cover, 258
HB entropy with respect to a conditional

measure, 33



376 List of symbols

Hn(B) nth combinatorial entropy of a block,
73

H(n)(B) nth periodic combinatorial entropy
of a block, 73

H(n)(B|B1) nth conditional periodic
combinatorial entropy of a two-row block
given the first row, 75

H(p) Shannon entropy of a probability
vector, 24

H(p,n) length-entropy, 29
Hμ(F) static entropy of a family of functions,

317
Hμ(F|G) conditional static entropy of a

family of functions given a family of
functions, 318

H(μ, P) = H(P) Shannon entropy of a
partition, 32

H(μ, P|B) = H(P|B) conditional entropy
of a partition given a sigma-algebra, 34

H(μ, P|Q) = H(P|Q) conditional entropy of
a partition given a partition, 33

H(μ, U) static entropy of a measure with
respect to a cover, 254

H1(F, ε),h1(T , F, ε),h1(T ) notions of
operator entropy via thickenings, 337

H1(n, ε),h1(T, ε),h1(T ) notions of
topological entropy via separated sets,
161

H1(n, ε|F ) static topological entropy via
separated sets restricted to a set F , 198

H2(F, V),h2(T , F, V),h2(T ) notions of
operator entropy via preimage covers,
337

H2(n, ε),h2(T, ε),h2(T ) notions of
topological entropy via spanning sets,
161

H3(F, ε),h3(T , F, ε),h3(T ) notions of
operator entropy via separated sets, 337

H(U) static topological entropy of a cover,
162

H(U|F ),H(U|F, V),H(U|V) notions of
topological conditional static entropy of a
cover, 167

H(U|y) static fiber entropy of a cover, 179
H(U|ν) static fiber entropy of a cover given a

measure, 179
H = (hκ) increasing net of nonnegative

functions, 228
Hfun functional entropy structure, 263
HNew Newhouse entropy structure, 263
HRom Romagnoli entropy structure, 263

HT = H generic notation for entropy
structure, 265

Id the identity map, 128
Ip information function of a probability

vector, 24
Ip,n length-information function, 29
I(P; Q) mutual information, 46
Iμ,P = IP information function of a

partition, 32
Iμ,P|B = IP|B conditional information

function of a partition given a
sigma-algebra, 35

Iμ,P|Q = IP|Q conditional information
function of a partition given a partition,
33

I sequence of branches of monotonicity, 297

J (μ, ν) set of joinings, 122
Jerg(μ, ν) set of ergodic joinings, 122

K convex set, simplex, or MT (X), 277, 353
Kk abbreviates MTk

(Xk), 277
K directed family, 228, 348

�1 space of all absolutely summable
sequences, 23

←−
lim(Xk, Tk, S) inverse limit of systems, 175
L1(μ) the space of μ-integrable functions, 45
Leb(U) Lebesgue number of a cover, 164
L(f) positive logarithm of the Lipschitz

constant, 294
LU Young class of functions, 352
L collection of functions with range in [0, 1],

316

Mn(μ) average measure along the n-orbit of a
measure, 176

MNAPF maximal NAP factor, 195
MPLF maximal Pinsker-like factor, 195
MTDF maximal topologically deterministic

factor, 195
M(X) set of all probability measures, 175,

355
MT (X) set of all T -invariant measures, 176

n vector of lengths, 29
np average length, 29
N(U) minimal cardinality of a subcover of U,

162
NAP class of all systems with no asymptotic

pairs, 192
N set of all positive integers, 18
N0 set of all nonnegative integers, 18



List of symbols 377

ord(x) topological order of accumulation of a
point, 242

ord(X) topological order of accumulation of a
space, 242

O trivial family, 317
Oκ auxuliary family of functions depending

on κ, 319
Ok oracle, 277

(pk) base of an odometer, 362
p probability vector, 24
p(m) m-dimensional restriction of a

probability vector, 25
pn,B probability vector of frequencies of

blocks of length n in B, 73
p(μ, P) distribution vector of a partition, 32
pξ barycenter of a distribution ξ on

probability vectors, 27
PL class of all Pinsker-like systems, 192
Prob generic denotation of a probability

measure, 50
P set of all countable probability vectors, 23
Pm set of all m-dimensional probability

vectors, 25
P, Q, R measurable partitions, 30
PD, Pn, P−n, P+, P−, PS partitions and

sigma-algebras generated by a partition
along a set of times, 59

P(m) m-element partition obtained from P,
38

PU partition generated by a cover, 255
PΛ zero-coordinate partition, 58
Pm space of all m-element partitions with d1

(or dR), 42
PR space of all finite entropy partitions with

dR, 46
Pℵ0 space of all countable partitions with d1,

42

r(n, ε) minimal cardinality of an
(n, ε)-spanning set, 161(R(1)R(2)...R(qk)

B

)
=

(D
B

)
(k + 1)-rectangle, 277

RB return time to a set B, 82
RB normalized return time to B, 141

R(k)
B kth return time to B, 142

R
(k)
B normalized kth return time to B, 142

Rn(x) return time to the cylinder An
x , 94

R(k)
n (x) kth return time to the cylinder An

x ,
101

Repn(x) maximal force of repelling of An
x ,

141

R(f) limit of 1
n

L(fn), 294
Rk,n family of all (k×n)-rectangles, 223
Rk family of all k-rectangles, 223
Rk(X) family of all k-rectangles occurring in

X , 277
R set of all real numbers, 18

s(n, ε) maximal cardinality of an
(n, ε)-separated set, 160

S set of all countable subprobability vectors,
23

Sm set of all m-dimensional subprobability
vectors, 25

S (= Z or N0) acting semigroup, 57

T, S, R main transformation, 18
TB induced map on a set B, 82
T × S product transformation, 116, 172
T ∨ S topological joining within a common

extension, 173
TD class of all topologically deterministic

systems, 191
TEZ class of all systems with topological

entropy zero, 191
TPF topological Pinsker factor, 195
T doubly stochastic operator or Markov

operator, 313
T∗ dual operator on measures, 314
T unit circle (or [0, 1] with 0 = 1), 64

uH smallest repair function, 234
uH

α = uα functions in the transfinite
sequence, 236

uT
α = uα elements of the transfinite sequence

associated with the entropy structure, 266
Uε

<f thickening of the set below the graph,
336

Uε
>f thickening of the set above the graph,

336
U, V open covers, 162
U⊗ V product cover, 173
Uε

F cover of X × [0, 1] associated with a
family of functions, 336

v(P,Q),v(P1,...,Pk) vector of static entropies
associated with a collection of partitions,
48, 49

V n
x cell of Vn containing x, 298

W waiting time in a signal process, 136
WB waiting time for a set B, 139
WB normalized waiting time for B, 141
WPL class of all weakly Pinsker-like systems,

192



378 List of symbols

(xD, tD) point selected in the fundamental
(k + 1)-cell D, 219

(X, A, μ) standard probability space, 30
(X, A, μ, T, S) measure-theoretic dynamical

system, 57
(X, P, μ, T, S) process generated by a

partition in a dynamical system, 58
(X, T, S) topological dynamical system, 159
X × Y product space, 116, 172
Xt(ω) stochastic process, 135

Yc collection of arrays satisfying the column
condition, 216

Z set of all integers, 18

α, β, γ, δ, ε small positive numbers, 26
α0 order of accumulation of entropy, 266
α0 = αH

0 order of accumulation of H, 237
α0(μ) order of accumulation of entropy at a

measure, 266
Γk set of all vectors of static entropies

associated with k partitions, 49
Γ̃k set of all vectors of dynamical entropies

associated with k partitions, 50
∂A boundary of a set, 177
δy measure concentrated at one point, 180
η(t) real function −t log t, 23
ϑ lattice polynomial, 323
θκ tails of a net, 228

Θ lattice expression, 324
κ generic denotation of a partition, 319
λ normalized Lebesgue measure, 64
λ intensity of a signal process, 136
Λ, Δ alphabets, 58
(ΛS

′
, μ, σ, S) measure-theoretic symbolic
system, 58

μB conditional measure on a set B, 32
μy disintegration of μ, 35
ξx distribution on extreme points with

barycenter at x, 357
ξμ ergodic decomposition of an invariant

measure (distribution on ergodic
measures), 176

ξ (maximal) coupling, 365
π, φ, ψ factor maps, 18
ΠP Pinsker sigma-algebra of a process, 85
Πμ Pinsker sigma-algebra of a dynamical

system, 110
σ shift map, 58
ΣG sum of G, 244
� parameter of circle rotation, 64
χ(μ) Lyapunov exponent, 294
χ+(μ) positive Lyapunov exponent, 294
χ+(μ) harmonic prolongation of χ+ at μ, 294
Φ generic denotation of a block code, 97
(Ω, A, μ) generic notation for a probability

space, 135, 347
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