OPTOELECTRONICS (I)

Chapter 6: Dispersion in Optical Fibers

Mohammad Ali Mansouri- Birjandi

Department of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) **mansouri@ece.usb.ac.ir** mamansouri@yahoo.com

Contents

6. Dispersion in Optical Fibers

- 6-1 Graded Index Fiber
- 6-2 Intramodal Dispersion
 - -Material Dispersion
 - -Waveguide Dispersion
 - -Polarization-mode Dispersion
 - -Total Fiber Dispersion

7. Fiber Connections and Diagnostics

- 7-1 Fiber Connections-Fiber Splice-Fiber Connector-Fiber Coupler
- 7-2 Losses in Fiber Connections-Multimode Fiber-Single-Mode fiber
- 7-3 Fiber Loss Diagnostics-Cutback Method-Optical Time Domain Reflectometer

6. Dispersion in Optical Fibers

Dispersion: As a pulse of light propagates down a long fiber, it will generally broaden in time.

- **1. Intermodal dispersion**
- 2. Intrarmodal (chromatic) dispersion
 - I. Material dispersion
 - II. Waveguide dispersion
- **3.** Polarization-Mode dispersion (PMD)

- Intermodal dispersion: light distributed among several modes
- chromatic dispersion: light distributed over a range of wavelengths
- ✤ In multimode fibers, the dispersion is largely due to the different propagation speeds for the various modes.

Typical values of intermodal dispersion are ~ 50 ns/km, which limits the useful propagation range for a 100 Mb/s signal to ~ 100 m.

6. Dispersion in Optical Fibers

There are two basic approaches to reducing dispersion:

- I. Use a graded-index fiber : for multimode fibers
- II. Use a single-mode fiber:
- Although single-mode fibers have no intermodal dispersion, they have other sources of dispersion.

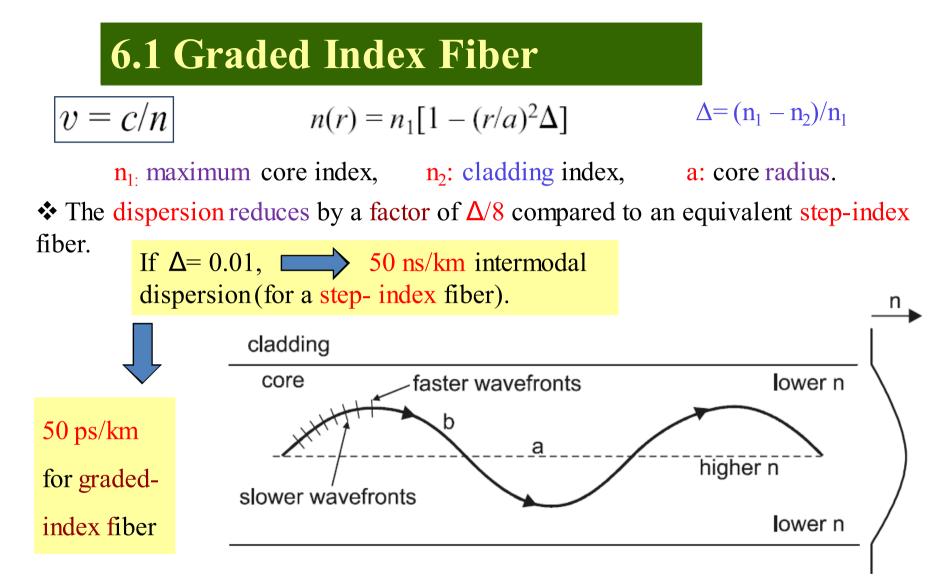


Figure 6-1 Ray propagation along two paths a and b in a graded-index fiber.

6.2 Intramodal (Chromatic) Dispersion

- I. Material dispersion
- II. Waveguide dispersion

I. Material dispersion

 \succ n \implies n(λ) \implies varying speed for the different wavelength

 \succ Material dispersion depends only on a property of the material (n).

Quantitatively: by calculating the time t for light of a particular wavelength λ to travel a distance L down the fiber.

$$v_{g}$$
: group velocity $t = \frac{L}{v_{g}} = L \frac{d\beta}{d\omega} = L \frac{d\beta}{d\lambda} \cdot \frac{d\lambda}{d\omega}$ (6-1)
 λ : free-space wavelength

$$\blacktriangleright \text{Material Dispersion - (1)}$$

$$t \stackrel{?}{=} \frac{L}{n/c} \qquad t = \frac{L}{v_g} = L \frac{d\beta}{d\omega} = L \frac{d\beta}{d\lambda} \cdot \frac{d\lambda}{d\omega} \qquad (6-1)$$

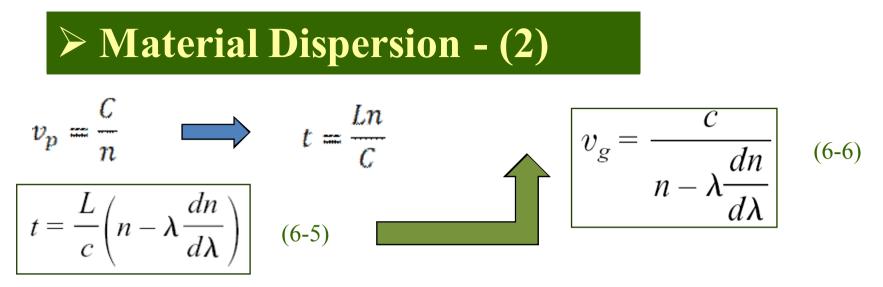
$$\lambda = c/\nu = 2\pi c/\omega \qquad \longrightarrow \qquad \frac{d\lambda}{d\omega} = -2\pi \frac{c}{\omega^2} = -\frac{\lambda^2}{2\pi c} \qquad (6-2)$$

$$\beta = nk_0 = n \frac{2\pi}{\lambda} \qquad (\text{plane wave assumption}) \qquad (6-3)$$

$$\implies \qquad \frac{d\beta}{d\lambda} = \frac{2\pi}{\lambda} \frac{dn}{d\lambda} - \frac{2\pi}{\lambda^2}n = -\frac{2\pi}{\lambda^2} \left(n - \lambda \frac{dn}{d\lambda}\right) \qquad (6-4)$$
Substituting Eq. (2) and Eq. (4)
$$\implies \qquad t = \frac{L}{c} \left(n - \lambda \frac{dn}{d\lambda}\right) \qquad (6-5)$$

Lecture 6: Dispersion in Optical Fibers

M. A. Mansouri-Birjandi



> If a light pulse has a spectral width $\Delta\lambda$, the **different wavelength** components in the pulse will propagate with different delay times according to the $n(\lambda)$ and $dn/d\lambda$ for each wavelength.

 \succ The spread in arrival times Δt for the **different wavelength** components:

$$\Delta t = \frac{dt}{d\lambda} \cdot \Delta \lambda \implies \left| \frac{dt}{d\lambda} = \frac{L}{c} \left[\frac{dn}{d\lambda} - \frac{dn}{d\lambda} - \lambda \frac{d^2 n}{d\lambda^2} \right] \right| \implies \text{material dispersion}$$

$$(6-7) \quad (6-8) = -\frac{L}{c} \lambda \frac{d^2 n}{d\lambda^2} \quad (6-9) \quad \Delta t = -\frac{L}{c} \lambda \frac{d^2 n}{d\lambda^2} \Delta \lambda$$

M. A. Mansouri-Birjandi

> Material Dispersion - (3)

material dispersion

$$\Delta t = -\frac{L}{c} \lambda \frac{d^2 n}{d\lambda^2} \Delta \lambda \tag{6-9}$$

➤ There are two ways to minimize material dispersion:

- 1. Use a nearly monochromatic light source (small). $\Longrightarrow \Delta \lambda \approx \cdot \Longrightarrow Laser$
- 2. Choose a wavelength where $d^2n/d\lambda^2$ becomes very small. $\implies \lambda_0 \approx 1300$ nm

 \succ The variation of n with wavelength arises from the interaction of the light with the electronic and vibrational transitions in the glass.

 \succ For wavelengths in the visible and near infrared regions, the balance between these two types of transitions causes n to decrease with increasing λ .

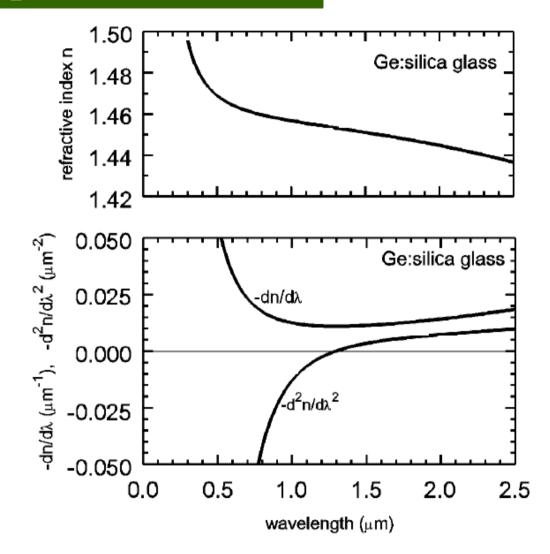
> In silica glass, this occurs at $\lambda_0 \approx 1300$ nm, which is another reason (in addition to low attenuation) that the 1300 nm region was chosen for the second telecommunications window.

M. A. Mansouri-Birjandi

Material Dispersion - (4)

Figure 6-2 Variation of refractive index with wavelength for silica glass in the visible and near IR regions.

The curvature $d^2n/d\lambda^2$ goes to zero at $\lambda_0 \approx 1300$ nm.



> Material Dispersion - (5)

material dispersion
$$\equiv \lambda, \Delta \lambda$$
 $\Delta t = -\frac{L}{c} \lambda \frac{d^2 n}{d\lambda^2} \Delta \lambda$ (6-9)

 $D_m \equiv \frac{1}{L} \frac{\Delta t}{\Delta \lambda} = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2} \qquad \text{(material dispersion coefficient)}$

which is only dependent on the <u>material property</u> $d^2n/d\lambda^2$.

 $\succ D_{\rm m}$ is negative for $\lambda < \lambda_0$ and positive for $\lambda > \lambda_0$.

> A *negative* D_m implies that **longer wavelengths** have a shorter arrival time, that is, they travel faster.

 \succ This is termed *normal dispersion* since it is what is normally encountered in the visible and near IR spectral regions.

 \triangleright longer λ means decreasing n, which gives a greater $v_p = c/n$.

(6-10)

> Material Dispersion - (6)

> A *positive* D_m implies that longer wavelengths have longer arrival times, and thus **travel slower**.

> This is termed <u>anomalous dispersion</u>, and occurs in silica glass for $\lambda > 1300$ nm.

> In this spectral region, the v_g decreases with increasing λ , but the v_p increases, since *n* continues to decrease with increasing λ .

> This difference in v_g and v_p behavior is one sense in which the dispersion is "anomalous," and has applications in soliton propagation in fibers.

Example 6-1

Calculate the dispersion coefficient D_m in ps/(nm \cdot km) and the dispersion per unit length in ns/km or ps/km for each of the following:

(a) LED (light-emitting diode) light with spectral width of 40 nm, operating at wavelength 800 nm, where $d^2n/d\lambda^2 = 4 \times 10^{10} \text{ m}^{-2}$.

(b) Laser light with spectral width of 0.2 nm, operating at wavelength 1500 nm, where $d^2n/d\lambda^2 = -2.7 \times 10^9 \text{ m}^{-2}$.

Solution: (a)
$$\lambda = 800 \text{ nm}$$
 $D_m = -\frac{800 \times 10^{-9}}{3 \times 10^8} (4 \times 10^{10}) = -107 \times 10^{-6} \text{ s/m}^2$
or $D_m = -107 \frac{\text{ps}}{\text{nm} \cdot \text{km}}$

The dispersion per unit length (dropping the minus sign) is:

$$\frac{\Delta t}{L} = \left(107 \ \frac{\text{ps}}{\text{nm} \cdot \text{km}}\right) \cdot (40 \text{ nm}) = 4.3 \ \frac{\text{ns}}{\text{km}}$$

M. A. Mansouri-Birjandi

Example 6-1 (b)Solution: (b)For
$$\lambda$$
= 1500 nmmaterial dispersion coefficient (D_m): $D_m = -\frac{1500 \times 10^{-9}}{3 \times 10^8} (-2.7 \times 10^9) = 13.5 \times 10^{-6} \text{ s/m}^2 = 13.5 \frac{\text{ps}}{\text{nm} \cdot \text{km}}$ The dispersion per unit length is: $\frac{\Delta t}{L} = \left(13.5 \frac{\text{ps}}{\text{nm} \cdot \text{km}}\right) \cdot (0.2 \text{ nm}) = 2.7 \frac{\text{ps}}{\text{km}}$

The dramatic reduction in dispersion for the laser source illustrates its importance for high-speed optical communications.

Waveguide Dispersion - (1)

➤ Waveguide dispersion can analyzed quantitatively by making the substitution $n \rightarrow n_{\text{eff}}$ in each of Eqs. (6-3)–(6-10).

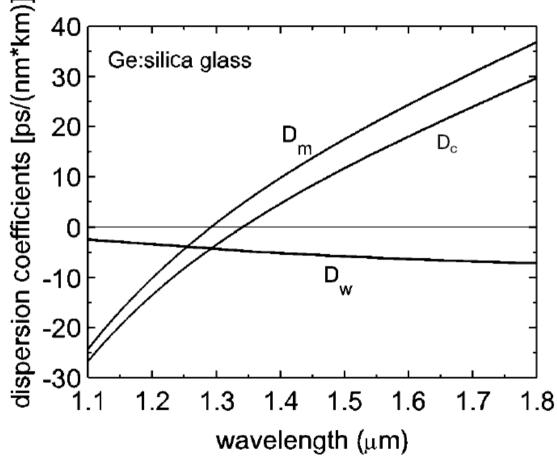
Total chromatic
dispersion coefficient or
profile dispersion (D_c):
$$D_c \equiv \frac{1}{L} \frac{\Delta t}{\Delta \lambda} = -\frac{\lambda}{c} \frac{d^2 n_{eff}}{d\lambda^2}$$
 (6-11) $\delta \equiv n_{eff} - n_2$ $D_c = -\frac{\lambda}{c} \frac{d^2 n_2}{d\lambda^2} - \frac{\lambda}{c} \frac{d^2 \delta}{d\lambda^2} = D_m + D_w$ (6-12)

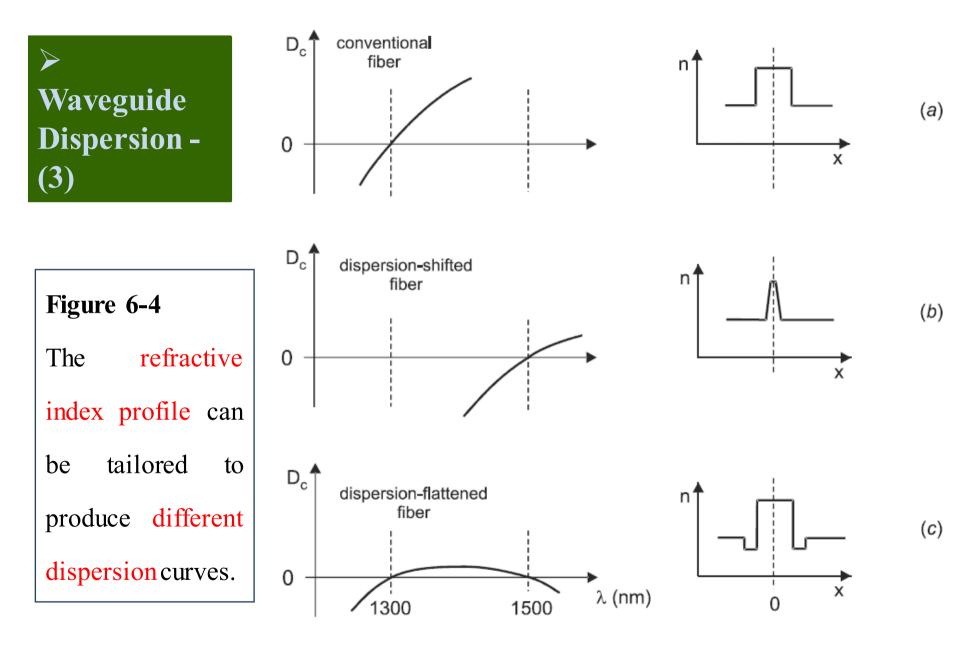
where D_w is the waveguide dispersion coefficient.

M. A. Mansouri-Birjandi

> Waveguide Dispersion - (2)

 D_c : Combined dispersion D_m : material dispersion D_{w} : waveguide dispersion $D_c = D_m + D_w$ Figure 6-3 Dispersion coefficient D_c for singlemode fiber, showing contributions D_m from material dispersion and D_w from waveguide dispersion (core radius ≈ 4 m).





> Polarization-Mode Dispersion (PMD)-

> A third type of time-spreading mechanism, that of *polarization mode* dispersion (PMD), is a consequence of the light being distributed over different polarizations.

 \succ For a perfectly uniform and symmetrical fiber, the propagation speed would be independent of polarization.

 \succ In real fibers, depends slightly on polarization.

 \succ The time spread of a pulse due to PMD is found to obey

polarization mode dispersion:

$$\Delta t_{\rm PMD} \simeq D_{\rm PMD} \sqrt{L} \tag{6-14}$$

where D_{PMD} is the polarization mode dispersion coefficient. Typical values for communications fiber are 0.2-2 ps/km.

> Total Fiber Dispersion

 \succ To determine the total time spread of a pulse, we must combine the various sources of fiber dispersion.

 \succ The way that we combine them depends on whether they are correlated or uncorrelated.

▷ For example, *material* dispersion D_m and waveguide dispersion D_w are correlated because they both depend in a specified way on the wavelength. In this case, we add these dispersions directly. $(D_c = D_m + D_w)$

> However, intermodal dispersion, chromatic dispersion and PMD do not share any common origin, and are therefore uncorrelated.

➤ In this case, we must add the time spreads "in quadrature":

$$\Delta t_{\text{fiber}} = \sqrt{\Delta t_{\text{modal}}^2 + \Delta t_{\text{chromatic}}^2 + \Delta t_{\text{PMD}}^2} \qquad \text{(total fiber dispersion)} \qquad (6-15)$$

M. A. Mansouri-Birjandi

➢ Total Fiber Dispersion – (2)

 \succ In many situations, one of these three terms dominates and the others can be neglected.

≻ For example, in **step-index multimode** fiber, the Δt^2_{modal} term usually dominates; it is zero, however, in single-mode fiber.

> The contribution from PMD can often be neglected, but can be significant in long fiber spans when very monochromatic light sources are used.

Problems (chap.6): 1 to 11

Problems (chap.6): 1 to 11

