
Kalman filter
Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that 

uses a series of measurements observed over time, containing statistical noise and other 

inaccuracies, and produces estimates of unknown variables that tend to be more accurate than 

those based on a single measurement alone, by estimating a joint probability distribution over 

the variables for each timeframe. The filter is named after Rudolf E. Kálmán, one of the 

primary developers of its theory.

The Kalman filter has numerous applications in technology. A common application is for 

guidance, navigation, and control of vehicles, particularly aircraft and spacecraft.[1]

Furthermore, the Kalman filter is a widely applied concept in time series analysis used in fields 

such as signal processing and econometrics. Kalman filters also are one of the main topics in 

the field of robotic motion planning and control, and they are sometimes included in trajectory 

optimization. The Kalman filter also works for modeling the central nervous system's control of 

movement. Due to the time delay between issuing motor commands and receiving sensory 

feedback, usage of the Kalman filter supports the realistic model for making estimates of the 

current state of the motor system and issuing updated commands.[2]

The algorithm works in a two-step process. In the prediction step, the Kalman filter produces 

estimates of the current state variables, along with their uncertainties. Once the outcome of the next measurement (necessarily corrupted with some amount of error, 

including random noise) is observed, these estimates are updated using a weighted average, with more weight being given to estimates with higher certainty. The 

algorithm is recursive. It can run in real time, using only the present input measurements and the previously calculated state and its uncertainty matrix; no additional 

past information is required.

The Kalman filter does not make any assumption that the errors are Gaussian.[3] However, the filter yields the exact conditional probability estimate in the special case 

that all errors are Gaussian-distributed.

Extensions and generalizations to the method have also been developed, such as the extended Kalman filter and the unscented Kalman filter which work on nonlinear 

systems. The underlying model is similar to a hidden Markov model except that the state space of the latent variables is continuous and all latent and observed variables 

have Gaussian distributions.
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The Kalman filter keeps track of the estimated state of the system 

and the variance or uncertainty of the estimate. The estimate is 

updated using a state transition model and measurements. 

denotes the estimate of the system's state at time step k before the 

k-th measurement yk has been taken into account;  is the 

corresponding uncertainty.
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The filter is named after Hungarian émigré Rudolf E. Kálmán, although Thorvald Nicolai Thiele[4][5] and Peter Swerling developed a similar algorithm earlier. Richard S. 

Bucy of the University of Southern California contributed to the theory, leading to it often being called the Kalman–Bucy filter. Stanley F. Schmidt is generally credited 

with developing the first implementation of a Kalman filter. He realized that the filter could be divided into two distinct parts, with one part for time periods between 

sensor outputs and another part for incorporating measurements.[6] It was during a visit by Kálmán to the NASA Ames Research Center that Schmidt saw the 

applicability of Kálmán's ideas to the nonlinear problem of trajectory estimation for the Apollo program leading to its incorporation in the Apollo navigation computer. 

This Kalman filter was first described and partially developed in technical papers by Swerling (1958), Kalman (1960) and Kalman and Bucy (1961).

Kalman filters have been vital in the implementation of the navigation systems of U.S. Navy nuclear ballistic missile submarines, and in the guidance and navigation 

systems of cruise missiles such as the U.S. Navy's Tomahawk missile and the U.S. Air Force's Air Launched Cruise Missile. It is also used in the guidance and navigation 

systems of reusable launch vehicles and the attitude control and navigation systems of spacecraft which dock at the International Space Station.[7]

This digital filter is sometimes called the Stratonovich–Kalman–Bucy filter because it is a special case of a more general, non-linear filter developed somewhat earlier by 

the Soviet mathematician Ruslan Stratonovich.[8][9][10][11] In fact, some of the special case linear filter's equations appeared in these papers by Stratonovich that were 

published before summer 1960, when Kalman met with Stratonovich during a conference in Moscow.

The Kalman filter uses a system's dynamics model (e.g., physical laws of motion), known control inputs to that system, and multiple sequential measurements (such as 

from sensors) to form an estimate of the system's varying quantities (its state) that is better than the estimate obtained by using only one measurement alone. As such, it 

is a common sensor fusion and data fusion algorithm.

Noisy sensor data, approximations in the equations that describe the system evolution, and external factors that are not accounted for all place limits on how well it is 

possible to determine the system's state. The Kalman filter deals effectively with the uncertainty due to noisy sensor data and to some extent also with random external 

factors. The Kalman filter produces an estimate of the state of the system as an average of the system's predicted state and of the new measurement using a weighted 

average. The purpose of the weights is that values with better (i.e., smaller) estimated uncertainty are "trusted" more. The weights are calculated from the covariance, a 

measure of the estimated uncertainty of the prediction of the system's state. The result of the weighted average is a new state estimate that lies between the predicted and 

measured state, and has a better estimated uncertainty than either alone. This process is repeated at every time step, with the new estimate and its covariance informing 

the prediction used in the following iteration. This means that the Kalman filter works recursively and requires only the last "best guess", rather than the entire history, 

of a system's state to calculate a new state.

The relative certainty of the measurements and current state estimate is an important consideration, and it is common to discuss the response of the filter in terms of the 

Kalman filter's gain. The Kalman gain is the relative weight given to the measurements and current state estimate, and can be "tuned" to achieve particular performance. 

With a high gain, the filter places more weight on the most recent measurements, and thus follows them more responsively. With a low gain, the filter follows the model 

predictions more closely. At the extremes, a high gain close to one will result in a more jumpy estimated trajectory, while low gain close to zero will smooth out noise but 

decrease the responsiveness.

When performing the actual calculations for the filter (as discussed below), the state estimate and covariances are coded into matrices to handle the multiple dimensions 

involved in a single set of calculations. This allows for a representation of linear relationships between different state variables (such as position, velocity, and 

acceleration) in any of the transition models or covariances.

As an example application, consider the problem of determining the precise location of a truck. The truck can be equipped with a GPS unit that provides an estimate of 

the position within a few metres. The GPS estimate is likely to be noisy; readings 'jump around' rapidly, though remaining within a few metres of the real position. In 

addition, since the truck is expected to follow the laws of physics, its position can also be estimated by integrating its velocity over time, determined by keeping track of 

wheel revolutions and the angle of the steering wheel. This is a technique known as dead reckoning. Typically, the dead reckoning will provide a very smooth estimate of 

the truck's position, but it will drift over time as small errors accumulate.

In this example, the Kalman filter can be thought of as operating in two distinct phases: predict and update. In the prediction phase, the truck's old position will be 

modified according to the physical laws of motion (the dynamic or "state transition" model). Not only will a new position estimate be calculated, but a new covariance 

will be calculated as well. Perhaps the covariance is proportional to the speed of the truck because we are more uncertain about the accuracy of the dead reckoning 

position estimate at high speeds but very certain about the position estimate when moving slowly. Next, in the update phase, a measurement of the truck's position is 

taken from the GPS unit. Along with this measurement comes some amount of uncertainty, and its covariance relative to that of the prediction from the previous phase 

determines how much the new measurement will affect the updated prediction. Ideally, as the dead reckoning estimates tend to drift away from the real position, the 

GPS measurement should pull the position estimate back towards the real position but not disturb it to the point of becoming rapidly jumping and noisy.

The Kalman filter is an efficient recursive filter that estimates the internal state of a linear dynamic system from a series of noisy measurements. It is used in a wide 

range of engineering and econometric applications from radar and computer vision to estimation of structural macroeconomic models,[12][13] and is an important topic in 

control theory and control systems engineering. Together with the linear-quadratic regulator (LQR), the Kalman filter solves the linear–quadratic–Gaussian control

problem (LQG). The Kalman filter, the linear-quadratic regulator and the linear–quadratic–Gaussian controller are solutions to what arguably are the most fundamental 

problems in control theory.

In most applications, the internal state is much larger (more degrees of freedom) than the few "observable" parameters which are measured. However, by combining a 

series of measurements, the Kalman filter can estimate the entire internal state.
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In Dempster–Shafer theory, each state equation or observation is considered a special case of a linear belief function and the Kalman filter is a special case of combining 

linear belief functions on a join-tree or Markov tree. Additional approaches include belief filters which use Bayes or evidential updates to the state equations.

A wide variety of Kalman filters have now been developed, from Kalman's original formulation, now called the "simple" Kalman filter, the Kalman–Bucy filter, Schmidt's 

"extended" filter, the information filter, and a variety of "square-root" filters that were developed by Bierman, Thornton and many others. Perhaps the most commonly 

used type of very simple Kalman filter is the phase-locked loop, which is now ubiquitous in radios, especially frequency modulation (FM) radios, television sets, satellite 

communications receivers, outer space communications systems, and nearly any other electronic communications equipment.

The Kalman filters are based on linear dynamical systems discretized in the time domain. They are modelled on a Markov chain built on linear operators perturbed by 

errors that may include Gaussian noise. The state of the system is represented as a vector of real numbers. At each discrete time increment, a linear operator is applied to 

the state to generate the new state, with some noise mixed in, and optionally some information from the controls on the system if they are known. Then, another linear 

operator mixed with more noise generates the observed outputs from the true ("hidden") state. The Kalman filter may be regarded as analogous to the hidden Markov 

model, with the key difference that the hidden state variables take values in a continuous space (as opposed to a discrete state space as in the hidden Markov model). 

There is a strong duality between the equations of the Kalman Filter and those of the hidden Markov model. A review of this and other models is given in Roweis and 

Ghahramani (1999),[14] and Hamilton (1994), Chapter 13.[15]

In order to use the Kalman filter to estimate the internal state of a process given only a sequence of noisy observations, one must model the process in accordance with 

the framework of the Kalman filter. This means specifying the following matrices:

◾ Fk, the state-transition model;

◾ Hk, the observation model;

◾ Qk, the covariance of the process noise;

◾ Rk, the covariance of the observation noise;

◾ and sometimes Bk, the control-input model, for each time-step, k, as described below.

The Kalman filter model assumes the true state at time 

k is evolved from the state at (k − 1) according to

where

◾ Fk is the state transition model which is applied to 

the previous state xk−1;

◾ Bk is the control-input model which is applied to the 

control vector uk;

◾ wk is the process noise which is assumed to be 

drawn from a zero mean multivariate normal 

distribution, , with covariance, Qk: 

.

At time k an observation (or measurement) zk of the 

true state xk is made according to

where

◾ Hk is the observation model which maps the true state space into the observed space and

◾ vk is the observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk: .

The initial state, and the noise vectors at each step {x0, w1, …, wk, v1 … vk} are all assumed to be mutually independent.

Many real dynamical systems do not exactly fit this model. In fact, unmodelled dynamics can seriously degrade the filter performance, even when it was supposed to 

work with unknown stochastic signals as inputs. The reason for this is that the effect of unmodelled dynamics depends on the input, and, therefore, can bring the 

estimation algorithm to instability (it diverges). On the other hand, independent white noise signals will not make the algorithm diverge. The problem of distinguishing 

between measurement noise and unmodelled dynamics is a difficult one and is treated in control theory under the framework of robust control.[16][17]

The Kalman filter is a recursive estimator. This means that only the estimated state from the previous time step and the current measurement are needed to compute the 

estimate for the current state. In contrast to batch estimation techniques, no history of observations and/or estimates is required. In what follows, the notation 

represents the estimate of  at time n given observations up to and including at time m ≤ n.

The state of the filter is represented by two variables:

◾ , the a posteriori state estimate at time k given observations up to and including at time k;

◾ , the a posteriori error covariance matrix (a measure of the estimated accuracy of the state estimate).

The Kalman filter can be written as a single equation, however it is most often conceptualized as two distinct phases: "Predict" and "Update". The predict phase uses the 

state estimate from the previous timestep to produce an estimate of the state at the current timestep. This predicted state estimate is also known as the a priori state 

estimate because, although it is an estimate of the state at the current timestep, it does not include observation information from the current timestep. In the update 

phase, the current a priori prediction is combined with current observation information to refine the state estimate. This improved estimate is termed the a posteriori

state estimate.

Underlying dynamical system model

Model underlying the Kalman filter. Squares represent matrices. Ellipses represent multivariate normal 

distributions (with the mean and covariance matrix enclosed). Unenclosed values are vectors. In the 

simple case, the various matrices are constant with time, and thus the subscripts are dropped, but the 

Kalman filter allows any of them to change each time step.

Details



Typically, the two phases alternate, with the prediction advancing the state until the next scheduled observation, and the update incorporating the observation. However, 

this is not necessary; if an observation is unavailable for some reason, the update may be skipped and multiple prediction steps performed. Likewise, if multiple 

independent observations are available at the same time, multiple update steps may be performed (typically with different observation matrices Hk).
[18][19]

Predicted (a priori) state estimate

Predicted (a priori) estimate covariance

Innovation or measurement pre-fit residual

Innovation (or pre-fit residual) covariance

Optimal Kalman gain

Updated (a posteriori) state estimate

Updated (a posteriori) estimate covariance

Measurement post-fit residual

The formula for the updated estimate covariance above is only valid for the optimal Kalman gain. Usage of other gain values requires a more complex formula found in 

the derivations section.

If the model is accurate, and the values for  and  accurately reflect the distribution of the initial state values, then the following invariants are preserved:

where  is the expected value of . That is, all estimates have a mean error of zero.

Also:

so covariance matrices accurately reflect the covariance of estimates.

Practical implementation of the Kalman Filter is often difficult due to the difficulty of getting a good estimate of the noise covariance matrices Qk and Rk. Extensive 

research has been done in this field to estimate these covariances from data. One practical approach to do this is the autocovariance least-squares (ALS) technique that 

uses the time-lagged autocovariances of routine operating data to estimate the covariances.[20][21] The GNU Octave and Matlab code used to calculate the noise covariance 

matrices using the ALS technique is available online under the GNU General Public License.[22]

It follows from theory that the Kalman filter is the optimal linear filter in cases where a) the model perfectly matches the real system, b) the entering noise is white 

(uncorrelated) and c) the covariances of the noise are exactly known. Several methods for the noise covariance estimation have been proposed during past decades, 

including ALS, mentioned in the section above. After the covariances are estimated, it is useful to evaluate the performance of the filter; i.e., whether it is possible to 

improve the state estimation quality. If the Kalman filter works optimally, the innovation sequence (the output prediction error) is a white noise, therefore the whiteness 

property of the innovations measures filter performance. Several different methods can be used for this purpose.[23] If the noise terms are non-Gaussian distributed, 

methods for assessing performance of the filter estimate, which use probability inequalities or large-sample theory, are known in the literature.[24][25]

Consider a truck on frictionless, straight rails. Initially, the truck is stationary at position 0, but it is buffeted this way and that 

by random uncontrolled forces. We measure the position of the truck every Δt seconds, but these measurements are 

imprecise; we want to maintain a model of where the truck is and what its velocity is. We show here how we derive the model 

from which we create our Kalman filter.

Since  are constant, their time indices are dropped.

The position and velocity of the truck are described by the linear state space

where  is the velocity, that is, the derivative of position with respect to time.
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We assume that between the (k − 1) and k timestep uncontrolled forces cause a constant acceleration of ak that is normally distributed, with mean 0 and standard 

deviation σa. From Newton's laws of motion we conclude that

(note that there is no  term since we have no known control inputs. Instead, we assume that ak is the effect of an unknown input and  applies that effect to the state 

vector) where

so that

where

Please note that the matrix  is not full rank (it is of rank one if ). Hence, the distribution  is not absolutely continuous and has no probability density 

function. Another way to express this, avoiding explicit degenerate distributions is given by

.

At each time step, a noisy measurement of the true position of the truck is made. Let us suppose the measurement noise vk is also normally distributed, with mean 0 and 

standard deviation σz.

where

and

We know the initial starting state of the truck with perfect precision, so we initialize

and to tell the filter that we know the exact position and velocity, we give it a zero covariance matrix:

If the initial position and velocity are not known perfectly, the covariance matrix should be initialized with suitable variances on its diagonal:

The filter will then prefer the information from the first measurements over the information already in the model.

Starting with our invariant on the error covariance Pk | k as above

substitute in the definition of 

and substitute 
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and 

and by collecting the error vectors we get

Since the measurement error vk is uncorrelated with the other terms, this becomes

by the properties of vector covariance this becomes

which, using our invariant on Pk | k−1 and the definition of Rk becomes

This formula (sometimes known as the Joseph form of the covariance update equation) is valid for any value of Kk. It turns out that if Kk is the optimal Kalman gain, 

this can be simplified further as shown below.

The Kalman filter is a minimum mean-square error estimator. The error in the a posteriori state estimation is

We seek to minimize the expected value of the square of the magnitude of this vector, . This is equivalent to minimizing the trace of the a posteriori

estimate covariance matrix . By expanding out the terms in the equation above and collecting, we get:

The trace is minimized when its matrix derivative with respect to the gain matrix is zero. Using the gradient matrix rules and the symmetry of the matrices involved we 

find that

Solving this for Kk yields the Kalman gain:

This gain, which is known as the optimal Kalman gain, is the one that yields MMSE estimates when used.

The formula used to calculate the a posteriori error covariance can be simplified when the Kalman gain equals the optimal value derived above. Multiplying both sides of 

our Kalman gain formula on the right by SkKk
T, it follows that

Referring back to our expanded formula for the a posteriori error covariance,

we find the last two terms cancel out, giving

This formula is computationally cheaper and thus nearly always used in practice, but is only correct for the optimal gain. If arithmetic precision is unusually low causing 

problems with numerical stability, or if a non-optimal Kalman gain is deliberately used, this simplification cannot be applied; the a posteriori error covariance formula 

as derived above (Joseph form) must be used.

Kalman gain derivation

Simplification of the a posteriori error covariance formula
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The Kalman filtering equations provide an estimate of the state  and its error covariance  recursively. The estimate and its quality depend on the system 

parameters and the noise statistics fed as inputs to the estimator. This section analyzes the effect of uncertainties in the statistical inputs to the filter.[26] In the absence of 

reliable statistics or the true values of noise covariance matrices  and , the expression

no longer provides the actual error covariance. In other words, . In most real-time applications, the covariance matrices that are 

used in designing the Kalman filter are different from the actual (true) noise covariances matrices. This sensitivity analysis describes the behavior of the estimation error 

covariance when the noise covariances as well as the system matrices  and  that are fed as inputs to the filter are incorrect. Thus, the sensitivity analysis describes 

the robustness (or sensitivity) of the estimator to misspecified statistical and parametric inputs to the estimator.

This discussion is limited to the error sensitivity analysis for the case of statistical uncertainties. Here the actual noise covariances are denoted by  and 

respectively, whereas the design values used in the estimator are  and  respectively. The actual error covariance is denoted by  and  as computed by the 

Kalman filter is referred to as the Riccati variable. When  and , this means that . While computing the actual error covariance using 

, substituting for  and using the fact that  and , results in the following recursive equations 

for  :

and

While computing , by design the filter implicitly assumes that  and . Note that the recursive expressions for  and  are 

identical except for the presence of  and  in place of the design values  and  respectively. Researches have been done to analyze Kaman filter system's 

robustness.[27]

One problem with the Kalman filter is its numerical stability. If the process noise covariance Qk is small, round-off error often causes a small positive eigenvalue to be 

computed as a negative number. This renders the numerical representation of the state covariance matrix P indefinite, while its true form is positive-definite.

Positive definite matrices have the property that they have a triangular matrix square root P = S·ST. This can be computed efficiently using the Cholesky factorization

algorithm, but more importantly, if the covariance is kept in this form, it can never have a negative diagonal or become asymmetric. An equivalent form, which avoids 

many of the square root operations required by the matrix square root yet preserves the desirable numerical properties, is the U-D decomposition form, P = U·D·UT, 

where U is a unit triangular matrix (with unit diagonal), and D is a diagonal matrix.

Between the two, the U-D factorization uses the same amount of storage, and somewhat less computation, and is the most commonly used square root form. (Early 

literature on the relative efficiency is somewhat misleading, as it assumed that square roots were much more time-consuming than divisions,[28]:69 while on 21-st century 

computers they are only slightly more expensive.)

Efficient algorithms for the Kalman prediction and update steps in the square root form were developed by G. J. Bierman and C. L. Thornton.[28][29]

The L·D·LT decomposition of the innovation covariance matrix Sk is the basis for another type of numerically efficient and robust square root filter.[30] The algorithm 

starts with the LU decomposition as implemented in the Linear Algebra PACKage (LAPACK). These results are further factored into the L·D·LT structure with methods 

given by Golub and Van Loan (algorithm 4.1.2) for a symmetric nonsingular matrix.[31] Any singular covariance matrix is pivoted so that the first diagonal partition is 

nonsingular and well-conditioned. The pivoting algorithm must retain any portion of the innovation covariance matrix directly corresponding to observed state-variables 

Hk·xk|k-1 that are associated with auxiliary observations in yk. The l·d·lt square-root filter requires orthogonalization of the observation vector.[29][30] This may be done 

with the inverse square-root of the covariance matrix for the auxiliary variables using Method 2 in Higham (2002, p. 263).[32]

The Kalman filter can be presented as one of the simplest dynamic Bayesian networks. The Kalman filter calculates estimates of the true values of states recursively over 

time using incoming measurements and a mathematical process model. Similarly, recursive Bayesian estimation calculates estimates of an unknown probability density 

function (PDF) recursively over time using incoming measurements and a mathematical process model.[33]

In recursive Bayesian estimation, the true state is assumed to be an unobserved Markov process, and the measurements are the observed states of a hidden Markov 

model (HMM).

because of the Markov assumption, the true state is conditionally independent of all earlier states given the immediately previous state.

Similarly, the measurement at the k-th timestep is dependent only upon the current state and is conditionally independent of all other states given the current state.

Square root form

Relationship to recursive Bayesian estimation



Using these assumptions the probability distribution over all states of the hidden Markov model can be written simply as:

However, when the Kalman filter is used to estimate the state x, the probability distribution of interest is that associated with the current states conditioned on the 

measurements up to the current timestep. This is achieved by marginalizing out the previous states and dividing by the probability of the measurement set.

This leads to the predict and update steps of the Kalman filter written probabilistically. The probability distribution associated with the predicted state is the sum 

(integral) of the products of the probability distribution associated with the transition from the (k − 1)-th timestep to the k-th and the probability distribution associated 

with the previous state, over all possible .

The measurement set up to time t is

The probability distribution of the update is proportional to the product of the measurement likelihood and the predicted state.

The denominator

is a normalization term.

The remaining probability density functions are

Note that the PDF at the previous timestep is inductively assumed to be the estimated state and covariance. This is justified because, as an optimal estimator, the Kalman 

filter makes best use of the measurements, therefore the PDF for  given the measurements  is the Kalman filter estimate.

Related to the recursive Bayesian interpretation described above, the Kalman filter can be viewed as a generative model, i.e., a process for generating a stream of random 

observations z = (z0, z1, z2, …). Specifically, the process is

1. Sample a hidden state  from the Gaussian prior distribution .

2. Sample an observation  from the observation model .

3. For , do 

1. Sample the next hidden state  from the transition model 

2. Sample an observation  from the observation model 

Note that this process has identical structure to the hidden Markov model, except that the discrete state and observations are replaced with continuous variables sampled 

from Gaussian distributions.

In some applications, it is useful to compute the probability that a Kalman filter with a given set of parameters (prior distribution, transition and observation models, 

and control inputs) would generate a particular observed signal. This probability is known as the marginal likelihood because it integrates over ("marginalizes out") the 

values of the hidden state variables, so it can be computed using only the observed signal. The marginal likelihood can be useful to evaluate different parameter choices, 

or to compare the Kalman filter against other models using Bayesian model comparison.

It is straightforward to compute the marginal likelihood as a side effect of the recursive filtering computation. By the chain rule, the likelihood can be factored as the 

product of the probability of each observation given previous observations,

,

and because the Kalman filter describes a Markov process, all relevant information from previous observations is contained in the current state estimate 

Thus the marginal likelihood is given by

Marginal likelihood



i.e., a product of Gaussian densities, each corresponding to the density of one observation zk under the current filtering distribution . This can easily be 

computed as a simple recursive update; however, to avoid numeric underflow, in a practical implementation it is usually desirable to compute the log marginal likelihood 

 instead. Adopting the convention , this can be done via the recursive update rule

where  is the dimension of the measurement vector.[34]

An important application where such a (log) likelihood of the observations (given the filter parameters) is used is multi-target tracking. For example, consider an object 

tracking scenario where a stream of observations is the input, however, it is unknown how many objects are in the scene (or, the number of objects is known but is 

greater than one). In such a scenario, it can be unknown apriori which observations/measurements were generated by which object. A multiple hypothesis tracker 

(MHT) typically will form different track association hypotheses, where each hypothesis can be viewed as a Kalman filter (in the linear Gaussian case) with a specific set 

of parameters associated with the hypothesized object. Thus, it is important to compute the likelihood of the observations for the different hypotheses under 

consideration, such that the most-likely one can be found.

In the information filter, or inverse covariance filter, the estimated covariance and estimated state are replaced by the information matrix and information vector 

respectively. These are defined as:

Similarly the predicted covariance and state have equivalent information forms, defined as:

as have the measurement covariance and measurement vector, which are defined as:

The information update now becomes a trivial sum.[35]

The main advantage of the information filter is that N measurements can be filtered at each timestep simply by summing their information matrices and vectors.

To predict the information filter the information matrix and vector can be converted back to their state space equivalents, or alternatively the information space 

prediction can be used.[35]

Information filter



Note that if F and Q are time invariant these values can be cached. Note also that F and Q need to be invertible.

The optimal fixed-lag smoother provides the optimal estimate of  for a given fixed-lag  using the measurements from  to .[36] It can be derived using the 

previous theory via an augmented state, and the main equation of the filter is the following:

where:

◾  is estimated via a standard Kalman filter;

◾  is the innovation produced considering the estimate of the standard Kalman filter;

◾ the various  with  are new variables; i.e., they do not appear in the standard Kalman filter;

◾ the gains are computed via the following scheme:

and 

where  and  are the prediction error covariance and the gains of the standard Kalman filter (i.e., ).

If the estimation error covariance is defined so that

then we have that the improvement on the estimation of  is given by:

The optimal fixed-interval smoother provides the optimal estimate of  ( ) using the measurements from a fixed interval  to . This is also called "Kalman 

Smoothing". There are several smoothing algorithms in common use.

The Rauch–Tung–Striebel (RTS) smoother is an efficient two-pass algorithm for fixed interval smoothing.[37]

The forward pass is the same as the regular Kalman filter algorithm. These filtered a-priori and a-posteriori state estimates ,  and covariances ,  are 

saved for use in the backwards pass.

In the backwards pass, we compute the smoothed state estimates  and covariances . We start at the last time step and proceed backwards in time using the 

following recursive equations:

where

.

Note that  is the a-posteriori state estimate of timestep  and  is the a-priori state estimate of timestep . The same notation applies to the covariance.

An alternative to the RTS algorithm is the modified Bryson–Frazier (MBF) fixed interval smoother developed by Bierman.[29] This also uses a backward pass that 

processes data saved from the Kalman filter forward pass. The equations for the backward pass involve the recursive computation of data which are used at each 

observation time to compute the smoothed state and covariance.

The recursive equations are

Fixed-lag smoother

Fixed-interval smoothers

Rauch–Tung–Striebel

Modified Bryson–Frazier smoother



where  is the residual covariance and . The smoothed state and covariance can then be found by substitution in the equations

or

An important advantage of the MBF is that it does not require finding the inverse of the covariance matrix.

The minimum-variance smoother can attain the best-possible error performance, provided that the models are linear, their parameters and the noise statistics are 

known precisely.[38] This smoother is a time-varying state-space generalization of the optimal non-causal Wiener filter.

The smoother calculations are done in two passes. The forward calculations involve a one-step-ahead predictor and are given by

The above system is known as the inverse Wiener-Hopf factor. The backward recursion is the adjoint of the above forward system. The result of the backward pass 

may be calculated by operating the forward equations on the time-reversed  and time reversing the result. In the case of output estimation, the smoothed estimate is 

given by

Taking the causal part of this minimum-variance smoother yields

which is identical to the minimum-variance Kalman filter. The above solutions minimize the variance of the output estimation error. Note that the Rauch–Tung–Striebel 

smoother derivation assumes that the underlying distributions are Gaussian, whereas the minimum-variance solutions do not. Optimal smoothers for state estimation 

and input estimation can be constructed similarly.

A continuous-time version of the above smoother is described in.[39][40]

Expectation-maximization algorithms may be employed to calculate approximate maximum likelihood estimates of unknown state-space parameters within minimum-

variance filters and smoothers. Often uncertainties remain within problem assumptions. A smoother that accommodates uncertainties can be designed by adding a 

positive definite term to the Riccati equation.[41]

In cases where the models are nonlinear, step-wise linearizations may be within the minimum-variance filter and smoother recursions (extended Kalman filtering).

Pioneering research on the perception of sounds at different frequencies was conducted by Fletcher and Munson in the 1930s. Their work led to a standard way of 

weighting measured sound levels within investigations of industrial noise and hearing loss. Frequency weightings have since been used within filter and controller 

designs to manage performance within bands of interest.

Typically, a frequency shaping function is used to weight the average power of the error spectral density in a specified frequency band. Let  denote the output 

estimation error exhibited by a conventional Kalman filter. Also, let  denote a causal frequency weighting transfer function. The optimum solution which minimizes 

the variance of  arises by simply constructing .

Minimum-variance smoother

Frequency-weighted Kalman filters



The design of  remains an open question. One way of proceeding is to identify a system which generates the estimation error and setting  equal to the inverse of 

that system.[42] This procedure may be iterated to obtain mean-square error improvement at the cost of increased filter order. The same technique can be applied to 

smoothers.

The basic Kalman filter is limited to a linear assumption. More complex systems, however, can be nonlinear. The non-linearity can be associated either with the process 

model or with the observation model or with both.

In the extended Kalman filter (EKF), the state transition and observation models need not be linear functions of the state but may instead be non-linear functions. These 

functions are of differentiable type.

The function f can be used to compute the predicted state from the previous estimate and similarly the function h can be used to compute the predicted measurement 

from the predicted state. However, f and h cannot be applied to the covariance directly. Instead a matrix of partial derivatives (the Jacobian) is computed.

At each timestep the Jacobian is evaluated with current predicted states. These matrices can be used in the Kalman filter equations. This process essentially linearizes the 

non-linear function around the current estimate.

When the state transition and observation models—that is, the predict and update functions  and —are highly non-linear, the extended Kalman filter can give 

particularly poor performance.[43] This is because the covariance is propagated through linearization of the underlying non-linear model. The unscented Kalman filter 

(UKF) [43] uses a deterministic sampling technique known as the unscented transform to pick a minimal set of sample points (called sigma points) around the mean. 

These sigma points are then propagated through the non-linear functions, from which a new mean and covariance estimate are then formed. The result is a filter which, 

for certain systems, more accurately estimates the true mean and covariance.[44] This can be verified with Monte Carlo sampling or Taylor series expansion of the 

posterior statistics. In addition, this technique removes the requirement to explicitly calculate Jacobians, which for complex functions can be a difficult task in itself (i.e., 

requiring complicated derivatives if done analytically or being computationally costly if done numerically), if not impossible (if those functions are not differentiable).

Predict

As with the EKF, the UKF prediction can be used independently from the UKF update, in combination with a linear (or indeed EKF) update, or vice versa.

The estimated state and covariance are augmented with the mean and covariance of the process noise.

A set of 2L + 1 sigma points is derived from the augmented state and covariance where L is the dimension of the augmented state.

where

is the ith column of the matrix square root of

using the definition: square root  of matrix  satisfies

The matrix square root should be calculated using numerically efficient and stable methods such as the Cholesky decomposition.

The sigma points are propagated through the transition function f.

where . The weighted sigma points are recombined to produce the predicted state and covariance.

Non-linear filters

Extended Kalman filter

Unscented Kalman filter



where the weights for the state and covariance are given by:

 and  control the spread of the sigma points.  is related to the distribution of .

Normal values are ,  and . If the true distribution of  is Gaussian,  is optimal.[45]

Update

The predicted state and covariance are augmented as before, except now with the mean and covariance of the measurement noise.

As before, a set of 2L + 1 sigma points is derived from the augmented state and covariance where L is the dimension of the augmented state.

Alternatively if the UKF prediction has been used the sigma points themselves can be augmented along the following lines

where

The sigma points are projected through the observation function h.

The weighted sigma points are recombined to produce the predicted measurement and predicted measurement covariance.

The state-measurement cross-covariance matrix,

is used to compute the UKF Kalman gain.

As with the Kalman filter, the updated state is the predicted state plus the innovation weighted by the Kalman gain,



And the updated covariance is the predicted covariance, minus the predicted measurement covariance, weighted by the Kalman gain.

The Kalman–Bucy filter (named after Richard Snowden Bucy) is a continuous time version of the Kalman filter.[46][47]

It is based on the state space model

where  and  represent the intensities (or, more accurately: the Power Spectral Density - PSD - matrices) of the two white noise terms  and , 

respectively.

The filter consists of two differential equations, one for the state estimate and one for the covariance:

where the Kalman gain is given by

Note that in this expression for  the covariance of the observation noise  represents at the same time the covariance of the prediction error (or innovation) 

; these covariances are equal only in the case of continuous time.[48]

The distinction between the prediction and update steps of discrete-time Kalman filtering does not exist in continuous time.

The second differential equation, for the covariance, is an example of a Riccati equation.

Most physical systems are represented as continuous-time models while discrete-time measurements are frequently taken for state estimation via a digital processor. 

Therefore, the system model and measurement model are given by

where

.

Initialize

Predict

The prediction equations are derived from those of continuous-time Kalman filter without update from measurements, i.e., . The predicted state and 

covariance are calculated respectively by solving a set of differential equations with the initial value equal to the estimate at the previous step.

Update

Kalman–Bucy filter

Hybrid Kalman filter



The update equations are identical to those of the discrete-time Kalman filter.

The traditional Kalman filter has also been employed for the recovery of sparse, possibly dynamic, signals from noisy observations. Recent works[49][50][51] utilize notions 

from the theory of compressed sensing/sampling, such as the restricted isometry property and related probabilistic recovery arguments, for sequentially estimating the 

sparse state in intrinsically low-dimensional systems.

◾ Attitude and heading reference systems

◾ Autopilot

◾ Battery state of charge (SoC) estimation[52][53]

◾ Brain-computer interface

◾ Chaotic signals

◾ Tracking and vertex fitting of charged particles in 

particle detectors
[54]

◾ Tracking of objects in computer vision

◾ Dynamic positioning

◾ Economics, in particular macroeconomics, time 

series analysis, and econometrics[55]

◾ Inertial guidance system

◾ Nuclear medicine – single photon emission 

computed tomography image restoration
[56]

◾ Orbit Determination

◾ Power system state estimation

◾ Radar tracker

◾ Satellite navigation systems

◾ Seismology
[57]

◾ Sensorless control of AC motor variable-
frequency drives

◾ Simultaneous localization and mapping

◾ Speech enhancement

◾ Visual odometry

◾ Weather forecasting

◾ Navigation system

◾ 3D modeling

◾ Structural health monitoring

◾ Human sensorimotor processing
[58]

◾ Alpha beta filter

◾ Covariance intersection

◾ Ensemble Kalman filter

◾ Fast Kalman filter

◾ Filtering problem (stochastic processes)

◾ Generalized filtering

◾ Invariant extended Kalman filter

◾ Kernel adaptive filter

◾ Masreliez's theorem

◾ Moving horizon estimation

◾ Particle filter estimator

◾ PID controller

◾ Predictor–corrector method

◾ Recursive least squares filter

◾ Schmidt–Kalman filter

◾ Separation principle

◾ Sliding mode control

◾ Stochastic differential equations

◾ Switching Kalman filter
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