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Abstract
Recently, there has been a tendency to use machine learning (ML)–based methods, such as artificial neural networks
(ANNs), for more accurate estimates. This paper investigates the effectiveness of three different machine learning methods
including radial basis function neural network (RBNN), multi-layer perceptron (MLP), and support vector regression (SVR),
for predicting the ultimate strength of square and rectangular columns confined by various FRP sheets. So far, in the
previous study, several experiments have been conducted on concrete columns confined by fiber reinforced polymer (FRP)
sheets with the results suggesting that the use of FRP sheets enhances the compressive strength of concrete columns
effectively. Also, a wide range of experimental data (including 463 specimens) has been collected in this study for square and
rectangular columns, confined by various FRP sheets. The comparison of ML-derived results with the experimental findings,
which were in a very good agreement, demonstrated the ability of ML to estimate the compressive strength of concrete
confined by FRP; the correlation coefficient (R2) for MLP, RBFNN, and SVR methods was equal to 0.97, 0.97, and 0.90,
respectively. Similar accuracy was obtained by MLP and RBFNN, and they provided better estimates for determining the
compressive strength of concrete confined by FRP. Also, the results showed that the difference between statistical in-
dicators for training and testing specimens in the RBFNN method was greater than the MLP method, and this difference
indicated the poor performance of RBFNN.
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Introduction

Most of the existing reinforced concrete columns require
retrofitting and strengthening for various reasons, in-
cluding errors during the construction phase, design
mistakes, changing the type of applications in structures,
corrosion of steel and reinforcement, changes in design
codes, the occurrence of strong beam–weak column
mechanism, and the damages due to natural disasters such
as earthquake, wind, and flood. In addition, the destruction
and rebuilding of these columns are costly and often
impractical. Note that strengthening and retrofitting
techniques are affordable and reliable.1 FRP is usually
used for strengthening the existing reinforced concrete
columns. One of the first experimental studies on FRP-
confined concrete columns was presented by Nanni and
Bradford in 1994.2 Their specimens included the concrete

with ordinary strength, wrapped by three kinds of FRP
under uniaxial compressive loading. By investigating
stress–strain curves, they indicated that compressive
strength and ductility are raised using FRP confinement.
Different studies were conducted for estimating the
compressive strength of columns wrapped by FRP.3–15

Note that most of the proposed models were presented
by limited specimens in the past.
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Artificial intelligence and soft computing methods, more
commonly known as machine learning methods, are widely
used nowadays in many fields, especially in civil engi-
neering, as effective methods to link complex experimental
data.16–23 Thus, they are suitable alternatives for solving
various problems, by minimizing the difference between
actual and predicted results. Ilkhani et al.16 provided a re-
lationship for estimating the shear strength of RC beam-
column joints strengthened by FRP using neural networks.
In 2019, Rezaie-Balf,17 by collecting 228 experimental case
studies of the scour depth downstream of sluice gates with
an apron and using multivariate adaptive regression splines
(MARS), proposed a relationship for the scour depth.
Moodi et al.18 used the response surface methodology
(RSM) to estimate the relative bond strength of lap-spliced
RC beams with both tensile and stirrup bars corrosion.
Behbahani et al.21 in 2018, proposed models based on
artificial neural network (ANN) and particle swarm algo-
rithm (PSO) for estimating driving time. They showed that
the performance of ANN method was better than that of the
model based on PSO algorithm. Mai et al.24 used a new
combined artificial intelligence method (RBFNN with
meta-heuristic algorithms) to estimate the compressive

strength of concrete-filled steel tubular (CFST). A new
optimization algorithm inspired by the frefy movement
(FFA) was proposed in that study. They found that the
proposed model by RBFNN-FFA has the highest efficiency
and accuracy for predicting the axial compression capacity
of CFST compared to ANN. In another study, axial com-
pression capacity of these columns (CSFT) was estimated
by developing novel models using the Gene Expression
Programing (GEP). The results showed that GEP is
a powerful tool for extracting a new model with complex
behavior.25 ANN, M5 Tree (M5Tree), MARS, locally
weighted polynomials (LWP), Kriging (KR), and extreme
learning machines (ELMs) were used for estimating the
maximum pitting corrosion depth in oil and gas pipelines by
Ben Seghier et al.26

In previous studies, various machine learning methods
have been used for estimating the compressive strength of
columns confined by FRP sheets (circular and square/
rectangular). Table 1 reports these studies along with the
number of specimens, machine learning method, and type of
cross-section (circular and rectangular). As shown in Table
1, few studies have been presented on the use of machine
learning (ML) methods to estimate the compressive strength

Table 1. Methods used to estimate compressive strength of FRP-confined columns.

Study Year Section(s) Method(s)
Types of
concrete

Number of
specimens

1 Cevik and Cabalar31 2008 Circular GP Plain 180
2 Cevik and Guzelbey32 2008 Circular ANN Plain 101
3 Wu et al.27 2010 Rectangular,

circular
RBFNN Plain 154, 362

4 Gandomi et al.33 2010 Circular LGP Plain 101
5 Naderpour et al.34 2010 Circular ANN-BP Plain 213
6 Cevik et al.35 2010 Circular GP, SR Plain 101
7 Cevik36 2011 Circular GP, SR, NF, ANN Plain 180
8 Elsanadedy et al.37 2012 Circular ANN Plain 272
9 Jalal and

Ramezanianpour38
2012 Circular ANN Plain 128

10 Jalal et al.39 2013 Circular GP, ANFIS Plain 128
11 Pham and Hadi28 2014 Rectangular ANN Plain 209
12 Doran et al.29 2015 Rectangular MFIS Plain 140
13 Lim et al.40 2016 Circular GP Plain 832
14 Mansouri et al.41 2016 Circular ANN, ANFIS, MARS, M5Tree Plain 1153
15 Mozumder et al.42 2016 Circular SVR Plain 238
16 Cascardi et al.43 2017 Circular ANN Plain 465
17 Mansouri et al.44 2017 Circular RBNN, ANFIS-SC, ANFIS-FCM,

M5Tree
Plain 519

18 Moodi et al.12 2018 Rectangular RSM Plain 416
19 Sharifi et al.45 2019 Rectangular ANN Plain 190
20 Naderpour et al.46 2019 Circular ANN, GMDH, GEP RC 135
21 Mohana30 2019 Rectangular ANN, SVR RC 163
22 Kamgar et al.47 2020 Circular FFBPNN Plain 281
23 Hamid et al.48 2020 Circular ANN RC 49
24 Ahmad et al.49 2020 Circular ANN Plain 708
25 Keshtegar et al.50 2021 Circular RSM-SVR Plain 780
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of square/rectangular columns confined by FRP, in previous
studies. In the studies of Wu et al.,27 only the RBFNN
method was used for estimating the compressive strength of
square/rectangular concrete confined with FRP. Their re-
sults showed that RBFNN method is practical method for
predicting this compressive strength. The type of ANN
network, used in Pham and Hadi28 study for estimating the
compressive strength/strain of those columns, was feed-
forward back propagation. Note that the type of FRP used in
database of Pham and Hadi28 study was only CFRP. In
Doran et al.29 study, fuzzy logic methodology was used for
RC columns confined with CFRP and their database did not
include FRP types. Mohana30 used ANN and SVR methods
to estimate the lateral confinement coefficient (Ks) of
CFRP-confined RC columns.

Finding a method to estimate compressive strength of
square/rectangular concrete columns confined with FRP,
that is suitable for all types of columns (columns with
different unconfined compressive strength and different
types of FRP), is one of the basic needs of structural
strengthening for engineers. Note that in previous studies
that have used ML methods to estimate the compressive
strength of those columns, the FRP type and compressive
strength of unconfined concrete have been limited. For this
purpose, in this study, an attempt was made to collect
a comprehensive database from previous studies, as an
innovation. In this study, initially, experimental data of
square and rectangular concrete specimens, confined by
FRP, are collected from the available papers. Note that
a wider range of statistical populations leads to more reliable
results for the estimation purpose. The used statistical
population of this study is wider compared to the previous
studies. As shown in Table 1, the largest statistical pop-
ulation used in previous studies for rectangular/square
specimens has been 416 (Moodi et al.12). The database
consisted of 463 specimens, 324 (70%) of which were used
for modeling and 139 (30%) were employed for evaluating
methods. This database includes normal strength concrete
(NSC) and high strength concrete (HSC). Also, different
types of FRP confinement were used in this database.
Finding an accurate method for estimating the compressive
strength of square/rectangular columns confined with FRP
types and concrete types (NSC and HSC) is innovation of
this study. Accordingly, machine learning methods were
used to estimate the compressive strength of square and
rectangular columns confined by various FRP sheets. The
accuracy of such ML’s as the multilayer perceptron (MLP)
combined with Levenberg–Marquardt algorithm, radial
basis functions neural networks (RBFNN), and support
vector regression (SVR), used in this study, was compared
with one another and with those presented in previous
studies, to select the best method to estimate the com-
pressive strength of FRP-confined columns. The results
showed that MLP and RBFNN methods estimate the
compressive strength of FRP-confined columns more

accurately compared to the SVR method and the models of
previous studies.

Some existing models of previous studies

Different models have been proposed to estimate the
compressive strength of square and rectangular columns
confined by FRP, in the past. Some of those are summarized
in Table 2 for comparison purposes.

In the study by Lam and Teng,7 the effective strain factor
ðkεÞ was defined as the ratio of the FRP actual hoop rupture
strain to the ultimate tension strain of FRP materials. This
factor, in their study, was considered 0.851, 0.586, 0.624,
and 0.788 for AFRP, CFRP, GFRP, and HM-CFRP, re-
spectively. In the mentioned study, the section shape factor
ðkaÞ was related to the confined effective area and the ratio
of faces (b/h). In a rectangular cross-section, only some
zones were effectively confined at the cross direction. They
assumed that the concrete that was confined effectively
consisted of four parabolas that cut corners with 45°. In
Pham and Hadi,8 the section shape coefficient was defined
as the ratio of the total length of four rounded corners (for
preventing stress concentration) to the total circumference
of the section. Note that in Pham and Hadi’s8 study, if the
radius of the corner is zero, the confined stress ðfl,aÞ would
be undefined and the calculation of the compressive strength
of confined concrete would be impractical. Section shape
coefficient in the study of Harajli et al.,3 Ilki and Kumbasar,4

and Toutanji et al.10 was considered such as in the Lam and
Teng7 model.

Experimental data

Many studies have been conducted on the concrete confined
by FRP. In this study, a statistical population with 463 square
and rectangular concrete specimens, confined by FRP, have
been extracted from references as follows: Al-Salloum,51

Benzaid et al.,52 Campione,53 Compione et al.,54 Carra-
zedo,55 Chaallal et al.,56 Demers and Neale,57 Erdil et al.,58

Harajili et al.,3 Harries and Carey,59 Hosotani et al.,60 Igna-
towski and Kaminska,61 Ilki and Kumbasar,4 Lam and Teng,7

Masia et al.,62 Mirmiran et al.,63 Modarelli et al.,64 Parvin and
Wang,65 Rochett and Labossiere,66 Rousakis et al.,67 Rousakis
and Karabinis,68 Shehata et al.,69 Suter and Pinzelli,70 Tao
et al.,71 Wang and Wu,72–74 Wang et al.,75,76 Wu and Wei,77

Yan et al.,78 Yeh and Chang,79 Youssef et al.,80 Zhang et al.,81

Ozbakkaloglu and Oehlers,82 Ozbakkaloglu,83 Ozbakkalo-
glu,84 Fanggi and Ozbakkaloglu,85 Fallah Pour et al.,86

Demir et al.,87 and Ozbakkaloglu.88

The existing square and rectangular specimens of this
statistical population include the width (b) of 70–450 mm,
the length (h) of 7–600 mm, the corner radius (r) offset of 0–
60, and the unconfined compressive strength (fco) of 10–
110.8 MPa. Different types of FRPs include CFRP, AFRP,
and GFRP. All the FRP sheets used in these data have been
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one-direct (hoop direction). Monotonic loading has been
applied for the specimens utilized in this database. Ex-
perimental specimen details are shown in Table 3. Among
these specimens, 324 have been used for modeling (in-
structor specimens) with 139 selected for evaluation (ap-
praiser specimens) randomly.

Machine learning methods for estimation

Due to their quick learnability and good output accu-
racy, ML is among the very efficient methods for

different estimation cases. In general, ANN methods are
inspired by the human brain’s neural system and its
processing units, which are called neurons, to classify
complex data and predict events’ behavior intelligently.
In 1943, McCulloch and Pitts89 designed the first arti-
ficial neuron that could, as its main feature, yield an
output of 0 or 1, if all the weighted input signals were
respectively less or greater than a certain threshold. In
the late 1950s, Rosenblatt et al.90 introduced the Per-
ceptron Neural Networks where the neurons were
similar to those designed by McCulloch and Pitts, but

Table 2. Some of available models for compressive strength prediction of FRP-confined rectangular and square concrete columns.

Reference Model Description

Moodi et al.11
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different in training rules to solve pattern recognition
problems as perceptron networks were unable to im-
plement a series of specific basic functions.91 Finally,
multi-layer perceptron networks and their related
learning rules introduced in the late 1980s overcame
these limitations.92

In this study, MLP, RBFNN, and SVR methods were
used to estimate the compressive strength of square and

rectangular columns confined by FRP. Those methods have
been introduced in the following sections.

Multilayer perceptron (MLP) artificial
neural networks

The multilayer perceptron is a very powerful and widely
used ANN with generally three input, hidden, and output

Table 3. The collected experimental specimen details for proposing the model.

Number Reference
Specimen
number Fiber type B (mm) H (mm) r (mm) fc (MPa)

1 Al-Salloum51 8 CFRP 150 150 5–50 26.7–31.8
2 Benzaid et al.52 6 GFRP 100 100 0–16 54.8
3 Campione53 2 CFRP 150 150 3 13
4 Campione et al.54 1 CFRP 152 152 3 20.1
5 Carrazedo55 4 CFRP 150 150 10–30 33.5–36.5
6 Chaallal et al.56 24 CFRP 95.25–

133.35
133.35–
190.5

25.4 21.4–55.4

7 Demers and Neale57 5 CFRP, GFRP 152 152 5 32.3–42.2
8 Erdil et al.58 1 CFRP 150 150 25 10
9 Harajili et al.3 9 CFRP 79–132 132–214 15 18.9–21.5
10 Harries and Carey59 4 GFRP 152 152 11–25 31.2–32.4
11 Hosotani et al.60 4 CFRP, HM-CFRP 200 200 30 38.1
12 Ignatowski and Kaminska61 3 CFRP 100–105 100–200 10 32.3
13 Ilki and Kumbasar4 12 CFRP 150–250 250–300 40 32.8–34
14 Lam and Teng7 12 CFRP 150 150–225 15–25 24–41.5
15 Masia et al.62 15 CFRP 100–150 100–150 25 21.3–25.7
16 Mirmiran et al.63 9 CFRP 152.5 152.5 6.35 40.6
17 Modarelli et al.64 6 CFRP, GFRP 150 150–200 10–25 17.6–25
18 Parvin and Wang65 2 CFRP 108 108 8.26 22.6
19 Rochett and Labossiere66 26 CFRP, AFRP 152 152–203 5–38 35.8–43.9
20 Rousakis et al67 15 CFRP, GFRP 200 200 30 33–39.9
21 Rousakis and Karabinis68 4 CFRP, GFRP 200 200 30 25.5
22 Shehata et al69 8 CFRP 94–150 150–188 10 23.7–29.5
23 Suter and Pinzelli70 16 CFRP, GFRP, AFRP, HM-

CFRP
150 150 5–25 33.9–36.7

24 Tao et al.71 24 CFRP 150 150–300 20–50 19.5–49.5
25 Wang and Wu72 60 CFRP 150 150 0–60 29.3–55.2
26 Wang and Wu73 9 AFRP 100 100 10 46.4–101.2
27 Wang and Wu74 15 AFRP 70–150 70–150 7–15 34.6–52.1
28 Wang et al.75 10 CFRP 100–400 100–400 10–45 24.4
29 Wang et al.76 8 CFRP 204–305 204–305 20–30 25.5
30 Wu and Wei77 30 CFRP 150 150–300 30 32.3–42.4
31 Yan et al.78 2 CFRP, GFRP 279 279 19 15.2
32 Yeh and Chang79 28 CFRP 150–450 150–600 30 20.6
33 Youssef et al.80 37 CFRP, GFRP 254–381 381 38 29.2–38.7
34 Zhang et al.81 2 AFRP 150 150 15 45–50
35 Ozbakkaloglu andOehlers82 6 CFRP 150–200 200–300 10–40 24–26.7
36 Ozbakkaloglu83 11 CFRP 112.5–150 150–225 15–30 107.3–

110.8
37 Ozbakkaloglu84 19 CFRP 112.5–150 150–225 15–30 76.6–79.6
38 Fanggi and Ozbakkaloglu85 2 AFRP 150 150 30 98.2
39 Fallah Pour et al.86 2 CFRP 150 150 30 104.8
40 Demir et al.87 3 CFRP 150 150–225 25 93.8–106
41 Ozbakkaloglu88 4 CFRP 112.5–150 150–225 15–30 107.8
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layers; the input layer is generally a part of the hidden layer
and the latter, with several layers,93 is, indeed, the central
core of the input processing which eventually transfers them
to the output layer.

Each layer has a different number of neurons linked
together with weights based on their values to which another
component called “bias” is added.94 The output of MLP can
be explained as follows

yj ¼ g

 XM
i¼1

wijxij þ bj

!
(1)

Here, wij and xij represent the weight and input from ith neuron
in the previous layer to jth neuron in the current layer, re-
spectively. bj signifies the bias associated with the jth neuron.

This layer-to-layer data-transfer is through “transfer
functions” (g ()) also known as “activation functions”
among which Tansig and Logsig (both subsets of sigmoid

functions) are widely used for hidden layers, while the
Pureline, defined as follows, is used for the output layer95

Logsig : gðxÞ ¼ 1

1þ ex
(2)

Tansig : gðxÞ ¼ ex � e�x

ex þ e�x
(3)

Pureline : gðxÞ ¼ x (4)

During the training process of MLP, the learning algorithm
adjusts weights and bias values tominimize the error between
the actual and predicted data.95,96 Numerous learning algo-
rithms such as scaled conjugate gradient (SCG), Cartesian
genetic programming (CGP), Broyden–Fletcher–Goldfarb–
Shanno (BFGS), and Levenberg–Marquardt (LM) are
commonly used in learning, the most common of which is the
LM algorithm96 whose architecture is displayed in Figure 1.

Figure 1. Basic schematic and proposed MLP network for prediction of fcc.
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Radial basis function neural
networks (RBFNNs)

RBFs are forward propagation networks, in whose hidden
layer, the radial basis function is used as the activation
function. The RBF network estimates each function, using
symmetric and local radial functions.97

As with MLP networks, RBF networks also consist of
input, hidden, and output layers with the difference that the
hidden layer has only one layer. “Gaussian,” is the most
widely used basic function used in RBF networks com-
parable to linear, polynomial, spline, and multi-degree in-
verse functions.

In this network, input variables are given to the network
in the form of a vector and are subjected to a nonlinear
transformation in the hidden layer. This suggests that the
RBFNN activation function in the hidden layer serves as
network neurons. Before applying a nonlinear change by
the RBFNN activation function, the input variables must
be multiplied by the corresponding bias. A vector whose
difference between the multiplied inputs and their asso-
ciated weights is given as the input of the RBF activation
function.98 The network output for an input pattern, such
as x, can be expressed as Equation (5)

y xð Þ ¼
XJ2
k¼1

wkφ jjx� ckjjð Þ (5)

where y denotes the RBFNN output, wk represents the
weight of the k connection of the hidden layer neuron to the
output, and ||.|| and ˘ (0) show the Euclidean rule and the
Gaussian function, respectively. The Gaussian function is
defined as follows99

φðdÞ ¼ exp

�
d2

2σ2

�
(6)

where φ is the Gaussian function, σ2 is the spread co-
efficient, and d represents the Euclidean distance expressed
as follows

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

ðXk � CkiÞ2
s

(7)

where m and Cki are the number of variables and centers,
respectively. Figure 2 displays the RBFNN structure for
a better understanding.

Support vector regression (SVR)

Support vector machines (SVMs) are, in fact, a subset of
machine learning techniques that lie in the supervised
learning category and are often used in classification, re-
gression, and prediction problems. As with ANN, SVM is
a data-driven algorithm that, unlike ANN’s that may
sometimes converge in local responses, establishes a con-
nection between the input data and the target-dependent
variable, based on the structural risk minimization.101,102

Being based on the statistical learning theory, it considers
the operational risk as a target function and pursues the
optimal solution instead of reducing the computational
error.103,104 It was developed by Vapnik in the mid-1990s105

as it could solve complex structure problems, predict with
minimal error, and provide the general optimal response.

Assuming one dataset, infinite lines, planes, and hy-
perplanes can be considered as separators in 2D, 3D, and
mD spaces, respectively, to divide the data into two clas-
ses.106 Any datum the least far from these lines, planes, or
hyperplanes is called a support vector; the farther are the
two, the more optimum is the separating member. As
mentioned, one of the applications of SVMs is regression,
hence the name support vector regression (SVR).102 In

Figure 2. Structure of RBFNN.100
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SVMs, mapping is used to transfer data from anmD space to
a higher dimensional feature space with separable linear
output data. The equation of this hyperplane can be ex-
pressed as follows

f ðxÞ ¼ WTXþ b (8)

where W is an mD vector to determine the direction of the
hyperplane and b is the bias component. The objective is to
find the optimal value of the hyperplane, which, as men-
tioned, should be the farthest from the support vectors. To
this end, it can be expressed, based on mathematical cal-
culations, as follows107

Minimize
1

2
kWk2

Subject to

8<
:

Yi-W
TXi � b ≤ ε

WTXiþb-Yi ≤ ε

(9)

In some cases, the data may lie outside their specified class
borders and enter another class. Assuming ξþ and ξ� as the
violation from one class to another which is called slack
variables, equation (10) can be rewritten as follows

Minimize
1

2
kWk2 þ C

Xl

i¼1

�
ξþi þ ξ�i

�

Subject to

8>>>>><
>>>>>:

Yi �WTXi � b ≤ εþ ξ�i

WTXi þ b� Yi ≤ εþ ξþi

ξ�i ,ξ
þ
i ≥ 0

(10)

where C indeed plays the role of a regularization factor for
the data violating the threshold (ε). In cases where the data
are linearly inseparable, an auxiliary tool is used in the
hyperplane equation (assuming an mD data space) to
enable their mapping in a linear space; this process is
called the kernel trick,105 whose usage enables the data to
be mapped from a nonlinear to linear space for becoming
separable. The hyperplane equation is thus expressed as
follows

WTXþ b ¼ 0→WT�ðXÞþb ¼ 0 (11)

where˘ is the kernel function (expressed also as K (xi, xj))
responsible for mapping from nonlinear to linear space.
Nowadays, various functions, such as linear, polynomial,
sigmoid, and Gaussian, are used as kernel functions, among
which the Gaussian with the following equation is used
more due to its high computational efficiency and special
performance107

K
�
Xi,Xj

� ¼ exp
��γ

��Xi � Xj

��2� (12)

where γ, a kernel function parameter, shows the spatial
distribution. Figure 3 depicts the flowchart and a schematic
view of the SVR method.

Method setting parameters

Artificial neural networks contain several regulatory
parameters, whose optimal determination will con-
tribute to the best network performance; the number of
layers, the number of neurons in each layer, and transfer
functions of each layer are the regulatory parameters in
MLP networks. For estimating the compressive strength
of square and rectangular columns confined by FRP, this
study has used a 150-run trial and error method plus a 3-
layer perceptron ANN with one output layer and two
hidden layers with Pureline and Tansig activation
functions, respectively, along with the Levenberg–
Marquardt training algorithm and back propagation
error technique. In RBF networks, where the number of
neurons and training function are considered two pa-
rameters, “spread” is a parameter that indicates the
extension of the radial functions. This means that the
more scattered the data are, the larger the “spread”
should be. Via trial and error, an RBF ANN has been
used for this study with the Gaussian as its basic
function with 150 neurons and a spread of 499. In SVR,
parameters such as the allowable violation from the

Figure 3. Flowchart and schematic of a typical support vector
regression.
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class borders, penalty coefficient, type, and the kernel
function parameters play important roles in achieving
the optimal solution. This study has used SVR with
a regularization factor = 0.89, slack variable = 0.015,
and Gaussian kernel function.

Results and discussion

In this section, the performance of previous study models
as well as the machine learning methods used in this study
to estimate the compressive strength of square plus
rectangular columns confined by FRP are compared and
discussed. For this purpose, first, the models of previous
studies were compared with each other where two models
with more accuracy were selected. Accordingly, machine
learning methods were more accurately compared with
each other and with the models. To evaluate their per-
formance, widely used indicators have been used in-
cluding standard deviation (SD), mean squared error
(MSE), absolute integral error (IAE), and total error
(eTotal). Their related equations are (13) to (16), re-
spectively, as follows

MSE ¼
PN

1

�
Theoi-Expei

Expei

�2

N
(13)

AAE ¼
PN

1

����Theoi-ExpeiExpei

����
N

(14)

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1

�
Theoi
Expei

- TheoavgExpeavg

�2

N-1

vuuut
(15)

etot ¼
PN

1 jExpei-TheoijPN
1 jExpeij

(16)

where N is the number of specimens and Expi and Theoi are,
respectively, the experimental compressive strength of
square and rectangular columns confined by FRP and those

predicted by machine learning or models of previous
studies.

Performance evaluation of the previous
studies models

The models presented in previous studies are compared
based on the total specimens as these models are not
presented based on the specimens of this study. To
compare the models, statistical indices were calculated
based on the total specimens in Table 3 and presented in
Table 4.

As reported in Table 4, statistical indicators related to
Moodi et al.11 and Wei and Wu9 models are the lowest
values in comparison with other models. The total error of
Moodi et al.11 as well as Wei and Wu9 models are by av-
erage 42 and 25%, respectively, less than other models
(Toutanji et al.,10 Pham and Hadi,8 Harajli et al.,3 Ilki and
Kumbasar,4 and Lam and Teng7). Hence, these two methods
were selected as the best methods for estimating the
compressive strength of square and rectangular columns
confined by FRP.

Performance evaluation of the proposed
LM methods

To evaluate the LM methods’ performance, statistical
indices were calculated for training and test specimens,
separately, as presented in Table 5. Those methods were
compared based on statistical indices of test specimens.
The results of Table 5 indicate that LM methods have
performed well in estimating the compressive strength
of square and rectangular FRP-confined columns.

Table 4. Statistical indicators related to previous studies models.

Model MSE AAE SD etot R2

Moodi et al.11 2.43 12.15 15.59 12.91 0.87
Wei and Wu9 3.73 14.90 18.74 16.51 0.86
Toutanji et al.10 6.44 18.60 23.23 20.67 0.82
Pham and Hadi8 11.35 23.99 32.05 25.44 0.75
Harajli et al.3 9.82 26.02 23.47 27.17 0.81
Ilki and Kumbasar4 6.90 18.62 25.99 20.24 0.79
Lam and Teng7 5.27 16.11 22.63 16.86 0.82

Table 5. Statistical indicators related to LM methods.

Methods MSE AAE SD etot R2

Training MLP 0.67 5.66 8.19 6.12 0.98
RBFNN 0.30 3.74 5.45 4.43 0.99
SVR 2.06 9.61 14.35 11.25 0.92

Test MLP 1.52 8.33 12.27 7.60 0.94
RBFNN 1.58 8.48 12.42 7.73 0.93
SVR 4.21 13.93 20.15 12.36 0.86

Table 6. Statistical parameters for confined concrete specimens
with FRP.

Model MSE AAE SD etot

Moodi et al11 2.43 12.15 15.59 12.91
Wei and Wu9 3.73 14.90 18.74 16.51
MLP 0.92 6.46 9.63 5.75
RBFNN 0.68 5.16 8.25 4.84
SVR 2.71 10.91 16.33 10.09
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According to Table 5, MLP and RBFNN methods have
had a close performance, and for training and test
specimens, they have outperformed the SVR method.
The average statistical indices of MLP and RBFNN
methods have been 0.59 and 0.6 time that of SVR
method in test specimens, respectively. Note that the
difference between training statistical indicators and test
ones has been high in the RBFNN method, with this
difference indicating the poor performance of RBFNN.
Thus, the MLP method can be selected as the best LM

method for estimating the compressive strength of
square and rectangular FRP-confined columns.

Comparison of LM methods and the
models of previous studies

To compare the performance of LM methods with two best
models of previous studies (Moodi et al.11 and Wei and
Wu9), statistical indices of total specimens are presented in
Table 6.

Figure 4. Performance of models.
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As shown in Table 6, the differences between the statistical
indicators of MLP and RBFNN methods and the models of
previous studies were significant, but those of the SVR method
were close to Moodi et al.11 and Wei and Wu9 models.

To illustrate the efficiency of LM and the models of
previous studies, experimental compressive strength against
compressive strength resulting from MLP, RBFNN, and
SVR methods and Moodi et al.11 and Wei and Wu9 is

Figure 5. Comparison of performance for experimental data.
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outlined in Figures 4(A) to (E). Among LMmethods and the
models of previous studies, LM methods have had a higher
correlation coefficient (R2). Among the LM methods, the
correlation coefficient of RBF and MLP methods has been
the highest.

Figure 5 shows that the error values obtained from LM
methods are acceptable and can estimate the values of the
strength of the rectangular and square columns confined by
FRP.

Taylor diagram

Finally, in order to determine the accuracy of the best or
worst method/model, Taylor diagram was used. In past
studies, this diagram has been used to compare estimating
methods.108,109 This type of diagram combines several
indices in order to present how the predicted values are
matched against the real measurements. Using three error
criteria, standard deviation, correlation coefficient, and
RMSE, Taylor diagram was plotted for the total specimens
as displayed in Figure 6. Note that any method closer to the
observed point has greater accuracy for estimating the
compressive strength of FRP-confined column. It can be

seen that the RBFNN method is the closest to the observed
result circle, followed by the MLP and SVR, but RBFNN
and MLP methods are close to each other. Only in the SVR
method, the division standard has been smaller than the
observed value and this method has the closest value of
division standard to the observed. Among the models of
previous studies, the model of Moodi et al.11 has been closer
to the actual observed value.

Conclusion

Estimation of compressive strength of concrete confined
with FRP, that is suitable for all types of columns, is one of
the basic needs of structural strengthening for engineers. In
this paper, three machine learning methods were used to
predict the compressive strength of the square and rect-
angular concrete columns confined with FRP types and
concrete types (NSC and HSC). These methods included
MLP, RBFNN, and SVR. Finding a suitable method for all
types of concrete and FRP confinement has been the novelty
of this study. To train and evaluate these methods, a com-
prehensive database, containing 463 specimens of FRP-
confined rectangular/square concrete, was used. These

Figure 6. Taylor diagram plots of the ML methods and the models of previous studies for all specimens.
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machine learning methods were compared with each other
as well as with the models of previous studies, with the
following results obtained:

1 Among the models of previous studies, Moodi et al.11 and
Wei and Wu9 models had a better performance for es-
timating the compressive strength of FRP-confined
square/rectangular concrete columns, with the correla-
tion coefficient of these models being 0.87 and 0.86,
respectively.

2 All three machine learning methods for estimating the
compressive strength of FRP-confined square/rectangular
concrete columns were more accurate than the models of
previous studies.

3 Among the methods of ML used in this study, MLP and
RBFNN methods have better performance rather than the
SVR method.

4 The difference between training statistical indicators and
the test ones was high in the RBFNN method, with this
difference reflecting the poor performance of RBFNN
compared to MLP methods.

Nevertheless, more detailed studies are required for
estimating the compressive strength of the square and
rectangular concrete columns confined with FRP. The use of
hybrid soft computational approaches (ANN methods with
optimization algorithms) or new methods such as high
correlated variables creator machine, multiple Ln equation
regression, and genetic programming can be recommended
for estimating this strength in future studies.
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