
P.C. Chau © 2001

 ❖  6. Design and Tuning of Single-Loop Control Systems

We will go through a whole bundle of tuning methods. We only need to "pick" three numbers for a
PID controller, but this is one of the most confusing parts of learning control. Different tuning
techniques give similar but not identical results. There are no “best” or “absolutely correct”
answers. The methods all have pros and cons, and working together, they complement each other.
We need to make proper selection and sound judgment—very true to the act (and art) of design.

What are we up to?
• Tune a controller with empirical relations

• Tune a controller with internal model control relations

 6.1  Tuning controllers with empirical relations

Let’s presume that we have selected the valves, transducers and even installed a controller. We now
need to determine the controller settings—a practice which we call tuning a controller.  Trial-and-
error tuning can be extremely time consuming (and dumb!), to the extent that it may not be done.
A large distillation column can take hours to reach steady state. A chemical reactor may not reach
steady state at all if you have a reactor "runaway." Some systems are unstable at high and low
feedback gains; they are stable only in some intermediate range. These are reasons why we have to
go through all the theories to learn how to design and tune a controller with well educated (or so
we hope) guesses.

Empirical tuning roughly involves doing either an open-loop or a closed-loop experiment, and
fitting the response to a model. The controller gains are calculated on the basis of this fitted
function and some empirical relations. When we use empirical tuning relations, we cannot dictate
system dynamic response specifications. The controller settings are seldom optimal and most often
require field tuning after installation to meet more precise dynamic response specifications.
Empirical tuning may not be appealing from a theoretical viewpoint, but it gives us a quick-and-
dirty starting point. Two remarks before we begin.

• Most empirical tuning relations that we use here are based on open-loop data fitted to a first
order with dead time transfer function. This feature is unique to process engineering where
most units are self-regulating. The dead time is either an approximation of multi-stage
processes or a result of transport lag in the measurement. With large uncertainties and the need
for field tuning, models more elaborate than the first order with dead time function are usually
not warranted with empirical tuning.

• Some empirical tuning relations, such as Cohen and Coon, are developed to achieve a one-
quarter decay ratio response in handling disturbances. When we apply the settings of these
relations to a servo problem, it tends to be very oscillatory and is not what one considers as
slightly underdamped.1 The controller design depends on the specific problem at hand. We
certainly need to know how to tune a controller after using empirical tuning relations to select
the initial settings.2

                                                

1 If we assume that an oscillatory system response can be fitted to a second order underdamped
function. With Eq. (3-29), we can calculate that with a decay ratio of 0.25, the damping ratio ζ is
0.215, and the maximum percent overshoot is 50%, which is not insignificant. (These values
came from Revew Problem 4 back in Chapter 5.)

2 By and large, a quarter decay ratio response is acceptable for disturbances but not desirable for
set point changes. Theoretically, we can pick any decay ratio of our liking. Recall Section 2.7 (p.
2-17) that the position of the closed-loop pole lies on a line governed by  θ = cos–1ζ. In the next
chapter, we will locate the pole position on a root locus plot based on a given damping ratio.
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6.1.1  Controller settings based on process reaction curve

To make use of empirical tuning relations, one approach is to obtain the so-called process
reaction curve. We disable the controller and introduce a step change to the actuator. We then
measure the open-loop step response. This practice can simply be called an open-loop
step test. Although we disconnect the controller in the schematic diagram (Fig. 6.1), we
usually only need to turn the controller to the “manual” mode in reality. As shown in the block
diagram, what we measure is a lumped response, representing the dynamics of the blocks Ga,
Gp, and Gm. We denote the lumped function as GPRC, the process reaction curve function:

 
GPRC =

Cm

P
= Ga Gp Gm (6-1)

From the perspective of doing the experiment, we need the actuator to effect a change in the
manipulated variable and the sensor to measure the response.

The measurement of GPRC is how we may design a system if we know little about our process
and are incapable of constructing a model (What excuse!). Even if we know what the functions Ga
and Gm should be, we do not need them since the controller empirical tuning relations were
developed for the lumped function GPRC. On the other hand, if we know precisely what the
functions Ga, Gp and Gm are, we may use them to derive GPRC as a reduced-order approximation of
the product of GaGpGm.
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Figure 6.2. Illustration of fitting Eq. (6-2, solid curve) to open-loop step test data
representative of self-regulating and multi-capacity processes (dotted curve). The time
constant estimation shown here is based on the initial slope and a visual estimation of dead
time. The Ziegler-Nichols tuning relation (Table 6.1) also uses the slope through the inflection
point of the data (not shown). Alternative estimation methods are provided on our Web
Support.
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Figure 6.1. Block diagram illustration of an open-loop step test.
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The real time data (the process reaction curve) in most processing unit operations take the form
of a sigmoidal curve, which is fitted to a first order with dead time function (Fig. 6.2):1

  
GPRC =

Cm

P
≈ Ke–td s

τ s + 1
(6-2)

One reason why this approximation works is that process unit operations are generally open-loop
stable, and many are multi-capacity in nature. Reminder: Underdamped response of the system is
due to the controller, which is taken out in the open-loop step test.

Using the first order with dead time function, we can go ahead and determine the controller
settings with empirical tuning relations. The most common ones are the Ziegler-Nichols
relations. In process unit operation applications, we can also use the Cohen and Coon or the
Ciancone and Marlin relations. These relations are listed in the Table of Tuning Relations
(Table 6.1).

6.1.2  Minimum error integral criteria

The open-loop test response fitted to a first order with dead time function GPRC can be applied

to other tuning relations. One such possibility is a set of relations derived from the minimization
of error integrals. Here, we just provide the basic idea behind the use of error integrals.

To derive the tuning equations, we would use the theoretical time-domain closed-loop system
response as opposed to a single quantity, such as the decay ratio. The time-domain solution is
dependent on the type of controller and the nature of input (set point or disturbance changes) and,
in our case, a “process” function that is first order with dead time. We can also calculate the
error—the difference between the set point and the controlled variable. We then find controller
settings which may minimize the error over time (the error integral), using for instance, Lagrange
multipliers as in introductory calculus. Of course, we are not doing the work; the actual analysis is
better left for a course in optimal control.

There are different ways to define the error function to be minimized. A few possibilities are as
follows:

(1) Integral of the square error (ISE)

  
ISE = e'(t) 2 dt

0

∞
(6-3)

The ISE magnifies large errors—squaring a small number (< 1) makes it even smaller. Thus
minimization of this integral should help to suppress large, initial errors. The resulting
controller setting tends to have a high proportional gain and the system is very underdamped.

(2) Integral of the absolute error (IAE)

  
IAE = e'(t) dt

0

∞
(6-4)

The IAE simply integrates the absolute value and puts equal weight to large and small errors.

(3) Integral of time-weighted absolute error (ITAE)

                                                

1 The first order function with dead time is only appropriate for self-regulating and multi-capacity
processes. In other controller design methods, we should choose different functions to fit the open-
loop test response.
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ITAE = t e'(t) dt

0

∞
(6-5)

The time weighting function puts a heavy penalty on errors that persist for long periods of
time. This weighting function also helps to derive controller settings which allow for low
settling times.

Before we move on, a few comments and reminders:

• As far as we are concerned, using the error integral criteria is just another empirical method.
We are simply using the results of minimization obtained by other people, not to mention
that the first order with dead time function is from an open-loop test.

• The controller setting is different depending on which error integral we minimize. Set point
and disturbance inputs have different differential equations, and since the optimization
calculation depends on the time-domain solution, the result will depend on the type of input.
The closed-loop poles are the same, but the zeros, which affect the time-independent
coefficients, are not.

• The time integral is from t = 0 to t = ∞, and we can only minimize it if it is bounded. In other
words, we cannot minimize the integral if there is a steady state error. Only PI and PID
controllers are applicable to this design method.1

• Theoretically, we can minimize the integral using other criteria. On the whole, the controller
settings based on minimizing ITAE provide the most conservative controller design, and are
highly recommended. This is the only set of tuning relations included in Table 6.1.

6.1.3  Ziegler-Nichols ultimate-cycle method

This empirical method is based on closed-loop testing (also called on-line tuning) of processes
which are inherently stable, but where the system may become unstable. We use only proportional
control in the experiment. If it is not possible to disable the integral and derivative control modes,
we set the integral time to its maximum value and the derivative time to its minimum. The
proportional gain is slowly increased until the system begins to exhibit sustained oscillations with
a given small step set point or load change. The proportional gain and period of oscillation at this
point are the ultimate gain, Kcu, and ultimate period, Tu. These two quantities are used in a

set of empirical tuning relations developed by Ziegler and Nichols—again listed in Table 6.1.

Two more comments:

• A preview: We can derive the ultimate gain and ultimate period (or frequency) with
stability analyses. In Chapter 7, we use the substitution s = jω in the closed-loop
characteristic equation. In Chapter 8, we make use of what is called the Nyquist
stability criterion and Bode plots.

• One may question the meaning of “sustained oscillations.” We may gather that the
ultimate gain and ultimate period are associated with marginal stability—the instance
when the system is just about to become unstable. Of course, we never want to push
that far in real life. With large uncertainties involved in empirical tuning and field
tuning, it is not necessary to have accurate measurements of Kcu and Tu. When we do

an experiment, just increase the proportional gain until we achieve a fairly
underdamped response.

                                                

1 If you come across a proportional controller here, it is only possible if the derivation has
ignored the steady state error, or shifted the reference such that the so-called offset is zero.
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✎  Example 5.7A: What would be the PID controller settings for the dye mixing problem in
Example 5.7 (p. 5-17)?

Based on what we have obtained in Example 5.7, if we did an open-loop experiment as suggested
in Eq. (6-1), our step response would fit well to the function:

 GPRC = Ga Gp Gm =
(0.8) (0.6) (2.6) e– 0.725 s

(4s + 1) (0.2s + 1)

However, to use the empirical tuning relations, we need to fit the data to a first order function with
dead time. Thus at this stage, we probably would have obtained the approximation:

  GPRC ≈ 1.25 e– 0.9 s

4s + 1

Here, we assume that the data fitting allows us to recover the time constant of the dominant pole
reasonably well, and the dead time is roughly 0.9 s. We are not adding exactly 0.2 to 0.725 as a
way to emphasize that in reality, we would be doing data fitting and the result will vary. How
good an approximation is depends very much on the relative differences in the time constants.
(Try with MATLAB simulation to see how good the approximation is. For the numbers chosen in
this example, it is easy to obtain a good approximation.)

Now, with Table 6.1,1 we can calculate the following PID controller settings:

Kc τI τD

Cohen-Coon 4.9 2.0 0.31
Ziegler-Nichols 4.3 1.8 0.45
ITAE (Set point) 2.8 3.1 0.31
Ciancone-Marlin (Set point) 1.2 4.4 0.07

All tuning relations provide different results. Generally, the Cohen and Coon relation has the
largest proportional gain and the dynamic response tends to be the most underdamped. The
Ciancone-Marlin relation provides the most conservative setting, and it uses a very small
derivative time constant and a relatively large integral time constant. In a way, their correlation
reflects a common industrial preference for PI controllers.

We'll see how they compare in time response simulations when we come back to this problem
later in Example 5.7C. A point to be made is that empirical tuning is a very imprecise science.
There is no reason to worry about the third significant figure in your tuning parameters. The
calculation only serves to provide us with an initial setting with which we begin to do field or
computational tuning.

                                                

1 Really calculated with our M-file recipe.m, which can be found on our Web Support.
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While the calculations in the last example may appear as simple plug-and-chug, we should take
a closer look at the tuning relations. The Cohen and Coon equations for the proportional gain
taken from Table 6.1 are:

P:  
  

KcK =
τ
td

+
1
3 (6-6)

PI:  
  

KcK = 0.9
τ
td

+
1

12 (6-7a)

PID:  
  

KcK = 4
3

τ
td

+
1
4 (6-8a)

The choice of the proportional gain is affected by two quantities: the product KcK, and the ratio

of dead time to time constant, td/τ. It may not be obvious why the product KcK is important now,

but we shall see how it arises from direct synthesis in the next section and appreciate how it helps
determine system stability in Chapter 8.

Under circumstances where the dead time is relatively small, only the first term on the right is
important in the three tuning equations. When dead time becomes larger (or τ/td smaller), we need

to decrease the proportional gain, and this is how the tuning relations are constructed. When we add
integral control, we need to decrease Kc. Indeed, in Eq. (6-7a), the τ/td term is decreased by 10%,

and the constant term is reduced to 1/12. With the implementation of PID control, we can afford to
have a larger Kc. This is reflected in (6-8a). We can make similar observations with the Ziegler-

Nichols relations in Table 6.1. Furthermore, we may also see in Table 6.1 that if the dead time
increases, we should raise the integral time constant.
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Table 6.1. Table of tuning relations 1

A. Tuning relations based on open-loop testing and response fitted to a first order with dead time function
  

GPRC =
Ke–td s

τs + 1

Controller Cohen-Coon Ziegler-Nichols

P   
KcK =

τ
td

+
1
3 (6-6)

  KcK =
τ
td

(6-9)

PI   
KcK = 0.9

τ
td

+
1

12 (6-7a)

  
τ I = td

30 + 3 td τtd τ
9 + 20 td τtd τ

(6-7b)

  Κ cK = 0.9
τ
td

(6-10a)

  τ I = 3.3 td (6-10b)

PID   
KcK = 4

3

τ
td

+
1
4 (6-8a)

  
τ I = td

32 + 6 td τtd τ
13 + 8 td τtd τ

(6-8b)

  τD = td
4

11 + 2 td τtd τ
(6-8c)

  Κ cK = 1.2
τ
td

(6-11a)

  τ I = 2 td (6-11b)

  τ D = 0.5 td (6-11c)

Minimum ITAE criterion 
For load change:

  
Κ c =

a1

K
τ
td

b1

, τ I =
τ
a2

td

τ

b2

and τ D = a3 τ
td

τ

b3

(6-12)

Controller a1 b1 a2 b2 a3 b3

PI 0.859 0.977 0.674 0.680 – –

PID 1.357 0.947 0.842 0.738 0.381 0.995

                                                

1 All formulas in Table 6.1, and the PID settings in Table 6.2 later, are implemented in the M-
file recipe.m, available from our Web Support. The Ciancone and Marlin tuning relations are
graphical, and we have omitted them from the tables. The correlation plots, explanations, and the
interpolation calculations are provided by our M-file ciancone.m, which is also used by recipe.m.
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For set point change:

  
Kc =

a1

K
τ
td

b1

, τ I =
τ

a2 – b2 (td/τ)
and τ D = a3 τ

td

τ

b3

(6-13)

Controller a1 b1 a2 b2 a3 b3

PI 0.586 0.916 1.03 0.165 – –

PID 0.965 0.855 0.796 0.147 0.308 0.929

B. Tuning relations based on closed-loop testing and the Ziegler-Nichols ultimate-gain (cycle) method with given
ultimate proportional gain Kcu and ultimate period Tu.

Ziegler-Nichols ultimate-gain method 
Controller

P Kc  = 0.5 Kcu (6-14)

PI Kc  = 0.455 Kcu (6-15a)

τI  =  0.833 Tu (6-15b)

PID Quarter decay Just a bit of overshoot No overshoot

Kc  = 0.6 Kcu (6-16a)

τI  =  0.5 Tu (6-16b)

τD =  0.125 Tu (6-16c)

Kc  = 0.33 Kcu (6-17a)

τI  =  0.5 Tu (6-17b)

τD =  0.333 Tu (6-17c)

Kc  = 0.2 Kcu (6-18a)

τI  =  0.5 Tu (6-18b)

τD =  0.333 Tu (6-18c)
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 6.2  Direct synthesis and internal model control

We now apply a different philosophy to controller design. Up until now, we have had a
preconceived idea of what a controller should be, and we tune it until we have the desired system
response. On the other hand, we can be more proactive: we define what our desired closed-loop
response should be and design the controller accordingly. The resulting controller is not necessarily
a PID controller. This is acceptable with computer based controllers since we are not restricted to
off-the-shelf hardware.

In this chapter, however, our objective is more restricted. We will purposely choose simple
cases and make simplifying assumptions such that the results are PID controllers. We will see
how the method helps us select controller gains based on process parameters (i.e., the process
model). The method provides us with a more rational controller design than the empirical tuning
relations. Since the result depends on the process model, this method is what we considered a
model-based design.

✑  6.2.1  Direct synthesis

We consider a servo problem (i.e., L = 0), and set Gm = Ga = 1. The closed-loop function is the

familiar

 C
R

=
Gc Gp

1 + Gc Gp
(6-19)

which we now rearrange as

 Gc =
1

Gp

C RC R
1 – C RC R

(6-20)

The implication is that if we define our desired system response C/R, we can derive the appropriate
controller function for a specific process function Gp.

A couple of quick observations: First, Gc is the reciprocal of Gp. The poles of Gp are related to
the zeros of Gc and vice versa—this is the basis of the so-called pole-zero cancellation.1 Second,

the choice of C/R is not entirely arbitrary; it must satisfy the closed-loop characteristic equation:

 1 + Gc Gp = 1 +
C RC R

1 – C RC R
= 0 (6-21)

From Eq. (6-20), it is immediately clear that we cannot have an ideal servo response where C/R =
1, which would require an infinite controller gain. Now Eq. (6-21) indicates that C/R cannot be
some constant either. To satisfy (6-21), the closed-loop response C/R must be some function of s,
meaning that the system cannot respond instantaneously and must have some finite response time.

Let’s select a more realistic system response, say, a simple first-order function with unity
steady state gain

  C

R
=

1

τ c s + 1 (6-22)

                                                

1 The controller function will take on a positive pole if the process function has a positive zero.
It is not desirable to have an inherently unstable element in our control loop. This is an issue
which internal model control will address.
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where τc is the system time constant, a design parameter that we specify. The unity gain means

that we should eliminate offset in the system. Substitution of Eq. (6-22) in (6-20) leads to the
controller function:

  
Gc =

1
Gp

1
τ c

s
(6-23)

The closed-loop characteristic equation, corresponding to Eq. (6-21), is

  1 +
1

τ c s
= 0 (6-24)

which really is 1 + τcs = 0 as dictated by (6-22).  The closed-loop pole is at s = –1/τc. This result

is true no matter what Gp is—as long as we can physically build or program the controller on a
computer.  Since the system time constant τc is our design parameter, it appears that direct

synthesis magically allows us to select whatever response time we want. Of course this cannot be
the case in reality. There are physical limitations such as saturation.

✎  Example 6.1: Derive the controller function for a system with a first order process and a
system response dictated by Eq. (6-22).

The process transfer function is 
  

Gp =
Kp

τ p
s + 1

, and the controller function according to Eq. (6-23)

is

  
Gc =

τ p
s + 1

Kp

1
τ c

s
=

τ p

Kp τ c

1 +
1

τ p
s

(E6-1)

which is obviously a PI controller with Kc = τp/Kpτc, and τI = τp. Note that the proportional gain
is inversely proportional to the process gain. Specification of a small system time constant τc also

leads to a large proportional gain.

A reminder: the controller settings Kc and τI are governed by the process parameters and the system
response, which we choose. The one and only tuning parameter is the system response time
constant τc.

✎  Example 6.2: Derive the controller function for a system with a second order
overdamped process and system response as dictated by Eq. (6-22).

The process transfer function is 
  

Gp =
Kp

(τ1 s + 1) (τ2 s + 1)
, and the controller function according to

Eq. (6-23) is

  
Gc =

(τ1 s + 1) (τ2 s + 1)

Kp

1
τc s

.

We may see that this is a PID controller. Nevertheless, there are two ways to manipulate the
function. One is to expand the terms in the numerator and factor out (τ1 + τ2) to obtain

  
Gc =

(τ1 + τ2 )

Kp τc
1 +

1
(τ1 + τ2 )

1
s

+
τ1 τ2

τ1 + τ2
s (E6-2)



6 - 11

The proportional gain, integral time and derivative time constants are provided by the respective
terms in the transfer function. If you have trouble spotting them, they are summarized in Table
6.2.

The second approach is to consider the controller function as a series-PID such that we write

  
Gc =

τ1

Kpτc
1 +

1
τ1 s

τ2 s + 1 ,  with τ1 > τ2, (E6-3)

We can modify the derivative term to be the “real” derivative action as written in Eqs. (5-9a and b)
on page 5-7.

Based on experience that the derivative time constant should be smaller than the integral time
constant, we should pick the larger time constant as the integral time constant. Thus we select τ1

to be the integral time constant and τ2 the derivative time constant. In the limit τ1 » τ2, both

arrangements (E6-2 and 3) of the controller function are the same.

When dead time is inherent in a process, it is difficult to avoid dead time in the system. Thus
we define the system response as

  C
R

=
e–θs

τ c
s + 1

(6-25)

where θ is the dead time in the system. The controller function, via Eq. (6-20), is hence

  
Gc =

1
Gp

e–θs

τ c
s + 1 – e–θs

≈ 1
Gp

e–θs

(τ c + θ)s
(6-26)

To arrive at the last term, we have used a simple Taylor expansion (e–θs ≈ 1 – θs) of the
exponential term. This is purposely done to simplify the algebra as shown in the next example.
(We could have used the Padé approximation in Eq. (6-26), but the result will not be the simple PI
controller.)

✎  Example 6.3: Derive the controller function for a system with a first order process with
dead time and system response as dictated by Eq. (6-25).

The process transfer function is 
  

Gp =
Kp e–td s

τ p
s + 1

. To apply Eq. (6-26), we make an assumption

about the dead time, that θ = td. The result is a PI controller:

  
Gc =

τ p

Kp τ c + θ
1 +

1
τ p

s
(E6-4)

Even though this result is based on what we say is a process function, we could apply (E6-4) as if
the derivation is for the first order with dead time function GPRC obtained from an open-loop step

test.

This is a question that invariably arises: what is a reasonable choice of the system time
constant τc? Various sources in the literature have different recommendations. For example, one
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guideline suggests that we need to ensure τc > 1.7θ for a PI controller, and τc > 0.25θ for a PID

controller. A reasonably conservative choice has been programmed into the M-file reciepe.m
available from our Web Support. The important reminder is that we should have a habit of
checking the τc setting with time response simulation and tuning analysis.

In contrast to Eq. (6-22), we can dictate a second order underdamped system response:

  C
R

= 1
τ2s2 + 2ζτs + 1

(6-27)

where τ and ζ are the system natural period and damping ratio yet to be determined. Substitution of
(6-27) in Eq. (6-20) leads to

  Gc = 1
Gp

1
τ2s2 + 2ζτs (6-28)

which is a slightly more complicated form than (6-23). Again, with simplified cases, we can arrive
at PID type controllers.

✎  Example 6.4: Derive the controller function for a system with a second order
overdamped process but an underdamped system response as dictated by Eq. (6-27).

The process transfer function is 
  

Gp =
Kp

(τ1 s + 1) (τ2 s + 1)
, and the controller function according to

Eq. (6-28) is

  
Gc =

(τ1 s + 1) (τ2 s + 1)

Kpτ s (τ s + 2ζ)
.

We now define τf = τ/2ζ, and Gc becomes

  
Gc =

(τ1 s + 1) (τ2 s + 1)

2ζ Kpτ s (τ f s + 1)

Suppose that τ2 is associated with the slower pole (τ2 > τ1), we now require τf = τ2 such that the

pole and zero cancel each other. The result is a PI controller:

  
Gc = 1

2ζ Kpτ

(τ1 s + 1)
s

With our definition of τf and the requirement τf = τ2, we can write τ = 2ζτ2, and the final form of

the controller is

  
Gc =

τ1

4Kp ζ 2 τ2

(1 + 1
τ1 s

) = Kc (1 + 1
τ I s

) (E6-5)

The integral time constant is τI = τ1, and the term multiplying the terms in the parentheses is the
proportional gain Kc. In this problem, the system damping ratio ζ is the only tuning parameter.

6.2.2  Pole-zero cancellation

We used the term “pole-zero cancellation” at the beginning of this section. We should say a few
more words to better appreciate the idea behind direct synthesis.  Pole-zero cancellation is also
referred to as cancellation compensation or dominant pole design. Of course, it is unlikely to
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have perfect pole-zero cancellation in real life, and this discussion is more toward helping our
theoretical understanding.

The idea is that we may cancel the (undesirable open-loop) poles of our process and replace
them with a desirable closed-loop pole. Recall in Eq. (6-20) that Gc is sort of the reciprocal of Gp.
The zeros of Gc are by choice the poles of Gp.  The product of GcGp cancels everything

out—hence the term pole-zero cancellation.  To be redundant, we can rewrite the general design
equation as

 Gc Gp =
C RC R

1 – C RC R
(6-20a)

That is, no matter what Gp is, we define Gc such that their product is dictated entirely by a

function (the RHS) in terms of our desired system response (C/R). For the specific closed-loop
response as dictated by Eq. (6-22), we can also rewrite Eq. (6-23) as

  
Gc Gp =

1
τ c

s
(6-23a)

Since the system characteristic equation is 1 + GcGp = 0, our closed-loop poles are only
dependent on our design parameter τc. A closed-loop system designed on the basis of pole-zero

cancellation has drastically different behavior than a system without such cancellation.

Let’s try to illustrate using a system with a PI controller and a first order process function, and
the simplification that Gm = Ga = 1. The closed-loop characteristic equation is

  
1 + GcGp = 1 + Kc

τ I
s + 1

τ I
s

Kp

τ p
s + 1

= 0 (6-29)

Under normal circumstances, we would pick a τI which we deem appropriate.  Now if we pick τI to
be identical to τp, the zero of the controller function cancels the pole of the process function.  We
are left with only one open-loop pole at the origin. Eq. (6-29), when τI = τp, is reduced to

  
1 +

KcKp

τ p
s

= 0 ,  or  
  

s = –
Kc Kp

τ p

 .

There is now only one real and negative closed-loop pole (presuming Kc > 0). This situation is

exactly what direct synthesis leads us to.

Recall from Example 6.1 that based on the chosen C/R in Eq. (6-22), the PI controller function
is

  
Gc = Kc

τ I
s + 1

τ I
s

=
τ p

Kp τ c

τ p
s + 1

τ p
s

where τI = τp and Kc = τp/Kpτc. Substitution of Kc one step back in the characteristic equation
will shows that the closed-loop pole is indeed at s = –1/τc. The product GcGp is also consistent
with Eq. (6-23a) and τc.
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6.2.3  Internal model control (IMC)

A more elegant approach than direct synthesis
is internal model control (IMC). The premise of
IMC is that in reality, we only have an
approximation of the actual process. Even if we
have the correct model, we may not have accurate
measurements of the process parameters. Thus the
imperfect model should be factored as part of the
controller design.

In the block diagram implementing IMC (Fig.
6.3a), our conventional controller Gc consists of

the (theoretical) model controller G*
c and the

approximate function  Gp . Again, our objective is

limited. We use the analysis in very restrictive
and simplified cases to arrive at results in
Example 6.5 to help us tune PID controllers as in
Fig. 6.3b.

We first need to derive the closed-loop functions for the system. Based on the block diagram,
the error is

E = R – (C – C~ )

and the model controller output is

P = G*
c E = G*

c (R – C + C~ )

If we substitute C
~

  =  Gp P, we have

 P = G*c (R – C + GpP) (6-30)

from which we can rearrange to obtain

 
P =

G*c

1 – G*c Gp

(R – C) (6-28a)

The gist of this step is to show the relationship between the conventional controller function Gc

and the other functions:

 
Gc =

G*c

1 – G*c Gp

(6-31)

This is an equation that we will use to retrieve the corresponding PID controller gains. For now,
we substitute Eq. (6-28a) in an equation around the process,

 
C = GL L + Gp P = GL L +

Gp G*c

1 – G*c Gp

(R – C)

From this step, we derive the closed-loop equation:

 
C =

(1 – G*c Gp) GL

1 + G*c (Gp – Gp)
L +

Gp G*c

1 + G*c (Gp – Gp)
R (6-32)

The terms in the brackets are the two closed-loop transfer functions. As always, they have the
same denominator—the closed-loop characteristic polynomial.

GpG c*

Gp
~

~

CR

C – C

~

L

P

–

–

+

+C

GL

GpGc
–

+R CP

E

E

Figure 6.3. A system with IMC (upper
panel) as compared with a conventional
system in the lower panel.
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There is still one unfinished business. We do not know how to choose G*
c yet. Before we

make this decision, we may recall that in direct synthesis, the poles of Gc are “inherited” from the
zeros of Gp. If Gp has positive zeros, it will lead to a Gc function with positive poles. To avoid

that, we “split” the approximate function as a product of two parts:

 Gp = Gp+ Gp– (6-33)

with  Gp+ containing all the positive zeros, if present. The controller will be designed on the basis

of  Gp–  only. We now define the model controller function in a way similar to direct synthesis: 1

  
G*c =

1
Gp–

1
τ c

s + 1

r

,   where r = 1, 2, etc. (6-34)

Like direct synthesis, τc is the closed-loop time constant and our only tuning parameter. The first
order function raised to an integer power of r is used to ensure that the controller is physically
realizable. 2  Again, we would violate this intention in our simple example just so that we can
obtain results that resemble an ideal PID controller.

✎  Example 6.5: Repeat the derivation of a controller function for a system with a first order
process with dead time using IMC.

Say we model our process (read: fitting the open-loop step test data) as a first order function with
time delay, and expecting experimental errors or uncertainties, our measured or approximate model

function G
~

 p is

  
Gp =

Kp e–td s

τ p
s + 1

We use the first order Padé approximation for the dead time and isolate the positive zero term as in
Eq. (6-33):

  
Gp ≈

Kp

(τ p
s + 1)(

td
2

s + 1)
(–

td
2

s + 1) = Gp – Gp + (E6-6)

where

 Gp + = (–
td

2
s + 1)

If we choose r = 1, Eq. (6-34) gives

  
G*c =

(τ p
s + 1) (

td
2

s + 1)

Kp

1
(τ c

s + 1)
(E6-7)

                                                

1 If the model is perfect,  Gp = Gp , and Eq. (6-32) becomes simply  C = Gp G*c R  if we also set
L = 0. We choose C/R to be a first order response with unity gain, and we'd arrive at a choice of

 G*c very similar to the definition in (6-34).

2 The literature refers the term as a first order filter. It only makes sense if you recall your linear
circuit analysis or if you wait until the chapter on frequency response analysis.
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Substitution of (E6-5) and (E6-6) into Eq. (6-31), and after some algebraic work, will lead to the
tuning parameters of an ideal PID controller:

  

Kc =
1

Kp

2
τ p

td
+ 1

2
τ c

td
+ 1

; τ I
= τ p

+
td

2
; τ D =

τ p

2
τ p

td
+ 1

(E6-8)

✎  Example 5.7B: What would be the PID controller settings for the dye mixing problem if we
use IMC-based tuning relations?

With the same first order with dead time approximation in Example 5.7A (p. 6-5), and the choice
of τc being two-thirds the value of dead time, the IMC relations in (E6-8) provide the following

PID settings (as computed with our M-file recipe.m):

Kc τI τD

IMC 3.4 4.5 0.4

Compare this result using other tuning relations in Example 5.7A. The IMC proportional gain
falls in between the Cohen-Coon and ITAE settings, but the integral time constant is relatively
high. With less integrating action, we expect this IMC tuning to be less oscillatory. Indeed, we
shall see that if we do Example 5.7C (or you can cheat and read the plotting result from our Web
Support).

✎  Example 5.7C: How do the different controller settings affect the system time response in
the dye mixing problem?

We can use the following MATLAB statements to do time response simulations (explanations are
in MATLAB Session 5). Better yet, save them in an M-file. The plotting can be handled differently
to suit your personal taste. (Of course, you can use Simulink instead.)

alfa=0.1; % Real PID

Gc=tf(kc*[taui*taud (taui+taud) 1],[alfa*taui*taud  taui  0]);

td=0.725;

Gm=tf([-td/2 1],[td/2 1]); %Padé approximation for dead time

Km=2.6; %Move Km into the forward path

Gp=tf(0.8,[4 1]);

Ga=tf(0.6,[0.2 1]);

Gcl=feedback(Km*Gc*Ga*Gp,Gm); % The closed-loop function

step(Gcl) % Plotting...

We reset the three controller parameters each time we execute the M-file. For example, to use the
Cohen-Coon results, we would take from Example 5.7A:

kc=4.9; taui=2; taud=0.31;

MATLAB calculation details and plots can be found on our Web Support. You should observe that
Cohen-Coon and Ziegler-Nichols tuning relations lead to roughly 74% and 64% overshoot,
respectively, which are more significant than what we expect with a quarter decay ratio criterion.
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The ITAE, with about 14% overshoot, is more conservative. Ciancone and Marlin tuning relations
are ultra conservative; the system is slow and overdamped.

With the IMC tuning setting in Example 5.7B, the resulting time response plot is (very nicely)
slightly underdamped even though the derivation in Example 6.4 predicates on a system response
without oscillations. Part of the reason lies in the approximation of the dead time function, and
part of the reason is due to how the system time constant was chosen. Generally, it is important to
double check our IMC settings with simulations.

At this point, one may be sufficiently confused with respect to all the different controller
tuning methods. Use Table 6.3 as a guide to review and compare different techniques this chapter
and also Chapters 7 and 8.

Table 6.2.  Summary of PID controller settings based on IMC or direct synthesis

Process model Controller Kc τI τD

  Kp

τ p s + 1
PI   τ p

Kp τ c

τp —

  Kp

(τ 1 s + 1) (τ 2 s + 1)
PID   τ 1 + τ 2

Kp τ c

  τ 1 + τ 2   τ 1 τ 2
τ 1 + τ 2

PID with
τ1 > τ2

  τ 1
Kp τ c

τ1 τ2

PI
(underdamped)

  τ1

4Kp ζ 2 τ2

τ1 —

  Kp

τ 2s2 + 2ζτs + 1
PID   2ζτ

Kp τ c

  2ζτ   τ
2ζ

  Kp

s (τ p s + 1)
PD   1

Kp τ c

— τp

  Kp e– td s

τ p s + 1
PI   τ p

Kp (τ c + td )
τp —

PID   1
Kp

2τ p tdτ p td + 1

2τ c tdτ c td + 1

  τ p
+ td 2td 2   τ p

2τ p tdτ p td + 1

 Kp
s

P   1
Kp τ c

— —
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❐   Review Problems

4. Repeat Example 6.1 when we have   Gp =
Kp

s (τp
s + 1)

. What is the offset of the system?

5. What are the limitations to IMC? Especially with respect to the choice of τc?

6. What control action increases the order of the system?

7. Refer back to Example 6.4. If we have a third order process

  
Gp =

Kp

(τ1 s + 1) (τ2 s + 1) (τ3 s + 1)

what is the controller function if we follow the same strategy as in the example?

8. Complete the time response simulations in Example 5.7C using settings in Example 5.7A.

9. (Optional) How would you implement the PID algorithm in a computer program?

Hints:

1. The result is an ideal PD controller with the choice of τD = τp. See that you can obtain the

same result with IMC too. Here, take the process function as the approximate model and it
has no parts that we need to consider as having positive zeros. There is no offset; the
integrating action is provided by Gp.

2. Too small a value of τc means too large a Kc and therefore saturation. System response is

subject to imperfect pole-zero cancellation.

3. Integration is 1/s.

10. The intermediate step is

  
Gc =

(τ1 s + 1) (τ2 s + 1) (τ3 s + 1)

2ζ Kpτ s (τc s + 1)

where τf = τ/2ζ, and now we require τf = τ3, presuming it is the largest time constant. The

final result, after also taking some of the ideas from Example 6.2, is an ideal PID controller
with the form:

  
Gc =

(τ1 + τ2 )

4Kp ζ 2 τ3

1 + 1
τ1 + τ2

1
s +

τ1 τ2

τ1 + τ2

s

The necessary choices of Kc, τI, and τD are obvious. Again, ζ is the only tuning parameter.

5. See our Web Support for the simulations.

6. Use finite difference. The ideal PID in Eq. (5-8a) can be discretized as

  pn = ps + Kc en +
∆t
τ I

ekΣ
k = 1

n

+
τD

∆t
(en – en – 1)

where pn is the controller output at the n-th sampling period, ps is the controller bias, ∆t is

the sampling period, and en is the error. This is referred to as the position form algorithm. The

alternate approach is to compute the change in the controller output based on the difference
between two samplings:
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  ∆pn = pn – pn – 1 = Kc (en – en – 1) +
∆t
τ I

en +
τD

∆t
(en – 2en – 1+ en – 2)

This is the velocity form algorithm which is considered to be more attractive than the
position form. The summation of error is not computed explicitly and thus the velocity form
is not as susceptible to reset windup.



Table 6.3. Summary of methods to select controller gains

Method What to do? What is evaluated? Comments
❏   Transient response criteria

• Analytical derivation Derive closed-loop damping ratio from a
second order system characteristic polynomial.
Relate the damping ratio to the proportional
gain of the system.

Usually the proportional gain. • Limited to second order systems. No unique
answer other than a P-controller.

• Theoretically can use other transient response
criteria.

• 1/4 decay ratio provides a 50% overshoot.

❏   Empirical tuning with open-loop
step test

Measure open-loop step response, the so-called
process reaction curve. Fit data to first order
with dead-time function.

• Cohen-Coon
• Ziegler-Nichols
• Ciacone-Marlin

Apply empirical design relations. Proportional gain, integral and
derivative time constants to PI and
PID controllers.

• Cohen-Coon was designed to handle
disturbances by preventing a large initial
deviation from the set point. The one-quarter
decay ratio response is generally too
underdamped for set point changes.

• Time integral performance criteria
   (ISE, IAE, ITAE)

Apply design relations derived from
minimization of an error integral of the
theoretical time-domain response.

Proportional gain, integral and
derivative time constants to PI and
PID controllers.

• Different settings for load and set point
changes.

• Different settings for different definitions of
the error integral.

• The minimum ITAE criterion provides the
least oscillatory response.

❏   Ziegler-Nichols Continuous
Cycling (empirical tuning with
closed loop test)

Increase proportional gain of only a
proportional controller until system sustains
oscillation. Measure ultimate gain and ultimate
period. Apply empirical design relations.

Proportional gain, integral and
derivative time constants of PID
controllers.

• Experimental analog of the s = jω substitution
calculation.

• Not necessarily feasible with chemical
systems in practice.

• Tuning relations allow for choices from 1/4
decay ratio to little oscillations.

❏   Stability analysis methods
• Routh-Hurwitz criterion Apply the Routh test on the closed-loop

characteristic polynomial to find if there are
closed-loop poles on the right-hand-plane.

Establish limits on the controller gain. • Usually applies to relatively simple systems
with the focus on the proportional gain.

• Need be careful on interpretation when the
lower limit on proportional gain is negative.

• Direct substitution Substitute s = jω in characteristic polynomial
and solve for closed-loop poles on Im-axis.
The Im and Re parts of the equation allow the
ultimate gain and ultimate frequency to be
solved.

Ultimate gain and ultimate period
(Pu = 2π/ωu) that can be used in the
Ziegler-Nichols continuous cycling
relations.

• Result on ultimate gain is consistent with the
Routh array analysis.

• Limited to relatively simple systems.



Summary (continued)
Method What to do? What is evaluated? Comments

• Root-locus With each chosen value of proportional gain,
plot the closed-loop poles. Generate the loci
with either hand-sketching or computer.

The loci of closed-loop poles reveal
the effect of controller gain on the
probable closed-loop dynamic
response. Together with specifications
of damping ratio and time constant,
the loci can be a basis of selecting
proportional gain.

• Rarely used in the final controller design
because of difficulty in handling dead-time.

• Method is instructive and great pedagogical
tool.

❏   (Model-based) Direct synthesis For a given system, synthesize the controller
function according to a specified closed-loop
response.  The system time constant, τc, is the
only tuning parameter.

Proportional gain, integral and
derivative time constants where
appropriate.

• The design is not necessarily PID, but where
the structure of a PID controller results, this
method provides insight into the selection of
the controller mode (PI, PD, PID) and
settings.

• Especially useful with system that has no
dead time.

• Internal model control Extension of direct synthesis. Controller design
includes an internal approximation process
function.

For a first order function with dead-
time, the proportional gain, integral
and derivative time constants of an
ideal PID controller.

❏   Frequency-domain methods • Can handle dead-time easily and rigorously.
• The Nyquist criterion allows the use of open-
loop functions in Nyquist or Bode plots to
analyze the closed-loop problem.

• The stability criteria have no use for simple
first and second order systems with no
positive open-loop zeros.

• Nyquist plot
• Bode plot

Nyquist plot is a frequency parametric plot of
the magnitude and the argument of the open-
loop transfer function in polar coordinates.
Bode plot is magnitude vs. frequency and
phase angle vs. frequency plotted individually.

Calculate proportional gain needed to
satisfy the gain or phase margin.

• These plots address the stability problem but
need other methods to reveal the probable
dynamic response.

• Nichols chart Nichols chart is a frequency parametric plot of
open-loop function magnitude vs. phase angle.
The closed-loop magnitude and phase angle
are overlaid as contours.

With gain or phase margin, calculate
proportional gain. Can also estimate
the peak amplitude ratio, and assess
the degree of oscillation.

• Nichols chart is usually constructed for unity
feedback loops only.

• Maximum closed-loop
  log modulus

A plot of the magnitude vs. frequency of the
closed-loop transfer function.

The peak amplitude ratio for a chosen
proportional gain.
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 ❖  10. Multiloop Systems

There are many advanced strategies in classical control systems. Only a limited selection of
examples is presented in this chapter. We start with cascade control, which is a simple introduction
to a multiloop, but essentially SISO, system. We continue with feedforward and ratio control. The
idea behind ratio control is simple, and it applies quite well to the furnace problem that we use as
an illustration. Finally, we address a multiple-input multiple-output system using a simple
blending problem as illustration, and use the problem to look into issues of interaction and
decoupling. These techniques build on what we have learned in classical control theories.

What are we up to?
• Apply classical controller analysis to cascade control, feedforward control,

feedforward-feedback control, ratio control, and the Smith predictor for time delay
compensation.

• Analyze a MIMO system with relative gain array , and assess the pairing of
manipulated and controlled variables.

• Attempt to decouple and eliminate the interactions in a two-input two-output system.

 10.1  Cascade control

A very common design
found in process
engineering is cascade
control. This is a strategy
that allows us to handle
load changes more
effectively with respect to
the manipulated variable.

To illustrate the idea, we
consider the temperature
control of a gas furnace,
which is used to heat up a
cold process stream. The
fuel gas flow rate is the
manipulated variable, and
its flow is subject to
fluctuations due to upstream
pressure variations.

In a simple single-loop system, we measure the outlet temperature, and the temperature
controller (TC) sends its signal to the regulating valve. If there is fluctuation in the fuel gas flow
rate, this simple system will not counter the disturbance until the controller senses that the
temperature of the furnace has deviated from the set point (Ts).

A cascade control system can be designed to handle fuel gas disturbance more effectively (Fig.
10.1). In this case, a secondary loop (also called the slave loop) is used to adjust the regulating
valve and thus manipulate the fuel gas flow rate. The temperature controller (the master or primary
controller) sends its signal, in terms of the desired flow rate, to the secondary flow control
loop—in essence, the signal is the set point of the secondary flow controller (FC).

In the secondary loop, the flow controller compares the desired fuel gas flow rate with the
measured flow rate from the flow transducer (FT), and adjusts the regulating valve accordingly.
This inner flow control loop can respond immediately to fluctuations in the fuel gas flow to ensure

FT

FC

Hot process stream

Cold T sTCTT

process
stream

Furnace

Fuel gas

T

Figure 10.1. Cascade control of the temperature of a furnace,
which is taken to be the same as that of the outlet process
stream. The temperature controller does not actuate the
regulating valve directly; it sends its signal to a secondary flow
rate control loop which in turn ensures that the desired fuel gas
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that the proper
amount of fuel is
delivered.

To be
effective, the
secondary loop
must have a
faster response
time (smaller
time constant)
than the outer
loop. Generally,
we use as high a proportional
gain as feasible. In control
jargon, we say that the inner loop
is tuned very tightly.

We can use a block diagram
to describe Fig. 10.1. Cascade
control adds an inner control loop
with secondary controller
function Gc2 (Fig. 10.2a). This

implementation of cascade
control requires two controllers
and two measured variables (fuel
gas flow and furnace temperature). The furnace temperature is the controlled variable, and the fuel
gas flow rate remains the only manipulated variable.

For cleaner algebra, we omit the measurement transfer functions, taking Gm1 = Gm2 = 1.

Disturbance, such as upstream pressure, which specifically leads to changes in the fuel gas flow
rate is now drawn to be part of the secondary flow control loop. (A disturbance such as change in
the process stream inlet temperature, which is not part of the secondary loop, would still be drawn
in its usual location as in Section 5.2 on page 5-7.)

We now reduce the block diagram. The first step is to close the inner loop so the system
becomes a standard feedback loop  (Fig. 10.2b). With hindsight, the result should be intuitively
obvious. For now, we take the slow route. Using the lower case letter locations in Fig. 10.2a, we
write down the algebraic equations

e2 = p – a

and

a = Gc2Gve2 + GLL

Substitution of e2 leads to

a = Gc2Gv(p – a) + GLL

and the result after rearrangement is a form that allows us to draw Fig. 10.2b:

 a =
Gc2

Gv

1 + Gc2
Gv

p +
GL

1 + Gc2
Gv

L = Gv
* p + GL

* L

where

 Gv
* =

Gc2
Gv

1 + Gc2
Gv

   and    GL
* =

GL

1 + Gc2
Gv

(10-1)

+

–

R

L

C
GpGc G*v

G*L

E

Figure 10.2b. Reduced block diagram of a cascade
control system.

+

–

R

L

C
G pG c G vGc

GL

– 2

p aE e2

Process stream
temperatureFuel gas flow

Upstream pressure
fluctuation

Figure 10.2a. Block diagram of a simple cascade control system with
reference to the furnace problem.
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The remaining task to derive the closed-loop transfer functions is routine. Again, slowly, we can
write the relation in Fig. 10.2b as

C = G*LGp L + GcG*vGp E

and substituting E = R – C, we have, after rearrangement,

 
C =

Gc Gv
* Gp

1 + Gc Gv
* Gp

R +
Gp.GL

*

1 + Gc Gv
* Gp

L  (10-2)

The closed-loop characteristic polynomial of this cascade system is

 1 + Gc Gv
* Gp = 0 (10-3)

If we now substitute G*v from (10-1), the characteristic polynomial takes the form 1

 1 + Gc2
Gv + Gc Gc2

Gv Gp = 0 (10-3a)

So far, we know that the secondary loop helps to reduce disturbance in the manipulated
variable. If we design the control loop properly, we should also accomplish a faster response in the
actuating element: the regulating valve. To go one step further, cascade control can even help to
make the entire system more stable. These points may not be intuitive. We'll use a simple
example to illustrate these features.

✎  Example 10.1: Consider a simple cascade system as shown in Fig. 10.2a with a PI
controller in the primary loop, and a proportional controller in the slave loop. For simplicity,
consider first order functions

 Gp = 0.8
2s + 1 ,  Gv = 0.5

s + 1 , and  GL = 0.75
s + 1 .

(a) How can proper choice of Kc2 of the controller in the slave loop help to improve the actuator

performance and eliminate disturbance in the manipulated variable (e.g., fuel gas flow in the
furnace temperature control)?

If we substitute Gc2 = Kc2, and   Gv =
Kv

τv s + 1   into G*v in Eq. (10-1), we should find

  
Gv

* =
Kc2

Kv

(τv s + 1) + Kc2
Kv

=
Kv

*

τ v
* s + 1

, (E10-1)

where

 Kv
* =

Kc2
Kv

1 + Kc2
Kv

,    and     τ v
* =

τv
1 + Kc2

Kv
. (E10-2)

Similarly, substituting   GL =
KL

τv s + 1  in G*L should give

 KL
* =

KL

1 + Kc2
Kv

. (E10-3)

Thus as the proportional gain Kc2 becomes larger, K*v approaches unity gain, meaning there

                                                

1 If we remove the secondary loop, this characteristic equation should reduce to that of a
conventional feedback system equation. It is not obvious from (10-3) because our derivation has
taken the measurement function Gm2 to be unity. If we had included Gm2 in a more detailed
analysis, we could get the single loop result by setting Gc2 = 1 and Gm2 = 0.
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is a more effective change in the manipulated variable, and K*L approaches zero, meaning the

manipulated variable is becoming less sensitive to changes in the load. Furthermore, the
effective actuator time constant τ*v will become smaller, meaning a faster response.

(b) The slave loop affords us a faster response with respect to the actuator. What is the
proportional gain Kc2 if we want the slave loop time constant τ*v  to be only one-tenth of the
original time constant τv  in Gv?

From the problem statement, Kv = 0.5 and τv  = 1 s. Thus τ*v  = 0.1 s, and substitution of
these values in τ*v  of (E10-2) gives

 
0.1 = 1

1 + 0.5 Kc2

,  or  Kc2 = 18.

The steady state gain is

 Kv
* = (18) (0.5)

1 + (18) (0.5) = 0.9

The slave loop will have a 10% offset with respect to desired set point changes in the
secondary controller.

(c) So far, we have only used proportional control in the slave loop. We certainly expect offset in
this inner loop. Why do we stay with proportional control here?

The modest 10% offset that we have in the slave loop is acceptable under most circumstances.
As long as we have integral action in the outer loop, the primary controller can make
necessary adjustments in its output and ensure that there is no steady state error in the
controlled variable (e.g., the furnace temperature).

(d) Now, we tackle the entire closed-loop system with the primary PI controller. Our task here is
to choose the proper integral time constant among the given values of 0.05, 0.5, and 5 s. We
can tolerate underdamped response but absolutely not a system that can become unstable. Of
course, we want a system response that is as fast as we can make it, i.e., with a proper choice
of proportional gain. Select and explain your choice of the integral time constant.

Among other methods, root locus is the most instructive in this case. With a PI primary
controller and numerical values, Eq. (10-3) becomes

  1 + Kc
τ I s + 1

τ I s
0.9

0.1 s + 1
0.8

2 s + 1 = 0

With MATLAB, we can easily prepare the root locus plots of this equation for the cases of
τI = 0.05, 0.5, and 5 s. (You should do it yourself. We'll show only a rough sketch in Fig

E10.1. Help can be found in the Review Problems.)

From the root locus plots, it is clear that the system may become unstable when τI = 0.05 s.
The system is always stable when τI = 5 s, but the speed of the system response is limited by
the dominant pole between the origin and –0.2. The proper choice is τI = 0.5 s in which case

the system is always stable but the closed-loop poles can move farther, loosely speaking,
away from the origin.
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xxx xxx

τ = 0.05 sI

Open-loop poles 
at 0, –0.5, –10;
zero at –20

Open-loop poles 
at 0, –0.5, –10;
zero at –2

τ = 0.5 sI

xxx

τ = 5 sI

Open-loop poles 
at 0, –0.5, –10;
zero at –0.2

Figure E10.1

(e) Take the case without cascade control, and using the integral time constant that you have
selected in part (d), determine the range of proportional gain that we can use (without the
cascade controller and secondary loop) to maintain a stable system. How is this different from
when we use cascade control?

With the choice of τI = 0.5 s, but without the inner loop nor the secondary controller, the

closed-loop equation is

 1 + Gc Gv Gp = 1 + Kc
0.5 s + 1

0.5 s
0.5

s + 1
0.8

2 s + 1 = 0

which can be expanded to

s3 + 1.5 s2 + (0.5 + 0.2Kc) s + 0.4Kc = 0

With the Routh-Hurwitz analysis in Chapter 7, we should find that to have a stable system,
we must keep Kc < 7.5. (You fill in the intermediate steps in the Review Problems. Other

techniques such as root locus, direct substitution or frequency response in Chapter 8 should
arrive at the same result.)

With cascade control, we know from part (d) that the system is always stable. Nevertheless,
we can write the closed-loop characteristic equation

 1 + Kc
0.5 s + 1

0.5 s
0.9

0.1 s + 1
0.8

2 s + 1 = 0

or

0.1 s3 + 1.05 s2 + (0.5 + 0.36Kc) s + 0.72Kc = 0

A Routh-Hurwitz analysis can confirm that. The key point is that with cascade control, the
system becomes more stable and allows us to use a larger proportional gain in the primary
controller. The main reason is the much faster response (smaller time constant) of the actuator
in the inner loop.2

                                                

2 If you are skeptical of this statement, try do the Bode plots of the systems with and without
cascade control and think about the consequence of changing the break frequency (or bandwidth) of
the valve function. If you do not pick up the hint, the answer can be found on our Web Support on
the details of Example 10.1.
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  10.2  Feedforward control

To counter probable disturbances, we can take an even more proactive approach than cascade
control, and use feedforward control. The idea is that if we can make measurements of disturbance
changes, we can use this information and our knowledge of the process model to make proper
adjustments in the manipulated variable before the disturbance has a chance to affect the controlled
variable.

We will continue with the gas furnace to illustrate feedforward control. For simplicity, let's
make the assumption that changes in the furnace temperature (T) can be effected by changes in the
fuel gas flow rate (Ffuel) and the cold process stream flow rate (Fs). Other variables such as the

process stream temperature are constant.

In Section 10.1, the fuel gas flow rate is the manipulated variable (M) and cascade control is
used to handle its fluctuations. Now, we consider also changes in the cold process stream flow rate
as another disturbance (L).  Let's presume further that we have derived diligently from heat and
mass balances the corresponding transfer functions, GL and Gp, and we have the process model

C = GLL + GpM (10-4)

where we have used the general notation C as the controlled variable in place of furnace
temperature T.

We want the controlled variable to track set point changes (R) precisely, so we substitute the
ideal scenario C = R, and rearrange Eq. (10-4) to

M = 
1

Gp
  R – 

GL

Gp
  L (10-5)

This equation provides us with a model-based rule as to how the manipulated variable should be
adjusted when we either change the set point or face with a change in the load variable. Eq. (10-5)
is the basis of what we call dynamic feedforward control because (10-4) has to be derived from a
time-domain differential equation (a transient model). 3

In Eq. (10-5), 1/Gp is the set point tracking controller. This is what we need if we install only

a feedforward controller, which in reality, we seldom do.4 Under most circumstances, the change in
set point is handled by a feedback control loop, and we only need to implement the second term of
(10-5).  The transfer function –GL/Gp is the feedforward controller (or the disturbance rejection

controller). In terms of disturbance rejection, we may also see how the feedforward controller arises
if we command C = 0 (i.e., no change), and write (10-4) as

0 = GLL + GpM

To see how we implement a feedforward controller, we now turn to a block diagram (Fig.
10.3). 5  For the moment, we omit the feedback path from our general picture. With the

                                                

3 In contrast, we could have done the derivation using steady state models. In such a case, we
would arrive at the design equation for a steady state feedforward controller. We'll skip this
analysis. As will be shown later, we can identify this steady state part from the dynamic approach.

4 The set point tracking controller not only becomes redundant as soon as we add feedback
control, but it also unnecessarily ties the feedforward controller into the closed-loop characteristic
equation.

5 If the transfer functions GL and Gp are based on a simple process model, we know quite well
that they should have the same characteristic polynomial. Thus the term –GL/Gp is nothing but a
ratio of the steady state gains, –KL/Kp.



10-7

expectation that we'll introduce a feedback loop, we will not implement the set point tracking term
in Eq. (10-5). Implementation of feedforword control requires measurement of the load variable.

+

L

C
G*v

GFF

mL

Gp

GL

+

G

Figure 10.3. A feedforward control system on a major load
variable with measurement function GML and feedforward
controller GFF.

If there is more than one load variable, we theoretically could implement a feedforward
controller on each one. However, that may not be good engineering. Unless there is a compelling
reason, we should select the variable that either undergoes the most severe fluctuation or has the
strongest impact on the controlled variable.

Here, we use L to denote the major load variable and its corresponding transfer function is GL.
We measure the load variable with a sensor, GmL, which transmits its signal to the feedforward
controller GFF. The feedforward controller then sends its decision to manipulate the actuating
element, or valve, Gv.  In the block diagram, the actuator transfer function is denoted by G*v. The
idea is that cascade control may be implemented with the actuator, Gv, as we have derived in Eq.
(10-1). We simply use G*v to reduce clutter in the diagram.

With the feedforward and load path shown, the corresponding algebraic representation is

C = [GL + GmLGFFG*vGp] L (10-6)

The ideal feedforward controller should allow us to make proper adjustment in the actuator to
achieve perfect rejection of load changes. To have C = 0, the theoretical feedforward controller
function is

GFF  =  – 
GL

GmLG*vGp
  (10-7)

 which is a slightly more complete version of what we have derived in Eq. (10-5).

Before we blindly try to program Eq. (10-7) into a computer, we need to recognize certain
pitfalls. If we write out the transfer functions in (10-7), we should find that GFF is not physically

realizable—the polynomial in the numerator has a higher order than the one in the denominator.6

If we approximate the composite function GmLG*vGp as a first order function with dead time,

Ke–θs/(τs+1), Eq. (10-7) would appear as

                                                

6 If we go by the book, GL and Gp are the transfer functions to a process and their dynamic terms

(characteristic polynomial) in Eq. (10-7) must cancel out. The feedforward transfer function would
be reduced to something that looks like (–KL/KmLK*vKp) (τmLs+1)(τ*vs+1) while the denominator

is just 1.

In the simplest scenario where the responses of the transmitter and the valve are extremely fast
such that we can ignore their dynamics, the feedforward function consists of only the steady state
gains as in Eq. (10-9).
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GFF  =  – 
KL

K
 
τs+1
τps+1

  eθs

Now the dead time appears as a positive exponent or an advance in time. We cannot foresee future
and this idea is not probable either.7

The consequence is that most simple implementation of a feedforward controller, especially
with off-the-shelf hardware, is a lead-lag element with a gain:

GFF = KFF 
τFLDs+1

τFLGs+1
  (10-8)

Based on Eq. (10-7), the gain of this feedforward controller is

KFF =  – 
KL

KmLK*vKp
  (10-9)

This is the steady state compensator. The lead-lag element with lead time constant τFLD and lag
time constant τFLG  is the dynamic compensator. Any dead time in the transfer functions in (10-7)

is omitted in this implementation.

When we tune the feedforward controller, we may take, as a first approximation, τFLD as the
sum of the time constants τm and τ*v. Analogous to the "real" derivative control function, we can
choose the lag time constant to be a tenth smaller, τFLG  ≈ 0.1 τFLD. If the dynamics of the
measurement device is extremely fast, Gm = KmL, and if we have cascade control, the time constant
τ*v is also small, and we may not need the lead-lag element in the feedforward controller. Just the
use of the steady state compensator KFF may suffice. In any event, the feedforward controller must

be tuned with computer simulations, and subsequently, field tests.

                                                

7 If the load transfer function in Eq. (10-7) had also been approximated as a first order function
with dead time, say, of the form KLe–tds/(τps+1), the feedforward controller would appear as

GFF  =  – 
KL

K
 
τs+1
τps+1

  e–(td – θ)s.

Now, if td > θ, it is possible for the feedforward controller to incorporate dead time compensation.

The situation where we may find the load function dead time is larger than that in the
feedforward path of GmG*vGp is not obvious from our simplified block diagram. Such a

circumstance arises when we deal with more complex processing equipment consisting of several
units (i.e., multicapacity process) and the disturbance enters farther upstream than where the
controlled and manipulated variables are located.
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 10.3  Feedforward-feedback control

Since we do not have the precise model function Gp embedded in the feedforward controller

function in Eq. (10-8), we cannot expect perfect rejection of disturbances. In fact, feedforward
control is never used by itself; it is implemented in conjunction with a feedback loop to provide
the so-called feedback trim (Fig. 10.4a). The feedback loop handles (1) measurement errors, (2)
errors in the feedforward function, (3) changes in unmeasured load variables, such as the inlet
process stream temperature in the furnace that one single feedforward loop cannot handle, and of
course, (4) set point changes.

+

L

C
G*v

GFF

GmL

Gp

G L

+R

–
Gc

Gm

ME

++

(a)

+

L

C

GmL

G
L

+R

–
G c

Gm

GFF GpG*v

GpG*v
E

+ +

(b)

Figure 10.4. (a) A feedforward-feedback control system. (b) The diagram after moving G*vGp.

Our next task is to find the closed-loop transfer functions of this feedforward-feedback system.
Among other methods, we should see that we can "move" the G*vGp term as shown in Fig.

10.4b. (You can double check with algebra.) After this step, the rest is routine. We can almost
write down the final result immediately. Anyway, we should see that

C = [GL + GmLGFFG*vGp] L + [GcG*vGp] E

and

E = R – GmC

After substitution for E and rearrangement, we arrive at

C = 
GL + GmLGFFG*vGp

1 + GmGcG*vGp
  L + 

GcG*vGp

1 + GmGcG*vGp
  R (10-10)

If we do not have cascade control, G*v is simply Gv. If we are using cascade control, we can
substitute for G*v with Eq. (10-1), but we'll skip this messy algebraic step. The key point is that

the closed-loop characteristic polynomial is

1 + GmGcG*vGp = 0 (10-11)

and the feedforward controller GFF does not affect the system stability.

✎  Example 10.2: Consider the temperature control of a gas furnace used in heating a process
stream. The probable disturbances are in the process stream temperature and flow rate, and the fuel
gas flow rate. Draw the schematic diagram of the furnace temperature control system, and show
how feedforward, feedback and cascade controls can all be implemented together to handle load
changes.

The design in Fig. E10.2 is based on our discussion of cascade control. The fuel gas flow is
the manipulated variable, and so we handle disturbance in the fuel gas flow with a flow controller
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(FC) in a slave loop. This secondary loop remains the same as the G*v function in (10-1), where
the secondary transfer function is denoted by Gc2.

Of the other two load variables, we choose the process stream flow rate as the major
disturbance. The flow transducer sends the signal to the feedforward controller (FFC, transfer
function GFF). A summer (Σ) combines the signals from both the feedforward and the feedback

controllers, and its output becomes the set point for the secondary fuel gas flow rate controller
(FC).

 

FT

FC

Hot process stream

TsTCTT

Furnace

Fuel gas

T
TT

∑FT

FFC

Flow rate

Process
stream

Temperature

Figure E10.2

Handling of disturbance in the inlet process stream temperature is passive. Any changes in
this load variable will affect the furnace temperature. The change in furnace temperature is
measured by the outlet temperature transducer (TT) and sent to the feedback temperature controller
(TC). The primary controller then acts accordingly to reduce the deviation in the furnace
temperature.

 10.4  Ratio control

We are not entirely finished with the furnace. There
is one more piece missing from the whole
picture—the air flow rate. We need to ensure
sufficient air flow for efficient combustion. The
regulation of air flow is particularly important in
the reduction of air pollutant emission.

To regulate the air flow rate with respect to the
fuel gas flow rate, we can use ratio control. Fig.
10.5 illustrates one of the simplest
implementations of this strategy. Let's say the air
to fuel gas flow rates must be kept at some
constant ratio

R = 
FA

FF G
 (10-12)

What we can do easily is to measure the fuel gas flow rate, multiply the value by R in the so-
called ratio station, and send the signal as the set point to the air flow controller. The calculation
can be based on actual flow rates rather than deviation variables.

FT

FC

Air flow, F

Fuel gas flow
entering furnace, F

FT RS Ratio station

A

FG

Figure 10.5. Simple ratio control of air
flow rate.
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A more sophisticated
implementation is full metering
control (Fig. 10.6). In this case, we
send the signals from the fuel gas
controller (FC in the fuel gas loop) and
the air flow transmitter (FT) to the
ratio controller (RC), which takes the
desired flow ratio (R) as the set point.
This controller calculates the proper air
flow rate, which in turn becomes the
set point to the air flow controller (FC
in the air flow loop). If we take away
the secondary flow control loops on
both the fuel gas and air flow rates,
what we have is called parallel
positioning control. In this simpler
case, of course, the performance of the
furnace is subject to fluctuations in
fuel and air supply lines.

We are skipping the equations and
details since the air flow regulation should not affect the stability and system analysis of the fuel
gas controller, and ratio control is best implemented with Simulink in simulation and design
projects.

 10.5  Time delay compensation—the Smith predictor

There are different schemes to handle systems
with a large dead time. One of them is the
Smith predictor. It is not the most effective
technique, but it provides a good thought
process.

Consider a unit feedback system with a
time delay in its process function (Fig. 10.7).
The characteristic polynomial is

 1 + Gc (s) G(s) e– td s = 0 (10-13)

We know from frequency response analysis
that time lag introduces extra phase lag,
reduces the gain margin and is a significant
source of instability. This is mainly because
the feedback information is outdated.

If we have a model for the process, i.e.,
we know G(s) and td, we can predict what

may happen and feedback this estimation. The
way the dead time compensator (or predictor)
is written (Fig. 10.8), we can interpret the transfer function as follows. Assuming that we know
the process model, we feedback the "output" calculation based on this model. We also have to
subtract out the "actual" calculated time delayed output information.

Now the error E also includes the feedback information from the dead time compensator:

G  (s)c
R Y

G(s)e– t  s  d
–

+

Figure 10.7. System with inherent dead time.

G  (s)c
R Y

G(s)e
– t  s  d

–
+

Deadtime Compensator

G(s)[1 – e       ]– t  s  d

– E

Figure 10.8. Implementation of the Smith
predictor.

FT

FC

Fuel gas

∑

RC

Air flow, F

To furnace
R

FT

FC

A

From the feedforward-feedback
loops

To furnace

Figure 10.6. Full metering ratio control of fuel and
air flows.
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 E = R – Y – E Gc G (1 – e– td s) ,

and substituting

 Y = Gc G e– td s E

we have

 E = R – E Gc G e– td s + Gc G (1 – e– td s)

where the exponential terms cancel out and we are left with simply

 E = R – E Gc G (10-14)

The time delay effect is canceled out, and this equation at the summing point is equivalent to a
system without dead time (where the forward path is C = GcGE). With simple block diagram

algebra, we can also show that the closed-loop characteristic polynomial with the Smith predictor
is simply

1 + GcG = 0 (10-15)

The time delay is removed. With the delay
compensator included, we can now use a larger
proportional gain without going unstable. Going
back to the fact that the feedback information is
GcGR, we can also interpret the compensator effect

as in Fig. 10.9. The Smith predictor is essentially
making use of state feedback as opposed to output
feedback.

Just like feedforward control (or any other model-
based control), we only have perfect compensation if
we know the precise process model. Otherwise, the effectiveness of the compensator (or predictor)
is diminished.  Assume that we have an imperfect model approximation H(s) and dead time
estimation θ (H ≠ G and θ ≠ td), the feedback information is now

  Y + H (1 – e– θs
) Gc R = Gc G e– td s

+ Gc H (1 – e– θs
) R

= Gc G e– td s
+ H (1 – e– θs

) R

where the right hand side becomes GcGR if and only if H = G and θ = td. Note that the time delay

term is an exponential function. Error in the estimation of the dead time is more detrimental than
error in the estimation of the process function G.

Since few things are exact in this world, we most likely have errors in the estimation of the
process and the dead time. So we only have partial dead time compensation and we must be
conservative in picking controller gains based on the characteristic polynomial 1 + GcG = 0.

In a chemical plant, time delay is usually a result of transport lag in pipe flow. If the flow rate
is fairly constant, the use of the Smith predictor is acceptable. If the flow rate varies for whatever
reasons, this compensation method will not be effective.

Gc
R YG

–
+ e

– t  s  d

Figure 10.9. An interpretation of the
compensator effect.
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  10.6  Multiple-input Multiple-output Control

In this section, we analyze a multiple
input-multiple output (MIMO) system.
There are valuable insights that can be
gained from using the classical transfer
function approach. One decision that we
need to appreciate is the proper pairing of
manipulated and controlled variables. To
do that, we also need to know how strong
the interaction is among different
variables.

The key points will be illustrated with
a blending process. Here, we mix two
streams with mass flow rates m1 and m2, and both the total flow rate F and the composition x of a

solute A are to be controlled (Fig. 10.10). With simple intuition, we know changes in both m1
and m2 will affect F and x. We can describe the relations with the block diagram in Fig. 10.11,

where interactions are represented by the two, yet to be derived, transfer functions G12 and G21.

G11

G22

G21

G12

+

+

C

C

M1

M 2

1

2

= x

= F

+

+

G11

G22

G21

G12

+

C

C

M 1

M 2

1

2

+

G c1

G c2

–

–

+

+

R

R

1

2

Figure 10.11. Block diagram of an interacting
2 x 2 process, with the output x and F referring
to the blending problem.

Figure 10.12. Block diagram of a 2 x 2 servo
system. The pairing of the manipulated and
controlled variables is not necessarily the same
as shown in Fig. 10.11.

Given Fig. 10.11 and classical control theory, we can infer the structure of the control system,
which is shown in Fig. 10.12.  That is, we use two controllers and two feedback loops, where for
simplicity, the measurement and actuator functions have been omitted.

Simple reasoning can illustrate now interactions may arise in Fig. 10.12. If a disturbance (not
shown in diagram) moves C1 away from its reference R1, the controller Gc1

 will response to the

error and alter M1 accordingly. The change in M1, however, will also affect C2 via G21. Hence C2
is forced to change and deviate from R2. Now the second controller Gc2

 kicks in and adjusts M2,

which in turn also affects C1 via G12.

With this scenario, the system may eventually settle, but it is just as likely that the system in
Fig. 10.12 will spiral out of control. It is clear that loop interactions can destabilize a control
system, and tuning controllers in a MIMO system can be difficult. One logical thing that we can
do is to reduce loop interactions by proper pairing of manipulated and controlled variables. This is
the focus of the analysis in the following sections.

FT CT

FC CC

F x

m

m

1

2

Figure 10.10. A blending system with
manipulated and controlled variable pairings yet to
be determined.
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✑  10.6.1 MIMO Transfer functions

We now derive the transfer functions of the MIMO system. This sets the stage for more detailed
analysis that follows. The transfer functions in Fig. 10.11 depend on the process that we have to
control, and we’ll derive them in the next section for the blending process. Here, we consider a
general system as shown in Fig.10.12.

With the understanding that the errors are E1 = R1 – C1, and E2 = R2 – C2 in Fig. 10.12, we

can write immediately,

M1 = Gc1
 (R1 – C1) (10-16)

M2 = Gc2
 (R2 – C2) (10-17)

The process (also in Fig. 10.11) can be written as

C1 = G11 M1 + G12 M2 (10-18)

C2 = G21 M1 + G22 M2 (10-19)

Substitute for M1 and M2 using (10-16, 17), and factor C1 and C2 to the left, Eqs. (10-18) and (10-

19) becomes

(1 + G11Gc1
) C1 + G12 Gc2 

C2 = G11Gc1
 R1 + G12 Gc2 

R2 (10-20)

G21Gc1
 C1 + (1 + G22Gc2

) C2 = G21Gc1
 R1 + G22 Gc2 

R2 (10-21)

Making use of Kramer’s rule, we should identify (derive!) the system characteristic equation:

p(s)  =  (1 + G11Gc1
) (1 + G22Gc2

) + G12 G21 Gc1
Gc2 

 = 0 (10-22)

which, of course, is what governs the dynamics and stability of the system. We may recognize that
when either G12 = 0 or G21 = 0, the interaction term is zero.8 In either case, the system

characteristics analysis can be reduced to those of two single loop systems:

1 + G11Gc1
 = 0 ,   and    1 + G22Gc2

 = 0

Now back to finding the transfer functions with interaction. To make the algebra appear a bit
cleaner, we consider the following two cases. When R2 = 0, we can derive from Eq. (10-20) and

(10-21),

 C1

R1
=

G11Gc1
+ Gc1

Gc2
(G11G22 – G12G21)

p(s)
(10-23)

And when R1 = 0, we can find

 C1

R2
=

G12Gc2

p(s)
(10-24)

                                                

8 When both G12 = G21 = 0, the system is decoupled and behaves identically to two single loops.

When either G12 = 0 or G21 = 0, the situation is referred to as one-way interaction, which is

sufficient to eliminate recursive interactions between the two loops. In such a case, one of the
loops is not affected by the second while it becomes a source of disturbance to this second loop.
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If both references change simultaneously, we just need to add their effects in (10-23) and (10-24)
together. (What about C2?  You’ll get to try that in the Review Problems.)

It is apparent from Eq. (10-22) that with interaction, the controller design of the MIMO system
is different from a SISO system. One logical question is under what circumstances may we make
use of SISO designs as an approximation? Or in other words, can we tell if the interaction may be
weak? This takes us to the next two sections.

✑  10.6.2 Process gain matrix

We come back to derive the process transfer functions for the blending problem.9 The total mass
flow balance is

F = m1 + m2 (10-25)

where F is the total flow rate after blending, and m1 and m2 are the two inlet flows that we

manipulate. The mass balance for a solute A (without using the subscript A explicitly) is

xF = x1m1 + x2m2 (10-26)

where x is the mass fraction of A after blending, and x1 and x2 are the mass fractions of A in the

two inlet streams. We want to find the transfer functions as shown in Fig. 10.11:

 X(s)
F(s) =

G11(s) G12(s)
G21(s) G22(s)

M1(s)
M2(s) (10-27)

We take stream m1 to be pure solute A, and stream m2 to be pure solvent. In this scenario, x1 = 1

and x2 = 0, and Eq. (10-26) is simplified to

 x =
m1

F
=

m1
m1 + m2

(10-28)

Since xi and mi are functions of time, we need to linearize (10-26). A first order Taylor expansion

of x is

  x ≈
m1

F s
+

m2

(m1 + m2)
2

s

(m1 – m1,s) –
m1

(m1 + m2)
2

s

(m2 – m2,s)

where the subscript s of the brackets denotes terms evaluated at steady state. The first term on the
right is really the value of x at steady state, xs, which can be moved to the left hand side to make

the deviation variable in x. With that, we take the Laplace transform to obtain the transfer
functions of the deviation variables:

X(s) = G11(s)M1(s) + G12(s)M2(s) (10-29)

where

 G11(s) =
m2

(m1 + m2)
2

s

= K11 , and G12(s) = –
m1

(m1 + m2)
2

s

= K12 (10-30)

                                                

9 Since the point is to illustrate the analysis of interactions, we are using only steady state
balances and it should not be a surprise that the transfer functions end up being only steady state
gains in Eq. (10-32). For a general dynamic problem where have to work with the transfer
functions Gij(s), we can still apply the results here by making use of the steady state gains of the

transfer functions.
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The transfer functions are constants and hence we denote them with the gains K11 and K12. If the

solvent flow rate m2 increases, the solute will be diluted. Hence, K12 is negative.

The functions G21 and G22 are much easier. From Eq. (10-25), we can see immediately that

G21(s) = K21 = 1,    and    G22(s) = K22 = 1 (10-31)

Thus, in this problem, the process transfer function matrix Eq. (10-27) can be written in terms of
the steady state gain matrix:

 X(s)
F(s) =

K11 K12
K21 K22

M1(s)
M2(s) (10-32)

In more general terms, we replace the LHS of (10-32) with a controlled variable vector:

C(s) = K M(s) (10-33)

where C = [X F]T. If there is a policy such that the manipulated variables can regulate the
controlled variables, we must be able to find an inverse of the gain matrix such that

M(s) = K–1 C(s) (10-34)

Example 10.3. If m1 = 0.1 g/s, m2 = 10 g/s, What is the process gain matrix? What are the

interpretations?

Making use of (10-30), we can calculate K11 = 9.8 x 10–2, and K12 = –9.8 x 10–2.  With (10-31),

the process gain matrix is

   
K =

9.8 × 10– 2 – 9.8 × 10– 4

1 1

Under circumstances of the particular set of numbers given, changing either m1 or m2 has a

stronger effect on the total flow rate F than x. With respect to the composition x, changing the
solute flow m1 has a much stronger effect than changing the solvent flow. The situation resembles

very much a one-way interaction.

We may question other obvious scenarios of the process gain matrix. The sweetest is an
identity matrix, meaning no interaction among the manipulated and controlled variables. A quick
summary of several simple possibilities:10

  K = 1 0
0 1 No interaction. Controller design is like single-loop systems.

   K = 1 δ
δ 1

Strong interaction if δ is close to 1; weak interaction if δ « 1.

  K = 1 1
0 1

, 1 0
1 1 One-way interaction

                                                

10 There is more to “looking” at K. We can, for example, make use of its singular value and
condition number, which should be deferred to a second course in control.
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✑  10.6.3 Relative gain array

You may not find observing the process gain matrix satisfactory. That takes us to the relative
gain array (RGA), which can provide for a more quantitative assessment of the effect of changing
a manipulated variable on different controlled variables. We start with the blending problem before
coming back to the general definition.

For the blending process, the relative gain parameter of the effect of m1 on x is defined as

  
λ x, m1

=
∂x ∂m1∂x ∂m1 m2

∂x ∂m1∂x ∂m1 F

(10-35)

It is the ratio of the partial derivative evaluated under two different circumstances. On top, we look
at the effect of m1 while holding m2 constant. The calculation represents an open-loop experiment

and the value is referred to as an open-loop gain. In the denominator, the total flow rate, the other
controlled variable, is held constant. Since we are varying (in theory) m1, F can only be constant if

we have a closed-loop with perfect control involving m2. The partial derivative in the denominator

is referred to as some closed-loop gain.

How do we interpret the relative gain? The idea is that if m2 does not interfere with m1, the

derivative in the denominator should not be affected by the closed-loop involving m2, and its value

should be the same as the open-loop value in the numerator. In other words, if there is no
interaction, λx,m1 = 1.

Example 10.4. Evaluate the relative gain array matrix for the blending problem.

The complete relative gain array matrix for the 2 x 2 blending problem is defined as

  
Λ =

λ x, m1
λ x, m2

λ F, m1
λ F, m2

(E10-4)

For the first element, we use (10-28) to find

  ∂x

∂m1 m2

=
m2

(m1 + m2)
2  ,    and   

  ∂x

∂m1 F

= 1
F

= 1
m1 + m2

Hence, with the definition in (10-35),

  λ x, m1
=

m2
m1 + m2

= 1 – x (E10-5)

Proceed to find the other three elements (see Review Problems) and we have the RGA for the
blending problem:

  
Λ =

1 – x x
x 1 – x

(E10-6)

There are several notable and general points regarding this problem, i.e., without proving them
formally here. The sum of all the entries in each row and each column of the relative gain array Λ
is 1. Thus in the case of a 2 x 2 problem, all we need is to evaluate one element. Furthermore, the
calculation is based on only open-loop information. In Example 10.4, the derivation is based on
(10-25) and (10-26).
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We can now state the general definition of the relative gain array, Λ. For the element
relating the i-th controlled variable to the j-th manipulated variable,

  
λ i, j =

∂ci ∂mj∂ci ∂mj mk, k ≠ j

∂ci ∂mj∂ci ∂mj ck, k ≠ i

(10-36)

where the (open-loop) gain in the numerator is evaluated with all other manipulated variables held
constant and all the loops open (no loops!). The (closed-loop) gain in the denominator is evaluated
with all the loops—other than the i-th loop—closed. The value of this so-called closed-loop gain
reflects the effect from other closed-loops and the open-loop between mj and ci.

The relative gain array can be derived in terms of the process steady state gains. Making use of
the gain matrix equation (10-32), we can find (not that hard; see Review Problems)

  λ x, m1
= 1

1 –
K12K21

K11K22

(10-37)

which can be considered a more general form of (E10-5) and hence (E10-6).11

The next question comes back to the meaning of the RGA, and how that may influence our
decision in pairing manipulated with controlled variables. Here is the simple interpretation making
use of (10-36) and (10-37):

λi,j = 1 Requires K12K21 = 0. “Open-loop” gain is the same as the “closed-

loop” gain. The controlled variable (or loop) i is not subject to
interaction from other manipulated variables (or other loops). Of
course, we know nothing about whether other manipulated variables
may interact and affect other controlled variables. Nevertheless, pairing
the i-th controlled variable to the j-th manipulated variable is desirable.

λi,j = 0 The open-loop gain is zero. The manipulated variable j has no effect on
the controlled variable i. Of course mj may still influence other

controlled variables (via one-way interaction). Either way, it makes no
sense to pair mj with ci in a control loop.

0 < λ i,j < 1 No doubt there are interactions from other loops, and from (10-37),
some of the process gains must have opposite signs (or act in different
directions). When λi,j = 0.5, we can interpret that the effect of the

interactions is identical to the open-loop gain—recall statement after
(10-36). When λi,j > 0.5, the interaction is less than the main effect of
mj on ci. However, when λi,j < 0.5, the interactive effects predominate

and we want to avoid pairing mj with ci.

λ i,j > 1 There are interactions from other loops as well, but now with all the
process gains having the same sign. Avoid pairing mj with ci if λi,j is

much larger than 1.

λ i,j < 0 We can infer using (10-36) that the open-loop and closed-loop gains
have different signs or opposing effects. The overall influence of the

                                                

11 For your information, relative gain array can be computed as the so-called Hadamard product, λij
= KijK

–1
ji, which is the element-by-element product of the gain matrix K and the transpose of its

inverse. You can confirm this by repeating the examples with MATLAB calculations.
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other loops is in opposition to the main effect of mj on ci. Moreover,

from (10-37), the interactive product K12K21 must be larger than the

direct terms K11K22. Undesirable interaction is strong. The overall

multiloop system may become unstable easily if we open up one of its
loops. We definitely should avoid pairing mj with ci.

To sum up, the key is to pair the manipulated and controlled variables such that the relative
gain parameter is positive and as close to one as possible.

Example 10.5. If m1 = 0.1 g/s, m2 = 10 g/s, what is the proper pairing of manipulated and

controlled variables? What if m1 = 9 g/s, m2 = 1 g/s?

In the first case where m1 is very small, it is like a dosing problem. From (10-28), x = 0.0099.

Since x « 1, λx,m1
 is very close to 1 by (E10-5). Thus interaction is not significant if we pair x

with m1, and F with m2. Physically, we essentially manipulate the total flow with the large

solvent flow m2 and tune the solute concentration by manipulating m1.

In the second case, x = 0.9. Now λx,m1
 = 0.1 by (E10-5). Since λx,m1

 « 1, we do not want to pair

x with m1. Instead, we pair pair x with m2, and F with m1. Now we regulate the total flow with

the larger solute flow m1 and tune the concentration with the solvent m2.

  10.7  Decoupling of interacting systems

After proper pairing of manipulated and controlled variables, we still have to design and tune the
controllers. The simplest approach is to tune each loop individually and conservatively while the
other loop is in manual mode. At a more sophisticated level, we may try to decouple the loops
mathematically into two non-interacting SISO systems with which we can apply single loop
tuning procedures. Several examples applicable to a 2 x 2 system are offered here.

✑  10.7.1 Alternate definition of manipulated variables

We seek choices of manipulated variables that may decouple the system. A simple possibility is to
pick them to be the same as the controlled variables. In the blending problem, the two new
manipulated variables can be defined as 12

µ1 = F (10-38)

and

µ2 = x (10-39)

Once the controller (a computer) evaluates these two manipulated variables, it also computes on
the fly the actual signals necessary for the two mass flow rates m1 and m2. The computation

                                                

12 The blending problem can be reduced to one-way interaction if we use m1 instead of x as the

new manipulated variable µ2. We’ll do that in the Review Problems.
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follows directly the balance equations (10-25) and (10-28). Fig. 10.13 is a schematic diagram on
how this idea may be implemented.

✑  10.7.2 Decoupler functions

In this section, we add the so-called decoupler functions to a 2 x 2 system. Our starting point is
Fig. 10.12. The closed-loop system equations can be written in matrix form, virtually by visual
observation of the block diagram, as

 C1

C2
=

G11 G12

G21 G22

Gc1
0

0 Gc2

R1 – C1

R2 – C2
(10-40)

In matrix form, this equation looks deceptively simple, but if we expand the algebra, we should
arrive at Eqs. (10-20) and (10-21) again.

 In a system with interactions, G12 and G21 are not zero, but we can manipulate the controller

signal such that the system appears (mathematically) to be decoupled. So let's try to transform the
controller output with a matrix D, which will contain our decoupling functions. The manipulated
variables are now

 M1

M2
=

d11 d12

d21 d22

Gc1
0

0 Gc2

R1 – C1

R2 – C2

and the system equations become

  C1
C2

=
G11 G12

G21 G22

d11 d12

d21 d22

Gc1
0

0 Gc2

R1 – C1
R2 – C2

= GDGc
R1 – C1
R2 – C2

(10-41)

To decouple the system equations, we require that GDGc be a diagonal matrix.  Define Go =
GDGc, and the previous step can be solved for C:

  C1
C2

= I + Go
–1 Go

R1
R2

(10-42)

Since Go is diagonal, the matrix [I + Go]–1Go is also diagonal, and happily, we have two

decoupled equations in (10-42).

Now we have to find D. Since Gc is already diagonal, we require that GD be diagonal:

FT CT

FC CC

F x

m1

m 2

m1+ m 2

m1

m1+ m 2

x

+ +
–

m1

Figure 10.13. A decoupled control scheme.  The controller outputs are
the manipulated variables in Eqs. (10-38) and (10-39) and they are
rewritten based on their definitions in (10-25) and (10-28).
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 G11 G12
G21 G22

d11 d12
d21 d22

=
H1 0
0 H2

(10-43)

A little bit of algebra to match term by term, we should find (see Review Problems)

 d11 =
G22 H1

G11 G22 – G12 G21 
,     d22 =

G11 H2

G11 G22 – G12 G21
(10-44)

 d21 =
– G21

G22
d11

 
,     d12 =

– G12

G11
d22 (10-45)

We have six unknowns (four dij  and two Hi) but only four equations. We have to make two

(arbitrary) decisions. One possibility is to choose (or define)

 H1 =
G11 G22 – G12 G21

G22
,  and    H2 =

G11 G22 – G12 G21

G11
(10-46)

such that d11 and d22 become 1. (We can also think in terms of choosing both d11 = d22 = 1 and
then derive the relations for H1 and H2.) It follows that

 d21 =
– G21

G22
,    and     d12 =

– G12

G11
(10-47)

Now the closed-loop equations are

 C1

C2
=

H1 0
0 H2

Gc1 0
0 Gc2

R1 – C1

R2 – C2
=

H1 Gc1
0

0 H2 Gc2

R1 – C1

R2 – C2
(10-48)

from which we can easily write, for each row of the matrices,

 C1

R1
=

Gc1
H1

1 + Gc1
H1

,    and     
 C2

R2
=

Gc2
H2

1 + Gc2
H2

(10-49)

and the design can be based on the two characteristic equations

1 + Gc1H1 = 0 ,  and     1 + Gc2H2 = 0 (10-50)

Recall Eq. (10-46) that H1 and H2 are defined entirely by the four plant functions Gij. This is
another example of model-based control. With the definitions of H1 and H2 given in (10-46), the

calculations are best performed with a computer.

G11

G22

G21

G12

+

+

C

C

M 2

1

2

+

+

D 21

D12

–

–

+

+

R1

R2

G c1

G c2

+

+

M 1

+

+

a

b

Figure 10.14. A decoupling scheme using two feedforward-like decoupler functions.
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✑  10.7.3 Feedforward decoupling functions

A simpler approach is to use only two decoupler functions and implement them as if they were
feedforward controllers that may reduce the disturbance arising from loop interaction. As
implemented in Fig. 10.14, we use the function D12 to “foresee” and reduce the interaction due to

G12. Likewise, D21 is used to address the interaction due to G21. To find these two decoupling

functions, we focus on how to cancel the interaction at the points  identified as “a” and “b” in Fig.
10.14.

Let’s pick the point “a” first. If the signal from M1 through G21 can be cancelled by the

compensation through D21, we can write

G21M1 + G22D21M1 = 0

Cancel out M1 and we have

D21 = – G21/G22 (10-51)

Similarly, if D12 can cancel the effect of G12 at the point “b,” we have

G12M2 + G11D12M2 = 0

or

D12 = – G12/G11 (10-52)

We may notice that Eqs. (10-51) and (10-52) are the same as d21 and d12 in (10-47). The strategy of

implementing D12 and D21 is similar to the discussion of feedforward controllers in Section 10.2,

and typically we remove the time delay terms and apply a lead-lag compensator as in Eq. (10-8). If
the time constant of the first-order lead is similar to time constant of the first-order lag, then we
just need a steady state compensator.

Example 10.6: A classic example of an MIMO problem is a distillation column.13 From open-
loop step tests, the following transfer functions are obtained:

 
XD (s)

XB (s)
=

0.07 e– 3 s

12 s + 1
– 0.05 e– s

15 s + 1
0.1 e– 4 s

11 s + 1
– 0.15 e– 2 s

10 s + 1

L(s)

V(s)

In this model, xD and xB are the distillate and bottom compositions, L is the reflux flow rate, and

V is the boil-up rate. Design a 2x2 MIMO system with PI controllers and decouplers as in Fig.
10.14.

Before we design the MIMO system, we need to check the paring of variables. The steady state
gain matrix is

                                                

13  Pardon us if you have not taken a course in separation processes yet, but you do not need to
know what a distillation column is to read the example. In a simple-minded way, we can think of
making moonshine. We have to boil a dilute alcohol solution at the bottom and we need a
condenser at the top to catch the distillate. This is how we have the V and L manipulated variables.
Furthermore, the transfer functions are what we obtain from doing an experiment, not from any
theoretical derivation.
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  K = 0.07 – 0.05
0.1 – 0.15

With Eq. (10-37) and (E10-6), the relative gain array is

  ΛΛ = 1.91 – 0.91
– 0.91 1.91

The relative gain parameter λxD-L is 1.91. It is not 1 but at least it is not negative. Physically, it

also makes sense to manipulate the distillate composition with the more neighboring reflux flow.
So we will pair xD-L and xB-V.  Next, with (10-51) and (10-52), the two decoupling functions are

 D12 = Kd, 12
12 s + 1
15 s + 1

,   and     D21 = Kd, 21
10 s + 1
11 s + 1

≈ Kd, 21

To do the tuning, we can use the initial values Kd,12 ≈ –0.7 (–0.05/0.07), and Kd,21 ≈ –0.7

(–0.1/0.15).

We will have to skip the details for the remainder of the exercise. You may try to generate a plot
similar to Fig. E10.6 in the Review Problems.

This is roughly how we did it. All the simulations are performed with Simulink. First, we use
G11 and G22 as the first order with dead time functions and apply them to the ITAE tuning

relations in Table 6.1. With that, we have the PI controller settings of two SISO systems.  The
single loop response to a unit step change in the set point of xD is labeled SISO in Fig. E10.6.

We retain the ITAE controller settings and apply them to a Simulink block diagram constructed as
in Fig. 10.12. The result is labeled MIMO in the figure. Finally, we use Fig. 10.14 and the two
decouplers, and the simulation result with the initial setting is labeled “MIMO with decouplers.”

0
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0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

x

t

SISO

MIMO

MIMO with decouplers

d

 

Figure E10.6

In this illustration, we do not have to detune the SISO controller settings. The interaction does not
appear to be severely detrimental mainly because we have used the conservative ITAE settings. It
would not be the case if we had tried Cohen-Coon relations. The decouplers also do not appear to
be particularly effective. They reduce the oscillation, but also slow down the system response. The
main reason is that the lead-lag compensators do not factor in the dead times in all the transfer
functions.
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❐   Review Problems

1. Derive (10-3) and (10-3a) with measurement transfer functions Gm1 and Gm2 in the primary

and secondary loops. Confirm the footnote to (10-3a) that this equation can be reduced to that
of a single loop system.

2. Do the root locus plots in Example 10-1(d). Confirm the stability analysis in Example 10-
1(e).

3. Draw the block diagram of the system in Example 10-2. Label the diagram with proper
variables.

4. Attempt a numerical simulation of a feedforward-feedback system in Fig R10.4. Consider the
simplified block diagram with

 Gv = 0.5
s + 1 ,    Gp = 0.8

2s + 1 ,  and    GL = – 0.4
2s + 1 .

(a) The load function has a
negative gain. What does it
mean?

(b) Omit for the moment the
feedback loop and controller
Gc, and consider only GFF as

defined in (10-8). Use
MATLAB functions (or
simulink) to simulate the
response in C when we
impose a unit step change to
L. Experiment with different
values of the gain and time constants in the lead-lag element.

(c) Consider a PI controller for the feedback loop with an integral time of 1.5 s, find the
proportional gain such that the system has an underdamped behavior equivalent to a
damping ratio of 0.7.

(d) With the feedback loop and PI controller in part (c), use MATLAB to simulate the
response of C to a unit step change in L. Repeat the different values of the feedforward
controller as in part (b).

5. Consider the simpler
problem in Fig. R10.5 based
on Fig. 10.12. If we only
implement one feedback loop
and one controller, how is
the transfer function C1/M1

affected by the interaction?

6. Derive the transfer functions
C2/R1 and C2/R2 from Eqs.

(10-20) and (10-21).

7. Fill in the details and derive
the RGA (E10-6) in
Example 10.4.

8. Derive Eq. (10-37).

9. Show that we also can obtain (E10-6) by applying (10-37) to the blending problem.

(f) Repeat Section 10.7.1 by replacing the second manipulated variable in (10-39) with

+

L

C
Gv

GFF

Gp

G L

+
R

–
Gc

e M

Figure R10.4

G11

G22

G21

G12

+

+

c

c

m1

m 2

1

2

+

+G c2–

+R2

Figure R10.5
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µ2 = m1

Find the gain matrix and show that the relative gain parameter is 1. Show how this partially
decoupling scheme can be implemented as analogous to Fig. 10.13.

11. Derive Eqs. (10-44) and (10-45).

12. Try to do the Simulink simulations in Example 10.6. If you need help the Simulink file is on
our Web Support.

Hint:

2. The MATLAB statements can be:
Part (d)

Gp=tf(0.8,[2 1]);

Gv=tf(0.9,[0.1 1]); %With cascade control

taui=0.05;          %Just one example

Gi=tf([taui 1],[taui 0])

rlocus(Gi*Gv*Gp)

Part (e)

Gvo=tf(0.5,[1 1]);

rlocus(Gi*Gvo*Gp)

4. (a) If L is the inlet process stream flow rate, how would it affect the furnace temperature?
(b) Use (10-9), and the comments that follow, to select the parameters for the feedforward
controller. Compare with the case when we do not have a feedforward controller by setting KFF

= 0. You should observe that the major compensation to the load change is contributed by the
steady-state compensator.
(c)  The proportional gain is about 1.4. The feedforward controller does not affect the system
stability and we can design the controller Gc with only Gv, Gp, and the feedback loop. We

have to use, for example, the root locus method in Chapter 6 to do this part. Root locus can
also help us to determine if τI = 1.5 s is a good choice.

(d) You should find that the feedback loop takes over much of the burden in load changes. The
system response is rather robust even with relatively large errors in the steady-state
compensator.

5. C2 = G22Gc2
(R2 – C2) + G21M1

C1 = G11M1 + G12Gc2
(R2 – C2)

Setting R2 = 0,

 C2 =
G21

1 + Gc2
G22

M1

Substitute C2 into the C1 equation, we can find after two algebraic steps,

 
C1 = G11 –

G12G21Gc2

1 + Gc2
G22

M1

The second term in the bracket is due to interaction.

6. We apply Kramer’s rule to find C2 just as we had with C1. The solution has the same

characteristic polynomial in (10-22). The transfer functions:

With R1 = 0,
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 C2

R2
=

G22Gc2
+ Gc1

Gc2
(G11G22 – G12G21)

p(s)

With R2 = 0,

 C2

R1
=

G21Gc1

p(s)

7. We still use (10-28) as in Example 10.4. To find λx,m2:

  ∂x

∂m2 m1

=
– m1

(m1 + m2)
2

  ∂x

∂m2 F

=
∂

∂m2

F – m2

F
= – 1

F

and

  λ x, m2
=

m1
m1 + m2

= x

To find λF,m1:

  ∂F

∂m1 m2

= 1 , using Eq. (10-25)
  ∂F

∂m1 x

= 1
x  , using F = m1/x

λF,m1 = x

To find λF,m2:

  ∂F

∂m2 m1

= 1   ∂F

∂m2 x

= 1
1 – x ,  using  xF = F – m2, F = m2/(1 – x)

λF,m2 = 1 – x

8. We may just as well use Eq. (10-32) in its time-domain form

 x
F =

K11 K12
K21 K22

m1
m2

where now x, F, m1, and m2 are deviation variables. From the first row, it is immediately

obvious that

  ∂x

∂m1 m2

= K11

We next substitute for m2 using the second row to get

 x = K11m1 + K12
(F – K21m1)

K22

Now we can find

  ∂x

∂m1 F

= K11 –
K12 K21

K22

From here on, getting (10-37) is a simple substitution step.

9. To derive E10-6 using K. This is just a matter of substituting the values of the Kij’s from (10-

30) and (10-31) into (10-37). We should find once again λx,m1 = 1 – x as in (E10-5), and (E10-

6) follows.

10. We need to find how µ1 and µ2 affect F and x. With µ1 = F and µ2 = m1, we can rewrite the

definition of x = m1/F as x = µ1/µ2. This is the form that we use to take a first order Taylor
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expansion as we have done with the step after Eq. (10-28). The result in matrix form of the
Laplace transform of the deviation variables is

  
F(s)

x(s)

=
1 0

–
µ2

µ1
2

s.s.

1
µ1 s.s.

µ1(s)

µ2(s)

By putting F in the first row, it is clear that we have a one-way interaction system. By (10-
37), λ = 1. And with F = m1 + m2 and m1 as the output of the controllers, we can implement

this scheme as in Fig. R10.10.

11. We’ll find d11 and d21 as an illustration. The first column of the RHS of (10-43) is rewritten

as the two equations:

G11 d11 + G12 d21 = H1

G21 d11 + G22 d21 = 0

Solving them simultaneously will lead to d11 and d21 in (10-44) and (10-45). And choosing

d11 = 1, (10-44) can be rewritten as (10-46).

FT CT

FC CC

F x

m1

m2

m1+ m 2 m1+ +
–

Figure R10.10
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 ❖  4. State Space Representation

The limitation of transfer function representation becomes plain obvious as we tackle more
complex problems. For complex systems with multiple inputs and outputs, transfer function
matrices can become very clumsy. In the so-called modern control, the method of choice is state
space or state variables in time domain—essentially a matrix representation of the model
equations. The formulation allows us to make use of theories in linear algebra and differential
equations. It is always a mistake to tackle modern control without a firm background in these
mathematical topics. For this reason, we will not overreach by doing both the mathematical
background and the control together. Without a formal mathematical framework, we will put the
explanation in examples as much as possible. The actual state space control has to be delayed until
after tackling classical transfer function feedback systems.

What are we up to?
• How to write the state space representation of a model.

• Understand the how a state space representation is related to the transfer function
representation.

  4.1  State space models

Just as you are feeling comfortable with transfer functions, we now switch gears totally.
Nevertheless, we are still working with linearized differential equation models in this chapter.
Whether we have a high order differential equation or multiple equations, we can always rearrange
them into a set of first order differential equations. Bold statements indeed! We will see that when
we go over the examples.

With state space models, a set of differential equations is put in the standard matrix form

x
.
  = Ax + Bu (4-1)

and

y = Cx + D u (4-2)

where x is the state variable vector, u is the input, and y  is the output. The time derivative is
denoted by the overhead dot. In addition, A is the process (plant) matrix, B is the input matrix, C
is the output matrix, and D is the feed-through matrix. Very few processes (and systems) have an
input that has a direct influence on the output. Hence D is usually zero.

When we discuss single-input single-output models, u, y, and D are scalar variables. For
convenience, we keep the notation for B and C, but keep in mind that in this case, B is a column
vector and C is a row vector. If x is of order n, then A is (n x n), B is (n x 1), and C is (1 x n).1

The idea behind the use of Eqs. (4-1) and (4-2) is that we can make use of linear system
theories, and complex systems can be analyzed much more effectively. There is no unique way to
define the state variables. What we will show is just one of many possibilities.

                                                

1  If you are working with only single-input single-output (SISO) problems, it would be more
appropriate to replace the notation B by b and C by cT, and write d for D.
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✎  Example 4.1 : Derive the state space representation of a second order differential
equation of a form similar to Eq. (3-16) on page 3-5:

   d2y

dt2
+ 2ζωn

dy
dt

+ ωn
2 y = Ku(t) (E4-1)

We can do blindfolded that the transfer function of this equation, with zero initial
conditions, is

  Gp (s) =
Y(s)
U(s)

=
K

s2 + 2ζωn s + ωn
2

(E4-2)

Now let's do something different. First, we rewrite the differential equation as

   d2y

dt2
= – 2ζωn

dy
dt

– ωn
2 y + Ku(t)

and define state variables 1

  
x1 = y and x2 =

d x1

d t
(E4-3)

which allow us to redefine the second order equation as a set of two coupled first order equations.
The first equation is the definition of the state variable x2 in (E4-3); the second equation is based

on the differential equation,

   d x2

d t
= – 2ζωn x2 – ωn

2 x1 + Ku(t) (E4-4)

We now put the result in a matrix equation:

  x1

x2

=
0 1

–ωn
2 –2ζωn

x1

x2

+
0

K
u(t) (E4-5)

We further write

 
y = 1 0

x1

x2
(E4-6)

as a statement that x1 is our output variable. Compare the results with Eqs. (4-1) and (4-2), and we

see that in this case,

   
A =

0 1

–ωn
2 –2ζωn

; B =
0
K

; C = 1 0 ; D = 0

To find the eigenvalues of A, we solve its characteristic equation:

|λI – A| = λ(λ  + 2ζωn) + ωn
2 = 0 (E4-7)

We can use the MATLAB function tf2ss() to convert the transfer function in (E4-2) to state space
form:

                                                

1 This exercise is identical to how we handle higher order equations in numerical analysis and
would come as no surprise if you have taken a course on numerical methods.
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z=0.5; wn=1.5;   % Pick two sample numbers for ζ and ωn
p=[1 2*z*wn wn*wn];

[a,b,c,d]=tf2ss(wn*wn,p)

However, you will find that the MATLAB result is not identical to (E4-5). It has to do with the fact
that there is no unique representation of a state space model. To avoid unnecessary confusion, the
differences with MATLAB are explained in MATLAB Session 4.

One important observation that we should make immediately: the characteristic polynomial of
the matrix A  (E4-7) is identical to that of the transfer function (E4-2). Needless to say that the
eigenvalues of A  are the poles of the transfer function. It is a reassuring thought that different
mathematical techniques provide the same information. It should come as no surprise if we
remember our linear algebra.

✎  Example 4.2 : Draw the block
diagram of the state space
representation of the second order
differential equation in the
previous example.

The result is in Fig. E4.2. It is quite
easy to understand if we take note that
the transfer function of an integrator is
1/s. Thus the second order derivative is
located prior to the two integrations.
The information at the summing point
also adds up to the terms of the second order differential equation. The resulting transfer function is
identical to (E4-2). The reduction to a closed-loop transfer function was done in Example 2.16 (p.
2-33).

✎  Example 4.3: Let's try another model with a slightly more complex input. Derive the state
space representation of the differential equation

  d2y

dt2
+ 0.4

d y
d t

+ y =
d u
d t

+ 3u  ,  y(0) = dy/dt(0) = 0, u(0) = 0 ,

which has the transfer function   Y
U

=
s + 3

s2 + 0.4s + 1
.

The method that we will follow is more for illustration than for its generality. Let's introduce a
variable X1 between Y and U:

 Y
U

=
X1

U
Y
X1

=
1

s2 + 0.4s + 1
(s + 3)

The first part X1/U is a simple problem itself.

 X1

U
=

1

s2 + 0.4s + 1
    is the Laplace transformed of    

  d2x1

d t2
+ 0.4

d x1

d t
+ x1 = u

K
1
s

U +
–

X2

x (t) = y(t)x  (t)x  (t)u(t)

1
s

2ζω

ω2

X1 = Y
2 12

+

Figure E4.2
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With Example 4.1 as the hint, we define the state variables x1 = x1 (i.e., the same), and
x2 = dx1/dt. Using steps similar to Example 4.1, the result as equivalent to Eq. (4-1) is

 x1

x2

=
0 1

–1 –0.4

x1

x2

+
0

1
u (E4-8)

As for the second part Y/X1 = (s + 3), it is the Laplace transformed of  
  

y =
d x1

d t
+ 3x1 . We can use

the state variables defined above to rewrite as

y = x2 + 3x1 ,  or in matrix form  
 

y = 3 1
x1

x2
 , (E4-9)

which is the form of Eq. (4-2).

With MATLAB, the statements for this example are:

q=[1 3];

p=[1 0.4 1];

roots(p)

[a,b,c,d]=tf2ss(q,p)

eig(a)

Comments at the end of Example 4.1 also apply here. The result should be correct, and we should
find that both the roots of the characteristic polynomial p and the eigenvalues of the matrix a are
–0.2 ± 0.98j. We can also check by going backward:

[q2,p2]=ss2tf(a,b,c,d,1)

and the original transfer function is recovered in q2 and p2 .

✎  Example 4.4: Derive the state space representation of the lead-lag transfer function

 Y
U = s + 2

s + 3 .

We follow the hint in Example 4.3 and write the
transfer function as

 Y
U = X

U
Y
X = 1

s + 3 s + 2

From X/U = 1/(s+3), we have sX = –3X + U, or in
time domain,

  dx
dt = – 3x + u (E4-10)

and from Y/X = s+2, we have Y = sX +2X and substitution for sX leads to

Y = (–3X + U) + 2X = –X + U

The corresponding time domain equation is

y = –x + u (E4-11)

u 1
s–

3

yx x
–1

•

Figure E4.4
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Thus all the coefficients in Eqs. (4-1) and (4-2) are scalar, with A = –3, B = 1, C = –1, and D = 1.
Furthermore, (E4-10) and (E4-11) can be represented by the block diagram in Fig. E4.4.

We may note that the coefficient D is not zero, meaning that with a lead-lag element, an input can
have instantaneous effect on the output. Thus while the state variable x has zero initial condition,
it is not necessarily so with the output y. This analysis explains the mystery with the inverse
transform of this transfer function in Eq. (3-49) on page 3-15.

The MATLAB statement for this example is:

[a,b,c,d]=tf2ss([1 2], [1 3])

In the next two examples, we illustrate how state space models can handle a multiple-input
multiple output (MIMO) problem. We'll show, with a simple example, how to translate
information in a block diagram into a state space model. Some texts rely on signal-flow graphs,
but we do not need them with simple systems. Moreover, we can handle complex problems easily
with MATLAB. Go over MATLAB Session 4 before reading Example 4.7A.

✎  Example 4.5 : Derive the state space representation of two continuous flow stirred-tank
reactors in series (CSTR-in-series). Chemical reaction is first order in both reactors. The reactor
volumes are fixed, but the volumetric flow rate and inlet concentration are functions of time.

We use this example to illustrate how state space representation can handle complex models. First,
we make use of the solution to Review Problem 2 in Chapter 3 (p. 3-18) and write the mass
balances of reactant A in chemical reactors 1 and 2:

 
V1

dc1

dt
= q(co – c1 ) – V1 k 1 c1

(E4-12)

and  
V2

dc2

dt
= q(c1 – c2 ) – V2 k 2 c2

(E4-13)

Since q and co are input functions, the linearized equations in deviation variables and with zero

initial conditions are (with all apostrophes omitted in the notations):

 
V1

dc1

dt
= qs co + (cos – c1s ) q – (qs + V1 k 1 ) c1

(E4-14)

and
 

V2

dc2

dt
= qs c1 + (c1s – c2s ) q – (qs + V2 k 2 ) c2 (E4-15)

The missing steps are very similar to how we did Example 2.11 (p. 2-28). Divide the equations by
the respective reactor volumes and define space times τ1 = V1/qs and τ2 = V2/qs, we obtain

  dc1

dt
=

1
τ1

co +
cos – c1s

V1
q – (

1
τ1

+ k 1 ) c1 (E4-16)

and
  dc2

dt
=

1
τ2

c1 +
c1s – c2s

V2
q – (

1
τ2

+ k 2 ) c2 (E4-17)

Up to this point, the exercise is identical to what we learned in Chapter 2. In fact, we can
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now take the Laplace transform of these two equations to derive the transfer functions. In state
space models, however, we would put the two linearized equations in matrix form. As analogous
to Eq. (4-1), we now have

   

d
dt

c1

c2
=

– (
1
τ1

+ k 1) 0

1
τ2

– (
1
τ2

+ k 2)

c1

c2
+

1
τ1

cos – c1s

V1

0
c1s – c2s

V2

co

q
 , (E4-18)

The output y in Eq. (4-2) can be defined as

 y1

y2
=

1 0

0 1

c1

c2
=

c1

c2
(E4-19)

if we are to use two outputs. In SISO problems, we likely would only measure and control c2, and

hence we would define instead

 
y = 0 1

c1

c2
(E4-20)

with c2 as the only output variable.

✎  Example 4.6. Derive the transfer function Y/U and
the corresponding state space model of the block diagram
in Fig. E4.6.

From Chapter 2 block diagram reduction, we can easily
spot that

 
Y
U =

2
s (s + 1)

1 + 2
s (s + 1) (s + 10)

 ,

which is reduced to

  Y
U = 2 (s + 10)

s3 + 11s2 + 10s + 2
(E4-21)

This transfer function has closed-loop poles at –0.29, –0.69, and –10.02. (Of course, we computed
them using MATLAB.)

To derive the state space representation, one visual approach is to identify locations in the block
diagram where we can assign state variables and write out the individual transfer functions. In this
example, we have chosen to use (Fig. E4.6)

 X1
X2

= 1
s ;

X2
U – X3

= 2
s + 1 ;

X3
X1

= 1
s + 10 ;  and the output equation Y = X1

We can now rearrange each of the three transfer functions from which we write their time domain
equivalent:

sX1 = X2
  dx1

dt = x2 (E4-22a)

sX2 = –X2 –2X3 + 2U   dx2
dt = –x2 – 2x3 + 2u (E4-22b)

sX3 = –10X3 + X1
  dx3

dt = x1 – 10x3 (E4-22c)

2
s + 1

U +
–

X2
1
s

X1= Y

1
s + 10

X3

Figure E4.6
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The rest is trivial. We rewrite the differential equations in matrix form as

  
d
dt

x1

x2

x3

=
0 1 0
0 – 1 – 2
1 0 – 10

x1

x2

x3

+
0
2
0

u  ,  and  

 
y = 1 0 0

x1

x2

x3

(E4-23, 24)

We can check with MATLAB that the model matrix A  has eigenvalues –0.29, –0.69, and –10.02.
They are identical with the closed-loop poles. Given a block diagram, MATLAB can put the state
space model together for us easily. To do that, we need to learn some closed-loop MATLAB
functions, and we will defer this illustration to MATLAB Session 5.

An important reminder: Eq. (E4-23) has zero initial conditions x(0) = 0. This is a direct
consequence of deriving the state space representation from transfer functions. Otherwise, Eq. (4-1)
is not subjected to this restriction.

  4.2  Relation with transfer function models

From the last example, we may see why the primary mathematical tools in modern control are
based on linear system theories and time domain analysis. Part of the confusion in learning these
more advanced techniques is that the umbilical cord to Laplace transform is not entirely severed,
and we need to appreciate the link between the two approaches. On the bright side, if we can
convert a state space model to transfer function form, we can still make use of classical control
techniques. A couple of examples in Chapter 9 will illustrate how classical and state space
techniques can work together.

We can take the Laplace transform of the matrix equation in Eq. (4-1) to give

sX(s) = AX(s) + BU(s) (4-3)

where the capital X  does not mean that it is a matrix, but rather it is used in keeping with our
notation of Laplace variables. From (4-3), we can extract X explicitly as

X(s) = (sI – A)–1 BU(s) = Φ(s)BU(s) (4-4)

where

Φ(s) = (sI – A)–1 (4-5)

is the resolvent matrix.  More commonly, we refer to the state transition matrix (also called
the fundamental matrix) which is its inverse transform

Φ(t) = L–1[(sI – A)–1] (4-6)

We will use the same notation Φ for the time function and its Laplace transform, and only add the
t or s dependence when it is not clear in which domain the notation is used.

Setting D = 0 and X(s) derived in (4-4), the output Y(s) = CX(s) becomes

Y(s) = CΦ(s)BU(s) (4-7)
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In this case where U and Y are scalar quantities, CΦB must also be scalar.1 In fact, if we make an
association between Eq. (4-7) and what we have learned in Chapter 2, CΦB is our ubiquitous
transfer function. We can rewrite Eq. (4-7) as

Y(s) = Gp(s)U(s), (4-7a)

where

Gp(s) = CΦ(s)B (4-8)

Hence, we can view the transfer function as how the Laplace transform of the state transition
matrix Φ mediates the input B and the output C  matrices. We may wonder how this output
equation is tied to the matrix A. With linear algebra, we can rewrite the definition of Φ in Eq. (4-
5) as

   ΦΦ(s) = (sI – A)– 1 =
adj (sI – A)
det (sI – A)

(4-5a)

Substitution of this form in (4-8) provides a more informative view of the transfer function:

  Gp(s) =
C adj (sI – A) B

det (sI – A)
(4-8a)

The characteristic polynomial clearly is

det (sI – A) = 0 (4-9)

This is the result that we have arrived at, albeit less formally, in Example 4.1. Again, the poles of
Gp are identical to the eigenvalues of the model matrix A.

✎  Example 4.7: We'll illustrate the results in this section with a numerical version of Example
4.5. Consider again two CSTR-in-series, with V1 = 1 m3, V2  = 2 m3, k1 =1 min–1, k2 =2

min–1, and initially at steady state, τ 1 = 0.25 min, τ 2 = 0.5 min, and inlet concentration cos = 1

kmol/m3. Derive the transfer functions and state transition matrix where both co and q are input

functions.

With the steady state form of (E4-12) and (E4-13), we can calculate

  
c1s =

cos

1 + k 1 τ1
=

1
1 + 0.25

= 0.8 ,  and  
  

c2s =
c1s

1 + k 2 τ2
=

0.8
1 + 2(0.5)

= 0.4

In addition, we find 1/τ1 = 4 min–1, 1/τ2 = 2 min–1, (1/τ1 + k1) = 5 min–1,  (1/τ2 + k2) = 4

min–1, (cos – c1s)/V1 = 0.2 kmol/m6, and (c1s – c2s)/V2 = 0.2 kmol/m6. We substitute these

numerical values in (E4-16) and (E4-17), and take the Laplace transform of these equations to
obtain (for more general algebraic result, we should take the transform first)

 C1(s) =
4

s + 5
Co(s) +

0.2
s + 5

Q(s) (E4-25)

and
 C2(s) =

2
s + 4

C1(s) +
0.2

s + 4
Q(s)

                                                

1 From Eq. (4-5), we see that Φ is a (n x n) matrix. Since B is (n x 1), and C  is (1 x n), CΦB
must be (1 x 1).
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Further substitution for C1(s) with (E4-25) in C2(s) gives

 C2(s) =
8

(s + 4) (s + 5)
Co(s) +

0.2 (s + 7)
(s + 4) (s + 5)

Q(s) (E4-26)

Equations (E4-25) and (E4-26) provide the transfer functions relating changes in flow rate Q and
inlet concentration Co to changes in the two tank concentrations.

With the state space model, substitution of numerical values in (E4-18) leads to the
dynamic equations

  d
dt

c1

c2
=

– 5 0

2 – 4

c1

c2
+

4 0.2

0 0.2

co

q
(E4-27)

With the model matrix A, we can derive

  
(sI – A) =

s + 5 0
–2 s + 4

 ,

and
   ΦΦ(s) = (sI – A)– 1 =

1
(s + 5)(s + 4)

s + 4 0
2 s + 5

(E4-28)

We will consider (E4-19) where both concentrations c1 and c2 are outputs of the model. The

transfer function in (4-7) is now a matrix

Gp(s) = CΦ(s)B = 
 1

(s + 5)(s + 4)
s + 4 0

2 s + 5
4 0.2
0 0.2

(E4-29)

where C is omitted as it is just the identity matrix (E4-19).1 With input u(s) = [Co(s)  Q(s)]T, we

can write the output equation (4-6) as

   C1(s)

C2(s)
= CΦΦ(s)Bu(s) =

1
(s + 5)(s + 4)

4 (s + 4) 0.2 (s + 4)
8 0.2 (s + 7)

Co(s)

Q(s)
(E4-30)

This is how MATLAB returns the results. We of course can clean up the algebra to give

 
C1(s)

C2(s)
=

4
(s + 5)

0.2
(s + 5)

8
(s + 5)(s + 4)

0.2 (s + 7)
(s + 5)(s + 4)

Co(s)

Q(s)
(E4-30a)

which is identical to what we have obtained earlier in (E4-25) and (E4-26). The case of only one
output as in (E4-20) is easy and we'll cover that in Example 4.7A.

To wrap things up, we can take the inverse transform of (E4-30a) to get the time domain
solutions:

 c1

c2
=

4e– 5t 0.2e– 5t

8 (e– 4t – e– 5t) 0.2 (3e– 4t – 2e– 5t)

co

q
(E4-31)

                                                

1 Be careful with the notation. Upper case C is for concentration in the Laplace domain. The
boldface upper case C is the output matrix.
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✎  Example 4.7A: Repeat Example 4.7 using MATLAB.

If you understand the equations in Example 4.7, we are ready to tackle the same problem with
MATLAB.

t1=0.25; t2=0.5; % Define the variables

k1=1; k2=2;

V1=1; V2=2;

cos=1;

% Calculate the steady state values. MATLAB should return

c1s=cos/(1+k1*t1); % 0.8

c2s=c1s/(1+k2*t2); % 0.4

% Coefficients of A and B using (E4-18)

a11=-(1/t1+k1); % -5

a12=0;

a21=1/t2;

a22=-(1/t2+k2); % -4

b11=1/t1;

b12=(cos-c1s)/V1; % 0.2

b21=0;

b22=(c1s-c2s)/V2; % 0.2

% Finally build A and B in (E4-27)

a=[a11 a12; a21 a22]; % [–5 0; 2 4]

b=[b11 b12; b21 b22]; % [4 0.2; 0 0.2]

eig(a) % Check that they are -4, -5

c=[1 0; 0 1]; % Define C such that both C1 and C2 are outputs

d=[0 0; 0 0];

With all the coefficient matrices defined, we can do the conversion to transfer function. The
function ss2tf() works with only one designated input variable.  Thus, for the first input
variable Co, we use

% MATLAB returns, for input no. 1

[q1,p]=ss2tf(a,b,c,d,1) % q1=[0 4 16; 0 0 8]

% p =[1 9 20] = (s+4)(s+5)

The returned vector p is obviously the characteristic polynomial. The matrix q1 is really the first
column of the transfer function matrix in Eq. (E4-30), denoting the two terms describing the
effects of changes in Co on C1 and C2. Similarly, the second column of the transfer function
matrix in (E4-30) is associated with changes in the second input Q, and can be obtained with:

[q2,p]=ss2tf(a,b,c,d,2) % q2=[0 .2 .8; 0 .2 1.4]

% The first term is 0.2(s+4) because

% MATLAB retains p=(s+4)(s+5)

If C2 is the only output variable, we define C  according to the output equation (E4-20). Matrices
A and B remain the same. The respective effects of changes of Co and Q on C2 can be obtained

with
c=[0 1]; d=[0 0]; % C2 is the only output

[q21,p]=ss2tf(a,b,c,d,1) % Co as input; q21=[0 0 8]

[q22,p]=ss2tf(a,b,c,d,2) % Q as input; q22=[0 .2 1.4]
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We should find that the result is the same as the second row of (E4-30), denoting the two terms
describing the effects of changes in Co and Q on C2.

Similarly, if C1 is the only output variable, we use instead:

c=[1 0]; d=[0 0]; % C1 is the only output

[q11,p]=ss2tf(a,b,c,d,1) % q11=[0 4 16]

[q12,p]=ss2tf(a,b,c,d,2) % q12=[0 .2 .8]

and the result is the first row of (E4-30).

✎  Example 4.8: Develop a fermentor model which consists of two mass balances, one for the
cell mass (or yeast), C1, and the other for glucose (or substrate), C2. We have to forget about the

alcohol for now. The cell mass balance (E4-32) has two terms on the right. The first one describes
cell growth using the specific growth rate µ = µ(C2). The second term accounts for the loss of

cells due to outlet flow Q, which in turn is buried inside the notation D, the dilution rate.

   d C1

d t
= µC1 – DC1 (E4-32)

The specific growth rate and dilution rate are defined as:

  µ = µ(C2) = µm
C2

Km + C2
 ,   and   D =

Q
V

The glucose balance has three terms on the right. The first accounts for the consumption by the
cells. The last two terms account for the flow of glucose into and out of the fermentor.

   d C2

d t
= –

µC1

Y
+ D (C2o – C2) (E4-33)

The maximum specific growth rate µm, Monod constant Km, and cell yield coefficient Y are

constants. In (E4-33), C2o is the inlet glucose concentration.

The dilution rate D is dependent on the volumetric flow rate Q and the volume V, and really
is the reciprocal of the space time of the fermentor. In this problem, the fermentor volume, V,  is
fixed, and we vary the flow rate, Q. Hence, it is more logical to use D (and easier to think) as it is
proportional to Q.

Our question is to formulate this model under two circumstances: (1) when we only vary the
dilution rate, and (2) when we vary both the dilution rate and the amount of glucose input. Derive
also the transfer function model in the second case. In both cases, C1 and C2 are the two outputs.

To solve this problem, we obviously have to linearize the equations. In vector form, the
nonlinear model is

   d x
d t

= f(x, D) (E4-34)

where x = [C1 C2]
T, and

   
f(x, D) =

f1(x, D)

f2(x, D)

=
(µ(C2) – D) C1

–
µ(C2) C1

Y
+ D (C2o – C2)

(E4-35)
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We first take the inlet glucose, C2o, to be a constant (i.e., no disturbance) and vary only the

dilution rate, D. From the steady state form of (E4-32) and (E4-33), we can derive (without special
notations for the steady state values):

  
D (C2o – C2) =

µC1

Y
,  and   C1 = Y(C2o – C2) (E4-36)

Now we linearize the two equations about the steady state. We expect to arrive at (with the
apostrophes dropped from all the deviation variables and partial derivatives evaluated at the steady
state):

  

d
dt

C1

C2

=

∂f1

∂C1

∂f1

∂C2
∂f2

∂C1

∂f2

∂C2 s.s

C1

C2

+

∂f1

∂D
∂f2

∂D
s.s

D
(E4-37)

Using (E4-35) to evaluate the partial derivatives, we should find

    
d
dt

C1

C2

=
0 C1 µ'

–
µ
Y

–
C1

Y
µ' – µ

s.s.

C1

C2

+
–C1
C1

Y s.s.

D = Ax + BD (E4-38)

where µ' is the derivative with respect to the substrate C2:

   µ' =
dµ
dC2

= µm
Km

(Km + C2)
2 (E4-39)

All the coefficients in A and B are evaluated at steady state conditions. From Eq. (E4-32), D = µ at
steady state. Hence the coefficient a11 in A is zero.

To complete the state space model, the output equation is

 C1
C2

=
1 0
0 1

C1
C2

(E4-40)

where C is the identity matrix.

Now, we'll see what happens with two inputs. In practice, we most likely would make a
highly concentrated glucose stock and dose it into a main feed stream that contains the other
ingredients. What we manipulate is the dosage rate. Consider that the glucose feed stock has a fixed
concentration C2f and adjustable feed rate qf, and the other nutrients are being fed at a rate of qo. The

effective glucose feed concentration is

 
C2o =

qf C2f
qf + qo

=
qf C2f

Q (E4-41)

where Q = qf + qo is the total inlet flow rate, and the dilution rate is

 D =
Q
V

=
qf + qo

V
(E4-42)

The general fermentor model equation as equivalent to (E4-34) is

   d x
dt

= f(x, u) (E4-43)

where the state space remains x = [C1 C2]
T, but the input is the vector u = [Do Df]T. Here, Do =

qo/V and Df = qf/V are the respective dilution rates associated with the two inlet streams. That is,

we vary the main nutrient feed and glucose dosage flow rates to manipulate this system. The
function, f, is
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f(x, u) =

f1(x, u)
f2(x, u)

=
µ(C2)C1 – (Do + Df) C1

–
µ(C2) C1

Y
+ DfC2f – (Do + Df) C2

(E4-44)

At steady state,

µ = (Do + Df) = D (E4-45)

and

 C1 = Y(C*2o – C2) ,  where  
 

C*2o =
Df C2f

Do + Df
(E4-46)

The equations linearized about the steady state (with the apostrophes dropped from the deviation
variables as in E4-38) are

     

    
d
dt

C1

C2
=

0 C1µ'

–
µ
Y

–
C1

Y
µ' – µ

C1

C2
+

– C1 – C1

– C2 (C2f – C2) s.s.

Do
Df

= Ax + Bu (E4-47)

The output equation remains the same as in (E4-40). Laplace transform of the model equations and
rearrangement lead us to

 C1
C2

=
G11 G12
G21 G22

Do
Df

(E4-48)

where the four open-loop plant transfer functions are:

  
G11 =

–
C1

Y s.s.
s – C1

C1 µ'
Y

+ µ + C1µ'C2
s.s.

p(s) (E4-49)

  

G12 =
–

C1

Y s.s.
s + C1µ' (C2f - C2) – C1

C1µ'
Y

+ µ
s.s.

p(s) (E4-50)

  

G21 =
– C2 s.s.s +

C1µ
Y s.s.

p(s) (E4-51)

  

G22 =
C2f – C2 s.s.s +

C1µ
Y s.s.

p(s) (E4-52)

and the characteristic polynomial

  
p(s) = s2 +

C1µ'
Y

+ µ
s.s.

s +
C1 µ µ'

Y s.s.
(E4-53)

Until we can substitute numerical values and turn the problem over to a computer, we have to
admit that the state space form in (E4-47) is much cleaner to work with.

This completes our "feel good" examples. It may not be too obvious, but the hint is that linear
system theory can help us analysis complex problems. We should recognize that state space
representation can do everything in classical control and more, and feel at ease with the language of
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state space representation.

  4.3  Properties of state space models

This section contains brief remarks on some transformations and the state transition matrix. We
limit the scope to materials that one may draw on introductory linear algebra.

✑  4.3.1 Time-domain solution

We can find the solution to Eq. (4-1), which is simply a set of first order differential equations. As
analogous to how Eq. (2-3) on page 2-2 was obtained, we now use the matrix exponential function
as the integration factor, and the result is (hints in the Review Problems)

    x(t) = eAt x(0) + e– A(t –τ) Bu(τ) dτ
0

t
(4-10)

where the first term on the right evaluates the effect of the initial condition, and the second term is
the so-called convolution integral that computes the effect of the input u(t).

The point is that state space representation is general and is not restricted to problems with zero
initial conditions. When Eq. (4-1) is homogeneous (i.e., Bu = 0), the solution is simply

x(t) = eAtx(0) (4-11)

We can also solve the equation using Laplace transform. Starting again from (4-1), we can find
(see Review Problems)

    x(t) = Φ(t)x(0) + Φ(t – τ) Bu(τ) dτ
0

t
(4-12)

where Φ(t) is the state transition matrix as defined in (4-6). Compare (4-10) with (4-12), and we
can see that

Φ(t) = eAt (4-13)

We have shown how the state transition matrix can be derived in a relatively simple problem in
Example 4.7. For complex problems, there are numerical techniques that we can use to compute
Φ(t), or even the Laplace transform Φ(s), but which of course, we shall skip.

One idea (not that we really do that) is to apply the Taylor series expansion on the exponential
function of A, and evaluate the state transition matrix with

   Φ(t) = eAt = I + At + 1
2!

A2t2 + 1
3!

A3t3 + ... (4-14)

Instead of an infinite series, we can derive a closed form expression for the exponential function.
For an n x n matrix A, we have

eAt = α o(t)I + α 1(t)A + α 2(t)A2 + ... + α n–1(t)An–1 (4-15)

The challenge is to find those coefficients αi(t), which we shall skip.1

                                                

1 We only need the general form of (4-15) later in Chapter 9. There are other properties of the
state transition matrix that we have skipped, but we have structured our writing such that they are
not needed here.
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✑  4.3.2 Controllable canonical form

While there is no unique state space representation of a system, there are “standard” ones that
control techniques make use of. Given any state equations (and if some conditions are met), it is
possible to convert them to these standard forms. We cover in this subsection a couple of
important canonical forms.

A tool that we should be familiar with from introductory linear algebra is similarity transform,
which allows us to transform a matrix into another one but which retains the same eigenvalues. If
a state x  and another x  are related via a so-called similarity transformation, the state space
representations constructed with x and x  are considered to be equivalent.1

For the n-th order differential equation: 2

 y(n) + an –1y
(n –1) + ... + a1y

(1) + aoy = u(t) (4-16)

we define

x1 = y,  x2 = y(1),  x3 = y(2), …, and  xn = y(n–1) (4-17)

The original differential equation can now be reformulated as a set of first order equations:

x1
.

   = x2

x2
.

   = x3

.

. (4-18)

xn–1
.

   = xn

and finally

xn
.

   = –aox1 – a1x2 – … – an–1xn + u(t)

This set of equation, of course, can be put in matrix form as in Eq. (4-1):

  

x =

0 1 0 … 0

0 0 1 … 0

0 0 0 … 1

–ao –a1 –a2 … –an–1

x +

0

0

0

1

u = Ax + Bu
(4-19)

The output equation equivalent to Eq. (4-2) is

y = [ 1 0 0 … 0] x = Cx (4-20)

The system of equations in (4-19) and (4-20) is called the controllable canonical form

                                                

1 That includes transforming a given system to the controllable canonical form. We can say that
state space representations are unique up to a similarity transform. As for transfer functions, we
can say that they are unique up to scaling in the coefficients in the numerator and denominator.
However, the derivation of canonical transforms requires material from Chapter 9 and is not crucial
for the discussion here. These details are provided on our Web Support.

2 Be careful when you read the MATLAB manual; it inverts the index of coefficients as in
 y(n) + a1y

(n –1) + ... + an–1y
(1) + any . Furthermore, we use a simple RHS in the ODE. You’d find

more general, and thus messier, derivations in other texts.
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(also phase variable canonical form). As the name implies, this form is useful in doing
controllability analysis and in doing pole placement system design—topics that we will cover in
Chapter 9.

With all the zeros along the leading diagonal, we can find relatively easily that the characteristic
equation of A, |sI – A| = 0, is

sn + an–1sn–1 + ... + a1s + ao = 0 (4-21)

which is immediately obvious from Eq. (4-16) itself. We may note that the coefficients of the
characteristic polynomial are contained in the matrix A  in (4-19). Matrices with this property are
called the companion form. When we use MATLAB, its canon() function returns a companion
matrix which is the transpose of A in (4-19); this form is called the observable canonical form.
We shall see that in MATLAB Session 4.

✑  4.3.3 Diagonal canonical form

Here, we want to transform a system matrix A  into a diagonal matrix Λ that is made up of the
eigenvalues of A . In other words, all the differential equations are decoupled after the
transformation.

For a given system of equations in (4-1) in which A has distinct eigenvalues, we should find a
transformation with a matrix P:

x–   = P–1x,   or   x = P x–   (4-22)

such that

   x = ΛΛ x + B u (4-23)

where now B
–

  = P–1B, and Λ = P–1AP is a diagonal matrix made up of the eigenvalues of A . The
transformation matrix (also called the modal matrix) P  is made up of the eigenvectors of A . In
control, (4-23) is called the diagonal canonical form.

If A has repeated eigenvalues (multiple roots of the characteristic polynomial), the result, again
from introductory linear algebra, is the Jordan canonical form. Briefly, the transformation matrix
P now needs a set of generalized eigenvectors, and the transformed matrix J = P–1AP  is made of
Jordan blocks for each of the repeated eigenvalues. For example, if matrix A  has three repeated
eigenvalues λ1, the transformed matrix should appear as

  J =
J11 0
0 J22

     where   
   

J11 =
λ 1 1 0
0 λ 1 1
0 0 λ 1

(4-24)

and J22 is a diagonal matrix made up of eigenvalues λ 4,..., λ n. Since Chapter 9 later will not

make use of such cases, we shall leave the details to a second course in modern control.

✎  Example 4.9: For a model with the following transfer function

 Y
U

= 1
(s +3) (s + 2) (s + 1) ,

find the diagonal and observable canonical forms with MATLAB.

The statements to use are:
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G=zpk([],[-1 -2 -3],1);

S=ss(G); % S is the state space system

canon(S) % Default is the diagonal form

canon(S,'companion') % This is the observable companion

There is no messy algebra. We can be spoiled! Further details are in MATLAB Session 4.

❐   Review Problems

1. Fill in the gaps in the derivation of (E4-25) and (E4-26) in Example 4.7

2. Write down the dimensions of all the matrixes in (4-6) for the general case of multiple-input
and multiple-output models. Take x to be (n x 1), y (m x 1), and u (k x 1). And when y and u
are scalar, CΦB is a scalar quantity too.

3. Fill in the gaps in the derivation of (4-9) from (4-3a).

4. For the SISO system shown in Fig. R4.4,
derive the state space representation. Show that
the characteristic equation of the model matrix is
identical to the closed-loop characteristic
polynomial as derived from the transfer
functions.

5. Derive Eq. (4-10).

6. Derive Eq. (4-12).

7. Derive Eq. (4-23).

Hints:

2. A is (n x n), B (n x k), C (m x n), Φ (n x n), and CΦB (m x k).

4. Multiply the K to the transfer function to give a gain of 3K. Then the rest is easier than
Example 4.6.

5. We multiply Eq. (4-1) by exp(–At) to give    e– At [x – Ax] = e– At Bu , which is

    d
dt

[e– Atx] = e– At Bu

Integration with the initial condition gives

   e– At x(t) – x(0) = e– Aτ Bu(τ) dτ
0

t

which is one step away from Eq. (4-10).

6. The Laplace transform of Eq. (4-1) with nonzero initial conditions is

sX – x(0) = AX + BU

or

X = (sI – A)–1x(0) + (sI – A)–1BU

Substituting in the definition Φ(s) = (sI – A)–1, we have

X = Φ(s)x(0) + Φ(s)BU

u 3
(s + 2)–

1
(s + 5)

K
x  = y

x

1

2

Figure R4.4
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The time domain solution vector is the inverse transform

x(t) = L–1[Φ(s)]x(0) + L–1[Φ(s)BU]

and if we invoke the definition of convolution integral (from calculus), we have Eq. (4-12).

7. We first substitute x = Px–  in Eq. (4-1) to give

   P d
dt

x = APx + Bu

Then we multiply the equation by the inverse P–1

   d
dt

x = P– 1APx + P– 1Bu

which is (4-23).
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 ❖  9. Design of State Space Systems

We now return to the use of state space representation that was introduced in Chapter 4. As you
may have guessed, we want to design control systems based on state space analysis. State feedback
controller is very different from the classical PID controller. Our treatment remains introductory,
and we will stay with linear or linearized SISO systems. Nevertheless, the topics here should
enlighten(!) us as to what modern control is all about.

What are we up to?
• Evaluate the controllability and observability of a system.

• Pole placement design of state feedback systems. Application of
the Ackermann's formula.

• Design with full-state and reduced-order observers (estimators).

  9.1  Controllability and Observability

Before we formulate a state space system, we need to raise two important questions. One is
whether the choice of inputs (the manipulated variables) may lead to changes in the states, and the
second is whether we can evaluate all the states based on the observed output.  These are what we
call the controllability and observability problems.

✑  9.1.1 Controllability.

A system is said to be completely state controllable if there exists an input u(t) which can drive
the system from any given initial state xo(to=0) to any other desired state x(t). To derive the
controllability criterion, let us restate the linear system and its solution from Eqs. (4-1), (4-2), and
(4-10):

x  = Ax + Bu (9-1)

y = Cx (9-2)

and

    x(t) = eAt x(0) + e– A(t –τ) Bu(τ) dτ
0

t
(9-3)

With our definition of controllability, there is no loss of generality if we choose to have
x(t) = 0, i.e., moving the system to the origin. Thus Eq. (9-3) becomes

    x(0) = – e– Aτ Bu(τ) dτ
0

t

(9-4)

We next make use of Eq. (4-15) on page 4-14, i.e., the fact that we can expand the matrix
exponential function as a closed-form series:

eAt = α o(t)I + α 1(t)A + α 2(t)A2 + ... + α n–1(t)An–1 (9-5)

Substitution of Eq. (9-5) into (9-4) gives

    x(0) = – Ak B α k(τ)u(τ) dτ
0

tΣ
k = 0

n – 1

We now hide the ugly mess by defining the (n x 1) vector β with elements
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   β k(τ) = α k(τ)u(τ) dτ
0

t

and Eq. (9-4) appears as

   

x(0) = – Ak Bβ kΣ
k = 0

n – 1

= – B AB A2B An – 1B

β o
β 1

β n – 1

(9-6)

If Eq. (9-6) is to be satisfied, the (n x n) matrix [B  AB …  An–1B] must be of rank n. This is a
necessary and sufficient condition for controllability. Hence, we can state that a system is
completely controllable if and only if the controllability matrix

Co = [B  AB  A2B …  An–1B] (9-7)

is of rank n.

The controllability condition is the same even when we have multiple inputs, u. If we have
r inputs, then u is (r x 1), B is (n x r), each of the βk is (r x 1), β is (nr x 1), and Co is (n x nr).

When we have multiple outputs y, we want to control the output rather than the states.
Complete state controllability is neither necessary nor sufficient for actual output controllability.
With the output y = Cx and the result in (9-6), we can infer that the output controllability
matrix is

Co = [CB  CAB  CA2B …  CAn–1B] (9-8)

If we have m outputs, y is (m x 1) and C is (m x n). If we also have r inputs, then the output
controllability matrix is (m x nr). Based on our interpretation of Eq. (9-6), we can also infer that to
have complete output controllability, the matrix in (9-8) must have rank m.

✑  9.1.2 Observability

The linear time invariant system in Eqs. (9-1) and (9-2) is completely observable if every initial
state x(0) can be determined from the output y(t) over a finite time interval. The concept of
observability is useful because in a given system, all not of the state variables are accessible for
direct measurement. We will need to estimate the unmeasurable state variables from the output in
order to construct the control signal.

Since our focus is to establish the link between y and x, or observability, it suffices to
consider only the unforced problem:

x  = Ax (9-9)

and

y = Cx (9-10)

Substitution of the solution of (9-9) in (9-10) gives

y(t) = CeAtx(0)

We again take that we can expand the exponential function as in Eq. (9-5). Thus we have

   
y(t) = α k(t)CAkx(0)Σ

k = 0

n – 1

= α o α 1 α n – 1

C
CA

CAn – 1

x(0) (9-11)
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With the same reasoning that we applied to Eq. (9-6), we can infer that to have complete
observability, the observability matrix 1

  
Ob =

C
CA

CAn – 1

(9-12)

must be of rank n. When we have m outputs, y is (m x 1), C is (m x n), and Ob is (mn x n).

✎  Example 9.1: Consider a third order model:

  
A =

0 1 0
0 0 1

– 6 – 11 – 6
, B =

0
0
1

, C = 1 0 0

which is the controllable canonical form of the problem in Example 4.9 (p. 4-16). Construct the
controllability and observability matrices.

To compute the controllability matrix, we can use the MATLAB function ctrb():

A=[0 1 0; 0 0 1; -6 -11 -6];

B=[0; 0; 1];

Co=ctrb(A,B)

Or we can use the definition itself:

Co=[B A*B A^2*B]

Either way, we should obtain

  
Co =

0 0 1
0 1 – 6
1 – 6 25

which has a rank of 3 and the model is completely state controllable.

Similarly, we can use the MATLAB function obsv() for the observability matrix:

C=[1 0 0];

Ob=obsv(A,C)

Or we can use the definition:

Ob=[C; C*A; C*A^2]

We should find that Ob is the identity matrix, which of course, is of rank 3.

1   Controllability and observability are dual concepts. With C = BT and A = AT, we can see that
Ob = Co

T.
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✎  Example 4.8A: We now revisit the fermentor example 4.8 (p. 4-11). Our question is
whether we can control the cell mass and glucose concentration by adjusting only D.

From Eq. (E4-38) in Example 4.8, we have

   A =
0 C1 µ'

–
µ
Y

–
C1

Y
µ' – µ

, B =
–C1
C1

Y
First, we evaluate

   

AB =
0 C1 µ'

–
µ
Y

–
C1

Y
µ' – µ

– C1

C1
y

=

C1
2 µ'
Y

–
C1

2 µ
Y2

The controllability matrix is

   

Co = [B AB] =
– C1

C1
2 µ'
Y

C1

Y
–

C1
2 µ'

Y2

Since the determinant of Co is 0, the rank of Co is 1, both cell mass and substrate cannot be
controlled simultaneously by just varying D. The answer is quite obvious with just a bit of
intuition. If we insist on using D as the only input, we can control either C1 or C2, but not both
quantities. To effectively regulate both C1 and C2, we must implement a system with two inputs.
An obvious solution is to adjust the glucose feed concentration (C2o) as well as the total flow rate

(dilution rate D).

Now, we'll see what happens with two inputs. Compared with Eq. (E4-38), A remains the
same, while B in Eq. (E4-47) is now a (2 x 2) matrix with a rank of 2. Hence the controllability
matrix Co = [B  AB] is a (2 x 4) matrix and it must have a rank of 2 (since at least B is), and
both C1 and C2 are controllable.
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 9.2  Pole Placement Design

✑  9.2.1 Pole placement and Ackermann's formula.

When we used root locus for controller design in Chapter 7, we chose a dominant pole (or a
conjugate pair if complex). With state space representation, we have the mathematical tool to
choose all the closed-loop poles. To begin, we restate the state space model in Eqs. (4-1) and (4-2):

1
s CxB

A

K

–
u y+

+

Figure 9.1. Closed-loop system with state feedback

x
.
 = Ax + Bu (9-13)

y = Cx (9-14)

With a control system, the input u
is now the manipulated variable that is
driven by the control signal (Fig. 9.1).
For the moment, we consider only the
regulator problem and omit changes in the set point. We state the simple control law which
depends on full state feedback as

u(t) = – Kx  = –K1x1(t) –K2x2(t) … –Knxn(t) (9-15)

where K is the state feedback gain (1 x n) vector. In this formulation, the feedback
information requires x(t), meaning that we must be able to measure all the state variables.

We now substitute Eq. (9-15) in (9-13) to arrive at the system equation

x
.
 = (A – BK)x (9-16)

The eigenvalues of the system matrix (A – BK) are called the regulator poles. What we want is to
find K such that it satisfies how we select all the eigenvalues (or where we put all the closed-loop
poles).

To do that easily, we first need to put our model (9-13) in the controllable canonical form as
in Eq. (4-19) on page 4-15:

  

x =

0 1 0 … 0

0 0 1 … 0

0 0 0 … 1

–ao –a1 –a2 … –an–1

x +

0

0

0

1

u
(9-17)

After substituting for u with Eq. (9-15), the system matrix in (9-16) is

  

A – BK =

0 1 0 … 0

0 0 1 … 0

0 0 0 … 1

–ao –a1 –a2 … –an–1

–

0

0

0

1

K1 K2 Kn

or
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A – BK =

0 1 0 0

0 0 1 0

0 0 0 1

–a0 –K1 –a1 –K2 –a2 –K3 –an–1 –Kn

(9-18)

As in Eq. (4-21) on page 4-16, the closed-loop characteristic equation |sI – A + BK| = 0 will
appear as

sn + (an–1 + Kn)sn–1 + ... + (a1 + K2)s + (ao + K1) = 0 (9-19)

We next return to our assertion that we can choose all our closed-loop poles, or in terms of
eigenvalues, λ1, λ 2, … λn. This desired closed-loop characteristic equation is

(s – λ1)(s – λ2)… (s – λn) = sn + αn–1sn–1 + ... + α1s + αo = 0 (9-20)

where the coefficients αi are computed by expanding the terms in the LHS. By matching the
coefficients of like power of s in Eqs. (9-19) and (9-20), we obtain

ao + K1 = αo

a1 + K2 = α1

…

an–1 + Kn = αn–1

Thus in general, we can calculate all the state feedback gains in K by

Ki = α i–1  – ai–1        , i = 1, 2, … n (9-21)

This is the result of full state feedback pole-placement design. If the system is completely
state controllable, we can compute the state gain vector K to meet our selection of all the closed-
loop poles (eigenvalues) through the coefficients αi.

There are other methods in pole-placement design. One of them is the Ackermann's
formula. The derivation of Eq. (9-21) predicates that we have put (9-13) in the controllable
canonical form. Ackermann's formula only requires that the system (9-13) be completely state
controllable. If so, we can evaluate the state feedback gain as 1

K = [0 0 … 1] [B  AB  … An–1B]–1αc(A) (9-22)

where

α c(A) = An + α n–1An–1 + ... + α 1A  + α oI (9-23)

is the polynomial derived from the desired eigenvalues as in (9-20), except now αc(A) is an (n x n)
matrix.

✑  9.2.2 Servo systems.

We now re-introduce the change in reference, r(t). We will stay with analyzing a single-input
single-output system. By a proper choice in the indexing of the state variables, we select x1 = y.
In a feedback loop, the input to the process model may take the form

u(t) = Krr(t) – Kx(t)

1  Roughly, the Ackermann’s formula arises from the application of the Cayley-Hamilton theorem
to (9-20). The details of the derivation are in our Web Support.
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where Kr is some gain associated with the change in the reference, and K is the state feedback gain
as defined in (9-15). One of the approaches that we can take is to choose Kr = K1, such that u(t) is

u(t) = K1[r(t) – x1(t)] – K2x2(t) – … – Knxn(t) (9-24)

where we may recognize that r(t) – x1(t) is the error e(t).

The system equation is now

x
.
 = Ax + B[K1r – Kx]

or

x
.
 = (A – BK)x + BK1r (9-25)

The system matrix and thus design procedures remain the same as in the regulator problem in Eq.
(9-16).1

1
s C

x
B

A

K

–

u y = x+
+

1
s K

x
n+1

n+1
1r e

–
+

Figure 9.2. State feedback with integral control.

✑  9.2.3 Servo systems with integral control.

You may notice that nothing that we have covered so far does integral control as in a PID
controller. To implement integral action, we need to add one state variable as in Fig. 9.2. Here, we
integrate the error [r(t) – x1(t)] to generate the new variable xn+1. This quantity is multiplied by the
additional feedback gain Kn+1 before being added to the rest of the feedback data.

The input to the process model now takes the form

u(t) = Kn+1xn+1(t) – Kx(t) (9-26)

1     The system must be asymptotically stable. At the new steady state (as t –> ∞), we have

0 = (A – BK)x(∞) + BK1r(∞)

and subtracting this equation from (9-25), we have

x
.
 = (A – BK)(x – x(∞)) + BK1(r – r(∞))

If we define e = x – x(∞), and also r(t) as a step function such that r is really a constant for t > 0,
the equation is simply

e
.
 = (A – BK)e

Not only is this equation identical to the form in Eq. (9-16), but we also can interpret the analysis
as equivalent to a problem where we want to find K such that the steady state error e(t) approaches
zero as quickly as possible.
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The differential equation for xn+1 is

x
.

n+1 = r(t) – Cx (9-27)

We have written x1 = y = Cx just so that we can package this equation in matrix form in the next
step. Substitution of Eq. (9-26) in the state model (9-13) and together with (9-27), we can write
this (n + 1) system as

  x
xn + 1

=
A – BK BKn + 1

– C 0
x

xn + 1
+

0
1

r (9-28)

In terms of dimensions, (A – BK), B and C remain, respectively, (n x n), (n x 1), and (1 x n). We
can interpret the system matrix as

  A – BK BKn + 1
– C 0

=
A 0

– C 0
–

B
0

K –Kn + 1
 = Â 

 
–

 
B̂ K̂ (9-29)

where now our task is to find the (n + 1) state feedback gains

K̂ = [K  –Kn+1] (9-30)

With Eq. (9-29), we can view the characteristic equation of the system as

|sI – Â + B̂ K̂ | = 0 (9-31)

which is in the familiar form of the probelm in (9-16). Thus, we can make use of the pole-
placement techniques in Section 9.2.1.

✎  Example 9.2: Consider the second order model in Example 9.1. What are the state feedback
gains if we specify that the closed-loop poles are to be at –3±3j and –6?

With the given model in the controllable canonical form, we can use Eq. (9-21). The MATLAB
statements are:

A=[0 1 0; 0 0 1; -6 -11 -6]; % Should find
p1=poly(A) % [1 6 11 6], coefficients ai in (9-19)

P=[-3+3j -3-3j -6];

p2=poly(P) % [1 12 54 108], coefficients αi in (9-20)
p2-p1 % [0 6 43 102], Ki as in Eq.(9-21)

To obtain the state feedback gains with Eq. (9-21), we should subtract the coefficients of the
polynomial p1 from p2, starting with the last constant coefficient. The result is, indeed,

K = (K1, K2, K3) = (108–6,  54–11, 12–6) = (102, 43, 6)

Check 1. The same result can be obtained with the MATLAB function acker() which uses the
Ackermann's formula. The statements are:

B=[0; 0; 1];

acker(A,B,P) %Should return [102 43 6]

Check 2. We can do the Ackermann's formula step by step. The statements are:

M=[B A*B A^2*B]; %controllability matrix

ac=polyvalm(p2,A); %Eq.(9-23)

[0 0 1]*inv(M)*ac %Eq.(9-22)
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To evaluate the matrix polynomial in Eq. (9-23), we use the MATLAB function polyvalm()
which applies the coefficients in p2 to the matrix A.

✎  Example 4.7B: Let us revisit the two CSTR-in-series problem in Example 4.7 (p. 4-5). Use
the inlet concentration as the input variable and check that the system is controllable and
observable. Find the state feedback gain such that the reactor system is very slightly underdamped
with a damping ratio of 0.8, which is equivalent to about a 1.5% overshoot.

From (E4-27) of Example 4.7, the model is

  d
d t

c1

c2
=

– 5 0

2 – 4

c1

c2
+

4

0
co

and C2 is the only output. We can construct the model and check the controllability and

observability with

A=[-5 0; 2 -4];

B=[4; 0];

C=[0 1];

D=0;

rank(ctrb(A,B))   %should find rank = 2

rank(obsv(A,C))   % for both matrices

Both the controllability and observability matrices are of rank two. Hence the system is
controllable and observable.

To achieve a damping ratio of 0.8, we can find that the closed-loop poles must be at –4.5±3.38j
(using a combination of what we learned in Example 7.5 and Fig. 2.5), but we can cheat with
MATLAB and use root locus plots!

[q,p]=ss2tf(A,B,C,D); %converts state space to transfer function1

Gp=tf(q,p);

rlocus(Gp)

sgrid(0.8,1)

[kc,P]=rlocfind(Gp)  %should find kc = 1.46

We now apply the closed-loop poles P directly to the Ackermann’s formula:

K=acker(A,B,P)  %should find K = [0 1.46]

The state space state feedback gain (K2) related to the output variable C2 is the same as the

proportional gain obtained with root locus.  Given any set of closed-loop poles, we can find the
state feedback gain of a controllable system using state-space pole placement methods. The use of
root locus is not necessary, but it is a handy tool that we can take advantage of.

1  Another way here is to make use of the analytical result in Example 4.7:

Gp=zpk([],[-5 -4],8); %transfer function C2/Co taken from (E4-30a)
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✎  Example 4.7C: Add integral action to the system in Example 4.7B so we can eliminate the
steady state error.

To find the new state feedback gain is a matter of applying Eq. (9-29) and the Ackermann’s
formula. The hard part is to make an intelligent decision on the choice of closed-loop poles.
Following the lead of Example 4.7B, we use root locus plots to help us. With the understanding
that we have two open-loop poles at –4 and –5, a reasonable choice of the integral time constant is
1/3 min. With the open-loop zero at –3, the reactor system is always stable, and the dominant
closed-loop pole is real and the reactor system will not suffer from excessive oscillation.

Hence, our first step is to use root locus to find the closed-loop poles of a PI control system with
a damping ratio of 0.8. The MATLAB statements to continue with Example 4.7B are:

kc=1; taui=1/3;

Gc=tf(kc*[taui 1],[taui 0]);

rlocus(Gc*Gp); %Gp is from Example 4.7B

sgrid(0.8,1)

[kc,P]=rlocfind(Gc*Gp) %should find proportional gain kc=1.66

The closed-loop poles P are roughly at –2.15 and –3.43±2.62j, which we apply immediately to the

Ackermann’s formula using Â and B̂ in Eq. (9-29):

Ah=[A zeros(2,1); -C 0];  %Eq. (9-29)

Bh=[B; 0];

Kh=acker(Ah,Bh,P)         %should find Kh = [0 1.66 –4.99]

The state feedback gain including integral control K̂ is [0 1.66 –4.99].  Unlike the simple
proportional gain, we cannot expect that Kn+1 = 4.99 would resemble the integral time constant in

classical PI control. To do the time domain simulation, the task is similar to the hints that we
provide for Example 7.5B in the Review Problems. The actual statements will also be provided on
our Web Support.

✎  Example 7.5B: Consider the second order system in Example 7.5 (p. 7-9). What are the state
feedback gains if we specify that the closed-loop poles are to be –0.375±0.382j as determined in
Example 7.5A (p. 7-15)?

The problem posed in Examples 7.5 and 7.5A is not in the controllable canonical form (unless we
do the transform ourselves). Thus we will make use of the Ackermann's formula. The MATLAB
statements are:

G=tf(1,conv([2 1],[4 1])); %Make the state space object from

S=ss(G); %  the transfer function

scale=S.c(2); %Rescale MATLAB model matrices

S.c=S.c/scale; S.b=S.b*scale;

P=[-0.375+0.382j -0.375-0.382j]; %Define the closed-loop poles

k=acker(S.a,S.b,P) %Calculate the feedback gains

MATLAB will return the vector [0 1.29], meaning that K1 = 0, and K2 = 1.29, which was the
proportional gain obtained in Example 7.5A. Since K1 = 0, we only feedback the controlled
variable as analogous to proportional control. In this very simple example, the state space system
is virtually the classical system with a proportional controller.
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A note of caution is necessary when we let MATLAB generate the state space model from a transfer
function. The vector C (from S.c) is [0 0.5], which means that the indexing is reversed such that
x2 is the output variable, and x1 is the derivative of x2. Secondly, C is not [0 1], and hence we
have to rescale the matrices B and C. These two points are further covered in MALTA Session 4.
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Figure 9.3. Concept of using a state estimator to Figure 9.4. A probable model for a state estimator.
generate an estimated state feedback signal.

  9.3  State Estimation Design

✑  9.3.1. State estimator.

The pole placement design predicates on the feedback of all the state variables x (Fig. 9.1). Under
many circumstances, this may not be true. We have to estimate unmeasureable state variables or
signals that are too noisy to be measured accurately. One approach to work around this problem is
to estimate the state vector with a model.  The algorithm that performs this estimation is called
the state observer or the state estimator. The estimated state x~ is then used as the feedback
signal in a control system (Fig. 9.3). A full-order state observer estimates all the states even when
some of them are measured. A reduced-order observer does the smart thing and skip these
measurable states.

The next task is to seek a model for the observer. We stay with a single-input single-output
system, but the concept can be extended to multiple outputs. The estimate should embody the
dynamics of the plant (process). Thus one probable model, as shown in Fig. 9.4, is to assume that
the state estimator has the same structure as the plant model, as in Eqs. (9-13) and (9-14), or Fig.
9.1. The estimator also has the identical plant matrices A and B. However, one major difference

is the addition of the estimation error, y –  y~,  in the computation of the estimated state x~.

The estimated state variables based on Fig. 9.4 can be described by (details in Review
Problems)

x = Ax~ + Bu + Ke(y – Cx~ )

= (A – KeC)x~  + Bu + Key (9-32)

Here, y~  = C x~ has been used in writing the error in the estimation of the output, (y – y~). The (n x
1) observer gain vector Ke does a weighting on how the error affects each estimate. In the next two
sections, we will apply the state estimator in (9-32) to a state feedback system, and see how we

can formulate the problem such that the error (y – y~) can become zero.
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Figure 9.5. A regulator system with controller-estimator

✑  9.3.2. Full-order state estimator system

A system making use of the state estimator is shown in Fig. 9.5, where for the moment, changes
in the reference is omitted. What we need is the set of equations that describe this regulator system
with state estimation.

By itself, the estimator in Eq. (9-32) has the characteristic equation:

|sI – A + KeC| = 0 (9-33)

Our intention is to use the estimated states to provide feedback information:

u = –Kx~ (9-34)

The state space model Eq. (9-13) now appears as

x
.
 = Ax + Bu = Ax – BKx~ (9-35)

If we substitute y = Cx in (9-32), we can integrate Eqs. (9-32) and (9-35) simultaneously to
compute x(t) and x~(t). In matrix form, this set of 2n equations can be written as

   d
dt

x
x

= A – BK
KeC A – KeC – BK

x
x

(9-36)

✑  9.3.3. Estimator design

With Eq. (9-36), it is not obvious how Ke affects the choices of K. We now derive a form of (9-
36) that is based on the error of the estimation and is easier for us to make a statement on its
properties. We define the state error vector as

e(t) = x(t) – x~(t) (9-37)

Subtract Eq. (9-32) from (9-35), and use y = Cx, we should find

(x
.
 – x ) = (A – KeC)(x – x~ )    or    e

.
 = (A – KeC)e (9-38)

This error equation has the same characteristic equation as the estimator in Eq. (9-33). The goal is
to choose eigenvalues of the estimator such that the error decays away quickly. We may note that
the form of (9-38) is the same as that of the regulator problem. Thus we should be able to use the
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tools of pole-placement for the estimator design. In fact, we can apply, without derivation, a
modified form of Ackermann’s formula to evaluate

   

Ke = α e(A)

C
CA

CAn – 1

– 1
0

0

1

(9-39)

where as analogous to Eq. (9-20),

αe(s) = sn + α n–1sn–1 + … + α 1s + α o (9-40)

is the polynomial derived from our own chosen estimator eigenvalues. Eq. (9-39) is different from
Eq. (9-22) because we are now solving the dual problem for the (n x 1) vector Ke.

Next, we can replace x~  in Eq. (9-35) by the definition of the error vector, and the equation
becomes

x
.
 = Ax – BK(x – e) (9-41)

Eqs. (9-38) and (9-41) can be put in matrix form as

  x
e

= A – BK BK
0 A – KeC

x
e

(9-42)

Now, it is clear that the characteristic equation of the controller-estimator system is

|sI – A + BK| |sI – A + KeC| = 0 (9-43)

We have the very important result that choices for the eigenvalues for the pole-placement design
and the observer design can be made independently. Generally, we want the observer response to be
two to five times faster than the system response. We should not have to worry about saturation
since the entire observer is software-based, but we do have to consider noise and sensitivity
problems.

✎  Example 9.3: Consider the second order model in Example 9.1, which we have calculated the
state feedback gains in Example 9.2. What is the observer gain vector Ke if we specify that the
estimator error should have eigenvalues –9 repeated thrice?

With eigenvalues selected at –9, we have chosen the estimator to be faster than the state feedback,
and all the errors are to decay exponentially. We'll make use of the Ackermann’s formula in Eq. (9-
39) for observer gains. The MATLAB statements are:

A=[0 1 0; 0 0 1; -6 -11 -6]; %Define the model

B=[0; 0; 1];

C=[1 0 0];

pe=poly([-9 -9 -9]); %Make estimator polynomial (9-40)

ae=polyvalm(pe,A);

Ob=[C; C*A; C*A^2];

Ke=ae*inv(Ob)*[0; 0; 1] %Eq. (9-39)

We should find that Ke = (21, 106, –144). The estimator calculations are purely mathematical, and
the values of the observer gains can be negative. Furthermore, we can check that the system of
equations in Eq. (9-42) has the correct eigenvalues as suggested by Eq. (4-43).
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K=[102 43 6];   %Feeback gains calculated from Example 9.2

A11=A-B*K;      %Submatrices in Eq. (9-42)

A12=B*K;

A21=zeros(3,3);

A22=A-Ke*C;

BIGA=[A11 A12; A21 A22];

eig(BIGA)

Indeed, we should find that the big matrix BIGA has eigenvalues –3±3j, –6, and –9 repeated three
times.

✑  9.3.4. Reduced-order estimator

We should not have to estimate variables that we can measure. It is logical to design a reduced-
order estimator which estimates only the states that cannot be measured or are too noisy to be
measured accurately. Following our introductory practice, we will consider only one measured
output. The following development assumes that we have selected x1 to be the measured variable.
Hence, the output is

y = Cx = [1  0 …  0] x (9-44)

Next, we partition the state vector as

  x =
x1
xe

(9-45)

where xe = [x2 … xn] contains the (n – 1) states that have to be estimated. The state model
equation (9-13) is partitioned accordingly as

  x1
xe

=
a11 A 1e
A e1 A ee

x1
xe

+
b 1
Be

u (9-46)

where the dimensions of A1e, Ae1, Aee are, respectively, (1 x n–1), (n–1 x 1), and (n–1 x n–1),
and that of Be is (n–1 x 1).

The next task is to make use of the full state estimator equations. Before that, we have to
remold Eq. (9-46) as if it were a full state problem. This exercise requires some careful
bookkeeping of notations. Let’s take the first row in Eq. (9-46) and make it to constitute the
output equation. Thus we make a slight rearrangement:

x
.

1 – a11x1 – b1u = A1exe

such that it takes the form of  y = Cx. We repeat with the second row of (9-46) and put it as

x
.

e = Aeexe + (Ae1x1 + Beu)

such that it can be compared with x
.
  = Ax + Bu.

The next step is to take the full state estimator in Eq. (9-32),

x  = (A – KeC)x~  + Bu + Key

and substitute term by term using the reduced-order model equations.1 The result is, finally,

1   The matching of terms for reduced-order substitution in Eq. (9-31) to derive (9-47) to (9-49):
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xe = (Aee – KerA1e)x~e + (Ae1x1 + Beu) + Ker(  x1  – a11x1 – b1u) (9-47)

which is the reduced-order equivalent to (9-32). Note that in this equation, x1 = y.

The computation of the (n – 1) weighting factors in Ker can be based on the equivalent
form of Eq. (9-38). Again, doing the substitution for the notations, the error estimate becomes

e
.
 = (Aee – KerA1e)e (9-48)

which means that the Ackermann’s formula in Eq. (9-39) now takes the form

   

Ker = α e(A ee)

A 1e

A 1eA ee

A 1eA ee
n – 1

– 1

0
0

1

(9-49)

We are not quite done yet. If we use Eq. (9-47) to compute x~e, it requires taking the
derivative of x1, an exercise that can easily amplify noise. So we want a modified form that allows
us to replace this derivative. To begin, we define a new variable

x~e1 = x~e  – Kerx1 (9-50)

This variable is substituted into (9-47) to give

(x e1 + Kerx
.

1) = (Aee – KerA1e)(x~e1 + Kerx1) + (Ae1x1 + Beu) + Ker(x
.

1 – a11x1 – b1u)

After cancellation of the derivative term, we have

x e1 = (Aee – KerA1e)x~e1

+ (AeeKer – KerA1eKer + Ae1 – Kera11)x1 + (Be – Kerb1)u (9-51)

This differential equation is used to compute x~e1, which then is used to calculate x~e with (9-50).
With the estimated states, we can compute the feedback to the state space model as

  u = – K1 K1e
T x1

xe
(9-52)

The application of Eqs. (9-50) to (9-52) is a bit involved and best illustrated as shown in Fig. 9.6.

Full-order state estimator Reduced-order state estimator

x~  xe

y  x1  – a11x1 – b1u
C A1e
A Aee

Ke, (n x 1) Ker, (n–1 x 1)
Bu Ae1x1 + Beu
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Figure 9.6. State feedback with reduced-order estimator

✎  Example 9.4: Consider the estimator in Example 9.3, what is the reduced-order observer gain
vector Ker if we specify that the estimator error should have eigenvalues –9 repeated twice?

We can use Eq. (9-49), and the MATLAB statements are:

A=[0 1 0; 0 0 1; -6 -11 -6];

N=size(A,1);

a11=A(1,1);      %Extract matrix partitions as in Eq. (9-46)

A1e=A(1,2:N);

Ae1=A(2:N,1);

Aee=A(2:N,2:N);

pe=poly([-9 -9]); %Make estimator polynomial

ae=polyvalm(pe,Aee);

Ob=[A1e; A1e*Aee];

Ker=ae*inv(Ob)*[0; 1] %Eq. (9-49) for n=2

We should find that Ker = (12  –2).

After all this fancy mathematics, we need a word of caution. It is extremely dangerous to
apply the state estimate as presented in this chapter. Why? The first hint is in Eq. (9-32). We have
assumed perfect knowledge of the plant matrices. Of course, we rarely do. Furthermore, we have
omitted actual terms for disturbances, noises, and errors in measurements. Despite these drawbacks,
material in this chapter provides the groundwork to attack serious problems in modern control.

Review Problems

1. For the second order transfer function

  Y
U

=
1

s2 + 2ζωn s + ωn
2

 ,

derive the controllable canonical form. If the desired poles of a closed-loop system are to be
placed at λ1 and λ2, what should be the state feedback gains?

2. Presume we do not know what the estimator should be other than that it has the form
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x  = Fx~  + Gu + Hy

Find Eq. (9-32).

3. Do the time response simulation in Example 7.5B. We found that the state space system has a
steady state error. Implement integral control and find the new state feedback gain vector.
Perform a time response simulation to confirm the result.

R = 0 Y
G ec

State space
model

– Y U

Figure R9.4

4. With respect to Fig. R9.4, what is the
transfer function equivalent to the
controller-estimator system in Eq. (9-
32)?

Hints:

1. The controllable canonical form was derived in Example 4.1. The characteristic polynomial of
(sI – A + BK) should be

s2 + (2ζωn + K2)s + (ωn
2

 + K1) = 0

The characteristic polynomial of desired poles is

s2 + (λ1 + λ2)s + λ1λ2 = 0

Thus

K1 =  λ1λ2 – ωn
2   and    K2 = (λ1 + λ2) – 2ζωn

2. The Laplace transform of the given equation is

sX~   = F X~   + GU + HY

Substituting Y = CX, we have

X~   = (sI –F)–1[GU + HCX]

We further substitute for X = (sI –A)–1BU with the simple state space model to give

X~   = (sI –F)–1[G + HC(sI –A)–1B]U

What we want is to dictate that the transfer function of this estimator is the same as that of the
state space model:

(sI –F)–1[G + HC(sI –A)–1B] = (sI –A)–1B

Move the second term to the RHS and factor out the (sI –A)–1B gives

(sI –F)–1G = [I – (sI –F)–1HC](sI –A)–1B

Thus we can multiply (sI –F) to both sides to have

G = [(sI –F) – HC](sI –A)–1B

And finally,

[(sI –F) – HC]–1G = (sI –A)–1B

Compare term by term, we have

F + HC = A ,  or F = A – H C

and

G = B

This result is what we need in (9-32) if we also set H = Ke.
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3. For the time response simulation, we also duplicate the classical control design for
comparision. Both classical and state space results have the same damping ratio, but not system
steady state gain. The statements are:

G=tf(1,conv([2 1],[4 1]));

S=ss(G); %MATLAB uses reverse indexing

scale=S.c(2); %And need to rescale B and C too

S.c=S.c/scale;

S.b=S.b*scale;

 P=[-0.375+0.382j -0.375-0.382j]; %Define the closed-loop poles

K=acker(S.a,S.b,P)

%Compute the system matrices for plotting

A = S.a - S.b*K %Makes system matrix, Eq. (9-25)

B = S.b*K(2)

C = S.c

D=0;

step(A,B,C,D)

hold %to add the classical design result

Gcl=feedback(1.29*G,1);

%Kc=1.29 was the proportional gain obtained in Example 7.5A

step(Gcl)

To eliminate offset, we need Section 9.2.3. With an added state due to integration, we have to
add one more closed-loop poles. We choose it to be –1, sufficiently faster than the real part of
the complex poles. The statements are:

G=tf(1,conv([2 1],[4 1]));

S=ss(G);  %Generates the matrices S.a, S.b, S.c, S.d

Ah=[S.a  zeros(2,1); -S.c 0] % Â in (9-29)

Bh=[S.b; 0] %
 
B̂

P=[-0.375+0.382j -0.375-0.382j -1]; %Add a faster pole at -1

kh=acker(Ah,Bh,P) %K-head in (9-29) % K̂

We should find K̂ = [2 3.6 -2.3]. To do the time response simulation, we can use:

Asys=Ah-Bh*kh; %System matrix (9-29)

Bsys=[0; 0; 1]; %Follows (9-28)

Csys=[S.c 0];

step(Asys, Bsys,Csys,0)

4. For the estimator, y is the input and u the output. With u = –Kx~ , the Laplace transform of Eq.
(9-32) is

[sI – A + KeC + BK]X~ (s)   = KeY(s)

or X~ (s)  = [sI – A + KeC + BK]–1KeY(s)

We now substitute X~   back in the Laplace transform of u = –Kx~  to obtain

U(s) = –K[sI – A + KeC + BK]–1KeY(s) = –Gec(s)Y(s)
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