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1. Introduction 

 

The bond between the bars and concrete is a key factor 

influencing the mechanical features of the structure (Turk et 

al. 2005, Ahmad et al. 2018, Golafshani et al. 2014) and an 

important design parameter that manages the performance 

of RC sections in both the ultimate and serviceability limit 

states (Lin et al. 2019). In different offensive environments, 

corrosion of steel reinforcement is one of the most 

momentous hazards found in reinforced concrete structures 

(Maurel et al. 2005, Yao et al. 2015, Moodi et al. 2017, 

Shirkhani et al. 2019). Corrosion of steel reinforcement 

leads to a large reduction of the effective cross-section of 

the steel rebars. As a result, the bond strength of rebar and 

concrete undergoes a notable decrease (Wang and Liu 

2004). This has caused a growing need for such alternative 

materials as FRP bars for RC structures. GFRP bars have 

been more popular for their superior corrosion resistance, 

high strength-to-weight ratio, and high-cost efficiency 

(Nanni et al. 1995). For an optimum RC structure design, 

the load at the concrete and reinforcement interface should 

be transferred efficiently and reliably through the bond 

between the two materials (Golafshani et al. 2014). So far, 

numerous studies have been conducted to estimate the bar-

concrete bond strength in spliced concrete beams. Ehsani et 
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al. (1996) proposed a relationship to predict the bond 

strength of GFRP bars in terms of the bar diameter and 

concrete compressive strength. The Japanese Design 

Recommendation (1997) (JSCE) has predicted the bond 

strength of FRP bars in the splitting failure mode by 

modifying the steel bars’ bond strength equation. Okelo and 

Yuan (2005) suggested a relationship similar to that of 

Ehsani et al. (1996) to estimate the bond strength of FRP 

bars. Considering the effects of bar diameter, splice length, 

concrete cover, and confinement provided by the transverse 

reinforcement, Aly (2005) predicted the bond strength of 

the GFRP and CFRP bars. Wambeke and Shield (2006) 

proposed a relationship to calculate the bond strength of 

GFRP bars through linear regressions on a database 

including RC beams with GFRP bars; the ACI 440.1R-15 

guidelines (2015) has used their relationship. The 

CAN/CSA S806-12 code (2012) has determined the bond 

strength of FRP bars considering such parameters as the 

concrete cover, bar casting position, concrete strength, bar 

diameter, fiber type and bar surface properties. Choi et al. 

(2012) presented two relationships to predict the bond 

strength of the GFRP bars. Esfahani et al. (2013) predicted 

the bond strength of GFRP bars by the Monte Carlo 

simulation method considering the effects of such 

parameters as the transverse reinforcement, bar surface 

properties, bar diameter, and concrete compressive strength. 

The CAN/CSA-S6-14 (2014) has predicted the bond 

strength of FRP bars considering the effects of bar elasticity 

modulus, confinement, concrete cover, bar casting position, 

bar diameter, and bar surface properties. Xue et al. (2014) 

proposed a relationship to calculate the bond strength of the 

GFRP bars with diameters less than 20 mm and embedment 

 
 
 

Bond strength prediction of spliced GFRP bars  
in concrete beams using soft computing methods 

 

Saeed Farahi Shahria and Seyed Roohollah Mousavi 
 

Civil Engineering Department, University of Sistan and Baluchestan, Daneshgah Street, Zahedan, Iran 

 
(Received January 29, 2020, Revised February 16, 2021, Accepted February 25, 2021) 

 
Abstract.  The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) 

members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite 

necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the 

splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to 

accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models 

including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization 

parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized 

as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic 

algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization 

parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous 

models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, 

respectively, compared to the best previous model. 
 

Keywords:  bond strength; spliced GFRP bars; concrete beams; soft computing methods; genetic algorithm 

 



 

Saeed Farahi Shahri and Seyed Roohollah Mousavi 

 

lengths less than 20 times the bar diameter. Using the 

artificial neural network and genetic programming 

approaches, Golafshani et al. (2015) predicted the bond 

strength of GFRP bars considering the effects of seven 

different variables. Ashrafi et al. (2017) proposed an 

empirical relationship to predict the ultimate tensile stress 

and the free-end slip of GFRP bars. Bazli et al. (2017) 

developed some equations to evaluate the influence of 

various parameters on the bond strength between the 

different types of concrete and GFRP bars under 

environmental conditions. Rakhshanimehr et al. (2018) 

suggested some equations for the local bond strength and 

displacement modulus of GFRP bars and finally presented a 

relationship for the bond strength of spliced GFRP bars in 

RC beams considering the non-uniform distribution of the 

bond stress along with the splice and effects of the elasticity 

modulus of the GFRP bars. Koroglu (2018) proposed ANN 

and regression models to forecast the FRP bar-concrete 

bond strength.  

Although researches that estimate the bond strength of 

GFRP bars are numerous, studies have shown that the 

prediction accuracy of their proposed relationships can be 

improved. To this end, some researchers have suggested 

that different coefficients of existing relationships can be 

modified to enhance the prediction accuracy (Zemour et al. 

2018). Some others have used machine learning and soft 

computing methods to achieve higher prediction accuracy 

(Golafshani et al. 2015). A reliable experimental database, 

including the 112 spliced concrete beams reinforced with 

GFRP bars, has been collected from the literature. Most 

previous models have estimated the bond strength much 

more or much less than the test values. This paper has made 

use of the improved MARS, Kriging, and M5 models to 

forecast the bond strength of GFRP bars in spliced concrete 

beams with high precision. Since proper selection of 

regularization parameters would greatly affect the fitting of 

the models, to enhance the prediction efficiency and 

accuracy, parameters effective in their fitting have been 

optimized by the genetic algorithm (GA). To ensure the 

generalization ability of the proposed models, training and 

testing data have been considered based on the ten-fold 

cross-validation technique. The results of the proposed 

methods have compared with those of other earlier 

researches and design codes. 

 

 

2. Effective parameters in calculating the GFRP bar-
concrete bond strength 

 

2.1 Bar casting position 
 

It was recognized that air bubbles and water move 

upward during the concrete casting and get stuck under the 

rebar. This occurrence reduces the linkage surface between 

bar and concrete and leads to a significant loss in the bond 

strength of top-cast bar specimens (Chaallal and 

Benmokrane 1993, Ehsani et al. 1993, Tighiouart et al. 

1998). So far, several researchers have done some tests to 

determine the effects of top-cast GFRP bars on the 

concrete-bar bond strength. Chaallal and Benmokrane 

(1993) proposed a top bar factor of 1.23 for normal-strength 

and 1.18 for high-strength concrete. Ehsani et al. (1996) 

presented a 1.25 coefficient for the top bar effect. The JSCE 

(1997) used a 1.3 coefficient for the top-cast bar specimens. 

After testing the pullout specimens, and to consider the top 

bar factor of the GFRP bars, Tighiouart et al. (1998) 

suggested a 1.3 coefficient based on which the ACI 440.1R-

03 guidelines (2003) considered the same coefficient for the 

top bar specimens. Wambeke and Shield (2006) proposed a 

1.5 coefficient which was then used by ACI 440.1R-06 

(2006) and ACI 440.1R-15 (2015). The CAN/CSA S806-12 

(2012) and CAN/CSA S6-14 (2014) design 

recommendations advised a coefficient of 1.3 for the top-

cast specimens. Pay et al. (2014) concluded that specimens 

with top bars experienced an average 7% loss in bond 

strength compared to those with bottom bars. Park et al. 

(2016) considered vertical, horizontal bottom, and 

horizontal top casting positions for the bar; results showed 

that the average bond strength of the horizontal bottom and 

horizontal top castings were, respectively, 91 and 40% of 

that of the vertical casting. Saleh et al. (2019) concluded 

that the bond strength of the specimens with bottom bars 

was more than that with top bars. To study this effect more 

precisely, the current paper has collected some similar-

characteristic test specimens (Table 1), has found the bond 

strength ratio of specimens with bottom bars to those with 

top bars to be 1.12, and has divided the bond strength 

(estimated through soft computing models) by 1.12 for 

specimens with top GFRP bars. 

 

2.2 Concrete compressive strength  
 

Studies have revealed that the compressive strength of 

the concrete nearby the rebar is straightly relevant to the 

failure type as well as the bond strength. Malvar (1994) 

showed that for the splitting failure, an increment in the 

concrete compressive strength would improve the bond 

strength. Results of the studies of many researchers have 

shown that the bond strength of FRP bars and concrete has a 

good relevance with the square root of the concrete 

compressive strength (Faza and GangaRao 1990, Pleimann 

1987, Okelo and Yuan 2005). Achillides and Pilakoutas 

(2004) found that for the high-strength concrete (>30 MPa), 

failure would appear on the surface of the FRP 

reinforcement, and when compressive strength was close to 

15 MPa, the concrete damaged in front of the ribs of the 

FRP reinforcement. Lee et al. (2009) concluded that the 

bond strength of the steel and helically wrapped GFRP bars 

was more proportionate to the concrete compressive 

strength, and that of the sand-coated GFRP bars was 

determined more by the relative interfacial strengths of 

interfaces. Baena et al. (2009) showed that the concrete 

strength influenced the failure mode, and the bond strength 

of FRP reinforcement did not depend much on the concrete 

compressive strength for values of more than 30 MPa. Zhou 

et al. (2012) observed that an increment in the concrete 

strength would enhance the bond strength of the sand-

coated GFRP bars. Hossain et al. (2017) studied the bond 

characteristics of GFRP bars in the high-strength concrete 

and ultra-high-strength concrete and concluded that bond  
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Table 1 Bond strength comparison for specimens with 

bottom and top-cast GFRP bars 

References Specimens ubot/utop 

Ehsani et al. 

(1996) 

46B3Bl,46B3T1 1.25 

46B3B2,46B3T2 1.20 

46B6B2,46B6T2 1.22 

46B12B2,46B12T2 1.07 

86B12B2,86B12T2 1.03 

46B16B4,46B16T4 1.06 

86B16B4,86B16T4 1.04 

49B22B2,49B22T2 1.02 

89B22B2,89B22T2 1.04 

49B26B4,46B26T4 1.04 

89B26B4,89B26T4 1.04 

43PB,43PM 1.04 

43PB,43PT 1.05 

46PB,46PM 1.19 

46PB,46PT 1.24 

86PB,86PM 1.09 

86PB,86PT 1.13 

49PB,49PM 1.13 

49PB,49PT 1.15 

89PB,89PM 1.08 

89PB,89PT 1.10 

Tighiouart et al. 

(1999) 

12B,12T 1.26 

19B,19T 1.32 

Pay et al. 

(2014) 

B-HG-8-12b,B-HG-8-12b 1.04 

B-HG1-5-24b,B-HG1-5-24 1.08 

B-PG-5-24b,B-PG-5-24 1.06 

B-HG1-5-12b,B-HG1-5-12 1.27 

B-PG-5-12b,B-PG-5-12 1.28 

B-HG-8-24b,B-HG-8-24 1.11 

Saleh et al. 

(2019) 

A-9.5-5d-B,A-9.5-5d-T 1.04 

A-12.7-5d-B,A-12.7-5d-T 1.14 

A-15.9-5d-B,A-15.9-5d-T 1.15 

A-9.5-10d-B,A-9.5-10d-T 1.10 

A-12.7-10d-B,A-12.7-10d-T 1.01 

A-15.9-10d-B,A-15.9-10d-T 1.01 

B-9.5-5d-B,B-9.5-5d-T 1.02 

B-12.7-5d-B,B-12.7-5d-T 1.21 

B-15.9-5d-B,B-15.9-5d-T 1.40 

B-9.5-10d-B,B-9.5-10d-T 1.10 

B-12.7-10d-B,B-12.7-10d-T 1.09 

Average 1.12 

Standard deviation 0.09 

 

 

strength would improve with increasing the concrete 

compressive strength. 

 

2.3 Bar diameter 
 

For an assumed splice length, the entire bond force 

generated by the bar increases with increasing the bar 

diameter. Since the increase rate of bond strength is less 

than that of the bar cross-sectional area, an increase in the 

bar diameter will reduce the bond stress. Using the bar with 

higher diameter leads to the reduction of pullout stress. 

Thus, as the bar diameter increases, a higher splice length is 

needed (Nanni et al. 1995, Tighiouart et al. 1998). When 

the diameter of the bar is larger, more leakage water gets 

stuck under the rebar which will decrease the bar-concrete 

linkage surface and the bond strength (Ehsani et al. 1996, 

Tighiouart et al. 1998, Hao et al. 2006, Baena et al. 2009). 

 

2.4 Concrete cover 
 

The concrete cover encloses the reinforcement and thus 

increases the bond strength. When the concrete cover is 

enough, splitting failure will be prevented or delayed (ACI 

440.1R-03 2003). Ehsani et al. (1996) observed that the 

concrete cover extremely affected the bond failure type of 

GFRP bars. Aly (2005) showed that an increase in the 

concrete cover by up to four times the diameter of GFRP 

bars would increase the bond strength by 27%. Many papers 

have shown that the concrete cover thickness and bond 

strength of GFRP bars are related (Harajli and Abouniaj 

2010, CAN/CSA S806-12 2012, Kotynia et al. 2017). The 

effect of the concrete cover has been regarded by the ratio 

of the concrete cover to the bar diameter (C/db). Where C is 

the minimum of the side cover, bottom cover, or one-half of 

the clear spacing between developed bars. 

 

2.5 Splice or embedment length 

 
An increase in the splice length will cause the bond 

stress distribution to be non-linearized and bond stresses to 
reduce; the more the splice length becomes, bond stresses 
will be distributed over a longer length thereby reducing the 

bar-concrete bond strength. Results of many studies have 
shown that an increase in the bar splice or embedment 
lengths will reduce the bond strength of GFRP bars 
(Achillides and Pilakoutas 2004, Okelo and Yuan 2005, 
CAN/CSA S806-12 2012, Saleh et al. 2019). Embedment 
length also affects the type of bond failure. Zhou et al. 

(2012) studied the bond behavior of sand-coated GFRP bars 
and showed that for embedment lengths less than five times 
the bar diameter, failure is of the pullout type, and for those 
more than that, it is of the splitting type. The effect of the 
splice length has been considered by the ratio of the splice 
length to the bar diameter (L/db). 

 

2.6 Bar elasticity modulus 
 

Achillides (1998) showed that the splitting bond 

strength of GFRP bars was close to 65 to 75% that of CFRP 

bars indicating the important role of the bar elasticity 

modulus in the splitting bond behavior. Mosley et al. (2008) 

conducted three sets of spliced beam tests with GFRP, 

AFRP, and steel bars and showed that the bond strength of 

FRP bars was much less than that of steel bars, and the bar 

elasticity modulus was a fundamental variable affecting the 

bond strength. Pay et al. (2014) also have pointed to the 

effect of the bar elasticity modulus on the bond strength. 

The effect of the bar elasticity modulus has been considered 

by the ratio of the elasticity modulus of steel bars to that of 

FRP bars (Es/Efrp). 
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2.7 Bar surface properties 
 

So far, many researchers have investigated the bond 

performance of various FRP bars with different surface 

features and shown that the presence of ribs on the bar 

surface would improve the bond behavior compared to non-

ribbed surfaces. Makitani et al. (1993) concluded that 

surface features of FRP bars affect the bond strength. 

Although many researchers have pointed to the role of the 

bar surface features in the bond strength of FRP bars 

(Malvar 1994, Achillides and Pilakoutas 2004, Baena et al. 

2009, Zhou et al. 2012, Esfahani et al. 2013), some others 

have believed that such features have had no significant 

effects on the bond strength (Wambeke and Shield 2006, 

Pay et al. 2014, Mosley et al. 2008). The parameter fR 

accounts for the effect of bar surface properties based on the 

work by Esfahani et al. (2013). 

 

2.8 Transverse reinforcement 
 

So far, few researchers have examined the effects of 

transverse reinforcement on the bond strength of FRP bars; 

however, some have shown that its presence along the 

splice will prevent splitting cracks and will cause the bond 

force required for failure to increase (Orangun et al. 1977, 

Tepfers 1982). Achillides (1998) showed that in RC 

specimens with FRP bars, the transverse reinforcements 

restrict the crack width after the creation of the splitting 

cracks and, hence, improve the bond strength. Wambeke 

and Shield (2006) studied previous papers’ test specimens 

with transverse reinforcements and concluded that their 

presence had no notable influence on the bond strength of 

GFRP bars may be due to their lower relative rib area. 

Some other researchers have pointed to the effects of 

transverse reinforcement on the enhancement of the bond 

strength (Kanakubo et al. 1993, Aly 2005, Esfahani et al. 

2013). The effect of the transverse reinforcement has been 

considered by the ratio of the area of transverse 

reinforcement to the product of transverse reinforcement 

spacing, number of developed bars and bar diameter 

(At/sndb). 

 

 

3. Existing models in predicting bond strength of 
GFRP bars 

 

The JSCE (1997) revised equations which were used to 

specify the bond strength for steel bars and proposed the 

following equation for FRP bars 

1/m bodu f =  (1) 

where um, fbod, and α1 are the bond strength of FRP bars, 

design bond strength of concrete, and confinement 

modification factor, respectively. The confinement 

modification factor can be determined by using the 

parameter kc, as follows 

15 tr tr

c

b b s

A EC
k

d sd E


= +  (2) 

1

1

1

1

1

1.0           1.0

1.0 1.5  0.9

1.5 2.0  0.8

2.0 2.5  0.7

2.5           0.6

c

c

c

c

c

k

k

k

k

k











  =

  =

  =

  =

 =

 (3) 

23
2

2

0.28
3.2

1.3

c

bod

f
Nf

mm

 
=   (4) 

where C′ is the minimum of bottom clear cover of main 

reinforcement and half of the clear space between the 

developed reinforcement (mm), db is the bar diameter (mm), 

Atr is the area of transverse reinforcement (mm2), s is the 

spacing between the transverse reinforcement (mm), Etr is 

the elasticity modulus of transverse reinforcement (MPa), 

Es is the elasticity modulus of steel (MPa), fbod is the design 

bond strength between concrete and bar (MPa), α2 is the 

modification factor for bond strength, and f′c is the 

compressive strength of concrete (MPa). 

Okelo and Yuan (2005) performed 151 pullout tests on 

FRP (AFRP, CFRP, and GFRP) and steel bars to investigate 

their bond characteristics. They presented the following 

equation to estimate the bond strength of FRP bars 

14.7 c

m

b

f
u

d


=  (5) 

Aly (2005) tested 33 beam specimens reinforced with 

spliced carbon or glass FRP bars. He proposed an equation 

for calculating the bond strength of tensile lap-splice of 

FRP bars, as follows 

1

4490 1800 108 41.5

tr ytm b

frp

b s bc

A fu dC
E

d L sdf

 
= + + + 

  

 (6) 

in which Ls is the splice length (mm), Efrp is the elasticity 

modulus of FRP bar (MPa), and fyt is the yield stress of 

transverse reinforcement (MPa). 

Wambeke and Shield (2006) used a manner similar to 

that used by Orangun et al. (1977) and presented the 

following expression for predicting the average bond 

strength of GFRP bars in the splitting mode of failure 

1
4 0.3 100

0.083

m b

b sc

u dC

d Lf 

 
= + + 

  

 (7) 

where C" is the minimum of the cover to the center of the 

bar, and one-half of the center-to-center spacing of the 

developed bars (mm), and α is the top bar factor which was 

recommended to be 1.5 and 1 for top and bottom bar 

specimens, respectively. ACI 440.1R-06 (2006) subscribed 

to the equation proposed by Wambeke and Shield (2006) for 

predicting the bond strength of FRP bars. This equation has 

also been used by ACI Committee 440 for inclusion in the 

latest version (ACI 440.1R-15 2015). 

Based on the CAN/CSA-S806-12 (2012), the bond 

strength between FRP rebars and concrete can be calculated 

from Eq. (8). 

1 2 3 4 51.15( )

cs c

m

b

d f
u

k k k k k d


=

 

(8) 
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where dcs represents minimum of the distance from the 

concrete surface to the center of the developed bars and 

two-thirds of the center-to-center distance of the developed 

bars (shall not be taken greater than 2.5 times bar diameter), 

k1 denotes bar location factor (1.0 for bottom cast bars and 

1.3 for top cast bars), k2 represents concrete density factor 

(1.0 for normal density concrete, 1.2 for semi-low-density 

concrete, and 1.3 for low-density concrete), k3 corresponds 

to rebar size factor (1.0 for Ab>300 mm2 and 0.8 for Ab≤300 

mm2), k4 denotes bar fiber factor (1.25 for AFRP bars and 

1.0 for GFRP and CFRP bars), and k5 represents bar surface 

factor (1.0 for surface roughened or sand coated or braided 

surfaces, 1.05 for spiral pattern surfaces or ribbed surfaces, 

1.8 for indented surfaces). 

The bond strength of FRP bars as per Canadian 

Highway Bridge Design Code CAN/CSA-S6-14 (2014) can 

be obtained from Eq. (9) 

1 4

( / )

0.45

cr cs tr frp s

m

b

f d K E E
u

d k k

+
=  (9) 

in which fcr is the cracking strength of concrete (MPa), and 

Ktr is the transverse reinforcement index given by 

Atrfyt/10.5sn. 

Choi et al. (2012) proposed two following equations to 

predict the average bond strength of the GFRP bars 

0.037 0.151 7.719m b

b sc
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d Lf
= + +


 (10) 

max

min
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b sc

u C dC
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  
= + + +  

   

 (11) 

where Cmax and Cmin are the maximum and minimum of the 

bottom and side concrete covers, respectively. 

Esfahani et al. (2013) suggested the following equation 

for predicting the bond strength of GFRP bars 

1
2.36 0.177 59

0.083

tr ytm b

R

b s bc

A fu dC
f

d L sdf 

 
= + + + 

  
 (12) 

where fR is the surface factor of GFRP bar (0.03 for helical 

wrapped, 0.08 for grooved, 0.17 for sand coated, and 0.21 

for ribbed surfaces). 

Xue et al. (2014) introduced the following expression 

for estimating the bond strength of GFRP bars with the 

diameter less than 20 mm and the embedment length less 

than 20 times bar diameter 

( )( )
0.62

5.27 1.477 0.028 2.59 d

m t b

b

L
u f d

d


−  
  = −  

   

 (13) 

in which α′ represents the coefficient of the outer surface of 

GFRP bar (1 for sand-coated deformed, 0.64 for sand-

coated ribbed, and 0.67 for fabric coated bars), and ft 

denotes the specified tensile strength of concrete (MPa). 

Rakhshanimehr et al. (2018) proposed some equations 

for calculating the local bond strength (Eq. (14)) and the 

displacement modulus of GFRP bars based on the results of 

the eccentric and concentric pullout tests. The non-uniform 

distribution of bond stress (Eq. (15)) and the elasticity 

modulus of GFRP bars were included in their investigation. 

The bond strength of spliced GFRP bars was estimated by 

using Eq. (16). 
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  
= + +  

  
 (16) 

where uc denotes the positional bond strength, M represents 

the parameter of the non-uniform distribution of bond 

stress. C and Cmed are the minimum and median of bottom 

cover, side cover and one-half of the center-to-center 

spacing of the developed bars, respectively. 

 

 

4. Data set and modeling methodology 
 

The database of the spliced concrete beams reinforced 

with GFRP bars in the splitting failure mode contains 112 

specimens tested by Achillides (1998), Tighiouart et al. 

(1999), Aly (2005), Mosley et al. (2008), Harajli and 

Abouniaj (2010), Choi et al. (2012), Esfahani et al. (2013), 

Pay et al. (2014), Choi et al. (2014), Rezaei (2017), and 

Zemour et al. (2018). To avoid over-fitting errors and to 

ensure the generalization capability of proposed methods, 

the models are trained and tested according to the ten-fold 

cross-validation technique. In this technique, the database is 

randomly broken into ten divisions. Then, one of the 

divisions is selected to test the model, and the remaining 

divisions are used to train the model. This manner repeated 

ten times with different test divisions. To estimate the bond 

strength of GFRP bars, the effects of seven variables are 

considered as inputs. Table 2 shows the details of the range 

of variations of the input and output parameters of the test 

specimens in the database. 

Soft computing and machine learning techniques that 

are quite widespread have been widely used in engineering 

problems and have shown great performance (Güneyisi et 

al. 2016, Asteris et al. 2019). This paper has made use of 

the MARS, Kriging, and M5 models to forecast the bond 

strength of GFRP bars in spliced concrete beams. Since the 

 

 

Table 2 Ranges of input and output parameters in the 

database 

Parameters Minimum Maximum Mean Standard deviation 

f′c (MPa) 20 72 35.55 10.18 

db (mm) 8.5 25.4 15.06 3.60 

C/db 1 3 1.73 0.46 

L/db 15 75 34.94 12.25 

Es/Efrp 3.5 5.68 4.76 0.61 

fR 0.03 0.21 0.13 0.07 

At/sndb 0 0.05 0.01 0.01 

um (MPa) 1.06 6.73 3.04 1.20 
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model presented by soft computing methods depends on 

their regularization parameters, the effort has been made in 

this paper to optimize these parameters by the GA so that 

the convergence coefficient of the training data for the fitted 

model may reach its highest possible value. To this end, the 

following objective function has been minimized by the GA 

and the optimum effective values of the regularization 

parameters of the MARS, Kriging, and M5 models have 

been determined. 

2

1
min

train

RRSQ
R

=  (17) 

where 𝑅𝑡𝑟𝑎𝑖𝑛
2  is the determination coefficient of training 

data. 

 

4.1 Multivariate adaptive regression splines (MARS) 
 

Firstly, Friedman (1991) presented the MARS model. It 

is a regression model commonly used to develop a 

nonlinear model between a specified dependent variable 

and the independent variables. As shown in Eq. (18), 

MARS produces a model from the weighted basis functions 

in two stages, including the forward stage and backward 

stage. 

0

1

ˆ ( )
M

i i

i

y a a B x
=

= +  (18) 

in which ŷ, a0, Bi, ai, and M are the output parameter, 

constant term, ith basis function, coefficient of the ith basis 

function, and number of basis functions, respectively. The 

model chooses entire feasible basis functions and relevant 

knot sites in the forward stage, so a complicated model is 

created which would over-fit the trained data. In the 

backward stage, the excessive basis functions with the 

minimum participation to the model are eliminated by using 

the generalized cross-validation (GCV) criterion (Williams 

and Gomez 2016, Conoscenti et al. 2016) which is given by 

2

1

2

ˆ( )
1

(1 ( ) / )

n

i i

i

y y

GCV
n C M n

=

−

= +
−


 (19) 

where yi represents the ith target value, ŷi denotes the ith 

predicted value, n is the number of data, and C(M) 

corresponds to the model complexity penalty factor which 

increases with increasing the number of basis functions. 

The MARS model has been implemented using the 

ARESLab toolbox (Jekabsons 2010a) in the MATLAB. 

Regularization parameters that affect the MARS model 

fitting include the Max funcs, C, Cubic,  Cubic fast level, 

Max interactions,  Min span,  End span,  Allow linear, and 

Self interactions. Where Max funcs denotes the maximum 

number of basis functions in the forward stage, C represents 

the Generalized Cross-Validation (GCV) penalty per knot, 

Cubic is the type of piecewise function (true for piecewise-

cubic and false for piecewise-linear functions), Cubic fast 

level is the level of piecewise-cubic modelling (0 for cubic 

modelling in both forward and backward stages, 1 for cubic 

modelling in the backward stage, 2 for cubic modelling of 

the final model), Max interactions is the maximum degree 

of interactions between input variables, Min span is a  

Table 3 Optimized regularization parameters for fitting the 

best MARS model 

Parameters Optimum Value Parameters Optimum Value 

Max funcs 40 Cubic fast level 1 

C 1 Max interactions 2 

Cubic false Min span 1 

End span -1 Allow linear 0 

Self interactions 1   

 

 

minimum span that takes every Min span-th observation for 

knot placement (-1 for automatic mode, 0 or 1 for 

disablement of this feature, and values greater than 1 for 

tuning the span length), End span denotes a span that do not 

permit knots locating near to the ends of the data intervals (-

1 for automatic mode, 0 for disablement of this feature, and 

values greater than 1 for tuning the span length), Allow 

linear represents a factor that permits variables entering 

basis functions linearly (0 for disagreement with linear 

variables, 1 for linear variables, and 2 for preferment of 

linear variable), and Self interactions denotes the maximum 

degree of self interactions for any input variables 

(Jekabsons 2010a). The regularization parameters are 

optimized by the GA and are given in Table 3. 

The proposed MARS model with the optimal values of 

the parameters will be as follows 

3.51 639.07 1 75.7 2 25.58 3 1.52 4

1.88 5 3.41 6 0.007 7 0.003 8 3.81 9

460.71 10 34.52 11 33.23 12 1427.27 13

100.73 14 3.27 15 38.54 16 41.01 17

1.21 18 0.26 19 0.05 .

ˆ

20 0 05

BF BF BF BF

BF BF BF BF BF

BF BF BF BF

BF BF BF BF

B

y

F BF BF B

+ + − −

− − − − +

+ + − −

− + − +

+ + + −

=

21

0.15 22 0.24 23

F

BF BF

−

−

 (20) 

where BFs are basis functions which are given in Table 4. 

The proposed MARS model has yielded convergence 

coefficients equal to 0.97 and 0.88 for the training and 

testing data, respectively. 

 

4.2 Kriging surrogate model 
 

The main theorem of Kriging was offered by Krige 

(1951) and later expanded by Matheron (1970) and Sacks et 

al. (1989). Kriging is a stochastic regression model that 

employs the spatial covariance matrices to forecast the 

uncertain variables in new points (Al-Mudhafar 2019). The 

Kriging method can be defined as (Mallipeddi and Lee 

2015, Li and Pan 2019) 

ˆ ( ) ( )y x Z x= +  (21) 

in which ŷ is the predicted value, μ is a regression parameter 

representing the average of the samples, and Z(x) denotes a 

stochastic procedure with zero mean and covariance 

function as follows 

2COV ( ), ( ) ( , , )i j i j

cZ x Z x R R x x    =     (22) 

in Eq. (22), R defined as correlation matrix, 𝜎𝑐
2 

corresponds to the process variance, and 𝜃 is an uncertain 

correlation parameter to adjust the model. So, the Kriging  
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Table 4 Basis functions and corresponding equations of the 

MARS model 

Basis Function Equation 

BF1 max(0,0.031-At/sndb) 

BF2 BF1*max(0,C/db-1.3) 

BF3 max(0,C/db-1.309)*max(0,Es/Efrp-5.585) 

BF4 max(0,C/db-1.309)*max(0,5.585-Es/Efrp) 

BF5 BF1*max(0,f′c-35.5) 

BF6 BF1*max(0,35.5-f′c) 

BF7 max(0,54.016-L/db)*max(0,db-19.1) 

BF8 max(0,54.016-L/db)*max(0,19.1-db) 

BF9 max(0,54.016-L/db)*max(0,At/sndb-0.026) 

BF10 max(0,At/sndb-0.031)*max(0,0.17-fR) 

BF11 BF1*max(0,L/db-33.333) 

BF12 BF1*max(0,33.333-L/db) 

BF13 max(0,0.028-At/sndb) 

BF14 BF13*max(0,4.260-Es/Efrp) 

BF15 max(0,4.449-Es/Efrp) 

BF16 BF13*max(0,L/db-50) 

BF17 BF13*max(0,50-L/db) 

BF18 max(0,12.7-db) 

BF19 BF15*max(0,f′c-39) 

BF20 max(0,Es/Efrp-4.449)*max(0,36.3-f′c) 

BF21 BF18*max(0,L/db-20) 

BF22 BF18*max(0,20-L/db) 

BF23 BF15*max(0,f′c-31) 

 

 

model can be presented as 

𝑦̂(𝑥) = 𝜇̂ + 𝑟𝑇  𝑅−1(𝑦 − 1𝜇̂) (23) 

here,  𝜇̂ denotes the approximated regression parameter, r 

represents the correlation vector among the forecasted point 

and the entire known points, y corresponds to the vector 

comprising entire the samples. With assuming a value for 

𝜃 , the approximated regression parameter 𝜇̂  and the 

approximated variance 𝜎𝑐
2̂  are determined using the 

following equations 

1

1

1
ˆ

1 1

T

T

R y

R


−

−
=  (24) 

𝜎̂𝑐
2 =

(𝑦 − 1𝜇̂)𝑇 𝑅−1(𝑦 − 1𝜇̂)

𝑛
 (25) 

To estimate 𝜃 , the following log-likelihood function 

should be maximized 

2ˆ( ) ln( ) ln / 2cLn n R  = − +   (26) 

The Kriging model, that uses various correlation 

functions to control the model softness, has been 

implemented using the DACE toolbox (Lophaven et al. 

2002) in the MATLAB Software. As shown in Table 5, the 

five regularization parameters (including the Lower bound, 

Upper bound, Regrpply, CorrFunc, and  𝜃0) effective in 

the Kriging model fitting have been optimized by the GA. 

Lower bound, Upper bound, and 𝜃0 respectively determine 

the minimum and maximum variation range of parameter 𝜃 

and the initial 𝜃 guess. Regrpply and CorrFunc parameters 

specify the polynomial order and type of the correlation  

Table 5 Optimized regularization parameters for fitting the 

best Kriging model 

Parameters Optimum Value 

Lower bound 0.4 

Upper bound 2.4 

Regrpply 1 

CorrFunc Linear 

𝜃0 0.4 

 

Table 6 Optimized regularization parameters for fitting the 

best M5 model 

Parameters Optimum Value 

Model tree true 

Min leaf size 3 

Min parent size 6 

Prune false 

Smoothing-K 5 

Split threshold 0.3 

Max depth 8 

 

 

function (Exponential, Generalized exponential, Gaussian, 

Linear, Spherical, and Cubic spline), respectively. The 

model proposed by the Kriging method has yielded 

convergence coefficients of 0.99 and 0.85 for the training 

and testing data, respectively. 

 

4.3 M5 model tree 
 

Quinlan (1992) was the first researcher who proposed 

the M5 model tree and then this method expanded by Wang 

and Witten (1997). M5 is a data-driven model that changes 

the nonlinear relation of input and output variables into a 

piecewise linear relation. The M5 model is produced in two 

steps. First, the parameter space is divided into different 

subspaces and a linear regression function is built in every 

subspace. Thus, by employing the splitting criterion of the 

standard deviation reduction (SDR) factor, the main 

structure of the tree is built (Behnood et al. 2015, Mansouri 

et al. 2016, Nguyen et al. 2019) 

( ) ( )
i

i

i

E
SDR sd E sd E

E
= −  (27) 

where sd represents the standard deviation, E denotes the 

set of samples achieving the node, and Ei corresponds to the 

set of samples resulting from dividing the node. Second, the 

pruning step is executed to decrease the model complexity 

(Behnood et al. 2015, Mansouri et al. 2016). The M5 model 

has been implemented by the M5PrimeLab toolbox 

(Jekabsons 2010b) in the MATLAB environment. The 

seven regularization parameters (Model tree, Min leaf size, 

Min parent size, Prune, Smoothing-K, Split threshold, and 

Max depth) effective in the M5 model fitting have been 

optimized by the GA, as shown in Table 6. Where Model 

tree determines the type of tree (true for model tree and 

false for regression tree), Min leaf size is the minimum 

number of training samples for a leaf node, Min parent size 

is the minimum number of samples for dividing a node, 

Prune is the model pruning feature (true for model pruning  
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and false for disabled model pruning), Smoothing-K is the 

smoothing parameter that softens sharp discontinuities, Split 

threshold is the minimum threshold for dividing the nodes 

of the tree, and Max depth is the maximum depth of a tree. 

The proposed M5 model has yielded convergence 

coefficients equal to 0.87 and 0.84 for the training and 

testing data, respectively. 

The proposed M5 model tree with the optimal parameter 

is shown in Fig. 1 and the mathematical equations of each 

linear model (LM) are given in Table 7. 

 

 

5. Comparison between proposed models and other 
existing models on bond strength of GFRP bars 

 

To evaluate the accuracy of different models used in this 

research, the R2, AAE, RMSE, and MAE statistical indices 

are employed, as follows 

2
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2 1

2

1
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1
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(30) 

, Pr ,

1

1 n

Exp i ed i

i

MAE y y
n =

= −  (31) 

where ȳExp, yExp,i and yPred,i are the mean of the experimental 

responses, ith experimental and predicted responses, 

respectively. Fig. 2 shows the performance of different 

 

Table 7 Equations of linear models of M5 model 

No. LM 

1 
y = 2.872 -0.005f′c -0.004db +0.755C/db -0.016L/db  

-0.013Es/Efrp +13.195At/sndb 

2 
y = 2.811 -0.005f′c -0.004db +0.755C/db -0.016L/db  

-0.013Es/Efrp +13.195At/sndb 

3 
y = 2.356 -0.003f′c +0.045db +0.755C/db -0.016L/db  

-0.013Es/Efrp +13.195At/sndb 

4 
y = 2.458 -0.003f′c +0.045db +0.755C/db -0.016L/db  

-0.013Es/Efrp +13.195At/sndb 

5 
y = 2.270 +0.004f′c -0.005db +0.629C/db -0.025L/db  

-0.032Es/Efrp +12.346At/sndb 

6 
y = 3.719 -0.001f′c -0.005db +0.466C/db -0.027L/db  

-0.142Es/Efrp +12.346At/sndb 

7 
y = 3.673 -0.001f′c -0.005db +0.466C/db -0.027L/db  

-0.142Es/Efrp +12.346At/sndb 

8 
y = 3.037 -0.0004f′c -0.005db +0.466C/db -0.032L/db  

-0.016Es/Efrp +12.346At/sndb 

9 
y = 2.949 -0.0005f′c -0.005db +0.466C/db -0.031L/db  

-0.016Es/Efrp +12.346At/sndb 

10 
y = 1.863 +0.003f′c -0.005db +0.482C/db -0.016L/db  

-0.028Es/Efrp +12.346At/sndb 

11 
y = 2.155 +0.003f′c -0.005db +0.423C/db -0.016L/db  

-0.028Es/Efrp +12.346At/sndb 

12 
y = 3.056 +0.003f′c -0.005db +0.365C/db -0.019L/db  

-0.037Es/Efrp +29.911At/sndb 

13 
y = 6.594 +0.004f′c -0.068db +0.099C/db -0.010L/db  

-0.378Es/Efrp +16.304At/sndb 

14 
y = 4.477 +0.004f′c -0.076db +0.099C/db -0.010L/db  

-0.035Es/Efrp +19.295At/sndb 

15 
y = 4.470 +0.004f′c -0.077db +0.099C/db -0.010L/db  

-0.035Es/Efrp +19.295At/sndb 

16 
y = 4.489 +0.004f′c -0.072db +0.099C/db -0.010L/db  

-0.035Es/Efrp +20.058At/sndb 

17 
y = 3.833 +0.004f′c -0.076db +0.099C/db -0.010L/db 

+0.148Es/Efrp +20.605At/sndb 

 

 

prediction models of the bond strength of spliced beams 

reinforced with GFRP bars. As shown, MARS and Kriging 

models, with correlation coefficients of respectively 0.94  

 

Fig. 1 proposed M5 structure for predicting the bond strength of spliced GFRP bars 

312



 

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods 

 

 

 

 

and 0.93 have had the best performance, and M5 with 

correlation coefficient of 0.85 has provided better estimates 

compared to other existing models. Among the previous 

models, that of Esfahani et al. (2013) has provided a better 

estimate than other existing models (with a convergence 

coefficient of 0.57). The proposed MARS, Kriging, and M5 

models have been able to nearly improve the convergence 

coefficient by 65, 63 and 49%, respectively, compared to 

that of Esfahani et al. (2013). The models provided by 

CAN/CSAS6-14 (2014) and CAN/CSA S806-12 (2012) 

have exhibited very low correlation coefficients (0.08 and  

 

 

 

0.14, respectively). 

Table 8 compares the accuracy and statistical indices of 

the proposed models with those of the existing ones. All 112 

data samples were employed to compare the performance of 

different models. As shown, the proposed Kriging model 

has had the best value for the ratio of the predicted to 

experimental bond strengths and the lowest standard 

deviation compared to other models. The MARS and M5 

models also have yielded a much better mean and standard 

deviation than other existing models. Among the previous 

models, the relationships presented by Esfahani et al.  

Table 8 Comparison of statistical indices for the proposed and existing models 

Model 
Average of 

(um)Pred/(um)Exp 

Standard deviation of 

(um)Pred/(um)Exp 
AAE RMSE MAE R2 

JSCE (1997) 0.776 0.258 0.290 1.365 1.002 0.27 

Aly (2005) 0.828 0.526 0.423 1.949 1.351 0.30 

CAN/CSA S806-12 (2012) 1.486 0.591 0.581 1.717 1.447 0.08 

Choi et al. (2012) 1.092 0.294 0.244 1.008 0.720 0.31 

Esfahani et al. (2013) 0.843 0.200 0.209 0.994 0.697 0.57 

CAN/CSA S6-14 (2014) 1.729 0.642 0.766 2.221 1.890 0.14 

ACI 440.1R-15 (2015) 1.297 0.381 0.372 1.143 0.941 0.35 

Rakhshanimehr et al. (2018) 0.916 0.284 0.246 1.121 0.807 0.37 

M5 1.015 0.138 0.111 0.475 0.332 0.85 

MARS 1.016 0.121 0.076 0.286 0.197 0.94 

Kriging 1.009 0.102 0.048 0.318 0.142 0.93 

 

Fig. 2 Comparison of performance of different models for predicting the bond strength of spliced GFRP bars 
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Fig. 3 Comparison of error indices for the proposed and 

existing models 

 

 

(2013), Choi et al. (2012), and Rakhshanimehr et al. (2018) 

have presented relatively better statistical indices than other 

ones. Regarding the RMSE statistical indicator, the MARS 

and then the Kriging model have had the least error while 

regarding AAE and MAE statistical indices, the Kriging and 

then the MARS model have presented a more accurate 

estimate than other models. The proposed MARS model has 

had the best convergence coefficient (R2=0.94). It is worth 

noting that some previous models have been adapted from a 

smaller database and may be less accurate than the 

proposed models, which are based on a more extensive 

database. 

The prediction errors of the proposed and previous 

models are compared in Fig. 3 where a comparison of the 

statistical indices of different models shows that the models 

 

 

Fig. 4 Box plots of the ratio of the predicted to experimental 

bond strengths for different models 

 

 

presented by CAN/CSAS6-14 (2014), CAN/CSAS806-12 

(2012), and Aly (2005) have had much higher errors than 

other models. The models proposed in this research have 

shown the lowest error compared to other available models. 

The Kriging and MARS models have had the lowest error 

values. Among the previous models, those of Esfahani et al. 

(2013), Choi et al. (2012), and Rakhshanimehr et al. (2018) 

have had a relatively better performance. 

Fig. 4 shows box plots of the ratio of the bond strength 

predicted by different models to that found from 

experiments. As shown, in all proposed models, the mean of 

the data is lying next to ratio 1 which means the proposed 

soft computing models have had precise estimations of the 

experimental bond strength. The short length of the box plot 

in the proposed models means greater certainty and high 

 

Fig. 2 Continued 
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level of agreement in their predicted results. The Kriging 

and MARS models have, respectively, had the highest 

certainty. The length of the box plot in CAN/CSAS6-14 

(2014) and CAN/CSA S806-12 (2012) models is higher 

than others showing great dispersed and scattered data in 

them. The first quartiles for CAN/CSAS6-14 (2014), 

CAN/CSAS806-12 (2012), and ACI440.1R-15 (2015) 

models are located higher than ratio 1, which means their 

estimations have been much higher than the experimental 

values. These design recommendations provide an 

unconservative prediction and considerably overestimate 

the bond strength of spliced GFRP bars for more than 75% 

of the specimens. Among previous researchers, Choi et al. 

(2012) have estimated the bond strength more accurately; 

however, their estimation has been more than the 

experimental value. Models presented by the JSCE (1997), 

Aly (2005), and Esfahani et al. (2013) have been quite 

conservative because their box plots of predicted to 

experimental bond strength ratio are below 1; that of 

Rakhshanimehr et al. (2018) also can be considered as 

relatively conservative. Although the proposed models are 

more complicated than previous ones, they have been able 

to significantly improve the certainty and prediction 

accuracy of the bond strength between GFRP bars and 

concrete in spliced concrete beams. This minor 

disadvantage can easily be defeated using the computer 

tool. It is worth noting that the bond strength may decrease 

over a long time (Bazli et al. 2017). The bond degradation 

of GFRP bars under various environmental conditions can 

be considered using an environmental reduction factor (ACI 

440.1R-15 2015). 

 

 

6. Conclusions 
 

In this paper, a database of RC beam specimens with 

spliced GFRP bars in the splitting failure mode has been 

collected and used to find the GFRP bar-concrete bond 
strength. The concrete compressive strength, bar diameter, 

concrete cover, splice length, bar elasticity modulus, 
transverse reinforcement, and surface properties of GFRP 

bars have been considered as the main and basic parameters 
affecting the bond strength. To guarantee the generalization 

ability of the proposed models, training and testing data 

have been considered based on the ten-fold cross-validation 
technique. This paper has used such soft computing models 

as MARS, Kriging, and M5 to estimate the bond strength. 
Since regularization parameters highly affect the fitting of 

the models, these parameters have been so optimized in the 

proposed models to maximize the convergence coefficient 
of the training data and improve the accuracy and efficiency 

of the mentioned models. This optimization has been done 
with the GA and implemented in the MATLAB Software. 

The proposed new models intelligently find appropriate 
regularization parameters for the best model fitting. Results 

have shown that proposed models have significantly 

increased the prediction accuracy compared to previous 
models. The proposed MARS, Kriging, and M5 models 

have improved the convergence coefficient by 
approximately 65, 63 and 49%, respectively, compared to 

the best previous model. Regarding the statistical indices, 

MARS has had the least error in RMSE; Kriging stands 
next. Regarding AAE and MAE, Kriging has performed the 

best followed by the MARS. Most previous models have 
estimated the bond strength much more or much less than 

the test values, but the models proposed in this paper have 
predicted it more accurately with a lower standard 

deviation. A comparison of the box plot of the ratio of the 

predicted to experimental bond strengths has shown that 
Kriging and MARS have had much more accurate estimates 

than other models. It is worth noting that although the 
proposed models are more complicated, since they have 

considerably improved the bond strength predictions and 

access to computer tools is also easy, using them to find 
accurate and reliable results is justifiable. For design 

purposes, an environmental reduction factor can be 
considered to account for the bond degradation of GFRP 

bars under various environmental conditions. 
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