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ABSTRACT
This article presents a novel stochastic removal mechanism under
Type-II progressive randomcensoring inwhich removal probabilities
are allowed tobedependent on the lifetime conditions throughGen-
eralized Linear Models (GLM). These conditions potentially include
failure distances (the time required to observe the next failure) or
other covariate information available in the experiment. The pro-
posed GLM-based random removal mechanism includes a set of
tuning parameters that are determined by the researcher accord-
ing to the possible failure distance category. These parameters allow
flexible determination of the removal probabilities leading to nec-
essary experimental cost and time reductions. To establish the pro-
posed mechanism, the Proportional Hazard Rate (PHR) family of dis-
tributions is considered. Also, the maximum likelihood estimators
of parameters and their asymptotic variances are derived for the
Weibull distributed lifetime data. A simple simulation algorithm for
generating Type-II progressive censoring samples with GLM-based
dependent removal probabilities is also presented. The expected
experiment time required to complete the life test under this cen-
soring scheme is also investigated using theMonte Carlo integration
method. Several simulation studies are conducted to evaluate and
compare the performance of the proposed mechanism. A sensitiv-
ity analysis is also considered to study the effect of misspecification
of removal mechanism coefficients. Finally, two real data sets are
analyzed for illustrative purposes.
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1. Introduction

Censored observations of different types frequently occur in many applications depending
on the setting of the data collection process. In fact, censoring could be either controlled or
uncontrolled by the researcher who plans the experiment. For example, an experimenter
may terminate the life test studywhen a determinednumber of failed products are observed
to save time or cost which is referred to as Type-II censoring. Furthermore, some surviving
test units may have to be removed from the study at different failure times due to various
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reasons which would result in Type-II progressive censoring. This procedure works as fol-
lows. Life test experiment starts with n units and terminates after mth failure is observed.
After observing the first failure, r1 units are randomly selected among the n−1 surviving
units and removed. At the time of second failure, which is the smallest lifetime among
the n − 1 − r1 units, r2 units are randomly chosen from n − 2 − r1 remained units and
withdrawn from the experiment. This process is continued until observing mth failure,
then all n − m − r1 − · · · − rm−1 remained units are removed from the experiment. Note
that if r1 = r2 = · · · = rm = 0, then n = m which corresponds to the complete sampling.
Also, r1 = r2 = · · · = rm−1 = 0 and rm = n − m lead to the conventional Type-II right
censoring plan.

Inferential issues, for Type-II progressive censoring schemes, have been addressed by
several authors. Gibbons and Vance [21] investigated two methods of estimation for pro-
gressive censoringWeibull distributed data. Balakrishnan et al. [5,6] discussed parameters
estimation under Type-II progressive censoring for Gaussian and Extreme value lifetime
distributed data, respectively. Ng et al. [29] considered three optimality criteria for finding
optimal progressive censoring plans. They computed the expected Fisher information and
the asymptotic variance–covariance matrix of themaximum likelihood estimates based on
a Type-II progressive censoring sample from the Weibull distribution. Optimal censoring
designs in terms of minimum variance of best linear unbiased estimators were consid-
ered by Burkschat et al. [13,14]. Many optimality criteria have been proposed by different
researchers amongwhich one can refer toWu andHaung [41], Cramer and Ensenbach [16]
and references cited therein for further study.Moreover, under Type-II progressive censor-
ing scheme, statistical inference of various models has been studied by many authors and
some of them are mentioned in the following. Rasouli and Balakrishnan [31] considered
two exponential populations for modeling comparative lifetime experiments when joint
Type-II progressive censoring is implemented on the two samples. Also, a joint progres-
sive Type-II censoring was developed to the k comparative exponential populations by
Balakrishnan et al. [8]. Sel et al. [?] developed a new six-parameter distribution based on
Type-II progressive censoring sample which can be fitted well to complex data. They con-
sidered different estimation methods such as maximum likelihood estimation, bootstrap,
and Bayesian for comparison purposes. Mondal and Kundu [28] introduced a balanced
two-sample Type-II progressive censoring scheme and provided the exact inference when
two populations had the Weibull distribution. For elaborate discussion and deep descrip-
tion of the different progressive censoring schemes and their related issues, the reader is
encouraged to study the books by Balakrishnan and Aggarwala [9] and Balakrishnan and
Cramer [10] or the excellent review article by Balakrishnan [7].

One of themost important questions in theType-II progressive censoring scheme is how
to planning the number of removals. In the above-mentioned progressive censoring stud-
ies, it is most often assumed that the removal of units from an experiment is pre-planned
and intentional. Actually, in many practical situations, the number of removals cannot be
predetermined in advance by an experimenter. For example, the number of patients who
drop-out of a clinical test at each failure time is not predetermined or in some industrial
experiments, it is too dangerous to determine the number of removal units in advance. In
these cases, it is more realistic to assume that censoring numbers are chosen randomly,
according to a probability distribution on the set of possible censoring numbers. This type
of censoring was defined as Type-II progressive censoring with random removals, denoted
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by Type-II PCR. This paper proposes a planning of removal numbers via a mechanism
dependent on the experimental conditions using GLM.

First, Yuen and Tse [44] and Tse et al. [36] proposed Type-II PCR where the num-
ber of units removed at each stage follows a discrete uniform and binomial distribution
with a fixed known probability p, respectively. Tse and Yuen [39] considered the expected
experiment times to assess the required time to complete a life test for the Weibull dis-
tributed lifetimes under Type-II PCR. Later, Tse and Yang [38] and Tse and Xiang [37]
studied expected experiment time and investigated the problem of parameters estimation
for Type-II PCR model. Also, Singh et al. [34] considered situation where the number of
removals follows a binomial distribution with success probability following a Beta prior
distribution to reflect the uncertainty in the probability of a removal at each failure time.
There are numerous literature on random removals using binomial or discrete uniform
distributions assuming different lifetime distributions. Readers can findmore details refer-
ring to Wu et al. [42], Amin [4], Yan et al. [?], Dey and Dey [19], Singh et al. [35], Day
et al. [18], Gunasekera [22] and Sharafi [33] which considered Gompertz, Pareto, Gener-
alized Exponential, Rayleigh, Poisson-Exponential, Weighted Exponential, Burr XII and
two-parameter Lindley as lifetime distributions, respectively.

The assumptions regarding the uniform distribution with equal chance for the number
of removals, or binomial distribution with the fixed probability of a removal at each stage,
do not seem to be realistic in the practical situations. As in the previous clinical example,
if more or less deaths are recorded in the early stages of the test then what would happen at
the next upcoming stages. Certainly, the probability of removing in different stages will not
be the same. Actually, one of the most challenging issues in Type-II progressive censoring
is that removal vector is chosen independent from lifetime distribution. Recently, Ghahra-
mani et al. [20] proposed an approach for determining the removal vector based on failure
distances. They considered a specific increasing function of difference between the two last
failure times divided by the time of the first failure to determine the removal numbers. This
may improve random removal setting by allowing the number of removals to be dependent
on failure distances but there are two major drawbacks: (i) this approach is only applicable
for the specific case of exponential lifetime distribution where the joint probability mass
functions of random removals can be obtained based on the result ‘5’ in [7] and (ii) the
number of removals is restricted to be a known systematic function of the failure distances
which always encourages more removals for the larger previous failure distances.

However, in realistic situations, failure distances and covariate information are available
in the experiment which could influence on the removal numbers stochastically based on a
flexible unknown relation which should be estimated or determined according to the goals
of study. For example, let us consider a survival study where the cancer patients are put
under a new clinical test. During such studies, if the failures (patient death) happen in the
early stages of the test with short distances then patients are more likely to leave the test
(by themselves or the experimenter). On the other hand, if the distances between failures
are large enough, then the drop-out chance of a patient is expected to be relatively small.
In industries for reliability testing, there is an opposite direction, the experimenter might
decide to withdraw more units when larger failure intervals happen.

In this paper, for the first time, we introduce a stochastic removal mechanism which
gives the flexibility of updating the removal probability based on the available information
at each failure time for a large flexible class of lifetime distributions. We have proposed
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some conditional binomial distributions for the removal numbers with success probabil-
ities dependent on the experimental conditions. These conditions may include preceding
number of removals, observed failure times and some additional information potentially
related to the removal decision at each stage. To define this random removal mechanism,
GLMs for binomial distribution assuming different link functions are considered. The pre-
sented model includes the binomial removal scheme with fixed probability as a special
case. Here after, we will call this terminology as ‘Type-II PCR with Random Dependent
removal’ and denote it by Type-II PCRD. The proposed method has been discussed when
the experimental units follow PHR family. The PHR family has been extensively used to
model failure time data. This family is flexible enough to accommodate both monotonic
as well as non-monotonic failure rates even though the baseline failure rate is monotonic.
Gupta and Kunda [24] used this family to introduce a new statistical distribution. In fact,
they considered exponential distribution as the base distribution and created extended
exponential distribution. Many authors have investigated this family, such as Ahmadi
et al. [2,3], Kundu and Nanda [25] and Psarrakos and Sordo [30]. The main contributions
of this work to the current literature lie in the following aspects. (1) Proposing a Type-II
progressive censoring scheme where the random removal numbers follow binomial distri-
butions with different success probabilities at different failure times according to GLMs for
binomial family. (2) The proposed GLM-based random removal mechanism includes a set
of tuning parameters that could be adjusted by the researcher which allows both increasing
or decreasing impact of previous failure distances (according to the study protocols) as well
as other available information. (3) The proposed mechanism is not restricted to a special
lifetime density and is shown to be applicable for the large family of PHR distributions.

The structure of our paper is organized as follows. Our methodology is presented in
Section 2, which includes the introduction of the proposed GLM-based random removal
mechanism for Type-II PCR scheme and its application for the PHR family. In Section 3,
the maximum likelihood estimators and their asymptotic properties are derived for the
Weibull distributed lifetime data, as a special member of PHR family, under Type-II PCRD.
The expected experiment time of our proposed censoring scheme is calculated in Section 4.
In Section 5, after developing an algorithm to generate Type-II PCRD samples, several sim-
ulation studies are performed. In Section 6, a sensitivity analysis is conducted to analyze the
effect of misspecification of the tuning parameter values on experiment design. Two real
lifetime data about the endurance of deep groove ball bearings and survival times of ovar-
ian cancer patients are analyzed in Section 7. Finally, Section 8 contains some concluding
remarks and comments.

2. Methodology

2.1. Proposed GLM-based random removal mechanism

Consider a reliability experiment in which n independent and identical units are put on a
life test. Let T1:m:n < · · · < Tm:m:n denote the corresponding progressive sample including
m ordered failure times out of n randomly selected items, where m<n is predetermined
before testing. As a progressive censoring scheme, assume that at the ith failure, for i =
1, . . . ,m, Ri items are randomly removed from the test and the experiment terminates
when themth failure is observed.



JOURNAL OF APPLIED STATISTICS 5

To allow for the unintentional as well as intentional random removals and also the flexi-
bility to use the updated lifetime information available after each observed failure time, we
assume that Ris have some conditional binomial distributions with success probabilities
dependent on the experimental conditions. These conditions, at the ith stagemight include
preceding number of removals (R1, . . . ,Ri−1), observed failure times (T1:m:n, . . . ,Ti:m:n)
and some additional covariates related to the removal decision denoted by a q × 1 vec-
tor Zi. Actually, we will assume that the number of random removals have the following
conditional binomial distributions:

R1 |T1:m:n,Z1 ∼ b(n − m, p1),

Ri |R1, . . . ,Ri−1, T1:m:n, . . . ,Ti:m:n, Zi ∼ b

⎛
⎝n − m −

i−1∑
j=1

Rj, pi

⎞
⎠ , i = 2, . . . ,m − 1

Rm = n −
m−1∑
i=1

Ri − m,

where we propose the conditional removal probability, pi, to be related to the lifetime con-
ditions available at the ith stage, including the failure distance FDi = (Ti:m:n − Ti−1:m:n)

and the vector of possibly available covariates denoted by Zi = (Zi1, . . . ,Ziq), through
a known monotonic differentiable link function H(·). The stochastic random removal
mechanism is introduced as follows:

H(pi) = α0 + α1FDi +
q∑

h=1

γhZih, i = 1, . . . ,m − 1, (1)

whereT0:m:n = 0 and {α0,α1, γ } is the set of tuning parameters leading to different removal
probabilities according to the goals of study. The α0 indicates the transformed removal
probability for zero failure distances (when two failures happen exactly at the same time),
while α1 controls the direction of relation between FDi and the removal probability. For
example, if the experimenter desires to remove more (less) items for smaller FDi’s, α1 < 0
(α1 > 0) should be applied. Therefore, the above Type-II PCRD scheme has the ability to
model the uncertainty in the removal probability at each stage of a Type-II progressive
censoring experiment.

To explore features of the new random removal mechanism, suppose that the removal
probability is assumed to be only dependent on the length of time spent to observe current
failure. Therefore, the random removal mechanism or the conditional removal probability
of (1) reduces to

H(pi) = α0 + α1FDi. (2)

One can apply logit, probit or complementary log–log (c log–log) link functions as com-
mon choices for H(·). The logit link is the inverse cumulative distribution function (cdf)
of logistic distribution which is symmetrical, unimodal and similar in the shape to the
normal distribution with the same mean and standard deviation with slightly thicker tails.
Using the logit link function, the logarithm of the removal odds, log pi

1−pi , is modeled as a
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linear combination of the FDi which leads to the following logistic removal mechanism:

logit(pi) = log
(

pi
1 − pi

)
= α0 + α1FDi

or

pi = eα0+α1FDi

1 + eα0+α1FDi
,

where, for each 1 unit increase in the FDi, the odds of removal would be multiplied by eα1 .
Using probit link function, the random removal mechanism has the form,

probit(pi) = �−1(pi) = α0 + α1FDi,

where � is the standard normal cdf. For the probit link, removal probability, pi, as a func-
tion of FDi has the appearance of the normal cdf when α1 > 0. The rate of change in pi
with respect to FDi is

∂pi
∂FDi

= α1φ(α0 + α1FDi), where φ is the standard normal proba-
bility density function (pdf). This rate achieves its maximum when α0 + α1FDi = 0 (i.e.
at FDi = −α0/α1). The logit and probit links are symmetric, so the removal probability
curve, pi, has a symmetric appearance about the point pi = 0.5 and so pi has the same rate
for approaching 0 as well as for approaching 1.

When the removal probability as a function of FDi is assumed not to be symmetric in
the sense that pi approaches 0 fairly slowly but approaches 1 quite sharply, the logit and
probit models are inappropriate. However, in this situation, the c log–log model could give
better results. The c log–log link function is defined as

c log − log(pi) = log[−log(1 − pi)],

which is the inverse of the cdf of extreme value (log-Weibull) distribution. For more
information on the behavior of these links, see Agresti [1].

2.2. Mechanism behavior with respect to the tuning parameters

Understanding different behaviors of these link functions along with experimental con-
ditions will allow researcher to intelligently choose when to use which one? The removal
probability curve as a function of FDi in (2), under three different links, when (α0 = −2
and α1 = +1) and (α0 = 2 and α1 = −1) are respectively plotted in the left and right pan-
els of Figure 1(a). The sign of α1 coefficient in the random removal mechanism determines
whether pi is an increasing or decreasing function of the FDis. Figure 1(a) shows that the
logit and probit links are both symmetrical but the probit link approaches to 0 and 1 faster
than the logit curve. Therefore, to have a more sensitive removal mechanism to slight vari-
ations of failure distances, probit link can be used. Figure 1(a) shows that c log–log link
function is right-skewed which lead to greater removal probability than the other two links
for the same distances. When α1 > 0, the three link curves have the appearance of the
logistic, normal and extreme value (log-Weibull) cdf with dispersion parameter 1

|α1| (i.e.
the variance of logit, probit and c log-log are π√

3|α1| ,
1

|α1| and
π√
6|α1| , respectively). Hence,

the rate of climb or descent in pi increases as dispersion parameter decreases which can
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Figure 1. Removal probability plots against FDis assuming different links and tuning parameter values
in the Type-II PCRD scheme: (a) the effect of α1 sign on the removal probability under three different
link functions; (b) removal probability plot assuming different positive α1 values and α0 = −2; and
(c) removal probability plot assuming different α1 and α0 values.

be obtained by choosing larger values for |α1|. Figure 1(b) illustrates the effect of positive
α1 values on pi curves when α0 = −2, for three different link functions. Actually, larger
positive values of α1 return smaller variances and cause the removal probability approach
to 1 faster for all three links. Figure 1(c) shows an effect of α0 on the mechanism’s behavior
under three different links. Changing the value of α0 causes the change of baseline removal
probability.
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Determining appropriate values forα0 andα1 depends on the range of possibleFDi s and
researcher’s objective. If FDi s are very small (FDi −→ 0), the α0 value has an important
role to determine the probability of removal. In this case, to have a significant impact of FDi
s on the removal probability, one could change the scale of failure times or choose larger
absolute values of α1. Figure 2(a–c) shows the removal probability plots (rpps) against
small, moderate and large FDi s, respectively. These plots emphasize the determination
of α1 values with respect to the possible range of FDi s. For example, choosing small values
of α1 for very small FDi s leads to the Type-II PCR with pi = H−1(α0) (three left panels
of Figure 2 a), while increasing α1 value allows significant impact of FDi s on the removal
probability (the right panel of Figure 2a).

Figure 2(b) illustrates the rpps for different values of α0, α1 assuming moderate val-
ues of FDi (i.e. 0.1 ≤ FDi ≤ 2). Changing rate of pi depends on the value of α1 as was
shown in Figure 1(b). The upper panel of Figure 2(b) gives the rpps for fixed value of
α0 = 0 and α1 = −3, 1, 3 and 5. It is obvious that for larger values of α1, the removal
probability approaches to 1 more quickly. Consequently, to investigate the role of failure
distances, we must use appropriate α1 values which make a gradual change in the removal
probability. Also, the rpps are given for the values of α0 = −2,−1, 0, 1 and fixed value
of α1 = 2 in the bottom panel of Figure 2(b). These two tuning parameters (i.e. α0 and
α1) can be applied to adjust the rate and the initial location of the removal probability.
Figure 2(c) includes larger values of FDi (i.e. FDi > 2). For α1 < 0, the mechanism leads
to small removal probability, p −→ 0, so the test units are likely to be removed at the end of
experiment similar to the Type-II censoring. For positive values of α1, removal probability
quickly approaches to 1 and the experiment will be resembled a complete sampling test.
Again, adjusting the values of α0 and α1 can lead to different removal probabilities in this
case.

Consequently, these two tuning parameters (i.e. α0 and α1) can be applied to adjust the
rate and the initial location of the mechanism. More specifically, to have a significant role
of failure distances on the removal probabilities, wemust use appropriate αi, i = 0, 1 values
which make a gradual change in the removal probability. In the next section, appropriate
αi, i = 0, 1 values are suggested according to possible range of FDi s.

2.3. Determination of effective tuning parameters according to possible FDi range

To determine appropriate tuning parameter values which allow the censoring mechanism
to remove units according to FDi, one needs approximately to know the possible range of
FDi s. Actually, the tuning parameters of random removal mechanism are used for empha-
sizing the role of experimental conditions especially FDi s and adjusting them. Moreover,
the introducedmechanism is based on three linkswhich have the appearance of the logistic,
normal and extreme value (log-Weibull) cdf. Therefore, by knowing the behavior of these
distributions and possible ranges of FDi s, the effective αi, i = 0, 1 values which cause var-
ious removal probabilities at each stage according to failure distances can be determined.
As mentioned in Section 2.2, possible range of FDi s are categorized to small, moderate
and large values, where their corresponding appropriate αi, i = 0, 1 under logit link are
presented in Table 1. Table 1 reports the mean of removal probabilities for 1000 FDi s gen-
erated in each category, assuming different αi, i = 0, 1. The points which are common in
all parts of Table 1 are given as follows:
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Figure 2. The rpps for different ranges of FDis assuming different values of the tuning parameters under
three different link functions: (a) the rpps for small FDi ’s (i.e. (0, 0.1)); (b) the rpps for moderate FDi ’s (i.e.
(0.1, 2)); (c) the rpps for large FDi ’s (i.e. (2, 5)).

(1) The constant parameter,α0, determines the initial location of the removalmechanism,
where changing its value causes the baseline removal probability changes, as is shown
in Figure 2. Large values of |α0| lead to extreme values of removal probability (removal
probability close to 0 or 1) which do not allow the mechanism to operate according
to FDi s. Actually, probability of removal under logit link without considering any
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covariates (i.e. pi = eα0
1+eα0 ) takes values in (0.04, 0.9) for α0 ∈ (−3, 3). It should be

noticed that considering a wider interval for α0 does not significantly affect on the
removal vector.

(2) Usually, it is better to consider opposite signs for α0 and α1. This is due to the fact
that assuming similar negative (positive) signs of α1 and α0 leads to pi → 0 (pi → 1)
where distinguishing between α0 or FDi s effect could be difficult.

(3) Large negative values of α0 cause small removal probabilities (pi → 0) which is likely
to result in a Type-II censoring with random removal vector, R = (0, . . . , 0, n − m).
Also, large positive values of α0 lead to large removal probability (pi → 1) which is
likely to result in a complete censoring design with random removal vector, R = (n −
m, 0, . . . , 0). Therefore, large absolute values of α0 do not allow the random removal
mechanism to operate according to FDi s. It is advised to apply α0 values in (−3, 3);
however, considering slightly larger or smaller valueswhen are adjustedwithα1 values,
does not cause serious problems.

Consequently, by considering α0 belongs to (−3, 3) in Table 1, one can select α1 to have
random removal according to possible FDi categories. Specifically, Table 1(a) shows appro-
priate values of αi, i = 0, 1 when FDi s are small (i.e. 0 ≤ FDi < 0.1). Since the FDi values
are small in this category, we should choose larger |α1| coefficients (i.e. |α1| ≥ 10) to have
an effective mechanism which could adjust the removal probability of each stage accord-
ing to the current FDi. As shown in Table 1(a), considering opposite sings of α0 and α1
prevents the removal probability to approach 0 or 1 quickly.

Table 1(b) shows appropriate αi, i = 0, 1 for moderate FDi (i.e. FDi ∈ (0.1, 2)). In this
case, α1 values satisfying the inequality |α1| ≤ 10 are appropriate to have random removals
according to FDi s. Larger absolute values of α1 can be used for smaller values of FDi s in
moderate range. For this category of FDi, close values of α1 and α0 with the same sign can
be used.

Table 1(c) shows appropriate αi, i = 0, 1 for large values of FDi (i.e. FDi > 2). As shown
in Figure 2(c), for large values of FDi removal probability quickly approaches 0 or 1 and
does not permit the mechanism to work. In this case, for adjusting the mechanism to han-
dle large failure distances, small values for the FDi coefficient, α1, are needed. The effective
range of α1 according to Table 1(c) is considered in (−3, 3). This coefficient should be
smaller for larger values of FDi s at this category (i.e. for FDi s greater than 5, the effective
range of α1 is (−0.5, 0.5)).

The above results guide the researcher to determine appropriate values for the removal
mechanism coefficients, αi, i = 0, 1 that allow the random removal mechanism to operate
according to FDi s. Also, it should be noticed that determining exact or optimal values of
αi, i = 0, 1 could be dependent on the desired optimality criteria (e.g. to reduce duration
or variation of experiment) and the goal of experiment which could be studied as a future
work.

Obviously, in real situations, all FDi s of an experiment might not be in one category,
and according to a probability distribution, FDi s may be in one, two or all three categories.
In this case, decision about effective αi, i = 0, 1 values can be made based on the category
that most failure distances fall into. On the other hand, determining a neighborhood of
αi, i = 0, 1 values is enough to guarantee a random removal scheme with desired level of
dependence on failure distances.
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Table 1. Removal probabilities with logit link assuming different αi , i = 0, 1 values when FDi s are in small, moderate or large category.

(a) The small FDi ’s category

α1

< −40 −40 −30 −20 −10 (−10,10) 10 20 30 40 > 40
Category of FDi α0

small FDi −3 pi < 0.04 pi � eα0

1+eα0 0.08700 0.13325 0.21693 0.31200 > 0.32
FDi < 0.1 −2 pi < 0.12 0.20300 0.39988 0.39988 0.50200 > 0.51

−1 pi < 0.26 0.40500 0.60973 0.60973 0.68600 > 0.69
1 < 0.30 0.30987 0.21120 0.49669 0.59510 pi > 0.73
2 < 0.49 0.49302 0.60012 0.71471 0.79650 pi > 0.88
3 < 0.67 0.67922 0.78307 0.86675 0.91300 pi > 0.95

(b) The moderate FDi ’s category

α1

−10 −8 −6 −4 −3 −2 −1 1 2 3 4 6 8 10
Category of FDi α0

moderate FDi −3 pi −→ 0 0.13457 0.32339 0.51523 0.64187 0.77475 0.83975 0.87872
.1 ≤ FDi ≤ 2 −2 0.05205 0.28790 0.51257 0.66849 0.75895 0.81417 0.85074 0.92395

−1 0.06942 0.12746 0.50750 0.69895 0.80212 0.85819 0.91458
1 0.19788 0.30105 0.49250 0.87254 0.93210 pi −→ 1
2 0.14926 0.24105 0.33151 0.48743 0.71210 0.94795
3 0.09326 0.16025 0.22525 0.35813 0.67661 0.67661 0.86543 0.98002

(c) The large FDi ’s category

α1

−3 −2 −1 −0.5 0.5 1 2 3
Category of FDi α0

large FDi −3 pi −→ 0 0.00941 0.23133 0.60369 0.94661 0.97430
FDi > 2 −2 0.00581 0.02511 0.44023 0.78410 0.97827

−1 0.01553 0.06498 0.67171 0.90088
0 0.04045 0.15662 0.84338 pi −→ 1
1 0.09912 0.32829 0.93502
2 0.02173 0.21590 0.55977 0.97489
3 0.03451 0.05339 0.39631 0.76867 0.99059
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2.4. The proportional hazard rate family under type-II PCRD

Let X be a non-negative random variable denoting the lifetime of a component having cdf
F0(x) and pdf f0(x). Then the hazard rate function of X is given by h0(x) = f0(x)/F̄0(x),
where F̄0(x) = 1 − F0(x). The family of distributions with hazard rate function of the form
{θh0(·), θ > 0} are called PHR, with baseline cdf, F0(·). If T is a member of the PHR family
with the baseline cdf F0(·), its cdf would be

FT(t; θ) = 1 − [F̄0(t)]θ , t > 0, θ > 0, (3)

see Gupta et al. [23] for more details. The pdf and the hazard rate function of T are
respectively given by

fT(x; θ) = θ f0(x)[F̄0(x)]θ−1

and

hT(t; θ) = θh0(t).

The PHR family of distributions includes several well-known lifetime distributions such as
Exponential, Gamma, the Weibull, Pareto (Types I and II), Burr type XII and Beta. For a
Type-II progressive censoring with predetermined vector of removals Rm = (R1, . . . ,Rm)

in which lifetimes of the units follow a member of PHR family given in (3), the likelihood
function would be

L(ξ , θ |t,Rm) = Cr

m
i=1fT(ti; θ)F̄T(ti; θ)ri

= Cr

m
i=1θ f0(ti, ξ)F̄0(ti, ξ)θ(ri+1)−1, (4)

where Cr = n
m
i=1(n − i + 1 −∑i

j=1 rj) and ξ is the vector of parameters of the baseline
distribution. The above likelihood is derived conditional on Ris which can be any integer
values between 0 and n − m − (R1 + · · · + Ri−1), for i = 1, . . . ,m.

Assuming random removals under the proposed Type-II PCRD mechanism, the
observed data includes the vector of lifetimes, Tm, along with the vector of number of
removals, Rm. Let Tk = (T1:m:n, . . . ,Tk:m:n) and Rk = (R1, . . . ,Rk) for k = 1, . . . ,m. The
joint density function of (Tm,Rm) can be decomposed as follows:

f (Tm,Rm) = f ((T1:m:n,R1), . . . , (Tm:m:n,Rm))

= f (T1:m:n,R1)
m
i=2f (Ti:m:n,Ri|Ti−1,Ri−1).

In addition, we can decompose each conditional density in the above product as

f (Ti:m:n,Ri|Ti−1,Ri−1) = f (Ti:m:n|Ti−1,Ri−1)f (Ri|Ti,Ri−1).

Also, using the following two results presented by Balakrishnan [7] (page 215):

(1) The marginal distribution of Ti:m:n, 1 ≤ i ≤ m, is free of (Ri, . . . ,Rm).
(2) Ti forms a Type-II progressive censoring sample of size i from n units on a life test

with the progressive censoring scheme (R1, . . . ,Ri−1, n − i −∑i−1
j=1 Rj),
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we have,

f (Ti:m:n|Ti−1:m:n,Ri−1) = f (Ti:m:n|Ri−1)

f (Ti−1:m:n|Ri−1)

= (n −
i∑

j=1
rj − i + 1)

f (ti)
1 − F(ti−1)

(
1 − F(ti)
1 − F(ti−1)

)n−∑i−1
j=1 rj−i

.

Hence, the likelihood function for the observed sample under Type-II PCRD reduces to

L(�;Rm,Tm) = Crf (t1)[1 − F(t1)]n−1
m
i=2

f (ti)
1 − F(ti−1)

(
1 − F(ti)
1 − F(ti−1)

)n−∑i−1
j=1 rj−i

× 
m−1
i=1

(
n − m −∑i−1

j=1 rj
ri

)(
H−1(α0 + α1FDi +

q∑
h=1

γhZih)

)ri

×
(
1 − H−1(α0 + α1FDi +

q∑
h=1

γhZih)

)n−m−∑i
j=1 rj

,

which can be rewritten in terms of the baseline cdf, F0(·), and pdf, f0(·), as follows:

L(�;Rm,Tm) = θmCrf0(t1)[F̄0(t1)]θ(n+1)−2
m
i=2

f0(ti)[F̄0(ti)](θ−1)

F̄0(ti−1)

(
F̄0(ti)
F̄0(ti−1)

)θ(n−∑i−1
j=1 rj−i)

× 
m−1
i=1

(
n − m −∑i−1

j=1 rj
ri

)(
H−1(α0 + α1FDi +

q∑
h=1

γhZih)

)ri

×
(
1 − H−1(α0 + α1FDi +

q∑
h=1

γhZih)

)n−m−∑i
j=1 rj

, (5)

where � = (θ , ξ).

3. Statistical inference for theWeibull lifetime data under type-II PCRD

In this section, we assume the Weibull distribution as a special case of PHR family with
θ = 1. The pdf of the Weibull distribution with parameters ξ = (λ,β) is given by

f (x) = β

λ

( x
λ

)β−1
e−( x

λ )
β

, x > 0, β > 0, λ > 0, (6)

and its baseline survival function is F̄0(x) = e−( x
λ )

β

. Let T = (T1:m:n, . . . ,Tm:m:n) be the
m ordered failure times out of n randomly selected items. Under Type-II PCRD, Ri units
would be removed at the ith failure according to a binomial distribution with success
probability dependent on the failure distances. Consider dependent removal mechanism
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assuming logit link as follows:

pi = eα0+α1FDi

1 + eα0+α1FDi
.

Substituting the Weibull density and logit link in (5), the joint likelihood function can be
rewritten as

L(ξ ;Rm,T) = CR
β

λ

(
t1
λ

)β−1
exp

[
−
(
t1
λ

)β
] m∏

i=2

β

λ

(
ti
λ

)β−1
exp

[(
ti−1

λ

)β

−
(
ti
λ

)β
]n−i+1−∑i−1

j=1 rj

×
m−1∏
i=1

(
n − m −∑i−1

j=1 rj
rj

)
e(α0+α1FDi)ri

[
1 + eα0+α1FDi

]−(n−m−∑i−1
j=1 rj) .

The maximum likelihood estimators of the model parameters ξ = (λ,β) for the Weibull
distributed data can be obtained by solving the following equations:

∂�

∂λ
= −m

β

λ
+ β

λ

(
t1
λ

)β

+
m∑
i=2

ai
β

λ

[(
ti
λ

)β

−
(
ti−1

λ

)β
]
,

∂�

∂β
= m

β
+

m∑
i=1

ln
ti
λ

−
(
t1
λ

)β

ln
t1
λ

+
m∑
i=2

ai

[(
ti−1

λ

)β

ln
ti−1

λ
−
(
ti
λ

)β

ln
ti
λ

]
,

where ai = n − i + 1 −∑i−1
i=1 rj, the maximum likelihood estimators of ξ = (λ,β) are the

solutions of the following equations:

λ̂ =
(
1
m
tβ1 +

m∑
i=2

ai[t
β
i − tβi−1]

)β−1

,

tβ1 ln t1 +∑m
i=2 ai[t

β
i−1 ln ti−1 − tβi ln ti]

tβ1 +∑m
i=2 ai[t

β
i − tβi−1]

− 1
β

= 1
m

m∑
i=1

ln ti,

which can be solved numerically using iterative algorithms such as Newton–Raphson.
Also, the entries of the observed information matrix, for Type-II PCRD sample of the
Weibull distributed lifetimes are obtained as

∂2�

∂λ2
= m

β

λ2
− β

λ

β + 1
λ

(
t1
λ

)β

−
m∑
i=2

ai
β

λ

β + 1
λ

[(
ti
λ

)β

−
(
ti−1

λ

)β
]
,

∂2�

∂β2 = − m
β2 −

(
t1
λ

)β (
ln

t1
λ

)2
+

m∑
i=2

ai

[(
ti−1

λ

)β

(ln
ti−1

λ
)2 −

(
ti
λ

)β

(ln
ti
λ

)β

]
.

Therefore, the observed Fisher information matrix based on the maximum likelihood
estimators of (λ,β) is as follows:

I(λ̂, β̂) = −

⎡
⎢⎢⎣

∂2�

∂λ2
∂2�

∂β∂λ
∂2�

∂λ∂β

∂2�

∂β2

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
λ=λ̂,β=β̂

.
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Let V = limn−→∞I−1(λ̂, β̂)which is a reasonable approximation to the covariance matrix
of the vector ofmaximum likelihood estimators (λ̂, β̂) for large sample sizes. Then, the joint
distribution of the maximum likelihood estimators of λ and β is approximately bivariate
normal, (

β̂ − β

λ̂ − λ

)
∼ N

((
0
0

)
,V
)

= N
((

0
0

)
,
[
σ̂ 2(β̂) σ̂ (β̂ , λ̂)

σ̂ (λ̂, β̂) σ̂ 2(λ̂)

])
.

Therefore, the Wald confidence intervals according to asymptotic theory of maximum
likelihood estimator can be applied.

4. The expected experiment time

In practical applications, it is important to have an idea of the duration of a life test. The
experiment termination time is directly associated with the cost of the experiment. In pro-
gressive Type-II censoring plan, the termination time is given by the expectation of themth
order statistic in a sample of size n. From Balakrishnan and Aggarwala [9], the conditional
expectation of Tm:m:n for a fixed vector of R = (R1 = r1, . . . ,Rm = rm) is given by

E(Tm:m:n|R = r) = CR

r1∑
l1=0

. . .

rm∑
lm=0

(−1)A
(r1
l1

)
. . .
(rm
lm

)

m−1

i=1 h(li)

∫ ∞

0
xf (x)Fh(li)−1(x) dx, (7)

where A = l1 + l2 + · · · + lm and h(li) = l1 + l2 + · · · + li + i. The expected experiment
time (EET) for Type-II progressive censoring with random removal is evaluated by taking
the expectation on both sides of (7) with respect to R. It is given by

E(Tm:m:n) = ER[E[Tm:m:n|R]] =
g(r1)∑
r1=0

g(r2)∑
r2=0

· · ·
g(rm−1)∑
rm−1=0

E(Tm:m:n|R = r)P(R), (8)

where g(ri) = n − m −∑i−1
j=1 rj. Thus (8) gives an expression to compute the EET. A natu-

ral way to approximate the above complicated expression is to use theMonte Carlomethod
introduced by Metropolis and Ulam [27] and Von Neuman [40] which takes advantage of
the special nature of (8), namely the fact that f (Tm,Rm−1) is a pdf. So that, if it is possible
to generate K samples from f (Tm,Rm−1) (using the simulation algorithm presented in the
next section) the sample average,

E(Tm) = Tm = 1
K

K∑
j=1

t(j)m ,

where t(j)m denotes the mth-order statistics of the jth sample, converges (almost surely)
to (8), when K goes to ∞, according to the Law of Large Numbers. Based on this approxi-
mation, one can simply obtain values of the EET for different values of parameters without
solving such a complicated and time-consuming summation. Consequently, if the expected
value of complete sample (i.e. Ri = 0, i = 1, . . . ,m andm = n) is denoted by E(T∗), then
we define the ratio of the EET under the Type-II PCRD over EET for complete sample as
REET = E(Tm)

E(T∗) which does not depend on the scale parameter. When REET is close to 1,
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termination point is closer to the complete sampling plan. Suppose that an experimenter
wants to observe at leastm units when the test is anticipated to be conducted under Type-II
PCRD. Then the REET provides important information in determiningwhether the exper-
iment time can be shortened significantly if a much larger sample of n test units is used and
the test is stopped oncem failures are observed.

5. Simulation study

In this section, several simulation studies are conducted to investigate properties of the
proposed mechanism. First, an algorithm to generate Type-II PCRD sample is developed
in the following section.

5.1. Algorithm for generating type-II PCRD sample

Previously, an algorithm to generate Type-II progressive censoring samples for different
sizes and schemes based on the uniform distribution was proposed by Balakrishnan and
Sandhu [11].When the removal process is considered as randombut independent of failure
time, one can first simply simulate the removal scheme then perform as the case where the
scheme is fixed prior to the study. However, when the random removal process depends
on the failure time distances, as is proposed in this article, number of removals have to
be generated conditionally at each stage. Consequently, the previous algorithm is not effi-
cient. Here, we take the advantage of using the theorem proposed by Balakrishnan and
Sandhu [11], to develop a simulator algorithm for Type-II PCRD sample of an arbitrary
continuous distribution with cdf, F(·) as follows:

(1) Generatem independent uniform(0, 1) observations, denoted byW1, . . . ,Wm.
(2) Let U1 = 1 − W1/n

1 , then T1:m:n = F−1(U1) is an observation for the first order
statistic.

(3) For i = 2, . . . ,m − 1 do the following steps:
(a) Generate Ri−1 from

binomial

⎛
⎝n − m −

i−2∑
j=1

Rj , H−1(α0 + α1FDi−1 +
q∑

h=1

βhZih)

⎞
⎠ ,

where, R0 = 0.

(b) Set Vi = W
(1/(n−i+1−∑i−1

j=1 Rj))
i ,

(c) Set Ui = 1 − 
i
k=1Vk, then Ui is a Type-II PCRD sample from uniform (0, 1).

(d) Finally, let Ti:m:n = F−1(Ui).
(4) For i = m the remaining units are removed from the test and

Tm:m:n = F−l(W
1/n−m+1−∑m−1

j=1 Rj
m ).

In the above algorithm, (T1:m:n,T2:m:n, . . . ,Tm:m:n) is a Type-II PRCD sample from
F(·) distribution with dependent removal scheme R = (R1, . . . ,Rm). Notice that the third
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step of this algorithm uses the second result of Balakrishnan [7] (page 215) previously
mentioned in Section 2.1 which states that, at the ith stage, (T1:m:n, . . . ,Ti:m:n) given
(R1, . . . ,Ri−1) form a Type-II progressive censoring sample of size i, from n units with
the vector of removal numbers (R1, . . . ,Ri−1, n − i −∑i−1

j=1 Rj). Actually, the above sim-
ulation algorithm is established by generating Type-II progressive censoring sample from
the uniform (0, 1) distribution,U(1),U(2), . . . ,U(m), and definingV1 = U(1),Vi = 1−U(i)

1−U(i−1)

for i = 2, . . . , n andWi = VRm+···+Ri+m−i+1
i for i = 1, . . . ,m, which leads to the fact that

Wi, i = 1, . . . ,m, identically and independently follows uniform (0, 1) distribution.

5.2. The effect of theWeibull parameters on the behavior of proposedmechanism

In practical applications, it is very important for the researcher to choose an efficient
removal scheme when a Type-II progressive censoring is considered. Here, we study the
properties of our proposed GLM-based random removal mechanism based on simulated
Type-II PCRD samples from the Weibull distribution. Based on the properties of the
lifetime distribution, one can choose appropriate tuning parameter values for the ran-
dom removal mechanism. Actually, the parameters of the Weibull distribution affect the
possible FDi range. The shape parameter (i.e. β) of the Weibull distribution indicates
dispersion of the lifetime data, which consequently affects on the range of FDi s. The
value of β < 1 indicates that the failure rate decreases over time for example in ‘infant
mortality’. In this case, the lifetime data, as were illustrated in Figure 2(a,c) could have
large variations leading to both very small and large FDi s, although, most of them fall
into one of small or large categories of FDi s that depends on λ value. A value of β > 1
indicates that the failure rate increases with time for example in ‘aging’ process or sys-
tems that are more likely to fail as time goes on. In this case, the lifetime data are more
homogenous and FDi s are moderate as shown in Figure 2(b), however, the value of λ also
affects it.

On the other hand, the determination of the values of tuning parameters in the pre-
sented GLM-based random removal mechanism depends on how andwhen the researcher
is interested to remove sample units from experiment and possible FDi s. Actually, chang-
ing tuning parameters influences on the removal patterns (R) and lifetime data (T). Figure 3
plots removal probability against FDi for simulated Type-II PCRD samples assuming dif-
ferent values of α1, α0,m, n and β (to better show the effect of the parameters, the primary
failure data is assumed to be fixed so that FDi s have approximately similar ranges).

For β < 1, if the researcher is interested in removing units at the beginning of an exper-
iment to avoid additional loss, she/ he can choose higher removal probabilities. To have
higher probabilities, the value of α0 with logit link must be large enough, for example
α0 = 0, 1 and 2 leads to p = 0.5, 0.73 and 0.88, respectively. But, if the researcher wants
to remove the units according to FDi s, she/ he can change the scale of failure lifetime data
or choose proper values of α1 assuming α0 < 0. Figure 3(a) illustrated the removal proba-
bility against FDi s for simulatedWeibull sample with shape parameter β = 0.5 and sample
size of n = 30 andm = 15 censoring items. The left panel of Figure 3(a) is plotted assum-
ing α1 = 1 and different α0 values as the parameters of the logit link of random removal
mechanism. According to this figure, choosing larger values of α0 causes higher removal
probabilities and the removal of units in the earlier stages of an experiment. The right panel
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Figure 3. The effect of the shape parameter of theWeibull distribution on the random removal scheme
assuming (n = 30,m = 15)anddifferent valuesofα0 andα1: (a) removal probability plot for theWeibull
distributed data under Type-II PCRD assuming β = 0.5 and (b) removal probability plot for the Weibull
distributed data under Type-II PCRD assuming β = 2.

of Figure 3(a) shows the influence of α1 values on the removal pattern assuming the logis-
tic removal mechanism when α0 = −1. For β > 1, Figure 3(b) shows removal probability
against FDi for different values of α1 and α0. The R vectors are also shown in each panel
which confirms the behavior of the mechanism. By comparing Figure 3(a,b), it can be seen
that the range and dispersion of FDi s are significantly different.

5.3. Simulation set up and results

One of themost important reason for appropriateness of Type-II PCRD is that the removals
are determined dependent on the lifetime conditions. When the pre-fixed removal per-
centages are assumed, one can simply use maximum likelihood method corresponding to
Type-II progressive censoring to estimate the parameters. Also, if the removal process is
random following some binomial distributions with fixed removal probability, the max-
imum likelihood estimators could be obtained in the same manner as the non-random
removal case since the removal mechanism is independent of the lifetime distribution.
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Table 2 presents the parameter estimations, EET and coverage rate, CR, of parameters
assuming n = 20, 30 and m = 10 with different values of tuning parameters in the logis-
tic random removal mechanism. In this table, a simulation study has been conducted to
generate 5000 Type-II PCRD samples from the Weibull distribution with shape param-
eters β ∈ (0.75, 2) and scale parameter λ = 6. Then, the parameter estimation has been
done using both dependent removal model presented in this article, that is Type-II PCRD,
and Type-II PCR model assuming uniform and binomial distributions. As it is shown in
Table 2, the EET of Type-II PCRD model is less than Type-II PCR. In addition, the bias
(Bias) and the mean squared error (MSE) of the maximum likelihood estimators of the
parameters in Type-II PCRD and Type-II PCR models are computed. Bias is computed by
averaging the difference between the estimator and true parameter value over simulation
samples. Also, the MSE measures the average squared difference between the estimation
(i.e. λ̂ or β̂ in the Weibull distribution) and the true parameter value over 5000 simulated
samples. Themaximum likelihood estimator of the parameters and theirMSE and Bias are
not very different in Type-II PCRD and Type-II PCR. This numerical result coincides with
that obtained by Cramer and Iliopoulos [17]. They obtained that the progressive censor-
ing random removal mechanism does not affect on the maximum likelihood estimator of
parameters. Therefore, the maximum likelihood estimators are expected to have similar
properties in different kinds of Type-II progressive censoring schemes. Also, the CR of the
parameters of the Weibull distribution are reported in Table 2. The CR of the estimators is
the ratio of times that the confidence intervals overlap the true value of over 5000 simula-
tions. The results of Table 2 show that the CR of scale parameter, CRλ, is very close to the
nominal confidence level (0.95) in all approaches. Also, it can be observed that most of the
CRs for the shape parameter, CRβ , are less than the nominal confidence level (0.95) in all
approaches.

Tables 3–5 show the approximated values of E(Tm) under Type-II PCRDusing logit link
in the removal mechanism. For investigating properties of the EET, we have considered
different model parameter values which are listed below,

λ = 4, β = .5, α0 = {−3, 0}, α1 = {−4,−2, 0, 2, 4},
λ = 5, β = 1, α0 = {−2,−1, 0, 1}, α1 = {−4,−2, 0, 2, 4},
λ = 6, β = 2, α0 = {−1.5,−.5}, α1 = {−4,−2, 0, 2, 4}.

For each combination, we have taken different sample sizes n = 6, 20, 30 and 50 respec-
tively as the tiny, small, moderate and large samples. Also, m is chosen such that the
observed sample contains 100%, 90%, . . . , 50% of the available sample units. The complete
sampling plan is included when m = n. In our study, assuming the Weibull distributed
lifetime data, the shape parameter β is chosen to be 0.5, 1 and 2. These values contain
decreasing (or increasing) failure rates for β < 1 (or β > 1). Also, the exponential distri-
bution is included when β = 1. The results of all the simulation studies in the following
are based on 5000 repetitions.

Table 3 gives the EETof theWeibull distributedType-II PCRDsample assumingβ = 0.5
with two different values for the intercept of the removal mechanism, α0 = −3 and 0. The
reduction in the EET comparing with a complete sampling scheme is highly significant for
all n and m. Also, the reduction in the EET is very significant for all sample sizes, tiny to
large, when the negative values are selected for α0. When α0 = 0, the experiment time is
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Table 2. Comparing various Type-II progressive censoring with random removal schemes by maximum likelihood estimator of parameters and EET for the Weibull
distribution with β = 2 and 0.75 and λ = 6.

m n Approaches Parameters β λ̂ Bias(λ̂) MSE(λ̂) β̂ Bias(β̂) MSE(β̂) E[Tm] CRλ CRβ

10 20 Type-II PCRD α0 = 0,α1 = −3 5.80961 −0.19039 0.85988 2.29514 0.29514 0.48899 7.70891 0.970 0.891
20 Type-II PCRD α0 = 0,α1 = −1.5 5.82052 −0.17948 0.83414 2.27714 0.27714 0.44187 8.70844 0.966 0.883
20 Type-II PCR Binomial with p = 0.25 6.28762 0.28762 1.18233 2.18015 0.18015 0.38286 9.03265 0.953 0.916
20 Type-II PCR Binomial with p = 0.5 6.02693 0.02693 0.85323 2.30019 0.30019 0.42298 9.74708 0.971 0.890
20 Type-II PCR Binomial with p = 0.75 5.96267 −0.03733 0.83464 2.28591 0.28591 0.40638 9.89503 0.969 0.888
20 Type-II PCR uniform 2 6.01753 0.01753 0.86226 2.30328 0.30328 0.42949 9.77080 0.970 0.894
30 Type-II PCRD α0 = 0,α1 = −3 5.75485 −0.24515 0.99193 2.26906 0.26906 0.43520 6.79356 0.964 0.856
30 Type-II PCRD α0 = 0,α1 = −1.5 5.78448 −0.21552 0.87163 2.23336 0.23336 0.34708 7.97426 0.965 0.863
30 Type-II PCR Binomial with p = 0.25 6.66502 0.66502 2.04536 2.07796 0.07796 0.32098 8.41603 0.927 0.926
30 Type-II PCR Binomial with p = 0.5 6.09188 0.09188 0.88663 2.28475 0.28475 0.36261 9.62468 0.970 0.891
30 Type-II PCR Binomial with p = 0.75 5.99611 −0.00389 0.84676 2.27509 0.27509 0.35379 9.82052 0.970 0.893
30 Type-II PCR uniform 6.09780 0.09779 0.91054 2.28551 0.28551 0.36692 9.65057 0.969 0.891

10 20 Type-II PCRD α0 = −2,α1 = 2 5.87252 −0.12748 6.05814 0.86221 0.11221 0.06157 18.29934 0.972 0.840
20 Type-II PCRD α0 = −2,α1 = −1.5 5.76229 −0.23771 6.55631 0.89224 0.14224 0.10008 5.78459 0.966 0.829
20 Type-II PCR Binomial with p = 0.25 6.96410 0.96410 11.49934 0.83605 0.08605 0.06148 20.21370 0.945 0.912
20 Type-II PCR Binomial with p = 0.5 6.39079 0.39079 6.77982 0.86199 0.11199 0.05916 24.17103 0.969 0.887
20 Type-II PCR Binomial with p = 0.75 6.19916 0.19916 6.37365 0.85703 0.10703 0.05709 24.83280 0.968 0.885
20 Type-II PCR uniform 0.75 6.37868 0.37868 6.97183 0.86356 0.11356 0.06101 24.32909 0.969 0.892
30 Type-II PCRD α0 = −2,α1 = 2 5.69397 −0.30603 7.36154 0.87727 0.12727 0.07594 11.18104 0.971 0.857
30 Type-II PCRD α0 = −2,α1 = −1.5 5.71002 −0.28998 9.64616 0.89085 0.14085 0.09848 3.28390 0.966 0.842
30 Type-II PCR Binomial with p = 0.25 8.17971 2.17971 26.99833 0.79920 0.04920 0.04990 16.93944 0.914 0.934
30 Type-II PCR Binomial with p = 0.5 6.59727 0.59727 7.69888 0.85687 0.10687 0.05099 23.35260 0.967 0.892
30 Type-II PCR Binomial with p = 0.75 6.27472 0.27472 6.52800 0.85158 0.10158 0.04885 24.54825 0.970 0.885
30 Type-II PCR uniform 6.60539 0.60539 8.26189 0.85899 0.10899 0.05312 23.59731 0.970 0.888
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Table 3. EET for theWeibull samples under Type-II PCRD for (β = 0.5, λ = 4) and α0 = −3 and 0 with
different values ofm and n.

α0 = −3 α0 = 0

α1 α1

n m −4 −2 0 2 4 −4 −2 0 2 4

6 6 28.6345 28.6345 28.6345 28.6345 28.6345 29.7914 29.7914 29.7914 29.7914 29.7914
5 10.9209 11.1324 11.8981 19.5534 21.4435 19.1341 21.1553 24.1464 25.4109 25.2222
4 4.8732 5.1987 5.9202 9.9415 12.7337 11.3558 12.1100 15.9209 18.2484 19.2485
3 2.1516 2.1509 2.2911 3.5886 5.3463 4.6213 5.9708 8.7506 10.4875 12.11193

20 20 56.9686 56.9686 56.9686 56.9686 56.9686 59.0374 59.0374 59.0374 59.0374 59.0374
18 24.9003 26.7045 31.4106 48.5745 50.4042 54.5632 54.9630 55.0786 55.0743 55.1070
16 14.2154 14.7782 19.1606 42.1317 46.5384 51.8886 52.6859 53.3027 53.3887 53.4151
14 8.0062 8.5416 10.3696 30.1376 38.2799 43.1737 45.1241 46.4612 46.6357 46.7174
12 4.5752 5.0218 5.7275 16.7895 26.0151 36.6820 38.8528 42.2385 42.6798 42.7545
10 2.5690 2.7009 2.9682 7.0476 13.6168 26.1383 29.8840 34.4646 35.6903 35.9428

30 30 70.5584 70.5584 70.5584 70.5584 70.5584 70.5051 70.5051 70.5051 70.5051 70.5051
27 31.2392 34.3577 43.5971 62.7722 64.1943 66.4911 66.5101 66.5146 66.5254 66.5333
24 17.1312 18.9296 24.3400 53.7880 57.5144 62.0793 62.2831 62.3175 62.3549 62.3695
21 10.0949 10.9840 13.9566 42.1444 50.2213 58.0876 58.6064 58.8038 58.8448 58.8906
18 5.6054 6.0219 7.1612 23.6033 34.9921 50.7447 51.8681 52.9925 53.0923 53.1483
15 3.2045 3.4364 3.8856 11.1074 21.3656 42.3169 45.8479 47.2915 47.6224 47.7762

50 50 87.8111 87.8111 87.8111 87.8111 87.8111 86.3530 86.3530 86.3530 86.3530 86.3530
45 44.2449 50.4143 62.6988 81.7618 82.6872 83.2192 83.2234 83.2296 83.2262 83.2288
40 25.1410 28.0188 40.8431 72.2103 74.8617 81.1335 81.1444 81.1463 81.1460 81.1487
35 14.8089 16.9003 23.4436 59.9691 65.4054 75.1813 75.1798 75.2028 75.2117 75.2220
30 8.5235 9.5795 12.2554 44.1061 55.2855 68.5623 68.5733 68.6154 68.6261 68.6331
25 4.6548 5.0317 6.0886 21.9632 38.1281 65.4674 65.7396 65.8099 65.8367 65.85307

reduced but not as much as α0 = −3. By comparing these two different values of α0 in
removal mechanism, it can be found out that choosing larger positive values for the inter-
cept of the removal mechanism can minimize the effect of FDi s. As shown in Figure 3(a),
assuming the Weibull distribution with β < 1 under Type-II PCRD results in larger vari-
ations in the FDi values which could be both very small and very large. Mostly, the smaller
FDi s happen in the beginning of the experiment, therefore, choosing the small values of
α0, causes more units to be removed later during the experiment which permits the mech-
anism to work and causes a reduction of experiment time. By choosing α0 ≥ 0, even when
the number of test units n is large, most units would be removed at the early of stages and
an experiment would resemble a complete sampling test. Therefore, the removal mecha-
nism could not be efficient and the reduction in the experiment time under Type-II PCRD
could not be significant.

Table 4 gives the EET for the Weibull distributed Type-II PCRD sample with β = 2
assuming α0 = −1.5 and −0.5. The reduction in the experiment time comparing with
complete sampling (m = n) is significant but not asmuch aswhenβ < 1. Table 4 assuming
α0 = −1.5 leads to smaller removal probabilities comparing with α0 = −0.5. Therefore,
more units are stayed in the study and removed during the experiment which causes in a
reduction of experiment time.

The results of the numerical studies show that the EET of a Type-II PCRD is highly
influenced by the removal probability, pi. Also, the values of tuning parameters α0, α1 and
FDi s are affecting pi. Smaller values of the removal probability, pi, means more units are
stayed in the study and removed during the experiment that cause in a reduction of the
experiment time. The shortest experiment time can happen when all units are removed at
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Table 4. EET for the Weibull samples under Type-II PCRD for (β = 2, λ = 6) and α0 = −1.5 and −0.5
with different values ofm and n.

α0 = −1.5 α0 = −.5

α1 α1

n m −4 −2 0 2 4 −4 −2 0 2 4

6 6 9.0761 9.0761 9.0761 9.0761 9.0761 9.1670 9.1670 9.1670 9.1670 9.1670
5 7.1758 7.2868 7.8839 8.7054 8.7339 7.2569 7.4594 8.2366 8.5991 8.6082
4 5.7373 5.8027 6.4021 8.0229 8.1154 5.8648 6.0398 7.1825 8.1054 8.1386
3 4.5587 4.5977 5.0105 7.0422 7.2743 4.5884 4.6865 5.5967 7.1738 7.2685

20 20 11.1901 11.1901 11.1901 11.1901 11.1901 11.1897 11.1897 11.1897 11.1897 11.1897
18 10.0021 10.3945 10.8417 11.0247 11.0340 10.7560 10.9353 11.0186 11.0401 11.0426
16 8.7835 9.3659 10.3248 10.8035 10.8286 10.0622 10.4942 10.7701 10.8307 10.8370
14 7.6006 8.1907 9.5587 10.5175 10.5614 9.0172 9.7764 10.4197 10.5513 10.5622
12 6.5163 7.0118 8.5775 10.1991 10.2776 7.8498 8.7737 10.0029 10.2742 10.2942
10 5.5073 5.8778 7.3017 9.7597 9.9077 6.5340 7.4479 9.3288 9.9226 9.9601

30 30 11.8324 11.8324 11.8324 11.8324 11.8324 11.8404 11.8404 11.8404 11.8404 11.8404
27 11.1548 11.4284 11.6386 11.7028 11.7103 11.6287 11.6634 11.6848 11.6950 11.6967
24 10.1216 10.7492 11.3250 11.5199 11.5375 11.2568 11.3862 11.4515 11.4777 11.4824
21 8.9213 9.6742 10.7634 11.2186 11.2548 10.6686 11.0277 11.1910 11.2468 11.2552
18 7.5800 8.4395 10.0317 10.9553 11.0221 9.7027 10.4221 10.8616 10.9681 10.9839
15 6.2911 6.9587 8.8011 10.5198 10.6331 8.2731 9.4182 10.4173 10.6456 10.6715

50 50 12.5977 12.5977 12.5977 12.5977 12.5977 12.5998 12.5998 12.5998 12.5998 12.5998
45 12.3633 12.4225 12.4571 12.4721 12.4772 12.4759 12.4814 12.4878 12.4923 12.4935
40 11.8786 12.0807 12.1929 12.2350 12.2479 12.1724 12.1880 12.2044 12.2153 12.2185
35 11.1554 11.6260 11.9475 12.0525 12.0763 11.9272 11.9667 11.9995 12.0214 12.0275
30 9.8828 10.7556 11.4978 11.7559 11.7985 11.5882 11.6954 11.7663 11.8058 11.8160
25 8.2456 9.3607 10.7999 11.3982 11.4776 10.9170 11.2566 11.4254 11.4999 11.5178

the end of experiment (Type-II censoring). Table 5 shows the behavior of EET for some
other values of model parameters, assuming β = 1 and λ = 5.

Figure 4 plots the REET againstm for various values of n and α1 when α0 = −3, 0 and
β = 0.5. As it is shown in this figure, the smallest REET under Type-II PCRD is related to
the value of α1 = −4 for all α0 values and sample sizes. We also observe when the value of
α0 increases, the value of α1 does not seem to have any effect on the mechanism for large
sample sizes n (the two right panels of Figure 4b). This is because the larger values of α0
cause more units to be removed earlier so that the EET is very close to complete sampling
plan, as were explained before for the results of Table 3.

Also, REET plots for different sample sizes, α1, α0 = −1.5, 2 and β = 2 are shown in
Figure 5. This figure, similar to Figure 4, shows that the reduction of REET is significant
for smaller values of α1. Actually, by increasing α1, the EET of Type-II PCRD becomes
close to the complete sampling scheme. Figure 5(b) illustrates that assuming α0 > 0, the
random removal mechanism could be effective just for tiny sample sizes as were explained
before.

Figure 6 shows the REET plots againstm for β = 0.5. It is seen that the value ofα0 = −3
has the smallest REET for all sample sizes. The REET increases with increasing the value of
α0. The REET assuming α0 = 0 and 2 are nearly the same for moderate and large sample
sizes (i.e. n = 20, 30), see two left panels of Figure 6. The reason is the removal of the
units earlier in the experiment, such as a complete experiment. The right panel of Figure 6
shows that increasing the value of α1 leads to smaller slop of REET plot for all α0 values
when other parameters are fixed. This is correct for the other panels of Figure 6 as well.
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Table 5. EET for the Weibull samples under Type-II PCRD for (β = 1, λ = 5) and different
values of α0,α1,m and n.

α1

n m α0 −4 −2 0 2 4

6 6 12.35210 12.35210 12.35210 12.35210 12.35210
5 1 9.53668 10.28604 11.08475 11.18503 11.23548
4 6.99684 7.92991 9.68250 9.99193 10.03603
3 4.47774 5.24663 7.27729 8.03784 8.15290

20 20 17.96959 17.96959 17.96959 17.96959 17.96959
18 17.17592 17.33489 17.38240 17.39880 17.40540
16 0 16.05582 16.51136 16.69780 16.74063 16.75696
14 14.53925 15.53499 16.06286 16.15287 16.18490
12 12.11501 13.77618 14.93360 15.12191 15.17914
10 9.46655 11.40311 13.65423 14.05110 14.15376

30 30 19.80353 19.80353 19.80353 19.80353 19.80353
27 18.90899 19.25191 19.43790 19.47056 19.48509
24 −1 17.23654 18.18912 18.74717 18.86228 18.89916
21 14.68193 16.36693 17.64376 17.90741 17.97806
18 11.63404 13.73631 16.32719 16.94774 17.07330
15 8.53246 10.61312 14.42099 15.85595 16.08044

50 50 22.49356 22.49356 22.49356 22.49356 22.49356
45 20.47848 21.22988 21.73539 21.88876 21.92200
40 −2 17.52288 18.98297 20.54655 21.00463 21.08601
35 14.15624 16.18088 18.87284 20.16583 20.34438
30 10.64101 12.55475 16.28568 18.87956 19.23195
25 7.64604 9.17252 12.73309 17.53305 18.22173

6. Sensitivity analysis

In this section, a sensitivity analysis is conducted to analyze the effect of misspecification
of the tuning parameter values on experiment design. The importance of such a study fol-
lows from the fact that the design of an experiment depends on the choice of input tuning
parameter values. The Relative Efficiency (RE) measure of a set of parameter values θ(1)

compared with the set of true parameter values θ(0) is defined as

RE(θ) = E(Tm) under θ(0)

E(Tm) under θ(1) .

In Type-II PCRDdesign, we conduct the sensitivity analysis with respect to EET by varying
marginally α1 values in the random removal mechanism. Actually, among the set of input
parameter values, θ , the parameter that would be changed marginally is α1. The RE values
measure the sensitivity of themechanism, where values closer to 1 represent less sensitivity
of the mechanism due to misspecification of input parameter values. Here, we want to
show that the proposed αi, i = 0, 1 values for moderate FDi s according to Table 1(b) are
effective.

Note, in Type-II progressive scheme with fixed number of removals, R∗
1 = (n − m,

0, . . . , 0) and R∗
2 = (0, . . . , 0, n − m) are the vector of removals corresponding to min-

imum and maximum duration of experiment time, where all removals are placed on
the first and last stages, respectively. Analogously, in the Type-II PCRD scheme, most
of the units are expected to be removed at the first or last stages of the experi-
ment to have a minimum or maximum of E(Tm), respectively. This is confirmed both
by numerical results and Bhattacharya’s work (2020) [12]. The EET is an increasing
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Figure 4. REET plots when β = 0.5 assuming different values of n,m,α0 and α1: (a) REET plot for α0 =
−3 and (b) REET plot for α0 = 0.

Figure 5. REET plots when β = 2 assuming different values of n,m,α0 and α1: (a) REET plot for α0 =
−1.5 and (b) REET plot for α0 = 2.
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Figure 6. REET plots when β = 0.5 assuming different values of n,m,α0 and α1: (a) REET plot for
α1 = −4 and (b) REET plot for α1 = 0.

function of αi, i = 0, 1. That is, increasing (decreasing) αi, i = 0, 1, result in increasing
(decreasing) EET. Hence, in Type-II PCRD an approximate boundary for E(Tm) can be
determined.

To perform sensitivity analysis, 1000 samples of size 10 are simulated from the
Weibull distribution with the vector of parameters (λ = 6,β = 0.75). More than %60
of the generated FDi’s are in moderate category. Therefore, according to Table 1(b)
the appropriate αi, i = 0, 1 values can be considered α0 = −1 and α1 ∈ (−6, 6). Then
the sensitivity analysis is performed for 1000 simulated the Weibull samples of size
(n = 20,m = 10) under Type-II PCRD scheme with the above-mentioned tuning
parameters.

Table 6 shows the results of sensitivity analysis for differentα1 values assumingα0 = −1.
In Table 6, the EET, RE and the removal vector, R, are reported in three parts, A, B and C.
In the part B of Table 6, the appropriate α1 is selected according to Table 1(b). The RE
values are not close to 1, which represent the sensitivity of the mechanism due to changing
α1 values. This sensitivity is also evident according to the significant differences of EET
values. Selecting different α1 values in this interval leads to a new random removal vector.
In parts A and C of Table 6, we have considered larger interval of α1 values, which show
that RE(α1) values are not significant (RE are close to 1) and the EETs are very close to each
other. Consequently, this sensitivity analysis approximately confirms proposed α1 values
for moderate FDi in Table 1(b).
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Table 6. Sensitivity analysis for assessment of effective range of possible α1 values
assumingα0 = −1 for theWeibull distributed datawith (λ = 6,β = 0.75) under Type-II
PCRD with (n = 20,m = 10).

Part α
(0)
1 α

(1)
1 E(Tm) RE(α1) R = (R1, . . . , Rm)

−20 4.74019 1.07587 ( 1, 1, 0, 0, 0, 0, 0, 0, 0, 8 )
−15 5.23074 0.97497 ( 1, 1, 1, 0, 1, 0, 0, 0, 0, 6 )

A −12 −12 5.09981 1.00000 ( 0, 1, 0, 1, 1, 0, 0, 0, 0, 7 )
−10 6.00015 0.84995 ( 1, 1, 1, 1, 1, 0, 0, 0, 0, 5 )
−8 5.95341 0.85662 ( 1, 1, 1, 0, 1, 1, 0, 0, 0, 5 )
−6 8.32877 1.48219 ( 2, 2, 1, 1, 1, 0, 0, 0, 0, 3 )
−2 9.74439 1.26686 ( 2, 1, 1, 1, 1, 1, 1, 0, 0, 2 )

B −1 −1 12.34480 1.00000 ( 2, 2, 2, 1, 1, 0, 0, 0, 0, 2 )
1 21.74714 0.56765 ( 3, 4, 1, 1, 0, 0, 0, 0, 0, 1 )
2 22.30385 0.55348 ( 4, 2, 1, 1, 1, 0, 1, 0, 0, 0 )
6 23.72323 0.52037 ( 6, 2, 1, 1, 0, 0, 0, 0, 0, 0 )
8 23.69925 1.02033 ( 7, 2, 1, 0, 0, 0, 0, 0, 0, 0 )
10 24.18103 1.00345 ( 8, 1, 1, 0, 0, 0, 0, 0, 0, 0 )

C 12 12 24.26439 1.00000 ( 8, 1, 1, 0, 0, 0, 0, 0, 0, 0 )
15 24.25823 1.00025 ( 8, 2, 0, 0, 0, 0, 0, 0, 0, 0 )
20 24.33276 0.99719 ( 8, 2, 0, 0, 0, 0, 0, 0, 0, 0 )

7. Data analysis

In this section, to illustrate the properties of our proposed random removal mechanism,
we analyze two real data sets. The aim of the first data analysis is to compare the perfor-
mance of Type-II PCRD with other Type-II PCR schemes. The second data set is analyzed
to illustrate different scenarios of generating removal vectors by choosing various tuning
parameters according to the possible FDi s.

The first data set is about the endurance of 23 deep groove ball bearings considered
by Lawless [26] and Singh et al. [34]. Singh et al. [34] fitted four lifetime distributions for
this data set which one of them was the Weibull distribution with vector of parameters
(λ = 82,β = 2). They showed that the Weibull distribution fits well to this real data set.
According to Section 5.2, the Weibull distributed data with these parameters are homoge-
nous and FDi s fall in large category because of large value of scale parameter, λ. Therefore,
small α1 values (i.e. the values presented in Table 1c) are appropriate for random removal
mechanism. On the other hand, we prefer smaller removal probabilities for having smaller
EET. Therefore, α1 = −0.5 and α0 = 0 are chosen according to Table 1(c). We compare
the performance of Type-II PCRD with other Type-II PCR schemes through generating
10,000 sets of removal vectors under Type-II PCRD assuming (n,m) = (23, 8). The total
test time is examined by implementing random removal vectors on the endurance of deep
groove ball bearings data set. Table 7 shows the Type-II progressive censoring sample and
the random removal vectors of the endurance of deep groove ball bearings for different
approaches. The results show that the termination time of the experiment under Type-II
PCRD is reduced. However, changing the tuning parameters can also significantly decrease
the total time of the experiment.

The second analyzed data set is about survival times (in days) of 26 ovarian cancer
patients after their surgical treatment. The data set is taken from Collett [15] which is
also discussed by Singh et al. [35]. For illustrating the different scenarios of generating
removal vectors by the various tuning parameters according to the purpose of research,
let us consider the Type-II PCRD sample of (n,m) = (26, 12). As stated in Sections 2.2
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Table 7. Comparing the performances of different random removal mechanisms for the endurance of
deep groove ball bearings data set.

Approach Parameters T = (T1, . . . , Tm) R = (R1, . . . , Rm)

Type-II PCRD α0 = 0,α1 = −.5 ( 17.88, 28.92, 33.00, 41.52, 42.12, 48.40, 51.96, 55.56 ) ( 0, 0, 2, 0, 5, 1, 1, 6 )
Type-II PCR Binomial p = 0.25 ( 17.88, 28.92, 33.00, 42.12, 48.40, 55.56, 67.80, 68.64 ) ( 4, 3, 2, 2, 1, 1, 0, 2 )
Type-II PCR Binomial p = 0.5 ( 17.88, 33.00, 41.52, 48.40, 55.56, 68.64, 105.84, 128.04 ) ( 8, 4, 2, 1, 0, 0, 0, 0 )
Type-II PCR Binomial p = 0.9 ( 17.88, 33.00, 45.60, 51.96, 67.80, 68.64, 105.84, 128.04 ) ( 11, 3, 1, 0, 0, 0, 0, 0 )
Type-II PCR Uniform ( 17.88, 33.00, 41.52, 51.84, 55.56, 68.60, 105.12, 127.92 ) ( 8, 4, 2, 1, 0, 0, 0, 0 )

Table 8. Type-II PCRD data (T) and random removal vectors (R) obtained from the ovarian cancer data
assuming α0 = −1 and different small values of |α1|.
α1 T = (T1, . . . , Tm) R = (R1, . . . , Rm)

0.05 ( 59, 268, 329, 353, 421, 464, 563, 638, 744, 855, 1040, 1206) (12, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
0.005 ( 59, 156, 268, 329, 353, 377, 421, 475, 563, 638, 803, 1040 ) ( 3, 2, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1 )
−0.05 ( 59, 115, 156, 268, 329, 353, 365, 377, 431, 448, 477, 563 ) ( 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 6 )
−0.25 ( 59, 115, 156, 268, 329, 353, 365, 377, 421, 432, 448, 465 ) ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 13 )

and 2.3, determining values of tuning parameters depends on the FDi s, which are large
in this data set. To have different removal probabilities, the large FDi s have been adjusted
by choosing small values of α1 and negative value for α0 according to Table 1(c). Since
most of FDi s are too large in this experiment, selecting small |α1| values allow the mecha-
nism to be dependent on the FDi s. Therefore, four values are chosen for α1 in the interval
(−0.25, 0.05). As shown in Table 8, selecting smaller |α1| values allows the mechanism
to determine the number of removals at each stage according to failure distances during
the experiment, while large |α1| values resemble the experiment to a complete or Type-II
sampling test.

8. Conclusion

In this article, the analysis of a Type-II progressive censoring sample of lifetime data with
a novel GLM-based random removal mechanism, where the number of drop-outs at each
failure time follows a conditional binomial distribution with dependent success probabil-
ities, is proposed. Actually, for the large flexible PHR family of lifetime distributions, this
stochastic removal mechanism has the flexibility of updating the removal probability at
each stage via adjusting some tuning parameters. Appropriate GLM (i.e. logit, probit and
c log–log) links are considered to define this random removal mechanism. On the other
hand, the number of removals in this mechanism can be determined based on flexible
unknown relation of failure distance and covariate information according to the goals of
study and possible FDi category. This stochastic removal mechanism leads to more flexi-
bility in removal patterns which might seem necessary in some applications for cost and
time considerations or withdrawal of units.

We have compared the properties of maximum likelihood estimators (MLEs) for the
Weibull samples under proposed Type-II PCRD and other Type-II PCR schemes. The sim-
ulation results show thatMLEs are expected to have similar properties (based on bias,MSE
and Coverage Rate) applying different kinds of Type-II progressive censoring schemes.

Also, we have computed the EET under Type-II PCRD. Due to complexity of the EET
calculation in all kinds of random censoring plans, the Monte Carlo method is used to
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approximate these values. The numerical results indicate that the Type-II PCRD could
perform more efficiently compared with the other random censoring based on uniform
and binomial distributions. More specifically, the EET due to random removals dependent
on the failure distances could considerably be decreased assuming a reverses relationship
between the number of removals and the failure distances. Equivalently, the results of REET
suggest that the experiment times are dictated by tuning parameters and FDi s; specially,
when FDi s are fixed, choosing negative values of α1 leads to smaller experiment times.

Two important advantages of the proposedmethod are: (i) the implementation of GLM-
based random removal mechanism is applicable for a large class of lifetime distributions
and (ii) the proposed random removal mechanism includes a set of tuning parameters that
could be adjusted by the researcher, which allows both increasing or decreasing impact
of pervious failure distances (according to the study protocols) as well as other available
information.
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[3] J. Ahmadi, M.J. Jozani, É. Marchand, and A. Parsian, Prediction of k-records from a general class
of distributions under balanced type loss functions, Metrika 70 (2009), pp. 19–33.

[4] Z.H. Amin, Bayesian inference for the Pareto lifetime model under progressive censoring with
binomial removals, J. Appl. Stat. 35 (2008), pp. 1203–1217.

[5] N. Balakrishnan, N. Kannan, C.T. Lin, and H.T. Ng, Point and interval estimation for Gaussian
distribution, based on progressively type-II censored samples, IEEE Trans. Reliab. 52 (2003), pp.
90–95.

[6] N. Balakrishnan, N. Kannan, C.T. Lin, and S.J.S.Wu, Inference for the extreme value distribution
under progressive type-II censoring, J. Stat. Comput. Simul. 74 (2004), pp. 25–45.

[7] N. Balakrishnan, Progressive censoring methodology: an appraisal, TEST 16 (2007), pp. 211.
[8] N. Balakrishnan, F. Su, and K.Y. Liu, Exact likelihood inference for k exponential popula-

tions under joint progressive type-II censoring, Commun. Stat. Simul. Comput. 44 (2015), pp.
902–923.

[9] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications,
Springer Science & Business Media, Boston, 2000.

[10] N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics for Industry and
Technology, Springer, New York, 2014.

[11] N. Balakrishnan and R.A. Sandhu, A simple simulational algorithm for generating progressive
type-II censored samples, Am. Stat. 49 (1995), pp. 229–230.

[12] R. Bhattacharya, Implementation of compound optimal design strategy in censored life-testing
experiment, TEST 29, (2020), pp. 1–22.

[13] M. Burkschat, E. Cramer, and U. Kamps, On optimal schemes in progressive censoring, Stat.
Probab. Lett. 76 (2006), pp. 1032–1036.

[14] M. Burkschat, E. Cramer, and U. Kamps,Optimality criteria and optimal schemes in progressive
censoring, Commun. Stat. Theory Methods 36 (2007), pp. 1419–1431.

[15] D. Collett, Modelling Survival Data in Medical Research, 3rd ed., Champman and Hall/ CRC
Press, Bristol, 2015.



JOURNAL OF APPLIED STATISTICS 29

[16] E. Cramer andM. Ensenbach,Asymptotically optimal progressive censoring plans based on fisher
information, J. Stat. Plan. Inference 141 (2011), pp. 1968–1980.

[17] E. Cramer and G. Iliopoulos, Adaptive progressive type-II censoring, TEST 19 (2010), pp.
342–358.

[18] S. Dey, T. Kayal, and Y.M. Tripathi, Statistical inference for the weighted exponential distribution
under progressive type-II censoring with binomial removal, Am. J. Math. Manag. Sci. 37 (2018),
pp. 188–208.

[19] S. Dey and T. Dey, Statistical inference for the Rayleigh distribution under progressively type-II
censoring with binomial removal, Appl. Math. Model. 38 (2014), pp. 974–982.

[20] M. Ghahramani, M. Sharafi, and R. Hashemi,Analysis of the progressively type-II right censored
data with dependent random removals, J. Stat. Comput. Simul. 90 (2020), pp. 1001–1021.

[21] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progres-
sively censored samples, IEEE Trans. Reliab. 32 (1983), pp. 95–99.

[22] S. Gunasekera, Inference for the Burr XII reliability under progressive censoring with random
removals, Math. Comput. Simul. 144 (2018), pp. 182–195.

[23] R.C. Gupta, P.L. Gupta, and R.D. Gupta, Modeling failure time data by Lehman alternatives,
Comm. Stat. Theory Methods 27 (1998), pp. 887–904.

[24] R.D. Gupta and D. Kundu, Exponentiated exponential family: an alternative to gamma and
Weibull distributions, Biom. J. 43 (2001), pp. 117–130.

[25] P. Kundu and A.K. Nanda, Reliability study of proportional odds family of discrete distributions,
Comm. Stat. Theory Methods 47 (2018), pp. 1091–1103.

[26] J.F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, New York,
1982.

[27] N.Metropolis and S.Ulam,TheMonte Carlomethod, J. Am. Stat. Assoc. 44 (1949), pp. 335–341.
[28] S. Mondal and D. Kundu, Inference onWeibull parameters under a balanced two–sample type II

progressive censoring scheme, Qual. Reliab. Eng. Int. 36 (2020), pp. 1–17.
[29] H.K.T. Ng and P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the

Weibull distribution, Technometrics 46 (2004), pp. 470–481.
[30] G. Psarrakos andM.A. Sordo,Ona family of riskmeasures based on proportional hazardsmodels

and tail probabilities, Insur. Math. Econ. 86 (2019), pp. 232–240.
[31] A. Rasouli and N. Balakrishnan, Exact likelihood inference for two exponential populations

under joint progressive type-II censoring, Commun. Stat. Theory Methods 39 (2010), pp.
2172–2191.

[32] S. Sel,M. Jung, and Y. Chung, Bayesian andmaximum likelihood estimations from parameters of
McDonald extended Weibull model based on progressive type-II censoring, J. Stat. Theory Pract.
12 (2018), pp. 231–254.

[33] M. Sharafi, Inference of the two-parameter Lindley distribution based on progressive type II
censored data with random removals, Comm. Stat. Simul. Comput. 51:4 (2019), pp. 1–15.

[34] S.K. Singh, U. Singh, and V.K. Sharma, Expected total test time and Bayesian estimation for gen-
eralized Lindley distribution under progressively type-II censored sample where removals follow
the beta-binomial probability law, Appl. Math. Comput. 222 (2013), pp. 402–419.

[35] S.K. Singh, U. Singh, and M. Kumar, Bayesian estimation for Poisson-exponential model under
progressive type-II censoring data with binomial removal and its application to ovarian cancer
data, Comm. Stat. Simul. Comput. 45 (2016), pp. 3457–3475.

[36] S.K. Tse, C. Yang, and H.K. Yuen, Statistical analysis of Weibull distributed lifetime data under
type II progressive censoring with binomial removals, J. Appl. Stat. 27 (2000), pp. 1033–1043.

[37] S.K. Tse and L. Xiang, Interval estimation for Weibull-distributed life data under type II
progressive censoring with random removals, J. Biopharm. Stat. 13 (2003), pp. 1–16.

[38] S.K. Tse and C. Yang, Reliability sampling plans for the Weibull distribution under type II
progressive censoring with binomial removals, J. Appl. Stat. 30 (2003), pp. 709–718.

[39] S.K. Tse andH.K. Yuen, Expected experiment times for theWeibull distribution under progressive
censoring with random removals, J. Appl. Stat. 25 (1998), pp. 75–83.

[40] J. VonNeumann,Various techniques used in connectionwith randomdigits, John vonNeumann,
Collected Works 5 (1963), pp. 768–770.



30 F. HASSANTABAR DARZI ET AL.

[41] S.J. Wu and S.R. Huang, Optimal progressive group-censoring plans for exponential distribution
in presence of cost constraint, Stat. Pap. 51 (2010), pp. 431–443.

[42] C.C. Wu and S.F. Wu and H. Y. Chan, MLE and the estimated expected test time for the two-
parameter Gompertz distribution under progressive censoring with binomial removals, Appl.
Math. Comput. 181 (2006), pp. 1657–1670.

[43] W. Yan, Y. Shi, B. Song, and Z. Mao, Statistical analysis of generalized exponential distribu-
tion under progressive censoring with binomial removals, J. Syst. Eng. Electron. 22 (2011), pp.
707–714.

[44] H.K. Yuen and S.K. Tse, Parameters estimation forWeibull distributed lifetimes under progressive
censoring with random removals, J. Stat. Comput. Simul. 55 (1996), pp. 57–71.


	1. Introduction
	2. Methodology
	2.1. Proposed GLM-based random removal mechanism
	2.2. Mechanism behavior with respect to the tuning parameters
	2.3. Determination of effective tuning parameters according to possible FDi range
	2.4. The proportional hazard rate family under type-II PCRD

	3. Statistical inference for the Weibull lifetime data under type-II PCRD
	4. The expected experiment time
	5. Simulation study
	5.1. Algorithm for generating type-II PCRD sample
	5.2. The effect of the Weibull parameters on the behavior of proposed mechanism
	5.3. Simulation set up and results

	6. Sensitivity analysis
	7. Data analysis
	8. Conclusion
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


