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Preface

The momentous revolution in science precipitated by Isaac Newton’s calculus soon re-
vealed the central role of partial differential equations throughout mathematics and its
manifold applications. Notable examples of fundamental physical phenomena modeled
by partial differential equations, most of which are named after their discovers or early
proponents, include quantum mechanics (Schrodinger, Dirac), relativity (Einstein), elec-
tromagnetism (Maxwell), optics (eikonal, Maxwell-Bloch, nonlinear Schrodinger), fluid me-
chanics (Euler, Navier—Stokes, Korteweg—de Vries, Kadomstev—Petviashvili), superconduc-
tivity (Ginzburg-Landau), plasmas (Vlasov), magneto-hydrodynamics (Navier—Stokes +
Maxwell), elasticity (Lamé, von Karman), thermodynamics (heat), chemical reactions
(Kolmogorov—Petrovsky—Piskounov), finance (Black—Scholes), neuroscience (FitzHugh—
Nagumo), and many, many more. The challenge is that, while their derivation as physi-
cal models — classical, quantum, and relativistic — is, for the most part, well established,
[57,69], most of the resulting partial differential equations are notoriously difficult to solve,
and only a small handful can be deemed to be completely understood. In many cases, the
only means of calculating and understanding their solutions is through the design of so-
phisticated numerical approximation schemes, an important and active subject in its own
right. However, one cannot make serious progress on their numerical aspects without a
deep understanding of the underlying analytical properties, and thus the analytical and
numerical approaches to the subject are inextricably intertwined.

This textbook is designed for a one-year course covering the fundamentals of partial
differential equations, geared towards advanced undergraduates and beginning graduate
students in mathematics, science, and engineering. No previous experience with the subject
is assumed, while the mathematical prerequisites for embarking on this course of study
will be listed below. For many years, I have been teaching such a course to students
from mathematics, physics, engineering, statistics, chemistry, and, more recently, biology,
finance, economics, and elsewhere. Over time, I realized that there is a genuine need for
a well-written, systematic, modern introduction to the basic theory, solution techniques,
qualitative properties, and numerical approximation schemes for the principal varieties of
partial differential equations that one encounters in both mathematics and applications. It
is my hope that this book will fill this need, and thus help to educate and inspire the next
generation of students, researchers, and practitioners.

While the classical topics of separation of variables, Fourier analysis, Green’s functions,
and special functions continue to form the core of an introductory course, the inclusion
of nonlinear equations, shock wave dynamics, dispersion, symmetry and similarity meth-
ods, the Maximum Principle, Huygens’ Principle, quantum mechanics and the Schrédinger
equation, and mathematical finance makes this book more in tune with recent developments
and trends. Numerical approximation schemes should also play an essential role in an in-
troductory course, and this text covers the two most basic approaches: finite differences
and finite elements.

vii
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On the other hand, modeling and the derivation of equations from physical phenomena
and principles, while not entirely absent, has been downplayed, not because it is unimpor-
tant, but because time constraints limit what one can reasonably cover in an academic
year’s course. My own belief is that the primary purpose of a course in partial differential
equations is to learn the principal solution techniques and to understand the underlying
mathematical analysis. Thus, time devoted to modeling effectively lessens what can be ad-
equately covered in the remainder of the course. For this reason, modeling is better left to
a separate course that covers a wider range of mathematics, albeit at a more cursory level.
(Modeling texts worth consulting include [57,69].) Nevertheless, this book continually
makes contact with the physical applications that spawn the partial differential equations
under consideration, and appeals to physical intuition and familiar phenomena to motivate,
predict, and understand their mathematical properties, solutions, and applications. Nor
do T attempt to cover stochastic differential equations — see [83] for this increasingly im-
portant area — although I do work through one important by-product: the Black—Scholes
equation, which underlies the modern financial industry. I have tried throughout to bal-
ance rigor and intuition, thus giving the instructor flexibility with their relative emphasis
and time to devote to solution techniques versus theoretical developments.

The course material has now been developed, tested, and revised over the past six years
here at the University of Minnesota, and has also been used by several other universities in
both the United States and abroad. It consists of twelve chapters along with two appendices
that review basic complex numbers and some essential linear algebra. See below for further
details on chapter contents and dependencies, and suggestions for possible semester and
year-long courses that can be taught from the book.

Prerequisites

The initial prerequisite is a reasonable level of mathematical sophistication, which includes
the ability to assimilate abstract constructions and apply them in concrete situations.
Some physical insight and familiarity with basic mechanics, continuum physics, elemen-
tary thermodynamics, and, occasionally, quantum mechanics is also very helpful, but not
essential.

Since partial differential equations involve the partial derivatives of functions, the most
fundamental prerequisite is calculus — both univariate and multivariate. Fluency in the
basics of differentiation, integration, and vector analysis is absolutely essential. Thus, the
student should be at ease with limits, including one-sided limits, continuity, differentiation,
integration, and the Fundamental Theorem. Key techniques include the chain rule, product
rule, and quotient rule for differentiation, integration by parts, and change of variables in
integrals. In addition, I assume some basic understanding of the convergence of sequences
and series, including the standard tests — ratio, root, integral — along with Taylor’s
theorem and elementary properties of power series. (On the other hand, Fourier series will
be developed from scratch.)

When dealing with several space dimensions, some familiarity with the key construc-
tions and results from two- and three-dimensional vector calculus is helpful: rectangular
(Cartesian), polar, cylindrical, and spherical coordinates; dot and cross products; partial
derivatives; the multivariate chain rule; gradient, divergence, and curl; parametrized curves
and surfaces; double and triple integrals; line and surface integrals, culminating in Green’s
Theorem and the Divergence Theorem — as well as very basic point set topology: notions of
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open, closed, bounded, and compact subsets of Euclidean space; the boundary of a domain
and its normal direction; etc. However, all the required concepts and results will be quickly
reviewed in the text at the appropriate juncture: Section 6.3 covers the two-dimensional
material, while Section 12.1 deals with the three-dimensional counterpart.

Many solution techniques for partial differential equations, e.g., separation of variables
and symmetry methods, rely on reducing them to one or more ordinary differential equa-
tions. In order the make progress, the student should therefore already know how to find
the general solution to first-order linear equations, both homogeneous and inhomogeneous,
along with separable nonlinear first-order equations, linear constant-coefficient equations,
particularly those of second order, and first-order linear systems with constant-coefficient
matrices, in particular the role of eigenvalues and the construction of a basis of solutions.
The student should also be familiar with initial value problems, including statements of
the basic existence and uniqueness theorems, but not necessarily their proofs. Basic ref-
erences include [18, 20, 23], while more advanced topics can be found in [52, 54, 59]. On
the other hand, while boundary value problems for ordinary differential equations play a
central role in the analysis of partial differential equations, the book does not assume any
prior experience, and will develop solution techniques from the beginning.

Students should also be familiar with the basics of complex numbers, including real
and imaginary parts; modulus and phase (or argument); and complex exponentials and
Euler’s formula. These are reviewed in Appendix A. In the numerical chapters, some
familiarity with basic computer arithmetic, i.e., floating-point and round-off errors, is as-
sumed. Also, on occasion, basic numerical root finding algorithms, e.g., Newton’s Method;
numerical linear algebra, e.g., Gaussian Elimination and basic iterative methods; and nu-
merical solution schemes for ordinary differential equations, e.g., Runge-Kutta Methods,
are mentioned. Students who have forgotten the details can consult a basic numerical
analysis textbook, e.g., [24, 60], or reference volume, e.g., [94].

Finally, knowledge of the basic results and conceptual framework provided by modern
linear algebra will be essential throughout the text. Students should already be on familiar
terms with the fundamental concepts of vector space, both finite- and infinite-dimensional,
linear independence, span, and basis, inner products, orthogonality, norms, and Cauchy—
Schwarz and triangle inequalities, eigenvalues and eigenvectors, determinants, and linear
systems. These are all covered in Appendix B; a more comprehensive and recommended
reference is my previous textbook, [89], coauthored with my wife, Cheri Shakiban, which
provides a firm grounding in the key ideas, results, and methods of modern applied linear
algebra. Indeed, Chapter 9 here can be viewed as the next stage in the general linear
algebraic framework that has proven to be so indispensable for the modern analysis and
numerics of not just linear partial differential equations but, indeed, all of contemporary
pure and applied mathematics.

While applications and solution techniques are paramount, the text does not shy away
from precise statements of theorems and their proofs, especially when these help shed
light on the applications and development of the subject. On the other hand, the more
advanced results that require analytical sophistication beyond what can be reasonably
assumed at this level are deferred to a subsequent, graduate-level course. In particular,
the book does not assume that the student has taken a course in real analysis, and hence,
while the basic ideas underlying Hilbert space are explained in the context of Fourier
analysis, no knowledge of measure theory or Lebesgue integration is neither assumed nor
used. Consequently, the precise definitions of Hilbert space and generalized functions
(distributions) are necessarily left somewhat vague, with the level of detail being similar
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to that found in a basic physics course on quantum mechanics. Indeed, one of the goals of
the course is to inspire mathematics students (and others) to take a rigorous real analysis
course, because it is so indispensable to the more advanced theory and applications of
partial differential equations that build on the material presented here.

Outline of Chapters

The first chapter is brief and serves to set the stage, introducing some basic notation
and describing what is meant by a partial differential equation and a (classical) solution
thereof. It then describes the basic structure and properties of linear problems in a general
sense, appealing to the underlying framework of linear algebra that is summarized in Ap-
pendix B. In particular, the fundamental superposition principles for both homogeneous
and inhomogeneous linear equations and systems are employed throughout.

The first three sections of Chapter 2 are devoted to first-order partial differential equa-
tions in two variables — time and a single space coordinate — starting with simple linear
cases. Constant-coefficient equations are easily solved, leading to the important concepts
of characteristic and traveling wave. The method of characteristics is then extended, ini-
tially to linear first-order equations with variable coefficients, and then to the nonlinear
case, where most solutions break down into discontinuous shock waves, whose subsequent
dynamics relies on the underlying physics. The material on shocks may be at a slightly
higher level of difficulty than the instructor wishes to deal with this early in the course,
and hence may be downplayed or even omitted, perhaps returned to at a later stage, e.g.,
when studying Burgers’ equation in Section 8.4, or when the concept of weak solution
is introduced in Chapter 10. The final section of Chapter 2 is essential, and shows how
the second-order wave equation can be reduced to a pair of first-order partial differential
equations, thereby producing the celebrated solution formula of d’Alembert.

Chapter 3 covers the essentials of Fourier series, which is the most important tool in
our analytical arsenal. After motivating the subject by adapting the eigenvalue method for
solving linear systems of ordinary differential equations to the heat equation, the remainder
of the chapter develops basic Fourier series analysis, in both real and complex forms. The
final section investigates the various modes of convergence of Fourier series: pointwise,
uniform, in norm. Along the way, Hilbert space and completeness are introduced, at
an appropriate level of rigor. Although more theoretical than most of the material, this
section is nevertheless strongly recommended, even for applications-oriented students, and
can serve as a launching pad for higher-level analysis.

Chapter 4 immediately delves into the application of Fourier techniques to construct
solutions to the three paradigmatic second-order partial differential equations in two in-
dependent variables — the heat, wave, and Laplace/Poisson equations — via the method
of separation of variables. For dynamical problems, the separation of variables approach
reinforces the importance of eigenfunctions. In the case of the Laplace equation, separation
is performed in both rectangular and polar coordinates, thereby establishing the averaging
property of solutions and, consequently, the Maximum Principle as important by-products.
The chapter concludes with a short discussion of the classification of second-order partial
differential equations, in two independent variables, into parabolic, hyperbolic, and elliptic
categories, emphasizing their disparate natures and the role of characteristics.

Chapter 5 is the first devoted to numerical approximation techniques for partial
differential equations. Here the emphasis is on finite difference methods. All of the
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preceding cases are discussed: heat equation, transport equations, wave equation, and
Laplace/Poisson equation. The student learns that, in contrast to the field of ordinary
differential equations, numerical methods must be specially adapted to the particularities
of the partial differential equation under investigation, and may well not converge unless
certain stability constraints are satisfied.

Chapter 6 introduces a second important solution method, founded on the notion of a
Green’s function. Our development relies on the use of distributions (generalized functions),
concentrating on the extremely useful “delta function”, which is characterized both as an
unconventional limit of ordinary functions and, more rigorously but more abstractly, by
duality in function space. While, as with Hilbert space, we do not assume familiarity
with the analysis tools required to develop the fully rigorous theory of such generalized
functions, the aim is for the student to assimilate the basic ideas and comfortably work
with them in the context of practical examples. With this in hand, the Green’s function
approach is then first developed in the context of boundary value problems for ordinary
differential equations, followed by consideration of elliptic boundary value problems for the
Poisson equation in the plane.

Chapter 7 returns to Fourier analysis, now over the entire real line, resulting in the
Fourier transform. Applications to boundary value problems are followed by a further
development of Hilbert space and its role in modern quantum mechanics. Our discussion
culminates with the Heisenberg Uncertainty Principle, which is viewed as a mathematical
property of the Fourier transform. Space and time considerations persuaded me not to
press on to develop the Laplace transform, which is a special case of the Fourier transform,
although it can be profitably employed to study initial value problems for both ordinary
and partial differential equations.

Chapter 8 integrates and further develops several different themes that arise in the
analysis of dynamical evolution equations, both linear and nonlinear. The first section
introduces the fundamental solution for the heat equation, and describes applications in
mathematical finance through the celebrated Black—Scholes equation. The second section
is a brief discussion of symmetry methods for partial differential equations, a favorite topic
of the author and the subject of his graduate-level monograph [87]. Section 8.3 introduces
the Maximum Principle for the heat equation, an important tool, inspired by physics, in
the advanced analysis of parabolic problems. The last two sections study two basic higher-
order nonlinear equations. Burgers’ equation combines dissipative and nonlinear effects,
and can be regarded as a simplified model of viscous fluid mechanics. Interestingly, Burg-
ers’ equation can be explicitly solved by transforming it into the linear heat equation. The
convergence of its solutions to the shock-wave solutions of the limiting nonlinear transport
equation underlies the modern analytic method of viscosity solutions. The final section
treats basic third-order linear and nonlinear evolution equations arising, for example, in
the modeling of surface waves. The linear equation serves to introduce the phenomenon of
dispersion, in which different Fourier modes move at different velocities, producing com-
mon physical effects observed in, for instance, water waves. We also highlight the recently
discovered and fascinating Talbot effect of dispersive quantization and fractalization on
periodic domains. The nonlinear Korteweg—de Vries equation has many remarkable prop-
erties, including localized soliton solutions, first discovered in the 1960s, that result from
its status as a completely integrable system.

Before proceeding further, Chapter 9 takes time to formulate a general abstract frame-

work that underlies much of the more advanced analysis of linear partial differential equa-
tions. The material is at a slightly higher level of abstraction (although amply illustrated
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by concrete examples), so the more computationally oriented reader may wish to skip
ahead to the last two chapters, referring back to the relevant concepts and general re-
sults in particular contexts as needed. Nevertheless, I strongly recommend covering at
least some of this chapter, both because the framework is important to understanding the
commonalities among various concrete instantiations, and because it demonstrates the per-
vasive power of mathematical analysis, even for those whose ultimate goal is applications.
The development commences with the adjoint of a linear operator between inner product
spaces — a powerful and far-ranging generalization of the matrix transpose — which nat-
urally leads to consideration of self-adjoint and positive definite operators, all illustrated
by finite-dimensional linear algebraic systems and boundary value problems governed by
ordinary and partial differential equations. A particularly important construction, forming
the foundation of the finite element numerical method, is the characterization of solutions
to positive definite boundary value problems via minimization principles. Next, general
results concerning eigenvalues and eigenfunctions of self-adjoint and positive definite op-
erators are established, which serve to explain the key features of reality, orthogonality,
and completeness that underlie Fourier and more general eigenfunction series expansions.
A general characterization of complete eigenfunction systems based on properties of the
Green’s function nicely ties together two of the principal themes of the text.

Chapter 10 returns to the numerical analysis of partial differential equations, intro-
ducing the powerful finite element method. After outlining the general construction based
on the preceding abstract minimization principle, we present its practical implementation,
first for one-dimensional boundary value problems governed by ordinary differential equa-
tions and then for elliptic boundary value problems governed by the Laplace and Poisson
equations in the plane. The final section develops an alternative approach, based on the
idea of a weak solution to a partial differential equation, a concept of independent inter-
est. Indeed, the nonclassical shock-wave solutions encountered in Section 2.3 are properly
characterized as weak solutions.

The final two Chapters, 11 and 12, survey the analysis of partial differential equations
in, respectively, two and three space dimensions, concentrating, as before, on the Laplace,
heat, and wave equations. Much of the analysis relies on separation of variables, which, in
curvilinear coordinates, leads to new classes of special functions that arise as solutions to
certain linear second-order non-constant-coefficient ordinary differential equations. Since
we are not assuming familiarity with this subject, the method of power series solutions to
ordinary differential equations is developed in some detail. We also present the methods
of Green’s functions and fundamental solutions, including their qualitative properties and
various applications. The material has been arranged according to spatial dimension rather
than equation type; thus Chapter 11 deals with the planar heat and wave equations (the
planar Laplace and Poisson equations having been treated earlier, in Chapters 4 and 6),
while Chapter 12 covers all their three-dimensional counterparts. This arrangement allows
a more orderly treatment of the required classes of special functions; thus, Bessel functions
play the leading role in Chapter 11, while spherical harmonics, Legendre/Ferrers functions,
and Laguerre polynomials star in Chapter 12. The last chapter also presents the Kirchhoff
formula that solves the wave equation in three-dimensional space, an important conse-
quence being the validity of Huygens’ Principle concerning the localization of disturbances
in space, which, surprisingly, does not hold in a two-dimensional universe. The book cul-
minates with an analysis of the Schrodinger equation for the hydrogen atom, whose bound
states are the atomic energy levels underlying the periodic table, atomic spectroscopy, and
molecular chemistry.
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xiii

Course Outlines and Chapter Dependencies

With sufficient planning and a suitably prepared and engaged class, most of the material
in the text can be covered in a year. The typical single-semester course will finish with

Chapter 6.
Chapter 1:
Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Some pedagogical suggestions:
Go through quickly, the main take-away being linearity and superposition.

Most is worth covering and needed later, although Section 2.3, on shock waves,
is optional, or can be deferred until later in the course.

Students that have already taken a basic course in Fourier analysis can move
directly ahead to the next chapter. The last section, on convergence, is
important, but could be shortened or omitted in a more applied course.

The heart of the first semester’s course. Some of the material at the end of
Section 4.1 — Robin boundary conditions and the root cellar problem — is
optional, as is the very last subsection, on characteristics.

A course that includes numerics (as I strongly recommend) should start with
Section 5.1 and then cover at least a couple of the following sections, the
selection depending upon the interests of the students and instructor.

The material on distributions and the delta function is important for a student’s
general mathematical education, both pure and applied, and, in particular,
for their role in the design of Green’s functions. The proof of Green’s repre-
sentation formula (6.107) might be heavy going for some, and can be omitted
by just covering the preceding less-rigorous justification of the logarithmic
formula for the free-space Green’s function.

Sections 7.1 and 7.2 are essential, and convolution in Section 7.3 is also impor-
tant. Section 7.4, on Hilbert space and quantum mechanics, can easily be
omitted.

All five sections are more or less independent of each other and, except for the
fundamental solution and maximum principle for the heat equation, not used
subsequently. Thus, the instructor can pick and choose according to interest
and time alotted.

This chapter is at a more abstract level than the bulk of the text, and can
be skipped entirely (referring back when required), although if one intends
to cover the finite element method, the material in the first three sections
leading to minimization principles is required. Chapters 11 and 12 can, if
desired, be launched into straight after Chapter 8, or even Chapter 7 plus
the material on the heat equation in Chapter 8.

Chapter 10: Again, for a course that includes numerics, finite elements is extremely im-

portant and well worth covering. The final Section 10.4, on weak solutions,
is optional, particularly the revisiting of shock waves, although if this was
skipped in the early part of the course, now might be a good time to revisit
Section 2.3.

Chapters 11 and 12: These constitute another essential component of the classical partial

differential equations course. The detour into series solutions of ordinary
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differential equations is worth following, unless this is done elsewhere in the
curriculum. I recommend trying to cover as much as possible, although one
may well run out of time before reaching the end, in which case, consider
omitting the end of Section 11.6, on Chladni figures and nodal curves, Sec-
tion 12.6, on Kirchhoff’s formula and Huygens’ Principle, and Section 12.7,
on the hydrogen atom. Of course, if Chapter 6, on Green’s functions, and
Section 8.1, on fundamental solutions, were omitted, those aspects will also
presumably be omitted here; even if they were covered, there is not a com-
pelling reason to revisit these topics in higher dimensions, and one may prefer
to jump ahead to the more novel material appearing in the final sections.

Exercises and Software

Exercises appear at the end of almost every subsection, and come in a variety of genres.
Most sets start with some straightforward computational problems to develop and reinforce
the principal new techniques and ideas. Ability to solve these basic problems is a minimal
requirement for successfully assimilating the material. More advanced exercises appear
later on. Some are routine, but others involve challenging computations, computer-based
projects, additional practical and theoretical developments, etc. Some will challenge even
the most advanced reader. A number of straightforward technical proofs, as well as inter-
esting and useful extensions of the material, particularly in the later chapters, have been
relegated to the exercises to help maintain continuity of the narrative.

Don’t be afraid to assign only a few parts of a multi-part exercise. I have found
the True/False exercises to be particularly useful for testing of a student’s level of under-
standing. A full answer is not merely a T or F, but must include a detailed explanation
of the reason, e.g., a proof or a counterexample, or a reference to a result in the text.
Many computer projects are included, particularly in the numerical chapters, where they
are essential for learning the practical techniques. However, computer-based exercises are
not tied to any specific choice of language or software; in my own course, MATLAB is the
preferred programming platform. Some exercises could be streamlined or enhanced by the
use of computer algebra systems, such as MATHEMATICA and MAPLE, but, in general, I
have avoided assuming access to any symbolic software.

As a rough guide, some of the exercises are marked with special signs:
¢ indicates an exercise that is referred to in the body of the text, or is important for

further development or applications of the subject. These include theoretical details,

omitted proofs, or new directions of importance.
Q indicates a project — usually a longer exercise with multiple interdependent parts.

& indicates an exercise that requires (or at least strongly recommends) use of a computer.
The student could be asked either to write their own computer code in, say, MATLAB,
MAPLE, or MATHEMATICA, or to make use of pre-existing packages.

& = & + O indicates a more extensive computer project.

Movies

In the course of writing this book, I have made a number of movies to illustrate the
dynamical behavior of solutions and their numerical approximations. I have found that
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they are an extremely effective pedagogical tool and strongly recommend showing them
in the classroom with appropriate commentary and discussion. They are an ideal medium
for fostering a student’s deep understanding and insight into the phenomena exhibited by
the at times indigestible analytical formulas — much better than the individual snapshots
that appear in the figures in the printed book.

While it is clearly impossible to include the movies directly in the printed text, the
electronic e-book version will contain direct links. In addition, I have posted all the movies
on my own web site, along with the MATHEMATICA code used to generate them:

http://www.math.umn.edu/~olver/mov.html

When a movie is available, the sign L—lj appears in the figure caption.

Conventions and Notation

A complete list of symbols employed can be found in the Symbol Index that appears at
the end of the book.

Equations are numbered consecutively within chapters, so that, for example, (3.12)
refers to the 12th equation in Chapter 3, irrespecive of which section it appears in.

Theorems, lemmas, propositions, definitions, and examples are also numbered con-
secutively within each chapter, using a single scheme. Thus, in Chapter 1, Definition 1.2
follows Example 1.1, and precedes Proposition 1.3 and Theorem 1.4. I find this numbering
system to be the most helpful for speedy navigation through the book.

References (books, papers, etc.) are listed alphabetically at the end of the text, and
are referred to by number. Thus, [89] is the 89! listed reference, namely my Applied
Linear Algebra text.

Q.E.D. signifies the end of a proof, an acronym for “quod erat demonstrandum”, which
is Latin for “which was to be demonstrated”.

The variables that appear throughout will be subject to consistent notational conven-
tions. Thus ¢ always denotes time, while z,y, z represent (Cartesian) space coordinates.
Polar coordinates r, 8, cylindrical coordinates r, 8, z, and spherical coordinates r, 8, @, will
also be used when needed, and our conventions appear at the appropriate places in the ex-
position; be espcially careful with the last case, since the angular variables 6, ¢ are subject
to two contradictory conventions in the literature. The above are almost always indepen-
dent variables in the partial differential equations under study; the dependent variables
or unknowns will mostly be denoted by w, v, w, while f,g,h and F, G, H represent known
functions, appearing as forcing terms or in boundary data. See Chapter 4 for our conven-
tion, used in differential geometry, used to denote functions in different coordinate systems,
i.e., u(z,y) versus u(r,0).

In accordance with standard contemporary mathematical notation, the “blackboard
bold” letter R denotes the real number line, C denotes the field of complex numbers, Z
denotes the set of integers, both positive and negative, while N denotes the natural numbers,
i.e., the nonnegative integers, including 0. Similarly, R™ and C” denote the corresponding
n-dimensional real and complex vector spaces consisting of n—tuples of elements of R and
C, respectively. The zero vector in each is denoted by O.

Boldface lowercase letters, e.g., v,x, a, usually denote vectors (almost always column
vectors), whose entries are indicated by subscripts: v,,z;, etc. Matrices are denoted by
ordinary capital letters, e.g., A,C, K, M — but not all such letters refer to matrices; for
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instance, V often refers to a vector space, while F' is typically a forcing function. The entries
of a matrix, say A, are indicated by the corresponding subscripted lowercase letters: Qs
with ¢ the row index and j the column index.

Angles are always measured in radians, although occasionally degrees will be men-
tioned in descriptive sentences. All trigonometric functions are evaluated on radian angles.
Following the conventions advocated in [85,86], we use phz to denote the phase of a
complex number z € C, which is more commonly called the argument and denoted by
arg z. Among the many reasons to prefer “phase” are to avoid potential confusion with
the argument x of a function f(x), as well as to be in accordance with the “Method of
Stationary Phase” mentioned in Chapter 8.

We use { f|C} to denote a set, where f gives the formula for the members of the
set and C is a (possibly empty) list of conditions. For example, {z | 0 < z < 1} means
the closed unit interval from 0 to 1, also written [0, 1], while { az? + bz + ¢ | a,b,c € R}
is the set of real quadratic polynomials, and {0} is the set consisting only of the number
0. We use z € S to indicate that x is an element of the set S, while y € S says that y
is not an element. Set theoretic union and intersection are denoted by SUT and SNT),
respectively. The subset sign S C U includes the possibility that the sets S and U might
be equal, although for emphasis we sometimes write S C U. On the other hand, S C U
specifically implies that the two sets are not equal. We use U\ S ={z|z € U,z & S} to
denote the set-theoretic difference, meaning all elements of U that do not belong to S. We
use the abbreviations max and min to denote the maximum and minimum elements of a
set of real numbers, or of a real-valued function.

The symbol = is used to emphasize when two functions are identically equal, so f(z) =
1 means that f is the constant function, equal to 1 at all values of x. It is also occasionally
used in modular arithmetic, whereby ¢ = j mod n means ¢ — j is divisible by n. The symbol
:= will define a quantity, e.g., f(z) := 22 — 1. An arrow is used in two senses: first, to
indicate convergence of a sequence, e.g., z, — x* as n — 00, or, alternatively, to indicate
a function, so f: X — Y means that the function f maps the domain set X to the image
or target set Y, with formula y = f(x). Composition of functions is denoted by f o g, while
f~! indicates the inverse function. Similarly, A~! denotes the inverse of a matrix A.

By an elementary function we mean a combination of rational, algebraic, trigono-
metric, exponential, logarithmic, and hyperbolic functions. Familiarity with their basic
properties is assumed. We always use log x for the natural (base e) logarithm — avoiding
the ugly modern notation Inz. On the other hand, the required properties of the various
special functions — the error and complementary error functions, the gamma function, Airy
functions, Bessel and spherical Bessel functions, Legendre and Ferrers functions, Laguerre

functions, spherical harmonics, etc. — will be developed as needed.

Summation notation is used throughout, so Z a; denotes the finite sum a; + a, +
=1
.-+ +a, or, if the upper limit is n = oo, an infinite series. Of course, the lower limit need
not be 1; if it is —oo and the upper limit is 4+ 0o, the result is a doubly infinite series,
e.g., the complex Fourier series in Chapter 3. We use lim a, to denote the usual limit
n — oo
of a sequence a,,. Similarly, lim f(z) denotes the limit of the function f(z) at a point a,
Tr—a
while f(x7) = lim f(z)and f(z%) = lim+ f(x) are the one-sided (left- and right-hand,
Tr—a- Tr—a
respectively) limits, which agree if and only if lim f(z) exists.
Tr—a

We will employ a variety of standard notations for derivatives. In the case of ordinary
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du
derivatives, the most basic is the Leibniz notation for the derivative of u with respect to
As for partial derivatives, both the full Lebiniz notati Ou O Ou 4
x. As for partial derivatives, bo e full Lebiniz notation , , , , and the
P ot 0z’ Ox?’ Ot Dx>

more compact subscript notation u,,u,, u etc. will be interchangeably employed

X utzz’
throughout; see also Chapter 1. Unless specifically mentioned, all functions are assumed to
be sufficiently smooth that any indicated derivatives exist and the relevant mixed partial

derivatives are equal. Ordinary derivatives can also be indicated by the Newtonian notation
2 m

d d
W instead of " and u" for u, while 4™ denotes the nth order derivative . . If the
dx dx? dz

variable is time, ¢, instead of space, z, then we may employ dots, , i, instead of primes.
b
Definite integrals are denoted by / f(x)dx, while / f(x)dx is the corresponding
a

indefinite integral or anti-derivative. We assume familiarity only with the Riemann theory
of integration, although students who have learned Lebesgue integration may wish to take
advantage of that on occasion, e.g., during the discussion of Hilbert space.

Historical Matters

Mathematics is both a historical and a social activity, and many notable algorithms, the-
orems, and formulas are named after famous (and, on occasion, not-so-famous) mathe-
maticians, scientists, and engineers — usually, but not necessarily, the discover(s). The
text includes a succinct description of many of the named contributors. Readers who are
interested in more extensive historical details, complete biographies, and, when available,
portraits or photos, are urged to consult the informative University of St. Andrews Mac-
tutor web site:

http://www-history.mcs.st-andrews.ac.uk/history/index.html

Early prominent contributors to the subject include the Bernoulli family, Euler, d’Alembert,
Lagrange, Laplace, and, particularly, Fourier, whose remarkable methods in part sparked
the nineteenth century’s rigorization of mathematical analysis and then mathematics in
general, as pursued by Cauchy, Riemann, Cantor, Weierstrass, and Hilbert. In the twen-
tieth century, the subject of partial differential equations reached maturity, producing an
ever-increasing number of research papers, both theoretical and applied. Nevertheless, it
remains one of the most challenging and active areas of mathematical research, and, in
some sense, we have only scratched the surface of this deep and fascinating subject.
Textbooks devoted to partial differential equations began to appear long ago. Of par-
ticular note, Courant and Hilbert’s monumental two-volume treatise, [34, 35|, played a
central role in the development of applied mathematics in general, and partial differen-
tial equations in particular. Indeed, it is not an exaggeration to state that all modern
treatments, including this one, as well as large swaths of research, have been directly influ-
enced by this magnificent text. Modern undergraduate textbooks worth consulting include
[50, 91,92, 114, 120], which are more or less at the same mathematical level but have a va-
riety of points of view and selection of topics. The graduate-level texts [38, 44, 61,70, 99|
are recommended starting points for the more advanced reader and beginning researcher.
More specialized monographs and papers will be referred to at the appropriate junctures.
This book began life in 1999 as a part of a planned comprehensive introduction to
applied math, inspired in large part by Gilbert Strang’s wonderful text, [112]. After some
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time and much effort, it was realized that the original vision was much too ambitious a
goal, so my wife, Cheri Shakiban, and I recast the first part as our applied linear algebra
textbook, [89]. I later decided that a large fraction of the remainder could be reworked
into an introduction to partial differential equations, which, after some time and classroom
testing, resulted in the book you are now reading.

Some Final Remarks

To the student: You are about to delve into the vast and important field of partial
differential equations. I hope you enjoy the experience and profit from it in your future
studies and career, wherever they may take you. Please send me your comments. Did you
find the explanations helpful or confusing? Were enough examples included? Were the
exercises of sufficient variety and appropriate level to enable you to learn the material? Do
you have suggestions for improvements to be incorporated into a new edition?

To the instructor: Thank you for adopting this text! I hope you enjoy teaching from
it as much as I enjoyed writing it. Whatever your experience, I want to hear from you. Let
me know which parts you liked and which you didn’t. Which sections worked and which
were less successful. Which parts your students enjoyed, which parts they struggled with,
and which parts they disliked. How can it be improved?

To all readers: Like every author, I sincerely hope that I have eliminated all errors in
the text. But, more realistically, I know that no matter how many times one proofreads,
mistakes still manage to squeeze through (or, worse, be generated during the editing pro-
cess). Please email me your questions, typos, mathematical errors, comments, suggestions,
and so on. The book’s dedicated web site

http://www.math.umn.edu/~olver/pde.html

will actively maintain a comprehensive list of known corrections, commentary, feedback,
and resources, as well as links to the movies and MATHEMATICA code mentioned above.
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Chapter 1
What Are Partial Differential Equations?

Let us begin by delineating our field of study. A differential equation is an equation that
relates the derivatives of a (scalar) function depending on one or more variables. For
example,

dv  dPu
dart + 2 +u” =cosz (1.1)
is a differential equation for the function u(z) depending on a single variable x, while
ou  0*u  0%u
= — 1.2
ot~ oxz oy " (1.2)

is a differential equation involving a function u(t, z,y) of three variables.

A differential equation is called ordinary if the function u depends on only a single
variable, and partial if it depends on more than one variable. Usually (but not quite always)
the dependence of u can be inferred from the derivatives that appear in the differential
equation. The order of a differential equation is that of the highest-order derivative that
appears in the equation. Thus, (1.1) is a fourth-order ordinary differential equation, while
(1.2) is a second-order partial differential equation.

Remark: A differential equation has order 0 if it contains no derivatives of the function
u. These are more properly treated as algebraic equations,! which, while of great interest
in their own right, are not the subject of this text. To be a bona fide differential equation,
it must contain at least one derivative of u, and hence have order > 1.

There are two common notations for partial derivatives, and we shall employ them
interchangeably. The first, used in (1.1) and (1.2), is the familiar Leibniz notation that
employs a d to denote ordinary derivatives of functions of a single variable, and the d
symbol (usually also pronounced “dee”) for partial derivatives of functions of more than
one variable. An alternative, more compact notation employs subscripts to indicate par-
tial derivatives. For example, u, represents du/dt, while u,, is used for 8%u/dx?, and
03u/0z20y for u,,,- Thus, in subscript notation, the partial differential equation (1.2) is
written

Uy = Uy + Uy — U (1.3)

t Here, the term “algebraic equation” is used only to distinguish such equations from true
“differential equations”. It does not mean that the defining functions are necessarily algebraic,
e.g., polynomials. For example, the transcendental equation tanw = wu, which appears later in
(4.50), is still regarded as an algebraic equation in this book.

P.J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, 1
DOI 10.1007/978-3-319-02099-0 1, © Springer International Publishing Switzerland 2014
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We will similarly abbreviate partial differential operators, sometimes writing 0/0x as 0,
while 0% /0 can be written as either 9 or 0,,, and 9°/0x*dy becomes 0, = 97 0,,.

xx? T

It is worth pointing out that the preponderance of differential equatioyns arising in
applications, in science, in engineering, and within mathematics itself are of either first
or second order, with the latter being by far the most prevalent. Third-order equations
arise when modeling waves in dispersive media, e.g., water waves or plasma waves. Fourth-
order equations show up in elasticity, particularly plate and beam mechanics, and in image
processing. Equations of order > 5 are very rare.

A basic prerequisite for studying this text is the ability to solve simple ordinary differ-
ential equations: first-order equations; linear constant-coefficient equations, both homoge-
neous and inhomogeneous; and linear systems. In addition, we shall assume some familiar-
ity with the basic theorems concerning the existence and uniqueness of solutions to initial
value problems. There are many good introductory texts, including [18, 20, 23]. More
advanced treatises include [31, 52, 54, 59]. Partial differential equations are considerably
more demanding, and can challenge the analytical skills of even the most accomplished
mathematician. Many of the most effective solution strategies rely on reducing the partial
differential equation to one or more ordinary differential equations. Thus, in the course of
our study of partial differential equations, we will need to develop, ab initio, some of the
more advanced aspects of the theory of ordinary differential equations, including boundary
value problems, eigenvalue problems, series solutions, singular points, and special functions.

Following the introductory remarks in the present chapter, the exposition begins in
earnest with simple first-order equations, concentrating on those that arise as models of
wave phenomena. Most of the remainder of the text will be devoted to understanding and
solving the three essential linear second-order partial differential equations in one, two,
and three space dimensions:! the heat equation, modeling thermodynamics in a continuous
medium, as well as diffusion of animal populations and chemical pollutants; the wave
equation, modeling vibrations of bars, strings, plates, and solid bodies, as well as acoustic,
fluid, and electromagnetic vibrations; and the Laplace equation and its inhomogeneous
counterpart, the Poisson equation, governing the mechanical and thermal equilibria of
bodies, as well as fluid-mechanical and electromagnetic potentials.

Each increase in dimension requires an increase in mathematical sophistication, as
well as the development of additional analytic tools — although the key ideas will have
all appeared once we reach our physical, three-dimensional universe. The three starring
examples — heat, wave, and Laplace/Poisson — are not only essential to a wide range
of applications, but also serve as instructive paradigms for the three principal classes of
linear partial differential equations — parabolic, hyperbolic, and elliptic. Some interesting
nonlinear partial differential equations, including first-order transport equations modeling
shock waves, the second-order Burgers’ equation governing simple nonlinear diffusion pro-
cesses, and the third-order Korteweg—de Vries equation governing dispersive waves, will
also be discussed. But, in such an introductory text, the further reaches of the vast realm
of nonlinear partial differential equations must remain unexplored, awaiting the reader’s
more advanced mathematical excursions.

More generally, a system of differential equations is a collection of one or more equa-
tions relating the derivatives of one or more functions. It is essential that all the functions

' For us, dimension always refers to the number of space dimensions. Time, although theoreti-
cally also a dimension, plays a very different physical role, and therefore (at least in nonrelativistic
systems) is to be treated on a separate footing.
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occurring in the system depend on the same set of variables. The symbols representing
these functions are known as the dependent variables, while the variables that they depend
on are called the independent variables. Systems of differential equations are called ordi-
nary or partial according to whether there are one or more independent variables. The
order of the system is the highest-order derivative occurring in any of its equations.

For example, the three-dimensional Navier—Stokes equations

ou ou ou ou Op %u  0%u  O*u
- +v + + )
ot Ox Oy 0z ox ( ox?  Oy? 022 )
v ov ov ov op v v %
- +v + =+ )
ot Ox Oy 0z Oy ( or?  0y? 022 )
ow Op Pw  Pw  Pw
- +v + =+ )
ot Ox Ay 0z 0z ( ox?  Oy? 02?2 )
ou Ov  Ow 0
ox + Oy * 0z
is a second-order system of differential equations that involves four functions, u(t, z,y, 2),
v(t,x,y, z), w(t,x,y,z), p(t,z,y,z), each depending on four variables, while v > 0 is a
fixed constant. (The function p necessarily depends on t, even though no ¢ derivative of
it appears in the system.) The independent variables are ¢, representing time, and z,y, z,
representing space coordinates. The dependent variables are u, v, w, p, with v = (u, v, w)
representing the velocity vector field of an incompressible fluid flow, e.g., water, and p the
accompanying pressure. The parameter v measures the viscosity of the fluid. The Navier—
Stokes equations are fundamental in fluid mechanics, [12], and are notoriously difficult to
solve, either analytically or numerically. Indeed, establishing the existence or nonexistence
of solutions for all future times remains a major unsolved problem in mathematics, whose
resolution will earn you a $1,000,000 prize; see http://www.claymath.org for details. The
Navier—Stokes equations first appeared in the early 1800s in works of the French applied
mathematician/engineer Claude-Louis Navier and, later, the British applied mathemati-
cian George Stokes, whom you already know from his eponymous multivariable calculus
theorem.” The inviscid case, v = 0, is known as the Euler equations in honor of their dis-
coverer, the incomparably influential eighteenth-century Swiss mathematician Leonhard
Euler.

We shall be employing a few basic notational conventions regarding the variables that
appear in our differential equations. We always use t to denote time, while x, y, z will rep-
resent (Cartesian) space coordinates. Polar coordinates r, 6, cylindrical coordinates r, 0, z,
and spherical coordinatest 7,6, o, will also be used when needed. An equilibrium equation
models an unchanging physical system, and so involves only the space variable(s). The
time variable appears when modeling dynamical, meaning time-varying, processes. Both
time and space coordinates are (usually) independent variables. The dependent variables
will mostly be denoted by w,v,w, although occasionally — particularly in representing

4
<
+
4
+
g
I

+
IS
+
<
+
g
|

(1.4)

t Interestingly, Stokes’ Theorem was taken from an 1850 letter that Lord Kelvin wrote to
Stokes, who turned it into an undergraduate exam question for the Smith Prize at Cambridge
University in England. However, unbeknownst to either, the result had, in fact, been discovered
earlier by George Green, the father of Green’s Theorem and also the Green’s function, which will
be the subject of Chapter 6.

¥ See Section 12.2 for our notational convention.
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particular physical quantities — other letters may be employed, e.g., the pressure p in
(1.4). On the other hand, the letters f, g, h typically represent specified functions of the
independent variables, e.g., forcing or boundary or initial conditions.

In this introductory text, we must confine our attention to the most basic analytic
and numerical solution techniques for a select few of the most important partial differential
equations. More advanced topics, including all systems of partial differential equations,
must be deferred to graduate and research-level texts, e.g., [35, 38,44, 61,99]. In fact,
many important issues remain incompletely resolved and/or poorly understood, making
partial differential equations one of the most active and exciting fields of contemporary
mathematical research. One of my goals is that, by reading this book, you will be both
inspired and equipped to venture much further into this fascinating and essential area of
mathematics and/or its remarkable range of applications throughout science, engineering,
economics, biology, and beyond.

Exercises

1.1. Classify each of the following differential equations as ordinary or partial, and equilibrium

or dynamic; then write down ;ts order. (a) ZZ —;xu :21, (b) ng +u gz =z,
_ ou  0%u  Ou 0%y O°u _ o 2
(C) Uty = guzzﬂ (d) ot - o2 + o’ (e) o2 ayg =z +y,
d? .
(f) ©p HBu=sint, (g) gy +uyy +u + (@ +y° + =0, (0) uy, = o+,

L Ou O ou . 0%u *u
(i) ot + o3 tu oxr 0, () Ox? + oyoz u, (k) Uy = Upppy + 2uzzyy T Uyyyy-

1.2. In two space dimensions, the Laplacian is defined as the second-order partial differential
operator A = 8% + 85. Write out the following partial differential equations in (i) Leibniz
notation; (#) subscript notation: (a) the Laplace equation Au = 0; (b) the Poisson equa-
tion —Au = f; (c) the two-dimensional heat equation O,u = Au; (d) the von Karman
plate equation A%y = 0.

1.3. Answer Exercise 1.2 for the three-dimensional Laplacian A = 8926 + 85 + 63.

1.4. Identify the independent variables, the dependent variables, and the order of the following
ou Ov ou v

systems of partial differential equations: (a) P oy’ oy == o

ou _ Ov 9% _ 82u_
ot Oz’ otz 9x2’
(d) v +uu, +vu, =p,, v, +uv, +vv, =p, u,+v,=0;

(e) uy =v,,, +v(l—v), v, = Upyy T VW, Wy =u, +v,.

(b) uy, + Vyy = cos(x + y), Uy Uy, — Uy U, = 15 (c)

Classical Solutions

Let us now focus our attention on a single differential equation involving a single, scalar-
valued function w that depends on one or more independent variables. The function u
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is usually real-valued, although complex-valued functions can, and do, play a role in the
analysis. Everything that we say in this section will, when suitably adapted, apply to
systems of differential equations.

By a solution we mean a sufficiently smooth function u of the independent variables
that satisfies the differential equation at every point of its domain of definition. We do not
necessarily require that the solution be defined for all possible values of the independent
variables. Indeed, usually the differential equation is imposed on some domain D contained
in the space of independent variables, and we seek a solution defined only on D. In general,
the domain D will be an open subset, usually connected and, particularly in equilibrium
equations, often bounded, with a reasonably nice boundary, denoted by 9D.

We will call a function smooth if it can be differentiated sufficiently often, at least
so that all of the derivatives appearing in the equation are well defined on the domain
of interest D. More specifically, if the differential equation has order n, then we require
that the solution u be of class C™, which means that it and all its derivatives of order
< n are continuous functions in D, and such that the differential equation that relates the
derivatives of u holds throughout D. However, on occasion, e.g., when dealing with shock
waves, we will consider more general types of solutions. The most important such class
consists of the so-called “weak solutions” to be introduced in Section 10.4. To emphasize
the distinction, the smooth solutions described above are often referred to as classical
solutions. In this book, the term “solution” without extra qualification will usually mean
“classical solution”.

Example 1.1. A classical solution to the heat equation

ou  0%u
pr— 1-
ot 0x? (15)
is a function u(t, ), defined on a domain D C R2, such that all of the functions
ou ou 0%u 0%u 0%u 0%u
t t t t t = t t
'LL( 7;E)7 at ( ,.CU), a$( ,.CU), atQ ( 7;E)7 ata$( ,.CU) a$at( 7;E)7 a.fUQ ( ,.CU),

are well defined and continuous’ at every point (¢,z) € D, so that u € C?(D), and,
moreover, (1.5) holds at every (¢,z) € D. Observe that, even though only u, and u,,
explicitly appear in the heat equation, we require continuity of all the partial derivatives
of order < 2 in order that u qualify as a classical solution. For example,

u(t,x) =t+ §x2 (1.6)

is a solution to the heat equation that is defined on the full domain D = R? because it is*
C2, and, moreover,

ou 1= 0%u
ot~ 0x?’
Another, more complicated but extremely important, solution is
o—2/(41)
u(t,xz) = (1.7)

2/t

t The equality of the mixed partial derivatives follows from a general theorem in multivariable
calculus, [8,97,108]. Classical solutions automatically enjoy equality of all their relevant mixed
partial derivatives.

¥ In fact, the function (1.6) is C*°, meaning infinitely differentiable, on all of R2.
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One easily verifies that v € C? and, moreover, solves the heat equation on the domain
D ={t>0} C R2. The reader is invited to verify this by computing du/dt and 9%u/0x?,
and then checking that they are equal. Finally, with i = y/—1 denoting the imaginary
unit, we note that

t

u(t,z) =e T =e teosz + ie sin, (1.8)

the second expression following from Euler’s formula (A.11), defines a complex-valued
solution to the heat equation. This can be verified directly, since the rules for differentiating
complex exponentials are identical to those for their real counterparts:
6u:_€_t+m ou A 62u:_6_t+im:8u
’ ’ Ox? ot

ot 8:6_1

It is worth pointing out that both the real part, e~ cos z, and the imaginary part, e~ sin z,
of the complex solution (1.8) are individual real solutions, which is indicative of a fairly
general property.

and so

Incidentally, most partial differential equations arising in physical applications are real,
and, although complex solutions often facilitate their analysis, at the end of the day we
require real, physically meaningful solutions. A notable exception is quantum mechanics,
which is an inherently complex-valued physical theory. For example, the one-dimensional

Schridinger equation -

., Ou R 0%u

ih 5 = om O + V(z)u, (1.9)
with A denoting Planck’s constant, which is real, governs the dynamical evolution of the
complex-valued wave function u(t, z) describing the probabilistic distribution of a quantum
particle of mass m, e.g., an electron, moving in the force field prescribed by the (real)
potential function V' (z). While the solution u is complex-valued, the independent variables
t, x, representing time and space, remain real.

Initial Conditions and Boundary Conditions

How many solutions does a partial differential equation have? In general, lots. Even
ordinary differential equations have infinitely many solutions. Indeed, the general solution
to a single ntt order ordinary differential equation depends on n arbitrary constants. The
solutions to partial differential equations are yet more numerous, in that they depend
on arbitrary functions. Very roughly, we can expect the solution to an mth order partial
differential equation involving m independent variables to depend on n arbitrary functions
of m — 1 variables. But this must be taken with a large grain of salt — only in a few special
instances will we actually be able to express the solution in terms of arbitrary functions.

The solutions to dynamical ordinary differential equations are singled out by the im-
position of initial conditions, resulting in an initial value problem. On the other hand,
equations modeling equilibrium phenomena require boundary conditions to specify their
solutions uniquely, resulting in a boundary value problem. We assume that the reader is
already familiar with the basics of initial value problems for ordinary differential equations.
But we will take time to develop the perhaps less familiar case of boundary value problems
for ordinary differential equations in Chapter 6.

A similar specification of auxiliary conditions applies to partial differential equations.
Equations modeling equilibrium phenomena are supplemented by boundary conditions im-
posed on the boundary of the domain of interest. In favorable circumstances, the boundary
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conditions serve to single out a unique solution. For example, the equilibrium temperature
of a body is uniquely specified by its boundary behavior. If the domain is unbounded,
one must also restrict the nature of the solution at large distances, e.g., by asking that it
remain bounded. The combination of a partial differential equation along with suitable
boundary conditions is referred to as a boundary value problem.

There are three principal types of boundary value problems that arise in most appli-
cations. Specifying the value of the solution along the boundary of the domain is called a
Dirichlet boundary condition, to honor the nineteenth-century analyst Johann Peter Gus-
tav Lejeune Dirichlet. Specifying the normal derivative of the solution along the boundary
results in a Neumann boundary condition, named after his contemporary Carl Gottfried
Neumann. Prescribing the function along part of the boundary and the normal derivative
along the remainder results in a mized boundary value problem. For example, in thermal
equilibrium, the Dirichlet boundary value problem specifies the temperature of a body
along its boundary, and our task is to find the interior temperature distribution by solv-
ing an appropriate partial differential equation. Similarly, the Neumann boundary value
problem prescribes the heat flux through the boundary. In particular, an insulated bound-
ary has no heat flux, and hence the normal derivative of the temperature is zero on the
boundary. The mixed boundary value problem prescribes the temperature along part of
the boundary and the heat flux along the remainder. Again, our task is to determine the
interior temperature of the body.

For partial differential equations modeling dynamical processes, in which time is one of
the independent variables, the solution is to be specified by one or more initial conditions.
The number of initial conditions required depends on the highest-order time derivative
that appears in the equation. For example, in thermodynamics, which involves only the
first-order time derivative of the temperature, the initial condition requires specifying the
temperature of the body at the initial time. Newtonian mechanics describes the accelera-
tion or second-order time derivative of the motion, and so requires two initial conditions:
the initial position and initial velocity of the system. On bounded domains, one must also
impose suitable boundary conditions in order to uniquely characterize the solution and
hence the subsequent dynamical behavior of the physical system. The combination of the
partial differential equation, the initial conditions, and the boundary conditions leads to an
initial-boundary value problem. We will encounter, and solve, many important examples
of such problems during the course of this text.

Remark: An additional consideration is that, besides any smoothness required by the
partial differential equation within the domain, the solution and any of its derivatives
specified in any initial or boundary condition should also be continuous at the initial
or boundary point where the condition is imposed. For example, if the initial condition
specifies the function value u(0, z) for a < 2 < b, while the boundary conditions specify the

ou u
. (t,a) and (

inside the domain {a <z < b, t > 0}, we also require that u be continuous at all initial

derivatives t,b) for t > 0, then, in addition to any smoothness required

u
points (0, ), and that its derivative be continuous at all boundary points (¢,a) and

x
(t,b), in order that wu(t,z) qualify as a classical solution to the initial-boundary value
problem.
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Exercises

1.5. Show that the following functions u(z,y) define classical solutions to the two-dimensional

. P 9 . . .
Laplace equation 92 + P 0. Be careful to specify an appropriate domain.
T Y
(a) e®cosy, (b) 1422 —y2, (c) z3—3z?, (d) log(x?_'_yQ)7 (e) tanfl(y/x), (f) mQ—T-yQ'

1.6. Find all solutions u = f(r) of the two-dimensional Laplace equation u,, + u,,, = 0 that
depend only on the radial coordinate r = \/as2 + 92

1.7. Find all (real) solutions to the two-dimensional Laplace equation u,,, +u,, = 0 of the form
u = logp(z,y), where p(x,y) is a quadratic polynomial.

1.8.(a) Find all quadratic polynomial solutions of the three-dimensional Laplace equation
9%u n 9%u n 9%u
0x?2  Oy? = 922

1.9. Find all polynomial solutions p(t, z) of the heat equation u, = u,

=0. (b) Find all the homogeneous cubic polynomial solutions.

with degp < 3.

T
1.10. Show that each of the following functions (¢, x) is a solution to the wave equation
2
uy, =4u,,: (a) 4t? — 22, (b) cos(z + 2t); (c) sin2tcosz; (d) e~ (@207,

1.11. Find all polynomial solutions p(t, z) of the wave equation u, = u,, with
(a) degp <2, (b) degp=3.

1.12. Suppose u(t,z) and v(t, ) are C? functions defined on R? that satisfy the first-order sys-
tem of partial differential equations v, =v,, v, = u,.
(a) Show that both u and v are classical solutions to the wave equation u,, = u,,. Which
result from multivariable calculus do you need to justify the conclusion?
(b) Conversely, given a classical solution u(t, z) to the wave equation, can you construct a
function v(¢, ) such that u(t, ), v(t, z) form a solution to the first-order system?

1.13. Find all solutions u = f(r) of the three-dimensional Laplace equation
Uy, + Uy, +u,, =0 that depend only on the radial coordinate r = \/mQ + y2 + 22,

1.14. Let u(x,y) be defined on a domain D C R2. Suppose you know that all its second-order
partial derivatives, u,,,, Uy Uy Uy > ATE defined and continuous on all of D. Can you con-

clude that u € C?(D)?

1.15. Write down a partial differential equation that has
(a) no real solutions; (b) exactly one real solution; (c) exactly two real solutions.

2 2
1.16. Let u(z,y) = xy 22 b2 for (z,y) # (0,0), while u(0,0) = 0. Prove that
0%u 9%u
=1#-1= .
oy 00V =17 1= 7 (0.0

Explain why this example does not contradict the theorem on the equality of mixed partials.

Linear and Nonlinear Equations

As with algebraic equations and ordinary differential equations, there is a crucial distinction
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between linear and nonlinear partial differential equations, and one must have a firm grasp
of the linear theory before venturing into the nonlinear wilderness. While linear algebraic
equations are (modulo numerical difficulties) eminently solvable by a variety of techniques,
linear ordinary differential equations, of order > 2, already present a challenge, as most
cannot be solved in terms of elementary functions. Indeed, as we will learn in Chapter 11,
solving many of those equations that arise in applications requires introducing new types
of “special functions” that are typically not encountered in a basic calculus course. Linear
partial differential equations are of a yet higher level of difficulty, and only a small handful
of specific equations can be completely solved. Moreover, explicit solutions tend to be
expressible only in the form of infinite series, requiring subtle analytic tools to understand
their convergence and properties. For the vast majority of partial differential equations, the
only feasible means of producing general solutions is through numerical approximation. In
this book, we will study the two most basic numerical schemes: finite differences and finite
elements. Keep in mind that, in order to develop and understand numerics for partial
differential equations, one must already have a good understanding of their analytical
properties.

The distinguishing feature of linearity is that it enables one to straightforwardly com-
bine solutions to form new solutions, through a general Superposition Principle. Linear
superposition is universally applicable to all linear equations and systems, including linear
algebraic systems, linear ordinary differential equations, linear partial differential equa-
tions, linear initial and boundary value problems, as well as linear integral equations,
linear control systems, and so on. Let us introduce the basic idea in the context of a single
differential equation.

A differential equation is called homogeneous linear if it is a sum of terms, each of
which involves the dependent variable w or one of its derivatives to the first power; on
the other hand, there is no restriction on how the terms involve the independent variables.
Thus,

d*u U

=0
dx? + 1+ 22

is a homogeneous linear second-order ordinary differential equation. Examples of homo-
geneous linear partial differential equations include the heat equation (1.5), the partial
differential equation (1.2), and the equation

ou 0%y
=e

x
ot ox?
On the other hand, Burgers’ equation

+ cos(x — t) u.

ou ou  9%*u

ot o or  Ox? (1.10)
is not linear, since the second term involves the product of u and its derivative u,. A
similar terminology is applied to systems of partial differential equations. For example, the
Navier—Stokes system (1.4) is not linear because of the terms uu,, vu,, etc. — although
its final constituent equation is linear.

A more precise definition of a homogeneous linear differential equation begins with the
concept of a linear differential operator L. Such operators are assembled by summing the
basic partial derivative operators, with either constant coefficients or, more generally, coef-
ficients depending on the independent variables. The operator acts on sufficiently smooth
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functions depending on the relevant independent variables. According to Definition B.32,
linearity imposes two key requirements:

L{u+v] = L[u] + L[v], L{cu] = cL[u], (1.11)
for any two (sufficiently smooth) functions u,v, and any constant c.
Definition 1.2. A homogeneous linear differential equation has the form
Llu] =0, (1.12)
where L is a linear differential operator.
As a simple example, consider the second-order differential operator

0? 0%u
= g2 whereby Llu] = 92

for any C? function u(x,y). The linearity requirements (1.11) follow immediately from
basic properties of differentiation:

L

0? *u 0%
Lutv)= 2 i) =00 00— Lu)+ o),
02 0%u
Licu] = 92 (cu)=c 92 = cL[u],

which are valid for any C? functions u, v and any constant c¢. The corresponding homoge-
neous linear differential equation L[u] =0 is

0%u
P 0.

The heat equation (1.5) is based on the linear partial differential operator
L=0,-02, with  L[u] = 0,u — 0*u = u, —u,, = 0. (1.13)
Linearity follows as above:
L{u+v] = 0,(u+v) — 9*(u +v) = (9,u — 9*u) + (0,v — 0*v) = Lu] + L[v],
L{cu] = 9,(cu) — 02(cu) = ¢ (d,u — ?u) = cLu].
Similarly, the linear differential operator

L=0?-0,k(x)0, =0} — k(z) 9> — K'(x) 0

x?

where k() is a prescribed C! function of z alone, defines the homogeneous linear partial
differential equation
— K (z)u, =0,

xrxT x

Llu] = 82u — 8, (x(2) 9,u) = uy, — 0, (k(2) u,) = uyy — () u

which is used to model vibrations in a nonuniform one-dimensional medium.
The defining attributes of linear operators (1.11) imply the key properties shared by
all homogeneous linear (differential) equations.

Proposition 1.3. The sum of two solutions to a homogeneous linear differential
equation is again a solution, as is the product of a solution with any constant.
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Proof: Let u,,uy be solutions, meaning that L[u, | = 0 and L[u,]| = 0. Then, thanks
to linearity,
Lluy +uy] = L{uy | + L[uy] = 0,

and hence their sum u, 4 u, is a solution. Similarly, if ¢ is any constant and u any solution,
then
Licu] =cL[u] =¢c0=0,

and so the scalar multiple cu is also a solution. Q.E.D.

As a result, starting with a handful of solutions to a homogeneous linear differential
equation, by repeating these operations of adding solutions and multiplying by constants,
we are able to build up large families of solutions. In the case of the heat equation (1.5),
we are already in possession of two solutions, namely (1.6) and (1.7). Multiplying each by
a constant produces two infinite families of solutions:

02 e_xQ/(4t)

2\/7Tt ’

where ¢, ¢, are arbitrary constants. Moreover, one can add the latter solutions together,
producing a two-parameter family of solutions

u(t,z) = ¢, (t+ 5 2°) and u(t,x) =

ey e~ /(1)

2\/7715 ’

u(t,z) = ¢, (t+ S 2°) +

valid for any choice of the constants cq, c,.
The preceding construction is a special case of the general Superposition Principle for
homogeneous linear equations:

Theorem 1.4. Ifu,,...,u, are solutions to a common homogeneous linear equation
L[u] = 0, then the linear combination, or superposition, u = ¢;u; + - - -+ ¢, uy, is a solution
for any choice of constants cq,...,c,.

Proof: Repeatedly applying the linearity requirements (1.11), we find

Llu] = Llcyuy + -+ + cpuy | = Llcyuy + -+ ¢ _quy | + Llcyuy |

= o =Lleyuy ) + -+ Llcguy, ] = ¢, Lluy | + - + ¢, L]uy, ). (1.14)

In particular, if the functions are solutions, so L{u; ] =0, ... ,L[u,] = 0, then the right-
hand side of (1.14) vanishes, proving that u also solves the equation L[u] = 0. Q.E.D.

In the linear algebraic language of Appendix B, Theorem 1.4 tells us that the solu-
tions to a homogeneous linear partial differential equation form a vector space. The same
holds true for linear algebraic equations, [89], and linear ordinary differential equations,
[18, 20,23, 52]. In the latter two situations, once one finds a sufficient number of inde-
pendent solutions, the general solution is obtained as a linear combination thereof. In
the language of linear algebra, the solution space is finite-dimensional. In contrast, most
linear systems of partial differential equations admit an infinite number of independent
solutions, meaning that the solution space is infinite-dimensional, and, as a consequence,
one cannot hope to build the general solution by taking finite linear combinations. Instead,
one requires the far more delicate operation of forming infinite series involving the basic
solutions. Such considerations will soon lead us into the heart of Fourier analysis, and
require spending an entire chapter developing the required analytic tools.
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Definition 1.5. An inhomogeneous linear differential equation has the form
Llv] =, (1.15)

where L is a linear differential operator, v is the unknown function, and f is a prescribed
nonzero function of the independent variables alone.

For example, the inhomogeneous form of the heat equation (1.13) is
L[U] :atv_agv:vt_vzz :f(tvx)a (116)

where f(t,z) is a specified function. This equation models the thermodynamics of a one-
dimensional medium subject to an external heat source.

You already learned the basic technique for solving inhomogeneous linear equations
in your study of elementary ordinary differential equations. Step one is to determine the
general solution to the homogeneous equation. Step two is to find a particular solution to
the inhomogeneous version. The general solution to the inhomogeneous equation is then
obtained by adding the two together. Here is the general version of this procedure:

Theorem 1.6. Let v, be a particular solution to the inhomogeneous linear equation
L[v,| = f. Then the general solution to L{v] = f is given by v = v, + u, where u is the
general solution to the corresponding homogeneous equation L{u] = 0.

Proof: Let us first show that v = v, 4+ u is also a solution whenever L{u] = 0. By
linearity,
Llv] = Llv, +u] = L[v,] + L{u] = f+ 0 = f.

To show that every solution to the inhomogeneous equation can be expressed in this man-
ner, suppose v satisfies L[v] = f. Set u = v — v,. Then, by linearity,

Llu] = Llv—wv,] = L[v] = L[v,] =0,

and hence v is a solution to the homogeneous differential equation. Thus, v = v, + u has
the required form. Q.E.D.

In physical applications, one can interpret the particular solution v, as a response of
the system to the external forcing function. The solution u to the homogeneous equation
represents the system’s internal, unforced behavior. The general solution to the inhomo-
geneous linear equation is thus a combination, v = v, + u, of the external and internal
responses.

Finally, the Superposition Principle for inhomogeneous linear equations allows one to
combine the responses of the system to different external forcing functions. The proof of
this result is left to the reader as Exercise 1.26.

Theorem 1.7. Let vy,...,v, be solutions to the inhomogeneous linear systems
L{v,] = f;, ... ,L[v,] = [, involving the same linear operator L. Then, given any
constants cq, . .., ¢, the linear combination v = ¢;v; + - - - 4 ¢, v, solves the inhomogeneous

system L{v] = f for the combined forcing function f = c,f; + -+ ¢, fp-

The two general Superposition Principles furnish us with powerful tools for solving
linear partial differential equations, which we shall repeatedly exploit throughout this text.
In contrast, nonlinear partial differential equations are much tougher, and, typically, knowl-
edge of several solutions is of scant help in constructing others. Indeed, finding even one
solution to a nonlinear partial differential equation can be quite a challenge. While this text
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will primarily concentrate on analyzing the solutions and their properties to some of the
most basic and most important linear partial differential equations, we will have occasion
to briefly venture into the nonlinear realm, introducing some striking recent developments
in this fascinating arena of contemporary research.

Exercises

1.17. Classify the following differential equations as either
(i) homogeneous linear; (i4) inhomogeneous linear; or (éiz) nonlinear:
2 .
(a) uy = 2wy, +2zu,, (b) —uy, —u, =sinw (c) u,, +2yu,, =3;
(d) u+uu, =3u; (e) efu, =e"u,; (f) vy =5u,,, +2%u + z.
1.18. Write down all possible solutions to the Laplace equation you can construct from the var-
ious solutions provided in Exercise 1.5 using linear superposition.
1.19.(a) Show that the following functions are solutions to the wave equation u,, = 4wu,_,:
(i) cos(x — 2t), (ii) e® T2t (iii) 2%+ 2at + 412,
(b) Write down at least four other solutions to the wave equation.

1.20. The displacement u(t, x) of a forced violin string is modeled by the partial differential
equation u, = 4u,, +F(t,). When the string is subjected to the external forcing F(t,x) =

cos z, the solution is u(t, z) = cos(z — 2t) + }1 cos z, while when F'(t, ) = sinz, the solution
is u(t, x) = sin(z — 2¢) + }1 sinz. Find a solution when the forcing function F'(t, z) is
(a) cosx — bsin, (b) sin(x — 3).

1.21.(a) Show that the partial derivatives 0,[f] = g£ and 9, [f] = gij both define linear

operators on the space of continuously differentiable functions f(x,y). (b) For which values

of +b of +cf +d linear?
ox oy

1.22.(a) Prove that the Laplacian A = 8% + 85 defines a linear differential operator.
(b) Write out the Laplace equation Afu] = 0 and the Poisson equation —Afu] = f.

of a,b,c,d is the differential operator L[f] = a

1.23. Prove that, on R?’, the gradient, curl, and divergence all define linear operators.

1.24. Let L and M be linear partial differential operators. Prove that the following are also
linear partial differential operators: (a) L — M, (b) 3L, (c¢) fL, where f is an arbitrary
function of the independent variables; (d) Lo M.

1.25. Suppose L and M are linear differential operators and let N = L + M.
(a) Prove that N is a linear operator. (b) True or false: If u solves L[u] = f and v solves
M[v] =g, then w = u + v solves N[w] = f +g.

1.26. Prove Theorem 1.7.

1.27. Solve the following inhomogeneous linear ordinary differential equations:
(a) W —du=x—3, (b) 5u” —4u +4u=e"cosz, (c) v’ —3u =e3%.
1.28. Use superposition to solve the following inhomogeneous ordinary differential equations:
(a) v +2u=1+cosz, (b) v/ —9u==x+sinz, (c) 9u” —18u' +10u =1 + €* cosz,
(d) v’ +u' — 2u = sinhx, where sinhz = %(em —e7 ), (e) W 4+9u =1+e3%.



Chapter 2
Linear and Nonlinear Waves

Our initial foray into the vast mathematical continent that comprises partial differential
equations will begin with some basic first-order equations. In applications, first-order
partial differential equations are most commonly used to describe dynamical processes,
and so time, ¢, is one of the independent variables. Our discussion will focus on dynamical
models in a single space dimension, bearing in mind that most of the methods we introduce
can be extended to higher-dimensional situations. First-order partial differential equations
and systems model a wide variety of wave phenomena, including transport of pollutants in
fluids, flood waves, acoustics, gas dynamics, glacier motion, chromatography, traffic flow,
and various biological and ecological systems.

A Dbasic solution technique relies on an inspired change of variables, which comes
from rewriting the equation in a moving coordinate frame. This naturally leads to the
fundamental concept of characteristic curve, along which signals and physical disturbances
propagate. The resulting method of characteristics is able to solve a first-order linear
partial differential equation by reducing it to one or more first-order nonlinear ordinary
differential equations.

Proceeding to the nonlinear regime, the most important new phenomenon is the pos-
sible breakdown of solutions in finite time, resulting in the formation of discontinuous
shock waves. A familiar example is the supersonic boom produced by an airplane that
breaks the sound barrier. Signals continue to propagate along characteristic curves, but
now the curves may cross each other, precipitating the onset of a shock discontinuity. The
ensuing shock dynamics is not uniquely specified by the partial differential equation, but
relies on additional physical properties, to be specified by an appropriate conservation law
along with a causality condition. A full-fledged analysis of shock dynamics becomes quite
challenging, and only the basics will be developed here.

Having attained a basic understanding of first-order wave dynamics, we then focus
our attention on the first of three paradigmatic second-order partial differential equations,
known as the wave equation, which is used to model waves and vibrations in an elastic
bar, a violin string, or a column of air in a wind instrument. Its multi-dimensional versions
serve to model vibrations of membranes, solid bodies, water waves, electromagnetic waves,
including light, radio waves, microwaves, acoustic waves, and many other physical phenom-
ena. The one-dimensional wave equation is one of a small handful of physically relevant
partial differential equations that has an explicit solution formula, originally discovered by
the eighteenth-century French mathematician (and encyclopedist) Jean d’Alembert. His
solution is the result of being able to “factorize” the second-order wave equation into a
pair of first-order partial differential equations, of a type solved in the first part of this

P.J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, 15
DOI 10.1007/978-3-319-02099-0 2, © Springer International Publishing Switzerland 2014
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Figure 2.1.  Stationary wave. L—I_-J

chapter. We investigate the consequences of d’Alembert’s solution formula for the initial
value problem on the entire real line; solutions on bounded intervals will be deferred until
Chapter 4. Unfortunately, d’Alembert’s method is of rather limited scope, and does not
extend beyond the one-dimensional case, nor to equations modeling vibrations of nonuni-
form media. The analysis of the wave equation in more than one space dimension can be
found in Chapters 11 and 12.

2.1 Stationary Waves

When entering a new mathematical subject — in our case, partial differential equations —
one should first analyze and fully understand the very simplest examples. Indeed, mathe-
matics is, at its core, a bootstrapping enterprise, in which one builds on one’s knowledge
of and experience with elementary topics — in the present case, ordinary differential equa-
tions — to make progress, first with the simpler types of partial differential equations, and
then, by developing and applying each newly gained insight and technique, to more and
more complicated situations.
The simplest partial differential equation, for a function u(t,z) of two variables, is

ou
ot

It is a first-order, homogeneous, linear equation. If (2.1) were an ordinary differential
equation’ for a function u(t) of ¢ alone, the solution would be obvious: u(t) = ¢ must be
constant. A proof of this basic fact proceeds by integrating both sides with respect to ¢
and then appealing to the Fundamental Theorem of Calculus. To solve (2.1) as a partial
differential equation for u(t, x), let us similarly integrate both sides of the equation from,
say, 0 to t, producing

—0. (2.1)

t
0= Ou (s,z)ds = u(t,x) — u(0, x).
o Ot

Therefore, the solution takes the form
u(t,z) = f(z),  where  f(z)=u(0,2), (2.2)

and hence is a function of the space variable x alone. The only requirement is that f(x)
be continuously differentiable, so f € C!, in order that u(t,z) be a bona fide classical

tof course, in this situation, we would write the equation as du/dt = 0.
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Figure 2.2. Domain for stationary-wave solution.

solution of the first-order partial differential equation (2.1). The solution (2.2) represents
a stationary wave, meaning that it does not change in time. The initial profile stays frozen
in place, and the system remains in equilibrium. Figure 2.1 plots a representative solution
as a function of x at three successive times.

The preceding analysis seems very straightforward and perhaps even a little boring.
But, to be completely rigorous, we need to take a bit more care. In our derivation, we
implicitly assumed that the solution u(t,z) was defined everywhere on R%. And, in fact,
the solution formula (2.2) is not completely valid as stated if the solution u(¢, x) is defined
only on a subdomain D C R2.

Indeed, a solution u(t) to the corresponding ordinary differential equation du/dt = 0 is
constant, provided it is defined on a connected subinterval I C R. A solution that is defined
on a disconnected subset D C R need only be constant on each connected subinterval
I C D. For instance, the nonconstant function

u(t) = { b t>0, satisfies du_ 0
—1, t <0, dt
everywhere on its domain of definition, that is, D = {t # 0}, but is constant only on the
connected positive and negative half-lines.

Similar counterexamples can be constructed in the case of the partial differential equa-
tion (2.1). If the domain of definition is disconnected, then we do not expect wu(¢,x) to
depend only on zx if we move from one connected component of D to another. Even that
is not the full story. For example, the function

0, x>0,
u(t,z) = % <0, t>0, (2.3)
— 2, <0, t<0,

is continuously differentiable’ on its domain of definition, namely D = R2\{(0,z) |z <0},

satisfies Ou /0t = 0 everywhere in D, but, nevertheless, is not a function of x alone, because,

for example, u(1,z) = 2% # u(—1,x) = — 2%

T You are asked to rigorously prove differentiability in Exercise 2.1.10.



18 2 Linear and Nonlinear Waves

A completely correct formulation can be stated as follows: If w(¢,x) is a classical
solution to (2.1), defined on a domain D C R? whose intersection with any horizontal* line,
namely D, = D N {(t,a) |t € R}, for each fixed a € R, is either empty or a connected
interval, then u(t,z) = f(z) is a function of = alone. An example of such a domain is
sketched in Figure 2.2. In Exercise 2.1.9, you are asked to justify these statements.

We are thus slightly chastened in our dismissal of (2.1) as a complete triviality. The
lesson is that, in future, one must always be careful when interpreting such “general”
solution formulas — since they often rely on unstated assumptions on their underlying
domain of definition.

Exercises

2.1.1. Solve the partial differential equation (‘;1; =z for u(t, x).

2
2.1.2. Solve the partial differential equation gtg =0 for u(t, z).

2.1.3. Find the general solution u(t, x) to the following partial differential equations:
(a) u, =0, (b) uy=1, (¢) uy=a—t, (d) w,+3u=0, (e) u,+tu=0, (f) uy+4u=1.

2.1.4. Suppose u(t, z) is defined for all (t,z) € R? and solves du/dt + 2u = 0. Prove that
lim w(t,z) =0 for all .
t— 00

2.1.5. Write down the general solution to the partial differential equation du/dt = 0 for a func-
tion of three variables u(t, z,y). What assumptions should be made on the domain of defi-
nition for your solution formula to be valid?

2.1.6. Solve the partial differential equation =0 for u(z,y).

0“u
Oz dy
2.1.7. Answer Exercise 2.1.6 when u(z,y, z) depends on the three independent variables x,y, z.

0
© 2.1.8. Let u(t, z) solve the initial value problem (‘;Z +u? =0, uw0,z) = f(x), where f(z) is a

bounded C! function of z € R. (a) Show that if f(x) > 0 for all z, then u(t,z) is defined
for all ¢ > 0, and hm u(t,z) = 0. (b) On the other hand, if f(z) < 0, then the solution

u(t, z) is not deﬁned for all t > 0, but in fact, 11m7u(t,m) = —oo for some 0 < 7 < 0.

Given x, what is the corresponding value of 7'7 (c) Given f(z) as in part (b), what is the
longest time interval 0 <t < t, on which u(t, z) is defined for all z € R?

& 2.1.9. Justify the claim in the text that if u(¢,z) is a solution of du/9t = 0 that is defined on
a domain D C R? with the property that D, =D n {(a,z)|z € R} is either empty or a
connected interval, then u(t,z) = v(z) depends only on z € D.

< 2.1.10. Prove that the function in (2.3) is continuously differentiable at all points (¢, x) in its
domain of definition.

Y Important: We will adopt the (slightly unusual) convention of displaying the (¢, z)-plane
with time ¢ along the horizontal axis and space = along the vertical axis — which also conforms
with our convention of writing ¢ before x in expressions like u(t, z). Later developments will amply
vindicate our adoption of this convention.
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2.2 Transport and Traveling Waves

In many respects, the stationary-wave equation (2.1) does not quite qualify as a partial
differential equation. Indeed, the spatial variable x enters only parametrically in the so-
lution to what is, in essence (ignoring technical difficulties with domains), a very simple
ordinary differential equation.

Let us then turn to a more “genuine” example. Consider the linear, homogeneous
first-order partial differential equation

ou ou
at +c o = 0, (2.4)
for a function u(¢, ), in which ¢ is a fixed, nonzero constant, known as the wave speed for
reasons that will soon become apparent. We will refer to (2.4) as the transport equation,
because it models the transport of a substance, e.g., a pollutant, in a uniform fluid flow that
is moving with velocity c. In this model, the solution (¢, ) represents the concentration of
the pollutant at time ¢ and spatial position 2. Other common names for (2.4) are the first-
order or unidirectional wave equation. But for brevity, as well as to avoid any confusion
with the second-order, bidirectional wave equation discussed extensively later on, we will
stick with the designation “transport equation” here. Solving the transport equation is
slightly more challenging, but, as we will see, not difficult.

Since the transport equation involves time, its solutions are distinguished by their
initial values. As a first-order equation, we need only specify the value of the solution at
an initial time ¢, leading to the initial value problem

u(ty, x) = f(x) for all xz € R. (2.5)

As we will show, as long as f € C!, i.e., is continuously differentiable, the initial conditions
serve to specify a unique classical solution. Also, by replacing the time variable ¢ by ¢ — ¢,
we can, without loss of generality, set ¢, = 0.

Uniform Transport

Let us begin by assuming that the wave speed c¢ is constant. In general, when one is
confronted with a new equation, one solution strategy is to try to convert it into an equation
that you already know how to solve. In this case, we will introduce a simple change of
variables that effectively rewrites the equation in a moving coordinate system, inspired by
the interpretation of ¢ as the overall transport speed.

If = represents the position of an object in a fixed coordinate frame, then

E=x—ct (2.6)

represents the object’s position relative to an observer who is uniformly moving with ve-
locity c¢. Think of a passenger in a moving train to whom stationary objects appear to
be moving backwards at the train’s speed c. To formulate a physical process in the refer-
ence frame of the passenger, we replace the stationary space-time coordinates (¢, z) by the
moving coordinates (t,§).

Remark: These are the same changes of reference frame that underlie Einstein’s spe-
cial theory of relativity. However, unlike Einstein, we are working in a purely classical,
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Figure 2.3.  Traveling wave with ¢ > 0. L—I_-J

nonrelativistic universe here. Such changes to moving coordinates are, in fact, of a much
older vintage, and named Galilean boosts in honor of Galileo Galilei, who was the first to
champion such “relativistic” moving coordinate systems.

Let us see what happens when we re-express the transport equation in terms of the
moving coordinate frame. We rewrite

u(t,z) =v(t,x — ct) = v(t,§) (2.7)

in terms of the characteristic variable & = x — ct, along with the time ¢t. To write out
the differential equation satisfied by v(¢,£), we apply the chain rule from multivariable
calculus, [8, 108], to express the derivatives of u in terms of those of v:

ou Ov v ou  Ov

— —c _

ot ot oE”’ or o9&’

Therefore,

8u+ 8u_8v_ 8v+ dv v (2.8)
ot “or ot “oc “oc T ot '

We deduce that u(t, ) solves the transport equation (2.4) if and only if v(t,£) solves the
stationary-wave equation

o =0 (2.9)

Thus, the effect of using a moving coordinate system is to convert a wave moving with
velocity ¢ into a stationary wave. Think again of the passenger in the train — a second
train moving at the same speed appears as if it were stationary.

According to our earlier discussion, the solution v = v(§) to the stationary-wave
equation (2.9) is a function of the characteristic variable alone. (For simplicity, we assume
that v(t,£) has an appropriate domain of definition, e.g., it is defined everywhere on R2.)
Recalling (2.7), we conclude that the solution

u=uv(§) =v(r—ct)

to the transport equation must be a function of the characteristic variable only. We have
therefore proved the following result:

Proposition 2.1. If u(t,z) is a solution to the partial differential equation
u, +cu, =0, (2.10)
which is defined on all of R?, then
u(t,z) = v(x — ct), (2.11)

where v(€) is a Cl function of the characteristic variable £ = x — ct.
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(0,9)

Figure 2.4.  Characteristic line.

In other words, any (reasonable) function of the characteristic variable, e.g., €2 +1, or
cos&, or e, will produce a corresponding solution, (x —ct)?+1, or cos(x — ct), or e* ¢, to
the transport equation with constant wave speed c. And, in accordance with the counting
principle of Chapter 1, the general solution to this first-order partial differential equation
in two independent variables depends on one arbitrary function of a single variable.

To a stationary observer, the solution (2.11) appears as a traveling wave of unchanging
form moving at constant velocity c. When ¢ > 0, the wave translates to the right, as illus-
trated in Figure 2.3. When ¢ < 0, the wave translates to the left, while ¢ = 0 corresponds
to a stationary wave form that remains fixed at its original location, as in Figure 2.1.

At t = 0, the wave has the initial profile

u(0,z) = v(x), (2.12)

and so (2.11) provides the (unique) solution to the initial value problem (2.4,12). For
example, the solution to the particular initial value problem
1 , 1

Ut+2uz :O’ u<07$) — 1+$27 1S u(t,x) = 1+(:L,_2t>2 '

Since it depends only on the characteristic variable £ = x — ct, every solution to the

transport equation is constant on the characteristic lines of slope’ ¢, namely

x=ct+Fk, (2.13)

where k is an arbitrary constant. At any given time t, the value of the solution at posi-
tion = depends only on its original value on the characteristic line passing through (¢, x).

T This makes use of our convention that the t—axis is horizontal and the z—axis is vertical.
Reversing the axes will replace the slope by its reciprocal.



22 2 Linear and Nonlinear Waves

u u u

t=20 t=1 t=2

Figure 2.5. Decaying traveling wave. L—I_-J

This is indicative of a general fact concerning such wave models: Signals propagate along
characteristics. Indeed, a disturbance at an initial point (0, y) only affects the value of the
solution at points (¢, x) that lie on the characteristic line x = ¢t + y emanating therefrom,
as illustrated in Figure 2.4.

Transport with Decay

Let @ > 0 be a positive constant, and ¢ an arbitrary constant. The homogeneous linear
first-order partial differential equation

glz—l-ch—l—au:O (2.14)
models the transport of, say, a radioactively decaying solute in a uniform fluid flow with
wave speed c. The coefficient a governs the rate of decay. We can solve this variant of the
transport equation by the self-same change of variables to a uniformly moving coordinate
system.

Rewriting u(¢, z) in terms of the characteristic variable, as in (2.7), and then recalling
our chain rule calculation (2.8), we find that v(¢,£) = wu(t,& + ct) satisfies the partial

differential equation

ov
ot +av =0.

The result is, effectively, a homogeneous linear first-order ordinary differential equation,
in which the characteristic variable & enters only parametrically. The standard solution
technique learned in elementary ordinary differential equations, [20, 23], tells us to multiply
the equation by the exponential integrating factor e*t, leading to

v 0
at _ at,\ _
e <8t+av>_8t(e v) = 0.

We conclude that w = e®v solves the stationary-wave equation (2.1). Thus,

w=e""v=f(§), andhence  v(t,&)=f(§)e ",

where f(£) is an arbitrary function of the characteristic variable. Reverting to physical
coordinates, we produce the solution formula

u(t,x) = f(x —ct)e” ", (2.15)

which solves the initial value problem u(0,x) = f(x). It represents a wave that is moving
along with fixed velocity ¢ while simultaneously decaying at an exponential rate as pre-
scribed by the coefficient a > 0. A typical solution, for ¢ > 0, is plotted at three successive
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times in Figure 2.5. While the solution (2.15) is no longer constant on the characteris-
tics, signals continue to propagate along them, since a solution’s initial value at a point
(0,y) will only affect its subsequent (decaying) values on the associated characteristic line
r=ct+y.

Exercises

2.2.1. Find the solution to the initial value problem u, +u, =0, u(l,z) =z/(1+ as2).

2.2.2. Solve the following initial value problems and graph the solutions at times ¢ = 1, 2, and 3:
2
(a) u, —3u, =0, u(0,z) =€ *; (b) u,+2u, =0, u(-1,z) =z/(1+ z%);
(¢) up +u, + éu =0, u(0,z) = tan~ ! a; (d) vy —4u, +u=0,u(0,z)=1/(1+ ).
2.2.3. Graph some of the characteristic lines for the following equations, and write down a for-

mula for the general solution:
(a) uy —3u, =0, (b) u,+5u, =0, (c)u+u,+3u=0, (d) v, —4u,+u=0.
2
2.2.4. Solve the initial value problem u, + 2u, =1, u(0,z) =€ *
Hint: Use characteristic coordinates.

2.2.5. Answer Exercise 2.2.4 for the initial value problem u, + 2u, = sinz, u(0,z) = sinz.

& 2.2.6. Let ¢ be constant. Suppose that u(t,x) solves the initial value problem u, + cu, = 0,
u(0,z) = f(x). Prove that v(t, ) = u(t — ty, x) solves the initial value problem v, +cv, = 0,
v(tg, x) = f(x).

2.2.7. Is Exercise 2.2.6 valid when the transport equation is replaced by the damped transport
equation (2.14)7

2.2.8. Let ¢ # 0. (a) Prove that if the initial data satisfies u(0,2) = v(x) — 0 as x — £ o0,
then, for each fixed z, the solution to the transport equation (2.4) satisfies u(t,z) — 0 as
t — oo. (b) Is the convergence uniform in x?

2.2.9.(a) Prove that if the initial data is bounded, | f(z)| < M for all z € R, then the solu-
tion to the damped transport equation (2.14) with a > 0 satisfies u(t,z) — 0 ast — oo.
(b) Find a solution to (2.14) that is defined for all (¢,2) but does not satisfy u(t,z) — 0
as t — oo.

2.2.10. Let F(t,z) be a C! function of (t,2) € R?. (a) Write down a formula for the general
solution u(t, z) to the inhomogeneous partial differential equation u, = F(t, x).
(b) Solve the inhomogeneous transport equation u, + cu, = F(t, x).

© 2.2.11.(a) Write down a formula for the general solution to the nonlinear partial differential
equation u, + u, + u? = 0. (b) Show that if the initial data is positive and bounded,
0 < u(0,z) = f(x) < M, then the solution exists for all ¢ > 0, and u(t,z) — 0 as t — oo.

(c) On the other hand, if the initial data is negative at some x, then the solution blows up
at x in finite time: lim wu(t,x) — —oo for some 7 > 0. (d) Find a formula for the earli-
t—T717

est blow-up time 7, > 0.

2.2.12. A sensor situated at position = 1 monitors the concentration of a pollutant u(¢, 1) as
a function of ¢ for ¢ > 0. Assuming that the pollutant is transported with wave speed ¢ = 3,
at what locations x can you determine the initial concentration «(0, z)?

2.2.13. Write down a solutlon to the transport equation u, + 2u, = 0 that is defined on a
connected domain D C R? and that is not a function of the characterlstlc variable alone.
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2.2.14. Let ¢ > 0. Consider the uniform transport equation u; + cu, = 0 restricted to the
quarter-plane @ = {z > 0, ¢ > 0} and subject to initial conditions w(0,z) = f(z) for z > 0,
along with boundary conditions u(t,0) = g(¢) for t > 0. (a) For which initial and bound-
ary conditions does a classical solution to this initial-boundary value problem exist? Write
down a formula for the solution. (b) On which regions are the effects of the initial condi-
tions felt? What about the boundary conditions? Is there any interaction between the two?

2.2.15. Answer Exercise 2.2.14 when ¢ < 0.

Nonuniform Transport

Slightly more complicated, but still linear, is the nonuniform transport equation

8u+ ( )Gu_
ot ar or

where the wave speed ¢(x) is now allowed to depend on the spatial position. Characteristics
continue to guide the behavior of solutions, but when the wave speed is not constant, we
can no longer expect them to be straight lines. To adapt the method of characteristics,
let us look at how the solution varies along a prescribed curve in the (¢, z)-plane. Assume
that the curve is identified with the graph of a function z = x(t), and let

h(t) = u(t, z(t))

be the value of the solution on it. We compute the rate of change in the solution along
the curve by differentiating h with respect to t. Invoking the multivariable chain rule, we
obtain

0, (2.16)

dh d ou ou dx
o dtu(t,;v(t)) = 5 (t, (1)) + 9 (t, (1)) P (2.17)
In particular, if x(t) satisfies
dz dh  Ou ou
&= c(z(t)), then &= o (t,z(t)) + c(z(t)) O (t,z(t)) =0,

since we are assuming that w(t,z) solves the transport equation (2.16) for all values of
(t,z), including those points (¢,z(t)) on the curve. Since its derivative is zero, h(t) must
be a constant, which motivates the following definition.

Definition 2.2. The graph of a solution z(¢) to the autonomous ordinary differential
equation

= c(x) (2.18)

is called a characteristic curve for the transport equation with wave speed c(z).

In other words, at each point (¢,x), the slope of the characteristic curve equals the
wave speed c¢(x) there. In particular, if ¢ is constant, the characteristic curves are straight
lines of slope ¢, in accordance with our earlier construction.

Proposition 2.3. Solutions to the linear transport equation (2.16) are constant
along characteristic curves.
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Figure 2.6.  Characteristic curve.

The characteristic curve equation (2.18) is an autonomous first-order ordinary differ-
ential equation. As such, it can be immediately solved by separating variables, [20, 23].
Assuming c(x) # 0, we divide both sides of the equation by c(x), and then integrate the
resulting equation:

dz dz
= dt, hereb = =t+k, 2.19
o whereby  Ae) = [ 7 <t (219)
with & denoting the integration constant. For each fixed value of k, (2.19) serves to im-
plicitly define a characteristic curve, namely,

z(t) =B (t + k),
with 37! denoting the inverse function. On the other hand, if c(x,) = 0, then z, is a
fized point for the ordinary differential equation (2.18), and the horizontal line z = z, is a
stationary characteristic curve.
Since the solution wu(t,z) is constant along the characteristic curves, it must therefore
be a function of the characteristic variable

€= Bla)—t (2.20)
alone, and hence of the form

u(t,z) = v(B(z) —t), (2.21)
where v(€) is an arbitrary C! function. Indeed, it is easy to check directly that, provided
B(x) is defined by (2.19), u(t, ) solves the partial differential equation (2.16) for any choice
of C! function v(§). (But keep in mind that the algebraic solution formula (2.21) may fail
to be valid at points where the wave speed vanishes: ¢(z,) = 0.)

Warning: The definition of characteristic variable used here is slightly different from
that in the constant wave speed case, which, by (2.20), would be { = z/c —t = (z — ct)/c.
Clearly, rescaling the characteristic variable by 1/c is an inessential modification of our
original definition.
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x

To find the solution that satisfies the prescribed initial conditions

u(0,z) = f(x), (2.22)
we merely substitute the general solution formula (2.21). This leads to the implicit equation
v(B(x)) = f(x) for the function v(£) = foB71(£). The resulting solution formula

u(t,z) = f o7t (6(;6) - t) (2.23)
is not particularly enlightening, but it does have a simple graphical interpretation: To find
the value of the solution wu(t,x), we look at the characteristic curve passing through the
point (¢, x). If this curve intersects the z—axis at the point (0,y), as in Figure 2.6, then
u(t,z) = u(0,y) = f(y), since the solution must be constant along the curve. On the other
hand, if the characteristic curve through (¢,x) doesn’t intersect the x—axis, the solution
value u(t, x) is not prescribed by the initial data.

Example 2.4. Let us solve the nonuniform transport equation
ou 1 U
+ =0
ot  z?2+1 Oz
by the method of characteristics. According to (2.18), the characteristic curves are the
graphs of solutions to the first-order ordinary differential equation

o))

(2.24)

de 1
dt  z2+1°
Separating variables and integrating, we obtain
,B(:c)—/(x2+1)d$:§x3+:ﬂ:t+k, (2.25)

where k is the integration constant. Representative curves are plotted in Figure 2.7. (In this
case, inverting the function 3, i.e., solving (2.25) for x as a function of ¢, is not particularly
enlightening.)
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Figure 2.8.  Solution to u, + 221 e = 0. tI-J

According to (2.20), the characteristic variable is £ = ;2% + o — t, and hence the
general solution to the equation takes the form

u:v(éxg’—l—:v—t), (2.26)
where v(£) is an arbitrary C! function. A typical solution, corresponding to initial data
1
0,z) = , 2.27
v = (@132 (227)

is plotted’ at the indicated times in Figure 2.8. Although the solution remains constant
along each individual curve, a stationary observer will witness a dynamically changing
profile as the wave moves through the nonuniform medium. In this example, since ¢(x) > 0
everywhere, the wave always moves from left to right; its speed as it passes through a point
x determined by the magnitude of ¢(z) = (z* + 1)~!, with the consequence that each part
accelerates as it approaches the origin from the left, and then slows back down once it
passes by and ¢(z) decreases in magnitude. To a stationary observer, the wave spreads out
as it speeds through the origin, and then becomes progressively narrower and slower as it
gradually moves off to + occ.

Example 2.5. Consider the nonuniform transport equation

u, + (2% — 1)u, = 0. (2.28)

T The required function v(€) in (2.26) is implicitly given by the equation v(% z3 + m) = u(0, z),
and so the explicit formula for w(¢, ) is not very instructive or useful. Indeed, to make the plots,
we instead sampled the initial data (2.27) at a collection of uniformly spaced points y; < y, <

- <y, Since the solution is constant along the characteristic curve (2.25) passing through each
sample point (0,y;), we can find nonuniformly spaced sample values for u(t, z;) at any later time.
The smooth solution curve u(t, x) is then approximated using spline interpolation, [89; §11.4], on
these sample values.
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Figure 2.9.  Characteristic curves for u, + (% — 1)u, =
In this case, the characteristic curves are the solutions to
dz 9
=z°—1
a — " T
and so
dx -1
= 1 =t+k. 2.29
o = [ 2 =y e 2| (2.20)

One must also include the horizontal lines = x, = £ 1 corresponding to the roots of
c(x) = 22 —1. The curves are graphed in Figure 2.9. Note that those curves starting below
r, = 1 converge to x_ = —1 as t — oo, while those starting above x, =1 veer off to co
in finite time. Owing to the sign of c¢(z) = 2 — 1, points on the graph of u(0, x) lying over
|z | < 1 will move to the left, while those over |z | > 1 will move to the right.

In Figure 2.10, we graph several snapshots of the solution whose initial value is a
bell-shaped Gaussian profile

u(0,z) = e

The initial conditions uniquely prescribe the value of the solution along the characteristic
curves that intersect the x—axis. On the other hand, if

1+e%t
mgl_ezt for t>0,
the characteristic curve through (¢, z) does not intersect the z—axis, and hence the value
of the solution at such points, lying in the shaded region in Figure 2.9, is not prescribed
by the initial data. Let us arbitrarily assign the solution to be u(t,z) = 0 at such points.
At other values of (t,z) with ¢ > 0, the solution (2.23) is

u(t,x):exp{—<x+1+(x_1)eQt)Q]. (2.30)

x+1—(x—1)e 2t
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t=20 t=.2 t=1

Figure 2.10.  Solution to u, + (2 — 1)u, = 0. L—Ij

(The derivation of this solution formula is left as Exercise 2.2.23.) As t increases, the
solution’s peak becomes more and more concentrated near x_ = —1, while the section of
the wave above x > z, = 1 rapidly spreads out to co. In the long term, the solution
converges (albeit nonuniformly) to a step function of height 1/e:

1/e ~ .367879, x> —1,
u(t,z) — s(x) = as t — o0.
0, r < —1,

Let us finish by making a few general observations concerning the characteristic curves
of transport equations whose wave speed ¢(x) depends only on the position z. Using the
basic existence and uniqueness theory for such autonomous ordinary differential equations,
[20, 23, 52], and assuming that c(z) is continuously differentiable:

e There is a unique characteristic curve passing through each point (¢,z) € R2.

Characteristic curves cannot cross each other.

If t = B(x) is a characteristic curve, then so are all its horizontal translates:
t = B(z) + k for any k.
Each non-horizontal characteristic curve is the graph of a strictly monotone function.
Thus, each point on a wave always moves in the same direction, and can never
reverse its direction of propagation.

e As t increases, the characteristic curve either tends to a fixed point, z(t) — x, as
t — oo, with ¢(z,) = 0, or goes off to 00 in either finite or infinite time.

Proofs of these statements are assigned to the reader in Exercise 2.2.25.

T For those who know about such things, [18, 52], this assumption can be weakened to just
Lipschitz continuity.
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Exercises

2.2.16.(a) Find the general solution to the first-order equation u, + % u, = 0.
(b) Find a solution satisfying the initial condition u(1,z) = sinz. Is your solution unique?

2.2.17.(a) Solve the initial value problem u, — zu, =0, u(0,z) = (2 + 1)L
(b) Graph the solution at times t = 0,1,2,3. (¢) What is lim wu(t,x)?
t— 00

2.2.18. Suppose the initial data u(0,2) = f(z) of the nonuniform transport equation (2.28) is
continuous and satisfies f(x) — 0 as |z | — oo. What is the limiting solution profile u(t, x)
as (a) t > o0? (b) t > —o00?

© 2.2.19.(a) Find and graph the characteristic curves for the equation u, + (sinz)u, = 0.
(b) Write down the solution with initial data u(0,z) = cos % mx. (c¢) Graph your solution
at times t = 0,1,2, 3,5, and 10. (d) What is the limiting solution profile as t — co?

2.2.20. Consider the linear transport equation u, + (1 + mQ)uz = 0. (a) Find and sketch the
characteristic curves. (b) Write down a formula for the general solution. (c) Find the
solution to the initial value problem u(0,z) = f(x) and discuss its behavior as ¢ increases.

2.2.21. Prove that, for ¢t > 0, the speed of the wave in Example 2.4 is asymptotically propor-
tional to t—2/3.

2.2.22. Verify directly that formula (2.21) defines a solution to the differential equation (2.16).

< 2.2.23. Explain how to derive the solution formula (2.30). Justify that it defines a solution to
equation (2.28).

2.2.24. Let ¢(x) be a bounded C! function, so |¢(z)| < ¢, < oo for all . Let f(z) be any C
function. Prove that the solution u(t,x) to the initial value problem u, + ¢(x)u, =0,

u(0, ) = f(x), is uniquely defined for all (¢,2) € R2.

© 2.2.25. Suppose that ¢(z) € C! is continuously differentiable for all # € R. (a) Prove that the
characteristic curves of the transport equation (2.16) cannot cross each other. (b) A point
where ¢(z,) = 0 is known as a fized point for the characteristic equation dx/dt = c(z).
Explain why the characteristic curve passing through a fixed point (¢,z,) is a horizontal
straight line. (¢) Prove that if 2 = ¢(¢) is a characteristic curve, then so are all the horizon-
tally translated curves x = g(t + d) for any 6. (d) True or false: Every characteristic curve
has the form = = g(t + ¢), for some fixed function g(¢). (e) Prove that each non-horizontal
characteristic curve is the graph « = g(t) of a strictly monotone function. (f) Explain why
a wave cannot reverse its direction. (g) Show that a non-horizontal characteristic curve
starts, in the distant past, t — — 0o, at either a fixed point or at —oo and ends, as
t — 400, at either the next-larger fixed point or at +oc.

. .0 0 . . .
© 2.2.26. Consider the transport equation BQtL + c(t, x) 8” = 0 with time-varying wave speed.
x
Define the corresponding characteristic ordinary differential equation to be dgtg =c(t, z),

the graphs of whose solutions z(t) are the characteristic curves. (a) Prove that any so-
lution wu(¢, ) to the partial differential equation is constant on each characteristic curve.

(b) Suppose that the general solution to the characteristic equation is written in the form
&(t,z) = k, where k is an arbitrary constant. Prove that £(¢, z) defines a characteristic vari-
able, meaning that u(t,z) = f(&(¢,z)) is a solution to the time-varying transport equation
for any continuously differentiable scalar function f € C*.

2.2.27.(a) Apply the method in Exercise 2.2.26 to find the characteristic curves for the equa-

tion wu, + t2 u, = 0. (b) Find the solution to the initial value problem u(0,x) = 6712, and

discuss its dynamic behavior.
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2.2.28. Solve Exercise 2.2.27 for the equation u, + (z —t)u, = 0.

© 2.2.29. Consider the first-order partial differential equation u, + (1 — 2¢)u, = 0. Use Exercise
2.2.26 to: (a) Find and sketch the characteristic curves. (b) Write down the general solu-
1
lta2 (d) Describe the behavior
of your solution u(t, z) from part (c) as t — co. What about ¢t — —o0?

tion. (c) Solve the initial value problem with «(0,z) =

2.2.30. Discuss which of the conclusions of Exercise 2.2.25 are valid for the characteristic curves
of the transport equation with time-varying wave speed, as analyzed in Exercise 2.2.26.

{ 2.2.31. Consider the two-dimensional transport equation glz + ¢z, y)

0
whose solution u(t, z,y) depends on time ¢ and space variables x,y. (a) Define a character-
istic curve, and prove that the solution is constant along it. (b) Apply the method of char-
—(z=1)*—(y—1)*

ou ou

acteristics to solve the initial value problem u, + yu, — Tu,, u(0,z,y) = e
(c) Describe the behavior of your solution.

2.3 Nonlinear Transport and Shocks

The first-order nonlinear partial differential equation
u, +uu, =0 (2.31)

has the form of a transport equation (2.4), but the wave speed ¢ = u now depends, not
on the position z, but rather on the size of the disturbance u. Larger waves will move
faster, and overtake smaller, slower-moving waves. Waves of elevation, where u > 0, move
to the right, while waves of depression, where u < 0, move to the left. This equation
is considerably more challenging than the linear transport models analyzed above, and
was first systematically studied in the early nineteenth century by the influential French
mathematician Siméon—Denis Poisson and the great German mathematician Bernhard Rie-
mann.t It and its multi-dimensional and multi-component generalizations play a crucial
role in the modeling of gas dynamics, acoustics, shock waves in pipes, flood waves in rivers,
chromatography, chemical reactions, traffic flow, and so on. Although we will be able to
write down a solution formula, the complete analysis is far from trivial, and will require us
to confront the possibility of discontinuous shock waves. Motivated readers are referred to
Whitham’s book, [122], for further details.

Fortunately, the method of characteristics that was developed for linear transport
equations also works in the present context and leads to a complete mathematical solution.
Mimicking our previous construction, (2.18), but now with wave speed ¢ = u, let us define
a characteristic curve of the nonlinear wave equation (2.31) to be the graph of a solution
x(t) to the ordinary differential equation

dr

P u(t, ). (2.32)

T In addition to his fundamental contributions to partial differential equations, complex anal-
ysis, and number theory, Riemann also was the inventor of Riemannian geometry, which turned
out to be absolutely essential for Einstein’s theory of general relativity some 70 years later!
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As such, the characteristics depend upon the solution u, which, in turn, is to be specified
by its characteristics. We appear to be trapped in a circular argument.

The resolution of the conundrum is to argue that, as in the linear case, the solution
u(t, ) remains constant along its characteristics, and this fact will allow us to simultane-
ously specify both. To prove this claim, suppose that x = z(¢) parametrizes a characteristic
curve associated with the given solution u(¢,z). Our task is to show that h(t) = u(t, z(t)),
which is obtained by evaluating the solution along the curve, is constant, which, as usual,
is proved by checking that its derivative is identically zero. Repeating our chain rule
computation (2.17), and using (2.32), we deduce that

dh d ou dx Ou ou ou
=l () = O (e 0)+ 5 O (6w (0) = 5 (6a0) Fulta(0) o (1 a(0) =0,

since wu is assumed to solve the nonlinear transport equation (2.31) at all values of (¢, z),
including those on the characteristic curve. We conclude that h(t) is constant, and hence
u is indeed constant on the characteristic curve.

Now comes the clincher. We know that the right-hand side of the characteristic ordi-
nary differential equation (2.32) is a constant whenever z = z(t) defines a characteristic
curve. This means that the derivative dz/dt is a constant — namely the fixed value of u
on the curve. Therefore, the characteristic curve must be a straight line,

r=ut+k, (2.33)

whose slope equals the value assumed by the solution v on it.
And, as before, since the solution is constant along each characteristic line, it must be
a function of the characteristic variable

E=x—tu (2.34)

alone, and so
u= f(x —tu), (2.35)

where f(€) is an arbitrary C! function. Formula (2.35) should be viewed as an algebraic
equation that implicitly defines the solution u(t,z) as a function of ¢ and z. Verification
that ther resulting function is indeed a solution to (2.31) is the subject of Exercise 2.3.14.

Example 2.6. Suppose that

f(&) = al+ B,
with a, 8 constant. Then (2.35) becomes

ar+f

u=a(r—tu)+ 3, and hence u(t,x) = |+t (2.36)
is the corresponding solution to the nonlinear transport equation. At each fixed ¢, the graph
of the solution is a straight line. If o > 0, the solution flattens out: u(t,z) — 0 as t — oc.
On the other hand, if o < 0, the straight line rapidly steepens to vertical as t approaches
the critical time ¢, = —1/a, at which point the solution ceases to exist. Figure 2.11 graphs
two representative solutions. The top row shows the solution with a = 1, § = .5, plotted
at times ¢t = 0,1, 5, and 20; the bottom row takes a = —.2, 8 = .1, and plots the solution
at times £t = 0, 3,4, and 4.9. In the second case, the solution blows up by becoming vertical
ast — 5.
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t=0 t=3 t=4 t=5

Figure 2.11.  Two solutions to u, + uu, = 0. L—I_-J

Remark: Although (2.36) remains a valid solution formula after the blow-up time,
t > 5, this is not to be viewed as a part of the original solution. With the appearance of
such a singularity, the physical solution has broken down, and we stop tracking it.

To solve the general initial value problem
u(0,z) = f(=), (2.37)

we note that, at ¢ = 0, the implicit solution formula (2.35) reduces to (2.37), and hence the
function f coincides with the initial data. However, because our solution formula (2.35) is
an implicit equation, it is not immediately evident

(a) whether it can be solved to give a well-defined function u(t, z), and,

(b) even granted this, how to describe the resulting solution’s qualitative features and
dynamical behavior.

A more instructive approach is founded on the following geometrical construction.
Through each point (0,y) on the z—axis, draw the characteristic line

z=1tf(y)+y (2.38)

whose slope, namely f(y) = u(0,y), equals the value of the initial data (2.37) at that point.
According to the preceding discussion, the solution will have the same value on the entire
characteristic line (2.38), and so

u(t, tf(y) +y) = fly) for all t. (2.39)

For example, if f(y) = y, then u(t,z) = y whenever © = ty + y; eliminating y, we find
u(t,z) = x/(t + 1), which agrees with one of our straight line solutions (2.36).

Now, the problem with this construction is immediately apparent from Figure 2.12,
which plots the characteristic lines associated with the initial data

u(0,2) = 7 —tan ' z.
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Figure 2.12.  Characteristics lines for u(0,z) =

Two characteristic lines that are not parallel must cross each other somewhere. The value
of the solution is supposed to equal the slope of the characteristic line passing through the
point. Hence, at a crossing point, the solution is required to assume two different values,
one corresponding to each line. Something is clearly amiss, and we need to resolve this
apparent paradox.

There are three principal scenarios. The first, trivial, situation occurs when all the
characteristic lines are parallel, and so the difficulty does not arise. In this case, they all
have the same slope, say ¢, which means that the solution has the same value on each one.
Therefore, u(t,x) = ¢ is a constant solution.

The next-simplest case occurs when the initial data is everywhere nondecreasing, so
f(z) < f(y) whenever x < y, which is assured if its derivative is never negative: f’(x) > 0.
In this case, as sketched in Figure 2.13, the characteristic lines emanating from the x axis
fan out into the right half-plane, and so never cross each other at any future time ¢ > 0.
Each point (¢,2) with ¢ > 0 lies on a unique characteristic line, and the value of the
solution at (¢, z) is equal to the slope of the line. We conclude that the solution u(t,x)
is well defined at all future times ¢t > 0. Physically, such solutions represent rarefaction
waves, which spread out as time progresses. A typical example, corresponding to initial
data

u(0,2) = Jm+tan ' (3z),

has its characteristic lines plotted in Figure 2.13, while Figure 2.14 graphs some represen-
tative solution profiles.

The more interesting case occurs when the initial data is a decreasing function, and so
f'(x) < 0. Now, as in Figure 2.12, some of the characteristic lines starting at ¢t = 0 will cross
at some point in the future. If a point (¢, x) lies on two or more distinct characteristic lines,
the value of the solution wu(¢,x), which should equal the characteristic slope, is no longer
uniquely determined. Although, in a purely mathematical context, one might be tempted
to allow such multiply valued solutions, from a physical standpoint this is unacceptable.
The solution u(t,x) is supposed to represent a measurable quantity, e.g., concentration,
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Figure 2.13.  Characteristic lines for a rarefaction wave.

t=2 t=3
Figure 2.14. Rarefaction wave. L—Ij

velocity, pressure, and must therefore assume a unique value at each point. In effect, the
mathematical model has broken down and no longer conforms to physical reality.

However, before confronting this difficulty, let us first, from a purely theoretical stand-
point, try to understand what happens if we mathematically continue the solution as a
multiply valued function. For specificity, consider the initial data

u(0,2) = ym— tan"!x, (2.40)

appearing in the first graph in Figure 2.15. The corresponding characteristic lines are
displayed in Figure 2.12. Initially, they do not cross, and the solution remains a well-
defined, single-valued function. However, after a while one reaches a critical time, ¢, > 0,
when the first two characteristic lines cross each other. Subsequently, a wedge-shaped
region appears in the (¢, z)—plane, consisting of points that lie on the intersection of three
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Figure 2.15.  Multiply valued compression wave. L—Ij

distinct characteristic lines with different slopes; at such points, the mathematical solution
achieves three distinct values. Points outside the wedge lie on a single characteristic line,
and the solution remains single-valued there. The boundary of the wedge consists of points
where precisely two characteristic lines cross.

To fully appreciate what is going on, look now at the sequence of pictures of the
multiply valued solution in Figure 2.15, plotted at six successive times. Since the initial
data is positive, f(x) > 0, all the characteristic slopes are positive. As a consequence,
every point on the solution curve moves to the right, at a speed equal to its height. Since
the initial data is a decreasing function, points on the graph lying to the left will move
faster than those to the right and eventually overtake them. At first, the solution merely
steepens into a compression wave. At the critical time ¢, when the first two characteristic
lines cross, say at position z,, so that (¢,,x,) is the tip of the aforementioned wedge, the
solution graph has become vertical:

ou

9 (t,x,) — o0 as t — t,,

and u(t, x) is no longer a classical solution. Once this occurs, the solution graph ceases to
be a single-valued function, and its overlapping lobes lie over the points (¢, 2) belonging to
the wedge.

The critical time ¢, can, in fact, be determined from the implicit solution formula (2.35).
Indeed, if we differentiate with respect to x, we obtain

ou 0 / af_/ Ou _
= o O =L@ =1 (100 ), e e=a-tu

Solving for
du_ (9
dx 1+tf(&)’
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we see that the slope blows up:

ou 1
— 0 as t —

ox IAGSN
In other words, if the initial data has negative slope at position x, so f'(x) < 0, then the
solution along the characteristic line emanating from the point (0, z) will fail to be smooth
at the time — 1/ f’(x). The earliest critical time is, thus,

£, = min { - f,gx) ‘ F@) <0 } (2.41)

If z is the value of 2 that produces the minimum ¢_, then the slope of the solution profile
will first become infinite at the location where the characteristic starting at z, is at time
t,, namely

x, =x5+ f(zy)t,. (2.42)
For instance, for the particular initial configuration (2.40) represented in Figure 2.15,

1

J(@)="7 — tan~'w, flay== " ..

and so the critical time is
t,=min{1+2%} =1, with z, = f(0)t, =,

since the minimum value occurs at z, = 0.

Now, while mathematically plausible, such a multiply valued solution is physically
untenable. So what really happens after the critical time ¢,7 One needs to decide which
(if any) of the possible solution values is physically appropriate. The mathematical model,
in and of itself, is incapable of resolving this quandary. We must therefore revisit the
underlying physics, and ask what sort of phenomenon we are trying to model.

Shock Dynamics

To be specific, let us regard the transport equation (2.31) as a model of compressible fluid
flow in a single space variable, e.g., the motion of gas in a long pipe. If we push a piston
into the pipe, then the gas will move ahead of it and thereby be compressed. However, if
the piston moves too rapidly, then the gas piles up on top of itself, and a shock wave forms
and propagates down the pipe. Mathematically, the shock is represented by a discontinuity
where the solution abruptly changes value. The formulas (2.41) and (2.42) determine the
time and position for the onset of the shock-wave discontinuity. Our goal now is to predict
its subsequent behavior, and this will be based on use of a suitable physical conservation
law. Indeed, one expects mass to be conserved — even through a shock discontinuity —
since gas atoms can neither be created nor destroyed. And, as we will see, conservation of
mass (almost) suffices to prescribe the subsequent motion of the shock wave.

Before investigating the implications of conservation of mass, let us first convince
ourselves of its validity for the nonlinear transport model. (Just because a mathematical
equation models a physical system does not automatically imply that it inherits any of its
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physical conservation laws.) If u(¢,z) represents density, then, at time ¢, the total mass
lying in an interval a < x < b is calculated by integration:

b
Ma’b(t):/ u(t, z) dz. (2.43)

Assuming that u(t, z) is a classical solution to the nonlinear transport equation (2.31), we
can determine the rate of change of mass on this interval by differentiation:

dM b b b
ap _ 4 / u(t,z) dr = au(t,x)dac:— / u(t, ) au(t,x)d:v

dt dt J, . Ot a Oz
, (2.44)

= ;u(t, a)? — éu(t, b)2.

b
- _ /a 8833 [Ju(t,z)?]de = — Ju(t,z)? .
The final expression represents the net mass flur through the endpoints of the interval.
Thus, the only way in which the mass on the interval [a, b] changes is through its endpoints;
inside, mass can be neither created nor destroyed, which is the precise meaning of the mass
conservation law in continuum mechanics. In particular, if there is zero net mass flux, then

the total mass is constant, and hence conserved. For example, if the initial data (2.37) has

finite total mass,
/ flx)dx

which requires that f(xz) — 0 reasonably rapidly as |z | — oo, then the total mass of the
solution — at least up to the formation of a shock discontinuity — remains constant and
equal to its initial value:

/00 u(t,z) de = /Z u(0,z)dr = /_Z f(z)de. (2.46)

— 00 —

< 00, (2.45)

Similarly, if u(t,z) represents the traffic density on a highway at time ¢ and position =z,
then the integrated conservation law (2.44) tells us that the rate of change in the number
of vehicles on the stretch of road between a and b equals the number of vehicles entering
at point a minus the number leaving at point b — which assumes that there are no other
exits or entrances on this part of the highway. Thus, in the traffic model, (2.44) represents
the conservation of vehicles.

The preceding calculation relied on the fact that the integrand can be written as an x
derivative. This is a common feature of physical conservation laws in continuum mechanics,
and motivates the following general definition.

Definition 2.7. A conservation law, in one space dimension, is an equation of the
form

oT L ox
ot or
The function T is known as the conserved density, while X is the associated fluz.

0. (2.47)

In the simplest situations, the conserved density T'(¢,z,u) and flux X (¢, z,u) depend
on the time ¢, the position x, and the solution u(t, z) to the physical system. (Higher-order
conservation laws, which also depend on derivatives of u, arise in the analysis of integrable
partial differential equations; see Section 8.5 and [36, 87].) For example, the nonlinear
transport equation (2.31) is itself a conservation law, since it can be written in the form

ou 0 4

ot —I—ax(2u2):0, (2.48)
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Figure 2.16. Equal Area Rule.

and so the conserved density is 7' = v and the flux is X = ;u2. And indeed, it was
this identity that made our computation (2.44) work. The general result, proved by an
analogous computation, justifies calling (2.47) a conservation law.

Proposition 2.8. Given a conservation law (2.47), then, on any closed interval

a<x<b,
d [
Tdr= — X
dt/a .

b
(2.49)

r=a

Proof: The proof is an immediate consequence of the Fundamental Theorem of Cal-
culus — assuming sufficient smoothness that allows one to bring the derivative inside the
integral sign:

d [? bor box b
Tdx = dr = — dr= — X . .E.D.
dt/a v a Gt . a 8:13 v r=a Q

We will refer to (2.49) as the integrated form of the conservation law (2.47). It states
that the rate of change of the total density, integrated over an interval, is equal to the
amount of flux through its two endpoints. In particular, if there is no net flux into or out
of the interval, then the integrated density is conserved, meaning that it remains constant
over time. All physical conservation laws — mass, momentum, energy, and so on — for
systems governed by partial differential equations are of this form or its multi-dimensional
extensions, [87].

With this in hand, let us return to the physical context of the nonlinear transport
equation. By definition, a shock is a discontinuity in the solution wu(t,z). We will make
the physically plausible assumption that mass (or vehicle) conservation continues to hold
even within the shock. Recall that the total mass, which at time t is the area’ under
the curve u(t, ), must be conserved. This continues to hold even when the mathematical

solution becomes multiply valued, in which case one employs a line integral / u dx, where

c
C represents the graph of the solution, to compute the mass/area. Thus, to construct a
discontinuous shock solution with the same mass, one replaces part of the multiply valued

t We are implicitly assuming that the mass is finite, as in (2.45), although the overall con-
struction does not rely on this restriction.
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Figure 2.17.  Multiply—valued step wave. L—Ij

graph by a vertical shock line in such a way that the resulting function is single-valued and
has the same area under its graph. Referring to Figure 2.16, observe that the region under
the shock graph is obtained from that under the multi-valued solution graph by deleting
the upper shaded lobe and appending the lower shaded lobe. Thus the resulting area will
be the same, provided the shock line is drawn so that the areas of the two shaded lobes are
equal. This construction is known as the Fqual Area Rule; it ensures that the total mass
of the shock solution matches that of the multiply valued solution, which in turn is equal
to the initial mass, as required by the physical conservation law.

Example 2.9. An illuminating special case occurs when the initial data has the form
of a step function with a single discontinuity at the origin:

u(0,z) = {

If a > b, then the initial data is already in the form of a shock wave. For ¢ > 0, the
mathematical solution constructed by continuing along the characteristic lines is multiply
valued in the region bt < x < at, where it assumes both values a and b; see Figure 2.17.
Moreover, the initial vertical line of discontinuity has become a tilted line, because each
point (0, ) on it has moved along the associated characteristic a distance ut. The Equal
Area Rule tells us to draw the shock line halfway along, at x = ; (a+0b)t, in order that the
two triangles have the same area. We deduce that the shock moves with speed ¢ = ; (a+D),
equal to the average of the two speeds at the jump. The resulting shock-wave solution is

a, x<0,

2.50
b, x>0. ( )

a, x<ct, b
u(t,z) = { where c=" N .

2.51
b, x> ct, 2 ( )

A plot of its characteristic lines appears in Figure 2.18. Observe that colliding pairs of
characteristic lines terminate at the shock line, whose slope is the average of their individual
slopes.

The fact that the shock speed equals the average of the solution values on either side
is, in fact, of general validity, and is known as the Rankine—Hugoniot condition, named af-
ter the nineteenth-century Scottish physicist William Rankine and French engineer Pierre
Hugoniot, although historically these conditions first appeared in a 1849 paper by George
Stokes, [109]. However, intimidated by criticism by his contemporary applied mathemati-
cians Lords Kelvin and Rayleigh, Stokes thought he was mistaken, and even ended up
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Figure 2.18.  Characteristic lines for the step wave shock.

deleting the relevant part when his collected works were published in 1883, [110]. The
missing section was restored in the 1966 reissue, [111].

Proposition 2.10. Let u(t,x) be a solution to the nonlinear transport equation that
has a discontinuity at position x = o(t), with finite, unequal left- and right-hand limits

) =u(t,o(t)") = 1 t,x), Tt)=u(t,o(t)") = 1 t,x),
u”(t) u( o(t) ) x_}lgr(lt)_ u(t, ) u™(t) u( o(t) ) x_}lgl(lt)+ u(t, x) (2.52)
on either side of the shock discontinuity. Then, to maintain conservation of mass, the speed
of the shock must equal the average of the solution values on either side:

do  u=(t) + ut(t)
= ) . (2.53)

Proof: Referring to Figure 2.19, consider a small time interval, from t to t + At,
with At > 0. During this time, the shock moves from position a = o(t) to position
b = o(t+ At). The total mass contained in the interval [a,b] at time ¢, before the shock
has passed through, is

b
M(t) = / u(t,z) de ~ ut (1) (b— a) = u* (1) [t + A — o(1)],

where we assume that At < 1 is very small, and so the integrand is well approximated by
its limiting value (2.52). Similarly, after the shock has passed, the total mass remaining in
the interval is

M(t+ At) :/bu(t—l—At,x)dx%u(t—i—At) (b—a)=u (t+At) [o(t+ At) —o(t)].
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Figure 2.19. Conservation of mass near a shock.

Thus, the rate of change in mass across the shock at time ¢ is given by

aMm y M (t+ At) — M(t)
At~ atso At
- g, [ 80 -070) 0770 - %

On the other hand, at any ¢t < 7 < t + At, the mass flux into the interval [a, b] through
the endpoints is given by the right-hand side of (2.44):

5 [ulr, a)? — u(r, b)2] — [u_(t)2 — u+(t)2], since 7 —t as At — 0.

Conservation of mass requires that the rate of change in mass be equal to the mass flux:

dM _ — N2 2
g =~ O-wO] g = [w @7 - w07

Solving for do/dt establishes (2.53). Q.E.D.

Example 2.11. By way of contrast, let us investigate the case when the initial data
is a step function (2.50), but with a < b, so the jump goes upwards. In this case, the
characteristic lines diverge from the initial discontinuity, and the mathematical solution is
not specified at all in the wedge-shaped region at < x < bt. Our task is to decide how to
“fill in” the solution values between the two regions where the solution is well defined and
constant.

One possible connection is by a straight line. Indeed, a simple modification of the
rational solution (2.36) produces the similarity solution®

do

u(t,z) = f ,

T See Section 8.2 for general techniques for constructing similarity (scale-invariant) solutions
to partial differential equations.
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Figure 2.20. Rarefaction wave. L—Ij

which not only solves the differential equation, but also has the required values u(t,at) = a
and u(t,bt) = b at the two edges of the wedge. This can be used to construct the piecewise
affine rarefaction wave

a, r < at,
u(t,z) =< z/t, at <z < bt, (2.54)
b, x > bt,

which is graphed at four representative times in Figure 2.20.

A second possibility would be to continue the discontinuity as a shock wave, whose
speed is governed by the Rankine-Hugoniot condition, leading to a discontinuous solution
having the same formula as (2.51). Which of the two competing solutions should we
use? The first, (2.54), makes better physical sense; indeed, if we were to smooth out the
discontinuity, then the resulting solutions would converge to the rarefaction wave and not
the reverse shock wave; see Exercise 2.3.13. Moreover, the discontinuous solution (2.51)
has characteristic lines emanating from the discontinuity, which means that the shock is
creating new values for the solution as it moves along, and this can, in fact, be done in a
variety of ways. In other words, the discontinuous solution violates causality, meaning that
the solution profile at any given time uniquely prescribes its subsequent motion. Causality
requires that, while characteristics may terminate at a shock discontinuity, they cannot
begin there, because their slopes will not be uniquely prescribed by the shock profile, and
hence the characteristics to the left of the shock must have larger slope (or speed), while
those to the right must have smaller slope. Since the shock speed is the average of the two
characteristic slopes, this requires the Entropy Condition

wm(t) > 90 W OFE) (2.55)
dt 2
With further analysis, it can be shown, [57], that the rarefaction wave (2.54) is the unique
solution® to the initial value problem satisfying the entropy condition (2.55).

T Albeit not a classical solution, but rather a weak solution, as per Section 10.4.
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(1+t1)
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1 o(t)
Figure 2.21. Equal Area Rule for the triangular wave. L—Ij

These prototypical solutions epitomize the basic phenomena modeled by the nonlinear
transport equation: rarefaction waves, which emanate from regions where the initial data
satisfies f’(x) > 0, causing the solution to spread out as time progresses, and compression
waves, emanting from regions where f’(x) < 0, causing the solution to progressively steepen
and eventually break into a shock discontinuity. Anyone caught in a traffic jam recognizes
the compression waves, where the vehicles are bunched together and almost stationary,
while the interspersed rarefaction waves correspond to freely moving traffic. (An intelligent
driver will take advantage of the rarefaction waves moving backwards through the jam
to switch lanes!) The familiar, frustrating traffic jam phenomenon, even on accident- or
construction-free stretches of highway, is, thus, an intrinsic effect of the nonlinear transport
models that govern traffic flow, [122].

Example 2.12. Triangular wave: Suppose the initial data has the triangular profile

x, 0<z< 1,

0, otherwise,

u0.0) = 1) = {

as in the first graph in Figure 2.22. The initial discontinuity at x = 1 will propagate as a
shock wave, while the slanted line behaves as a rarefaction wave. To find the profile at time
t, we first graph the multi-valued solution obtained by moving each point on the graph of
f to the right an amount equal to ¢ times its height. As noted above, this motion preserves
straight lines. Thus, points on the x—axis remain fixed, and the diagonal line now goes
from (0,0) to (1 + t,1), which is where the uppermost point (1,1) on the graph of f has
moved to, and hence has slope (1 + ¢)~!, while the initial vertical shock line has become
tilted, going from (1,0) to (0,14 t). We now need to find the position o(t) of the shock
line in order to satisfy the Equal Area Rule, namely so that the areas of the two shaded
regions in Figure 2.21 are identical. The reader is invited to determine this geometrically;
instead, we invoke the Rankine-Hugoniot condition (2.53). At the shock line, © = o(t),
the left- and right-hand limiting values are, respectively,

t

u (t) = u(t,a(t)_) = a(t) , ut(t) = u(t,a(t)+) =0,
1+t

and hence (2.53) prescribes the shock speed to be

da_1<d0+0>: o(t)

dt 2\ 1+t
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Figure 2.22. Triangular-wave solution. L—I_-J

=

Figure 2.23.  Characteristic lines for the triangular-wave shock.

The solution to the resulting separable ordinary differential equation is easily found. Since
the shock starts out at o(0) = 1, we deduce that

do 1
) =v1+t, ith = .
o) =V b dt 21+t
Further, the strength of the shock, namely its height, is
_ o(t) 1
t) = = .
=0 V14t

We conclude that, as t increases, the solution remains a triangular wave, of steadily decreas-
ing slope, while the shock moves off to = + 0o at a progressively slower speed and smaller
height. Tts position follows a parabolic trajectory in the (¢, z)-plane. See Figure 2.22 for
representative plots of the triangular-wave solution, while Figure 2.23 illustrates the char-
acteristic lines and shock-wave trajectory.

In more general situations, continuing on after the initial shock formation, other char-
acteristic lines may start to cross, thereby producing new shocks. The shocks themselves
continue to propagate, often at different velocities. When a fast-moving shock catches up
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with a slow-moving shock, one must then decide how to merge the shocks so as to retain a
physically meaningful solution. The Rankine-Hugoniot (Equal Area) and Entropy Condi-
tions continue to uniquely specify the dynamics. However, at this point, the mathematical
details have become too intricate for us to pursue any further, and we refer the interested
reader to Whitham’s book, [122]. See also [57] for a proof of the following existence
theorem for shock-wave solutions to the nonlinear transport equation.

Theorem 2.13. If the initial data u(0,z) = f(z) is piecewise’ C! with finitely many
jump discontinuities, then, for t > 0, there exists a unique (weak) solution to the nonlinear
transport equation (2.31) that also satisfies the Rankine-Hugoniot condition (2.53) and
the entropy condition (2.55).

Remark: Our derivation of the Rankine—Hugoniot shock speed condition (2.53) relied
on the fact that we can write the original partial differential equation in the form of a
conservation law. But there are, in fact, other ways to do this. For instance, multiplying the
nonlinear transport equation (2.31) by u allows us write it in the alternative conservative

form 5 5 5 9
u 2 U 1,2 1,3
= = 0. 2.56
Car T g —ar () T g, (57 (2.56)
In this formulation, the conserved density is T = é u?, and the associated flux is X = é u?.
The integrated form (2.49) of the conservation law (2.56) is
d [ u(t,z)?de =} [u(t a)® —u(t b)3} (2.57)
dt Y 2 ) - 3 ’ ) . .

In some physical models, the integral on the left-hand side represents the energy within the
interval [a, b], and the conservation law tells us that energy can enter the interval as a flux
only through its ends. If we assume that energy is conserved at a shock, then, repeating
our previous argument, we are led to the alternative equation

do 3 [u () —ut(t)?] 2w ()P +u () ut () +ut(e)? 558
dt— Jlum(t)2 —ut(t)2] 3 u=(t) + ut(t) (2:58)

for the shock speed. Thus, a shock that conserves energy moves at a different speed from
one that conserves mass! The evolution of a shock wave depends not just on the underlying
differential equation, but also on the physical assumptions governing the selection of a
suitable conservation law.

More General Wave Speeds

Let us finish this section by considering a nonlinear transport equation
uy + c(u)u, =0, (2.59)

whose wave speed is a more general function of the disturbance w. (Further extensions,
allowing ¢ to depend also on t and z, are discussed in Exercise 2.3.20.) Most of the

t Meaning continuous everywhere, and continuously differentiable except at a discrete set of
points; see Definition 3.7 below for the precise definition.
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development is directly parallel to the special case (2.31) discussed above, and so the
details are left for the reader to fill in, although the shock dynamics does require some
care.

In this case, the characteristic curve equation is

dx

dt
As before, the solution u is constant on characteristics, and hence the characteristics are
straight lines, now with slope ¢(u). Thus, to solve the initial value problem

u(0,z) = f(z), (2.61)

through each point (0, y) on the z—axis, one draws the characteristic line of slope ¢(u(0,y)) =
¢(f(y)). Until the onset of a shock discontinuity, the solution maintains its initial value
u(0,y) = f(y) along the characteristic line.

A shock forms whenever two characteristic lines cross. As before, the mathematical
equation no longer uniquely specifies the subsequent dynamics, and we need to appeal to
an appropriate conservation law. We write the transport equation in the form

= c(u(t, z)). (2.60)

ot Oz

is any convenient anti-derivative of the wave speed. Thus, following the same computation
as in (2.44), we discover that conservation of mass now takes the integrated form

Ou + 0 C(u) =0, where C(u) = /c(u) du (2.62)

b
cclif /a u(t,z) de = C(u(t,a)) — C(u(t,b)), (2.63)

with C(u) playing the role of the mass flux. Requiring the conservation of mass, i.e., of
the area under the graph of the solution, means that the Equal Area Rule remains valid.
However, the Rankine-Hugoniot shock-speed condition must be modified in accordance
with the new dynamics. Mimicking the preceding argument, but with the modified mass
flux, we find that the shock speed is now given by

d Cu=(t)) — C(ut(t

dt u=(t) — ut(t)
Note that if

c(u) = u, then C(u) = /u du = 3 u?,

and so (2.64) reduces to our earlier formula (2.53). Moreover, in the limit as the shock
magnitude approaches zero, u™(t) — ut () — 0, the right-hand side of (2.64) converges to
the derivative C’(u) = ¢(u) and hence recovers the wave speed, as it should.

Exercises

2.3.1. Discuss the behavior of the solution to the nonlinear transport equation (2.31) for the
following initial data:

2, z<-—1, =2, z< 1, (1, z<l,
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2, <1,
0, x>1;
1, =<1,
0, =>1.

2.3.2. Solve the following initial value problems: (a) u, +3uu, =0, u(0,z) = {

-1, =<0,
(b) u, —uwu, =0, u(l,m)—{ 3. x>0

(¢) uy —2uu, =0, u(0,z) = {

2.3.3. Let u(0,x) = (a:2 + 1)~ L. Does the resulting solution to the nonlinear transport equation
(2.31) produce a shock wave? If so, find the time of onset of the shock, and sketch a graph
of the solution just before and soon after the shock wave. If not, explain what happens to
the solution as t increases.

2.3.4. Solve Exercise 2.3.3 when u(0,z) = (a) — (2 +1)7!, (b) a(z?+1)7 L.
2.3.5. Consider the initial value problem u, — 2uu, = 0, u(0,z) = e~ zz. Does the resulting

solution produce a shock wave? If so, find the time of onset of the shock and the position
at which it first forms. If not, explain what happens to the solution as ¢ increases.

2.3.6.(a) For what values of a, 8,7,9 is u(t,x) = aats_—::f a solution to (2.31)7
Y
. At+oax+p .
b) Fi hat val f O, A t = lut to (2.31)7
(b) For what values of a, 3,7, d, A, u is u(t, x) 'yt—i-uas—i-éasoulon o ( )

2.3.7. A triangular wave is a shock-wave solution to the initial value problem for (2.31) that

o mz, 0<xz</{

has initial data u(0,z) = { 0. ’ otgerw_ise?

the triangular-wave solution at times ¢ > 0. Discuss what happens to the triangular wave as
time progresses.

Assuming m > 0, write down a formula for

2.3.8. Solve Exercise 2.3.7 when m < 0.

2.3.9. Solve (2.31) for t > 0 subject to the following initial conditions, and graph your solution
at some representative times. In what sense does your solution conserve mass?

1, 0<zx<1l, oz, 1<z <],
(a) w(0,z) = { 0, otherwise, (b) u(0,2) = { 0, otherwise,
-z, —l<a<, [ 1-|z|, -l<z<1,
(c) u(0,z) = { 0, otherwise, (d) u(0,2) = { 0, otherwise.

2.3.10. An N-wave is a solution to the nonlinear transport equation (2.31) that has initial con-

mx, —L<axz</{

ditions = ’ — =7
itions u(0, ) { 0, otherwise,

N-—wave solution at times ¢ > 0. (b) What about when m < 07

where m > 0. (a) Write down a formula for the

& 2.3.11. Suppose u(t, x) and u(t,z) are two solutions to the nonlinear transport equation (2.31)
such that, for some t, > 0, they agree: u(t,,z) = u(t,,x) for all . Do the solutions nec-
essarily have the same initial conditions: u(0,z) = %(0,z)? Use your answer to discuss the
uniqueness of solutions to the nonlinear transport equation.

2.3.12. Suppose that z; < z, are such that the characteristic lines of (2.31) through (0, z;)
and (0, x,) cross at a shock at (t,0(t)) and, moreover, the left- and right-hand shock values

(2.52) are f(xz)) =u" (1), f(z;) = u™" (t). Explain why the signed area of the region between
the graph of f(x) and the secant line connecting (x4, f(x)) to (4, f(x5)) is zero.

¢ 2.3.13. Consider the initial value problem u®(0,z) = 2 + tan™!(z/e) for the nonlinear trans-
port equation (2.31). (a) Show that, as e — 07, the initial condition converges to a step
function (2.51). What are the values of a,b? (b) Show that, moreover, the resulting solu-
tion u®(0, x) to the nonlinear transport equation converges to the corresponding rarefaction

wave (2.54) resulting from the limiting initial condition.
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{ 2.3.14.(a) Under what conditions can equation (2.35) be solved for a single-valued function
u(t, x)? Hint: Use the Implicit Function Theorem. (b) Use implicit differentiation to prove
that the resulting function u(t, x) is a solution to the nonlinear transport equation.

<aa:+,3

2.3.15. For what values of a, 8,7, 9, k is u(t,x) = V46

k
> a solution to the transport equa-
tion u; + u? u, = 07

2.3.16.(a) Solve the initial value problem u, + u? u, = 0, u(0,z) = f(x), by the method of
characteristics. (b) Discuss the behavior of solutions and compare/contrast with (2.31).

2.3.17.(a) Determine the Rankine-Hugoniot condition, based on conservation of mass, for the
speed of a shock for the equation u, + u? u, = 0. (b) Solve the initial value problem
w(0, ) = { ) S 8 when (i) |a| > |bl, (i) |a| < |b|. Hint: Use Exercise 2.3.15
to determine the shape of a rarefaction wave.
2.3.18. Solve Exercise 2.3.17 when the wave speed c(u) = (i) 1 —2u, (i) u>, (iii) sinu.
& 2.3.19. Justify the shock-speed formula (2.58).

{ 2.3.20. Consider the general quasilinear first-order partial differential equation

ou ou
= h(t .

ot g = MHTY)
Let us define a lifted characteristic curve to be a solution (¢, z(t),u(t)) to the system of or-
dx = c(t,z,u) du_
a7 dt
teristic curve (t, m(t)) is obtained by projecting to the (¢, z)-plane. Prove that if u(¢, z) is a
solution to the partial differential equation, and u(ty, z,) = ug, then the lifted characteristic
curve passing through (¢, (), u,) lies on the graph of u(¢,z). Conclude that the graph of
the solution to the initial value problem u(ty,x) = f(x) is the union of all lifted characteris-

tic curves passing through the initial data points (to, Zg, f(mo)).

+c(t, z, u)

dinary differential equations h(t,x,u). The corresponding charac-

2.3.21. Let a > 0. (a) Apply the method of Exercise 2.3.20 to solve the initial value problem
for the damped transport equation: u, +vu, +auw =0, u(0,z) = f(z).
(b) Does the damping eliminate shocks?

2.3.22. Apply the method of Exercise 2.3.20 to solve the initial value problem
1

ut—i—tuz:uz, u(0,x) = L4a?

2.4 The Wave Equation: d’Alembert’s Formula

Newton’s Second Law states that force equals mass times acceleration. It forms the bedrock
underlying the derivation of mathematical models describing all of classical dynamics.
When applied to a one-dimensional medium, such as the transverse displacements of a
violin string or the longitudinal motions of an elastic bar, the resulting model governing
small vibrations is the second-order partial differential equation

Pu 0 ou
p(x) 92 = o (/Q(LE) &E). (2.65)

Here u(t,z) represents the displacement of the string or bar at time ¢ and position z,
while p(x) > 0 denotes its density and x(x) > 0 its stiffness or tension, both of which are
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assumed not to vary with ¢. The right-hand side of the equation represents the restoring
force due to a (small) displacement of the medium from its equilibrium, whereas the left-
hand side is the product of mass per unit length and acceleration. A correct derivation of
the model from first principles would require a significant detour, and we refer the reader
to [120, 124] for the details.

We will simplify the general model by assuming that the underlying medium is uni-
form, and so both its density p and stiffness x are constant. Then (2.65) reduces to the
one-dimensional wave equation

Pu 5 %u
=c
ot? o2’

is known as the wave speed, for reasons that will soon become apparent.

In general, to uniquely specify the solution to any dynamical system arising from
Newton’s Second Law, including the wave equation (2.66) and the more general vibration
equation (2.65), one must fix both its initial position and initial velocity. Thus, the initial
conditions take the form

where the constant c= \//; > 0 (2.66)

u(0,2) = (z), o

where, for simplicity, we set the initial time ¢, = 0. (See also Exercise 2.4.6.) The initial
value problem seeks the corresponding C? function u(t,z) that solves the wave equation
(2.66) and has the required initial values (2.67). In this section, we will learn how to
solve the initial value problem on the entire line —oco < x < oco. The analysis of the
wave equation on bounded intervals will be deferred until Chapters 4 and 7. The two-
and three-dimensional versions of the wave equation are treated in Chapters 11 and 12,
respectively.

0,2) = g(z), (2.67)

d’Alembert’s Solution

Let us now derive the explicit solution formula for the second-order wave equation (2.66)
first found by d’Alembert. The starting point is to write the partial differential equation
in the suggestive form

Du=(8§—c2{9§)u:utt—02u

=0. (2.68)

Here
O=0; —c*0?

is a common mathematical notation for the wave operator, which is a linear second-order
partial differential operator. In analogy with the elementary polynomial factorization

t? —c2ax? = (t —ca)(t +cx),

we can factor the wave operator into a product of two first-order partial differential oper-
ators:
O=0?-c29>= (9, — cd,) (0, +cd,). (2.69)

t The cross terms cancel, thanks to the equality of mixed partial derivatives: 0,0,u = 0,,0,u.
Constancy of the wave speed c is essential here.
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Now, if the second factor annihilates the function u(t, z), meaning
(0, +cO,)u=u, +cu, =0, (2.70)
then u is automatically a solution to the wave equation, since
Ou = (0, —c0,) (0, +cd,)u= (9, —c0d,)0=0.

We recognize (2.70) as the first-order transport equation (2.4) with constant wave speed c.
Proposition 2.1 tells us that its solutions are traveling waves with wave speed c:

u<ta ZL‘) = p<§> = p<$ - Ct)a (2'71)

where p is an arbitrary function of the characteristic variable £ = x — c¢t. As long as
p € C? (i.e., is twice continuously differentiable), the resulting function u(t, x) is a classical
solution to the wave equation (2.66), as you can easily check.

Now, the factorization (2.69) can equally well be written in the reverse order:

O=0?—-c29>= (0, +¢cd,) (0, —cd,). (2.72)
The same argument tells us that any solution to the “backwards” transport equation
u, —cu, =0, (2.73)

with constant wave speed — ¢, also provides a solution to the wave equation. Again, by
Proposition 2.1, with ¢ replaced by — ¢, the general solution to (2.73) has the form

u(t,z) = q(n) = q(x + ct), (2.74)

where ¢ is an arbitrary function of the alternative characteristic variable n = x + ct. The
solutions (2.74) represent traveling waves moving to the left with constant speed ¢ > 0.
Provided ¢ € C?, the functions (2.74) will provide a second family of solutions to the wave
equation.

We conclude that, unlike first-order transport equations, the wave equation (2.68)
is bidirectional in that it admits both left and right traveling-wave solutions. Moreover,
by linearity the sum of any two solutions is again a solution, and so we can immediately
construct solutions that are superpositions of left and right traveling waves. The remarkable
fact is that every solution to the wave equation can be so represented.

Theorem 2.14. Every solution to the wave equation (2.66) can be written as a
superposition,
u(t,xz) = p(&) + q(n) = p(x — ct) + q(z + ct), (2.75)

of right and left traveling waves. Here p(¢) and q(n) are arbitrary C? functions, each
depending on its respective characteristic variable

E=1x—ct, n=x+ct. (2.76)

Proof: As in our treatment of the transport equation, we will simplify the wave equa-

tion through an inspired change of variables. In this case, the new independent variables
are the characteristic variables £, n defined by (2.76). We set

u(t,x) =v(x —ct,x+ ct) = v(&,n), whereby v(&,n) =u (772_05 , K ;— 5) . (2.77)
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Then, employing the chain rule to compute the partial derivatives,

ou Jv  Ov ou Ov Ov
ot c( ag+an> ox —oc oy (2.78)
and, further,
Pu (0% 0?v 0% 0?u 9% v 0%
=c -2 + ) + -
ot? 0&? 0£0n  On? oxr?  0&2 0E0n  On?
Therefore o2 52 o2
_du 0w o O
Ou= o2 ~ € a2 4c e (2.79)

We conclude that u(t, z) solves the wave equation [Ju = 0 if and only if v(&,n) solves the
second-order partial differential equation

2
0%v _o,
0& On
which we write in the form
0 (v = w =0 where w = Ov
oc\ong) o0& 7 -~ on’

Thus, applying the methods of Section 2.1 (and making the appropriate assumptions on
the domain of definition of w), we deduce that

Y= oy r(n),

where r is an arbitrary function of the characteristic variable 7. Integrating both sides of
the latter partial differential equation with respect to n, we find

o(6,m) =p(€) +q(m),  where () = /r<n>dn,

while p(§) represents the 7 integration “constant”. Replacing the characteristic variables
by their formulas in terms of ¢ and = completes the proof. Q.E.D.

Let us see how the solution formula (2.75) can be used to solve the initial value problem
(2.67). Substituting into the initial conditions, we deduce that

w0.0) = pe) o) = S

To solve this pair of equations for the functions p and ¢, we differentiate the first,

P'() +d'(z) = f'(2),

and then subtract off the second equation divided by c¢; the result is

(0,2) = —cp/(x) + cq' (z) = g(x).  (2.80)

Therefore,
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Figure 2.24.  Splitting of waves. L—Ij

where « is an integration constant. The first equation in (2.80) then yields

o0) = @) = p(o) = f@)+ 5 [ 9tz —a.

Substituting these two expressions back into our solution formula (2.75), we obtain
_ _f©+fm) 1 /f 1 /"
u(t, z)=p(§) +q(n) = 5 2c ), g(z)dz+, ; 9(2) dz
_ O+ fm) 1 /"
- 2 + 2C ¢ g(Z) dZ,

where &, are the characteristic variables (2.76). In this manner, we have arrived at
d’Alembert’s solution to the initial value problem for the wave equation on the real line.

Theorem 2.15. The solution to the initial value problem

*u 5 0%u ou

o =€ oz WO =f@), 5 (02)=g(2), —co<z<oo,  (281)
is given by
— 1 r+ct
u(t,x) = fz —ct) ;‘ flz+ct) + 9¢ /zct g(z) dz. (2.82)

Remark: In order that (2.82) define a classical solution to the wave equation, we
need f € C? and g € C'. However, the formula itself makes sense for more general
initial conditions. We will continue to treat the resulting functions as solutions, albeit
nonclassical, since they fit under the more general rubric of “weak solution”, to be developed
in Section 10.4.

Example 2.16. Suppose there is no initial velocity, so g(z) = 0, and hence the
motion is purely the result of the initial displacement u(0,z) = f(z). In this case, (2.82)
reduces to

u(t,z) = 5 flz —ct)+ 5 flz+ct). (2.83)
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Figure 2.25. Interaction of waves. L—Ij

The effect is that the initial displacement splits into two waves, one moving to the right
and the other moving to the left, each of constant speed ¢, and each of exactly the same
shape as f(z), but only half as tall. For example, if the initial displacement is a localized
pulse centered at the origin, say

ou
ot

u(0,x) = e,

(Oa 33) =0,

then the solution
u(t,z) = ée_(x_”)z + ée_(HCt)z

consists of two half size pulses running away from the origin with the same speed ¢, but
in opposite directions. A graph of the solution at several successive times can be seen in
Figure 2.24.

If we take two initially separated pulses, say

ou

2 2
0’ _ 92 —(z—1) ’
u(0,z) =e" " +2e¢ 5t

(0,z) =0,
centered at x = 0 and = = 1, then the solution
ult,z) = %e—(x—ct)z + e—(m—l—ct)2 + é e—(x+ct)2 + e—(m—1+ct)2

will consist of four pulses, two moving to the right and two to the left, all with the same
speed. An important observation is that when a right-moving pulse collides with a left-
moving pulse, they emerge from the collision unchanged, which is a consequence of the
inherent linearity of the wave equation. In Figure 2.25, the first picture plots the initial
displacement. In the second and third pictures, the two localized bumps have each split into
two copies moving in opposite directions. In the fourth and fifth, the larger right-moving
bump is in the process of interacting with the smaller left-moving bump. Finally, in the
last picture the interaction is complete, and the individual pairs of left- and right-moving
waves move off in tandem in opposing directions, experiencing no further collisions.

In general, if the initial displacement is localized, so that | f(x)| < 1 for |z | > 0, then,
after a finite time, the left- and right-moving waves will separate, and the observer will see
two half-size replicas running away, with speed ¢, in opposite directions. If the displacement
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Figure 2.26.  The error function erf z.

is not localized, then the left and right traveling waves will never fully disengage, and one
might be hard pressed to recognize that a complicated solution pattern is, in reality, just
the superposition of two simple traveling waves. For example, consider the elementary
trigonometric solution

cosct cosx = 5 cos(x — ct) + § cos(z + ct). L—Ij (2.84)

In accordance with the left-hand expression, an observer will see a standing cosinusoidal
wave that vibrates up and down with frequency c. However, the d’Alembert form of the
solution on the right-hand side says that this is just the sum of left- and right-traveling
cosine waves! The interactions of their peaks and troughs reproduce the standing wave.
Thus, the same solution can be interpreted in two seemingly incompatible ways. And,
in fact, this paradox lies at the heart of the perplexing wave-particle duality of quantum
physics.

Example 2.17. By way of contrast, suppose there is no initial displacement, so
f(z) = 0, and the motion is purely the result of the initial velocity w,(0,z) = g(x).
Physically, this models a violin string at rest being struck by a “hammer blow” at the
initial time. In this case, the d’Alembert formula (2.82) reduces to

z+tct
u(t,z) = 2c/ g(z)dz. (2.85)

x—ct

For example, when u(0,z) =0, u,(0,z) = 6712, the resulting solution (2.85) is

r+ct 5 T
u(t,z) = 26/ e dz= Zc [erf(z + ct) — erf(z — ct) ], (2.86)

r—ct

where ) N
2
erf x = / e ? dz 2.87
s (2.87)

is known as the error function due to its many applications throughout probability and
statistics, [39]. The error function integral cannot be written in terms of elementary
functions; nevertheless, its properties have been well studied and its values tabulated,
[86]. A graph appears in Figure 2.26. The constant in front of the integral (2.87) has been
chosen so that the error function has asymptotic values

lim erfz =1, lim erfz = -1, (2.88)

T — o0 r—r — 00
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Figure 2.27.  Error function solution to the wave equation. L—Ij

which follow from a well-known integration formula to be derived in Exercise 2.4.21.

A graph of the solution (2.86) at successive times is displayed in Figure 2.27. The
first graph shows the zero initial displacement. Gradually, the effect of the initial hammer
blow is felt further and further away along the string, as the two wave fronts propagate
away from the origin, both with speed ¢, but in opposite directions. Thus, unlike the case
of a nonzero initial displacement in Figure 2.24, where the solution eventually returns to
its equilibrium position u = 0 after the wave passes by, a nonzero initial velocity leaves the
string permanently deformed.

In general, the lines of slope £c¢, where the respective characteristic variables are
constant,
E=x—ct=a, n=x+ct=>b, (2.89)

are known as the characteristics of the wave equation. Thus, the second-order wave equa-
tion has two distinct characteristic lines passing through each point in the (¢, z)—plane.

Remark: The characteristic lines are the one-dimensional counterparts of the light
cone in Minkowski space-time, which plays a starring role in special relativity, [70, 75].
See Section 12.5 for further details.

In Figure 2.28, we plot the two characteristics going through a point (0,%) on the z
axis. The wedge-shaped region {y — ct <z <y + ct, t > 0} lying between them is known
as the domain of influence of the point (0,y), since, in general, the value of the initial data
at a point will affect the subsequent solution values only in its domain of influence. Indeed,
the effect of an initial displacement at the point y propagates along the two characteristic
lines, while the effect of an initial velocity there will be felt at every point in the triangular
wedge.

FEzxternal Forcing and Resonance

When a homogeneous vibrating medium is subjected to external forcing, the wave equation
acquires an additional, inhomogeneous term:
Pu 4, 0%u

g2 =€ g2 + F(t, z), (2.90)
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Figure 2.28. Characteristic lines and domain of influence.

in which F(t,z) represents a force imposed at time ¢ and spatial position z. With a bit
more work, d’Alembert’s solution technique can be readily adapted to incorporate the
forcing term.

Let us, for simplicity, assume that the differential equation is supplemented by homo-
geneous initial conditions,

u(0,z) =0, u, (0,2) =0, (2.91)

meaning that there is no initial displacement or velocity. To solve the initial value problem
(2.90-91), we switch to the same characteristic coordinates (2.76), setting

_ (=& n+¢€
U(fﬂ?)—u<2c ’ 2 >
Invoking the chain rule formulas (2.79), we find that the forced equation (2.90) becomes
Po 1 p(n—€ n+é
O 42 2¢ 7 2 '
Let us integrate both sides of the equation with respect to n, on the interval £ < { < n:

(2.92)

v v 1 To(C—& C+E

But, recalling (2.78),
Gv(g ) = 1 Ou <77—§ 77+§)+16u <77—§ 77+€>
oc > T oc ot \ 20 7 2 200\ 2¢ 7 2 )

and so, in particular,

v 1 Ou 1 Ou

0
o (€O = 5 0.6+,

which vanishes owing to our choice of homogeneous initial conditions (2.91). Indeed, the
initial velocity condition says that u,(0,z) = 0, while differentiating the initial displacement

0,§) =0,
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condition u(0,z) = 0 with respect to « implies that u,(0,2) = 0 for all z, including x = &.
As a result, (2.93) simplifies to

dv 1 (=& ¢+¢
== [P(05 0 )

We now integrate the latter equation with respect to £ on the interval £ < x < 7, producing

—uten) = vtnm) —vlem = — oo [ [P (€505 )acan

since v(n,n) = u(0,n) = 0, thanks again to the initial conditions. In this manner, we
have produced an explicit formula for the solution to the characteristic variable version of
the forced wave equation subject to the homogeneous initial conditions. Reverting to the
original physical coordinates, the left-hand side of this equation becomes —u(t, x). As for
the double integral on the right-hand side, it takes place over the triangular region

TEn) ={(x0| {<x<(<n}. (2.94)

Let us introduce “physical” integration variables by setting

X=Yy—CcCS, (=y+cs.
The defining inequalities of the triangle (2.94) become
r—ct<y—cs<y+cs<x+ct,
and so, in the physical coordinates, the triangular integration domain assumes the form
Dt,x)={(s,y) | x—c(t—s)<y<z+c(t—3s), 0<s<t}, (2.95)

which is graphed in Figure 2.29. The change of variables formula for double integrals
requires that we compute the Jacobian determinant

ox /0y 9Ox/0 _

det( X/ 0y X/ S) :det(1 C> = 2¢,
¢/9y  0¢/0s L e

and so dy d¢ = 2cds dy. Therefore,

z+c (t— s)
u(t, x) // F(s,y)dsdy = / / (s,y)dyds, (2.96)
" 2¢ D(t,x) 2c (t—s)

which gives the solution formula for the forced wave equation when subject to homogeneous
initial conditions.

To solve the general initial value problem, we appeal to linear superposition, writing its
solution as a sum of the solution (2.96) to the forced wave equation subject to homogeneous
initial conditions plus the d’Alembert solution (2.82) to the unforced equation subject to
inhomogeneous boundary conditions.

Theorem 2.18. The solution to the general initial value problem
u, = cu,, + Ft,z), uw0,z)=f(r), u,(0,2)=g(x), —oco<z<oo, t>0,

for the wave equation subject to an external forcing is given by

f(ZL'—Ct) —|—f(£lI+Ct) 1 /:E+ct / /:E+c (t—s)
t = )d dy d
u(t, ) 5 +2cxﬂn y+2c s F(s,y)dyds.
(2.97)
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Figure 2.29. Domain of dependence.

Observe that the solution is a linear superposition of the respective effects of the initial
displacement, the initial velocity, and the external forcing. The triangular integration
region (2.95), lying between the x—axis and the characteristic lines going backwards from
(t,x), is known as the domain of dependence of the point (t,z). This is because, for any
t > 0, the solution value u(t,z) depends only on the values of the initial data and the
forcing function at points lying within the domain of dependence D(t, z). Indeed, the first
term in the solution formula (2.97) requires only the initial displacement at the corners
(0,2 + ct), (0,2 — ct); the second term requires only the initial velocity at points on the
xz—axis lying on the vertical side of D(¢,x); while the final term requires the value of the
external force on the entire triangular region.

Example 2.19. Let us solve the initial value problem
Uy = U, +sinwt sinz, u(0,z) =0, u, (0,2) =0,

for the wave equation with unit wave speed subject to a sinusoidal forcing function whose
amplitude varies periodically in time with frequency w > 0. According to formula (2.96),
the solution is

1 t r+t—s
u(t,;v):2 /0/ sinws siny dy ds
r—t+s
1 t

/ sinws [cos(z —t + s) — cos(z +t—s)] ds

2 Jo
sinwt —wsint
sin x, O<w#1,
B 1—w?
sint — tcost
9 nx, w=1.

Notice that, when w # 1, the solution is bounded, being a combination of two vibrational
modes: an externally induced mode at frequency w along with an internal mode, at fre-
quency 1. If w = p/q # 1 is a rational number, then the solution varies periodically in
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Figure 2.30. Periodic and quasiperiodic functions.

time. On the other hand, if w is irrational, then the solution is only quasiperiodic, and never
exactly repeats itself. Finally, if w = 1, the solution grows without limit as ¢ increases,
indicating that this is a resonant frequency. We will investigate external forcing and the
mechanisms leading to resonance in dynamical partial differential equations in more detail
in Chapters 4 and 6.

Example 2.20. To appreciate the difference between periodic and quasiperiodic
vibrations, consider the elementary trigonometric function

u(t) = cost + coswt,

which is a linear combination of two simple periodic vibrations, of frequencies 1 and w. If
w = p/qis arational number, then u(t) is a periodic function of period 27q, so u(t+2mq) =
u(t). However, if w is an irrational number, then wu(t) is not periodic, and never repeats.
You are encouraged to inspect the graphs in Figure 2.30. The first is periodic — can you
spot where it begins to repeat? — whereas the second is only quasiperiodic. The only
quasiperiodic functions we will encounter in this text are linear combinations of periodic
trigonometric functions whose frequencies are not all rational multiples of each other. To
the uninitiated, such quasiperiodic motions may appear to be random, even though they are
built from a few simple periodic constituents. While ostensibly complicated, quasiperiodic
motion is not true chaos, which is is an inherently nonlinear phenomenon, [77].

Exercises

2
2.4.1. Solve the initial value problem u,, = czum7 uw(0,2) =e *, u,(0,z) =sinz.

2.4.2.(a) Solve the wave equation u,, = u,, when the initial displacement is the box function

1 l<z<2
0,2)=1{ b 7
u(0,z) { 0, otherwise,

(b) Sketch the resulting solution at several representative times.

xT

while the initial velocity is 0.
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2.4.3. Answer Exercise 2.4.2 when the initial velocity is the box function, while the initial dis-
placement is zero.

2.4.4. Write the following solutions to the wave equation u,, = u,, in d’Alembert form (2.82).
Hint: What is the appropriate initial data?

(a) coszcost, (b) cos2x sin2t, (c) Tt (d) t? +2z2, (e) 3+ 3tz>.

x

O 2.4.5.(a) Solve the dam break problem, that is, the wave equation when the initial displacement
1, z=>0,
0, =<0,
case in which there is no initial displacement, while the initial velocity is a step function.
(c) Are your solutions classical solutions? Explain your answer. (d) Prove that the step

is a step function o(z) = { and there is no initial velocity. (b) Analyze the

function is the limit, as n — oo, of the functions f,(z) = ! tan"lnax + ! . (e) Show that,

in both cases, the step function solution can be realized as the limit, as n — oo, of solutions
to the initial value problems with the functions f, (x) as initial displacement or velocity.

& 2.4.6. Suppose u(t, z) solves the initial value problem u(0,z) = f(x), u,(0,z) = g(z), for the
wave equation (2.66). Prove that the solution to the initial value problem u(ty,z) = f(x),

uy (g, x) = g(x), is u(t — ty, ).

2.4.7. Find all resonant frequencies for the wave equation with wave speed ¢ when subject to
the external forcing function F(t,z) = sinwt sinkz for fixed w, k > 0.

2.4.8. Consider the initial value problem u,, = 4u__ + F(t,z), u(0,z) = f(z), u,(0,z) = g(x).
Determine (a) the domain of influence of the point (0,2); (b) the domain of dependence of
the point (3, —1); (c¢) the domain of influence of the point (3, —1).

2.4.9.(a) A solution to the wave equation u,, = 2u,, is generated by a displacement concen-
trated at position z; = 1 and time t; = 0, but no initial velocity. At what time will an
observer at position x; = 5 feel the effect of this displacement? Will the observer continue
to feel an effect in the future? (b) Answer part (a) when there is an initial velocity concen-
trated at position zy = 1 and time t; = 0, but no initial displacement.

2.4.10. Suppose u(t, x) solves the initial value problem u,, = 4u,, + sinwt cosz, u(0,z) = 0,
u,(0,z) = 0. Is h(t) = u(t, 0) a periodic function?

© 2.4.11.(a) Write down an explicit formula for the solution to the initial value problem

0? 0? 0

(%fj —4 ax‘; =0, u(0,z)=sinz, 81; (0,2) = cosz, —oo<z<oo, t>0.
(b) True or false: The solution is a periodic function of t.
(c) Now solve the forced initial value problem

2 2

gtg —4 gasg =cos2t, u(0,x)=sinz, ng
(d) True or false: The forced equation exhibits resonance. Explain.
(e) Does the answer to part (d) change if the forcing function is sin 2¢?

(0,2) =cosz, —oco<z<oo, t=>0.

2.4.12. Given a classical solution u(t, z) of the wave equation, let £ = é (u? + czui) be the
associated energy density and P = w,u,, the momentum density.
(a) Show that both E and P are conserved densities for the wave equation.
(b) Show that E(t,z) and P(t,x) both satisfy the wave equation.

& 2.4.13. Let u(t, z) be a classical solution to the wave equation u,, = c2um. The total energy

E(t) :/f:o; {<g$>2+c2 (ZDQ} dz (2.98)

represents the sum of kinetic and potential energies of the displacement u(¢, x) at time t.
Suppose that Vu — 0 sufficiently rapidly as x — do00; more precisely, one can find a > %
and C(t) > 0 such that |u, (¢, 2)|, |u,(t,z)| < C(t)/|z|* for each fixed ¢ and all sufficiently

large | x| > 0. For such solutions, establish the Law of Conservation of Energy by showing
that E(t) is finite and constant. Hint: You do not need the formula for the solution.
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{ 2.4.14.(a) Use Exercise 2.4.13 to prove that the only classical solution to the initial-boundary
value problem u,, = CQUM, u(0,z) = 0, u, (0, z) = 0, satisfying the indicated decay assump-

tions is the trivial solution u(¢,z) = 0. (b) Establish the following Uniqueness Theorem for
the wave equation: there is at most one such solution to the initial-boundary value problem

Uy = czum, u(0,z) = f(x), v, (0,2z) =g(x).

2.4.15. The telegrapher’s equation u, + au, = cQum, with @ > 0, models the vibration of

a string under frictional damping. (a) Show that, under the decay assumptions of Exer-
cise 2.4.13, the wave energy (2.98) of a classical solution is a nonincreasing function of t.
(b) Prove uniqueness of such solutions to the initial value problem for the telegrapher’s
equation.

2.4.16. What happens to the proof of Theorem 2.14 if ¢ = 07

2.4.17.(a) Explain why the d’Alembert factorization method doesn’t work when the wave speed
¢(z) depends on the spatial variable x.
(b) Does it work when ¢(t) depends only on the time t?

2u 9%u 2 du

o2 9r? z Ox
u(0,2) =0, u,(0,z) = g(z), where g(x) = g(—x) is an even function. Hint: Set w = zu.

2.4.18. The Poisson—Darboux equation is = 0. Solve the initial value problem

© 2.4.19.(a) Solve the initial value problem u,, — 2u,, —3u,, =0, u(0,z) = 22, u (0, 2) = e”.
Hint: Factor the associated linear differential operator. (b) Determine the domain of influ-
ence of a point (0,x). (¢) Determine the domain of dependence of a point (¢, x) with ¢ > 0.

{ 2.4.20.(a) Use polar coordinates to prove that, for any a > 0,
7a(:v2+y2) .
//R2 e dxdy = 0 (2.99)

[ e dp = \/”. (2.100)
o a
& 2.4.21. Use Exercise 2.4.20 to prove the error function formulae (2.88).

(b) Explain why



Chapter 3
Fourier Series

Just before 1800, the French mathematician/physicist/engineer Jean Baptiste Joseph
Fourier made an astonishing discovery, [42]. Through his deep analytical investigations
into the partial differential equations modeling heat propagation in bodies, Fourier was
led to claim that “every” function could be represented as an infinite series of elementary
trigonometric functions: sines and cosines. For example, consider the sound produced by
a musical instrument, e.g., piano, violin, trumpet, or drum. Decomposing the signal into
its trigonometric constituents reveals the fundamental frequencies (tones, overtones, etc.)
that combine to produce the instrument’s distinctive timbre. This Fourier decomposition
lies at the heart of modern electronic music; a synthesizer combines pure sine and cosine
tones to reproduce the diverse sounds of instruments, both natural and artificial, according
to Fourier’s general prescription.

Fourier’s claim was so remarkable and counterintuitive that most of the leading math-
ematicians of the time did not believe him. Nevertheless, it was not long before scientists
came to appreciate the power and far-ranging applicability of Fourier’s method, thereby
opening up vast new realms of mathematics, physics, engineering, and beyond. Indeed,
Fourier’s discovery easily ranks in the “top ten” mathematical advances of all time, a list
that would also include Newton’s invention of the calculus, and Gauss and Riemann’s
differential geometry, which, 70 years later, became the foundation of Einstein’s general
relativity. Fourier analysis is an essential component of much of modern applied (and pure)
mathematics. It forms an exceptionally powerful analytic tool for solving a broad range of
linear partial differential equations. Applications in physics, engineering, biology, finance,
etc., are almost too numerous to catalogue: typing the word “Fourier” in the subject index
of a modern science library will dramatically demonstrate just how ubiquitous these meth-
ods are. Fourier analysis lies at the heart of signal processing, including audio, speech,
images, videos, seismic data, radio transmissions, and so on. Many modern technologi-
cal advances, including television, music CDs and DVDs, cell phones, movies, computer
graphics, image processing, and fingerprint analysis and storage, are, in one way or another,
founded on the many ramifications of Fourier theory. In your career as a mathematician,
scientist, or engineer, you will find that Fourier theory, like calculus and linear algebra, is
one of the most basic weapons in your mathematical arsenal. Mastery of the subject is
essential.

Furthermore, a surprisingly large fraction of modern mathematics rests on subsequent
attempts to place Fourier series on a firm mathematical foundation. Thus, many of modern
analysis’ most basic concepts, including the definition of a function, the e—§ definition
of limit and continuity, convergence properties in function space, the modern theory of
integration and measure, generalized functions such as the delta function, and many others,
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all owe a profound debt to the prolonged struggle to establish a rigorous framework for
Fourier analysis. Even more remarkably, modern set theory, and, thus, the foundations
of modern mathematics and logic, can be traced directly back to the nineteenth-century
German mathematician Georg Cantor’s attempts to understand the sets on which Fourier
series converge!

We begin our development of Fourier methods by explaining why Fourier series nat-
urally appear when we try to solve the one-dimensional heat equation. The reader unin-
terested in such motivations can safely omit this initial section, since the same material
reappears in Chapter 4, where we apply Fourier methods to solve several important linear
partial differential equations. Beginning in Section 3.2, we shall introduce the most basic
computational techniques for Fourier series. The final section is an abbreviated introduc-
tion to the analytic background required to develop a rigorous foundation for Fourier series
methods. While this section is a bit more mathematically sophisticated than what has ap-
peared so far, the student is strongly encouraged to delve into it to gain additional insight
and see further developments, including some of direct importance in applications.

3.1 Eigensolutions of Linear Evolution Equations

Following our studies of first-order partial differential equations in Chapter 2, the next
important example to merit investigation is the second-order linear equation

ou 0%u

— 3.1
ot 0x2’ (3:1)

known as the heat equation, since it models (among other diffusion processes) heat flow
in a one-dimensional medium, e.g., a metal bar. For simplicity, we have set the physical
parameters equal to 1 in order to focus on the solution techniques. A more complete
discussion, including a brief derivation from physical principles, will appear in Chapter 4.
Unlike the wave equation considered in Chapter 2, there is no comparably elementary
formula for the general solution to the heat equation. Instead, we will write solutions
as infinite series in certain simple, explicit solutions. This solution method, pioneered by
Fourier, will lead us immediately to the definition of a Fourier series. The remainder of this
chapter will be devoted to developing the basic properties and calculus of Fourier series.
Once we have mastered these essential mathematical techniques, we will start applying
them to partial differential equations in Chapter 4.

Let us begin by writing the heat equation (3.1) in a more abstract, but suggestive,
linear evolutionary form

ou
o= L{u], (3.2)
in which
0%u
L{u] = D2 (3.3)

is a linear second-order differential operator. Recall, (1.11), that linearity imposes two
requirements on the operator L:

Liu+v] = L{u] + L[v], Licu] = cL]ul, (3.4)
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for any functions’ u,v and any constant c¢. Moreover, since L involves differentiation only
with respect to z, it also satisfies

Llc(t)u] = ¢(t) L{u] (3.5)

for any function c¢(¢) that does not depend on z.
Of course, there are many other possible linear differential operators, and so our ab-
stract linear evolution equation (3.2) can represent a wide range of linear partial differential

equations. For example, if
ou

ox’
where ¢(z) is a function representing the wave speed in a nonuniform medium, then (3.2)
becomes the transport equation

L{u] = —c(x) (3.6)

ou ou

o= —c(x) P (3.7)

that we studied in Chapter 2. If

L{u] = U(1$> g (n(w) gD , (3.8)

where o(x) > 0 represents heat capacity and k(z) > 0 thermal conductivity, then (3.2)
becomes the generalized heat equation

ou 1 0 ou
— 3.9
ot  o(x) Oz (FJ(ZE) 8:16) ’ (39)
governing the diffusion of heat in a nonuniform bar. If
0%u
Liu] = gp2 VW (3.10)

where v > 0 is a positive constant, then (3.2) becomes the damped heat equation

ou  0%u

ot — az2
which models the temperature of a bar that is cooling off due to radiation of heat energy.
We can even take u to be a function of more than one space variable, e.g., u(t,z,y) or
u(t,z,y,z), in which case (3.2) includes higher-dimensional versions of the heat equation
for plates and solid bodies, which we will study in due course. In all cases, the key
requirements on the operator L are (a) linearity, and (b) only differentiation with respect
to the spatial variables is allowed.

(3.11)

Fourier’s inspired idea for solving such linear evolution equations is a direct adaptation
of the eigensolution method for first-order linear systems of ordinary differential equations,
[20, 23, 89], which we now recall. The starting point is the elementary scalar ordinary
differential equation

= . 12
gt Au (3.12)

T We assume throughout that the functions are sufficiently smooth so that the indicated
derivatives are well defined.
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The general solution is an exponential function
u(t) = ceM, (3.13)

whose coefficient ¢ is an arbitrary constant. This elementary observation motivates the
solution method for a first-order homogeneous linear system of ordinary differential equa-

tions
du

dt

in which A is a constant n x n matrix. Working by analogy, we will seek solutions of
exponential form

= Au, (3.14)

u(t) = e, (3.15)
where v € R" is a constant vector. We substitute this ansatz’ into the equation. First,

Ccllltl = CZ (e’\tv) = el

At

On the other hand, since e’ is a scalar, it commutes with matrix multiplication, and so

Au=Aerv =eMAv.
Therefore, u(t) will solve the system (3.14) if and only if v satisfies

Av = Av. (3.16)

We recognize this as the eigenequation that determines the eigenvalues of the matrix A.
Namely, (3.16) has a nonzero solution v # 0 if and only if A is an eigenvalue and v a
corresponding eigenvector. Each eigenvalue A and eigenvector v produces a nonzero, expo-
nentially varying eigensolution (3.15) to the linear system of ordinary differential equations.

Remark: Any nonzero scalar multiple of an eigenvector v = cv, for ¢ # 0, is auto-
matically another eigenvector for the same eigenvalue A. However, the only effect is to
multiply the eigensolution by the scalar ¢. Thus, to obtain a complete system of indepen-
dent solutions, we need only the independent eigenvectors.

For simplicity — and also because all of the linear partial differential equations we
will treat will have the analogous property — suppose that the n x n matrix A has a
complete system of real eigenvalues A, ..., A, and corresponding real, linearly independent
eigenvectors vy, ..., Vv, , which therefore form an eigenvector basis of the underlying space
R™. (We allow the possibility of repeated eigenvalues, but require that all eigenvectors be
independent to avoid superfluous solutions.) For example, according to Theorem B.26 (see
also [89; Theorem 8.20]), all real, symmetric matrices, A = AT, are complete. Complex
eigenvalues lead to complex exponential solutions, whose real and imaginary parts can be
used to construct the associated real solutions. Incomplete matrices, having an insufficient
number of eigenvectors, are trickier, and the solution to the corresponding linear system

T The German word ansatz refers to the method of finding a solution to a complicated equation
by postulating that it is of a special form. Usually, an ansatz will depend on one or more free
parameters — in this case, the entries of the vector v along with the scalar A — that, with some
luck, can be adjusted to fulfill the requirements imposed by the equation. Thus, a reasonable
English translation of “ansatz” is “inspired guess”.
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requires use of the Jordan canonical form, [89; Section 8.6]. Fortunately, we do not have
to deal with the latter, technically annoying, cases here.

Using our completeness assumption, we can produce n independent real exponential
eigensolutions

uy (t) = eMivy, . u, (t) = e*tv,

to the linear system (3.14). The Linear Superposition Principle of Theorem 1.4 tells us
that, for any choice of scalars ¢4, . ..,c,, the linear combination

cu (t) + - Feyu, () =Mty + oo e et (3.17)

is also a solution. The basic Existence and Uniqueness Theorems for first-order systems of
ordinary differential equations, [18,23,52], imply that (3.17) forms the general solution
to the original linear system, and so the eigensolutions form a basis for the solution space.

Let us now adapt this seminal idea to construct exponentially varying solutions to the
heat equation (3.1) or, for that matter, any linear evolution equation in the form (3.2). To
this end, we introduce an analogous exponential ansatz:

AMoy(x), (3.18)

u(t,z) =e

in which we replace the vector v in (3.15) by a function v(z). We substitute the expression
(3.18) into the dynamical equations (3.2). First, the time derivative of such a function is

ou 0
o = ot [e)‘tv(:v)} = AerMo(x).

On the other hand, in view of (3.5),
Llu] = L[e’\tv(m)} =e M L[v].

Equating these two expressions and canceling the common exponential factor, we conclude
that v(z) must satisfy the eigenequation

L{v] = Av (3.19)

for the linear differential operator L, in which A is the eigenvalue, while v(x) is the corre-
sponding eigenfunction. Each eigenvalue and eigenfunction pair will produce an exponen-
tially varying eigensolution (3.18) to the partial differential equation (3.2). We will then
appeal to Linear Superposition to combine the resulting eigensolutions to form additional
solutions. The key complication is that partial differential equations admit an infinite
number of independent eigensolutions, and thus one cannot hope to write the general solu-
tion as a finite linear combination thereof. Rather, one is led to try constructing solutions
as infinite series in the eigensolutions. However, justifying such series solution formulas
requires additional analytical skills and sophistication. Not every infinite series converges
to a bona fide function. Moreover, a convergent series of differentiable functions need not
converge to a differentiable function, and hence the series may not represent a (classical)
solution to the partial differential equation. We are being reminded, yet again, that partial
differential equations are much wilder creatures than their relatively tame cousins, ordinary
differential equations.

Let us, for specificity, focus our attention on the heat equation, for which the linear
operator L is given by (3.3). If v(x) is a function of = alone, then

Lv] =v"(2).
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Thus, our eigenequation (3.19) becomes
v’ = . (3.20)

This is a linear second-order ordinary differential equation for v(z), and so has two linearly
independent solutions. The explicit solution formulas depend on the sign of the eigenvalue
A, and can be found in any basic text on ordinary differential equations, e.g., [20, 23]. The
following table summarizes the results for real eigenvalues \; the case of complex A is left
as Exercise 3.1.3 for the reader. The resulting exponential eigensolutions are also referred
to as separable solutions to indicate that they are the product of a function of ¢ alone and a
function of x alone. The general method of separation of variables will be one of our main
tools for solving linear partial differential equations, to be developed in detail starting in
Chapter 4.

Real Eigensolutions of the Heat Equation

A Eigenfunctions v(x) Eigensolutions u(t,z) = e v(x)
A=—-w?<0 coswz, sinwzx e~ teoswa, e “tsinwa
A= 1, = 1, x
\ = w2 >0 e WT W eoﬂt—wx’ ewzt—i-wac

Remark: Thus, in the absence of boundary conditions, each real number A\ qualifies as
an eigenvalue of the linear differential operator (3.3), possessing two linearly independent
eigenfunctions, and thus two linearly independent eigensolutions to the heat equation. As
with eigenvectors, any (nonzero) linear combination of eigenfunctions (eigensolutions) with
the same eigenvalue is also an eigenfunction (eigensolution). Thus, the preceding table lists
only independent eigenfunctions and eigensolutions.

As noted above, any finite linear combination of these basic eigensolutions is auto-
matically a solution. Thus, for example,

4

u(t,x) = cye” " cosz + coe” Fsin2x + ez + ¢y

is a solution to the heat equation for any choice of constants c,, ¢y, c3, ¢4, as you can easily
check. But, since there are infinitely many independent eigensolutions, we cannot expect
to be able to represent every solution to the heat equation as a finite linear combination
of eigensolutions. And so, we must learn how to deal with infinite series of eigensolutions.

Remark: Eigensolutions in the first class, where A < 0, are exponentially decaying,
which is in accord with our physical intuition as to how the temperature of a body should
behave. Those in the second class are constant in time — also physically reasonable. How-
ever, those in the third class, corresponding to positive eigenvalues A > 0, are exponentially
growing in time. In the absence of external heat sources, physical bodies should approach
some sort of thermal equilibrium, and certainly not an exponentially growing temperature!
However, notice that the latter eigensolutions (as well as the solution z) are not bounded in
space, and so include an infinite amount of heat energy being supplied to the system from
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infinity. As we will soon come to appreciate, physically relevant boundary conditions —
posed either on a bounded interval or by specifying the asymptotics of the solutions at large
distances — will separate out the physically reasonable solutions from the mathematically
valid but physically irrelevant ones.

The Heated Ring

So far, we have not paid any attention to boundary conditions. As noted above, these will
eliminate nonphysical eigensolutions and thereby reduce the collection to a manageable,
albeit still infinite, number. In this subsection, we will discuss a particularly important
case, which, following Fourier’s line of reasoning, leads us directly into the heart of Fourier
series.

Consider the heat equation on the interval —7m < x < m, subject to the periodic
boundary conditions

ou  0%u ou ou
ot - 81‘2 3 U(t, —7T') - U(t,ﬂ'), oz (tv _7T> - or

The physical problem being modeled is the thermodynamic behavior of an insulated circular
ring, in which z represents the angular coordinate. The boundary conditions ensure that

the temperature remains continuously differentiable at the junction point where the angle
switches over from —7 to w. Given the ring’s initial temperature distribution

(t, ). (3:21)

u(0,2) = f(x), —m<z<m, (3.22)

our task is to determine the temperature of the ring u(t, z) at each subsequent time ¢ > 0.

Let us find out which of the preceding eigensolutions respect the boundary conditions.
Substituting our exponential ansatz (3.18) into the differential equation and boundary
conditions (3.21), we find that the eigenfunction v(z) must satisfy the periodic boundary
value problem

v = A, v(—7) = v(r), V(—=m) = (7). (3.23)

Our task is to find those values of A for which (3.23) has a nonzero solution v(x) # 0.
These are the eigenvalues and eigenfunctions.

As noted above, there are three cases, depending on the sign of A. First, suppose
A = w? > 0. Then the general solution to the ordinary differential equation is

v(x) =ae*? +be “7,

where a, b are arbitrary constants. Substituting into the boundary conditions, we find that
a, b must satisfy the pair of linear equations

ae” “T +be”T =ae’" +be ¥, awe “T —bwe*™ =aweT —bwe “T.

Since w # 0, the first equation implies that a = b, while the second requires a = —b. So,
the only way to satisfy both boundary conditions is to take a = b = 0, and so v(z) = 0 is
a trivial solution. We conclude that there are no positive eigenvalues.
Second, if A = 0, then the ordinary differential equation reduces to v” = 0, with
solution
v(x) =a+bx.
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Substituting into the boundary conditions requires
a—bm=a+bm, b=10.

The first equation implies that b = 0, but this is the only condition. Therefore, any constant
function, v(z) = a, solves the boundary value problem, and hence A = 0 is an eigenvalue.
We take vy(z) = 1 as the unique independent eigenfunction, bearing in mind that any
constant multiple of an eigenfunction is automatically also an eigenfunction. We will call
1 a null eigenfunction, indicating that it is associated with the zero eigenvalue A = 0. The
corresponding eigensolution (3.18) is u(t,z) = e"?vy(z) = 1, a constant solution to the
heat equation.

Finally, we must deal with the case A = —w? < 0. Now, the general solution to the
differential equation in (3.23) is a trigonometric function:

v(z) =acoswz + bsinwzx. (3.24)

Since
V' (z) = —awsinwz + bwcosw,

when we substitute into the boundary conditions, we obtain

acoswm —bsinwm =acoswnm + bsinw,

asinwm +bcoswm = —asinwm+bcoswm,

where we canceled out a common factor of w in the second equation. These simplify to
2bsinwm =0, 2a sinwm = 0.

If sinwm # 0, then a = b = 0, and so we have only the trivial solution v(x) = 0. Thus, to
obtain a nonzero eigenfunction, we must have

sinwm = 0,
which requires that w = 1,2, 3, ... be a positive integer. For such w;, = k, every solution
v(z) = acoskzx + bsinkx, k=1,2,3,...,

satisfies both boundary conditions, and hence (unless identically zero) qualifies as an eigen-

function of the boundary value problem. Thus, the eigenvalue \, = —k? admits a two-

dimensional space of eigenfunctions, with basis v, (z) = coskx and v, (x) = sinkz.
Consequently, the basic trigonometric functions

1, cos , sin z, cos2w, sin2x, cos 3w, (3.25)

form a system of independent eigenfunctions for the periodic boundary value problem
(3.23). The corresponding exponentially varying eigensolutions are

k k

() =e” thosk::v, u(x)=e" 2tsink:av, k=0,1,2,3,..., (3.26)

each of which, by design, is a solution to the heat equation (3.21) and satisfies the periodic
boundary conditions. Note that we subsumed the case A\; = 0 into (3.26), keeping in mind
that, when & = 0, the sine function is trivial, and hence @,(x) = 0 is not needed. So the null
eigenvalue A\, = 0 provides (up to a constant multiple) only one eigensolution, whereas the
strictly negative eigenvalues ), = —k? < 0 each provide two independent eigensolutions.
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Remark: For completeness, one should also consider the possibility of complex eigen-
values. If A = w? # 0, where w is now allowed to be complex, then all solutions to the
differential equation (3.23) are of the form

v(z) =ae** +be ",
The periodic boundary conditions require

ae” YT +beT =qe’T +be” ¥, awe YT —bwe’T =awe’T —bwe” “T.

If e“™ 4 e~“™ or, equivalently, e2“™ # 1, then the first condition implies a = b, but then
the second implies @ = b = 0, and so A = w? is not an eigenvalue. Thus, the eigenvalues
only occur when e?“™ = 1. This implies w = ki, where k is an integer, and so A\ = — k2,
leading back to the known trigonometric solutions. Later, in Section 9.5, we will learn that
the “self-adjoint” structure of the underlying boundary value problem implies, a priori, that
all its eigenvalues are necessarily real and nonpositive. So a good part of the preceding
analysis was, in fact, superfluous.

We conclude that there is an infinite number of independent eigensolutions (3.26) to
the periodic heat equation (3.21). Linear Superposition, as described in Theorem 1.4, tells
us that any finite linear combination of the eigensolutions is automatically a solution to
the periodic heat equation. However, only solutions whose initial data «(0,z) = f(x) hap-
pens to be a finite linear combination of the trigonometric eigenfunctions (a trigonometric
polynomial) can be so represented. Fourier’s brilliant idea was to propose taking infinite
“linear combinations” of the eigensolutions in an attempt to solve the general initial value
problem. Thus, we try representing a general solution to the periodic heat equation as an
infinite series of the formf

u(t,z) = a20 + Z [ay et coska + b, eithsink::v] (3.27)
k=1

The coefficients a, a;,a,,...,b;,by, ..., are constants, to be fixed by the initial condition.
Indeed, substituting our proposed solution formula (3.27) into (3.22), we obtain

Qg

5 T Z [a, coskz + by sinkz]. (3.28)

k=1

f(x) = u(0,2) =

Thus, we must represent the initial temperature distribution f(z) as an infinite Fourier
series in the elementary trigonometric eigenfunctions. Once we have prescribed the Fourier
coefficients ay,aq,aq,...,b1,by,..., we expect that the corresponding eigensolution series
(3.27) will provide an explicit formula for the solution to the periodic initial-boundary
value problem for the heat equation.

However, infinite series are much more delicate than finite sums, and so this formal
construction requires some serious mathematical analysis to place it on a rigorous founda-
tion. The key questions are:

e When does an infinite trigonometric Fourier series converge?
e What kinds of functions f(x) can be represented by a convergent Fourier series?

' For technical reasons, one takes the basic null eigenfunction to be % instead of 1. The reason
for this choice will be revealed in the following section.
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e Given such a function, how do we determine its Fourier coefficients a,,, b, 7

o Are we allowed to differentiate a Fourier series?

e Does the result actually form a solution to the initial-boundary value problem for the

heat equation?

These are the basic issues in Fourier analysis, which must be properly addressed before we
can make any serious progress towards actually solving the heat equation. Thus, we will
leave partial differential equations aside for the time being, and start a detailed investigation
into the mathematics of Fourier series.

Exercises

3.1.1. For each of the following differential operators, (i) prove linearity; (i) prove (3.5);
(ii1) write down the corresponding linear evolution equation (3.2):
9 9 o? 0 0 4 0 o? 0
(a) a$7 (b) a$ + 17 (C) 8 2 +3 81‘7 (d) 81‘ € 81‘7 (e) 81‘2 + ayQ °

3.1.2. Find all separable eigensolutions to the heat equation u; = u,, on the interval 0 <z <7
subject to (a) homogeneous Dirichlet boundary conditions u(t,0) = 0, u(t, 7) = 0;
(b) mixed boundary conditions u(t,0) =0, u, (¢, 7) = 0;
(¢) Neumann boundary conditions u,(t,0) =0, u,(t,7) = 0.

xr

{ 3.1.3. Complete the table of eigensolutions to the heat equation, in the absence of boundary
conditions, by allowing the eigenvalue A to be complex.

3.1.4. Find all separable eigensolutions to the following partial differential equations:
(a) uy=wuy, (b) uy=u,—u, (c)u =zu,.
3.1.5.(a) Find the real eigensolutions to the damped heat equation u, = u,, — u. (b) Which
solutions satisfy the periodic boundary conditions u(t, —m) = u(t, 7), u (¢, —7) = u, (¢, m)?

3.1.6. Answer Exercise 3.1.5 for the diffusive transport equation u; + cu, = u,, modeling the
combined diffusion and transport of a solute in a uniform flow with constant wave speed c.

© 3.1.7.(a) Find the real eigensolutions to the diffusion equation u, = (2 u,,),, modeling diffusion

T
in an inhomogeneous medium on the half-line = > 0.
(b) Which solutions satisfy the Dirichlet boundary conditions u(t, 1) = u(t,2) = 07

3.2 Fourier Series

The preceding section served to motivate the development of Fourier series as a tool for
solving partial differential equations. Our immediate goal is to represent a given function
f(x) as a convergent series in the elementary trigonometric functions:

a oo

flz)="2 + Z [a, coskx + b, sinkx] . (3.29)
2
k=1

The first order of business is to determine the formulae for the Fourier coefficients a,, by;
only then will we deal with convergence issues.
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The key that unlocks the Fourier treasure chest is orthogonality. Recall that two vec-
tors in Euclidean space are called orthogonal if they meet at a right angle. More explicitly,
v,w are orthogonal if and only if their dot product is zero: v -w = 0. Orthogonality,
and particularly orthogonal bases, has profound consequences that underpin many mod-
ern computational algorithms. See Section B.4 for the basics, and [89] for full details on
finite-dimensional developments. In infinite-dimensional function space, were it not for or-
thogonality, Fourier theory would be vastly more complicated, if not completely impractical
for applications.

The starting point is the introduction of a suitable inner product on function space, to
assume the role played by the dot product in the finite-dimensional context. For classical
Fourier series, we use the rescaled L? inner product

(Foy=1 [ swewa (3.30

on the space of continuous functions defined on the interval’ [—7,7]. It is not hard to
show that (3.30) satisfies the basic inner product axioms listed in Definition B.10. The
associated norm is

||f||=\/<f,f>=\/71r "y (331)

Lemma 3.1. Under the rescaled L? inner product (3.30), the trigonometric functions

1, cosz, sinz, cos2x, sin2x, ... , satisfy the following orthogonality relations:
(coskz,coslx) = (sinkx,sinlx) =0, for  k#I,
(coskzx sinlx) =0, for all k,I, (3.32)
||1||:\/2, ||coskx| = ||sinkz| =1, for k#£0,

where k and | indicate nonnegative integers.

Proof: The formulas follow immediately from the elementary integration identities

w 0, k#I,
0, k1, / sinkx sinlx dx =
= - m, k=1+#0,
/ coskx cosledr =< 2w, k=1=0,
T, k=1#0, / coskz sinlzdz =0, (3.33)
which are valid for all nonnegative integers k,{ > 0. Q.E.D.

Lemma 3.1 implies that the elementary trigonometric functions form an orthogonal
system, meaning that any distinct pair are orthogonal under the chosen inner product. If
we were to replace the constant function 1 by \}2, then the resulting functions would form

an orthonormal system meaning that, in addition, they all have norm 1. However, the
extra /2 is utterly annoying, and best omitted.

T We have chosen to use the interval [—m, ] for convenience. A common alternative is to
develop Fourier series on the interval [0,27]. In fact, since the basic trigonometric functions are
2n—periodic, any interval of length 27 will serve equally well. Adapting Fourier series to other
intervals will be discussed in Section 3.4.
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Remark: As with all essential mathematical facts, the orthogonality of the trigonomet-
ric functions is not an accident, but indicates that something deeper is going on. Indeed,
orthogonality is a consequence of the fact that the trigonometric functions are the eigen-
functions for the “self-adjoint” boundary value problem (3.23), which is the function space
counterpart to the orthogonality of eigenvectors of symmetric matrices, cf. Theorem B.26.
The general framework will be developed in detail in Section 9.5, and then applied to the
more complicated systems of eigenfunctions we will encounter when dealing with higher-
dimensional partial differential equations.

If we ignore convergence issues, then the trigonometric orthogonality relations serve
to prescribe the Fourier coefficients: Taking the inner product of both sides of (3.29) with
coslx for [ > 0, and invoking linearity of the inner product, yields

hE

(f,coslz) = a20 (1,coslz) + [a, (coskz,cosla)+ b, (sinkx,coslz) ]

>
Il

1
=aq; (coslz,cosla) = qa,

since, by the orthogonality relations (3.32), all terms but the {*! vanish. This serves to pre-

scribe the Fourier coefficient a;. A similar manipulation with sinlx fixes b, = ( f,sinlz),
while taking the inner product with the constant function 1 gives

(F:1)="2(1,1) + 3 [ (coska, 1) +b, (sinka,1)] = 7 [ 1] = a,,
k=1

which agrees with the preceding formula for a; when [ = 0, and explains why we include

the extra factor % in the constant term. Thus, if the Fourier series converges to the

function f(x), then its coefficients are prescribed by taking inner products with the basic
trigonometric functions.

Definition 3.2. The Fourier series of a function f(x) defined on —w < x < 7 is
a - .
flz) ~ 20 + ,;1 [a,coskx + by sinkz], (3.34)

whose coefficients are given by the inner product formulae

1 ™
a, = (f,coskzx) = f(z)coskxdr, k=0,1,2,3,...,

T

1 ;ﬂ (3.35)
b, = (f,sinkz) = f(x)sinkzdr, k=1,2,3,....

T —T

The function f(z) cannot be completely arbitrary, since, at the very least, the integrals
in the coefficient formulae must be well defined and finite. Even if the coefficients (3.35)
are finite, there is no guarantee that the resulting infinite series converges, and, even if it
converges, no guarantee that it converges to the original function f(z). For these reasons,
we will tend to use the ~ symbol instead of an equal sign when writing down a Fourier
series. Before tackling these critical issues, let us work through an elementary example.
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Example 3.3. Consider the function f(xz) = . We may compute its Fourier coeffi-
cients directly, employing integration by parts to evaluate the integrals:

1 (" 1 (" 1 in k s k
aozﬁ/ﬂmdmzo, akzﬁ/ﬂxcoskmdmzﬁ [:v&z x_l_col;x] z:,WZO’
1 (7 1 xcoskr sinkx 2
i 7T/_Tr;vsm vdr = [ i + o2 } o k( ) (3.36)
The resulting Fourier series is
. sin2x sin3x sindz
x o~ 2 (smx -, * 3 T 4 ) (3.37)

Establishing convergence of this infinite series is far from elementary. Standard calculus
criteria, including the ratio and root tests, are inconclusive. Even if we know that the series
converges (which it does — for all z), it is certainly not obvious what function it converges
to. Indeed, it cannot converge to the function f(x) = x everywhere! For instance, if z = 7,
then every term in the Fourier series is zero, and so it converges to 0 — which is not the
same as f(m) = .

Recall that the convergence of an infinite series is predicated on the convergence of its
sequence of partial sums, which, in this case, are
s,(z) = a20 +k§1 [a, coskx + b, sinkx] . (3.38)
By definition, the Fourier series converges at a point x if and only if its partial sums have
a limit: _
nlem s, (z) = f(x), (3.39)

which may or may not equal the value of the original function f(z). Thus, a key requirement
is to find conditions on the function f(z) that guarantee that the Fourier series converges,

and, even more importantly, that the limiting sum reproduces the original function: f(:v) =
f(z). This will all be done in detail below.

Remark: A finite Fourier sum, of the form (3.38), is also known as a trigonometric
polynomial. This is because, by trigonometric identities, it can be re-expressed as a poly-
nomial P(cosz,sinz) in the cosine and sine functions; vice versa, every such polynomial
can be uniquely written as such a sum; see [89] for details.

The passage from trigonometric polynomials to Fourier series might be viewed as
analogous to the passage from polynomials to power series. Recall that the Taylor series
of an infinitely differentiable function f(z) at the point = 0 is

flx) ~ cg+ez+ - +c, 2"+ - = Z ¢ o,
k=0

®(0)

where, according to Taylor’s formula, the coefficients ¢; = are expressed in terms

of its derivatives at the origin, not by an inner product. The partial sums

n
sp(x) =co+cio+ - e, x" = E cpa”
k=0
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of a power series are ordinary polynomials, and the same basic convergence issues arise.

Although superficially similar, in actuality the two theories are profoundly different.
Indeed, while the theory of power series was well established in the early days of the
calculus, there remain, to this day, unresolved foundational issues in Fourier theory. A
power series in a real variable x either converges everywhere, or on an interval centered
at 0, or nowhere except at 0. On the other hand, a Fourier series can converge on quite
bizarre sets. Secondly, when a power series converges, it converges to an analytic function,
whose derivatives are represented by the differentiated power series. Fourier series may
converge, not only to continuous functions, but also to a wide variety of discontinuous
functions and even more general objects. Therefore, term-wise differentiation of a Fourier
series is a nontrivial issue.

Once one appreciates how radically different the two subjects are, one begins to un-
derstand why Fourier’s astonishing claims were initially widely disbelieved. Before that
time, all functions were taken to be analytic. The fact that Fourier series might converge
to a nonanalytic, even discontinuous function was extremely disconcerting, resulting in a
profound re-evaluation of the foundations of function theory and the calculus, culminating
in the modern definitions of function and convergence that you now learn in your first
courses in analysis, [8,96,97]. Only through the combined efforts of many of the leading
mathematicians of the nineteenth century was a rigorous theory of Fourier series firmly
established. Section 3.5 contains the most important details, while more comprehensive
treatments can be found in the advanced texts [37, 68, 128].

Exercises
3.2.1. Find the Fourier series of the following functions:  (a) signz, (b) |z,
(c) 3z —1, (d) «%, (e) sin®z, (f) sinzcosz, (g) |sinz|, (h) zcosz.

3.2.2. Find the Fourier series of the following functions:

1 1 1
0, otherwise, 0, otherwise, 0, otherwise,

(d) x, |m|<%7r, (e) cos , |m|<%7r,
0, otherwise, 0, otherwise.

3.2.3. Find the Fourier series of sin? z and cos?  without directly calculating the Fourier coeffi-
cients. Hint: Use some standard trigonometric identities.

n
& 3.24. Let g(x) = %po—i— > (p coskz + g sinkx) be a trigonometric polynomial. Explain why
k=1
its Fourier coefficients are a;,, = p;, and b, = ¢, for kK <n, while a;, = b;, = 0 for k > n.

3.2.5. True or false: (a) The Fourier series for the function 2 f(z) is obtained by multiplying
each term in the Fourier series for f(z) by 2. (b) The Fourier series for the function f(2x)
is obtained by replacing x by 2 in the Fourier series for f(x). (¢) The Fourier coefficients
of f(x) + g(z) can be found by adding the corresponding Fourier coefficients of f(z) and
g(z). (d) The Fourier coefficients of f(x) g(x) can be found by multiplying the correspond-
ing Fourier coefficients of f(z) and g(x).
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Figure 3.1. 27—periodic extension of x.

Periodic Extensions

The trigonometric constituents (3.25) of a Fourier series are all periodic functions of period
27. Therefore, if the series converges, the limiting function f(z) must also be periodic of
period 27:

flw+27) = f(z) for all xr € R.

A Fourier series can converge only to a 2m—periodic function. So it was unreasonable to
expect the Fourier series (3.37) to converge to the aperiodic function f(z) = = everywhere.
Rather, it should converge to its “periodic extension”, which we now define.

Lemma 3.4. If f(z) is any function defined for —m < x < 7, then there is a unique
2m—periodic function f, known as the 2 m—periodic extension of f, that satisfies f(x) = f(x)
forall —-m <z <.

Proof: Pictorially, the graph of the periodic extension of a function f(x) is obtained
by repeatedly copying the part of its graph between —7 and 7 to adjacent intervals of
length 27; Figure 3.1 shows a simple example. More formally, given 2 € R, there is a
unique integer m such that (2m—1)7 < x < (2m+ 1) 7. Periodicity of f leads us to define

f(z) = f(x—2mn) = f(z — 2mm). (3.40)

In particular, if —7 < 2 < 7, then m = 0, and hence f(z) = f(z) for such . The proof
that the resulting function f is 2—periodic is left as Exercise 3.2.8. Q.E.D.

Remark: The construction of the periodic extension in Lemma 3.4 uses the value f(7)

at the right endpoint and requires f(—7) = f(w) = f(x). One could, alternatively, require
f(m) = f(=m) = f(—m), which, if f(—=) # f(r), leads to a slightly different 27periodic
extension of the function. There is no a priori reason to prefer one over the other. In fact,
as we shall discover, the preferred Fourier periodic extension f(x) takes the average of the
two values:

f(m) = f(=m) =3[ f(m) + f(=m) ], (3.41)

which then fixes its values at the odd multiples of 7.
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Example 3.5. The 2n—periodic extension of f(z) = x is the “sawtooth” function
f(z) graphed in Figure 3.1. It agrees with z between — 7 and 7. Since f(7) =7, f(—7) =
—, the Fourier extension (3.41) sets f(k7) = 0 for any odd integer k. Explicitly,

~ x—2mm, Cm—-1)r<z<@m+1)w . .
where m is any integer.

T@ =1 z=(2m-1)n,

With this convention, it can be proved that the Fourier series (3.37) converges everywhere
to the 2m—periodic extension f(x). In particular,

k:v x, —T<x<m,
2 1)k+1 sinkr_ 3.42
Z 0, T = t. ( )

Even this very simple example has remarkable and nontrivial consequences. For in-

stance, if we substitute x = §7r in (3.42) and divide by 2, we obtain Gregory’s series

™ 1 1 1 1
-] — _ e 3.43
4 3 * 5 7 * 9 (343)
While this striking formula predates Fourier theory — it was, in fact, first discovered by
Leibniz — a direct proof is not easy.

Remark: While numerologically fascinating, Gregory’s series is of scant practical use
for actually computing m, since its rate of convergence is painfully slow. The reader may
wish to try adding up terms to see how far out one needs to go to accurately compute
even the first two decimal digits of 7. Round-off errors will eventually interfere with any
attempt to numerically compute the summation with any reasonable degree of accuracy.

Exercises

3.2.6. Graph the 27m—periodic extension of each of the following functions. Which extensions
are continuous? Differentiable?  (a) 22, (b) (22 —72)2, (c) %, (d) e L]
1

(e) sinhz, (f) 14+cos?z; (g) SiD%TMC, (h) iy (1) L 42"
3.2.7. Sketch a graph of the 27m—periodic extension of each of the functions in Exercise 3.2.2.
$ 3.2.8. Complete the proof of Lemma 3.4 by showing that }”(a:) is 27 periodic.
{ 3.2.9. Suppose f(z) is periodic with period ¢ and integrable. Prove that, for any a,
a+/t 74 4 4
(@ [ f@)de= [ f@)dz, (b) [ fla+a)de= [ f()dr.

© 3.2.10. Let f(z) be a sufficiently nice 27m—periodic function. (a) Prove that f'(z) is 27—periodic.
T
(b) Show that if f(z) has mean zero, so / f(x)dz = 0, then g(z) = /0 fly)dy is 2m—

periodic; (¢) Does the result in part (b) rely on the fact that the lower limit in the integral
1 ™

for g(x) is 07 (d) More generally, prove that if f(z) has mean m = 9 / f(x)dx, then
mwJ=m

the function g(z / fly)dy — max is 2m—periodic.
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Figure 3.2. Piecewise continuous function.

$ 3.2.11. Given a function f(x) defined for 0 < x < ¢, prove that there is a unique periodic
function of period ¢ that agrees with f on the interval [0,£). If £ = 27, is this the same
periodic extension as we constructed in the text? Explain your answer. Try the case f(z) =
x as an illustrative example.

3.2.12. Use the method in Exercise 3.2.11 to construct and graph the 1-periodic extensions of
1, |z|< %71',

the following functions: ~ (a) 2, (b) e~ %, (c) cosmz, (d) { 2
0, otherwise.

& 3.2.13.(a) How many terms in Gregory’s series (3.43) are required to compute the first two
decimal digits of 7?7 (b) The first 10 decimal digits? Hint: Use the fact that it is an al-
ternating series. (¢) For part (a), try summing up the required number of terms on your
computer, and check whether you obtain an accurate result.

Piecewise Continuous Functions

As we shall see, all continuously differentiable 27—periodic functions can be represented
as convergent Fourier series. More generally, we can allow functions that have simple
discontinuities.

Definition 3.6. A function f(z) is said to be piecewise continuous on an interval
[a,b] if it is defined and continuous except possibly at a finite number of points a < x; <
Ty < --- <z, < b Furthermore, at each point of discontinuity, we require that the left-
and right-hand limits

@)= lm f(o), f@i) = lm _f(z), (3.44)

exist. (At the endpoints a, b, existence of only one of the limits, namely f(a™) and f(b™)
is required.) Note that we do not require that f(x) be defined at z,. Even if f(z,) is
defined, it does not necessarily equal either the left- or the right-hand limit.

A representative graph of a piecewise continuous function appears in Figure 3.2. The
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Figure 3.3.  The unit step function.

points x, are known as jump discontinuities of f(x), and the difference

Bp=faf) = flay) = lim_f(z) = lim_f(x) (3.45)
T — xk T —r ﬁk

between the left- and right-hand limits is the magnitude of the jump. Note the value of
the function at the discontinuity, namely f(z,) — which may not even be defined — plays
no role in the specification of the jump magnitude. The jump magnitude is positive if
the function jumps up (when moving from left to right) at x, and negative if it jumps
down. If the jump magnitude vanishes, 3, = 0, the left- and right-hand limits agree,
and the discontinuity is removable, since redefining f(z,) = f(z{) = f(z; ) makes f(z)
continuous at x = x,. Since removable discontinuities have no effect in either the theory
or applications, they can always be removed without penalty.

The simplest example of a piecewise continuous function is the unit step function
1, z >0,
o(x) = 3.46
@={y . (3.40)

graphed in Figure 3.3. It has a single jump discontinuity at x = 0 of magnitude 1:
o0t —o(07)=1-0=1,

and is continuous — indeed, locally constant — everywhere else. If we translate and scale
the step function, we obtain a function

B, x>E,
h(zx)=pPo(z—¢) = 3.47
@=poa-0={ " 7% (3.47
with a single jump discontinuity of magnitude 8 at the point x = &.
If f(x) is any piecewise continuous function on [—m, 7], then its Fourier coefficients
are well defined — the integrals (3.35) exist and are finite. Continuity, however, is not
enough to ensure convergence of the associated Fourier series.

Definition 3.7. A function f(z) is called piecewise C! on an interval [a,b] if it is
defined, continuous, and continuously differentiable except at a finite number of points
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Figure 3.4. Piecewise C! function.

a<m <xy <<z, <b At each exceptional point, the left- and right-hand limits' of
both the function and its derivative exist:

flay) = lm f(), flaf) = lim f(@),
['(ag) = lim f'(z). Jaf) = tim f'(2).

See Figure 3.4 for a representative graph. For a piecewise C! function, an exceptional
point z,, is either
e a jump discontinuity where the left- and right-hand derivatives exist, or
e a corner, meaning a point where f is continuous, so f(z; ) = f(z; ), but has different
left- and right-hand derivatives: f'(x, ) # f'(z}}).
Thus, at each point, including jump discontinuities, the graph of f(x) has well-defined
right and left tangent lines. For example, the function f(z) = |z | is piecewise C!, since it
is continuous everywhere and has a corner at x = 0, with f/(07) = +1, f/(07) = — 1.

There is an analogous definition of piecewise C™ functions. One requires that the
function have n continuous derivatives, except at a finite number of points. Moreover,
at every point, the function must have well defined left- and right-hand limits of all its
derivatives up to order n.

Finally, a function f(z) defined for all z € R is piecewise continuous (or C! or C™)
provided it is piecewise continuous (or C! or C™) on any bounded interval. Thus, a piecewise
continuous function on R can have an infinite number of discontinuities, but they are not
allowed to accumulate at any finite limit point. In particular, a 2m—periodic function f(x)
is piecewise continuous if and only if it is piecewise continuous on the interval [—m, 7].

Exercises

3.2.14. Find the discontinuities and the jump magnitudes for the following piecewise continu-
ous functions:

t As before, at the endpoints we require only the appropriate one-sided limits, namely f (a™),
f'(a®), and f(b7), f'(b7), to exist.
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(a) 20(x) + o(z+1) — 30(x — 1), (b) sign(z? — 2z), (¢) o(z? — 22), (d) |2% -2z,
(e) Iz —2], (f) o(sinz), (g) sign(sinz), (h) |[sinz|, (i) "™, (j) o(e”), (k) el*=2L.

3.2.15. Graph the following piecewise continuous functions. List all discontinuities and jump

magnitudes. sin 2
(&) €, 1< |z <2, (b | e O<z<im, ©) , 0<]z|<2m,
0, otherwise, 0, otherwise, L z =0,

0, otherwise,
1
-1<z<0 — > 1
<1 z, ’ 5 |ZL‘| = 4
@ [ % 1Bsh g s o<a<n () z
22, |z >1 2
’ ’ 0, otherwise, 14227 lz| <1

3.2.16. Are the functions in Exercises 3.2.14 and 3.2.15 piecewise cl? 1t so, list all corners.

(z—&"
3.2.17. Prove that the n® order ramp function p,(z — &) = { ! , T>E g piecewise

C* for any k > 0.

n
0, T <€,

3.2.18. Is /3 piecewise continuous? piecewise C1? piecewise C2?

3.2.19. Answer Exercise 3.2.18 for
1 —1/|z| 3.1 3 3/2
b d 5 f .
@ izl 0) L, @ e ML (@) s, (@) 2, () |l

3.2.20.(a) Give an example of a function that is continuous but not piecewise C!.
(b) Give an example that is piecewise C! but not piecewise C2.
3.2.21.(a) Prove that the sum f + g of two piecewise continuous functions is piecewise contin-

uous. (b) Where are the jump discontinuities of f + g? What are the jump magnitudes?
(c) Check your result by summing the functions in parts (a) and (b) of Exercise 3.2.14.

3.2.22. Give an example of two piecewise continuous (but not continuous) functions f, g whose
sum f + g is continuous. Can you characterize all such pairs of functions?

{ 3.2.23.(a) Prove that if f(z) is piecewise continuous on [—, 7], then its 27w —periodic extension
is piecewise continuous on all of R. Where are its jump discontinuities and what are their
magnitudes? (b) Similarly, prove that if f(x) is piecewise C!, then its periodic extension is
piecewise C!. Where are the corners?

3.2.24. True or false: (a) If f(z) is a piecewise continuous function, its absolute value | f(z)| is
piecewise continuous. If true, what are the jumps and their magnitudes?
(b) If f(z) is piecewise C1, then | f(z) | is piecewise C'. If true, what are the corners?

The Convergence Theorem

We are now able to state the fundamental convergence theorem for Fourier series. But we
will postpone a discussion of its proof until the end of Section 3.5.

Theorem 3.8. If f(x) is a 2m—periodic, piecewise C* function, then, at any = € R,
its Fourier series converges to

f(z), if f is continuous at =,

S[ )+ fz7) ], if x is a jump discontinuity.
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Figure 3.5.  Splitting the difference.

Thus, the Fourier series converges, as expected, to f(x) at all points of continuity.
At discontinuities, it apparently can’t decide whether to converge to the left- or right-
hand limit, and so ends up “splitting the difference” by converging to their average; see
Figure 3.5. If we redefine f(x) at its jump discontinuities to have the average limiting
value, so

fl@) =5 [fla*) + fla)] (3.48)

— an equation that automatically holds at all points of continuity — then Theorem 3.8

would say that the Fourier series converges to the 27 periodic piecewise C! function f(x)
everywhere.

Example 3.9. Let o(x) denote the unit step function (3.46). Its Fourier coefficients
are easily computed:

1 (" 1 ("
ay = / o(x)dx = / dr =1,
T ) T Jo

1 (7 1 (7
a, = / o(x)coskxdr = / coskxdxr =0,
T Jo

™ —T
1 [" 1 [ , k=204+1 odd,
b, = / o(x)sinkzdr = /sink‘:vd:r: km tho
™ J_x ™ Jo
0, k = 21 even.

Therefore, the Fourier series for the step function is

1

2 (. sin3z sinbx sin7x
a(m)~2+ﬂ_ sinx + + + + - .

4
3 5 7 (3.49)

According to Theorem 3.8, the Fourier series will converge to its 2 m—periodic extension,

0, 2m—-1)rm<xz<2mm,
olx) =< 1, 2mr <z < (2m+ 1), where m is any integer,
! T =mm,

2

which is plotted in Figure 3.6. Observe that, in accordance with Theorem 3.8, 7(x) takes

the midpoint value é at the jump discontinuities 0, £+, +27,....
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Figure 3.6. 2m—periodic step function.
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Figure 3.7.  Gibbs phenomenon.

It is instructive to investigate the convergence of this particular Fourier series in some
detail. Figure 3.7 displays a graph of the first few partial sums, taking, respectively,
n = 4,10, and 20 terms. The reader will notice that away from the discontinuities, the
series indeed appears to be converging, albeit slowly. However, near the jumps there is a
consistent overshoot of about 9% of the jump magnitude. The region where the overshoot
occurs becomes narrower and narrower as the number of terms increases, but the actual
amount of overshoot persists no matter how many terms are summed up. This was first
noted by the American physicist Josiah Gibbs, and is now known as the Gibbs phenomenon
in his honor. The Gibbs overshoot is a manifestation of the subtle nonuniform convergence
of the Fourier series.

Exercises

sinz, O<z<m,
0, —nm <z <O0.

Fourier series. (¢) Graph the first five Fourier sums and compare with the function.
(d) Discuss convergence of the Fourier series.

3.2.26. Answer Exercise 3.2.25 for the cosine half-wave f(z) = {

3.2.25.(a) Sketch the 27—periodic half-wave f(x) = { (b) Find its

cosz, O0<z<m,
0, —nm<z<0.

3.2.27.(a) Find the Fourier series for f(z) = €”. (b) For which values of z does the Fourier
series converge? Is the convergence uniform? (¢) Graph the function it converges to.

& 3.2.28.(a) Use a graphing package to investigate the Gibbs phenomenon for the Fourier series
(3.37) of the function x. Determine the amount of overshoot of the partial sums at the dis-
continuities. (b) How many terms do you need to approximate the function to within two
decimal places at © = 2.07 At x = 3.07



3.2 Fourier Series 85

3.2.29. Use the Fourier series (3.49) for the step function to rederive Gregory’s series (3.43).
< 3.2.30. Suppose ay,, b;, are the Fourier coefficients of the function f(x). (a) To which function
o0
does the Fourier series a20 + > [ajcos2kx + by sin2kx | converge? Hint: The answer is

k=1
not f(2x). (b) Test your answer with the Fourier series (3.37) for f(z) = =.

FEven and Odd Functions

We already noted that the Fourier cosine coefficients of the function f(z) = x are all 0.
This is not an accident, but, rather, a consequence of the fact that x is an odd function.
Recall first the basic definition:

Definition 3.10. A function is called even if f(—z) = f(x). A function is called odd
if f(—x) = —f(2).

For example, the functions 1, cos kz, and z? are all even, whereas x, sin k2, and sign x
are odd. Note that an odd function necessarily has f(0) = 0. We require three elementary
lemmas, whose proofs are left to the reader.

Lemma 3.11. The sum, f(z) + g(x), of two even functions is even; the sum of two
odd functions is odd.

Remark: FEwvery function can be represented as the sum of an even and an odd function;
see Exercise 3.2.32.

Lemma 3.12. The product f(z)g(x) of two even functions, or of two odd functions,
is an even function. The product of an even and an odd function is odd.

Lemma 3.13. If f(x) is odd and integrable on the symmetric interval [—a,a], then
f(z)dx = 0. If f(z) is even and integrable, then flx)de =2 / f(x)dx.
—a —a 0
The next result is an immediate consequence of applying Lemmas 3.12 and 3.13 to the
Fourier integrals (3.35).

Proposition 3.14. If f(z) is even, then its Fourier sine coefficients all vanish, b, = 0,
and so f(z) can be represented by a Fourier cosine series

a, =
fla) ~ )+ > aycoska, (3.50)
k=1
where 5 7
a, = / f(x)coskxdr, k=0,1,2,3,.... (3.51)
T Jo

If f(z) is odd, then its Fourier cosine coefficients vanish, a;, = 0, and so f(x) can be
represented by a Fourier sine series

flx) ~ Z b,sinkx, (3.52)
k=1
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Figure 3.8. 27m—periodic extension of |z |.

where
2 s
b, = / f(z)sinkzde, k=1,2,3,.... (3.53)
T Jo
Conversely, a convergent Fourier cosine series always represents an even function, while a
convergent sine series always represents an odd function.

Example 3.15. The absolute value f(x) = |z | is an even function, and hence has a
Fourier cosine series. The coefficients are

2 s
ag = / xdr =, (3.54)
™ Jo
- ; k )
2 [T 2 [ xsinkx coskx 0 07 k even
a;, = xcoskxdr = + ., = 4
T Jo T k k 2=0 — , k odd.
k2r
Therefore
T 4 cos3x cosbzx cosTx
|z | ~ 5 " m (cosx + 9 o5 + 19 + ) (3.55)

According to Theorem 3.8, this Fourier cosine series converges to the 2 m—periodic extension
of |z |, the “sawtooth function” graphed in Figure 3.8.
In particular, if we substitute x = 0, we obtain another interesting series:

2 1 1 1 > 1
1 R . 3.56
8 +9+25+49+ ;(2j+1)2 (3.56)

It converges faster than Gregory’s series (3.43), and, while far from optimal in this regard,
can be used to compute reasonable approximations to w. One can further manipulate this
result to compute the sum of the series

=1 1 1 1 1 1 1
S = =1
;;kQ +4+9+16+25+36+49+

‘We note that
N | =1 1 1 1 1
4_; e = 2 @k2 "4 16 36 Tea T

Therefore, by (3.56),
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from which we conclude that

| 11 1 1 w2
S = =1 s = . 3.57
;l@ +4+9+16+25+ 6 ( )
Remark: The most famous function in number theory — and the source of the most
outstanding problem in mathematics, the Riemann hypothesis — is the Riemann zeta
function

((s)=>_ kl . (3.58)
k=1

Formula (3.57) shows that ¢(2) = ; 72, In fact, the value of the zeta function at any even
positive integer s = 2 is a rational polynomial in 7, [9]. Because of its importance to the
study of prime numbers, locating all the complex zeros of the zeta function will earn you

$1,000,000 — see http://www.claymath.org for details.

Any function f(z) defined on [0, 7] has a unique even extension to [—m, 7], obtained
by setting f(—x) = f(x) for —7m < 2 < 0, and also a unique odd extension, where now
f(=z) = — f(z) and f(0) = 0. These in turn can be periodically extended to the entire real
line. The Fourier cosine series of f(x) is defined by the formulas (3.50-51), and represents
the even, 27m—periodic extension. Similarly, the formulas (3.52-53) define the Fourier sine
series of f(x), representing its odd, 27—periodic extension.

Example 3.16. Suppose f(z) = sinz. Its Fourier cosine series has coefficients

7%—7 kZO,
2 ™
a;, = / sinzcoskxdr =< 0, k odd,
™ 0 4
—(k2_1)77, 0 < k even.

The resulting cosine series represents the even, 2m—periodic extension of sin x, namely

. 2 4 X cos2jx
[sinz] ~ T ; 452 -1"

On the other hand, f(z) = sinz is already odd, and so its Fourier sine series coincides with
its ordinary Fourier series, namely sinx, all the other Fourier sine coefficients being zero;
in other words, b; = 1, while b, =0 for £ > 1.

Exercises

3.2.31. Are the following functions even, odd, or neither?

(a) 2%, (b) &%, (c) sinha, (d) sinmz, (¢) », (f) .

-1
- L2 (g) tan™ " x.

{ 3.2.32. Prove that (a) the sum of two even functions is even; (b) the sum of two odd functions
is odd; (¢) every function is the sum of an even and an odd function.
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$ 3.2.33. Prove (a) Lemma 3.12; (b) Lemma 3.13.
3.2.34. If f(z) is odd, is f'(x) (i) even? (i) odd? (iii) neither? (iv) could be either?
3.2.35. If f/(x) is even, is f(z) (i) even? (ii) odd? (iii) neither? (iv) could be either? How
do you reconcile your answer with Exercise 3.2.347

3.2.36. Answer Exercise 3.2.34 for f”(x).

3.2.37. True or false: (a) If f(z) is odd, its 27—periodic extension is odd.
(b) If the 2m—periodic extension of f(x) is odd, then f(x) is odd.

3.2.38. Let f(z) denote the odd, 27 periodic Fourier extension of a function f(z) defined on
[0,7]. Explain why f(k7) = 0 for any integer k.

3.2.39. Construct and graph the even and odd 27—periodic extensions of the function f(z) =
1 — z. What are their Fourier series? Discuss convergence of each.

3.2.40. Find the Fourier series and discuss convergence for:  (a) the box function

1, <L, _
b(z) = [zl <o (b) the hat function h(z) = { L—fz], |z[<1,
0, ;m<lz|<m, 0, 1<|z] < 7.
3.2.41. Find the Fourier sine and cosine series of the following functions. Then graph the func-
tion to which the series converges. (a) 1, (b) cosz, (c) sin®z, (d) z(r — z).

3.2.42. Find the Fourier series of the hyperbolic functions coshmx and sinh mzx.

3.2.43.(a) Find the Fourier cosine series of the function |sinz]|.
o0
(b) Use the series to evaluate the sums > (4k% —1)"" and Z (~DF k2 — 17t
k=1
3.2.44. True or false: The sum of the Fourier cosine series and the Fourier sine series of the

function f(z) is the Fourier series for f(x). If false, what function is represented by the
combined Fourier series?

3.2.45.(a) Show that if a function is periodic of period m, then its Fourier series contains only
even terms, i.e., a = b, = 0 whenever k =235 + 1 is odd. (b) What if the period is %71'?

3.2.46. Under what conditions on f(z) does its Fourier sine series contain only even terms, i.e.,
its Fourier sine coefficients b, = 0 whenever £ is odd?

& 3.2.47. Graph the partial sums s3(x), s5(x), s1o(z) of the Fourier series (3.55). Do you notice a
Gibbs phenomenon? If so, what is the amount of overshoot?

3.2.48. Explain why, in the case of the step function o(z), all its Fourier cosine coefficients van-
ish, a;, = 0, except for a5 = 1.

& 3.2.49. How many terms do you need to sum in (3.56) to correctly approximate 7 to two deci-
mal digits? To ten digits?

—1)k—1_1_1+1_1+1_1+1_ 2

=
3.2.50. Prove that > L2 4T 0 16 95 36T 49 19

k=1

Complex Fourier Series

An alternative, and often more convenient, approach to Fourier series is to use complex
exponentials instead of sines and cosines. Indeed, Fuler’s formula

—ikx

ek — coskax + isinkz, e =coskx — isinkz, (3.59)
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shows how to write the trigonometric functions

eikac e—ikaz eikaz_e—ikaz
coskx = +2 , sinkx = 91 , (3.60)

in terms of complex exponentials, and so we can easily go back and forth between the two
representations.

Like their trigonometric antecedents, complex exponentials are also endowed with an
underlying orthogonality. But here, since we are dealing with the vector space of complex-
valued functions on the interval [—m, 7], we need to use the rescaled L? Hermitian inner
product

()= [ 1@, (3.61)

in which the second function acquires a complex conjugate, as indicated by the overbar.
This is needed to ensure that the associated L2 Hermitian norm

171 = \/ o [ 1@ (3.62)

is real and positive for all nonzero complex functions: || f| > 0 when f # 0. Orthonor-
mality of the complex exponentials is proved by direct computation:

o w 1, k=1,
<61kx761lac>: 1 / el(k—l)acdl,:
27 Jx 0, k#I

ikx 12 __ 1 " ikx |2 _
|l e I = on |e |“dr = 1.

(3.63)

—T

The complex Fourier series for a (piecewise continuous) real or complex function f is
the doubly infinite series

oo
flz) ~ Z cpetf® = o qe et pe e e b e T ey et o (3.64)
k=—oc0
The orthonormality formulae (3.63) imply that the complex Fourier coefficients are ob-
tained by taking the inner products

o= (£t = [ faettean (3.65)

Pay particular attention to the minus sign appearing in the integrated exponential, which
happens because the second argument in the Hermitian inner product (3.61) requires a
complex conjugate.

It must be emphasized that the real (3.34) and complex (3.64) Fourier formulae are just
two different ways of writing the same series! Indeed, if we substitute Euler’s formula (3.59)
into (3.65) and compare the result with the real Fourier formulae (3.35), we find that the
real and complex Fourier coeflicients are related by

a, = ¢, +C_g, ¢, = t(a, —ib,),
S k=0,1,2,.... (3.66)
2

b, = i(c, —c_y), C_p =
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e™ |
e coshm—- j’ j’
L | L
T I
37 57

r
—T ™

—

Figure 3.9. 27—periodic extension of e*.

Remark: We already see one advantage of the complex version. The constant function
1 = €% no longer plays an anomalous role — the annoying factor of ; in the real Fourier
series (3.34) has mysteriously disappeared!

Example 3.17. For the unit step function o(x) considered in Example 3.9, the
complex Fourier coefficients are

1 _
27 k - 07
o1 /7T o(z) e F dy — 1 /ﬂe—ikxdl,: 0, 0 # k even,
Fom ) 27 Jo 1
k odd.
ikn’ ©
Therefore, the step function has the complex Fourier series
1 i > e(2l+1) iz

ol@) ~ = l;@ i1 (3.67)

You should convince yourself that this is exactly the same series as the real Fourier series
(3.49). We are merely rewriting it using complex exponentials instead of real sines and
cosines.

Example 3.18. Let us find the Fourier series for the exponential function e®*. It is
much easier to evaluate the integrals for the complex Fourier coefficients, and so

™

. 1 ™ . (a—ik)zx
ck:<eam’elkaz>_ / e(a—lk)mdl_: €

2 ) 2m(a—1ik) |,_ .
B ela=ik)m _ o—(a—ik)m _ (<)t e’™ —e " (=1)F(a+ ik)sinham
B 27 (a— 1k) B 27m(a— ik) m(a? + k?)
Therefore, the desired Fourier series is
- sinhar <= (—=D*(a+ik) .,
D S (3.68)

k=—0c0
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As an exercise, the reader should try writing this as a real Fourier series, either by breaking
up the complex series into its real and imaginary parts, or by direct evaluation of the real
coefficients via their integral formulae (3.35). According to Theorem 3.8 (which is equally
valid for complex Fourier series), the Fourier series converges to the 2 m—periodic extension
of the exponential function, as graphed in Figure 3.9. In particular, its values at odd

multiples of 7 is the average of the limiting values there, namely cosham = ;(e‘” +e 7).

Exercises

3.2.51. Find the complex Fourier series of the following functions: (a) sinz, (b) sin®z,
z, x>0,

(¢) =, (d) |x]|, (e) |sinz|, (f) signz, (g) the ramp function p(as)z{ 0. 2<0

3.2.52. Let —m < £ < 7. Determine the complex Fourier series for the shifted step function
o(x — &), and graph the function it converges to.

3.2.53. Let a € R. Find the real form of the Fourier series for the exponential function e®*:
(a) by breaking up the complex series (3.68) into its real and imaginary parts;
(b) by direct evaluation of the real coefficients via their integral formulae (3.35).
Make sure that your results agree!

12(1 1 1

3.2.54. Prove that cothnw = - + 1412 + 1492 + 1432 + - ->, where

0
h x —x
cothx = C?S r_c te is the hyperbolic cotangent function.
sinhx e* —e™7®
3.2.55.(a) Find the complex Fourier series for ze!®.
(b) Use your result to write down the real Fourier series for z cosz and z sin z.
n .
¢ 3.2.56. Prove that if f(z) = > ry e'F% s a complex trigonometric polynomial, with
k=m

. . . T m<k<n,
—o0o < m < n < oo, then its Fourier coefficients are c¢;, = { k> -~

0, otherwise.

3.2.57. True or false: If the complex function f(z) = g(x) + ih(z) has Fourier coefficients cy,,
then g(xz) = Re f(z) and h(z) = Im f(z) have, respectively, complex Fourier coefficients
Rec, and Imcy,.

$ 3.2.58. Let f(x) be 2m—periodic. Explain how to construct the complex Fourier series for
f(x — a) from that of f(z).

& 3.2.59.(a) Show that if ¢;, are the complex Fourier coefficients for f(x), then the Fourier coef-
ficients of f(z) = f(z)e'® are ¢, = c,_q- (b) Let m be an integer. Which function has
complex Fourier coefficients ¢, = ¢, ,,,,7 (c) If a;, b, are the Fourier coefficients of the real
function f(z), what are the Fourier coefficients of f(x)cosz and f(x)sinz?

{ 3.2.60. Can you recognize whether a function is real by looking at its complex Fourier coeffi-
cients?

{ 3.2.61. Can you characterize the complex Fourier coefficients of an even function?

an odd function?
oo

{ 3.2.62. What does it mean for a doubly infinite series ¢, to converge? Be precise!
Yy k g

k=—o00
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3.3 Differentiation and Integration

Under appropriate hypotheses, if a series of functions converges, then one will be able
to integrate or differentiate it term by term, and the resulting series should converge to
the integral or derivative of the original sum. For example, integration and differentiation
of power series is always valid within the range of convergence, and is used extensively
in the construction of series solutions of differential equations, series for integrals of non-
elementary functions, and so on. (See Section 11.3 for further details.) The convergence
of Fourier series is considerably more delicate, and so one must exercise due care when
differentiating or integrating. Nevertheless, in favorable situations, both operations lead to
valid results, and are quite useful for constructing Fourier series of more intricate functions.

Integration of Fourier Series

Integration is a smoothing operation — the integrated function is always nicer than the
original. Therefore, we should anticipate being able to integrate Fourier series without
difficulty. There is, however, one complication: the integral of a periodic function is not
necessarily periodic. The simplest example is the constant function 1, which is certainly
periodic, but its integral, namely z, is not. On the other hand, integrals of all the other
periodic sine and cosine functions appearing in the Fourier series are periodic. Thus, only
the constant term

a 1 ("
20 =5 /_7T f(z)dx (3.69)

might cause us difficulty when we try to integrate a Fourier series (3.34). Note that (3.69)
is the mean, or average, of the function f(x) over the interval [—7, 7], and so a function
has no constant term in its Fourier series, i.e., a, = 0, if and only if it has mean zero. It
is easily shown, cf. Exercise 3.2.10, that the mean-zero functions are precisely those that
remain periodic upon integration. In particular, Lemma 3.13 implies that all odd functions
automatically have mean zero, and hence have periodic integrals.

Lemma 3.19. If f(z) is 2w—periodic, then its integral g(xz) = / fly)dy is 27—
0

periodic if and only if f(z)dx =0, so that f has mean zero on the interval [— 7, m].

In view of the elementary integration formulae

/cosk’x de = smkkx , /sinkx de = — coskkm , (3.70)

termwise integration of a Fourier series without constant term is straightforward.

Theorem 3.20. If f is piecewise continuous and has mean zero on the interval
[—m, 7], then its Fourier series

flx) ~ Z [a, coskx + b, sinkx ]
k=1

can be integrated term by term, to produce the Fourier series

g(;v):/o fy)ydy ~ m + ,; [—b]:cosk:v—kakk sinkx | . (3.71)
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The constant term

1 ™
m = / g(x)dx (3.72)
is the mean of the integrated function.

s
Example 3.21. The function f(x) = x is odd, and so has mean zero: / xdr = 0.
Let us integrate its Fourier series -7

~s ‘ln .
T : k S Z,

which we found in Example 3.3. The result is the Fourier series

1 ) 71_2 o (_1)k71
2:15 ~ 6 " 2 Z 12 coskzx
k=1 (3.74)
w2 cos2x cos3z cosdx
= 6 ” 2| cosz — + - + o

4 9 16
whose constant term is the mean of the left-hand side:
1 T g2 2
2 /_ gl =g

Let us revisit the derivation of the integrated Fourier series from a slightly different
standpoint. If we were to integrate each trigonometric summand in a Fourier series (3.34)
from 0 to x, we would obtain

xT . k z 1 k
/ coskydy = SIEE ) whereas / sinkydy = | — cosiT
0 k 0 k k

The extra 1/k terms coming from the definite sine integrals did not appear explicitly in
our previous expression for the integrated Fourier series, (3.71), and so must be hidden in
the constant term m. We deduce that the mean value of the integrated function can be
computed using the Fourier sine coefficients of f via the formula

I by
27r/_ﬂg(:v)d:v—m— ,; . (3.75)

For example, integrating both sides of the Fourier series (3.73) for f(z) = z from 0 to =
produces

2 0 1 k—1
332 ~ 2 Z ( k)Q (1 —coskx).
k=1
The constant terms sum to yield the mean value of the integrated function:
1 1 1 L (—1)kt 1 (7 a2? 72
2 1 — _ - — 2 = = .
( 1 9 6" > l; k2 27r/_ﬂ2dx 6  (376)

which reproduces a formula established in Exercise 3.2.50.
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More generally, if f(z) does not have mean zero, its Fourier series contains a nonzero
constant term,
Qg

9 +Z [a,coskx + by sinkz] .

k=1

flx) ~

In this case, the result of integration will be

Q.
/ fy)dy ~ 5 x+m+z [ kcoska + ) Sln]{)LE:|, (3.77)

where m is given in (3.75). The right-hand side is not, strictly speaking, a Fourier series.
There are two ways to interpret this formula within the Fourier framework. We can write
(3.77) as the Fourier series for the difference

ag - by, ke
g(x) — o T m+z [— . coskx + i smk:v] , (3.78)

which, by Exercise 3.2.10(d), is a 2m—periodic function. Alternatively, we can replace z
by its Fourier series (3.37), and the result will be the Fourier series for the 27—periodic

extension of the integral g(z / fly)dy.

Differentiation of Fourier Series

Differentiation has the opposite effect — it makes a function worse. Therefore, to justify
taking the derivative of a Fourier series, we need to know that the derived function remains
reasonably nice. Since we need the derivative f’(z) to be piecewise C! for the Convergence
Theorem 3.8 to be applicable, we require that f(z) itself be continuous and piecewise C2.

Theorem 3.22. If f(x) has a piecewise C? and continuous 27—periodic extension,
then its Fourier series can be differentiated term by term, to produce the Fourier series for
its derivative

"(z) ~ Z [kbycoskx — kaysinkz | = Z ke, etk (3.79)
k=1

k=—0c0

Example 3.23. The derivative (6.31) of the absolute value function f(z) = | x| is
the sign function:
d +1, x>0,
= si = 3.80
dz @] =signa { -1, x < 0. ( )

Therefore, if we differentiate its Fourier series (3.55), we obtain the Fourier series

(3.81)

sin3x sinbx n sin7x n
3 5 7

4
signz ~ (sinx +
0

Note that signz = o(x) —o(—x) is the difference of two step functions. Indeed, subtracting
the step function Fourier series (3.49) at = from the same series at —x reproduces (3.81).
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Exercises

3.3.1. Starting with the Fourier series (3.49) for the step function o(z), use integration to:
xz, x>0,

(a) Find the Fourier series for the ramp function p(x) = { 0, x<0.

1,2
(b) Then, find the Fourier series for the second-order ramp function p,(z) = { gas X i 8’
, x < 0.

3.3.2. Find the Fourier series for the function f(z) = 23, If you differentiate your series, do you
recover the Fourier series for f’(z) = 3z2? If not, explain why not.

3.3.3. Answer Exercise 3.3.2 when f(z) = z*.
3.3.4. Use Theorem 3.20 to construct the Fourier series for (a) 3, (b) a*.

3.3.5. Write down the identities obtained by substituting x = 0, %7‘(, and zl,)w in the Fourier
series (3.74).

& 3.3.6. Suppose f(x) is a 2m—periodic function with complex Fourier coefficients ¢, and g(x)
is a 2m—periodic function with complex Fourier coefficients d;.. (a) Find the Fourier coeffi-
™
cients e;, of their periodic convolution f(x) * g(z) = / flxz—y)g(y)dy.
—T

(b) Find the complex Fourier series for the periodic convolution of cos3x and sin2x.
(c) Answer part (b) for the functions = and sin 2z.

{ 3.3.7. Suppose f is piecewise continuous on [—m,w]. Prove that the mean of the integrated

function g(z) = /O.m f(y) dy equals ; /_Tr (signm — :_ ) f(x)dx.

3.3.8. Suppose the 27—periodic extension of f(x) is continuous and piecewise Cl. Prove di-
rectly from the formulas (3.35) that the Fourier coefficients of its derivative f(z) = f'(x)
are, respectively, a,, = kb, and b, = —kay,, where a,b;, are the Fourier coefficients of f(z).

¢ 3.3.9. Explain how to integrate a complex Fourier series (3.64). Under what conditions is your

formula valid? )

© 3.3.10. The initial value problem ((iitg +u=f(t), u(0)=0, (5; (0) = 0, describes the forced

motion of an initially motionless unit mass attached to a unit spring.

(a) Solve the initial value problem when f(t) = coskt and f(t) =sinkt for k =0,1,....

(b) Assuming that the forcing function f(t) is 27w—periodic, write out its Fourier series, and
then use your result from part (b) to write out a series for the solution wu(t).

(¢) Under what conditions is the result a convergent Fourier series, and hence the solution
u(t) remains 27—periodic?

(d) Explain why f(¢) induces a resonance of the mass-spring system if and only if its Fourier
coefficients of order 1 are not both zero: a% + b% # 0.

3.4 Change of Scale

So far, we have dealt only with Fourier series on the standard interval of length 27. We
chose [—, 7] for convenience, but all of the results and formulas are easily adapted to any
other interval of the same length, e.g., [0,27]. However, since physical objects like bars
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and strings do not all come in this particular length, we need to understand how to adapt
the formulas to more general intervals.

Any symmetric interval [— £, ¢ ] of length 2/ can be rescaled (stretched) to the standard
interval [—, ] through the linear change of variables

T = fr y, sothat —7<y<wm whenever —/(<uz</. (3.82)

Given a function f(z) defined on [—/,¢], the rescaled function F(y) = f (ﬁ y) lives on
[—m,7]. Let

F(y) ~ (;0 + Z [a, cosky + by, sinky|
k=1

be the standard Fourier series for F'(y), so that

1 (7 1 (7
a, = / F(y) coskydy, b, = / F(y)sinkydy. (3.83)

™ ™

—T —T

Then, reverting to the unscaled variable x, we deduce that

a > kmx . knx
f(z) ~ 20 + ; {akcos ’ + b, sin ’ ] (3.84)

is the Fourier series of f(x) on the interval [—¢,¢]. The Fourier coefficients a, b, can,
in fact, be computed directly without appealing to the rescaling. Indeed, replacing the
integration variable in (3.83) by y = w2 /¢, and noting that dy = (7 /) dx, we deduce the
rescaled formulae

¢
= 2/@ f(z) cos k:g:v dz, / f(z Sln dz, (3.85)

for the Fourier coefficients of f(x) on the interval [—£,¢].

All of the convergence results, integration and dlfferentlatlon formulae, etc., that are
valid for the interval [—m, 7] carry over, essentially unchanged, to Fourier series on non-
standard intervals. In particular, adapting our basic convergence Theorem 3.8, we conclude
that if f(z) is piecewise C!, then its rescaled Fourier series (3.84) converges to its 2/ pe-

riodic extension f(z), subject to the proviso that f(x) takes on the midpoint values at all
jump discontinuities.

Example 3.24. Let us compute the Fourier series for the function f(xz) = = on the
interval —1 <z < 1. Since f is odd, only the sine coefficients will be nonzero. We have

1 : 1 k41
. xcoskmxr sinkmx 2(-1)
b, = krxdr = | — = .
L /1LESIII T dr { . + (k)2 L_l .
The resulting Fourier series is

2 (. sin27wx sin3mwx
xr ~ sinmTx — + e
T 2 3

The series converges to the 2—periodic extension of the function z, namely

~ T —2m, 2m—-—1<zxz<2m+1,
oy = {

which is plotted in Figure 3.10.

where m € Z is an arbitrary integer,
0, T =m,



3.4 Change of Scale 97

Figure 3.10. 2-periodic e3xtension of x.

We can similarly reformulate complex Fourier series on the nonstandard interval
[—¢,¢]. Using (3.82) to rescale the variables in (3.64), we obtain

) 1 ¢ )
~ ikmax/l — —ikwxz/l
fx) E € ) where Ty /_g fz)e dzx. (3.86)

k=—00

Again, this is merely an alternative way of writing the real Fourier series (3.84).

When dealing with a more general interval [a, b], there are two possible options. The
first is to take a function f(z) defined for a < x < b and periodically extend it to a function
f(z) that agrees with f(x) on [a, b] and has period b—a. One can then compute the Fourier
series (3.84) for its periodic extension f(z) on the symmetric interval [—¢,¢] of width
2/ = b — a; the resulting Fourier series will (under the appropriate hypotheses) converge
to f(x) and hence agree with f(x) on the original interval. An alternative approach is to
translate the interval by an amount é(a +b) so as to make it symmetric around the origin;
this is accomplished by the change of variables T = x — é(a + ), followed by an additional
rescaling to convert the interval into [— 7, w]. The two methods are essentially equivalent,

and details are left to the reader.

Exercises

3.4.1. Let f(z) = 22 for 0 < # < 1. Find its (a) Fourier sine series; (b) Fourier cosine series.

3.4.2. Find the Fourier sine series and the Fourier cosine series of the following functions de-
fined on the interval [0, 1]; then graph the function to which the series converges:

(a) 1, (b) sinmz, (c) sin®mx, (d) z(1— ).

3.4.3. Find the Fourier series for the following functions on the indicated intervals, and graph
the function that the Fourier series converges to.

(a) |z|, —3<ax<3, (b)2®°—4, —2<z<2, (c) €, —10<z <10,
(d) sinz, —1<z<1, (e) o(x), —2<z<2.

3.4.4. For each of the functions in Exercise 3.4.3, write out the differentiated Fourier series, and
determine whether it converges to the derivative of the original function.

3.4.5. Find the Fourier series for the integral of each of the functions in Exercise 3.4.3.

< 3.4.6. Write down formulas for the Fourier series of both even and odd functions on [—¢, £].
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3.4.7. Let f(z) be a continuous function on [0, £].
(a) Under what conditions is its odd 2¢-periodic extension also continuous?
(b) Under what conditions is its odd extension also continuously differentiable?

3.4.8.(a) Write down the formulae for the Fourier series for a function f(z) defined on the in-
terval 0 < < 2. (b) Use your formula in the case f(z) = z. Is the result the same as
(3.37)? Explain, and, if different, discuss the connection between the two Fourier series.

3.4.9. Find the Fourier series for the function f(x) = x on the interval 1 < z < 2 using the two
different methods described in the last paragraph of this subsection. Are your Fourier series
the same? Explain. Graph the functions that the Fourier series converge to.

3.4.10. Answer Exercise 3.4.9 when f(z) = sinz on the interval 7 <z < 2.

3.5 Convergence of Fourier Series

The goal of this final section is to establish some of the most basic convergence results for
Fourier series. This is not a purely theoretical enterprise, since convergence considerations
impinge directly upon applications. One particularly important consequence is the connec-
tion between the degree of smoothness of a function and the decay rate of its high-order
Fourier coefficients — a result that is exploited in signal and image denoising and in the
analytic properties of solutions to partial differential equations.

This section is written at a slightly more theoretically sophisticated level than what you
have read so far. However, an appreciation of the full scope, and limitations, of Fourier
analysis requires some familiarity with the underlying theory. Moreover, the required
techniques and proofs serve as an excellent introduction to some of the most important
tools of modern mathematical analysis, and the effort you expend to assimilate this material
will be more than amply rewarded in both this book and your subsequent mathematical
studies, be they applied or pure.

Unlike power series, which converge to analytic functions on the interval of conver-
gence, and diverge elsewhere (the only tricky point being whether or not the series converges
at the endpoints), the convergence of a Fourier series is a much subtler matter, and still
not completely understood. A large part of the difficulty stems from the intricacies of
convergence in infinite-dimensional function spaces. Let us therefore begin with a brief
outline of the key issues.

We assume that you are familiar with the usual calculus definition of the limit of a

sequence of real numbers: lim a, = a*. In any finite-dimensional vector space, e.g.,
n — oo

R™, there is essentially only one way for a sequence of vectors v(?, v v e R™ to
converge, as guaranteed by any one of the following equivalent criteria:

e The vectors converge: v(™ — v* € R™ as n — .

n)

e The individual components of v(™) = (UE"), e v,(,?)) converge, so lim v;" = v} for
allj=1,...,m. nree

e The norm of the difference goes to zero: || v(® —v*|| =0 as n — oo.

The last requirement, known as convergence in norm, does not, in fact, depend on which
norm is chosen. Indeed, on a finite-dimensional vector space, all norms are essentially
equivalent, and if one norm goes to zero, so does any other norm, [89; Theorem 3.17].
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On the other hand, the analogous convergence criteria are certainly not the same in
infinite-dimensional spaces. There is, in fact, a bewildering variety of convergence mecha-
nisms in function space, including pointwise convergence, uniform convergence, convergence
in norm, weak convergence, and so on. Each plays a significant role in advanced mathe-
matical analysis, and hence all are deserving of study. Here, though, we shall cover just
the most basic aspects of convergence of the Fourier series and their applications to partial
differential equations, leaving the complete development to a more specialized text, e.g.,
[37,128].

Pointwise and Uniform Convergence

The most familiar convergence mechanism for a sequence of functions v, (x) is pointwise
convergence. This requires that the functions’ values at each individual point converge in
the usual sense:

lim v, (z)=0v,(2) for all xel, (3.87)

n— oo

where I C R denotes an interval contained in their common domain. Even more explicitly,
pointwise convergence requires that, for every e > 0 and every « € I, there exist an integer
N, depending on € and x, such that

|v,(z) —v,(x)] <e for all n > N. (3.88)

Pointwise convergence can be viewed as the function space version of the convergence of the
components of a vector. We have already stated the Fundamental Theorem 3.8 regarding
pointwise convergence of Fourier series; the proof will be deferred until the end of this
section.

On the other hand, establishing uniform convergence of a Fourier series is not so
difficult, and so we will begin there. The basic definition of uniform convergence looks very
similar to that of pointwise convergence, with a subtle, but important, difference.

Definition 3.25. A sequence of functions v,,(z) is said to converge uniformly to a
function v, (x) on a subset I C R if, for every € > 0, there exists an integer N, depending
solely on ¢, such that

|v,(z) —v,(x)| <e forall z €I andall n> N. (3.89)

Clearly, a uniformly convergent sequence of functions converges pointwise, but the
converse does not hold. The key difference — and the reason for the term “uniform
convergence” — is that the integer N depends only on ¢ and not on the point z € I.
According to (3.89), the sequence converges uniformly if and only if for every small €, the
graphs of the functions eventually lie inside a band of width 2¢ centered on the graph of
the limiting function, as in the first plot in Figure 3.11. The Gibbs phenomenon shown
in Figure 3.7 is a prototypical example of nonuniform convergence: For a given ¢ > 0, the
closer z is to the discontinuity, the larger n must be chosen so that the inequality in (3.89)
holds. Hence, there is no uniform choice of N that makes the inequality (3.89) valid for
all x and all n > N.

A key feature of uniform convergence is that it preserves continuity.

Theorem 3.26. If each v, (z) is continuous and v,,(x) — v, (z) converges uniformly,
then v, (z) is also a continuous function.
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Figure 3.11.  Uniform and nonuniform convergence of functions.

The proof is by contradiction. Intuitively, if v, () were to have a discontinuity, then, as
sketched in the second plot in Figure 3.11, a sufficiently small band around its graph would
not connect together, and this prevents the connected graph of any continuous function,
such as v,,(z), from remaining entirely within the band. A detailed discussion of these
issues, including the proofs of the basic theorems, can be found in any introductory real
analysis text, [8,96,97].

Warning: A sequence of continuous functions can converge nonuniformly to a contin-
uous function. For example, the sequence

2nx

Un(T) = | oo

converges pointwise to v, (z) = 0 (why?) but not uniformly, since

max | v, (z)| =v,(}) =1,

which implies that (3.89) cannot hold when ¢ < 1.

The convergence (pointwise, uniform, etc.) of an infinite series > 7, u,(x) is, by
definition, dictated by the convergence of its sequence of partial sums

n

v, (x) = Z uy (). (3.90)

k=1

The most useful test for uniform convergence of series of functions is known as the Weier-
strass M —test, in honor of the nineteenth century German mathematician Karl Weierstrass,
known as the “father of modern analysis”.

Theorem 3.27. Let I C R. Suppose that, for each k = 1,2,3,..., the function
uy,(x) is bounded:
|ug(z) | < my forall x€l, (3.91)

where m,, > 0 is a nonnegative constant. If the constant series

Z my, < 00 (3.92)
k=1
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converges, then the function series

D" u(z) = f(a) (3.93)
k=1

converges uniformly and absolutely' to a function f(z) for all z € I. In particular, if the
summands w,(x) are continuous, so is the sum f(x).

Warning: Failure of the M—test strongly indicates, but does not necessarily preclude,
that a pointwise convergent series does not converge uniformly.

With some care, we can manipulate uniformly convergent series just like finite sums.
Thus, if (3.93) is a uniformly convergent series, so is its term-wise product

> 9@ uy(z) = g(x) f(x) (3.94)
k=1

with any bounded function: |g(z)| < C for all z € I. We can integrate a uniformly
convergent series term by term,* and the resulting integrated series

/w (Z “k(y>> dy=3_ /x uy,(y) dy = /x fy)dy (3.95)
“ k=1 7@ a

k=1

is uniformly convergent. Differentiation is also allowed — but only when the differentiated
series converges uniformly.

Proposition 3.28. If the differentiated series Z uy.(z) = g(z) is uniformly conver-
0o k=1
gent, then Z ug(z) = f(z) is also uniformly convergent, and, moreover, f'(x) = g(x).
k=1

We are particularly interested in the convergence of a Fourier series, which, to facilitate
the exposition, we take in its complex form

fl@) ~ > etk (3.96)

k=—00

Since =z is real, ’ eike ‘ < 1, and hence the individual summands are bounded by

’ckei’”’§|ck| for all .

Applying the Weierstrass M-test, we immediately deduce the basic result on uniform
convergence of Fourier series.

oo oo
T Recall that a series 3 a, = a” is said to converge absolutely if 3 |a,, | converges.
n=1 n=1

t Assuming that the individual functions are all integrable.
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Theorem 3.29. If the Fourier coefficients ¢, of a function f(x) satisty

> el < oo, (3.97)
k=—0c0

then the Fourier series (3.96) converges uniformly to a continuous function f(x) that has
the same Fourier coefficients: ¢, = ( f,el*®) = (f eikz).

Proof: Uniform convergence and continuity of the limiting function follow from Theo-
rem 3.27. To show that the ¢, actually are the Fourier coefficients of the sum, we multiply
the Fourier series by e~ '*? and integrate term by term from —7 to 7. As in (3.94,95),
both operations are valid thanks to the uniform convergence of the series. Q.E.D.

Remark: As with the Weierstrass test, failure of condition (3.97) strongly indicates
that the Fourier series does not converge uniformly, but does not completely rule it out;
nor does it say anything about nonuniform convergence or lack thereof.

The one thing that Theorem 3.29 does not guarantee is that the original function f(x)

used to compute the Fourier coefficients ¢, is the same as the function f(x) obtained by
summing the resulting Fourier series! Indeed, this may very well not be the case. As we
know, the function that the series converges to is necessarily 2 m—periodic. Thus, at the very

least, f(xz) will be the 27 periodic extension of f(z). But even this may not suffice. Indeed,

~

two functions f(z) and f(z) that have the same values except at a finite set of points

xy,...,x,, have the same Fourier coefficients. (Why?) For example, the discontinuous
1, =0

function f(x) = ’ " has all zero Fourier coefficients, and hence its Fourier
0, otherwise,

series converges to the continuous zero function. More generally, two functions that agree
everywhere outside a set of “measure zero” will have identical Fourier coefficients. In this
way, a convergent Fourier series singles out a distinguished representative from a collection
of essentially equivalent 2 m—periodic functions.

Remark: The term “measure” refers to a rigorous generalization of the notion of the
length of an interval to more general subsets S C R. In particular, S has measure zero if
it can be covered by a collection of intervals of arbitrarily small total length. For example,
any set consisting of finitely many points, or even countably many points, e.g., the rational
numbers, has measure zero; see Exercise 3.5.19. The proper development of the notion of
measure, and the consequential Lebesgue theory of integration, is properly studied in a
course in real analysis, [96, 98].

As a consequence of Theorem 3.26, a Fourier series cannot converge uniformly when
discontinuities are present. However, it can be proved, [128], that even when the function
is not everywhere continuous, its Fourier series is uniformly convergent on any closed subset
of continuity.

Theorem 3.30. Let f(x) be 2n-periodic and piecewise C*. If f(z) is continuous on
the open interval a < x < b, then its Fourier series converges uniformly to f(z) on any
closed subinterval a + 0 <z <b—0 for 0 < § < é (b—a).

For example, the Fourier series (3.49) for the unit step function converges uniformly
if we stay away from the discontinuities — for instance, by restriction to a subinterval of
the form [0, — 8] or [—7 + &, — 4] for any 0 < § < J m. This reconfirms our observation
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that the nonuniform Gibbs behavior becomes progressively more and more localized at the
discontinuities.

Exercises

1

n,e_”>, n=123,....

3.5.1. Consider the following sequence of planar vectors v = (1 —
Prove that v(") converges to v* = (1,0) as n — oo by showing that: (a) the individual

components converge; (b) the Euclidean norms converge: || v Il — 0.

3.5.2. Which of the following sequences of vectors converge as n — oo? What is the limit?

@ (1 rer e ) O Cemminm, (@ (5750, @ (cos ks ],
(e) <£cos;, isin}L), () (e me ™ n2e™™), (g) (10571’(105271)2’(105;1)3)7
o () o (0" (=07
G (7)) (n (1) (s L -1)),

3.5.3. Which of the following sequences of functions converge pointwise for x € R as n — 00?
2
What is the limit? (a) 1 — 22, (b) e~ ™%, (¢) 677112, (d) |z —n], (e) 1+ (ml_ n)

1, z<n n? legp<c? {x, |z| <mn,
f ) ’ s n ns h
(£) { 2, z>mn, (&) { 0, otherwise, () nax 2, |z | > n.

2

1
L 0<z <y, converges pointwise, but not uni-

3.5.4. Prove that the sequence v,,(z) = { 0 hero
, otherwise,

formly, to the zero function.

3.5.5. Which of the following sequences of functions converge pointwise to the zero function for
all x € R? Which converge uniformly?

2
T 1 1
_ b) e~ mlzl —nlz| d
(@) = o, (b)e (o) we () n(l+a2)’ (e) 1+ (z—n)2’
1 1
0<|z|<n {n 0<|z|< . {x/n, lz| <1,
f) |z —n], n’ " (b 7 "
(f) Jo—nl, (g) { 0, otherwise, (h) 0, otherwise, @) /(nz), |z|>1

2
3.5.6. Does the sequence v, (x) = nxe” "* converge pointwise to the zero function for x € R?
Does it converge uniformly?

2

1 1
3.5.7. Answer Exercise 3.5.6 when (a) v, (z) =xze "7, (b) v,(z) :{ 0’ :t}fefwfsg—'_ ’

|1, n<zx<n+1/n, [ 1/n, n<z<2n,
(c) v, () = { 0, otherwise, (d) () = { 0, otherwise,
1/v/n, n<z<2n n*? =1, —1/n<z<1/n
— ) I f — ) R
(e) vn(2) { 0, otherwise, (£) va(@) { 0, otherwise.

3.5.8.(a) What is the limit of the functions v, (z) = tan 'nz as n — oo? (b) Is the conver-
gence uniform on all of R? (c¢) on the interval [—1,1]? (d) on the subset {x > 1}7

3.5.9. True or false: If p, () is a sequence of polynomials that converge pointwise to a polyno-
mial p_(z), then the convergence is uniform.



104 3 Fourier Series

3.5.10. Suppose v, (x) are continuous functions such that v,, — v, pointwise on all of R.

v
True or false: (a) v,, —v, — 0 pointwise; (b) if v, (x) # 0 for all =, then v:L — 1 pointwise.

3.5.11. Which of the following series satisfy the M—test and hence converge uniformly on the
interval (0,17 () > “F 1) 3 Smkkm L0 X L (@ @2,
k=1 k=1

k2
k=1 k=1
00 ekx o e—km o em/k_l
@ %y 00X, @y
k=1 k=1 k=1
[eS) Ik
3.5.12. Prove that the power series > converges uniformly for —1 < x < 1.
0 K1)

$ 3.5.13.(a) Prove the following result: Suppose |g(z)| < M for all z € I. If (3.93) is a uni-
formly convergent series on I, so is the term-wise product (3.94).
(b) Find a counterexample when g(z) is not uniformly bounded.

oo
¢ 3.5.14. Suppose each uy(z) is continuous, and the series > wuy(xz) = f(z) converges uniformly
k=1
on the bounded interval a < x < b. Prove that the integrated series (3.95) is uniformly

convergent.

o0
¢ 3.5.15. Prove that if > \/a% + bi < 00, then the real Fourier series (3.34) converges uniformly
k=1
to a continuous 27—periodic function.

o0 o0
3.5.16. Suppose > |a,|<ooand > |b| < co. Does the conclusion of Exercise 3.5.15 still
hold? k=1 k=1
3.5.17. Explain why you only need check the inequalities (3.91) for all sufficiently large & > 0
in order to use the Weierstrass M—test.

3.5.18. Suppose we say that a sequence of vectors v(¥) € R™ converges uniformly to v* € R™

if, for every ¢ > 0, there is an N, depending only on ¢, such that |v§k) — v} | < e, for all
k > N andalli = 1,...,m. Prove that every convergent sequence of vectors converges
uniformly.

& 3.5.19.(a) Let S = {z,29,23,... } C R be a countable set. Prove that S has measure zero by
showing that, for every € > 0, there exists a collection of open intervals I, Iy, I5,... C R,
with respective lengths £,,£,,45,..., such that S C U Ij, while the total length Zéj =ec.

(b) Explain why the set of rational numbers Q@ C R is dense but nevertheless has measure

zero.

Smoothness and Decay

The criterion (3.97), which guarantees uniform convergence of a Fourier series, requires,
at the very least, that the Fourier coefficients go to zero: ¢, — 0 as k — £oo. And they
cannot decay too slowly. For example, the individual summands of the infinite series

> | ]:'a (3.98)

0#k=— o0

go to 0 as k — oo whenever a > 0, but the series converges only when « > 1. (This is an
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immediate consequence of the standard integral convergence test, [8,97,108].) Thus, if
we can bound the Fourier coefficients by

M
lc,| < o for all k| >0, (3.99)
for some exponent v > 1 and some positive constant M > 0, then the Weierstrass M—test
will guarantee that the Fourier series converges uniformly to a continuous function.

An important consequence of the differentiation formula (3.79) for Fourier series is that
one can detect the degree of smoothness of a function by seeing how rapidly its Fourier
coefficients decay to zero. More rigorously:

Theorem 3.31. Let 0 < n € Z. If the Fourier coefficients of f(x) satisfy

[oe]

S TE[M el < oo (3.100)
k=—o0
then the Fourier series (3.64) converges uniformly to an n—times continuously differentiable
function f(;v) € C", which is the 2w—periodic extension of f(x). Furthermore, for any 0 <
m < n, the m—times differentiated Fourier series converges uniformly to the corresponding
derivative f(™)(z).

Proof: Iterating (3.79), the Fourier series for the ntt derivative of a function is

[ee]

F°) ~ Y iR g etR (3.101)

k=—o00

If (3.100) holds, the Weierstrass M -test implies the uniform convergence of the differenti-
ated series (3.101) to a continuous 2 7—periodic function. Proposition 3.28 guarantees that
the limit is the nt® derivative of the original Fourier series. Q.E.D.

This result enables us to quantify the rule of thumb that, the smaller the high-
frequency Fourier coefficients, the smoother the function.

Corollary 3.32. If the Fourier coefficients satisty (3.99) for some a > n+1, then the
Fourier series converges uniformly to an n—times continuously differentiable 2 m—periodic
function.

If the Fourier coefficients go to zero faster than any power of k, e.g., exponentially
fast, then the function is infinitely differentiable. Analyticity is more delicate, and we refer
the reader to [128] for details.

Example 3.33. The 27—periodic extension of the function || is continuous with
piecewise continuous first derivative. Its Fourier coefficients (3.54) satisfy the estimate
(3.99) for av = 2, which is not quite fast enough to ensure a continuous second derivative.
On the other hand, the Fourier coefficients (3.36) of the step function o(x) tend to zero only
as 1/| k|, so a = 1, reflecting the fact that its periodic extension is piecewise continuous,
but not continuous.
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Exercises

0o .
3.5.20.(a) Prove that the complex Fourier series f(z) = > k12 ¢'F? converges uniformly on
k=1
the interval [— 7, w]. (b) Is the sum f(z) continuous? Why or why not?
(c) Is f(x) continuously differentiable? Why or why not?

3.5.21. First, without explicitly evaluating them, how fast do you expect the Fourier coeffi-
cients of the following functions to go to zero as k — oo? Then prove your claim by eval-
uating the coefficients.

(a) e — =, (b) |z|, (c) 2, (d) z*—2x%2% (e) sin’xz, (f) |sinz]|.

3.5.22. Using the criteria of Theorem 3.31, determine how many continuous derivatives the
functions represented by the following Fourier series have:

OISR D SE NS B S R I S
a b) b) C e b b
e LK he oo K2R k= —oo p=o k+1
k£0
0o ikz 0o X
(e) > c o (f) >0 (1—cos 12 etk
ke oo K] k=1 k

& 3.5.23. Discuss convergence of each of the following Fourier series. How smooth is the sum?
Graph the partial sums to obtain a reasonable approximation to the graph of the summed
series. How many summands are needed to obtain accuracy in the second decimal digit over
the entire interval? Point out discontinuities, corners, and other features that you observe.

Xk X coskx X sinkx X sinkx
(a) kgo € COS]CI', (b) Z k+1 ’ (C) kgl k3/2 ) (d) kgl k3+k :

3.5.24. Prove that if |ay |, | b, | < M k™ for some M > 0 and o > n + 1, then the real Fourier
series (3.34) converges uniformly to an n—times continuously differentiable 2 7—periodic
function f € C".

3.5.25. Give a simple explanation of why, if the Fourier coefficients a;, = b, = 0 for all suffi-
ciently large k > 0, then the Fourier series converges to an analytic function.

Hilbert Space

In order to make further progress, we must take a little detour. The proper setting for
the rigorous theory of Fourier series turns out to be the most important function space in
modern analysis and modern physics, known as Hilbert space in honor of the great late-
nineteenth- /early-twentieth-century German mathematician David Hilbert. The precise
definition of this infinite-dimensional inner product space is somewhat technical, but a
rough version goes as follows:

Definition 3.34. A complex-valued function f(z) is called square-integrable on the
interval [—m, 7] if it has finite L? norm:

1712 = o [ 15 Pds < s (3.102

—T

The Hilbert space 1L?> = L?[—m, ] is the vector space consisting of all complex-valued
square-integrable functions.
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The triangle inequality
[f+gll < IfI+1gl

implies that if f,g € L%, so || f|,]lg|l < oo, then || f+g| < oo, and so f + g € L%
Moreover, for any complex constant c,

e fll=Telll 1,

and so ¢ f € L? also. Thus, as claimed, Hilbert space is a complex vector space. The
Cauchy—-Schwarz inequality

[CFg) I <M fI gl
implies that the L2 Hermitian inner product
1 ™
= [ 10w (3.109)

—T

of two square-integrable functions is well defined and finite. In particular, the Fourier
coefficients of a function f € L? are specified by its inner products

= (s = ) [ pwe

with the complex exponentials (which, by (3.63), are in L?), and hence are all well defined
and finite.

There are some interesting analytic subtleties that arise when one tries to prescribe
precisely which functions are in the Hilbert space. Every piecewise continuous function
belongs to L. But some functions with singularities are also members. For example, the
power function |z |~ belongs to L? for any a < }, but not if v > J.

Analysis relies on limiting procedures, and it is essential that Hilbert space be “com-
plete” in the sense that appropriately convergent’ sequences of functions have a limit. The
completeness requirement is not elementary, and relies on the development of the more
sophisticated Lebesgue theory of integration, which was formalized in the early part of
the twentieth century by the French mathematician Henri Lebesgue. Any function which
is square-integrable in the Lebesgue sense is admitted into L2. This includes such non-

. . . . 1 .
piecewise-continuous functions as sin " and 271/, as well as the strange function

r(z) =

{ 1 if z is a rational number, (3.104)

0 if x is irrational.

Thus, while well behaved in some respects, square-integrable functions can be quite wild
in others.

Remark: The completeness of Hilbert space can be viewed as the infinite-dimensional
analogue of the completeness of the real line R, meaning that every convergent Cauchy
sequence of real numbers has a limit in R. On the other hand, the rational numbers Q are
not complete — since a convergent sequence of rational numbers may well have an irrational
limit — but form a dense subset of R, because every real number can be arbitrarily closely

t The precise technical requirement is that every Cauchy sequence of functions v, € L2
converge to a function v, € L2; see [37,96, 98] and also Exercise 3.5.42 for details.
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approximated by rational numbers, e.g., its truncated decimal expansions. Indeed, a fully
rigorous definition of the real numbers R is somewhat delicate, [97, 96].

Similarly, the space of continuous functions C°[ — 7, 7] is not complete, in that (nonuni-
formly) convergent sequences of continuous functions are not, in general, continuous, but it
does form a dense subspace of the Hilbert space L?[—m, 7], since every L? function can be
arbitrarily closely approximated (in norm) by continuous functions, e.g., its approximating
trigonometric polynomials. Thus, just as R can be viewed as the completion of QQ under
the Euclidean norm, so Hilbert space can be viewed as the completion of the space of con-
tinuous functions under the L? norm, and, just like that of R, its fully rigorous definition
is rather subtle.

A second complication is that (3.102) does not, strictly speaking, define a norm once
we allow discontinuous functions into the fold. For example, the piecewise continuous

function
1, z =0,

.mw={0 o

has norm zero, || f, || = 0, even though it is not zero everywhere. Indeed, any function
that is zero except on a set of measure zero also has norm zero, including the function
(3.104). Therefore, in order to make (3.102) into a legitimate norm, we must agree to
identify any two functions that have the same values except on a set of measure zero.
Thus, the zero function 0 along with the preceding examples (3.104) and (3.105) are all
viewed as defining the same element of Hilbert space. So, an element of Hilbert space is
not, in fact, a function, but, rather, an equivalence class of functions all differing on a set
of measure zero. All this may strike the applications-oriented reader as becoming much too
abstract and arcane. In practice, you will not lose much by working with the elements of
L? as if they were ordinary functions, and, even better, assuming that said “functions” are
always piecewise continuous and square-integrable. Nevertheless, the full analytical power
of Hilbert space theory is unleashed only by including completely general square-integrable
functions.

(3.105)

After its invention by pure mathematicians around the turn of the twentieth century,
physicists in the 1920s suddenly realized that Hilbert space was the ideal setting for the
modern theory of quantum mechanics, [66, 72,115]. A quantum-mechanical wave function
is an element! p € L? that has unit norm: || ¢| = 1. Thus, the set of wave functions is
merely the “unit sphere” in Hilbert space. Quantum mechanics endows each physical
wave function with a probabilistic interpretation. Suppose the wave function represents
a single subatomic particle — photon, electron, etc. Then the squared modulus of the
wave function, | o(z) |?, represents the probability density that quantifies the chance of the
particle being located at position x. More precisely, the probability that the particle resides

1 b
in a prescribed interval [a,b] C [—7, 7] is equal to \/2 / | o(2) |* dx . In particular, the
wave function has unit norm, T Ja

nw=¢;[ﬂwwmw=L (3.106)

¥ Here we are acting as if the physical universe were represented by the one-dimensional interval
[-m,m]. The more apt context of three-dimensional physical space is developed analogously,

replacing the single integral by a triple integral over all of R?. See also Section 7.4.
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because the particle must certainly, i.e., with probability 1, be somewhere!

Convergence in Norm

We are now in a position to discuss convergence in norm of a Fourier series. We begin with
the basic definition, which makes sense on any normed vector space.

Definition 3.35. Let V' be a normed vector space. A sequence s, Sy, 55,... € V is
said to converge in norm to f € V if ||s, — f| — 0 as n — oc.

As we noted earlier, on finite-dimensional vector spaces such as R™, convergence in
norm is equivalent to ordinary convergence. On the other hand, on infinite-dimensional
function spaces, convergence in norm differs from pointwise convergence. For instance, it
is possible to construct a sequence of functions that converges in norm to 0, but does not
converge pointwise anywhere! (See Exercise 3.5.43.)

While our immediate interest is in the convergence of the Fourier series of a square-
integrable function f € L?[—m, 7], the methods we develop are of very general utility.
Indeed, in later chapters we will require the analogous convergence results for other types
of series solutions to partial differential equations, including multiple Fourier series as well
as series involving Bessel functions, spherical harmonics, Laguerre polynomials, and so on.
Since it distills the key issues down to their essence, the general, abstract version is, in fact,
easier to digest, and, moreover, will be immediately applicable, not just to basic Fourier
series, but to very general “eigenfunction series”.

Let V be an infinite-dimensional inner product space, e.g., L?[—m,7]. Suppose

01,99, Ps, ..., are an orthonormal collection of elements of V', meaning that
1 j=k,
. = 3.107
e ={ 4 100 (3.107)
A straightforward argument — see Exercise 3.5.33 — proves that the ¢, are linearly

independent. Given f € V, we form its generalized Fourier series

[~ Z CL Prs where L =(f,08) (3.108)
k=1

The formula for the coefficient ¢, is obtained by formally taking the inner product of the
series with ¢, and invoking the orthonormality conditions (3.107). The two main examples
are the real and complex L? spaces:

e V consists of real square-integrable functions defined on [—, 7] under the rescaled L?

inner product ( f,g) f(z) g(z) dz. The orthonormal system {, } consists

-
of the basic trigonometric functions, numbered as follows:

1
Y, = 2 Py =COST, g =sinxw, @, =-cos2x, @;=-sin2x, @z =-cosdz,
e V consists of complex square-integrable functions defined on [—7, 7] using the Hermi-
tian inner product (3.103). The orthonormal system { ¢, } consists of the complex
exponentials, which we order as follows:

iz 2ix —2ix _ J3iz
)

v =1, @226”07 py=€ 7, pg=e€
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In each case, the generalized Fourier series (3.108) reduces to the ordinary Fourier se-
ries, with a minor change of indexing. Later, when we extend the separation of variables
technique to partial differential equations in more than one space dimension, we will en-
counter a variety of other important examples, in which the ¢, are the eigenfunctions of a
self-adjoint linear operator.

For the remainder of this section, to streamline the ensuing proofs, we will henceforth
assume that V is a real inner product space. However, all results will be formulated so
they are also valid for complex inner product spaces; the slightly more complicated proofs
in the complex case are relegated to the exercises.

By definition, the generalized Fourier series (3.108) converges in norm to f if the
sequence provided by its partial sums

S, = Cppy (3.109)
k=1

satisfies the criterion of Definition 3.35. Our first result states that the partial Fourier
sum (3.109), with ¢, given by the inner product formula in (3.108), is, in fact, the best
approzimation to f € V' in the least squares sense, [89].

Theorem 3.36. Let V, =span {¢,,¢s,...,¢,} CV be the n-dimensional subspace
spanned by the first n elements of the orthonormal system. Then the ntt order Fourier
partial sum s, € V, is the best least squares approximation to f that belongs to the
subspace, meaning that it minimizes || f — p,, || among all possible p,, € V..

Proof: Given any element

n
k=1

we have, in view of the orthonormality relations (3.107),

12 I* = (P 2 )
- = (3.110)
<Zd%azdk§0k>: Z djdk<¢ja§0k>:Z|dk|2a
j=1 k=1 k=1

reproducing the formula (B.27) for the norm with respect to an orthonormal basis. There-
fore, by the symmetry property of the real inner product,

||f—pn||2=(f—pn,f—pn>=||f||2—2<f7pn>Jrllpnll2
_||f||2_2zdk o) F e P =1FIP =2 eud+ ) 1d, P
k=1 k=1

=||f||2—z |Ck|2+z e — di [*.

k=1

The final equality results from adding and subtracting the squared norm of the partial sum
(3.109),

n
Is, l7 =" ey (3.111)
k=1
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which is a particular case of (3.110). We conclude that

L =2 1P =FIP = s P+ D lep = di I (3.112)
k=1

The first and second terms on the right-hand side of (3.112) are uniquely determined by

f and hence cannot be altered by the choice of p, € V., which affects only the final

summation. Since the latter is a sum of nonnegative quantities, it is clearly minimized by

setting all its summands to zero, i.e., setting d, = ¢, for all K = 1,...,n. We conclude
that || f — p,, || achieves its minimum value among all p,, € V, if and only if d;, = ¢, which
implies that p,, = s,, is the Fourier partial sum (3.109). Q.E.D.

Example 3.37. Consider the ordinary real Fourier series. The subspace 7™ ¢ L2
spanned by the trigonometric functions coskx, sinkz, for 0 < k < n, consists of all
trigonometric polynomials (finite Fourier sums) of degree < n:

p,(x) = TQO + Z [r,coskx + s, sinkz]. (3.113)
k=1

Theorem 3.36 implies that the nth Fourier partial sum (3.38) is distinguished as the one
that best approximates f(z) in the least squares sense, meaning that it minimizes the L2
norm of the difference,

17l = \/}T [ 150 -p, @) P, (3.114)

among all such trigonometric polynomials (3.113).

Returning to the general framework, if we set p,, = s,,, so d;, = ¢, in (3.112), we
conclude that the minimizing least squares error for the Fourier partial sum is

n

0| f=suP=1F12 =l P=1F17 =D el (3.115)

k=1

We conclude that the general Fourier coefficients of the function f must satisfy the in-
equality

n

Yol < I (3.116)

k=1

Let us see what happens in the limit as n — oo. Since we are summing a sequence of
nonnegative numbers, with uniformly bounded partial sums, the limiting summation must
exist and be subject to the same bound. We have thus established Bessel’s inequality, a
key step on the road to the general theory.

Theorem 3.38. The sum of the squares of the general Fourier coefficients of f € V
is bounded by

oo

Sl < IfI (3.117)

k=1

Now, if a series, such as that on the left-hand side of Bessel’s inequality (3.117), is to
converge, the individual summands must go to zero. Thus, we immediately deduce:
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Corollary 3.39. The general Fourier coeflicients of f € V satisfy ¢;, — 0 as k — oo.

In the case of the trigonometric Fourier series, Corollary 3.39 yields the following
simplified form of what is known as the Riemann—Lebesgue Lemma.

Lemma 3.40. If f € L?[—n, ]| is square-integrable, then its Fourier coefficients
satisfy

1 ™
a, = / f(x)coskxdx
™ —T
. — 0 as k — 0. (3.118)
b, = / f(z)sinkzdx
™ —Tr
Remark: This result is equivalent to the decay of the complex Fourier coefficients
1 4 .
G = fx)e Fode — 0 as |k| — oo, (3.119)
m

—T

of any complex-valued square-integrable function.

Convergence of the sum (3.117) requires that the coefficients ¢, not tend to zero too

slowly. For instance, requiring the power bound (3.99) for some a > é suffices to ensure
oo

that Z |¢, |> < oo. Thus, as we should have expected, convergence in norm of the

k=—o00
Fourier series imposes less-restrictive requirements on the decay of the Fourier coefficients

than uniform convergence — which needed o > 1. Indeed, a Fourier series with slowly
decaying coefficients may very well converge in norm to a discontinuous L? function, which
is not possible under uniform convergence.

Completeness

Calculations in vector spaces rely on the specification of a basis, meaning a set of linearly
independent elements that span the space. The choice of basis serves to introduce a system
of local coordinates on the space, namely, the coefficients in the expression of an element
as a linear combination of basis elements. Orthogonal and orthonormal bases are partic-
ularly handy, since the coordinates are immediately calculated by taking inner products,
while general bases require solving linear systems. In finite-dimensional vector spaces, all
bases contain the same number of elements, which, by definition, is the dimension of the
space. A vector space is, therefore, infinite-dimensional if it contains an infinite number
of linearly independent elements. However, the question when such a collection forms a
basis for the space is considerably more delicate, and mere counting will no longer suffice.
Indeed, omitting a finite number of elements from an infinite collection would still leave an
infinite number, but the latter will certainly not span the space. Moreover, we cannot, in
general, expect to write a general element of an infinite-dimensional space as a finite linear
combination of basis elements, and so subtle questions of convergence of infinite series must
also be addressed if we are to properly formulate the concept.

The definition of a basis of an infinite-dimensional vector space rests on the idea of
completeness. We shall discuss completeness in the general abstract setting, but the key
example is, of course, the Hilbert space L?[—n, 7] and the systems of trigonometric or com-
plex exponential functions. For simplicity, we define completeness in terms of orthonormal
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systems here. (Similar arguments will clearly apply to orthogonal systems, but normality
helps to streamline the presentation.)

Definition 3.41. An orthonormal system ¢, p,,¢5,... € V is called complete if,
for every f € V, its generalized Fourier series (3.108) converges in norm to f:

|| f — Sn || — Oa as n — 00, where Sp = Z Cr P> Cp = <f7()0k>7 (312())
k=1

is the nth partial sum of the generalized Fourier series (3.108).

Thus, completeness requires that every element of V' can be arbitrarily closely ap-
proximated (in norm) by a finite linear combination of the basis elements. A complete
orthonormal system should be viewed as the infinite-dimensional version of an orthonor-
mal basis of a finite-dimensional vector space. An orthogonal system is called complete
whenever the corresponding orthonormal system obtained by dividing the elements by
their norms is complete. Existence of a complete orthonormal system is directly tied to
completeness of the underlying Hilbert space.

Determining whether a given orthonormal or orthogonal system of functions is com-
plete is a difficult problem, and requires some detailed analysis of their properties. The
key result for classical Fourier series is that the trigonometric functions, or, equivalently,
the complex exponentials, form a complete system; an indication of its proof will appear
below. A general characterization of complete orthonormal eigenfunction systems can be
found in Section 9.4.

Theorem 3.42. The trigonometric functions 1,coskx,sinkx, k = 1,2,3,..., form
a complete orthogonal system in 1L? = L?[—n,7]. In other words, if s, (x) denotes the
nth partial sum of the Fourier series of the square-integrable function f(x) € L2, then
dim [ f s, ] =0,

To better comprehend completeness, let us describe some equivalent characterizations
and consequences. One is the infinite-dimensional counterpart of formula (B.27) for the
norm of a vector in terms of its coordinates with respect to an orthonormal basis.

Theorem 3.43. The orthonormal system ¢, @y, ¢s,... € V is complete if and only
if Plancherel’s formula

oo

A2 =D lal? = 30 (fo0)? (3.121)
k=1

k=1
holds for every f € V.

Proof: Theorem 3.43, thus, states that the system of functions is complete if and only
if the Bessel inequality (3.117) is, in fact, an equality. Indeed, letting n — oo in (3.115),
we find

n o0
tim [ f = s, = £ tim 3 o = 1= 3 el
k=1 k=1

n — oo

Therefore, the completeness condition (3.120) holds if and only if the right-hand side
vanishes, which is the Plancherel identity (3.121). Q.E.D.
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An analogous result holds for the inner product between two elements, which we state
in its general complex form, although the proof given here is for the real version; in Exercise
3.5.35 the reader is asked to supply the slightly more intricate complex proof.

Corollary 3.44. The Fourier coefficients ¢, = (f, ¢, ), d. = (g,¢, ), of any f,g €

V' satisfy Parseval’s formula

(f.9) = > cdy. (3.122)

k=1

Proof: Since, for a real inner product,

(foay=1(If+alP=1f-gl), (3.123)

Parseval’s formula results from applying Plancherel’s formula (3.121) to each term on the
right-hand side:

Z (e +dy)? = (¢ — dy)? ] :Z ¢ dy,
k= k=1
which agrees with (3.122), since we are assuming that d,, = d, are all real. Q.E.D.

Note that Plancherel’s formula is a special case of Parseval’s formula,” obtained by
setting f = g. In the particular case of the complex exponential basis e'** of L?[—n, 7],
the Plancherel and Parseval formulae take the form

o0

g [ @Pl= 3 el [ f@eed= 3 ede (3120

- k=—o00

where ¢, = (f,e'*7), d, = (g,e'*™) are the ordinary Fourier coefficients of the complex-
valued functions f(x) and g(x). In Exercise 3.5.38, you are asked to write the corresponding
formulas for the real Fourier coefficients.

Completeness also tells us that a function is uniquely determined by its Fourier coef-
ficients.

Proposition 3.45. If the orthonormal system ¢4, p,,... € V is complete, then the
only element f € V with all zero Fourier coefficients, 0 = ¢; = ¢, = - - -, Is the zero element:
f = 0. More generally, two elements f,g € V have the same Fourier coefficients if and only
if they are the same: f = g.

Proof: The proof is an immediate consequence of Plancherel’s formula. Indeed, if
¢, = 0, then (3.121) implies that || f || = 0 and hence f = 0. The second statement follows
by applying the first to their difference f — g. Q.E.D.

Another way of stating this result is that the only function that is orthogonal to every
element of a complete orthonormal system is the zero function.* In other words, a complete
orthonormal system is maximal in the sense that no further orthonormal elements can be
appended to it.

T Curiously, Marc-Antoine Parseval des Chénes’ contribution slightly predates Fourier, whereas
Michel Plancherel’s appeared almost a century later.

¥ Or, to be more technically accurate, any function that is zero outside a set of measure zero.
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Let us now discuss the completeness of the Fourier trigonometric and complex expo-
nential functions. We shall establish the completeness property only for sufficiently smooth
functions, leaving the harder general proof to the references, [37, 128].

According to Theorem 3.30, if f(x) is continuous, 27 periodic, and piecewise C!, its
Fourier series converges uniformly,

flx) = Z c, etk® for all —rm<z<m.

k=—0c0

The same holds for its complex conjugate f(z). Therefore,

o0 o0

[f@) P =f@) fe) =) D e =3 o f(@)e
k=—o0 k=—o00
which also converges uniformly by (3.94). Formula (3.95) permits us to integrate both
sides from — 7 to m, yielding

oo oo

1112 = g, [ 1@ra=30 J [ fwetar= 3 o= lal

k=—00 k=—o00

Therefore, Plancherel’s formula (3.121) holds for any continuous, piecewise C! function.
With some additional technical work, this result is used to establish the validity of
Plancherel’s formula for all f € L2, the key step being to suitably approximate f by such
continuous, piecewise C! functions. With this in hand, completeness is an immediate
consequence of Theorem 3.43. Q.E.D.

Pointwise Convergence

Let us finally return to the Pointwise Convergence Theorem 3.8 for the trigonometric
Fourier series. The goal is to prove that, under the appropriate hypotheses on f(x), namely
27-periodic and piecewise C!, the limit of its partial Fourier sums is

lim s,(z)=123[fl")+ flz7)]. (3.125)

n— oo

We begin by substituting the formulae (3.65) for the complex Fourier coefficients into the
formula (3.109) for the nth partial sum:

n
871(:17): Z Ck:elkiE
k=-n

n

Z (217r /T; f() eikydy> ik

k=-—n

= ;ﬂ /ﬂ f) ( > eik(zy)) dy.

- k=-—n

(3.126)

To proceed further, we need to calculate the final summation

n
Z eikz:efinz_i_“.+efiz+1_~_eiz+_._+einz.
k=—n
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This, in fact, has the form of a geometric sum,

m Tm+1—].

Zark:a+ar+ar2+~-~+arm:a< 1 ); (3.127)
r—

k=

with m + 1 = 2n + 1 summands, initial term a = e~ 1"*, and ratio r = e'®. Therefore,

i(2n+1)x i(n+1)x —inx
T _ mine el -1 el )T —e
N el —1 el —1

el
M=
3

®

(3.128)
ei(n-i—%)m _e—i(n-i-é)m B sin (n_;’_ é)l‘

eiz/2 _ g—iz/2 siné:v

In this computation, to pass from the first to the second line, we multiplied numerator and
denominator by e~ 1#/2 after which we used the formula (3.60) for the sine function in terms
of complex exponentials. Incidentally, (3.128) is equivalent to the intriguing trigonometric
summation formula
sin (n + ;) x
14 2(cosx +cos2z +cos3z+ -+ +cosnz) = 1 . (3.129)

sin 217

Therefore, substituting back into (3.126), we obtain

1 [T sin(n+3) (z—y)
s =y [t dy
T J_x sin ;, (z —y)
1 ztm sin(n—ﬁ—é)y 1 Q sin(n—i—é)y
= dy = dy.
27 /x—w f@+y) sin;y Y= o _ﬂf($+y> sin;y Y

The second equality is the result of changing the integration variable from y to x + y;
the final equality follows since the integrand is 2m—periodic, and so its integrals over any
interval of length 27 all have the same value; see Exercise 3.2.9.

Thus, to prove (3.125), it suffices to show that

. +1
lim /f Sm(.nl2)ydy:f($+>v

n—oo T sin , y (3.130)
. 1 *
1 sin(n+ )y .
lim f(:v+y) 1 dy = f(z7).
n—oo m [__ sin 5 y

The proofs of the two formulas are identical, and so we concentrate on establishing the
first. Using the fact that the integrand is even, and then our summation formula (3.128)
in reverse, yields

1 [msin(n+3)y 1 /™ sin(n+3) -
77/0 1 dy—%/ L dy = 27r Z e™dy =1,

sin 5 y —r sin , y - 2

because only the constant term has a nonzero integral. Multiplying this formula by f(z™)
and then subtracting the result from the first formula in (3.130) leads to

i T flz+y)— fzh)
11m
n—o0 T sin 3 y

sin (n + %) y dy =0, (3.131)



3.5 Convergence of Fourier Series 117

which we now proceed to prove.

We claim that, for each fixed value of x, the function

fla+y) = f=™)
sin;y

9(y) =

is piecewise continuous for all 0 < y < 7. Owing to our hypotheses on f(z), the only
problematic point is at y = 0, but then, by 'Hopital’s Rule (for one-sided limits),

_ f(pt /
lim g(y) = lim Ut —HJ) ) Fem) lim fl(x +1y) =2 f'(a™).
y— 0t y— 0+ sin 5 y y—0t ,cos,y
Consequently, (3.131) will be established if we can show that
N T . 1
lim g(y)sin(n+3)y dy=0 (3.132)
n—oo T Jo

whenever g is piecewise continuous. Were it not for the extra % , this would immediately
follow from the simplified Riemann—Lebesgue Lemma 3.40. More honestly, we can invoke
the addition formula for sin (n + ;) y to write

1

™ ) 1 ™ ) 1 s )
/g(y)sm(n—l—;)ydy: /(g(y)sm%y)cosnydy—l— /(g(y)cos;y)smnydy.
TJo TJo TJo

The first integral is the ntt Fourier cosine coefficient for the piecewise continuous function
g(y) sin é y, while the second integral is the nt® Fourier sine coefficient for the piecewise
continuous function g(y) cos % y. Lemma 3.40 implies that both of these converge to zero
as n — oo, and hence (3.132) holds. This completes the proof, thus establishing pointwise
convergence of the Fourier series. Q.E.D.

Remark: An alternative approach to the last part of the proof is to use the general
Riemann—Lebesque Lemma, whose proof can be found in [37, 128].

Lemma 3.46. Suppose g(x) is piecewise continuous on [a,b]. Then

b
0= lim g(x) e dx

w — 00 a
, , (3.133)

= ILm g(x)coswrdr + 1 ILm g(x)sinwz dr.
w o0 a w o0 a

Intuitively, the Riemann—Lebesgue Lemma says that, as the frequency w gets larger
and larger, the increasingly rapid oscillations of the integrand tend to cancel each other
out.

Remark: While the Fourier series of a merely continuous function need not converge
pointwise everywhere, a deep theorem, proved by the Swedish mathematician Lennart
Carleson in 1966, [28], states that the set of points where it does not converge has measure
zero, and hence the exceptional points form a very small subset.
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Exercises

3.5.26. Which of the following sequences converge in norm to the zero function for = € R?

nx 1, n<zr<n+4+1,
(@) va (@)= 2o (b) v, (x) —{ 0, otherwise,
[ 1, n<z<n+l/n, _ | 1n, n<z<2n,
(c) v,(2) = { 0, otherwise, (d) v, (x) = { 0, otherwise,

1/v/n, n<z<2n n*z? -1, —1/n<z<1/n
— I ) f‘ — ’ ’
(e) vn(2) { 0, otherwise, (f) vn(@) { , otherwise.

3.5.27. Discuss pointwise and L2 convergence of the following sequences on the interval [0, 1]:

2 2
@ 1=, (b) { n, 1/n” <z <1/n oy emne(g) sinna.
n x, otherwise,

3.5.28. Prove, directly from the definition, the convergence in norm of the Fourier series (3.49)
of the step function.

3.5.29. Let f(z) € L?[a,b] be square integrable. Which constant function g(z) = ¢ best ap-
proximates f in the least squares sense?

3.5.30. Suppose the sequence f, (x) converges pointwise to a function f,(x) on an interval [a, b],
and converges to g, (z) in the L2 norm on [a,b]. Is f,(z) = g,(x) at every a < x < b?

3.5.31. Find a formula for the L? norm of the Fourier series in Exercises 3.5.20 and 3.5.22.

3.5.32. Under what conditions on the function f(z) is the least squares error due to the nt®
order Fourier partial sum equal to zero: || f —s,, || = 07

$ 3.5.33. Let V be an inner product space. Prove that the elements of a (finite or infinite) or-
thonormal system ¢, ¢y, ... € V are linearly independent, meaning that any finite linear
combination vanishes, c;p; + -+ +¢,¢, = 0, if and only if the coefficients are all zero:
Cl = e = CTL =

{ 3.5.34. Let V be a complex inner product space. Prove that, for all f,g € V,
(a) ||f+9||21=||f||2+22Re<f,9)+2||9||2; , ,
D) (fog)=4(IF+gl>=1F=glP+ilf+igl*—illf—igl?).

& 3.5.35. Let V be an infinite-dimensional complex inner product space, and ¢, € V' a complete
orthonormal system. Prove the corresponding Plancherel and Parseval formulas.
Hint: Use the identities in Exercise 3.5.34.

3.5.36. What does Plancherel’s formula (3.121) tell us in a finite-dimensional vector space?
What about Parseval’s formula (3.122)7

3.5.37. Let f(z) = =z, g(x) = signz. (a) Write out Plancherel’s formula for the complex
Fourier coefficients of f. (b) Write out Plancherel’s formula for the complex Fourier coef-
ficients of g. (¢) Write out Parseval’s formula for the complex Fourier coefficients of f, g.

{ 3.5.38.(a) Prove the real version of the Plancherel formula

1 gm 2. 1 2 2,2
[f@)[Fde =3 a5 + > (aj +b) (3.134)
™ J=T k=1
for the trigonometric Fourier coefficients of a real function f(x).
(b) What is the real version of Parseval’s formula?

3.5.39. Give an alternative proof of formula (3.129) that does not require complex functions by

first multiplying through by sin %az and then invoking a suitable trigonometric identity for

the product terms.
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3.5.40.(a) Prove that the functions ¢,, (z) = sin(n — %)m, forn =1,2,3,..., form an orthogo-

nal sequence on the interval [0, 7] relative to the L2 inner product (f,g) = /OTr f(@) g(z)dx.
(b) Find the formula for the Fourier coefficients of a function f(z) relative to the orthogo-

nal sequence ¢, (z). (c) State Bessel’s inequality and Plancherel’s formula in this case.
Carefully state any hypotheses that might be required for the validity of your formulas.

{ 3.5.41. Prove that a sequence of vectors v(®) e R™ converges in the Euclidean norm,
| v || = 0 as n — oo, if and only if their individual components converge:

n * .
v, ' —wv fori=1,...,m.

& 3.5.42. Let V be a normed vector space. A sequence v,, € V is called a Cauchy sequence if for
every € > 0 there exists an N such that ||v,, — v, || < & whenever both m,n > N. Prove
that a sequence that converges in norm, ||v,, —v* || = 0 as n — oo, is necessarily a Cauchy
sequence.  Remark: A normed vector space is called complete if every Cauchy sequence
converges in norm. It can be proved, [96, 98], that any finite-dimensional normed vector
space is complete, but this is not necessarily the case in infinite dimensions. For example,
the vector spaces consisting of all trigonometric polynomials and of all polynomials are not

complete in the L? norm. The most important example of a complete infinite-dimensional
vector space is the Hilbert space L2

1, 7]71 S k;r%l’ where

0, otherwise,

n = %m(m + 1)+ kand 0 < k < m. Show first that m, k are uniquely determined by n.
Then prove that, on the interval [0, 1], the sequence f,, (z) converges in norm to 0 but does
not converge pointwise anywhere!

& 3.5.43. For each n =1,2,..., define the function f, (z) = {

2 2

© 3.5.44. Let u(t, ) solve the initial value problem gtg = gasg , u(0,2) = f(x), ng (0,2) =0,
for —oco < x < oo, where f(x) — 0as |z| — oo. True or false: Ast — oo, the solution
u(t, x) converges to an equilibrium solution (a) pointwise; (b) uniformly; (¢) in norm.

0
© 3.5.45. Answer Exercise 3.5.44 for the initial conditions u(0,z) = 0, BQtL (0,z) = g(x), with
g(z) = 0as |z| — oco.



Chapter 4
Separation of Variables

Three cardinal linear second-order partial differential equations have collectively driven the
development of the entire subject. The first two we have already encountered: The wave
equation describes vibrations and waves in continuous media, including sound waves, water
waves, elastic waves, electromagnetic waves, and so on. The heat equation models diffusion
processes, including thermal energy in solids, solutes in liquids, and biological populations.
Third, and in many ways the most important of all, is the Laplace equation and its inho-
mogeneous counterpart, the Poisson equation, which govern equilibrium mechanics. The
latter two equations arise in an astonishing variety of mathematical and physical contexts,
ranging through elasticity and solid mechanics, fluid mechanics, electromagnetism, poten-
tial theory, thermomechanics, geometry, probability, number theory, and many other fields.
The solutions to the Laplace equation are known as harmonic functions, and the discov-
ery of their many remarkable properties forms one of the most celebrated chapters in the
history of mathematics. All three equations, along with their multi-dimensional kin, will
appear repeatedly throughout this text.

The aim of the current chapter is to develop the method of separation of variables
for solving these key partial differential equations in their two-independent-variable incar-
nations. For the wave and heat equations, the variables are time, t, and a single space
coordinate, x, leading to initial-boundary value problems modeling the dynamical behav-
ior of a one-dimensional medium. For the Laplace and Poisson equations, both variables
represent space coordinates, x and y, and the associated boundary value problems model
the equilibrium configuration of a planar body, e.g., the deformations of a membrane. Sep-
aration of variables seeks special solutions that can be written as the product of functions
of the individual variables, thereby reducing the partial differential equation to a pair of
ordinary differential equations. More-general solutions can then be expressed as infinite
series in the appropriate separable solutions. For the two-variable equations considered
here, this results in a Fourier series representation of the solution. In the case of the wave
equation, separation of variables serves to focus attention on the vibrational character of
the solution, whereas the earlier d’Alembert approach emphasizes its particle-like aspects.
Unfortunately, for the Laplace equation, separation of variables applies only to boundary
value problems in very special geometries, e.g., rectangles and disks. Further development
of the separation of variables method for solving partial differential equations in three or
more variables can be found in Chapters 11 and 12.

In the final section, we take the opportunity to summarize the fundamental tripar-
tite classification of planar second-order partial differential equations. Each of the three
paradigmatic equations epitomizes one of the classes: hyperbolic, such as the wave equa-
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tion; parabolic, such as the heat equation; and elliptic, such as the Laplace and Poisson
equations. Each category enjoys its own distinctive properties and features, both analytic
and numeric, and, in effect, forms a separate mathematical subdiscipline.

4.1 The Diffusion and Heat Equations

Let us begin with a brief physical derivation of the heat equation from first principles.
We consider a bar — meaning a thin, heat-conducting body. “Thin” means that we can
regard the bar as a one-dimensional continuum with no significant transverse temperature
variation. We will assume that the bar is fully insulated along its length, and so heat can
enter (or leave) only through its uninsulated endpoints. We use ¢ to represent time, and
a <z < b to denote spatial position along the bar, which occupies the interval [a,b]. Our
goal is to find the temperature u(t, z) of the bar at position x and time t.

The dynamical equations governing the temperature are based on three fundamental
physical principles. First is the Law of Conservation of Heat Energy. Recalling the general
Definition 2.7, this particular conservation law takes the form

Jde  Ow

— 4.1
or T or =0 (4.1)

in which e(¢,x) represents the thermal energy density at time ¢ and position x, while
w(t,z) denotes the heat fluz, i.e., the rate of flow of thermal energy along the bar. Our
sign convention is that w(t,z) > 0 at points where the energy flows in the direction of
increasing x (left to right). The integrated form (2.49) of the conservation law, namely

d

b
it / e(t,z)dx = w(t,a) — w(t,b), (4.2)

states that the rate of change in the thermal energy within the bar is equal to the total
heat flux passing through its uninsulated ends. The signs of the boundary terms confirm
that heat flux into the bar results in an increase in temperature.

The second ingredient is a constitutive assumption concerning the bar’s material prop-
erties. It has been observed that, under reasonable conditions, thermal energy is propor-
tional to temperature:

e(t,x) = o(x) ult, z). (4.3)

The factor
o(z) = p(x) x(x) > 0 (4.4)

is the product of the density p of the material and its specific heat capacity x, which is
the amount of heat energy required to raise the temperature of a unit mass of the material
by one degree. Note that we are assuming that the medium is not changing in time, and
so physical quantities such as density and specific heat depend only on position x. We
also assume, perhaps with less physical justification, that its material properties do not
depend upon the temperature; otherwise, we would be forced to deal with a much thornier
nonlinear diffusion equation, [70, 99].

The third physical principle relates heat flux and temperature. Physical experiments
show that the thermal energy moves from hot to cold at a rate that is in direct proportion to
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the temperature gradient, which, in the one-dimensional case, means its derivative du/9z.
The resulting relation

ou
oz
is known as Fourier’s Law of Cooling. The proportionality factor (x) > 0 is the thermal
conductivity of the bar at position z, and the minus sign reflects the everyday observation
that heat energy moves from hot to cold. A good heat conductor, e.g., silver, will have
high conductivity, while a poor conductor, e.g., glass, will have low conductivity.
Combining the three laws (4.1, 3, 5) produces the linear diffusion equation

w(t,z) = —k(x) (4.5)

gt (o(z)u) = 88;5 (KZ(:L‘) gz> , a<x<b, (4.6)

governing the thermodynamics of a one-dimensional medium. It is also used to model a
wide variety of diffusive processes, including chemical diffusion, diffusion of contaminants
in liquids and gases, population dispersion, and the spread of infectious diseases. If there
is an external heat source along the length of the bar, then the diffusion equation acquires
an additional prescribed inhomogeneous term:

gt (o(x)u) = aax (/@(;E) gD + h(t, z), a<z<b. (4.7)

In order to uniquely prescribe the solution u(t,x), we need to specify an initial tem-
perature distribution
u(ty, x) = f(x), a<z<b. (4.8)

In addition, we must impose a suitable boundary condition at each end of the bar. There
are three common types. The first is a Dirichlet boundary condition, where the end is held
at a prescribed temperature. For example,

u(t,a) = a(t) (4.9)

fixes the temperature (possibly time-varying) at the left end. Alternatively, the Neumann
boundary condition

ou
t,a) = p(t 4.10
O 1,a) = (1) (4.10)
prescribes the heat flux w(t,a) = —k(a)u,(t, a) there. In particular, a homogeneous Neu-

mann condition, u,(¢,a) = 0, models an insulated end that prevents thermal energy flowing
in or out. The Robin® boundary condition,

gz (t,a) + B() u(t,a) = 7(1), (4.11)
models the heat exchange resulting from the end of the bar being placed in a heat bath
(thermal reservoir) at temperature 7(t).

Each end of the bar is required to satisfy one of these boundary conditions. For
example, a bar with both ends having prescribed temperatures is governed by the pair of
Dirichlet boundary conditions

u(t,a) = a(t), u(t,b) = B(t), (4.12)

t Since it is named after the nineteenth-century French analyst Victor Gustave Robin, the
pronunciation should be with a French accent.
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whereas a bar with two insulated ends requires two homogeneous Neumann boundary
conditions
ou 0

o (1) =0, ;

Mixed boundary conditions, with one end at a fixed temperature and the other insulated,
are similarly formulated, e.g.,

z (t,b) = 0. (4.13)

ou
t,a) = ot t,b) =0. 4.14
u(t,a) = a(t) ) (1.14)
Finally, the periodic boundary conditions
ou ou
= = 4.15
u(t,a) = u(t,b), 9 (t,a) 9 (t,0), (4.15)

correspond to a circular ring obtained by joining the two ends of the bar. As before, we
are assuming that the heat is allowed to flow only around the ring — insulation prevents
the radiation of heat from one side of the ring affecting the other side.

The Heat Equation

In this book, we will retain the term “heat equation” to refer to the case in which the
bar is composed of a uniform material, and so its density p, conductivity x, and specific
heat x are all positive constants. We also exclude external heat sources (other than at the
endpoints), meaning that the bar remains insulated along its entire length. Under these
assumptions, the general diffusion equation (4.6) reduces to the homogeneous heat equation

ou 9%u

= 4.16
ot~ ou2 ( )
for the temperature u(¢, x) at time ¢ and position 2. The constant
K K
= = 4.17
Y= 6T oy (4.17)

is called the thermal diffusivity; it incorporates all of the bar’s relevant physical properties.
The solution u(t, z) will be uniquely prescribed once we specify initial conditions (4.8) and
a suitable boundary condition at both of its endpoints.
As we learned in Section 3.1, the separable solutions to the heat equation are based
on the exponential ansatz
u(t,z) = e”Mo(x), (4.18)

where v(z) depends only on the spatial variable. Functions of this form, which “separate”
into a product of a function of ¢ times a function of z, are known as separable solutions.
Substituting (4.18) into (4.16) and canceling the common exponential factors, we find that

v(z) must solve the second-order linear ordinary differential equation
d*v
— = Av.

7 de?

t Anticipating the eventual signs of the eigenvalues, and to facilitate later discussions, we now
include a minus sign in the exponential term.
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Each nontrivial solution v(x) Z 0 is an eigenfunction, with associated eigenvalue A, for the
linear differential operator L[v] = —~v”(z). With the separable eigensolutions (4.18) in
hand, we will then be able to reconstruct the desired solution u(t, z) as a linear combination,
or rather infinite series, thereof.

Let us concentrate on the simplest case: a uniform, insulated bar of length ¢ that is
held at zero temperature at both ends. We specify its initial temperature f(x) at time
to = 0, and so the relevant initial and boundary conditions are

u(t,0) =0, u(t, ) =0, t>0,
(4.19)
u(0,2) = f(z), 0<z</{.
The eigensolutions (4.18) are found by solving the Dirichlet boundary value problem
v v +Av=0 v(0) =0 v(f) = 0. (4.20)
d$2 ) )

By direct calculation (as you are asked to do in Exercises 4.1.19-20), one finds that if A
is either complex, or real and nonpositive, then the only solution to the boundary value
problem (4.20) is the trivial solution v(z) = 0. This means that all the eigenvalues must
necessarily be real and positive. In fact, the reality and positivity of the eigenvalues need
not be explicitly checked. Rather, they follow from very general properties of positive
definite boundary value problems, of which (4.20) is a particular case. See Section 9.5 for
the underlying theory and Theorem 9.34 for the relevant result.

When A > 0, the general solution to the differential equation is a trigonometric func-
tion

v(x) =a coswz + bsinwz, where w=1/A/v,

and a and b are arbitrary constants. The first boundary condition requires v(0) = a = 0.
This serves to eliminate the cosine term, and then the second boundary condition requires

v(f) =bsinwl = 0.

Therefore, since we require b # 0 — otherwise, the solution is trivial and does not qualify
as an eigenfunction — w/ must be an integer multiple of 7, and so

w=T 27 3
A I 2
We conclude that the eigenvalues and eigenfunctions of the boundary value problem (4.20)
are
2
A, =7 (ngr) , v, (z) :sinnzx, n=123,.... (4.21)
The corresponding eigensolutions (4.18) are
2,24
u,, (t,r) = exp (— 77}; ) Sinnzx, n=123,.... (4.22)

Each represents a trigonometrically oscillating temperature profile that maintains its form
while decaying to zero at an exponentially fast rate.

To solve the general initial value problem, we assemble the eigensolutions into an
infinite series,

u(t,z) = Z b, u,(t,z) = Z b, exp <— ynpﬂ' t) sin nz:E’ (4.23)

n=1 n=1
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whose coefficients b,, are to be fixed by the initial conditions. Indeed, assuming that the
series converges, the initial temperature profile is

u(0,2)= > b, sin ”2”‘ = f(x). (4.24)

n=1

This has the form of a Fourier sine series (3.52) on the interval [0, £]. Thus, the coefficients
are determined by the Fourier formulae (3.53), and so

9 [t
b, = 6/ f(z) sin n;m dz, n=12,3,.... (4.25)
0

The resulting formula (4.23) describes the Fourier sine series for the temperature u(¢, ) of
the bar at each later time ¢ > 0.

Example 4.1. Consider the initial temperature profile

-, OSSL’S éa
U(071’) = f(.’E) = T — gu é S z S 1707 (426)
11—, n<ae<l,

on a bar of length 1, plotted in the first graph in Figure 4.1. Using (4.25), the first few
Fourier coefficients of f(x) are computed (by either exact or numerical integration) to be

b, ~ .0897, by~ —.1927, by~ —.0289, b, =0,
by ~ —.0162,  bg~.0132, b, ~ 0104, b = 0,

The resulting Fourier series solution to the heat equation is

u(t,x) = Z b, u,(t,z) = Z b, e T sinnra
=1

n=1

~ 0897 e 7™t sinmr — 1927~ 4™t sin 27 — 028997t sin3wr — --- .

In Figure 4.1, the solution, for v = 1, is plotted at some representative times. Observe
that the corners in the initial profile are immediately smoothed out. As time progresses,
the solution decays, at a fast exponential rate of e~ ™ ¢ ~ e~ 987 to a uniform, zero tem-
perature, which is the equilibrium temperature distribution for the homogeneous Dirichlet
boundary conditions. As the solution decays to thermal equilibrium, the higher Fourier
modes rapidly disappear, and the solution assumes the progressively more symmetric shape
of a single sine arc, of rapidly decreasing amplitude.

Smoothing and Long—Time Behavior

The fact that we can write the solution to an initial-boundary value problem in the form
of an infinite series (4.23) is progress of a sort. However, because we are unable to sum the
series in closed form, this “solution” is much less satisfying than a direct, explicit formula.
Nevertheless, there are important qualitative and quantitative features of the solution that
can be easily gleaned from such series expansions.
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Figure 4.1. A solution to the heat equation. L—I_-J

If the initial data f(z) is integrable (e.g., piecewise continuous), then its Fourier coef-
ficients are uniformly bounded; indeed, for any n > 1,

2 [t . nTxT 2 [t .
b | < E/o [ faysin ™77 | de < 5/0 | ()| do = M. (4.27)

This property holds even for quite irregular data. Under these conditions, each term in the
series solution (4.23) is bounded by an exponentially decaying function

2 _2 2 2
‘ b, exp<—77227r t) sinnzx < Mexp(—’yngz7r t).

This means that, as soon as ¢t > 0, most of the high-frequency terms, n > 0, will be
extremely small. Only the first few terms will be at all noticeable, and so the solution
essentially degenerates into a finite sum over the first few Fourier modes. As time increases,
more and more of the Fourier modes will become negligible, and the sum further degenerates
into fewer and fewer significant terms. Eventually, as t — oo, all of the Fourier modes will
decay to zero. Therefore, the solution will converge exponentially fast to a zero temperature
profile: u(t,x) — 0 as t — oo, representing the bar in its final uniform thermal equilibrium.
The fact that its equilibrium temperature is zero is the result of holding both ends of the
bar fixed at zero temperature, whereby any initial thermal energy is eventually dissipated
away through the ends. The small-scale temperature fluctuations tend to rapidly cancel
out through diffusion of thermal energy, and the last term to disappear is the one with the
slowest decay, namely

2 T
T 1
u(t,z) =~ by exp (— FYZ; t> sin 7; , where b, = / f(z)sinzdz.  (4.28)
T Jo
For generic initial data, the coefficient b; # 0, and the solution approaches thermal equilib-
rium at an exponential rate prescribed by the smallest eigenvalue, \; = y7?/¢?, which is

proportional to the thermal diffusivity divided by the square of the length of the bar. The
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Figure 4.2.  Denoising a signal with the heat equation. L—Ij

longer the bar, or the smaller the diffusivity, the longer it takes for the effect of holding the
ends at zero temperature to propagate along its entire length. Also, again provided b, # 0,
the asymptotic shape of the temperature profile is a small, exponentially decaying sine arc,
just as we observed in Example 4.1. In exceptional situations, namely when b; = 0, the
solution decays even faster, at a rate equal to the eigenvalue A\, = v k? 72 /¢? corresponding
to the first nonzero term, b, # 0, in the Fourier series; its asymptotic shape now oscillates
k times over the interval.

Another, closely related, observation is that, for any fixed time ¢ > 0 after the initial
moment, the coefficients in the Fourier sine series (4.23) decay exponentially fast as n — oo.
According to the discussion at the end of Section 3.3, this implies that the Fourier series
converges to an infinitely differentiable function of x at each positive time t, no matter how
unsmooth the initial temperature profile. We have discovered the basic smoothing property
of heat flow, which we state for a general initial time ¢.

Theorem 4.2. Ifu(t,x) is a solution to the heat equation with piecewise continuous
initial data f(z) = u(t,, ), or, more generally, initial data satisfying (4.27), then, for any
t > t,, the solution u(t,z) is an infinitely differentiable function of x.

In other words, the heat equation instantaneously smoothes out any discontinuities
and corners in the initial temperature profile by fast damping of the high-frequency modes.
The heat equation’s effect on irregular initial data underlies its effectiveness for smoothing
and denoising signals. We take the initial data u(0,2) = f(z) to be a noisy signal, and
then evolve the heat equation forward to a prescribed time ¢* > 0. The resulting function
g(x) = u(t*,x) will be a smoothed version of the original signal f(x) in which most of
the high-frequency noise has been eliminated. Of course, if we run the heat flow for too
long, all of the low-frequency features will also be smoothed out and the result will be
a uniform, constant signal. Thus, the choice of stopping time t* is crucial to the success
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of this method. Figure 4.2 shows the effect of running the heat equation,! with v = 1,
on a signal that has been contaminated by random noise. Observe how quickly the noise
is removed. By the final time, the overall smoothing effect of the heat flow has caused
significant degradation (blurring) of the original signal. The heat equation approach to
denoising has the advantage that no Fourier coefficients need be explicitly computed, nor
does one need to reconstruct the smoothed signal. Basic numerical solution schemes for
the heat equation are to be discussed in Chapter 5.

An important theoretical consequence of the smoothing property is that diffusion is a
one-way process — one cannot run time backwards and accurately infer what a temperature
distribution looked like in the past. In particular, if the initial data u(0,z) = f(z) is not
smooth, then the value of u(t, z) for any ¢ < 0 cannot be defined, because if u(t,, x) were
defined and integrable at some ¢, < 0 then, by Theorem 4.2, u(t, x) would be smooth at all
subsequent times ¢ > ¢, including ¢ = 0, in contradiction to our assumption. Moreover, for
most initial data, the Fourier coefficients in the solution formula (4.23) are, at any ¢ < 0,
exponentially growing as n — oo, indicating that high-frequency noise has completely
overwhelmed the solution, thereby precluding any kind of convergence of the Fourier series.

Mathematically, we can reverse future and past by changing ¢ to —¢. In the differential
equation, this merely reverses the sign of the time-derivative term; the x derivatives are
unaffected. Thus, by the above reasoning, the backwards heat equation

du 0%u . e .

ot = Y gg2 with a negative diffusion coefficient —v <0, (4.29)
is an ill-posed problem in the sense that small changes in the initial data — e.g., a small
perturbation of a high-frequency mode — can produce arbitrarily large changes in the

solution arbitrarily close to the initial time. In other words, the solution does not depend
continuously on the initial data. Even worse, for nonsmooth initial data, the solution is not
even well defined in forwards time ¢ > 0 (although it is well-posed if we run ¢ backwards).
The same holds for more general diffusion processes, e.g., (4.6). If, as in all physically
relevant cases, the coefficient of u is everywhere positive, then the initial value problem
is well-posed for ¢ > 0, but ill-posed for ¢ < 0. On the other hand, if the coefficient is
everywhere negative, the reverse holds. A coefficient that changes signs would cause the
differential equation to be ill-posed in both directions.

While theoretically undesirable, the unsmoothing effect of the backwards heat equa-
tion has potential benefits in certain contexts. For example, in image processing, diffusion
will gradually blur an image by damping out the high-frequency modes. Image enhance-
ment is the reverse process, and can be based on running the heat flow backwards in some
stable manner. In forensics, determining the time of death based on the current temper-
ature of a corpse also requires running the equations governing the dissipation of body
heat backwards in time. One option would be to restrict the backwards evolution to the
first few Fourier modes, which prevents the small-scale fluctuations from overwhelming the
computation. Ill-posed problems also arise in the reconstruction of subterranean profiles
from seismic data, a central problem of the oil and gas industry. These and other applica-
tions are driving contemporary research into how to cleverly circumvent the ill-posedness
of backwards diffusion processes.

T To avoid artifacts at the ends of the interval, we are, in fact, using periodic boundary
conditions in the plots. Away from the ends, running the equation with Dirichlet boundary
conditions leads to almost identical results.
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Remark: The irreversibility of the heat equation, along with the irreversibility of non-
linear transport in the presence of shock waves discussed in Section 2.3, highlight a crucial
distinction between partial differential equations and ordinary differential equations. Or-
dinary differential equations are always reversible — the existence, uniqueness, and con-
tinuous dependence properties of solutions are all equally valid in reverse time (although
their detailed qualitative and quantitative properties will, of course, depend upon whether
time is running forwards or backwards). The irreversibility and ill-posedness of partial
differential equations modeling thermodynamical, biological, and other diffusive processes
in our universe may explain why Time’s Arrow points exclusively to the future.

The Heated Ring Redux

Let us next consider the periodic boundary value problem modeling heat flow in an in-
sulated circular ring. We fix the length of the ring to be £ = 27, with —7 < oz < 7
representing the “angular” coordinate around the ring. For simplicity, we also choose units
in which the thermal diffusivity is v = 1. Thus, we seek to solve the heat equation

ou  9%*u
= - 4.30
ot = om2 T<x<m, t>0, ( )
subject to periodic boundary conditions
u(t, — ) = u(t, ), gz (t,—7) = gz (t, ), t>0, (4.31)

that ensure continuity of the solution when the angular coordinate switches from — 7 to .
The initial temperature distribution is

u(0,2) = f(x), —m<z<mT. (4.32)

The resulting temperature u(¢, x) will be a periodic function in x of period 2.
Substituting the separable solution ansatz (3.15) into the heat equation and the bound-
ary conditions results in the periodic eigenvalue problem

d?v

g2 T Av =0, v(—=m) =v(n), V(=) = (). (4.33)
x

As we already noted in Section 3.1, the eigenvalues of this particular boundary value
problem are \, = n?, where n = 0,1,2,... is a nonnegative integer; the corresponding

eigenfunctions are the trigonometric functions
v, (x) = cosnz, U, (z) =sinnz, n=0,1,2,....

Note that A\, = 0 is a simple eigenvalue, with constant eigenfunction cos0z = 1 — the
sine solution sin 0z = 0 is trivial — while the positive eigenvalues are, in fact, double, each
possessing two linearly independent eigenfunctions. The corresponding eigensolutions to
the heated ring equation (4.30-31) are

u,, (t,x) zef"ztcosnx, u,(t,x) zef"ztsinnm, n=0,1,2,3,....
The resulting infinite series solution is
i 2 2
u(t,z) = 5ay+ Z (a,e " Fcosna+b,e” " 'sinnz), (4.34)

n=1
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with as yet unspecified coefficients a,,,b,,. The initial conditions require

oo
u(0,2) = Sag+ Z (a, cosnz + b, sinnzx) = f(x), (4.35)
n=1
which is precisely the complete Fourier series (3.34) of the initial temperature profile f(z).
Consequently,
1 [ 1 /7
a, = f(z)cosnzde, b, = f(z)sinnzde, (4.36)
™ J_x T J 7
are its usual Fourier coefficients (3.35).

As in the Dirichlet problem, after the initial instant, the high-frequency terms in the
series (4.34) become extremely small, since e~™'f < 1 for n > 0. Therefore, as soon as
t > 0, the solution instantaneously becomes smooth, and quickly degenerates into what is
in essence a finite sum over the first few Fourier modes. Moreover, as t — oo, all of the
Fourier modes will decay to zero with the exception of the constant mode, associated with
the null eigenvalue A\, = 0. Consequently, the solution will converge, at an exponential
rate, to a constant-temperature profile,

1 ™
u(t,z) — Say = 27/ f(x)dx,

which equals the average of the initial temperature profile. In physical terms, since the
insulation prevents any thermal energy from escaping the ring, it rapidly redistributes itself
so that the ring achieves a uniform constant temperature — its eventual equilibrium state.

Prior to attaining equilibrium, only the very lowest frequency Fourier modes will still
be noticeable, and so the solution will asymptotically look like

u(t,z) = yay+e '(a;cosz + by sinz) = Jag+rye ' cos(z +6,), (4.37)
where
a, =1, o080, = 217r ' f(z)cosxdr, by =rysind; = oo ' f(z)sinx du.
— —

Thus, for most initial data, the solution approaches thermal equilibrium at an exponential
rate of e~ *. The exceptions are when a; = b; = 0, for which the rate of convergence is
even faster, namely at a rate e” kzt, where k is the smallest integer such that at least one
of the kth order Fourier coefficients a,, b;, is nonzero.

In fact, once we are convinced that the bar must tend to thermal equilibrium as t — oo,
we can predict the final temperature without knowing the explicit solution formula. Our
derivation in Section 4.1 implies that the heat equation has the form of a conservation law
(4.1), with the conserved density being the temperature u(¢, ). Asin (4.2), the integrated
form of the conservation law reads
d / T T Ou T 0%

gt u(t,x) dx = o (t,z)de =~ a2 (t,z)dx

—T

ou ou
— | ttm) - g =) | =0,

where the flux terms cancel thanks to the periodic boundary conditions (4.31). Physically,
any flux out of one end of the circular bar is immediately fed into the other, abutting end,
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and so there is no net loss of thermal energy. We conclude that, for the periodic boundary
value problem, the total thermal energy

™
E(t) = / u(t, x) dz = constant (4.38)
-7
remains constant for all time. (In contrast, the thermal energy does not remain constant

for the Dirichlet boundary value problem, decaying steadily to 0 due to the out-flux of heat
through the ends of the bar; see Exercise 4.1.13 for further details.)

Remark: More correctly, according to (4.3), the thermal energy is obtained by multi-
plying the temperature by the product, ¢ = px, of the density and the specific heat of the
body. For the heat equation, both are constant, and so the physical thermal energy equals
o E(t). Mathematically, we can safely ignore this extra constant factor, or, equivalently,

work in physical units in which ¢ = 1. This does not extend to nonuniform bodies, whose
s

thermal energy is given by E(t) = / o(x) u(t,x) dz, and whose constancy, under suitable
—T

boundary conditions, follows from the conservation-law form (4.6) of the linear diffusion

equation.

In general, a system is in (static) equilibrium if it remains unaltered as time progresses.
Thus, any equilibrium configuration has the form u = u*(z), and hence satisfies du* /0t = 0.
If, in addition, v*(z) is an equilibrium solution to the periodic heat equation (4.30-33),
then it must satisfy

ou* 9*u* ou* ou*
-0 = () = u¥ —1) = 4.39
0 , w(—7) = u*(w), O (—m) P (m). ( )

In other words, u* is a solution to the periodic boundary value problem (4.33) for the null
eigenvalue A = 0. Thus, the null eigenfunctions (including the zero solution) are all the
possible equilibrium solutions. In particular, for the periodic boundary value problem, the
null eigenfunctions are constant, and therefore solutions to the periodic heat equation will
tend to a constant equilibrium temperature.

Now, once we know that the solution tends to a constant, u(t,z) — a as t — oo, then
its thermal energy tends to

E(t):/ u(t,z)dx — adr =2ma as t — o0.

—T —T

On the other hand, as we just demonstrated, the thermal energy is constant, so

E(t)=E(0) = /Tf u(0,z)dr = ! f(z)dz.

—T —T

Combining these two, we conclude that

" fla)de

f(x)dxr =27a, and so the equilibrium temperature o = 5
o T

equals the average initial temperature. This reconfirms our earlier result, but avoids having
to know an explicit series solution formula. As a result, the latter method can be applied
to a much wider range of situations.
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Inhomogeneous Boundary Conditions

So far, we have concentrated our attention on homogeneous boundary conditions. There is
a simple trick that will convert a boundary value problem with inhomogeneous but constant
Dirichlet boundary conditions,

ou  du

ot~ oa2
into a homogeneous Dirichlet problem. We begin by solving for the equilibrium temperature
profile. Asin (4.39), the equilibrium does not depend on ¢ and hence satisfies the boundary
value problem

u(t,0) = a, u(t, 0) = B, t>0, (4.40)

ou* O?u*
= 0 = ")/ s

ot Ox?
Solving the ordinary differential equation yields u*(x) = a+bx, where the constants a, b are
fixed by the boundary conditions. We conclude that the equilibrium solution is a straight

line connecting the boundary values:

uw(z) =a+ x. (4.41)

The difference

u(t,r) =u(t,z) —u*(z) =u(t,z) —a — p ; Y (4.42)

measures the deviation of the solution from equilibrium. It clearly satisfies the homoge-
neous boundary conditions at both ends:

a(t,0) = 0 = u(t, 0).

Moreover, by linearity, since both w(t,2) and u*(z) are solutions to the heat equation, so
is u(t, z). The initial data must be similarly adapted:

f-a _ =
’ x = f(x). (4.43)

Solving the resulting homogeneous initial-boundary value problem, we write (¢, x) in
Fourier series form (4.23), where the Fourier coefficients are specified by the modified

w(0,2) = u(t,x) —u(x) = f(x) —a —

initial data f(x) in (4.43). The solution to the inhomogeneous boundary value problem
thus has the series form

B—a o=~ yn?m? . nTT
u(t,z) = a+ g T ; b, exp [ — » t ] sin 0 (4.44)
where ,
~ 2 ~
b, = 6/ f(z) sinnzx dz, n=12,3,.... (4.45)
0

Since u(t, 0) decays to zero at an exponential rate as ¢ — oo, the actual temperature profile
(4.44) will asymptotically decay to the equilibrium profile,
b —«
¢ "
at the same exponentially fast rate, governed by the first eigenvalue \; = 72/¢? — unless

u(t,z) — u(r)=a +

51 = 0, in which case the decay rate is even faster.
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This method does not work as well when the boundary conditions are time-dependent:

u(t,0) = a(t), u(t, l) = B(t).
Attempting to mimic the preceding technique, we discover that the deviation®
3(t) —a(t)
1
satisfies the homogeneous boundary conditions, but now solves an inhomogeneous or forced
version of the heat equation:

ou  0%u _ our o, B'(t) — o/ (t)
o9t = oz2 + h(t,z), where h(t,z)=— ot (t,x) =—a/(t) — ’ x. (4.47)

Solution techniques for the latter partial differential equation will be discussed in Section 8.1
below.

u(t, ) = u(t,z) —u*(t,x), where u (t,z) = a(t) + (4.46)

Robin Boundary Conditions

Consider a bar of unit length and unit thermal diffusivity, insulated along its length,
which has one of its ends held at 0° and the other put in a heat bath. The resulting
thermodynamics are modeled by the heat equation subject to Dirichlet boundary conditions
at x = 0 and Robin boundary conditions at x = 1:

ou  O%u 0
at - a.’E2 9 U(t,O) - 07 a

where 8 # 0 is a constant® that measures the rate of transfer of thermal energy, with 5 > 0
when the bath is cold and so the energy is being extracted from the bar. As before, the
general solution to the resulting initial-boundary value problem can be assembled from
the separable eigensolutions based on our usual exponential ansatz u(t,z) = e~ v(z).
Substituting this expression into (4.48), we find that the eigenfunction v(z) must satisfy
the boundary value problem

ot 1)+ Bult.1) =0, (4.48)

2
_ v A, v(0) = 0, V(1) + Bo(1) = 0. (4.49)
dx?

In order to find nontrivial solutions v(z) # 0 to (4.49), let us first assume A = w? > 0,
where, without loss of generality, w > 0. The solution to the ordinary differential equation
that satisfies the Dirichlet boundary condition at = = 0 is a constant multiple of v(z) =
sinw x. Substituting this function into the Robin boundary condition at x = 1, we find

wcosw + Bsinw = 0, or, equivalently, w = — ftanw. (4.50)

It is not hard to see that there is an infinite number of real, positive solutions 0 < w; < w, <
wg < -+ — 00 to the latter transcendental equation. Indeed, they can be characterized as
the abscissas w,, > 0 of the intersection points of the graphs of the two functions f(w) = w

f In this case, u*(t,x) is not an equilibrium solution. Indeed, we do not expect the bar to go
to equilibrium if the temperature of its endpoints is constantly changing.

¥ The case B = 0 reduces to the mixed boundary value problem, whose analysis is left to the
reader.
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wl\ w2\w3\ UJO
A>0, g=1. A<0, B=-.5. A<0, B=-2

Figure 4.3.  Eigenvalue equation for Robin boundary conditions.

and g(w) = —ftanw, as shown in the first plot in Figure 4.3. Each root w, defines a

positive eigenvalue A, = w? > 0 to the boundary value problem (4.49) and hence an

exponentially decaying eigensolution
u, (t,x) = e ' sinw, x (4.51)

to the Robin boundary value problem (4.48). While there is no explicit formula, nu-
merical approximations to the eigenvalues are easily found via a numerical root finder,
e.g., Newton’s Method, [24,94]. In particular, for = 1, the first three eigenvalues are
A\ =wi &~ 4.1159, N\, = wi ~24.1393, \; = w3 ~ 63.6591.

What about a zero eigenvalue? If A = 0 in (4.49), then the solution to the ordinary
differential equation that satisfies the Dirichlet boundary condition is a constant multiple
of v(z) = z. This function satisfies the Robin boundary condition v'(1) + fv(1) = 0 if and
only if 5 = —1. In this special configuration, the heat equation admits a time-independent
eigensolution u,(t, z) = x with eigenvalue A, = 0. Physically, the rate of transfer of thermal
energy into the bar through its end in the heat bath is exactly enough to cancel the heat
loss through the Dirichlet end, resulting in a steady-state solution. All other eigenmodes
correspond to positive eigenvalues, and hence are exponentially decaying. The general
solution decays to the steady state, which is a constant multiple of the null eigensolution:
u(t,x) = cx as t — 0o, at an exponential rate prescribed, generically, by the first positive
eigenvalue A\; > 0.

However, in contrast to the more common types of boundary conditions (Dirichlet,
Neumann, mixed, periodic), we cannot automatically rule out the existence of negative
eigenvalues in the Robin case. Suppose A = —w? < 0 with w > 0. Now the solution to
(4.49) that satisfies the Dirichlet boundary condition at = 0 is a constant multiple of
the hyperbolic sine function v(z) = sinhw x. Substituting this expression into the Robin
boundary condition at x = 1 produces

wcoshw + Bsinhw = 0, or, equivalently, w = — ftanhw, (4.52)

where -
sinh w ev —e ¢
tanhw = = (4.53)
coshw e¥+e v
is the hyperbolic tangent. If § > —1, there are no solutions w > 0 to this transcendental

equation, and in this case all the eigenvalues are strictly positive and all solutions to the
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heat equation are exponentially decaying. On the other hand, if 5 < —1, there is a single
solution w, > 0, which produces a single negative eigenvalue \; = —w3. Representative
graphs illustrating the two possibilities appear in Figure 4.3; in the first, the graph of
f(w) = w does not intersect the graph of g(w) = j tanhw when w > 0, whereas it intersects
the graph of g(w) = 2tanhw at a single point, with abscissa w, ~ 1.9150, producing the
negative eigenvalue A\, ~ —w? ~ —3.6673. Thus, when 8 < —1, there is, in addition to all
the exponentially decaying eigenmodes associated with the positive eigenvalues, a single

unstable exponentially growing eigenmode

Ao

ug(t, x) = e sinhw, . (4.54)

Physically, 5 < —1 implies that thermal energy is entering the Robin end of the bar at a
faster rate than can be removed through the Dirichlet end, and hence the bar experiences
an exponential increase in its overall temperature.

Remark: Even though some Robin boundary conditions admit exponentially growing
solutions, and hence lead to unstable dynamics, the initial-boundary value problem remains
well-posed because the solution exists and is uniquely determined by the initial data, and,
moreover, small changes in the initial conditions induce relatively small changes in the
resulting solution on bounded time intervals.

The Root Cellar Problem

As a final example, we discuss a problem that involves analysis of the heat equation on
a semi-infinite interval. The question is this: how deep should you dig a root cellar? In
the prerefrigeration era, a root cellar was used to keep food cool in the summer, but not
freeze in the winter. We assume that the temperature inside the Earth depends only on
the depth and the time of year. Let u(¢,x) denote the deviation in the temperature from
its annual mean at depth x > 0 and time t. We shall assume that the temperature at the
Earth’s surface, z = 0, fluctuates in a periodic manner; specifically, we set

u(t,0) = a coswt, (4.55)
where the oscillatory frequency
2m
= =2.0 x 10" "sec™" 4.56
“ = 365.25 days XA see (4.56)

refers to yearly temperature variations. In this model, we shall ignore daily temperature
fluctuations, since their effect is not significant below a very thin surface layer. At large
depths the temperature is assumed to be unvarying:

u(t,z) — 0 as xr — 00, (4.57)

where 0 refers to the mean temperature.

Thus, we must solve the heat equation on a semi-infinite bar 0 < x < co, with time-
dependent boundary conditions (4.55,57) at the ends. The analysis will be simplified a
little if we replace the cosine by a complex exponential, and so we look for a complex
solution with boundary conditions

u(t,0) = ael*? lim wu(t,z) = 0. (4.58)

T —r 00
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Let us try a separable solution of the form
u(t,z) = v(z) el (4.59)

Substituting this expression into the heat equation u, = yu,,, leads to
iwv(x) eiwt _ ’Y’L)N(l‘) eiwt

Canceling the common exponential factors, we conclude that v(x) should solve the bound-

ary value problem

yu"(z) = iww, v(0) = a, im v(z) = 0.

The solutions to the ordinary differential equation are

—eViw/ve _ oVw/@2y) 04z — e Viw/ve _ o= w/2y) (+i)e

vy () vy()
The first solution is exponentially growing as * — oo, and so not germane to our prob-
lem. The solution to the boundary value problem must therefore be a multiple of the
exponentially decaying solution:

v(m) =ae \/w/(27) (I+i)z

Substituting back into (4.59), we find the (complex) solution to the root cellar problem to
be
u(t,z) =ae * Ve/@7) giwi=y/w/@n)a), (4.60)

The corresponding real solution is obtained by taking the real part,

u(t,z) = ae= Ve cog <wt - \/; ;v) . (4.61)
Y

The first factor in (4.61) is exponentially decaying as a function of the depth. Thus, the
further underground one is, the less noticeable is the effect of the surface temperature
fluctuations. The second factor is periodic in time, with the same annual frequency w. The
interesting feature is that the temperature variations (4.61) are typically out of phase with
respect to the surface temperature fluctuations, having an overall phase lag of

w
5—\/27$

that depends linearly on the depth x. In particular, a cellar built at a depth where ¢ is an
odd multiple of 7 will be completely out of phase, being hottest in the winter, and coldest
in the summer. Thus, the (shallowest) ideal depth at which to build a root cellar would
take § = 7, corresponding to a depth of

x:7r\/27. (4.62)

w

For typical soils in the Earth, v ~ 1076 meters? sec™!, and so, with w given by (4.56),

x =~ 9.9 meters. However, at this depth, the relative amplitude of the oscillations is
e TVE/2Y 2 o= .04,

and hence there is only a 4% temperature fluctuation. In Minneapolis, the temperature
varies, roughly, from —40°C to +40°C, and hence our 10-meter-deep root cellar would
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experience only a 3.2°C annual temperature deviation from the winter, when it is the
warmest, to the summer, when it is the coldest. Building the cellar twice as deep would
lead to a temperature fluctuation of .2%, now in phase with the surface variations, which
means that the cellar would be, for all practical purposes, at constant temperature year
round.

Exercises

4.1.1. Suppose the ends of a bar of length 1 and thermal diffusivity v = 1 are held fixed at
respective temperatures 0° and 10°. (a) Determine the equilibrium temperature profile.
(b) Determine the rate at which the equilibrium temperature profile is approached.

(¢) What does the temperature profile look like as it nears equilibrium?

4.1.2. A uniform insulated bar 1 meter long is stored at room temperature of 20° Celsius. An
experimenter places one end of the bar in boiling water and the other end in ice water.
(a) Set up an initial-boundary value problem that models the temperature in the bar.
(b) Find the equilibrium temperature distribution.
(¢) Discuss how your answer depends on the material properties of the bar.
4.1.3. Consider the initial-boundary value problem
du  0u u(t,0) =0 =wu(t,10),  t>0,
ot~ 0x2’ u(0,z) = f(z), 0<z<10,
for the heat equation where the initial data has the following form:

/\ r—1, 1<z <2,

11 -5z, 2<x <3,

fl@)=4 bz —19, 3< <4,
5—ux, 4 <z <5,
0, otherwise.

Discuss what happens to the solution as t increases. You do not need to write down an ex-
plicit formula, but for full credit you must explain (sketches can help) at least three or four
interesting things that happen to the solution as time progresses.

4.1.4. Find a series solution to the initial-boundary value problem for the heat equation
u; = u,, for 0 <z < 1 when one the end of the bar is held at 0° and the other is insulated.
Discuss the asymptotic behavior of the solution as t — oco.

4.1.5. Answer Exercise 4.1.4 when both ends of the bar are insulated.

4.1.6. A metal bar, of length £ = 1 meter and thermal diffusivity v = 2, is taken out of a 100°
oven and then fully insulated except for one end, which is fixed to a large ice cube at 0°.
(a) Write down an initial-boundary value problem that describes the temperature u(t, x) of
the bar at all subsequent times. (b) Write a series formula for the temperature distribu-
tion u(t, z) at time ¢ > 0. (c¢) What is the equilibrium temperature distribution in the bar,
i.e., for t > 0?7 How fast does the solution go to equilibrium? (d) Just before the tempera-
ture distribution reaches equilibrium, what does it look like? Sketch a picture and discuss.

4.1.7. A metal bar of length ¢ = 1 and thermal diffusivity v = 1 is fully insulated, including its
0<a<,,
1<z <l
(a) Use Fourier series to write down the temperature distribution at time ¢ > 0.

T
ends. Suppose the initial temperature distribution is (0, 2) = { ’
—z,
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(b) What is the equilibrium temperature distribution in the bar, i.e., for ¢ > 07
(c) How fast does the solution go to equilibrium? (d) Just before the temperature distribu-
tion reaches equilibrium, what does it look like? Sketch a picture and discuss.

4.1.8.(a) Find the series solution to the heat equation u, = u,, on —2 <z <2, ¢t >0, when
subject to the Dirichlet boundary conditions u(t, —2) = w(¢,2) = 0 and the initial condi-

. z, |z|<1

t 0 = ’ .
fon u(0, z) { 0, otherwise.
times. (c¢) At what rate does the temperature approach thermal equilibrium?

(b) Sketch a graph of the solution at some representative

4.1.9. Solve the heat equation when the right-hand end of a bar of unit length is held at a fixed
constant temperature o while the left-hand end is insulated. Discuss the asymptotic behav-
ior of the solution.

4.1.10. For each of the following initial temperature distributions, (i) write out the Fourier se-
ries solution to the heated ring (4.30-32), and (4é¢) find the resulting equilibrium tempera-
1, —7m<z<0,

ture as t — co:  (a) cosx, (b) sin®z, (c) |z|, (d) 0, 0<z<m

{ 4.1.11. Suppose that the temperature u(t, z) of a homogeneous bar satisfies the heat equation.
Show that the associated heat flux w(t, z) is also a solution to the same heat equation.

& 4.1.12. Show that the time derivative v = u, of any solution to the heat equation is also a so-

lution. If u(t, ) satisfies the initial condition w(0,z) = f(z), what initial condition does
v(t, x) inherit?

¥4
{ 4.1.13. Explain why the thermal energy E(t) = /0 u(t, z) dz is not constant for the Dirichlet

initial-boundary value problem for the heat equation on the interval [0, £].

L
{ 4.1.14.(a) Show that the thermal energy E(t) = /0 u(t, ) dz is constant for the Neumann

boundary value problem on the interval [0,¢]. (b) Use part (a) to prove that the constant
equilibrium solution for the homogeneous Neumann boundary value problem is equal to the
mean initial temperature u(0, ).

4.1.15. Let u(t,z) be any nonconstant solution to the periodic heat equation (4.30-31). Prove
7T
that the squared L? norm of the solution, N(t) = / u(t, as)2 dz, is a strictly decreasing
-7

function of t. Remark: Interestingly, comparing this result with formula (4.38), we find
that, for the periodic boundary value problem, the integral of u is constant, but the inte-
gral of u? is strictly decreasing. How is this possible?

© 4.1.16. The cable equation v, = ~yv,, — av, with v,a > 0, also known as the lossy heat
equation,was derived by the nineteenth-century Scottish physicist William Thomson to
model propagation of signals in a transatlantic cable. Later, in honor of his work on ther-
modynamics, including determining the value of absolute zero temperature, he was named
Lord Kelvin by Queen Victoria. The cable equation was later used to model the electrical
activity of neurons. (a) Show that the general solution to the cable equation is given by
v(t,z) = e~ *'u(t, ), where u(t, z) solves the heat equation Uy = YUy,
(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem

vy =YV, —av,  v(0,z)=f(z), 00 =0=uv(1), 0<z<1, t>0.

Does your solution approach an equilibrium value? If so, how fast?
(¢) Answer part (b) for the Neumann problem

V=YV — v, v(0,2) = f(z), v, (t,0)=0=v,(t,1), 0<z<1, ¢t>0.

& 4.1.17. The convection-diffusion equation u, + cu, = yu,, is a simple model for the diffusion
of a pollutant in a fluid flow moving with constant speed ¢. Show that v(t, z) = u(t, x + ct)
solves the heat equation. What is the physical interpretation of this change of variables?

4.1.18. Combine Exercises 4.1.16—17 to solve the lossy convection-diffusion equation
Uy = YUy, +Ccu, —au.
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¢ 4.1.19. Let v > 0 and A < 0. (a) Find all solutions to the differential equation vv"” + Av = 0.
(b) Prove that the only solution that satisfies the boundary conditions v(0) = 0, v(¢) =0,
is the zero solution v(z) = 0.

{ 4.1.20. Answer Exercise 4.1.19 when X is a non-real complex number.

4.2 The Wave Equation

Let us return to the one-dimensional wave equation

Pu 4 0%u

o2~ oa?
with constant wave speed ¢ > 0, used to model the vibrations of bars and strings. In Chap-
ter 2, we learned how to explicitly solve the wave equation by the method of d’Alembert.
Unfortunately, d’Alembert’s approach does not extend to other equations of interest to us,
and so alternative solution techniques, particularly those based on Fourier methods, are
worth developing. Indeed, the resulting series solutions provide valuable insight into wave
dynamics on bounded intervals.

(4.63)

Separation of Variables and Fourier Series Solutions

One of the oldest — and still one of the most widely used — techniques for constructing
explicit analytic solutions to a wide range of linear partial differential equations is the
method of separation of variables. We have, in fact, already employed a simplified version
of the method when constructing each eigensolution to the heat equation as an exponential
function of ¢ times a function of x. In general, the separation of variables method seeks
solutions to the partial differential equation that can be written as the product of functions
of the individual independent variables. For the wave equation, we seek solutions

u(t,z) = w(t) v(x) (4.64)

that can be written as the product of a function of ¢ alone and a function of x alone.
When the method succeeds (which is not guaranteed in advance), both factors are found
as solutions to certain ordinary differential equations.

Let us see whether such an expression can possibly solve the wave equation. First of
all, , ,

o ~UOWD o

where the primes indicate ordinary derivatives. Substituting these expressions into the
wave equation (4.63), we obtain

w’ (t)v(x) = A w(t) v (z).
Dividing both sides by w(t) v(z) (which we assume is not identically zero, since otherwise,
the solution would be trivial) yields
w’(t) _ o v"(x)
= C y
w(t) v(x)

= w(t) v (x),
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which effectively “separates” the t and x variables on each side of the equation, whence
the name “separation of variables”.

Now, how could a function of ¢ alone be equal to a function of x alone? A moment’s
reflection should convince the reader that this can happen if and only if the two functions
are constant,T SO

w”(t) _ o v"(x)
=c
w(t) ()
where we use A to indicate the common separation constant. Thus, the individual factors
w(t) and v(x) must satisfy ordinary differential equations
d*w d®v A
dtz—szO, dazz_cQU:O7
as promised. We already know how to solve both of these ordinary differential equations
by elementary techniques. There are three different cases, depending on the sign of the
separation constant A. As a result, each value of A\ leads to four independent separable
solutions to the wave equation, as listed in the accompanying table.

= (4.65)

Separable Solutions to the Wave Equation

A w(t) v(x) u(t,z) = w(t) v(x)

coswt COSW$ coswt sinwsp
A=—-w?<0 coswt, sinwt  cos ", sin " ¢’ ¢’
C C . wx . . WX

sinwt cos , sSinwt sin

c c
A=0 1, ¢ 1, z 1, z, t, tx
—w(t+zx/c) w(t—z/c)
A= U)2 >0 efwt’ ewt efwz/cv ewz/c e ) € s

e~ w (tfz/c)’ ew (t+z/c)

So far, we have not taken the boundary conditions into account. Consider first the
case of a string of length ¢ with two fixed ends, and thus subject to homogeneous Dirichlet
boundary conditions

u(t,0) =0 = u(t,{).

Substituting the separable ansatz (4.65), we find that v(x) must satisfy

v\

2~ 2V =0 0(0) = 0 = v(f). (4.66)
The complete system of (nontrivial) solutions to this boundary value problem were found
in (4.21):

2
v, (x) :sinnﬂ-x, A, =— (nwc) , n=123....

4

¥ Technical detail: one should assume that the underlying domain is connected for this to be
valid as stated. In practice, this technicality can be safely ignored.
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Hence, according to the table, the corresponding separable solutions are

t ~ . t.
u,,(t,z) = cos n7;c sin nzx , u,, (t,z) = sin T”;C sin nzx : (4.67)

We will now employ these solutions to construct a candidate series solution to the wave
equation subject to the prescribed boundary conditions:

o0

nmct nmwx nmct nmy
t,r)= b i d, si i . 4.
u(t, x) Z { ncos . sin - +d,sin 0 osin (4.68)
n=1
The solution is thus a linear combination of the natural Fourier modes vibrating with
frequencies
nmtc  nw o [K
w, = = , n=123 ..., 4.69
== (1.69)
where the second expression follows from (2.66). Observe that, the longer the length ¢
of the string, or the higher its density p, the slower the vibrations, whereas increasing its
stiffness or tension x speeds them up — in exact accordance with our physical intuition.
The Fourier coefficients b,, and d,, in (4.68) will be uniquely determined by the initial
conditions

ou (
ot
Differentiating the series term by term, we discover that we must represent the initial
displacement and velocity as Fourier sine series

u(0,2) = f(x), 0,2) = g(z), 0<z<Ud.

u(0,2) = T; b,, sin ng;v = f(x), g:: (0,2) = nz::l dnn;c sin n;m: = g(z).
Therefore,
9 [t
b, = (z) sin e dx, n=12,3,..., (4.70)
¢, ¢

are the Fourier sine coefficients (3.85) of the initial displacement f(x), while

4
d, = ° /g(zv) sinnz$dx, n=1,23,.... (4.71)
0

" nme
are rescaled versions of the Fourier sine coefficients of the initial velocity g(z).

Example 4.3. A string of unit length fixed at both ends is held taut at its center
and then released. Our task is to describe the ensuing vibrations. Let us assume that the
physical units are chosen so that ¢ = 1, and so we are asked to solve the initial-boundary
value problem

Upy = Uy u(0,z) = f(x), uy (0,2) =0, u(t,0) = u(t,1) = 0. (4.72)

To be specific, we assume that the center of the string has been moved by half a unit, and
so the initial displacement is
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t=.6

t=.8

t=1

Figure 4.4.  Plucked string solution of the wave equation. L—Ij

The vibrational frequencies w,, = nm are the integral multiples of 7, and so the natural

modes of vibration are

cosnmt sinnwx and

Consequently, the general solution to the boundary value problem is

[e'e]

sinnnt sinnrwx

n=12,....

u(t,z) = Z (b, cosnmt sinnmz +d, sinnwt sinnmw),

n=1

where

1
b, = 2/ f(x) sinnmxdr =
0

while d,, = 0. Therefore, the solution is the Fourier sine series

ub) = % 3 (=)
k=0

1/2
4/ rsinnmxdr =
0

g Ccos(2k+ 1) 7wt sin(2k + 1) 7w

2k +1)272°

n=2k+1,

n =2k,

(4.73)

whose profile is depicted in Figure 4.4. At time ¢t = 1, the original displacement is re-
produced exactly, but upside down. The subsequent dynamics proceeds as before, but in
mirror-image form. The original displacement reappears at time ¢ = 2, after which time
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the motion is periodically repeated. Interestingly, at times ¢, = .5,1.5,2.5,..., the dis-
placement is identically zero, u(t,,z) = 0, although the velocity is not, u,(t;,x) # 0. The
solution appears to be piecewise affine, i.e., its graph is a collection of straight lines. This
can, in fact, be proved as a consequence of the d’Alembert formula; see Exercise 4.2.13.
Observe that, unlike the heat equation, the wave equation does not smooth out discontinu-
ities and corners in the initial data. And, although we will loosely refer to such piecewise
C? functions as “solutions”, they are not, in fact, classical solutions. (Their status as weak
solutions, though, can be established using the methods of Section 10.4.)

While the series form (4.68) of the solution is perhaps less satisfying than a d’Alembert-
style formula, we can still use it to deduce important qualitative properties. First of all,
since each term is periodic in ¢ with period 2¢/c, the entire solution is time periodic with
that period: w(t +2¢/c,x) = u(t, z). In fact, after half a period, the solution reduces to

u (ﬁ,x) = i (=)™, sinnzx =— i b, sinnﬁ(i_ z) _ —u(0,0—x) = —f(l—2x).

n=1 n=1

In general,

u<t+ﬁ, x> — ot —a), u(t+ 2L x) — u(t, ). (4.74)

Therefore, the initial wave form is reproduced, first as an upside down mirror image of
itself at time ¢ = ¢/c, and then in its original form at time ¢ = 2/¢/c. This has the impor-
tant consequence that vibrations of (homogeneous) one-dimensional media are inherently
periodic, because the fundamental frequencies (4.69) are all integer multiples of the lowest
one: w,, = Nwy.

Remark: The immediately preceding remark has important musical consequences. To
the human ear, sonic vibrations that are integral multiples of a single frequency, and thus
periodic in time, sound harmonious, whereas those with irrationally related frequencies,
and hence experiencing aperiodic vibrations, sound dissonant. This is why most tonal
instruments rely on vibrations in one dimension, be it a violin or piano string, a column
of air in a wind instrument (flute, clarinet, trumpet, or saxophone), a xylophone bar, or
a triangle. On the other hand, most percussion instruments rely on the vibrations of two-
dimensional media, e.g., drums and cymbals, or three-dimensional solid bodies, e.g., blocks.
As we shall see in Chapters 11 and 12, the frequency ratios of the latter are irrationally
related, and hence their motion is only quasiperiodic, as in Example 2.20. For some reason,
our appreciation of music is psychologically attuned to the differences between rationally
related /periodic and irrationally related/quasiperiodic vibrations, [105].

Consider next a string with both ends left free, and so subject to the Neumann bound-
ary conditions

ou ou
t,0)=0=_ (L1). 4.75
0 =0="" 10 (1.75)
The solutions of (4.66) satisfying v'(0) = 0 = v’(¢) are now
v, () :cosn;m with w,, = n;c, n=20,1,2,3,....

The resulting solution takes the form of a Fourier cosine series

u(t,x) = ag+ cot + i a Cosnﬂ-Ct cos " e sinnﬂ-Ct cos " (4.76)
o " 14 14 " 14 L) ’

n=1
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The first two terms come from the null eigenfunction vy(x) = 1 with wy, = 0. The string
vibrates with the same fundamental frequencies (4.69) as in the fixed-end case, but there
is now an additional unstable mode c,t that is no longer periodic, but grows linearly in
time. In general, the presence of null eigenfunctions implies that the wave equation admits
unstable modes.

Substituting (4.76) into the initial conditions

wo.0)= @, O

we find that the Fourier coefficients are prescribed, as before, by the initial displacement
and velocity:

(0,2) = g(=), 0<z<d,

2 ! 2 [
a,, = E/O f(l') COSnZ—xdl‘, Cn:nﬂ_c/o g(':E) COSnZ-:Ed:E, n:11273a"' .

The order-zero coefficients’

1 Z
Ay = E/O f(x)dll?, Co = g/ dlE,

are equal to the average initial displacement and average initial velocity of the string. In
particular, when ¢, = 0, there is no net initial velocity, and the unstable mode is not
excited. In this case, the solution is time-periodic, oscillating around the position given by
the average initial displacement. On the other hand, if ¢, # 0, the string will move off with
constant average speed c,, all the while vibrating at the same fundamental frequencies.

Similar considerations apply to the periodic boundary value problem for the wave
equation on a circular ring. The details are left as Exercise 4.2.6 for the reader.

Exercises

4.2.1. In music, an octave corresponds to doubling the frequency of the sound waves. On my
piano, the middle C string has length .7 meter, while the string for the C an octave higher
has length .6 meter. Assuming that they have the same density, how much tighter does the
shorter string need to be tuned?

4.2.2. How much longer would a piano string have to be to make the same sound when it is
pulled twice as tight?

4.2.3. Write down the solutions to the following initial-boundary value problems for the wave
equation in the form of a Fourier series:

(a) Uy = Uy, w(t,0) =u(t,m) =0, u(0,2) =1, u,(0,z)=0;

(b) Ugy = 2Upy, u(t,0) = u(t,m) =0, u(0,z)=0, ut(ovx) =1

(¢) uy =3uyy, u(t,0)=u(t,m) =0, u(0,z)= sin® z, u, (0, ) = 0;
(d) uy =4u,,, u(t,0)=u(t1)=0, u0,z)==12, u/ (0,z)=—u;

(e) uy =uyy, u(t,0) =u,(t,1)=0, u(0,z2)=1, u,(0,z)=0;

(f) uy =2uy,, u,(t, 0) = ux( t,27) =0, u(0,z) = -1, u,(0,z)=1;
(8) wy =uypy, u,(8,0)=2u,(t1) =0, u0,z)=2(1—-=x), u,(0,z)=0.

T Note that we have not included the usual % factor in the constant terms in the Fourier series
(4.76).
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4.2.4. Find all separable solutions to the wave equation u,, = u,, on the interval 0 < =z < 7
subject to (a) mixed boundary conditions u(t,0) = 0, u,(t,7) = 0;
(b) Neumann boundary conditions v (¢,0) =0, u_(t,7) = 0.

4.2.5.(a) Under what conditions is the solution to the Neumann boundary value problem (4.75)
a periodic function of ¢? What is the period? (b) Establish explicit periodicity formulas of
the form (4.74). (¢) Under what conditions is the velocity du/0t periodic in ¢?

© 4.2.6.(a) Formulate the periodic initial-boundary value problem for the wave equation on the
interval —7 < z < 7, modeling the vibrations of a circular ring. (b) Write out a formula for
the solution to your problem in the form of a Fourier series. (¢) Is the solution a periodic
function of ¢? If so, what is the period? (d) Suppose the initial displacement coincides with
that in Figure 4.6, while the initial velocity is zero. Describe what happens to the solution
as time evolves.

4.2.7. Show that the time derivative, v = du/dt, of any solution to the wave equation is also a
solution. If you know the initial conditions of u, what initial conditions does v satisfy?

4.2.8. Find all the separable real solutions to the wave equation subject to a restoring force:
Uy = Uy, — u. Discuss their long-term behavior.

© 4.2.9. Let a,c > 0 be positive constants. The telegrapher’s equation u,, + au, = c? U, Tepre-
sents a damped version of the wave equation. Consider the Dirichlet boundary value prob-
lem u(¢t,0) = u(t,1) = 0, on the interval 0 < z < 1, with initial conditions u(0,z) = f(z),
u,(0,z) = 0. (a) Find all separable solutions to the telegrapher’s equation that satisfy the
boundary conditions. (b) Write down a series solution for the initial boundary value prob-
lem. (c) Discuss the long term behavior of your solution. (d) State a criterion that distin-
guishes overdamped from underdamped versions of the equation.

4.2.10. The fourth-order partial differential equation uy = —u,,... is a simple model for a vi-
brating elastic beam. (a) Find all separable real solutions to the beam equation. (b) Show
that any (complex) solution to the Schrédinger equation iu, = u,, solves the beam equa-
tion.

4.2.11. The initial-boundary value problem

u(t,0) = u,, (t,0) = u(t, 1) = uy,(t,1) =0, 0O<z<1,
powe? U(O, 1‘) = f(l‘), ut(oa 1‘) =0, t>0,
models the vibrations of an elastic beam of unit length with simply supported ends, sub-
ject to a nonzero initial displacement f(x) and zero initial velocity. (a) What are the vibra-
tional frequencies for the beam? (b) Write down the solution to the initial-boundary value

problem as a Fourier series. (c¢) Does the beam vibrate periodically
(i) for all initial conditions? (ii) for some initial conditions? (74) for no initial conditions?

utt = —u

4.2.12. Multiple choice: The initial-boundary value problem

u(t,0) = u,,(t,0) = u(t, 1) = uy,(t,1) =0, 0<z<l,
v U(va) = f(x)v ut(ovx) = g($)v t>0,
is well-posed for (a) t > 0; (b) t < 0; (c¢) all ¢; (d) no t. Explain your answer.

Uy = U

The d’Alembert Formula for Bounded Intervals

In Theorem 2.15, we derived the explicit d’Alembert formula

x—c x+c vt
u(t,z) = iy ) ;f( *et) + 21c/ 9(z)dz, (4.77)

r—ct
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Figure 4.5. Odd periodic extension of a concentrated pulse.

for solving the basic initial value problem for the wave equation on an infinite interval:

Pu % ou
atz =cC a.fUQ I u(O,:L‘)—f(.%), 8t (0,:1?)—9(55)7 —00 < T < oQ.

In this section we explain how to adapt the formula in order to solve initial-boundary value
problems on bounded intervals, thereby effectively summing the Fourier series solution.
The easiest case to deal with is the periodic problem on 0 < z < /¢, with boundary
conditions
u(t,0) = u(t, 0), u,(t,0) = u,(t,0). (4.78)

If we extend the initial displacement f(x) and velocity g(z) to be periodic functions of
period ¢, so f(x+/¢) = f(z) and g(x+¢) = g(z) for all x € R, then the resulting d’Alembert
solution (4.77) will also be periodic in x, so u(t,z + ¢) = u(t,z). In particular, it satisfies
the boundary conditions (4.78) and so coincides with the desired solution. Details are to
be supplied in Exercises 4.2.27-28.

Next, suppose we have fixed (Dirichlet) boundary conditions

u(t,0) =0, u(t,f) = 0. (4.79)

The resulting solution can be written as a Fourier sine series (4.68), and hence is both odd
and 2 {—periodic in z. Therefore, to write the solution in d’Alembert form (4.77), we extend
the initial displacement f(x) and velocity g(x) to be odd, periodic functions of period 2/:

flmx)==f(2), [fle+20=[f(x), g(=2)=—g(x), g(z+20)=g(2)

This will ensure that the d’Alembert solution also remains odd and periodic. As a result,
it satisfies the homogeneous Dirichlet boundary conditions (4.79) for all ¢, cf. Exercise
4.2.31. Keep in mind that, while the solution u(¢, x) is defined for all z, the only physically
relevant values occur on the interval 0 < x < /. Nevertheless, the effects of displacements
in the unphysical regime will eventually be felt as the propagating waves pass through the
physical interval.

For example, consider an initial displacement that is concentrated near x = £ for some
0 < & < . Tts odd 2/—periodic extension consists of two sets of replicas: those of the same
form occurring at positions £ +2/¢, £ £4/, ..., and their upside-down mirror images at
the intermediate positions — &, —£+ 24, —&4+44, ... ; Figure 4.5 shows a representative
example. The resulting solution begins with each of the pulses, both positive and negative,
splitting into two half-size replicas that propagate with speed ¢ in opposite directions.
When a left and right moving pulse meet, they emerge from the interaction unaltered. The
process repeats periodically, with an infinite row of half-size pulses moving to the right
kaleidoscopically interacting with an infinite row moving to the left.

However, only the part of this solution that lies on 0 < x < £ is actually observed
on the physical string. The effect is as if one were watching the full solution as it passes
by a window of length ¢. Such observers will interpret what they see a bit differently. To
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Figure 4.6.  Solution to wave equation with fixed ends. L—Ij

wit, the original pulse starting at position 0 < & < ¢ splits up into two half-size replicas
that move off in opposite directions. As each half-size pulse reaches an end of the string,
it meets a mirror-image pulse that has been propagating in the opposite direction from
the nonphysical regime. The pulse is reflected at the end of the interval and becomes an
upside-down mirror image moving in the opposite direction. The original positive pulse
has moved off the end of the string just as its mirror image has moved into the physical
regime. (A common physical realization is a pulse propagating down a jump rope that is
held fixed at its end; the reflected pulse returns upside down.) A similar reflection occurs
as the other half-size pulse hits the other end of the physical interval, after which the
solution consists of two upside-down half-size pulses moving back towards each other. At
time t = {/c they recombine at the point ¢ — £ to instantaneously form a full-sized, but
upside-down mirror image of the original disturbance — in accordance with (4.74). The
recombined pulse in turn splits apart into two upside-down half-size pulses that, when each
collides with the end, reflect and return to their original upright form. At time t = 2//c,
the pulses recombine to exactly reproduce the original displacement. The process then
repeats, and the solution is periodic in time with period 2¢/c.

In Figure 4.6, the first picture displays the initial displacement. In the second, it has
split into left- and right-moving half-size clones. In the third picture, the left-moving bump
is in the process of colliding with the left end of the string. In the fourth picture, it has
emerged from the collision, and is now upside down, reflected, and moving to the right.
Meanwhile, the right-moving pulse is starting to collide with the right end. In the fifth
picture, both pulses have completed their collisions and are now moving back towards each
other, where, in the last picture, they recombine into an upside-down mirror image of the
original pulse. The process then repeats itself, in mirror image, finally recombining to the
original pulse, at which point the entire process starts over.

The Neumann (free) boundary value problem

0
0

0

u
l‘<t’0>_07 a

;‘ (t,0) =0, (4.80)

is handled similarly. Since the solution has the form of a Fourier cosine series in x, we
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extend the initial conditions to be even 2/—periodic functions

f(=z) = f(a), flx+20) = f(=), 9(=x) = g(), g(w +20) = g(x).

The resulting d’Alembert solution (4.77) is also even and 2/¢-periodic in z, and hence
satisfies the boundary conditions, cf. Exercise 4.2.31(b). In this case, when a pulse hits
one of the ends, its reflection remains upright, but becomes a mirror image of the original;
a familiar physical illustration is a water wave that reflects off a solid wall. Further details
are left to the reader in Exercise 4.2.22

In summary, we have now studied two very different ways to solve the one-dimensional
wave equation. The first, based on the d’Alembert formula, emphasizes their particle-like
aspects, where individual wave packets collide with each other, or reflect at the boundary,
all the while maintaining their overall form, while the second, based on Fourier analysis,
emphasizes the vibrational or wave-like character of the solutions. Some solutions look
like vibrating waves, while others appear much more like interacting particles. But, like
the proverbial blind men describing an elephant, these are merely two facets of the same
solution. The Fourier series formula shows how every particle-like solution can be decom-
posed into its constituent vibrational modes, while the d’Alembert formula demonstrates
how vibrating solutions combine into moving wave packets.

The coexistence of particle and wave features is reminiscent of the long-running his-
torical debate over the nature of light. Newton and his disciples proposed a particle-based
theory, anticipating the modern concept of photons. However, until the beginning of the
twentieth century, most physicists advocated a wave-like or vibrational viewpoint. KEin-
stein’s explanation of the photoelectric effect served to resurrect the particle interpretation.
Only with the establishment of quantum mechanics was the debate resolved — light, and,
indeed, all subatomic particles manifest both particle and wave features, depending upon
the experiment and the physical situation. But a theoretical basis for the perplexing wave-
particle duality could have been found already in Fourier’s and d’Alembert’s competing
solution formulae for the classical wave equation!

Exercises

{ 4.2.13.(a) Solve the initial-boundary value problem from Example 4.3 using the d’Alembert
method.
(b) Verify that your solution coincides with the Fourier series solution derived above.
(c) Justify our earlier observation that, at each time ¢, the solution u(t, z) is a piecewise
affine function of z.

4.2.14. Sketch the solution of the wave equation u,, = wu,, and describe its behavior when
1 1 2
the initial displacement is the box function u(0,z) = ’ N < " while the initial
0, otherwise,

velocity is 0 in each of the following scenarios: (a) on the entire line —oo < x < o0;

(b) on the half-line 0 < x < oo, with homogeneous Dirichlet boundary condition at the
end; (¢) on the half-line 0 < z < oo, with homogeneous Neumann boundary condition at
the end; (d) on the bounded interval 0 < z < 5 with homogeneous Dirichlet boundary
conditions; (e) on the bounded interval 0 < z < 5 with homogeneous Neumann boundary
conditions.
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4.2.15. Answer Exercise 4.2.14 when the initial velocity is the box function, while the initial
displacement is zero.

4.2.16. Consider the initial-boundary value problem

*u  0%u u(t,0) = 0 = u(t, 10), t>0,
ot2 — 9x2”’ u(0,z) = f(z), u(0,z)=0, 0 <z < 10,

for the wave equation, where the initial data has the following form:

3z —17.5, 2.5 <x <3,
fz) = 6—1.5x, 3 <z <45,
N ey 1.5x — 7.5, 4.5 <x <5,
‘ \/ 0, otherwise.

Discuss what happens to the solution. You do not need to write down an explicit formula
for the solution, but for full credit you must explain (sketches can help) at least three or
four interesting things that happen to the solution as time progresses.

4.2.17. Repeat Exercise 4.2.16 for the Neumann boundary conditions.

4.2.18. Suppose the initial displacement of a string of length ¢ looks like
the graph to the right. Assuming that the ends of the string are held
fixed, graph the string’s profile at times ¢ = £/c and 2/¢/c.

& 4.2.19. Consider the wave equation u,, = u__,
Dirichlet boundary conditions at both ends. (a) Use the d’Alembert formula to explicitly

on the interval 0 < z < 1, with homogeneous

solve the initial value problem u(0,2) = = — 22, u,(0,z) = 0. (b) Graph the solution
profile at some representative times, and discuss what you observe. (c¢) Find the Fourier
series at each t of your solution and compare the two. (d) How many terms do you need
to sum to obtain a reasonable approximation to the exact solution?

& 4.2.20. Solve Exercise 4.2.19 for the initial conditions u(0,z) =0, u,(0,z) = 22—z

& 4.2.21. Solve (i) Exercise 4.2.19, (i4) Exercise 4.2.20, when the solution is subject to homoge-
neous Neumann boundary conditions.

{ 4.2.22. Under what conditions is the solution to the Neumann boundary value problem for the
wave equation on a bounded interval [0, £] periodic in time? What is the period?

4.2.23. Discuss and sketch the behavior of the solution to the Neumann boundary value prob-
lem u;, = 4u 0<z<l1, uy,(t,0)=0=mwu,(t1), u0,z)= f(z), v, (0,z)=g(x), for

1, 2<z<.3 o

0, otherwise. g(@) =0;

1, 2<z<.3

0, otherwise.

xTx?

(a) a localized initial displacement: f(z) = {
(b) a localized initial velocity: f(z) =0, g(x) = {

4.2.24.(a) Explain how to solve the Neumann initial-boundary value problem

2 2
=0 e =0="000, w0 =f@), O (0.) = glw)
on the interval 0 < x < 1.
- 1Sesy,
(b) Let f(x) = i —a, é <z< i, and g(z) = 0. Sketch the graph of the solution at
0, otherwise,

a few representative times, and discuss what is happening. Is the solution periodic in
time? If so, what is the period?
(c) Do the same when f(z) =0 and g(z) = =.
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4.2.25.(a) Write down a formula for the solution u(t,z) to the initial-boundary value problem

9*u %u . ou ou ou
912 _48332 =0, u(0,z) =sinz, 9t (O,m):am (t,()):ax (t,m)=0, 0<z<m, t>0.
(b) Find u (g, g) (¢) Prove that h(t) = u (t, g) is a periodic function of ¢ and find its

period. (d) Does Y have any discontinuities? If so, discuss their behavior.

Ox
4.2.26. Answer Exercise 4.2.25 for the mixed boundary conditions u(t,0) = 0 = u_ (¢, 7).
© 4.2.27.(a) Explain how to use d’Alembert’s formula (4.77) to solve the periodic initial-boundary
value problem for the wave equation given in Exercise 4.2.6.

(b) Do the d’Alembert and Fourier series formulae represent the same solution? If so, can
you justify it? If not, explain why they are different.

{ 4.2.28. Show that the solution u(t, z) to the wave equation on an interval [0, £], subject to pe-
riodic boundary conditions u(t,0) = u(t,£), w,(t,0) = u,(t,£), is a periodic function of ¢ if

14
and only if there is no net initial velocity: /0 g(z)dz = 0.

4.2.29.(a) Explain how to solve the wave equation on a half-line > 0 when subject to Dirich-
let boundary conditions u(t,0) = 0. (b) Assuming ¢ = 1, find the solution satisfying
2
u(0,z) = (z — 2) e 0 @=22) , u;(0,2) = 0. (c) Sketch a picture of your solution at some
representative times, and discuss what is happening.

4.2.30. Solve Exercise 4.2.29 for homogeneous Neumann boundary conditions at z = 0.

{ 4.2.31.(a) Given that f(x) is odd and 2/-periodic, explain why f(0) =0 = f(¥).
(b) Given that f(z) is even and 2¢-periodic, explain why f’(0) = 0= f'(¢).

{ 4.2.32.(a) Prove that if f(—z) = — f(z), f(z+2¢) = f(z), for all z, then
u(t,x) = % [f(x —ct) + f(z + ct)] satisfies the Dirichlet boundary conditions (4.79).
(b) Prove that if g(—z) = —g(z), g(xz + 2¢) = g(z) for all x, then

1 xr+c
u(t,z) = 9 e /x—ct g(z) dz also satisfies the Dirichlet boundary conditions.

4.2.33. If both u(0,z) = f(z) and u,(0,z) = g(z) are even functions, show that the solution
u(t, z) of the wave equation is even in x for all ¢.

4.2.34.(a) Prove that the solution u(t, z) to the wave equation for x € R is an even function of
t if and only if its initial velocity, at ¢t = 0, is zero.
(b) Under what conditions is u(¢, ) an odd function of ¢7

& 4.2.35. Let u(t, x) be a classical solution to the wave equation u,, = cQum on the interval
0 < z < ¢, satisfying homogeneous Dirichlet boundary conditions. The total energy of u at

time ¢ is
E(t) :/j; [(g?>2+c2 (gz)ﬁ dz. (4.81)

Establish the Law of Conservation of Energy by showing that E(t) = FE(0) is a constant
function.

{ 4.2.36.(a) Use Exercise 4.2.35 to prove that the only C? solution to the initial-boundary value
e U(,0) = v(t, ) = 0, v(0,z) = 0, v,(0,z) = 0, is the trivial solu-
tion v(t,x) = 0. (b) Establish the following Uniqueness Theorem for the wave equation:

given f(z),g(zx) € C?, there is at most one C? solution u(t, ) to the initial-boundary value
u(t,0) = u(t,£) = 0, u(0,z) = f(z), u(0,z)=g(x).

2
problem v, = c"v

)
problem u,, = c"u__,

4.2.37. Referring back to Exercises 4.2.35 and 4.2.36: (a) Does conservation of energy hold for
solutions to the homogeneous Neumann initial-boundary value problem?
(b) Can you establish a uniqueness theorem for the Neumann problem?
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4.2.38. Explain how to solve the Dirichlet initial-boundary value problem

Uy = CQUMU + F(t,z), u(0,z) = f(x), u, (0, z) = g(x), u(t,0) = u(t,£) =0,

for the wave equation subject to an external forcing on the interval [0, £].

4.3 The Planar Laplace and Poisson Equations

The two-dimensional Laplace equation is the second-order linear partial differential equa-
tion
Pu 0%
=0, 4.82
Ox2 + 0y? (4.82)

named in honor of the influential eighteenth-century French mathematician Pierre-Simon
Laplace. It, along with its higher-dimensional versions, is arguably the most important
differential equation in all of mathematics. A real-valued solution u(z,y) to the Laplace
equation is known as a harmonic function. The space of harmonic functions can thus be
identified as the kernel of the second-order linear partial differential operator

0? 0?

A:8x2+8y2’

(4.83)

known as the Laplace operator, or Laplacian for short. The inhomogeneous or forced
version, namely
Pu  0%u
—Alu]=-— — = f(x,y), 4.84
()=~ o = s = F@Y) (4.84)
is known as Poisson’s equation, named after Siméon—Denis Poisson, who was taught by
Laplace. The mathematical and physical reasons for including the minus sign will gradually
become clear.

Besides their theoretical importance, the Laplace and Poisson equations arise as the
basic equilibrium equations in a remarkable variety of physical systems. For example, we
may interpret u(z,y) as the displacement of a membrane, e.g., a drum skin; the inhomo-
geneity f(x,y) in the Poisson equation represents an external forcing over the surface of
the membrane. Another example is in the thermal equilibrium of flat plates; here u(z,y)
represents the temperature and f(x,y) an external heat source. In fluid mechanics, u(z, y)
represents the potential function whose gradient v = Vu is the velocity vector field of a
steady planar fluid flow. Similar considerations apply to two-dimensional electrostatic
and gravitational potentials. The dynamical counterparts to the Laplace equation are the
two-dimensional versions of the heat and wave equations, to be analyzed in Chapter 11.

Since both the Laplace and Poisson equations describe equilibrium configurations, they
almost always appear the context of boundary value problems. We seek a solution u(x, )
to the partial differential equation defined at points (z,y) belonging to a bounded, open
domain € C R2. The solution is required to satisfy suitable conditions on the boundary
of the domain, denoted by OS2, which will consist of one or more simple closed curves, as
illustrated in Figure 4.7. As in one-dimensional boundary value problems, there are several
especially important types of boundary conditions.
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o0

Figure 4.7. A planar domain with outward unit normals on its boundary.

The first are the fized or Dirichlet boundary conditions, which specify the value of the
function u on the boundary:

u(z,y) = h(z,y) for (x,y) € O0. (4.85)

Under mild regularity conditions on the domain €2, the boundary values &, and the forcing
function f, the Dirichlet conditions (4.85) serve to uniquely specify the solution u(z,y) to
the Laplace or the Poisson equation. Physically, in the case of a free or forced membrane,
the Dirichlet boundary conditions correspond to gluing the edge of the membrane to a
wire at height h(z,y) over each boundary point (z,y) € 012, as illustrated in Figure 4.8.
A physical realization can be easily obtained by dipping the wire in a soap solution; the
resulting soap film spanning the wire forms a minimal surface, which, if the wire is reason-
ably close to planar shape, is the solution to the Dirichlet problem prescribed by the wire.
Similarly, in the modeling of thermal equilibrium, a Dirichlet boundary condition repre-
sents the imposition of a prescribed temperature distribution, represented by the function
h, along the boundary of the plate.

The second important class consists of the Neumann boundary conditions

ou
on

in which the normal derivative of the solution u on the boundary is prescribed. In general, n
denotes the unit outwards normal to the boundary 912, i.e., the vector of unit length, || n || =
1, that is orthogonal to the tangent to the boundary and points away from the domain; see
Figure 4.7. For example, in thermomechanics, a Neumann boundary condition specifies
the heat flux out of a plate through its boundary. The “no-flux” or homogeneous Neumann
boundary conditions, where k(z,y) = 0, correspond to a fully insulated boundary. In the
case of a membrane, homogeneous Neumann boundary conditions correspond to a free,
unattached edge of a drum. In fluid mechanics, the Neumann conditions prescribe the
fluid flux through the boundary; in particular, homogeneous Neumann boundary conditions

=Vu-n=k(z,vy) on 092, (4.86)

T More generally, the minimal surface formed by the soap film solves the vastly more compli-

cated nonlinear minimal surface equation (1 + uz)uzz — ZUIuyuzy +(1+ uz)uyy = 0, which, for

surfaces with small variation, i.e., with || Vu || < 1, can be approximated by the Laplace equation.
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o)

Figure 4.8.  Dirichlet boundary conditions.

correspond to a solid boundary that the fluid cannot penetrate. More generally, the Robin
boundary conditions

0
0

also known as impedance boundary conditions due to their applications in electromag-
netism, are used to model insulated plates in heat baths, or membranes attached to springs.

z+ﬁ(x,y)u=k?(l’,y) on 01,

Finally, one can mix the previous kinds of boundary conditions, imposing, say, Dirich-
let conditions on part of the boundary and Neumann conditions on the complementary
part. A typical mized boundary value problem has the form

Ou =k on N, (487)
On

with the boundary 92 = D U N being the disjoint union of a “Dirichlet segment”, denoted
by D, and a “Neumann segment” N. For example, if u represents the equilibrium tem-
perature in a plate, then the Dirichlet segment of the boundary is where the temperature
is fixed, while the Neumann segment is insulated, or, more generally, has prescribed heat
flux. Similarly, when modeling the displacement of a membrane, the Dirichlet segment is
where the edge of the drum is attached to a support, while the homogeneous Neumann
segment is left hanging free.

—Au=f in Q, u=~h on D,

Exercises

4.3.1.(a) Solve the boundary value problem Au = 1 for z? + y? < 1 and u(z,y) = 0 for
22 4+ y% = 1 directly. Hint: The solution is a simple polynomial.
(b) Graph your solution, interpreting it as the equilibrium displacement of a circular drum
under a constant gravitational force.

4.3.2. Set up the boundary value problem corresponding to the equilibrium of a circular mem-
brane subject to a constant downwards gravitational force, half of whose boundary is glued
to a flat semicircular wire, while the other half is unattached.

4.3.3. Set up the boundary value problem corresponding to the thermal equilibrium of a rect-
angular plate that is insulated on two of its sides, has 0° at its top edge and 100° at the
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bottom edge. Where do you expect the maximum temperature to be located? What is its
value? Can you find a formula for the temperature inside the plate? Hint: The solution is
constant along horizontal lines.

4.3.4. Set up the boundary value problem corresponding to the thermal equilibrium of an in-
sulated semi-circular plate with unit diameter, whose curved edge is kept at 0° and whose
straight edge is at 50°.

4.3.5. Explain why the solution to the homogeneous Neumann boundary value problem for the
Laplace equation is not unique.

4.3.6. Write down the Dirichlet boundary value problem for the Laplace equation on the unit
square 0 < z,y < 1 that is satisfied by u(x,y) =1+ zy.

4.3.7. Write down the Neumann boundary value problem for the Poisson equation on the unit
disk 22 + y? < 1 that is satisfied by u(x,y) = a3+ zy?.

$ 4.3.8. Suppose u(z,y) is a solution to the Laplace equation.
(a) Show that any translate U(z,y) = u(x — a,y — b), where a,b € R, is also a solution.
(b) Show that the rotated function U(z,y) = u(xcosf + ysinf, —xsinf + ycosd), where
—7 < 0 <, is also a solution.

{ 4.3.9.(a) Show that if u(x,y) solves the Laplace equation, then so does the rescaled function
U(z,y) = cu(az, ay) for any constants ¢, c.
(b) Discuss the effect of scaling on the Dirichlet boundary value problem.
(¢) What happens if we use different scaling factors in = and y?

Separation of Variables

Our first approach to solving the Laplace equation

2 2
A= T o (4.88)

will be based on the method of separation of variables. As in (4.64), we seek solutions that
can be written as a product

u(z,y) = v(x) w(y) (4.89)

of a function of x alone times a function of y alone. We compute

0% 0%y
a.’EQ = ’U//<x> w<y>7 ayg = U(l‘) w//(y)a
and so
0? 0?
Bu= 5t s =0 (@) w() + () w'() =0

We then separate the variables by placing all the terms involving x on one side of the
equation and all the terms involving y on the other; this is accomplished by dividing by
v(z) w(y) and then writing the resulting equation in the separated form

v'(x) _ w'(y) _
) = wl N (4.90)
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As we argued in (4.65), the only way a function of x alone can be equal to a function of y
alone is if both functions are equal to a common separation constant A. Thus, the factors
v(x) and w(y) must satisfy the elementary ordinary differential equations

v —Av =0, w’ + Aw = 0.

As before, the solution formulas depend on the sign of the separation constant A\. We list
the resulting collection of separable harmonic functions in the following table:

Separable Solutions to Laplace’s Equation

A v(x) w(y) u(z,y) = v(x) w(y)
wy 3 WY o3
) 3 e“Yeoswz, e“Ysinwz
A=—-w?<0 coswz, sinwx e~ wY evY, —wy 3 o
e coswzx, e “Ysinwz
A=0 1,z Ly 1,z y, xy
) Cwr wm . e“Tcoswy, e“Tsinwy,
A=w">0 e , € coswy, sinwy

e~ “Teoswy, e “Tsinwy

Since Laplace’s equation is a homogeneous linear system, any linear combination of
solutions is also a solution. So, we can build more general solutions as finite linear combi-
nations, or, provided we pay proper attention to convergence issues, infinite series in the
separable solutions. Our goal is to solve boundary value problems, and so we must ensure
that the resulting combination satisfies the boundary conditions. But this is not such an
easy task, unless the underlying domain has a rather special geometry.

In fact, the only bounded domains on which we can explicitly solve boundary value
problems using the preceding separable solutions are rectangles. So, we will concentrate
on boundary value problems for Laplace’s equation

Au=0 on a rectangle R={0<z<a, 0<y<b}. (4.91)

To make progress, we will allow nonzero boundary values on only one of the four sides of
the rectangle. To illustrate, we will focus on the following Dirichlet boundary conditions:

u(z,0) = f(x), u(z,b) =0, u(0,y) =0, u(a,y) = 0. (4.92)

Once we know how to solve this type of problem, we can employ linear superposition to
solve the general Dirichlet boundary value problem on a rectangle; see Exercise 4.3.12 for
details. Other boundary conditions can be treated in a similar fashion — with the proviso
that the condition on each side of the rectangle is either entirely Dirichlet or entirely
Neumann or, more generally, entirely Robin with constant transfer coefficient.

To solve the boundary value problem (4.91-92), the first step is to narrow down the
separable solutions to only those that respect the three homogeneous boundary conditions.
The separable function u(z,y) = v(x) w(y) will vanish on the top, right, and left sides of
the rectangle, provided
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Referring to the preceding table, the first condition v(0) = 0 requires

sinwz, A= —w? <0,
v@) =3 @, A=0,
sinh wz, A =w? >0,

where sinhz = }(e* — e~ *) is the usual hyperbolic sine function. However, the second

and third cases cannot satisfy the second boundary condition v(a) = 0, and so we discard
them. The first case leads to the condition
v(a) =sinwa =0, and hence wa=m, 27, 37, ....

The corresponding separation constants and solutions (up to constant multiple) are
2 n’m? . MTT
A, =—w?=— 2 v, (z) = sin 0 n=1,23,.... (4.93)

Note: So far, we have merely recomputed the known eigenvalues and eigenfunctions
of the familiar boundary value problem v" — Av =0, v(0) = v(a) = 0.

Next, since A = —w? < 0, we have w(y) = ¢;e“? + c,e”“Y for constants ¢, cy. The
third boundary condition w(b) = 0 then requires that, up to constant multiple,

nm(b—y)

w,,(y) = sinh w (b — y) = sinh “ . (4.94)
We conclude that the harmonic functions
u, (z,y) = sin n;r;v sinh nw(l;— v) , n=123..., (4.95)

provide a complete list of separable solutions that satisfy the three homogeneous boundary
conditions. It remains to analyze the inhomogeneous boundary condition along the bottom
edge of the rectangle. To this end, let us try a linear superposition of the relevant separable
solutions in the form of an infinite series

= = nmwe nw(b—1y)
u(z,y) = Z e, (x,y) = Z ¢, sin Z sinh """ a v,
n=1 n=1

whose coefficients ¢;, c,, ... are to be prescribed by the remaining boundary condition. At
the bottom edge, y = 0, we find

nmTx

u(z,0) = Z ¢,, sinh n;rb sin = © = f(z), 0<z<a, (4.96)

n=1

which takes the form of a Fourier sine series for the function f(z). Let

b, = 2 / F(z)sin " dz (4.97)
a 0 a

be its Fourier sine coefficients, whence ¢, = b,/ sinh(n7b/a). We thus anticipate that the
solution to the boundary value problem can be expressed as the infinite series

o b, sin "7 sinhnﬁ(b_y)
a a
u(z,y) = o
n=1 sinh a

(4.98)
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Figure 4.9. Square membrane on a wire.

Does this series actually converge to the solution to the boundary value problem?
Fourier analysis says that, under very mild conditions on the boundary function f(z), the
answer is yes. Suppose that its Fourier coefficients are uniformly bounded,

b, | <M for all n>1, (4.99)

which, according to (4.27), is true whenever f(x) is piecewise continuous or, more generally,
integrable: / | f(z)|dx < oo. In this case, as you are asked to prove in Exercise 4.3.20,
0

the coefficients of the Fourier sine series (4.98) go to zero exponentially fast:

b_sinh nm(b—y)
n a

b — 0 as n—oo forall 0<y<hb, (4.100)
T

sinh "
and so, at each point inside the rectangle, the series can be well approximated by partial
summation. Theorem 3.31 tells us that, for each 0 < y < b, the solution wu(z,y) is an
infinitely differentiable function of . Moreover, by term-wise differentiation of the series
with respect to y and use of Proposition 3.28, we also establish that the solution is infinitely
differentiable with respect to y; see Exercise 4.3.21. (In fact, as we shall see, solutions to
the Laplace equation are always analytic functions inside their domain of definition — even
when their boundary values are rather rough.) Since the individual terms all satisfy the
Laplace equation, we conclude that the series (4.98) is indeed a classical solution to the
boundary value problem.

Example 4.4. A membrane is stretched over a wire in the shape of a unit square
with one side bent in half, as graphed in Figure 4.9. The precise boundary conditions are

x, 0§x§§, y =0,

1—uz, y<x<1l,  y=0,
u(z,y) =< 0, 0<z<1, y=1,

0, z =0, 0<y<1,

0, r=1, 0<y<l.



4.3 The Planar Laplace and Poisson Equations 159

The Fourier sine series of the inhomogeneous boundary function is readily computed:

fay=4 "

:L‘ pry
11—z, <JJ
_ 4 . n3m bin57r3: sm (27 + rmx
_WQ(S”“” 9 e 25 )‘sz (2 +1)2

Specializing (4.98) to a = b = 1, we conclude that the solution to the boundary value
problem can be expressed as a Fourier series

o
IN
IN

e

xT

IN

B Z ;sin(2j + 1) 7z sinh(25 + 1) 7 (1 — y)
2, (27 +1)2sinh(2j+ 1) '

In Figure 4.9 we plot the sum of the first 10 terms in the series. This gives a reasonably good

approximation to the actual solution, except when we are very close to the raised corner
of the boundary wire — which is the point of maximal displacement of the membrane.

Exercises

4.3.10. Solve the following boundary value problems for Laplace’s equation on the square
Q={0<z<7m, 0<y<m}.

(a) w(z,0) =sin’z, wu(z,7)=0, u(07y). =0, wu(my)=0.
(b) u(as, 0) =0, (1’ ﬂ-) - 07 u(oa y) = sy, u(7r7 y) =0.

(¢) u(z,0) =0, wu(x,m)=1, u(0,y)=0, u(my)=0.

(d) u(x7 0) =0, u( ) =0, ’LL(O, y) =0, u(ﬂ—: y) = y(ﬂ- - y)

& 4.3.11.(a) Explain how to use linear superposition to solve the boundary value problem
Au =0, u(177 0) = f($)a U,(Z‘, b) = 9(1‘)7 U(O, y) = h(?J)? u(av y) = k(y)v
on the rectangle R = {0 <z < a, 0 <y < b}, by splitting it into four separate boundary

value problems for which each of the solutions vanishes on three sides of the rectangle.
(b) Write down a series formula for the resulting solution.

4.3.12. Solve the following Dirichlet problems for Laplace’s equation on the unit square
S ={0<=z,y <1}. Hint: Use superposition as in Exercise 4.3.11.
(a) u(z,0) =sinwz, wu(x,1)=0, u(0,y)=sinmy, u(l,y)=0;
(b) u(as 0) =1, U(l’ 1) =0, U(O,y) =1, U(].,y) =Y
(c) w(z,0) =1, wu(z,1)=1, u(0,y)=0, wu(l,y)=0;
( ) ( )_x: u(xal):]-_x: u(07y)=y, u(lay)zl_y

4.3.13. Solve the following mixed boundary value problems for Laplace’s equation Au = 0 on
the square S = {0 < z,y < 7}.
(a) u(x,0) = sin % z, u,(z,m)=0, u(0,y) =0, u,(my)=0;

(b) u(z,0) = sin % z, u,(z,m) =0, u,(0,y)=0, wuy(my)=0;

(¢) w(z,0) ==z, wu(z,m)=0, u,(0,y)=0, wu,(mry) =0;

(d) uw(z,0) ==z, u(z,m)=0, u(0,y)=0, u,(my)=0.

4.3.14. Find the solution to the boundary value problem
uy(I,O):uy(I,Q):O, 0<z<l,

Au =0,
b u(0,y) =2cosmy — 1, wu(l,y) =0, 0<y<2.
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4.3.15. Find the solution to the boundary value problem
u(x,0) =2cosTnx —4, wu(x,1) =>5cos3mz,

Au =0,
u,(0,y) = u,(1,y) =0,

0<z,y<l.
4.3.16. Let u(z,y) be the solution to the boundary value problem
Au =0, u(z,—1) = f(x), u(z,1) =0, u(-1,y) =0, u(l,y) =0, —-1<z<1l, -1<y<Ll
(a) True or false: If f(—x) = — f(z) is odd, then u(0,y) =0 for all -1 <y < 1.
(b) True or false: If f(0) =0, then u(0,y) =0 for all -1 <y < 1.
(¢) Under what conditions on f(z) is u(z,0) =0 for all —1 <z <17

4.3.17. Use separation of variables to solve the following boundary value problem:
Uy +2u, +uy, =0, u(z,0)=0, u(z,1)=f(z), w0y)=0 u(l,y)=0.

4.3.18. Use separation of variables to solve the Helmholtz boundary value problem Au = wu,
u(z,0) =0, u(z,1)= f(z), u(0,y) =0, u(l,y) =0, on the unit square 0 < z,y < 1.
{ 4.3.19. Provide the details for the derivation of (4.94).

& 4.3.20. Justify the statement that if |b,, | < M are uniformly bounded, then the coefficients
given in (4.100) go to zero exponentially fast as n — oo for any 0 < y < b.

$ 4.3.21. Let u(z,y) denote the solution to the boundary value problem (4.91-92).
(a) Write down the Fourier sine series for 0u/dy. (b) Prove that Ou/dy is an infinitely

differentiable function of . (c) Justify the same result for the functions 8¥u/8y* for each
k > 0. Hint: Don’t forget that u(x,y) solves the Laplace equation.

Polar Coordinates

The method of separation of variables can be successfully exploited in certain other very
special geometries. One particularly important case is a circular disk. To be specific, let
us take the disk to have radius 1 and be centered at the origin. Consider the Dirichlet
boundary value problem

Au =0, 22+t < 1, and u=h, 22+ =1, (4.101)

so that the function u(zx, y) satisfies the Laplace equation on the unit disk and the specified
Dirichlet boundary conditions on the unit circle. For example, u(x,y) might represent the
displacement of a circular drum that is attached to a wire of height

h(z,y) = h(cosf,sinf) = h(6), —m<0<m, (4.102)

at each point (z,y) = (cosf,sinf) on its edge.

The rectangular separable solutions are not particularly helpful in this situation, and
so we look for solutions that are better adapted to a circular geometry. This inspires us to
adopt polar coordinates

x =rcosb, 1y = rsinb, or r= \/:v2+y2, Hztan_lg, (4.103)

and write the solution u(r, ) as a function thereof.

Warning: We will often retain the same symbol, e.g., u, when rewriting a function
in a different coordinate system. This is the convention of tensor analysis, physics, and
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differential geometry, [3], that treats the function (scalar field) as an intrinsic object, which
is concretely realized through its formula in any chosen coordinate system. For instance,
if u(z,y) = 2% + 2y in rectangular coordinates, then its expression in polar coordinates
is u(r,0) = (rcos)? + 2rsiné, not r? + 260. This convention avoids the inconvenience of
having to devise new symbols when changing coordinates.

We need to relate derivatives with respect to x and y to those with respect to r» and
0. Performing a standard multivariate chain rule computation based on (4.103), we obtain

= cosf g +sinf _ 0 ~ cosf 0 _sin9 0 ’
or ox 0y . Ox or r 00 (4.104)
0 _ '98 98 a_sin93+c0598 :
89——Tsm ax+TCOS 9y’ oy Br s

Applying the squares of the latter differential operators to u(r,#), we find, after a calcula-
tion in which many of the terms cancel, the polar coordinate form of the Laplace equation:
82u+82u_82u+18u+ 1 0%u
ox2  oyz o2 r or  r?2 992
The boundary conditions are imposed on the unit circle r = 1, and so, by (4.102), take the
form

Au = = 0. (4.105)

u(1,0) = h(0). (4.106)

Keep in mind that, in order to be single-valued functions of z,y, the solution w(r,#) and
its boundary values h(f) must both be 27—periodic functions of the angular coordinate:

u(r, 0 +27) = u(r,0), h(6 +27m) = h(0). (4.107)
Polar separation of variables is based on the ansatz
u(r, ) =v(r)w(d), (4.108)

which assumes that the solution is a product of functions of the individual variables. Sub-
stituting (4.108) into the polar form (4.105) of Laplace’s equation yields

We now separate variables by moving all the terms involving r onto one side of the equation
and all the terms involving 6 onto the other. This is accomplished by first multiplying the
equation by r?/(v(r) w(f) ) and then moving the final term to the right-hand side:

r2 0" (r) +rv'(r) w”(0)

=— =\
v(r) w()

As in the rectangular case, a function of r can equal a function of 6 if and only if both are
equal to a common separation constant, which we call A. The partial differential equation
thus splits into a pair of ordinary differential equations

2o +rv = Av=0, w” +Aw =0, (4.109)

that will prescribe the separable solution (4.108). Observe that both have the form of an
eigenfunction equation in which the separation constant A\ plays the role of the eigenvalue.
We are, as always, interested only in nonzero solutions.
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We have already solved the eigenvalue problem for w(f). According to (4.107),
w(f + 27) = w(f) must be a 27—periodic function. Therefore, by our earlier discussion,
this periodic boundary value problem has the nonzero eigenfunctions

1, sinn6, cosnb, n=12,..., (4.110)

corresponding to the eigenvalues (separation constants)

A\ =n?, n=0,1,2,....

With the value of A fixed, the linear ordinary differential equation for the radial component,

r2v" +rv’ —n?v =0, (4.111)

does not have constant coefficients. But, fortunately, it has the form of a second-order Fuler
ordinary differential equation, [23, 89], and hence can be readily solved by substituting the
power ansatz v(r) = r*. (See also Exercise 4.3.23.) Note that

v'(r) = krk1, ' (r) = k(k—1)rF2,
and hence, by substituting into the differential equation,
v v —nPuv = [k(k—1)+k—n?]rF = (k* —n?)r".
Thus, r* is a solution if and only if
k2 —n?=0, and hence k=+n.
For n # 0, we have found the two linearly independent solutions:
vy (r) =1r", vy(r) =7r"", n=12.... (4.112)

When n = 0, the power ansatz yields only the constant solution. But in this case, the
equation 720" + rv’ = 0 is effectively of first order and linear in v/, and hence readily
integrated. This provides the two independent solutions

vy(r) =1, vy(r) = logr, n=0. (4.113)

Combining (4.110) and (4.112-113), we produce the complete list of separable polar coor-
dinate solutions to the Laplace equation:

1, r" cosnb, r"sinné,
. o n=123,.... (4.114)
log r, r~ " cosnb, r~"sinnd,
Now, the solutions in the top row of (4.114) are continuous (in fact analytic) at the origin,
where r = 0, whereas the solutions in the bottom row have singularities as » — 0. The
latter are not of use in the present situation, since we require that the solution remain
bounded and smooth — even at the center of the disk. Thus, we should use only the
nonsingular solutions to concoct a candidate series solution

+ Z (a,r" cosnb +b,r" sinnd ). (4.115)

n=1

Qg

u(r,0) = 5
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The coefficients a,,, b,, will be prescribed by the boundary conditions (4.106). Substituting
r = 1, we obtain

Qg

u(1,0) = 5

+ Z (a, cosnf +b,sinnb) = h(0).

n=1
We recognize this as a standard Fourier series (3.29) (with € replacing x) for the 27 periodic
function h(#). Therefore,

(" 1 ["
a, = / h(0) cosn B do, b, = / h(8)sinn6 do, (4.116)
T T

—T —T

are precisely its Fourier coefficients, cf. (3.35). In this manner, we have produced a series
solution (4.115) to the boundary value problem (4.105-106).

Remark: Introducing the complex variable

[%

z=x+iy=re'’ =rcosh+ irsinf (4.117)

allows us to write

2 =r"e'"? = " cosnf + ir" sinnb. (4.118)

Therefore, the nonsingular separable solutions are the harmonic polynomials
r’* cosnf = Re 2", rsinnf = Im 2". (4.119)

The first few are listed in the following table:

n Re 2™ Im 2™

0 1 0

1 T Y

2 % —y? 2xy

3 3 —3zy? 3x2y — 3
4 ot —422%y% + ot 4x3y — 4y’

Their general expression is obtained using the Binomial Formula:
2V =(x+ iy)"

= 2" +nz" " (iy) + (

=2" 4+ inz" ly — <

N3
N———
8
3
&
<
]
|
P
w 3
S~
8
3
s
<
w
+

where

(Z) = k! (nni k) (4.120)
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Figure 4.10. Membrane attached to a helical wire.

are the usual binomial coefficients. Separating the real and imaginary terms, we produce
the explicit formulae

r*cosnf =Rez" = 2" — (g) " 2y? 4 <Z> Tyt
(4.121)

rsinnf =Im 2" = na" "ty — (g) A TL (g) T TL R
for the two independent harmonic polynomials of degree n.

Example 4.5. Consider the Dirichlet boundary value problem on the unit disk with
u(1,0) =6  for —m<f<m. (4.122)

The boundary data can be interpreted as a wire in the shape of a single turn of a spiral
helix sitting over the unit circle. The wire has a single jump discontinuity, of magnitude
27, at the boundary point (—1,0). The required Fourier series

sin26  sin36 sin46

h(0) =0 ~ 2(sinf — — e
() (Sln 5 T4 4T >

was already computed in Example 3.3. Therefore, invoking our solution formula (4.115—
116), we have

- 4.12
2 + 3 4 ( 3)
is the desired solution, which is plotted in Figure 4.10. In fact, this series can be explicitly
summed. In view of (4.119) and the usual formula (A.13) for the complex logarithm, we
have

2699 3w 4gin 4
u(r,@):2<rsin9—r sin26 r3sin36 r*sin 9+.“>

2 3 4

u:2Im<z—22—|—Z3—Z—f—---):QImlog(l—f—z):Qd}, (4.124)
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(z,y)

Figure 4.11.  Geometric construction of the solution.

where
Yy

142z
is the angle that the line passing through the two points (x,y) and (—1,0) makes with the
z-axis, as sketched in Figure 4.11. You should try to convince yourself that, on the unit
circle, 21 = 6 has the correct boundary values. Observe that, even though the boundary
values are discontinuous, the solution is an analytic function inside the disk.

¢ = tan~*

In fact, unlike the rectangular series (4.98), the general polar series solution for-
mula (4.115) can, in fact, be summed in closed form! If we substitute the explicit Fourier
formulae (4.116) into (4.115) — remembering to change the integration variable to, say, ¢
to avoid a notational conflict — we obtain

u(r,0) = a20 + Z (a,r™cosnb +b,r"sinnd)

n=1

1 (7 = [r"cosnf [T r"sinn6
:2ﬂ/ﬂh(¢)d¢+2[ " /ﬂh(qﬁ)coan&dqﬁ—l— ! /

—T

us

h(¢)sinn ¢ dq&}

h(¢)

1 T

h
R
We next show how to sum the final series. Using (4.118), we can write it as the real part
of a geometric series:

1 = . 1 = B 1 z _ 1+2
2+Zr coan—Re<2+7;z)—Re(2+1_z>—Re<2(1_Z)>

n=1
— Re (1+2)(1—2)\ Re(l+z—z—1[z*) 1—]z]* 1—17?
N 2(1—22 B 2(1—22 21 —2z2 2(1+72—2rcosh)’
which is known as the Poisson kernel. Substituting back into (4.125) establishes the
important Poisson Integral Formula for the solution to the boundary value problem.

|
N =
T
3 3

1 = . . .
9 + Z r (cosn@coanﬁ—i—smn&smnqﬁ)]dd)

n=1

(4.125)

; + Z r"cosn(&—gb)]dqﬁ.

n=1
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Figure 4.12.

ur0) =, [ hio)

1472 —2rcos(6 — ¢)

Equilibrium temperature of a disk.

The solution to the Laplace equation in the unit disk subject to
Dirichlet boundary conditions u(1,0) = h(0) is

1—7r2

do. (4.126)

Example 4.7. A uniform metal disk of unit radius has half of its circular boundary
held at 1°, while the other half is held at 0°. Our task is to find the equilibrium temperature
u(z,y). In other words, we seek the solution to the Dirichlet boundary value problem

Au =0, w2 4y < 1, u(x,y):{

In polar coordinates, the boundary data is a (periodic) step function

L
0,

h(0) = {

Therefore, according to the Poisson formula (4.126), the solution is given by’

1

ulr,0) =

1—172
1472 —2rcos(d — ¢)

de

r

1, 22+4y2=1, y>0,
g Y (4.127)
0, “+y =1, y<O0.
0<8<m,
—T<0<O0.
( 1 -1 ]._7"2
1— "t 0
o A <2rsin0>’ 0<6<m,
1
o 0=0,=xm,
]. -1 ]._7"2
-t — 0
[ T <2rsin9>’ T<0<0,
(4.128)

T The detailed derivation of the final expressions is left to the reader as Exercise 4.3.40.
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where we use the principal branch — §7r <tan"lt < éw of the inverse tangent. Revert-

ing to rectangular coordinates, we find that the equilibrium temperature has the explicit
formula

1— 2 _ .2
1—1tan_1 SRS , 49?2 <1, y>0,
™ 2y
1
u(z,y) = . 2+’ <1, y=0, (4.129)
1— 2 _ .2
—ltan_1< SRS ), 2?2 4+y% <1, y<O.

The result is depicted in Figure 4.12.

Averaging, the Mazximum Principle, and Analyticity

Let us investigate some important consequences of the Poisson integral formula (4.126).
First, setting » = 0 yields

1 ™

u(0,0) = / h(@) do. (4.130)

27 J_,
The left-hand side is the value of u at the origin — the center of the disk — and so
independent of 6; the right-hand side is the average of its boundary values around the unit
circle. This formula is a particular instance of an important general fact.

Theorem 4.8. Let u(z,y) be harmonic inside a disk of radius a centered at a point
(xg,y,) with piecewise continuous (or, more generally, integrable) boundary values on the
circle C = {(x — z¢)? + (y — yo)?> = a®}. Then its value at the center of the disk is equal
to the average of its values on the boundary circle:

1 1 T
u(zy, yo) = }{C uds = / u(zy +acosb,y, + asinf) db. (4.131)

- 27a 21 J_,

Proof: We use the scaling and translation symmetries of the Laplace equation, cf. Ex-
ercises 4.3.8-9, to map the disk of radius a centered at (x,y,) to the unit disk centered at
the origin. Specifically, we set

Ulz,y) =u(zy+ az,y, + ay). (4.132)
An easy chain rule computation proves that U(x,y) also satisfies the Laplace equation on
the unit disk 22 + y? < 1, with boundary values
h(#) = U(cosb,sinf) = u(x, + acosb,y, + asinb).
Therefore, by (4.130),

U(0,0) = 217r/ h(6)do = 217r/ U(cosf,sin @) db.

—T

Replacing U by its formula (4.132) produces the desired result. Q.E.D.

—T

An important consequence of the integral formula (4.131) is the Strong Mazimum
Principle for harmonic functions.
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Theorem 4.9. Let v be a nonconstant harmonic function defined on a bounded
domain §) and continuous on 9§2. Then wu achieves its maximum and minimum values only
at boundary points of the domain. In other words, if

m =min{ u(z,y) | (z,y) € 02}, M =max{u(z,y) | (z,y) € 02},
are, respectively, its maximum and minimum values on the boundary, then
m < u(xz,y) < M at all interior points (x,y) € Q.

Proof: Let M* > M be the maximum value of u on all of 2 = Q U 912, and assume
uw(zy,Yy) = M* at some interior point (z(,y,) € Q. Theorem 4.8 implies that u(z,,y,)
equals its average over any circle C' centered at (z,,y,) that bounds a closed disk contained
in €. Since u is continuous and < M* on C, its average must be strictly less than M*
— except in the trivial case in which it is constant and equal to M* on all of C. Thus,
our assumption implies that u(x,y) = M* = u(x,,y,) for all (z,y) belonging to any
circle C' C ) centered at (z,y,). Since Q is connected, this allows us to conclude’ that
u(z,y) = M* is constant throughout €2, in contradiction to our original assumption.

A similar argument works for the minimum; alternatively, one can interchange maxi-
mum and minimum by replacing v by —u. Q.E.D.

Physically, if we interpret u(z,y) as the vertical displacement of a membrane stretched
over a wire, then Theorem 4.9 says that, in the absence of external forcing, the membrane
cannot have any internal bumps — its highest and lowest points are necessarily on the
boundary of the domain. This reconfirms our physical intuition: the restoring force exerted
by the stretched membrane will serve to flatten any bump, and hence a membrane with a
local maximum or minimum cannot be in equilibrium. A similar interpretation holds for
heat conduction. A body in thermal equilibrium will achieve its maximum and minimum
temperature only at boundary points. Indeed, thermal energy would flow away from any
internal maximum, or towards any local minimum, and so if the body contained a local
maximum or minimum in its interior, it could not remain in thermal equilibrium.

The Maximum Principle immediately implies the uniqueness of solutions to the Dirich-
let boundary value problem for both the Laplace and Poisson equations:

Theorem 4.10. Ifu and u both satisfy the same Poisson equation — Au = f = — Au
within a bounded domain €2, and u = u on 02, then u = u throughout 2.

Proof: By linearity, the difference v = u— u satisfies the homogeneous boundary value
problem Av = 0 in  and v = 0 on 9{2. Our assumption implies that the maximum and
minimum boundary values of v are both 0 = m = M. Theorem 4.9 implies that v(x,y) =0
at all (z,y) € Q, and hence u = & everywhere in ). Q.E.D.

Finally, let us discuss the analyticity of harmonic functions. In view of (4.119), the
nth order term in the polar series solution (4.115), namely,

a,r" cosnf +b,r"sinnf = a,Re z" + b, Im 2" = Re [ (a, — ib,)2"],

is, in fact, a homogeneous polynomial in (z,y) of degree n. This means that, when written
in rectangular coordinates x and y, (4.115) is, in fact, a power series for the harmonic

T You are asked to supply the details in Exercise 4.3.42.
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function u(z,y). It is well known, [8,23,97], that any convergent power series converges
to an analytic function — in this case u(x,y). Moreover, the power series must, in fact, be
the Taylor series for u(x,y) based at the origin, and so its coefficients are multiples of the
derivatives of u at x = y = 0. Details are worked out in Exercise 4.3.49.

We can adapt this argument to prove analyticity of all solutions to the Laplace equa-
tion. Note especially the contrast with the wave equation, which has many non-analytic
solutions.

Theorem 4.11. A harmonic function is analytic at every point in the interior of its
domain of definition.

Proof: Let u(x,y) be a solution to the Laplace equation on the open domain Q C R2.
Let x; = (x(,¥,) € §, and choose a > 0 such that the closed disk of radius a centered at
X, is entirely contained within €:

Dy(xg) ={l[x =% [ <a} CQ,

where || - || is the usual Euclidean norm. Then the function U(z,y) defined by (4.132) is
harmonic on the unit disk, with well-defined boundary values. Thus, by the preceding
remarks, U(z,y) is analytic at every point inside the unit disk, and hence so is

U(w,y)ZU($_x°,y_y°>

a a

at every point (x,y) in the interior of the disk D,(x,). Since x, € {2 was arbitrary, this
establishes the analyticity of u throughout the domain. Q.E.D.

This concludes our discussion of the method of separation of variables for the planar
Laplace equation and some of its important consequences. The method can be used in a
few other special coordinate systems. See [78,79] for a complete account, including the
fascinating connections with the underlying symmetry properties of the equation.

Exercises

4.3.22. Solve the following Euler differential equations by use of the power ansatz:
(a) 2?u" +5zu —5u=0, (b) 22%u" —azu' —2u=0, (c) 2?u” —u=0,
d?u 2 du

(d) 2°u” +au' —3u=0, (e) 32°u’ —5zu' —3u=0, (f) g2 T de = 0.
$ 4.3.23. (i) Show that if u(z) solves the Euler differential equation
2
ax? Z g +bx Zu +cu=0, (4.133)
x x

then v(y) = u(e?) solves a linear constant-coeflicient differential equation.
(#4) Use this technique to solve the Euler differential equations in Exercise 4.3.22.

4.3.24.(a) Use the method in Exercise 4.3.23 to solve an Euler equation whose characteristic
equation has a double root r; =7, =r. (b) Solve the specific equations

d’u 1 du

(#) dxz? * cdr 0-

(7) 22u —zu +u= 0,
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4.3.25. Solve the following boundary value problems:

(a) Au =0, m2+y2<1, u:w?’, x2+y2:1;
(b) Au=0, 2> +y> <2, u=log(a’ +4°), 2> +y* =1,
(¢) Au =0, m2+y2<4, u:m4, x2+y2:4;
0
(d) Au =0, 47 <1, u:m, 24yt =1

on

4.3.26. Let u(x,y) be the solution to the boundary value problem u,, + Uy = 0, 2+ y2 <1,
u(z,y) = 2%, 2> +y? = 1. Find u(0,0).

© 4.3.27.(a) Find the equilibrium temperature on a disk of radius 1 when half the boundary is
held at 1° and the other half is held at —1°. (b) Find the equilibrium temperature on a
half-disk of radius 1 when the temperature is held to 1° on the curved edge and 0° on the
straight edge. (c¢) Find the equilibrium temperature on a half disk of radius 1 when the
temperature is held to 0° on the curved edge and 1° on the straight edge.

4.3.28. Find the solution to Laplace’s equation u,, + Uy = 0 on the semi-disk 2% + y2 < 1,
y > 0, that satisfies the boundary conditions u(z,0) = 0 for —1 < z < 1 and u(z,y) = y>
form2+y2:1, y > 0.

4.3.29. Find the equilibrium temperature on a half-disk of radius 1 when the temperature is
held to 1° on the curved edge, while the straight edge is insulated.

4.3.30. Solve the Dirichlet boundary value problem for the Laplace equation on the pie wedge
W={0<60< }Lﬂ, 0 < r < 1}, when the nonzero boundary data u(1,6) = h(0) appears
only on the curved portion of its boundary.

4.3.31. Find a harmonic function u(x,y) defined on the annulus % < 7 < 1 subject to the

constant Dirichlet boundary conditions u = a on r = % and u=bon r=1.

4.3.32. Boiling water flows continually through a long circular metal pipe of inner radius 1 cm
and outer radius 1.2 cm placed in an ice water bath. True or false: The temperature at the
midpoint, at radius 1.1 cm, is 50°. If false, what is the temperature at this point?

4.3.33. Write out the series solution to the boundary value problem wu(1,6) =0, w(2,0) = h(6),

for the Laplace equation on an annulus 1 < r < 2. Hint: Use all of the separable solutions
listed in (4.114).

4.3.34. Solve the following boundary value problems for the Laplace equation on the annulus
l<r<2: (a) u(1,0) =0, u(2,0)=1, (b) u(l,0)=0, u(2,0) = cosb,
(¢) u(1,8) =sin26, u(2,0) =cos260, (d) u.(1,0)=0, u(2,0) =1,
(e) u,(1,0) =0, u(2,0) =sin20, (f) u.(1,0)=0, u,.(2,0)=1,
(g) u,.(1,0) =2, u.(2,0)=1.

s

4.3.35. Solve the following boundary value problems for the Laplace equation on the semi-
annular domain D = {1 < z?+3y? <2, y >0}

(a) u(z,y) =0, 22 —l—y2 =1, wu(z,y) =1, 22 +y2 =2, u(z,0)=0;
(b) u(z,y) =0, z*+y*=1o0r2, w0 =0 x>0 w0 =1 z<O0.
4.3.36. Solve the following boundary value problem:
(a:2 + yz)(um +uy,) + 22U, +2yu, =0, 22+ <1, u(z,y) =1+ 3z, 2 +y? =1
& 4.3.37. Justify the chain rule computation (4.104). Then justify formula (4.105) for the Lapla-
cian in polar coordinates.
4.3.38. Suppose /Tr | h(0) |dO < co. Prove that (4.115) converges uniformly to the solution to
—T
the boundary value problem (4.101) on any smaller disk D, = {r <r, <1} C D;.

4.3.39. Prove directly that (4.124) satisfies the boundary conditions (4.122).
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& 4.3.40. Justify the integration formula in (4.128).

4.3.41. Provide a complete proof that (4.129) is indeed the solution to the boundary value
problem (4.127).

{ 4.3.42. Complete the proof of Theorem 4.9 by showing that u(x,y) = M™* for all (x,y) € Q.
Hint: Join (z,yq) to (x,y) by a curve C' C Q of finite length, and use the preceding part
of the proof to inductively deduce the existence of a finite sequence of points (z;,y,;) € C,
i=0,...,n, with (z,,,y,) = (z,y), and such that u(z;,y;) = M™*.

{ 4.3.43. Derive the analogue of the Poisson integral formula for the solution to the Neumann
boundary value problem Awu = 0, 22+ y2 <1, Ou/On = h, 2+ y2 =1, on the unit disk.
Pay careful attention to the existence and uniqueness of solutions in your formulation.

4.3.44. Give an example of a solution to Poisson’s equation on the unit disk that achieves its
maximum at an interior point. Interpret your construction physically.

4.3.45. Let p(x,y) be a polynomial (not necessarily harmonic). Suppose u(z,y) is harmonic

and equals p(x,y) on the unit circle 2?2 4+ y? = 1. Prove that u(x,y) is a harmonic polyno-
mial.

4.3.46. Write down an integral formula for the solution to the Dirichlet boundary value prob-
lem on a disk of radius R > 0, namely, Au = 0, 2+ y2 < RQ, u=h, 2+ y2 = R%

4.3.47. State and prove a one-dimensional version of Theorem 4.8. Does the analogue of Theo-
rem 4.9 hold?

4.3.48. A unit area square plate has 100° temperature on its top edge and 0° on its three other
edges. True or false: The temperature at the center equals the average edge temperature.

{ 4.3.49. Let u(x,y) be a harmonic function on the unit disk with boundary values h(6) when
r = 1. Using the fact that (4.115) is the Taylor series for u(x,y) at the origin: (a) Find
integral formulas for its partial derivatives u,(0,0), uy(O7 0), involving the boundary values

h(6). (b) Generalize part (a) to the second-order derivatives u,,(0,0), u,,(0,0), u,, (0,0).

4.3.50. Prove that if u(x,y) is a bounded harmonic function defined on all of R?, then u is con-
stant. Hint: First generalize Exercise 4.3.49(a) to find the value of its gradient, Vu(z, yy),
in terms of the values of u on a circle of radius a centered at (z,y,). Then see what hap-
pens when the radius of the circle goes to co.

4.4 Classification of Linear Partial Differential Equations

We have, at last, been introduced to the three paradigmatic linear second-order partial
differential equations for functions of two variables. The homogeneous versions are

(a) The wave equation: uy — cu,, =0, hyperbolic,
(b) The heat equation: Uy — Y Uy, = 0, parabolic,
(¢) Laplace’s equation: Uy + Uy, =0, elliptic.

The last column indicates the equation’s type, in accordance with the standard taxonomy
of partial differential equations; an explanation will appear momentarily. The wave, heat,
and Laplace equations are the prototypical representatives of these three fundamental gen-
res. Each genre has its own distinctive analytic features, physical manifestations, and even
numerical solution schemes. Equations governing vibrations, such as the wave equation,
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are typically hyperbolic. Equations modeling diffusion, such as the heat equation, are
parabolic. Hyperbolic and parabolic equations both typically represent dynamical pro-
cesses, and so one of the independent variables is identified as time. On the other hand,
equations modeling equilibrium phenomena, including the Laplace and Poisson equations,
are usually elliptic, and involve only spatial variables. Elliptic partial differential equations
are associated with boundary value problems, whereas parabolic and hyperbolic equations
require initial and initial-boundary value problems.

The classification theory of real linear second-order partial differential equations for a
scalar-valued function u(t,z) depending on two variables’ proceeds as follows. The most
general such equation has the form

Liu]l=Au,y + Buy, +Cu,, + Du, + Eu, + Fu =G, (4.134)

where the coefficients A, B,C, D, E, F are all allowed to be functions of (¢,z), as is the
inhomogeneity or forcing function G(t,z). The equation is homogeneous if and only if
G = 0. We assume that at least one of the leading coefficients A, B, C' is not identically
zero, since otherwise, the equation degenerates to a first-order equation.

The key quantity that determines the type of such a partial differential equation is its
discriminant

A=B?—4AC. (4.135)

This should (and for good reason) remind the reader of the discriminant of the quadratic
equation
Q(z,y) = A2*> + Bay+Cy>* + Dz + Ey+ F =0, (4.136)

whose solutions trace out a plane curve — a conic section. In the nondegenerate cases, the
discriminant (4.135) fixes its geometric type:

e a hyperbola when A > 0,
e a parabola when A =0,
e an ellipse when A < 0.

This motivates the choice of terminology used to classify second-order partial differential
equations.

Definition 4.12. At a point (¢, z), the linear second-order partial differential equa-
tion (4.134) is called

e hyperbolic if A(t,z) > 0,

e parabolic if A(t,z) =0, but A%+ B? +C? #£0,
o clliptic if A(t,z) <0,

e singular if A=B=C=0.

In particular:
e The wave equation u,, —u,, = 0 has discriminant A = 4, and is hyperbolic.
e The heat equation u,, —u, = 0 has discriminant A = 0, and is parabolic.
e The Poisson equation w,, + u,, = — f has discriminant A = —4, and is elliptic.

T For equilibrium equations, we identify ¢ with the space variable y.
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Example 4.13. When the coefficients A, B, C vary, the type of the partial differential
equation may not remain fixed over the entire domain. Equations that change type are
less common, as well as being much harder to analyze and solve, both analytically and
numerically. One example arising in the theory of supersonic aerodynamics, [44], is the
Tricomi equation
P*u  *u
o2 ox?
Comparing with (4.134), we find that

A=z, B=0, C=-1, while D=F=F=G=0.
The discriminant in this particular case is
A=B?—-4AC =4z,

and hence the equation is hyperbolic when x > 0, elliptic when x < 0, and parabolic on the
transition line x = 0. In the physical model, the hyperbolic region corresponds to subsonic
flow, while the supersonic regions are of elliptic type. The transitional parabolic boundary
represents the shock line between the sub- and super-sonic regions — the familiar sonic
boom as an airplane crosses the sound barrier.

x 0. (4.137)

While this tripartite classification into hyperbolic, parabolic, and elliptic equations
initially appears in the bivariate context, the terminology, underlying properties, and as-
sociated physical models carry over to second-order partial differential equations in higher
dimensions. Most of the partial differential equations arising in applications fall into one
of these three categories, and it is fair to say that the field of partial differential equations
splits into three distinct subfields. Or rather four subfields, the last containing all the equa-
tions, including higher-order equations, that do not fit into the preceding categorization.
(One important example appears in Section 8.5.)

Remark: The classification into hyperbolic, parabolic, elliptic, and singular types car-
ries over as stated to quasilinear second-order equations, whose coefficients A, ..., G are
allowed to depend on u and its first-order derivatives, u,,u,. Here the type of the equation
can vary with both the point in the domain and the particular solution being considered.
Even more generally, for a fully nonlinear second-order partial differential equation

H(t,x,u,uy, Uy, Uy, Upyy Uy) = 0, (4.138)
one defines its discriminant to be

2
A:(6H> 0OH OH

ou,. (4.139)

- duy, Ou,,
Its sign determines the type of the equation as above — again depending on the point in
the domain and the solution under consideration.

Exercises

4.4.1. Plot the following conic sections and classify their type:
(a) 2®+3y> =1, (b) ay+a+y=4, (c) 2®—zy+y®=x-2y,
(d) 2 +2zy+yP+y=1, (e) 22 —2y%> =6z +8y+ 1.
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4.4.2. Determine the type of the following partial differential equations:
(a) wy +3uyy =0, (B) up +up +uy =u, () uy +up +uy, =0,
(d) Uy — Ugy + Upg = U, (e) Uy + 4“1530 + 4“303(; = Uy, (f) Uty + Upy = 0.

4.4.3. Consider the partial differential equation zu,, + (t + z)u,, = 0. At what points of the
plane is the equation elliptic? hyperbolic? parabolic? degenerate?

4.4.4. Answer Exercise 4.4.3 for the equations
2
(a) = Uy + TUy + 1y, =0, (b) Om(xum)zay(yuy), (¢) up =0 [(z +t)u,],
(d) V- (e(x,y)Vu) = u, where c(z,y) is a given function.
4.4.5. Steady flow of air past an airplane is modeled by the partial differential equation
(m2 - Du,, + Uy, = 0, in which z is the flight direction, y the transverse direction, and

m > 0 is the Mach number — the ratio of the airplane’s speed to the speed of sound. Show
that the equation is hyperbolic for subsonic flight, but elliptic for supersonic flight.

4.4.6. Show that the second-order partial differential equation
0 ou 0 ou
o (e 5t ) = ) (aten 5 )+ e = o)

is elliptic if and only if p(x,y) and ¢(x,y) are nonzero and have the same sign.

& 4.4.7. True or false: The type of a linear second-order partial differential equation is not af-
fected by a change of independent variables: 7 = (¢, z), & =¥ (t,z).

4.4.8. Let v(t, ) = a(t,z) u(t,z) + b(t, x), where a, b are fixed functions with a # 0. Suppose u
is a solution to a second-order linear partial differential equation. Prove that v also solves a
linear partial differential equation of the same type.

$ 4.4.9. True or false: The polar coordinate form (4.105) of the Laplace equation is elliptic.

4.4.10. Rewrite the Laplace equation u,, + Uy = 0 in terms of parabolic coordinates &, n, as

defined by the equations = = 52 — 772, y = 2&n. Is the resulting equation elliptic?

{ 4.4.11. Prove that the complex change of variables x = x, ¢ = iy, maps the Laplace equation
Uy + Uy, = 0 to the wave equation wuy = u,,. Explain why the type of a partial differential
equation is not necessarily preserved under a complex change of variables.

Q© 4.4.12. Suppose, against all advice, we pose the elliptic Laplace equation as an initial value

problem, namely uy =—u,, for 0<z<l,  t>0,
u(0,z) = f(x), u (0, ) =0, 0<z<1, u(t,0) =0 =u(t, 1), t>0.
(a) Prove that for any positive integer n > 0, the function w,,(t,z) = sinnt ;oshnﬂm

satisfies the initial value problem. Determine the initial condition u, (0, z) = f,, ().
(b) Prove that, as n — oo, the initial condition f, (z) — 0 becomes vanishingly small,

whereas, at any ¢ > 0, the solution value u,, (t, é) — 00.
(¢) Explain why this represents an ill-posed problem.

4.4.13. The minimal surface equation (1+ui)um€—2umuyuxy+(1+u§)uyy =0 is (a) hyperbolic,
(b) parabolic, (c) elliptic, (d) singular, (e) of variable type depending on the point in the
domain, or (f) of variable type depending on the solution and the point in the domain.

Characteristics and the Cauchy Problem

In Chapter 2, we discovered that the characteristic curves guide the behavior of solutions
to first-order partial differential equations. Characteristics play a similarly fundamental
role in the analysis of more general hyperbolic partial differential equations and systems.
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In particular, they provide a mechanism for distinguishing among the various classes of
second-order partial differential equations.

As above, we will focus our attention on partial differential equations involving two
independent variables. The starting point is the general initial value problem, also known
as the Cauchy problem, in honor of the prolific nineteenth-century French mathemati-
cian Augustin-Louis Cauchy, justly famous for his wide-ranging contributions throughout
mathematics and its applications, including the Cauchy—Schwarz inequality, many of the
fundamental concepts in complex analysis, as well as the foundations of elasticity and
materials science. The general Cauchy problem specifies appropriate initial data along a
smooth curve! I' € R? and seeks a solution to the partial differential equation that as-
sumes the given initial data on I'. In all our examples, the curve in question has been a
straight line, e.g., the z—axis, but one could easily envisage more general situations. If the
partial differential equation has order n, then the Cauchy data consists of the values of the
dependent variable u along with all its partial differential equations up to order n — 1 on
the curve I'. For most curves, there is a unique solution u(t,x) to the partial differential
equation that achieves the specified values along I'. More rigorously, if we are in the an-
alytic category, meaning that the partial differential equation, the curve, and the Cauchy
data are all specified by analytic functions, then the fundamental Cauchy—Kovalevskaya
Theorem guarantees the existence of an analytic solution u(t,z) to the Cauchy problem
near any point on the initial curve. The statement of proof of this important theorem, due
to Cauchy and, in general form, the influential nineteenth-century Russian mathematician
Sofia Kovalevskaya, relies on the construction of convergent power series for the desired
solution and would take us too far afield. We refer the interested reader to [35,44]. The
exceptional curves, for which the Cauchy—Kovalevskaya Existence Theorem does not apply,
are called the characteristics of the underlying partial differential equations.

More prosaically, a curve I' will be called non-characteristic for the given partial
differential equation if one can determine the values of all the derivatives of u along I'
from the specified Cauchy data. Indeed, the determination of the values of the higher-
order derivatives along the curve is a necessary preliminary step towards establishing the
Cauchy—Kovalevskaya existence result. As we will now show, this requirement serves to dis-
tinguish the characteristic and non-characteristic curves for the examples we have already
encountered, and hence to lead to their characterization in much more general contexts.

To illustrate the preceding requirement, let us begin with a first-order linear partial
differential equation of the form

ou ou

t = f(t, ). 4.140
0 elta) o = f() (1.140)
Let I' C R? be a smooth curve parametrized® by x(s) = (#(s),z(s))”, where smoothness
necessitates that its tangent vector not vanish: x'(s) = (dt/ds,dz/ds)T # 0. Since the
equation is of order n = 1, the Cauchy data requires specifying the values of the dependent
variable u only along I' — in other words, the function

h(s) = u(t(s), z(s)). (4.141)

' More generally, for partial differential equations in m > 2 independent variables, the curve
is replaced by a hypersurface S C R" of dimension m — 1.

8 The parameter s could be the arc length, but this is not required. See also Exercise 4.4.20.
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The curve will be non-characteristic if we can then determine the values of the derivatives
of u along I, starting with

ou ou

D)), (). (9)). (4.142)
To this end, let us differentiate the Cauchy data (4.141): applying the chain rule, we obtain
d ou dt  Ou dx
/ _ —
h'(s) = ds u(t(s),z(s)) = Jy (t(s), z(s)) ds + P (t(s),z(s)) s (4.143)

On the other hand, we are assuming that wu(t,z) solves the partial differential equation
(4.140) at all points in its domain of definition. In particular, at points on the curve I, the
partial differential equation requires

68:’ (t(s), 2(s)) + e(t(s), 2(s)) gz (t(s),2(s)) = F(t(s), 2(s)). (4.144)

We can regard (4.143-144) as a pair of inhomogeneous linear algebraic equations, which
can be uniquely solved for the as yet unknown quantities (4.142), unless the determinant
of their coefficient matrix vanishes:

1 c(t(s),z(s))\ _ dz it
det (dt/ds dlE/dS ) o ds - C(t(s),x(s)) dS - 0 (4145)

This condition serves to define a characteristic curve for the first-order partial differential
equation (4.140). In particular, if the curve is parametrized by s = t, i.e., can be identified
with the graph of a function x = g(t), then the characteristic condition (4.145) reduces to

dx
dt

thus reproducing our original definition of characteristic curve, as in (2.18) and, more
generally, Exercise 2.2.26. On the other hand, if the determinant (4.145) is nonzero, then
one can solve (4.143-144) for the values of the first-order derivatives (4.142) along T'.
Further differentiation of these conditions proves that one can, in fact, determine the
values of all the higher-order derivatives of the solution u along the curve, which is hence
non-characteristic.

= c(t, x), (4.146)

Next, consider a nonsingular linear second-order partial differential equation of the
form (4.134). Since the equation has order n = 2, the Cauchy data along a curve I'
parametrized as above consists of the values of the function and its first derivatives:

u(t(s), x(s)), 88";‘ (t(s),(s)), gz (t(s), z(s)). (4.147)

However, the latter cannot be specified independently. Indeed, given the value of the
dependent variable, h(s) = u(t(s), z(s)), along I, its derivative

B (s) = C;iu(t(s),x(s)) - Z@‘ (t(s), z(s)) 212 n gz (t(s), 2(s)) fl‘: (4.148)

prescribes a particular combination of the two first-order derivatives. Thus, once the
value of one derivative of u on I' is known, the other is automatically fixed by the relation

(4.148). For example, if dz/ds # 0, we can use (4.148) to determine u, (t(s), z(s)), knowing
u(t(s),z(s)) and u,(t(s),z(s)). Similarly, if we differentiate the values of the first-order
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derivatives with respect to the curve parameter, we can determine two combinations of
second-order derivatives along the curve I':

d Ou 0%y dt 0%y dx
ds ot 1 2(8) = 50 (1s)2(s)) y ot 5 o (Hs)(s)) (4.149)
d Ou 02 dt  9%u dx .

ds Oz (t(s),x(s)) = 9tor (t(s),x(s)) ds + Ox2 (t(s),x(s)) ds

On the other hand, the partial differential equation (4.134) induces yet a third relation
among the second-order partial derivatives w,,,u,,,u,.. These three linear equations can
be uniquely solved for values of these derivatives on I' if and only if the determinant of
their coefficient matrix is nonzero:

A(t,z) B(t,x) C(t,x) ) 9
det | dt/ds dx/ds 0 = A(t, ) de — B(t,x) dt de +C(t,x) iy 0.
¢ ’ ds " ds ds ’ ds
0 dt/ds  dx/ds

(4.150)
We conclude that a smooth curve x(s) = (#(s),z(s))? C R? is a characteristic curve
for the nonsingular linear second-order partial differential equation (4.134) whenever its
tangent vector x’(s) = (dt/ds,dx/ds )T # 0 satisfies the quadratic characteristic equation
(4.150). Conversely, if the curve is non-characteristic, meaning that its tangent does not
satisfy (4.150) anywhere, then one can, with some further work, determine all the higher-
order derivatives of the solution u(t, ) along I'; and then, at least in the analytic category,
prove existence of a solution to the Cauchy problem, [35].

According to Exercise 4.4.20, the status of a curve as characteristic or not does not
depend on the choice of parametrization. In particular, if the curve is given by the graph
of the function x = x(t), which we parametrize by s = t, then the characteristic equation
(4.150) takes the form of a quadratically nonlinear first-order ordinary differential equation

A(t,z) (‘fg) — B(t,z) CZ +O(t,z) =0, (4.151)

whose solutions are characteristic curves of the second-order partial differential equation.

Warning: If A(t,x) = 0, then the partial differential equation admits characteristic
curves with vertical tangents that cannot be parametrized by s = ¢t. For example, if
A(t,x) = 0, then the vertical lines e.g., t = constant, © = s, are characteristic, satisfying
(4.150), but do not appear as solutions to (4.151).

For example, consider the hyperbolic wave equation
wy — ¢ u,, =0.

According to (4.151), any characteristic curve that is given by the graph of x(¢) must solve

dz\? 2 . . . dx
(dt > —c° =0, which implies that P +e.

Thus, in accordance with our previous analysis, the characteristic curves are the straight
lines of slope £ ¢, and there are two characteristic curves passing through each point of the
(t,z)-plane. On the other hand, the elliptic Laplace equation

utt +uzz =0
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has no (real) characteristic curves, since the characteristic equation (4.150) reduces to

dr 2+ dt 2_0
ds ds) 7

and ¢, and x, are not allowed to vanish simultaneously. Finally, for the parabolic heat
equation

Uy, — Uy = 0,

the characteristic curve equation (4.150) is simply

dt\?
() =0

(since the first-derivative term plays no role), and so there is only one characteristic curve
passing through each point, namely the vertical line ¢ = constant. Observe that the stan-
dard initial value problem u(0,2) = f(x) for the heat equation takes place on a character-
istic curve — the x—axis — but does not take the form of a Cauchy problem, which would
also require specifying the first-order derivatives u,(0,x), u,(0,z) there. And indeed, the
standard initial value problem is not well-posed near the characteristic z—axis for negative
t<O0.

In general, the number of real solutions to the nondegenerate quadratic characteristic
curve equation (4.150) depends on its discriminant A = B? —4AC: In the hyperbolic
case, A > 0, and there are two real characteristic curves passing through each point; in
the parabolic case, A = 0, and there is just one real characteristic curve passing through
each point; in the elliptic case, A < 0, and there are no real characteristic curves. In this
manner, elliptic, parabolic, and hyperbolic partial differential equations are distinguished
by the number of (real) characteristic curves passing through a point — namely, zero,
one, and two, respectively. First-order partial differential equations are also viewed as
hyperbolic, since they always admit real characteristic curves.

With further analysis, [35, 70, 122], it can be shown that, as with the wave equation,
signals and disturbances propagate along characteristic curves. Thus, hyperbolic equa-
tions share many qualitative properties with the wave equation, with signals moving in
two different directions. For example, light rays move along characteristic curves, and are
thereby subject to the optical phenomena of refraction and focusing. Similarly, since the
characteristic curves for the parabolic heat equation are the vertical lines, this indicates
that the effect of a disturbance at a point (¢,x) = (¢, z,) is simultaneously felt along the
entire contemporaneous vertical line ¢ = ¢,. This has the implication that disturbances in
the heat equation propagate at infinite speed — a counterintuitive fact that will be further
expounded on in Section 8.1. Elliptic equations have no characteristics, and as a conse-
quence, do not support propagating signals; indeed, the effect of a localized disturbance
is immediately felt throughout the domain. For example, even when an external force is
concentrated near a single point, it displaces the entire membrane.

Exercises

4.4.14. Find and graph the real characteristic curves for each of the partial differential equa-
tions in Exercise 4.4.2.
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4.4.15. Graph the characteristic curves for the Tricomi equation (4.137) in its hyperbolic region.
What happens to the characteristics as one approaches the parabolic transition boundary?

4.4.16. True or false: The characteristic curves of the Helmholtz equation u,, + Uy, —u =0 are

circles.

4.4.17.(a) At what points of the plane is the partial differential equation zu,, + Yy, = 0

elliptic? parabolic? hyperbolic? (b) How many characteristics are there through the point
(1,-1)? (c) Find them explicitly.

4.4.18. Consider the partial differential equation u,, +yu,, = v
(a) On which regions of the (z,y)—plane is the equation elliptic? parabolic? hyperbolic?
(b) Find the characteristics in the hyperbolic region.
(¢) Find the general solution in the hyperbolic region. Hint: Use characteristic coordinates.

4.4.19. Find a partial differential equation whose characteristic curves are:
(a) the lines x — y = a, © + 2y = b, where a,b € R are arbitrary constants;

(b) the exponential curves y = ce” for ¢ € R;
(c) the concentric circles 22 +y? = a for a > 0, and the rays y = ba.

{ 4.4.20. Prove that any reparametrization of a characteristic curve for a given second-order lin-
ear partial differential equation is also a characteristic curve.

4.4.21. True or false: You can uniquely recover a second-order partial differential equation by
knowing all its characteristic curves.

{ 4.4.22. Prove that any invertible change of variables, as in Exercise 4.4.7, maps the character-
istic curves of the original linear partial differential equation to the characteristic curves of
the transformed equation. Thus, characteristic curves are intrinsic: they do not depend on
the parametrization, nor on the coordinates used to represent the partial differential equa-
tion.



Chapter 5
Finite Differences

As one quickly learns, the differential equations that can be solved by explicit analytic
formulas are few and far between. Consequently, the development of accurate numerical
approximation schemes is an essential tool for extracting quantitative information as well
as achieving a qualitative understanding of the possible behaviors of solutions to the vast
majority of partial differential equations. (On the other hand, the successful design of
numerical algorithms necessitates a fairly deep understanding of their basic analytic prop-
erties, and so exclusive reliance on numerics is not an option.) Even in cases, such as
the heat and wave equations, in which explicit solution formulas (either in closed form or
infinite series) exist, numerical methods can still be profitably employed. Indeed, one can
accurately test a proposed numerical algorithm by running it on a known solution. As we
will see, the lessons learned in the design and testing of numerical algorithms on simpler
“solved” examples are of inestimable value when confronting more challenging problems.

Many of the basic numerical solution schemes for partial differential equations can be
fit into two broad themes. The first, to be presented in the present chapter, is that of
finite difference methods, obtained by replacing the derivatives in the equation by appro-
priate numerical differentiation formulae. We thus start with a brief discussion of some
elementary finite difference formulas used to numerically approximate first- and second-
order derivatives of functions. We then establish and analyze some of the most basic finite
difference schemes for the heat equation, first-order transport equations, the second-order
wave equation, and the Laplace and Poisson equations. As we will learn, not all finite dif-
ference schemes produce accurate numerical approximations, and one must confront issues
of stability and convergence in order to distinguish reliable from worthless methods. In
fact, inspired by Fourier analysis, the key numerical stability criterion is a consequence of
the scheme’s handling of complex exponentials.

The second category of numerical solution techniques comprises the finite element
methods, which will be the topic of Chapter 10. These two chapters should be regarded as
but a preliminary excursion into this vast and active area of contemporary research. More
sophisticated variations and extensions, as well as other classes of numerical integration
schemes, e.g., spectral, pseudo-spectral, multigrid, multipole, probabilistic (Monte Carlo,
etc.), geometric, symplectic, and many more, can be found in specialized numerical analysis
texts, including [6, 51, 60, 80, 94], and research papers. Also, the journal Acta Numerica
is an excellent source of survey papers on state-of-the-art numerical methods for a broad
range of disciplines.

P.J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, 181
DOI 10.1007/978-3-319-02099-0 5, © Springer International Publishing Switzerland 2014
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5.1 Finite Difference Approximations

In general, a finite difference approximation to the value of some derivative of a scalar
function u(z) at a point z, in its domain, say u'(z,) or u”(z,), relies on a suitable com-
bination of sampled function values at nearby points. The underlying formalism used to
construct these approximation formulas is known as the calculus of finite differences. Its
development has a long and influential history, dating back to Newton.

We begin with the first-order derivative. The simplest finite difference approximation
is the ordinary difference quotient

u(z + h) —u(x)
h

which appears in the original calculus definition of the derivative. Indeed, if u is differen-
tiable at x, then u’(z) is, by definition, the limit, as A — 0 of the finite difference quotients.
Geometrically, the difference quotient measures the slope of the secant line through the
two points (z,u(z)) and (x + h,u(x + h)) on its graph. For small enough h, this should be
a reasonably good approximation to the slope of the tangent line, u'(x), as illustrated in
the first picture in Figure 5.1. Throughout our discussion, h, the step size, which may be
either positive or negative, is assumed to be small: |h| < 1. When h > 0, (5.1) is referred
to as a forward difference, while h < 0 yields a backward difference.

~ u'(z), (5.1)

How close an approximation is the difference quotient? To answer this question, we
assume that u(z) is at least twice continuously differentiable, and examine its first-order
Taylor expansion

w(z +h) = u(z) + ' (z) h+ Ju" (&) h* (5.2)

at the point x. We have used Lagrange’s formula for the remainder term, [8, 97], in which
&, which depends on both z and h, is a point lying between x and = + h. Rearranging
(5.2), we obtain
u(z 4+ h) —u(x)
h

Thus, the error in the finite difference approximation (5.1) can be bounded by a multiple
of the step size:

— (@)= U ()R

u(z + h) —u(x)

) ww| i,

where C' = max } | u”(£) | depends on the magnitude of the second derivative of the function
over the interval in question. Since the error is proportional to the first power of h, we
say that the finite difference quotient (5.1) is a first-order approximation to the derivative
u'(x). When the precise formula for the error is not so important, we will write

x+h) —u(zx)
h

The “big Oh” notation O(h) refers to a term that is proportional to h, or, more precisely,
whose absolute value is bounded by a constant multiple of | h| as h — 0.

o(z) = + O(h). (5.3)

Example 5.1. Let u(x) =sinx. Let us try to approximate

u' (1) = cos 1 = .5403023 . ..
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Forward difference Central difference

Figure 5.1. Finite difference approximations.

by computing finite difference quotients

sin(1 +h) —sin 1
b :

The result for smaller and smaller (positive) values of h is listed in the following table.

cosl =~

h 1 .01 .001 .0001
approximation 497364 .536086 .b39881 .540260
error —.042939 —.004216 —.000421 —.000042

We observe that reducing the step size by a factor of 110 reduces the size of the error by
approximately the same factor. Thus, to obtain 10 decimal digits of accuracy, we anticipate
needing a step size of about A = 107!, The fact that the error is more or less proportional
to the step size confirms that we are dealing with a first-order numerical approximation.

To approximate higher-order derivatives, we need to evaluate the function at more
than two points. In general, an approximation to the ntt order derivative u(™ () requires
at least n + 1 distinct sample points. For simplicity, we restrict our attention to equally
spaced sample points, although the methods introduced can be readily extended to more
general configurations.

For example, let us try to approximate u”(z) by sampling u at the particular points
x, © + h, and x — h. Which combination of the function values u(x — h),u(z),u(z + h)
should be used? The answer is found by consideration of the relevant Taylor expansions’

3

/ " h2 " h 4
u(z 4+ h) =u(z) +u'(x) h+u'(2) 5 +u" () 6 + O(h%),

2 3
uw(z —h) =u(z) —u'(z) h +u" (x) h2 —u'"(z) };

where the error terms are proportional to h*. Adding the two formulas together yields

(5.4)
+0(n"),

u(z + h) +ulx —h) =2u(z) +u”(z) h? + O(h?).

T Throughout, the function u(x) is assumed to be sufficiently smooth so that any derivatives
that appear are well defined and the expansion formula is valid.
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Dividing by h? and rearranging terms, we arrive at the centered finite difference approzi-
mation to the second derivative of a function:

o (z) = u(x +h) — 21;(215) +u(x —h) L omd). (5.5)

Since the error is proportional to k2, this forms a second-order approximation.
Example 5.2. Let u(z) = ¢* , with u”(z) = (422 + 2)e® . Let us approximate
v’ (1) = 6e = 16.30969097 . . .
using the finite difference quotient (5.5):

(1+h)* _ 9 (1—h)?
u'(1) =6e ~ c etre .

h2
The results are listed in the following table.
h 1 .01 .001 .0001
approximation 16.48289823 16.31141265 16.30970819 16.30969115
error 17320726 .00172168 .00001722 .00000018

110 reduces the size of the error by a factor of

thereby gaining two new decimal digits of accuracy, which confirms that the

Each reduction in step size by a factor of
about 1(1)0,
centered finite difference approximation is of second order.

However, this prediction is not completely borne out in practice. If we take h = .00001
then the formula produces the approximation 16.3097002570, with an error of .0000092863
— which is less accurate than the approximation with h = .0001. The problem is that
round-off errors due to the finite precision of numbers stored in the computer (in the pre-
ceding computation we used single-precision floating-point arithmetic) have now begun to
affect the computation. This highlights the inherent difficulty with numerical differentia-
tion: Finite difference formulae inevitably require dividing very small quantities, and so
round-off inaccuracies may produce noticeable numerical errors. Thus, while they typi-
cally produce reasonably good approximations to the derivatives for moderately small step
sizes, achieving high accuracy requires switching to higher-precision computer arithmetic.
Indeed, a similar comment applies to the previous computation in Example 5.1. Our ex-
pectations about the error were not, in fact, fully justified, as you may have discovered had
you tried an extremely small step size.

Another way to improve the order of accuracy of finite difference approximations is to
employ more sample points. For instance, if the first-order approximation (5.3) to u'(z)
based on the two points z and x + h is not sufficiently accurate, one can try combining the
function values at three points, say z, v+ h, and x —h. To find the appropriate combination
of function values u(x — h),u(z),u(z + h), we return to the Taylor expansions (5.4). To
solve for u/(z), we subtract the two formulas, and so

u(x + h) —u(x —h) =24 (x)h + O(h?).
Rearranging the terms, we are led to the well-known centered difference formula

x+h)—u(x—h)

u'(z) = ul o

+ O(h?), (5.6)
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which is a second-order approximation to the first derivative. Geometrically, the centered
difference quotient represents the slope of the secant line passing through the two points
(x — hyu(x — h)) and (x + h,u(x + h)) on the graph of u, which are centered symmetrically
about the point x. Figure 5.1 illustrates the two approximations, and the advantage of
the centered difference version is graphically evident. Higher-order approximations can be
found by evaluating the function at yet more sample points, say, © + 2h, x — 2h, etc.

Example 5.3. Return to the function u(x) = sinx considered in Example 5.1. The

centered difference approximation to its derivative u/(1) = cos1 = .5403023 ... is
sin(l 4+ h) —sin(1 — h
cosl =~ (1+h) ( ) .
2h
The results are tabulated as follows:
h 1 .01 .001 .0001
approximation .53940225217 .54029330087 .54030221582 .54030230497
error —.00090005370  —.00000900499  —.00000009005  —.00000000090

As advertised, the results are much more accurate than the one-sided finite difference
approximation used in Example 5.1 at the same step size. Since it is a second-order
approximation, each reduction in the step size by a factor of 110 results in two more decimal

places of accuracy — up until the point where the effects of round-off error kick in.

Many additional finite difference approximations can be constructed by similar ma-
nipulations of Taylor expansions, but these few very basic formulas, along with a couple
that are derived in the exercises, will suffice for our purposes. (For a thorough treatment
of the calculus of finite differences, the reader can consult [74].) In the following sections,
we will employ the finite difference formulas to devise numerical solution schemes for a va-
riety of partial differential equations. Applications to the numerical integration of ordinary
differential equations can be found, for example, in [24, 60, 63].

Exercises

& 5.1.1. Use the finite difference formula (5.3) with step sizes h = .1,.01, and .001 to approximate
the derivative u'(1) of the following functions u(z). Discuss the accuracy of your approxi-

mation. (a) z*,  (b) (c) logz, (d) cosz, (e) tan~'a.

1422’

& 5.1.2. Repeat Exercise 5.1.1 using the centered difference formula (5.6). Compare your ap-
proximations with those in the previous exercise — are the values in accordance with the
claimed orders of accuracy?

& 5.1.3. Approximate the second derivative u’'(1) of the functions in Exercise 5.1.1 using the
finite difference formula (5.5) with h = .1,.01, and .001. Discuss the accuracy of your
approximations.

5.1.4. Construct finite difference approximations to the first and second derivatives of a func-
tion u(x) using its values at the points « — k, z, x + h, where h, k < 1 are of comparable size,
but not necessarily equal. What can you say about the error in the approximation?
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® 5.1.5. In this exercise, you are asked to derive some basic one-sided finite difference formulas,
which are used for approximating derivatives of functions at or near the boundary of their
domain. (a) Construct a finite difference formula that approximates the derivative u’(z)
using the values of u(x) at the points z,x + h, and = + 2h. What is the order of your for-
mula? (b) Find a finite difference formula for u” (x) that involves the same three function
values. What is its order? (c¢) Test your formulas by computing approximations to the first
and second derivatives of u(xz) = er at © = 1 using step sizes h = .1,.01, and .001. What
is the error in your numerical approximations? Are the errors compatible with the theoreti-
cal orders of the finite difference formulas? Discuss why or why not. (d) Answer part (c) at
the point x = 0.

& 5.1.6.(a) Using the function values u(z), u(x + h), u(z + 3h), construct a numerical approxi-
mation to the derivative u’(x). (b) What is the order of accuracy of your approximation?
(c) Test your approximation on the function u(z) = cosz at x = 1 using the step sizes
h =.1,.01, and .001. Are the errors consistent with your answer in part (b)?
& 5.1.7. Answer Exercise 5.1.6 for the second derivative u” ().
5.1.8.(a) Find the order of the five-point centered finite difference approximation
/ —u(x+ 2h) +8u(x + h) — 8u(x — h) + u(x — 2h)
u(z) =~ .
12h
(b) Test your result on the function (1+ z?)™! at & = 1 using the values h = .1,.01,.001.

5.1.9.(a) Using the formula in Exercise 5.1.8 as a guide, find five-point finite difference formu-

las to approximate (i) u”(z), (i1) v (x), (i) u(i”)(aj). What is the order of accuracy?

(b) Test your formulas on the function (14 x2)~! at z = 1 using the values h = .1, .01, .001.

5.2 Numerical Algorithms for the Heat Equation

Consider the heat equation
ou  0%u
ot~ oa2

on an interval of length ¢, with constant thermal diffusivity v > 0. We impose time-
dependent Dirichlet boundary conditions

0<z</, t>0, (5.7)

u(t,0) = a(t), u(t, ) = B(t), t>0, (5.8)
fixing the temperature at the ends of the interval, along with the initial conditions
u(0,z) = f(z), 0<z <Y, (5.9)

specifying the initial temperature distribution. In order to effect a numerical approximation
to the solution to this initial-boundary value problem, we begin by introducing a rectangular
mesh consisting of nodes (t;,,,) € R* with

For simplicity, we maintain a uniform mesh spacing in both directions, with

At:tj+1—tj, Ar=x,  —z,= |,
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representing, respectively, the time step size and the spatial mesh size. It will be essential
that we do not a priori require that the two be the same. We shall use the notation

U = u(ty, ), where t; =JjAL r,, =mAz, (5.10)

J,m
to denote the numerical approximation to the solution value at the indicated node.

As a first attempt at designing a numerical solution scheme, we shall employ the
simplest finite difference approximations to the derivatives appearing in the equation. The

second-order space derivative is approximated by the centered difference formula (5.5), and
hence

0*u (t.2 ) u(tj7$m+1)_2u(tj7$m)+u(tj7xmfl)
Ox2 Y 7T™ (Az)2

u',m 1_2u'7m+(u"7m71
~ T Ane +0((Ax)?),

+0((Ax)?)
(5.11)

where the error in the approximation is proportional to (Az)?. Similarly, the one-sided
finite difference approximation (5.3) is used to approximate the time derivative, and so

ou u(t; g, x,,) —u(t;,z,,) Uiy — U
t. ~ m UM L O(AL) &= T T L O(AY), 5.12

op (tirTm) At +0(At) N o, (612)
where the error is proportional to At¢t. In general, one should try to ensure that the
approximations have similar orders of accuracy, which leads us to require

At ~ (Az)>. (5.13)

Assuming Az < 1, this implies that the time steps must be much smaller than the space
mesh size.

Remark: At this stage, the reader might be tempted to replace (5.12) by the second-
order central difference approximation (5.6). However, this introduces significant compli-
cations, and the resulting numerical scheme is not practical; see Exercise 5.2.10.

Replacing the derivatives in the heat equation (5.14) by their finite difference approx-
imations (5.11, 12) and rearranging terms, we end up with the linear system

i=01,2,...
Ui tm = B ngr + (L= 20005 0 4 pr s M1, (5.14)
in which A
~
= (Ax)?” (5.15)

The resulting scheme is of iterative form, whereby the solution values u;, ,,, = u(t; 1, 2,,)
at time ¢, are successively calculated, via (5.14), from those at the preceding time L.

The initial condition (5.9) indicates that we should initialize our numerical data by
sampling the initial temperature at the nodes:

Uy = frn = F(20), m=1,...,n—1 (5.16)

Similarly, the boundary conditions (5.8) require that

u; o= o = aft;), u;, = B; = B(t;), j=0,1,2,.... (5.17)
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For consistency, we should assume that the initial and boundary conditions agree at the
corners of the domain:

fo = f(0) = u(0,0) = a(0) = ay, fo = F(0) = u(0,€) = 5(0) = [,

The three equations (5.14, 16, 17) completely prescribe the numerical approximation scheme
for the solution to the initial-boundary value problem (5.7-9).
Let us rewrite the preceding equations in a more transparent vectorial form. First, let

- T T
u) = (ujvl, Ujgy ey Ujy g ) R (u(tj, o), ulty, To), .. ulty, @, ) ) (5.18)

be the vector whose entries are the numerical approximations to the solution values at time
t; at the interior nodes. We omit the boundary nodes (t;,z), (t;,z,,), since those values
are fixed by the boundary conditions (5.17). Then (5.14) takes the form

ul+D) = Au@) 4 b)), (5.19)
where
1-2u . .U2 Ha
I —2p p 0
peoool=2p p : 0
A= PR bW =1 | (520)
.. /,l/ O

The (n—1) x (n—1) coefficient matrix A is symmetric and tridiagonal, and only its nonzero
entries are displayed. The contributions (5.17) of the boundary nodes appear in the vector
b)) € R™!. This numerical method is known as an explicit scheme, since each iterate is
computed directly from its predecessor without having to solve any auxiliary equations —
unlike the implicit schemes to be discussed next.

Example 5.4. Let us fix the diffusivity v = 1 and the interval length ¢ = 1. For
illustrative purposes, we take a spatial step size of Az = .1. We work with the initial data

-, nggg,

2 1 7

U(O,.’E):f(.%'): T =5 5§£U§ 107
1—uz, n<e<l,

used earlier in Example 4.1. In Figure 5.2 we compare the numerical solutions resulting
from two (slightly) different time step sizes. The first row uses At = (Ax)? = .01 and plots
the solution at the indicated times. The numerical solution is already showing signs of
instability (the final plot does not even fit in the window), and indeed, soon thereafter, it
becomes completely wild. The second row takes At = .005. Even though we are employing
a rather coarse mesh, the numerical solution is not too far away from the true solution to
the initial value problem, which can be seen in Figure 4.1.

Stability Analysis

In light of the preceding calculation, we need to understand why our numerical scheme
sometimes gives reasonable answers but sometimes utterly fails. To this end, we investigate
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t=20 =.02 t=.04

Figure 5.2.  Numerical solutions for the heat equation tI-J
based on the explicit scheme.

the effect of the numerical scheme on simple functions. As we know, the general solution
to the heat equation can be decomposed into a sum over the various Fourier modes. Thus,
we can concentrate on understanding what the numerical scheme does to an individual
complex exponential,” bearing in mind that we can then reconstruct its effect on more
general initial data by taking suitable linear combinations of exponentials.

To this end, suppose that, at time t = b the solution is a sampled exponential

u(t;, x) = elke and so U = u(ty, @,,) = elhom, (5.21)

where k is a real parameter. Substituting the latter values into our numerical equations
(5.14), we find that the updated value at time t; 41 1s also a sampled exponential:

Uiy m = AU yr + (1= 20)u;, + B,

= peik@m+ia) | (1—2p)eikom 4+ et k@n—aa) (5.22)
— Aeikam
where " .
A=Ak) = pe' ™2 4 (1—2p) + pe -

=1-2p[1l—cos(kAz)] =1 —4usin2(;kA:U).

Thus, the effect of a single step is to multiply the complex exponential (5.21) by the
magnification factor \: .
u(t;yq,) = elke, (5.24)

T As usual, complex exponentials are easier to work with than real trigonometric functions.



190 5 Finite Differences
In other words, e!* plays the role of an eigenfunction, with the magnification factor \(k)
the corresponding eigenvalue, of the linear operator governing each step of the numerical
scheme. Continuing in this fashion, we find that the effect of p further iterations of the
scheme is to multiply the exponential by the pth power of the magnification factor:

u(t;,,,x) = NP elke, (5.25)

As a result, the stability is governed by the size of the magnification factor: If [A] > 1,
then AP grows exponentially, and so the numerical solutions (5.25) become unbounded as
p — oo, which is clearly incompatible with the analytical behavior of solutions to the
heat equation. Therefore, an evident necessary condition for the stability of our numerical
scheme is that its magnification factor satisfy

A < 1. (5.26)

This method of stability analysis was developed by the mid-twentieth-century Hun-
garian/American mathematician — and father of the electronic computer — John von
Neumann. The stability criterion (5.26) effectively distinguishes the stable, and hence
valid, numerical algorithms from the unstable, and hence ineffectual, schemes. For the
particular case (5.23), the von Neumann stability criterion (5.26) requires

—-1<1-— 4usin2(; kA:U) <1, or, equivalently, 0< usinQ(é kA;v) < ;
Since this is required to hold for all possible k£, we must have

A 1 Az)?
0< u= vAt < and hence At<< z)

since v > 0. Thus, once the space mesh size is fixed, stability of the numerical scheme
places a restriction on the allowable time step size. For instance, if v+ = 1, and the space
mesh size Az = .01, then we must adopt a minuscule time step size At < .00005. It
would take an exorbitant number of time steps to compute the value of the solution at
even moderate times, e.g., t = 1. Moreover, the accumulation of round-off errors might
then cause a significant reduction in the overall accuracy of the final solution values. Since
not all choices of space and time steps lead to a convergent scheme, the explicit scheme
(5.14) is called conditionally stable.

Implicit and Crank—Nicolson Methods

An unconditionally stable method — one that does not restrict the time step — can be
constructed by replacing the forward difference formula (5.12) used to approximate the
time derivative by the backwards difference formula

du u(t;,x,,)—ult,_q,x,,) 2

t., ~ J7m J mS 4+ O (AH)?). 5.28
M 117, . ((a7?) (529
Substituting (5.28) and the same centered difference approximation (5.11) for u,, into the
heat equation, and then replacing j by j + 1, leads to the iterative system

i=0,1,2,...,

— WUy g1 T (L 200U — By g = U s (5.29)
m=1,....,n—1,
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t=.02 t=.04 t=.06

Figure 5.3. Numerical solutions for the heat equation L—Ij
based on the implicit scheme.

where the parameter p = v At/(Ax)? is as before. The initial and boundary conditions
have the same form (5.16,17). The latter system can be written in the matrix form

Aul+D) = y0) 4 pU+D), (5.30)

where A is obtained from the matrix A in (5.20) by replacing g by —pu. This serves to
define an implicit scheme, since we have to solve a linear system of algebraic equations
at each step in order to compute the next iterate uU*tY . However, since the coefficient
matrix A is tridiagonal, the solution can be computed extremely rapidly, [89], and so its
calculation is not an impediment to the practical implementation of this implicit scheme.

Example 5.5. Consider the same initial-boundary value problem considered in Ex-
ample 5.4. In Figure 5.3, we plot the numerical solutions obtained using the implicit
scheme. The initial data is not displayed, but we graph the numerical solutions at times
t = .2,.4,.6 with a mesh size of Ax = .1. In the top row, we use a time step of At = .01,
while in the bottom row At = .005. In contrast to the explicit scheme, there is very little
difference between the two — indeed, both come much closer to the actual solution than
the explicit scheme. In fact, even significantly larger time steps yield reasonable numerical
approximations to the solution.

Let us apply the von Neumann analysis to investigate the stability of the implicit
scheme. Again, we need only look at the effect of the scheme on a complex exponential.
Substituting (5.21,24) into (5.29) and canceling the common exponential factor leads to
the equation

)\(_MelkAx+1+2’u_'ue—lkAx>:1
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t=.02 t=.04 t = .06

Figure 5.4.  Numerical Solutions for the heat equation L—lj
based on the Crank—Nicolson scheme.

We solve for the magnification factor

1 1
A= = .
1+2p(1 - cos(kAz)) 1+4,usin2(§kA;v)
Since g > 0, the magnification factor is always less than 1 in absolute value, and so the

stability criterion (5.26) is satisfied for any choice of step sizes. We conclude that the
implicit scheme (5.14) is unconditionally stable.

(5.31)

Another popular numerical scheme for solving the heat equation is the Crank—Nicolson
method, due to the British numerical analysts John Crank and Phyllis Nicolson:

1
Uitim = Ujm = oM (Uj+1,m+1 —2 Ujitm T Uit ma1 T Ujmi1 — 2 Uj o T uj,mfl)’ (5.32)

which can be obtained by averaging the explicit and implicit schemes (5.14) and (5.29).
We can write (5.32) in vectorial form

Bulth — Byl 4+ ; (b(j> + b(Hl)),

where
1—?# —éﬂ 1 11_M ;M 1
R —ob 1+p —5p o l—p op
B = e VR B = 7R (5.33)

are both tridiagonal.

Applying the von Neumann analysis as before, we deduce that the magnification factor

has the form
1-— 2,usir12(; /{:Ax)

= . 5.34
1+2,usin2(§kA:U) ( )
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Since p > 0, we see that | A| < 1 for all choices of step size, and so the Crank—Nicolson
scheme is also unconditionally stable. A detailed analysis based on a Taylor expansion of
the solution reveals that the errors are of order (At)? and (Ax)?, and so it is reasonable to
choose the time step to have the same order of magnitude as the space step: At ~ Ax. This
gives the Crank—Nicolson scheme a significant advantage over the previous two methods,
in that one can get away with far fewer time steps. However, applying it to the initial
value problem considered above reveals a subtle weakness. The top row in Figure 5.4 has
space and time step sizes At = Az = .01, and does a reasonable job of approximating
the solution except near the corners, where an annoying and incorrect local oscillation
persists as the solution decays. The bottom row uses At = Az = .001, and performs much
better, although a similar oscillatory error can be observed at much smaller times. Indeed,
unlike the implicit scheme, the Crank—Nicolson method fails to rapidly damp out the high-
frequency Fourier modes associated with small-scale features such as discontinuities and
corners in the initial data, although it performs quite well in smooth regimes. Thus, when
dealing with irregular initial data, a good strategy is to first run the implicit scheme until
the small-scale noise is dissipated away, and then switch to Crank—Nicolson with a much
larger time step to determine the later large scale dynamics.

Finally, we remark that the finite difference schemes developed above for the heat
equation can all be readily adapted to more general parabolic partial differential equations.
The stability criteria and observed behaviors are fairly similar, and a couple of illustrative
examples can be found in the exercises.

Exercises

5.2.1. Suppose we seek to approximate the solution to the initial-boundary value problem
u(t,0) =u(t,3) =0, u(0,z)=z(z—-1)(z—-3), 0<z<3,

by employing the explicit scheme (5.14). (a) Given the spatial mesh size Az = .1, what
range of time steps At can be used to produce an accurate numerical approximation?

(b) Test your prediction by implementing the scheme using one value of Az in the allowed
range and one value outside.

Uy = du,,,

5.2.2. Solve the following initial-boundary value problem
Uy = Uy, u(t,0) = u(t,1) =0, u(0,z) = f(z), 0<z<1,

1 1 1
2’1._6‘_3’ 0<z< g,

with initial data f(z) =3 0, 1< <2, using
%—3’30—2’, §§:c§1,

(i) the explicit scheme (5.14); (i) the implicit scheme (5.29); and (#4) the Crank-Nicolson
scheme (5.32). Use space step sizes Az = .1 and .05, and suitably chosen time steps At.
Discuss which features of the solution can be observed in your numerical approximations.

5.2.3. Repeat Exercise 5.2.2 for the initial-boundary value problem u, = 3u,,, u(0,z) = 0,
u(t,—1) =1, u(¢t,1) = —1, using space step sizes Az = .2 and .1.
5.2.4.(a) Solve the initial-boundary value problem
Uy = Uy s u(t,—1) =u(t,1) =0, u(O,x):|x|1/2—x2, -1<z <1,

using (4) the explicit scheme (5.14); (i¢) the implicit scheme (5.29); (i) the Crank-Nicolson
scheme (5.32). Use Az = .1 and an appropriate time step At. Compare your numerical so-
lutions at times ¢ = 0,.01,,.02,.05,.1,.3,.5,1.0, and discuss your findings. (b) Repeat
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part (a) for the implicit and Crank-Nicolson schemes with Az = .01. Why aren’t you being
asked to implement the explicit scheme?

5.2.5. Use the implicit scheme with spatial mesh sizes Ax = .1 and .05 and appropriately cho-
sen values of the time step At to investigate the solution to the periodically forced bound-

ary value problem u, = u__, u(0,z) = 0, u(t,0) = sinbnt, u(t,1) = cosbnt. Is your
solution periodic in time?

© 5.2.6.(a) How would you modify (¢) the explicit scheme; (¢7) the implicit scheme; to deal with
Neumann boundary conditions? Hint: Use the one-sided finite difference formulae found in
Exercise 5.1.5 to approximate the derivatives at the boundary.
(b) Test your proposals on the boundary value problem

Uy = Uy u(0,z) = %—i—coswa— %003371'90, u, (t,0) =0=wu,(t,1),
using space step sizes Az = .1 and .01 and appropriate time steps. Compare your nu-
merical solution with the exact solution at times ¢ = .01, .03, .05, and explain any dis-
crepancies.

5.2.7.(a) Design an explicit numerical scheme for approximating the solution to the initial-
boundary value problem

U = YUy, + s(x), u(t,0) = u(t,1) =0, u(0,z) = f(z), 0<z<1,
for the heat equation with a source term s(z). (b) Test your scheme when

1 1 1
2|z—§|-35, o0<az<i,
1 5 2
2—3’x—6‘, 3<z<1,
using space step sizes Az = .1 and .05, and a suitably chosen time step At. Are your two

numerical solutions close? (¢) What is the long-term behavior of the solution? Can you
find a formula for its eventual profile? (d) Design an implicit scheme for the same problem.

Does this affect the behavior of your numerical solution? What are the advantages of the
implicit scheme?

5.2.8. Consider the initial-boundary value problem for the lossy diffusion equation
ou  9%u t>0,
ot = 922 —Qau, U(t,O):U(t, 1):07 u(O,ZC)Zf(ZC), 0§;§17
where o > 0 is a positive constant. (a) Devise an explicit finite difference method for com-
puting a numerical appoximation to the solution. (b) For what mesh sizes would you ex-

pect your method to provide a good approximation to the solution? (c¢) Discuss the case
when a < 0.

5.2.9. Consider the initial-boundary value problem for the diffusive transport equation
ou  9%u ou t>0,
ot = 81.2 +281” u(t,O):u(t,l):(), u((),x):x(l—x), OSZCSI
(a) Devise an explicit finite difference scheme for computing numerical appoximations to
the solution. Hint: Make sure your approximations are of comparable order. (b) For what
range of time step sizes would you expect your method to provide a decent approximation
to the solution? (c¢) Test your answer in part (b) for the spatial step size Az = .1.

{ 5.2.10.(a) Show that using the centered difference approximation (5.6) to approximate the
time derivative leads to Richardson’s method for numerically solving the heat equation:
ji=12,...,
m=1,...,n—1,
where = yAt/(Az)? is as in (5.15). (b) Discuss how to start Richardson’s method.

(¢) Discuss the stability of Richardson’s method. (d) Test Richardson’s method on the

initial-boundary value problem in Exercise 5.2.2. Does your numerical solution conform
with your expectations from part (b)?

Uiy 1m = U1 T 20 (0 g — 205 F U ),
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5.3 Numerical Algorithms for
First—Order Partial Differential Equations

Let us next apply the method of finite differences to construct some basic numerical meth-
ods for first-order partial differential equations. As noted in Section 4.4, first-order partial
differential equations are prototypes for hyperbolic equations, and so many of the lessons
learned here carry over to the general hyperbolic regime, including the second-order wave
equation, which we analyze in detail in the following section.
Consider the initial value problem for the elementary transport equation
ou ou

= = — 9.35
ot +C@$ 0, u(0,z) = f(x), 00 < & < 00, (5.35)

with constant wave speed c. Of course, as we learned in Section 2.2, the solution is a simple
traveling wave
u(t,z) = f(x — ct) (5.36)

that is constant along the characteristic lines of slope ¢ in the (¢, z)—plane. Although the
analytical solution is completely elementary, there will be valuable lessons to be learned
from our attempt to reproduce it by numerical approximation. Indeed, each of the nu-
merical schemes developed below has an evident adaptation to transport equations with
variable wave speeds ¢(t, x), and even to nonlinear transport equations whose wave speed
depends on the solution u, and so admit shock-wave solutions.

As before, we restrict our attention to a rectangular mesh (t;,z,,) with uniform time
step size At =, ; —1; and space mesh size Az =z, 1 — We use u;,, ~ u(t;,,,)
to denote our numerlcal approximation to the solution u(t, ;v) at the indicated node The
simplest numerical scheme is obtained by replacing the time and space derivatives by their
first-order finite difference approximations (5.1):

Ou j m ~ Yjm ou uﬁn _u'7m
oy L) = T IO, () & T T 4 O(A).
(5.37)

Substituting these expressions into the transport equation (5.35) leads to the explicit nu-
merical scheme

Ujp1m = —O0Ujm41 + (U + 1)uj,m7 (538)
in which the parameter
cAt
T Az (5.39)

depends on the wave speed and the ratio of time to space step sizes. Since we are employ-
ing first-order approximations to both derivatives, we should choose the step sizes to be
comparable: At ~ Azxz. When working on a bounded interval, say 0 < z < ¢, we will need
to specify a value for the numerical solution at the right end, e.g., setting u; ,, = 0, which
corresponds to imposing the boundary condition u(¢, ) = 0.

In Figure 5.5, we plot the numerical solutions, at times ¢ = .1,.2,.3, arising from the
following initial condition:

u(0,z) = f(z) = 4 ¢ 300(@=5)" 4 ] ¢=300(z—.65)% (5.40)

We use step sizes At = Az = .005, and try four different values of the wave speed. The
cases ¢ = .5 and ¢ = —1.5 clearly exhibit some form of numerical instability. The numerical
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Figure 5.5. Numerical solutions to the transport equation. L—lj

solution when ¢ = —.5 is a bit more reasonable, although one can already observe some
degradation due to the relatively low accuracy of the scheme. This can be alleviated by
employing a smaller step size. The case ¢ = —1 looks exceptionally good, and you are
asked to provide an explanation in Exercise 5.3.6.

The CFL Condition

The are two ways to understand the observed numerical instability. First, we recall that
the exact solution (5.36) is constant along the characteristic lines © = ct + £, and hence
the value of u(t,x) depends only on the initial value f(§) at the point £ = z — ¢t. On
the other hand, at time ¢t = t, the numerical solution u im & u(tj,;vm) computed using
(5.38) depends on the values of u; ; ,, and u;_; ,,.;. The latter two values have been



5.3 Numerical Algorithms for First Order Partial Differential Equations 197

x x

Stable Unstable
Figure 5.6. The CFL condition.

computed from the previous approximations w; o ., U; 5 415 Uj_g ;e And so on.
Going all the way back to the initial time ¢, = 0, we find that u, ., depends on the initial
values vy ,,, = f(,,), .- ,ug,uy; = f(z,, +jAzx) at the nodes lying in the interval
z,, <z <z, +jAz. On the other hand, the actual solution u(tj, x,,) depends only on
the value of f(§), where

§=u,, —ct;=xz, —cjAt.

Thus, if ¢ lies outside the interval [z,,,x,, + jAxz], then varying the initial condition
near the point z = ¢§ will change the actual solution value u(t;, r,,) without altering its
numerical approximation u; . at alll So the numerical scheme cannot possibly provide an
accurate approximation to the solution value. As a result, we must require

z, <=z, —cjAt <z  +jAuz, and hence 0 < —cAt < Ax,

which we rewrite as

cat > -1 or, equivalentl v
A _ v _ A
2 ;E P ) b q y7 2 t

This is the simplest manifestation of what is known as the Courant—Friedrichs—Lewy con-
dition, or CFL condition for short, which was established in the groundbreaking 1928
paper [33] by three of the pioneers in the development of numerical methods for partial
differential equations: the German (soon to be American) applied mathematicians Richard
Courant, Kurt Friedrichs, and Hans Lewy. Note that the CFL condition requires that the
wave speed be negative, and the time step size not too large. Thus, for allowable wave
speeds, the finite difference scheme (5.38) is conditionally stable.

The CFL condition can be recast in a more geometrically transparent manner as
follows. For the finite difference scheme (5.38), the numerical domain of dependence of a
point (¢;,,,) is the triangle

0>0= <c¢<0. (5.41)

Ty 0y = 1 () | 0<t<t;, x, <z <z, +t,—t}. (5.42)

The reason for this nomenclature is that, as we have just seen, the numerical approximation
to the solution at the node (¢;,7,,) depends on the computed values at the nodes lying
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within its numerical domain of dependence; see Figure 5.6. The CFL condition (5.41)
requires that, for all 0 < ¢ < L, the characteristic passing through the point (tj,a:m) lie
entirely within the numerical domain of dependence (5.42). If the characteristic ventures
outside the domain, then the scheme will be numerically unstable. With this geometric
reformulation, the CFL criterion can be applied to both linear and nonlinear transport
equations that have nonuniform wave speeds.

The CFL criterion (5.41) is reconfirmed by a von Neumann stability analysis. As
before, we test the numerical scheme on an exponential function. Substituting

_ Jikxy, _ ikx;,
Ujm =€ 777 Ujiy = A€, (5.43)

into (5.38) leads to
Nelkom — _gelktmir | (5 4 1)etkom = (—UeikAm +o0+ 1)6””"‘.
The resulting (complex) magnification factor
A=1+0(1l-e'ka7) = (1+0—ocos(kAz)) — iosin(kAx)
satisfies the stability criterion | A| < 1 if and only if
AP = (140 —ocos(kAx) )2 + (o sin(kAz) )2
=1+20(c+1)(1—cos(kAz)) =1+40(0c+1)sin*(JkAz) <1

for all k. Thus, stability requires that o(c + 1) < 0, and thus —1 < ¢ < 0, in complete
accord with the CFL condition (5.41).

Upwind and Lax—Wendroff Schemes

To obtain a finite difference scheme that can be used for positive wave speeds, we replace the
forward finite difference approximation to du/dz by the corresponding backwards difference
quotient, namely, (5.1) with h = — Az, leading to the alternative first-order numerical
scheme

Ujyrm=— (0= D)u;,, +0U; g, (5.44)

where 0 = cAt/Ax is as before. A similar analysis, left to the reader, produces the
corresponding CFL stability criterion

cAt
<1,
Ax —

and so this scheme can be applied for suitable positive wave speeds.

0<o=

In this manner, we have produced one numerical scheme that works for negative wave
speeds, and an alternative scheme for positive speeds. The question arises — particularly
when one is dealing with equations with variable wave speeds — whether one can devise
a scheme that is (conditionally) stable for both positive and negative wave speeds. One
might be tempted to use the centered difference approximation (5.6):

ou Ui — Wi
o (L Tm) = +1M el 0((Ax)?). (5.45)
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Figure 5.7. The CFL condition for the centered difference scheme.

Substituting (5.45) and the previous approximation to the time derivative (5.37) into (5.35)
leads to the numerical scheme

__1 1
Ujp1m =~ 20 Ujmyr T U + 50Uy g, (5.46)

where, as usual, 0 = ¢ At/Az. In this case, the numerical domain of dependence of the
node (t;,z,,) consists of the nodes in the triangle

Tyomy={ta)| 0<t<t;, z, —t;+t<z<az, +t,—1}. (5.47)

The CFL condition requires that, for 0 <t < tss the characteristic going through (tj, z,,)
lie within this triangle, as in Figure 5.7, which imposes the condition

c At
Ax

Az
At

lo| = <1, or, equivalently, le| < (5.48)

Unfortunately, although it satisfies the CFL condition over this range of wave speeds, the
centered difference scheme is, in fact, always unstable! For instance, the instability of the
numerical solution to the preceding initial value problem (5.40) for ¢ =1 can be observed
in Figure 5.8. This is confirmed by applying a von Neumann analysis: substitute (5.43)
into (5.46), and cancel the common exponential factors. Provided o # 0, which means that
¢ # 0, the resulting magnification factor

A=1-iosin(kAx)

satisfies | A| > 1 for all k£ with sin(kAxz) # 0. Thus, for ¢ # 0, the centered difference
scheme (5.46) is unstable for all (nonzero) wave speeds!
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Figure 5.8.  Centered difference numerical solution to the transport equation. L—_I-J

One possible means of overcoming the sign restriction on the wave speed is to use
the forward difference scheme (5.38) when the wave speed is negative and the backwards
scheme (5.44) when it is positive. The resulting scheme, valid for varying wave speeds
c(t, ), takes the form

=0 mUjmy1 T (Uj,m + 1)“j,ma Cim <0,
Ujp1,m = (5.49)
- (O'j’m — l)uj’m + 0 mUjm—1> Cjm >0,
where
At
Tjom = Cjom Ay Cim =t ). (5.50)

This is referred to as an upwind scheme, since the second node always lies “upwind” —
that is, away from the direction of motion — from the reference point (tj,:vm). The
upwind scheme works reasonably well over short time intervals, assuming that the space
step size is sufficiently small and the time step satisfies the CFL condition Az /At <|¢; |
at each node, cf. (5.41). However, over longer time intervals, as we already observed in
Figure 5.5, the simple upwind scheme tends to produce a noticeable damping of waves or,
alternatively, require an unacceptably small step size. One way of overcoming this defect is
to use the popular Laxz—Wendroff scheme, which is based on second-order approximations
to the derivatives. In the case of constant wave speed, the iterative step takes the form

Uiy gy = ;0’(0’ — l)ujymJrl — (02 - l)uj’m + ;0’(0’ + 1)uj,m—1‘ (5.51)

The stability analysis of the Lax—Wendroff scheme is relegated to the exercises. Extensions
to variable wave speeds are more subtle, and we refer the reader to [80] for a detailed
derivation.
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Exercises

5.3.1. Solve the initial value problem u, = 3u,, u(0,z) = 1/(1 + w2), on the interval [—10, 10]
using an upwind scheme with space step size Az = .1. Decide on an appropriate time step
size, and graph your solution at times ¢t = .5, 1,1.5. Discuss what you observe.

5.3.2. Solve Exercise 5.3.1 for the nonuniform transport equations

2
(a) u, +4(1+2*) " tu, =0, (b) u, = (3—267:6 /4)um,
(¢) uy +7x(1+ 2?7t u, =0, (d) uy + (Ztan_l %m) u, = 0.

5.3.3. Consider the initial value problem

3z .2
ut+x2+1uz:0, u(O,x):(l—%az2>e =°/3,
On the interval [—5, 5], using space step size Az = .1 and time step size At = .025, apply
(a) the forward scheme (5.38) (suitably modified for variable wave speed), (b) the back-
ward scheme (5.44) (suitably modified for variable wave speed), and (¢) the upwind scheme
(5.49). Graph the resulting numerical solutions at times ¢ = .5,1,1.5, and discuss what you
observe in each case. Which of the schemes are stable?

5.3.4. Use the centered difference scheme (5.46) to solve the initial value problem in Exercise
5.3.1. Do you observe any instabilities in your numerical solution?

5.3.5. Use the Lax—Wendroff scheme (5.51) to solve the initial value problem in Exercise 5.3.1.
Discuss the accuracy of your solution in comparison with the upwind scheme.

$ 5.3.6. Can you explain why, in Figure 5.5, the numerical solution in the case ¢ = —1 is signifi-
cantly better than for ¢ = —.5, or, indeed, for any other c¢ in the stable range.

5.3.7. Nonlinear transport equations are often solved numerically by writing them in the form
of a conservation law, and then applying the finite difference formulas directly to the con-
served density and flux. (a) Devise an upwind scheme for numerically solving our favorite
nonlinear transport equation, u, + % (u2)9C =0.

(b) Test your scheme on the initial value problem u(0,x) = e™ 2®

5.3.8.(a) Design a stable numerical solution scheme for the damped transport equation
2
u, + iuz +u=0. (b) Test your scheme on the initial value problem with u(0,z) =e~ % .
$ 5.3.9. Analyze the stability of the numerical scheme (5.44) by applying (a) the CFL condition;

(b) a von Neumann analysis. Are your conclusions the same?

< 5.3.10. For what choices of step size At, Az is the Lax—Wendroff scheme (5.51) stable?

5.4 Numerical Algorithms for the Wave Equation

Let us now develop some basic numerical solution techniques for the second-order wave
equation. As above, although we are in possession of the explicit d’Alembert solution
formula (2.82), the lessons learned in designing viable schemes here will carry over to more
complicated situations, including inhomogeneous media and higher-dimensional problems,
for which analytic solution formulas may no longer be readily available.
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Consider the wave equation
Pu  , 0%u
= C y
ot? 0x?
on a bounded interval of length ¢ with constant wave speed ¢ > 0. For specificity, we
impose (possibly time-dependent) Dirichlet boundary conditions

ult,0) = a(t), u(t, 0) = B(t), >0, (5.53)

along with the usual initial conditions

0<z<U{, t>0, (5.52)

u(0,7) = f(x), 2 0,2) = g(a), 0<a<t. (5.54)
As usual, we adopt a uniformly spaced mesh
t; =JAt, x,, =mAx, where Ax = ¢ .
n

Discretization is implemented by replacing the second-order derivatives in the wave equa-
tion by their standard finite difference approximations (5.5):

2 t, —2u(t; t,
gt,s (tja$m> ~ U( j+1’$m) u((A];>:§m) +U( jil,xm) + O((At>2)7
o2 u(t.,x, ) —2u(t,z, )+ult,z, ) (5:55)
u ~ i Ym+1) T jr¥m 7' Ym—1 2

Since the error terms are both of second order, we anticipate being able to choose the
space and time step sizes to have comparable magnitudes: At ~ Az. Substituting the
finite difference formulas (5.55) into the partial differential equation (5.52) and rearranging
terms, we are led to the iterative system

i=1,2,...,

5.56
m=1,...,n—1, ( )

_ 2 2 2
Ujptn = 0 Ujmgr + 2 (L= 0%) U 07U g = Uy s
for the numerical approximations u; ,, ~ u(tj, x,,) to the solution values at the nodes. The
parameter

c At
o="\ >0 (5.57)

depends on the wave speed and the ratio of space and time step sizes. The boundary
conditions (5.53) require that

This allows us to rewrite the iterative system in vectorial form
wlth = Bul) — wU-Y 4 ), (5.59)
where
2(1—0?) a? u; 2o
o? 2(1—0?%) o2 i, 0’
B= o2 , ul) = . , bl =
N j,n—2 20

o2 2(1—0’2) Ujn—1 g ﬁj
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The entries of ut) € R"~! are, as in (5.18), the numerical approximations to the solution
values at the interior nodes. Note that (5.59) describes a second-order iterative scheme,
since computing the subsequent iterate ul+Y requires knowing the values of the preceding
two: u¥) and ul—1,

The one subtlety is how to get the method started. We know u(®, since its entries
Uy = frn = f(w,,) are determined by the initial position. However, we also need ul®
in order to launch the iteration and compute u®,u® ... . Tts entries u, , ~ u(At,z,)
approximate the solution at time t; = At, whereas the initial velocity ﬁt(O,LE) = g(z)
prescribes the derivatives u,(0,z,,) = g,, = g(x,,) at the initial time ¢, = 0. To resolve
this difficulty, a first thought might be to use the finite difference approximation

ou _u(Atx) —u(0,2,,) Uy = S

=~ ~ .61

to compute the required values u, ,,, = f,, + g,, At. However, the approximation (5.61) is

gm=8t(

accurate only to order At, whereas the rest of the scheme has errors proportional to (At)2.
The effect would be to introduce an unacceptably large error at the initial step, and the
resulting solution would fail to conform to the desired order of accuracy.

To construct an initial approximation to u(*) with error on the order of (At)?, we need
to analyze the error in the approximation (5.61) in more depth. Note that, by Taylor’s
Theorem,

u(At,z,,) —u(0,z,,) Ou 1 0%u 5
At = o 0,2,,) + 5 12 (0,2,,)At + O((At)?)
ou c? 0%u
= A At)?
o OTm)+ o o (0,2,,) At + O( (At)?),
since u(t, z) solves the wave equation. Therefore,
ou  9*u 9
g = (A 2,) R 00,2, + 00, AL D (0,2,)(A)

= Fle) + gl,) A+ () (002
2(fm+l - 2fm + fmfl)(At)2
2(Ax)? !

where the last line, which employs the finite difference approximation (5.5) to the sec-
ond derivative, can be used if the explicit formula for f”(z) is either not known or too
complicated to evaluate directly. Therefore, we initiate the scheme by setting

c
~ fo T 9, AL+

uLm = éO.Q m—+1 + (1 - Uz)fm + éO.Q m—1 + 9m At? (562)

or, in vectorial form,
ul® =f, ul = éBu(O) +g At + ;b(o), (5.63)
where f = (f1, fa,.- ., nfl)T, g = (91,92,...,9"71)7“, are the sampled values of the

initial data. This serves to maintain the desired second-order accuracy of the scheme.
Example 5.6. Consider the particular initial value problem
u(0,z) = e~ 400 (@=3)* u,(0,2) = 0, 0<z<I,

u(t,0) = u(t,1) =0, t>0,

utt = u:v:n’
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t=.3 t=.4 t=.5

Figure 5.9. Numerically stable waves. L—lj

t=20 t=.04 t=.08
AN A RN
t=.12 t=.16 t=.2

Figure 5.10. Numerically unstable waves. L—Ij

subject to homogeneous Dirichlet boundary conditions on the interval [0,1]. The initial
data is a fairly concentrated hump centered at x = .3. As time progresses, we expect the
initial hump to split into two half-sized humps, which then collide with the ends of the
interval, reversing direction and orientation.

For our numerical approximation, let us use a space discretization consisting of 90
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x x

Stable Unstable
Figure 5.11. The CFL condition for the wave equation.

equally spaced points, and so Ax = 910 = .0111.... If we choose a time step of At = .01,
whereby o = .9, then we obtain a reasonably accurate solution over a fairly long time
range, as plotted in Figure 5.9. On the other hand, if we double the time step, setting
At = .02, s0 0 = 1.8, then, as shown in Figure 5.10, we induce an instability that eventually
overwhelms the numerical solution. Thus, the preceding numerical scheme appears to be
only conditionally stable.

Stability analysis proceeds along the same lines as in the first-order case. The CFL
condition requires that the characteristics emanating from a node (¢ i x,,) remain, for times
0 <t < t;, in its numerical domain of dependence, which, for our particular numerical
scheme, is the same triangle

Ty =1 2) | 0<t<t), 2, —t;+t<az<z, +1,—1},

now plotted in Figure 5.11. Since the characteristics are the lines of slope +¢, the CFL
condition is the same as in (5.48):

cAt x

< .
Az — At
The resulting stability criterion explains the observed difference between the numerically
stable and unstable cases.

However, as we noted above, the CFL condition is, in general, only necessary for stabil-
ity of the numerical scheme; sufficiency requires that we perform a von Neumann stability
analysis. To this end, we specialize the calculation to a single complex exponential ei*®,
After one time step, the scheme will have the effect of multiplying it by the magnification
factor A = \(k), after another time step by A?, and so on. To determine ), we substitute
the relevant sampled exponential values

o= 1, or, equivalently, 0<c< (5.64)

= elkom uj’m:)\elkzm, uj+17m:)\261kz’", (5.65)
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into the scheme (5.56). After canceling the common exponential, we find that the magni-
fication factor satisfies the following quadratic equation:

A= (2-40%sin®(JkAz) )N -1,

whence
A=a++vVa2-1, where o =1-20%sin’(}kAz). (5.66)

Thus, there are two different magnification factors associated with each complex expo-
nential — which is, in fact, a consequence of the scheme being of second order. Stability
requires that both be < 1 in modulus. Now, if the CFL condition (5.64) holds, then
|a| < 1, which implies that both magnification factors (5.66) are complex numbers of
modulus | A| = 1, and thus the numerical scheme satisfies the stability criterion (5.26).
On the other hand, if ¢ > 1, then @ < —1 over a range of values of k, which implies that
the two magnification factors (5.66) are both real and one of them is < —1, thus violating
the stability criterion. Consequently, the CFL condition (5.64) does indeed distinguish
between the stable and unstable finite difference schemes for the wave equation.

Exercises

5.4.1. Suppose you are asked to numerically approximate the solution to the initial-boundary
value problem

Uy = 64w, u(t,0) =u(t,3) =0, u(()w)z{l Av—1], ;s2<3y,

0, otherwise, u(0,2) =0,
on the interval 0 < z < 3, using (5.56) with space step size Az = .1. (a) What range of
time steps At are allowed? (b) Test your answer by implementing the numerical solution
for one value of At in the allowable range and one value outside. Discuss what you observe
in your numerical solutions. (c¢) In the stable range, compare your numerical solution with
that obtained using the smaller step size Az = .01 and a suitable time step At.

5.4.2. Solve Exercise 5.4.1 for the boundary value problem
1-2lz—1], J<a<3,

uy =64u,,, u(t,0)=0=u(t3), u(0,z)=0, u,(0,z)= { -
0, otherwise.

5.4.3. Solve the following initial-boundary value problem
u(t,0) = u(t,1) =0, u(0,z)= % + ’m— 41L ‘ — ’233— 2‘, u, (0, z) = 0,
on the interval 0 < z < 1, using the numerical scheme (5.56) with space step sizes Az =

.1,.01 and .001 and suitably chosen time steps. Discuss which features of the solution can
be observed in your numerical approximations.

Uy = guzz7

5.4.4.(a) Use a numerical integrator with space step size Az = .05 to solve the periodically
forced boundary value problem

u(0,z) = u,(0,2) =0, u(t,0) = sint, u(t, 1) = 0.

Is your solution periodic? (b) Repeat the computation using the alternative boundary

condition u(t,0) = sin7¢. Discuss any observed differences between the two problems.

Upp = Upg>

5.4.5.(a) Design an explicit numerical scheme for solving the initial-boundary value problem
Uy = 02%;9; + F(t,z), wu(t,0)=u(t1)=0, u(0,z)=f(x), u(0,z)=g(x), 0<z<1,
for the wave equation with an external forcing term F(t,x). Clearly state any stability
conditions that need to be imposed on the time and space step sizes.
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(b) Test your scheme on the particular case ¢ = }1 , F(t,x) = 3sign <as — %) sintt, f(z) =
g(z) = 0, using space step sizes Az = .05 and .01, and suitably chosen time steps.

5.4.6. Let 8 > 0. (a) Design a finite difference scheme for approximating the solution to the
initial-boundary value problem

2
Uy + Puy, = Uy, u(t,0) = u(t,1) =0, u(0,x) = f(z), u, (0, ) = g(x),
for the damped wave equation on the interval 0 < x < 1. (b) Discuss the stability of your
scheme. What choice of step sizes will ensure stability? (c¢) Test your scheme with ¢ = 1,
2
B =1, using the initial data f(z) = e~ =7 g(z) = 0.

5.5 Finite Difference Algorithms for
the Laplace and Poisson Equations

Finally, let us discuss the implementation of finite diffference numerical schemes for elliptic
boundary value problems. We concentrate on the simplest cases: the two-dimensional
Laplace and Poisson equations. The basic issues are already apparent in this particular
context, and extensions to more general equations, higher dimensions, and higher-order
schemes are all reasonably straightforward. In Chapter 10, we will present a competitor
— the renowned finite element method — which, while relying on more sophisticated
mathematical machinery, enjoys several advantages, including more immediate adaptability
to variable mesh sizes and more sophisticated geometries.

For specificity, we concentrate on the Dirichlet boundary value problem

—Au:—um—uyny(l"ay)a for (x’y>€Q’

u(e,y) = 9(a. ), (e,y) € 90, (5.67)

on a bounded planar domain  C R?. The first step is to discretize the domain by
constructing a rectangular mesh. Thus, the finite difference method is particularly suited
to domains whose boundary lines up with the coordinate axes; otherwise, the mesh nodes
do not, generally, lie exactly on 02, making the approximation of the boundary data more
challenging — although not insurmountable.

For simplicity, let us study the case in which
Q={a<z<b c<y<d}

is a rectangle. We introduce a regular rectanglar mesh, with x and y spacings given,
respectively, by

Ax = , Ay =

for positive integers m, n. Thus, the interior of the rectangle contains (m—1)(n—1) interior
nodes

(:vi,yj):(a—l—iA:v,c—l—jAy) for O<i<m, 0<j<n.

In addition, the 2m + 2n boundary nodes (z4,y;) = (a,y;), (¥,,,9;) = (b,y;), (¥;,9) =
(x;,¢), (;,9,) = (z;,d), lie on the boundary of the rectangle.
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At each interior node, we employ the centered difference formula (5.5) to approximate
the relevant second-order derivatives:

82U u($i+1ayj) _2u($ivyj>+u($i—layj)

u2 (7 00) = (A)? FOLsT (5.68)
0*u u(z;, Y; 1) — 2u(z;, yj) + u(z;, yjfl) 2 '
Oy? (xi’yj) = - (Ay)2 +O((Ay) )

Substituting these finite difference formulae into the Poisson equation produces the linear
System

Uiyy =2 5 F Uy 5 Uy — 20U 5+ Uy — i=1...,m—1, (5.69)
(Az)? (Ay)? M i=1,...,n—1,

in which w; ; denotes our numerical approximation to the solution values u(z,, yj) at the
nodes, while f; . = f(z;,y;). If we set

Az

= Ay (5.70)

p
then (5.69) can be rewritten in the form

200+ pP)u; 5 — (g + g y) = P2y +u0) = (A2)f, 5,

(5.71)
i=1,....m—1, j=1,...,n—1.

Since both finite difference approximations (5.68) are of second order, one should choose
Az and Ay to be of comparable size, thus keeping p around 1.

The linear system (5.71) forms the finite difference approximation to the Poisson
equation at the interior nodes. It is supplemented by the discretized Dirichlet boundary
conditions '

U; 0 = Y50 Ui n = Gimo i=0,...,m,

4 (5.72)
UO’j:go’ja UmJ- :ng’ ]:O’.“’n'

These boundary values can be substituted directly into the system, making (5.71) a system
of (m—1)(n—1) linear equations involving the (m—1)(n—1) unknowns u, ; for 1 <i < m-1,
1 <j <n-—1. We impose some convenient ordering for these entries, e.g., from left to
right and then bottom to top, forming the column vector of unknowns

T
W = (wl’ Wy, ... ,W(m_l)(n_1)> (5 73)
- .
= (“1,17“2,1a s U 115U 05 Ug 9y oy Uy g 05Uy 3oy Uy g
The combined linear system (5.71-72) can then be rewritten in matrix form
Aw =T, (5.74)
where the right-hand side is obtained by combining the column vector f = (... f; ; ... )

with the boundary data provided by (5.72) according to where they appear in the system.
The implementation will become clearer once we work through a small-scale example.

Example 5.7. To better understand how the process works, let us look at the case
in which Q@ = {0 <z <1, 0 <y <1} is the unit square. In order to write everything in
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@ A g @

Figure 5.12.  Square mesh with Az = Ay = }1.

1

209

full detail, we start with a very coarse mesh with Ax = Ay = ;; see Figure 5.12. Thus
m = n = 4, resulting in a total of nine interior nodes. In this case, p = 1, and hence the

finite difference system (5.71) consists of the following nine equations:

_ 1
—Up g~ Uyt 4“1,1 “Ug T U 2= g6 f1,1a

)

_ 1
—Uy o — Uyt 4“2,1 T Uz T U2 = g f2,1’

)

1
—Ugo—Upq T AUz — Uy g — Uz = 4 f31

)

1
— Uy —Uyo T AU 5 — Uy g — Uy 3= 4 f1,2a

—Uyy — Uyt 4“2,2 T Uz g T Uy 3 = 116 fz,za
—Ugq —Uyo + 4“3,2 T Uy — U3 = 116 f3,2a
—Up o —Upg T AU 53— Uyg— U 4 = 116 J1.35
—Ug g — Uy g+ AUy — U35 —Uyy = 116 fa3;

1
—Uz o — Uzt AUy —Uy3— U3y = 14 f33

(5.75)

(Note that the values at the four corner nodes, U 05 Uy s Ug 45 Uy 45 dO DOY appear.) The

boundary data imposes the additional conditions (5.72), namely

Up1 = 90,15  UYo,2 =902 Wo,3=Y903 U107~ Y9100 U207~ 92,0

Ug1 = 9410 Ugo =942  Ug3 =943  U14 =914 U4 =924
The system (5.75) can be written in matrix form Aw = f, where

4 -1 0 -1 0 0 0 0
-1 4 -1 0 -1 0 0 0

0 -1 4 0 0 -1 0 0
-1 0 0 4 -1 0 -1 0
A= 0 -1 0 -1 4 -1 0 -1
0 -1 0 -1 4 0 0
0 -1 0 0 4 -1
0 0 -1 0 -1 4
0 0 0 -1 0 -1

Ok, OoO0oOo oo

o O O

U3.0 = 93,05
Uz 4 = 934
(5.76)
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and
1
w U 16J11 T 90+ 9
1 1,1 U g
Wy Uy g . 16 /2,1 2,0
wy Usg 4 16 f31 1930+ 941
; 1
w, Uy o ~ 16 f%,z + 90,2
W= W5 | = | U2 |> f= 16 f272
1
Wg Ug o 16 f32 1 940
w u 1
w7 u173 16 f},s t+ 9031 914
8 2.3 16 J23 1+ 924
Wy Uz 3

1
16 f3,3F 9a3+ 934
Note that the known boundary values, namely u; ; = g; ; when i or j equals 0 or 4, have

been incorporated into the right-hand side f of the finite difference linear system (5.74).
The resulting linear system is easily solved by Gaussian Elimination, [89]. Finer meshes
lead to correspondingly larger linear systems, all endowed with a common overall structure,
as discussed below.

For example, the function

u(z,y) = ysin(nz)
solves the particular boundary value problem
—Au = 1?ysin(7z), u(zr,0)=u(0,y) =u(l,y) =0, wu(zx,1)=sin(rz), 0<z,y<l.

Setting up and solving the linear system (5.75) produces the finite difference solution values

uy = 1831, uy 5 = .2589, uy 3 = .1831,
Uy = 3643, Uy 5 = .5152, Uy 3 = 3643,
uz ; = .5409, ug o = .7649, ug 5 = .5409,

leading to the numerical approximation plotted in the first graph® of Figure 5.13. The
maximal error between the numerical and exact solution values is .01520, which occurs at
the center of the square. In the second and third graphs, the mesh spacing is successively
reduced by half, so there are, respectively, m = n = 8 and 16 nodes in each coordinate
direction. The corresponding maximal numerical errors at the nodes are .004123 and
.001035. Observe that halving the step size reduces the error by a factor of }1, which is
consistent with the numerical scheme being of second order.

Remark: The preceding test is a particular instance of the method of manufactured
solutions, in which one starts with a preselected function that almost certainly is not
a solution to the exact problem at hand. Nevertheless, substituting this function into
the differential equation and the relevant initial and/or boundary conditions leads to an
inhomogeneous problem of the same character as the original. After running the numerical
scheme on the modified problem, one can test for accuracy by comparing the numerical
output with the preselected function.

f We are using flat triangles to interpolate the nodal data. Smoother interpolation schemes,
e.g., splines, [102], will produce a more realistic reproduction of the analytic solution graph.
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Az =Ay=.25 Az = Ay = .125 Az = Ay = .0625

Figure 5.13. Finite difference solutions to a Poisson boundary value problem.

Solution Strategies

The linear algebraic system resulting from a finite difference discretization can be rather
large, and it behooves us to devise efficient solution strategies. The general finite difference
coefficient matrix A has a very structured form, which can already be inferred from the
very simple case (5.76). When the underlying domain is a rectangle, it assumes a block
tridiagonal form

2
B, —p°1
—p?1 B, —p?1
2 2
1 B 21
—p*1 B, - p?1
—p*1 B,
where T is the (m — 1) x (m — 1) identity matrix, while
2(1+p%) —p?
-p* 20+4pY) —p?
-p* 2(1+p%)  —p?
B, = -r* 21407 —p? (5.78)

-p* 2+ p%) =p?
—p> 2(1+p%)

is itself an (m — 1) x (m — 1) tridiagonal matrix. (Here and below, all entries not explicitly
indicated are zero.) There are n — 1 blocks in both the row and column directions.

When the finite difference linear system is of moderate size, it can be efficiently solved
by Gaussian Elimination, which effectively factorizes A = LU into a product of lower
and upper triangular matrices. (This follows since A is symmetric and nonsingular, as
guaranteed by Theorem 5.8 below.) In the present case, the factors are block bidiagonal
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matrices:
I
L, 1

L = L2 I . )

L, 4 1
L, , 1
n- 5.79
U, —p°1

U, —p*1

U = . )

Un—2 _p21

Uns

n—

where the individual blocks are again of size (m —1) x (m — 1). Indeed, multiplying out the
matrix product LU and equating the result to (5.77) leads to the iterative matrix system

Uy=B, Ly=—p’U', U, =B,+pL;, j=1,...,n-2, (5.80)

which produces the individual blocks.

With the LU factors in place, we can apply Forward and Back Substitution to solve
the block tridiagonal linear system Aw = f by solving the block lower and upper triangular
systems

Lz = ?, Uw = z. (5.81)

In view of the forms (5.79) of L and U, if we write

w) 7z(1) £
w® e | F@
w = , 7z = , f= ,
w(n—1) Z(n—1) Fln—1)

so that each w),z(0) £ is a vector with m — 1 entries, then we must successively solve

7z — (1) ZzG+1) _ FU+1) _ sz(j)7 i=1,2,...,n—2,

w1 = gn=1), ij(k) =z — p2wktD), k=n-2n-3,...,1,

)

(5.82)

in the prescribed order. In view of the identification of L; with — p? times the inverse of
U;, the last set of equations in (5.82) is perhaps better written as

wh =L (whth) —p=220))  k=n-2n-3... L (5.83)

As the number of nodes becomes large, the preceding elimination/factorization ap-
proach to solving the linear system becomes increasingly inefficient, and one often switches
to an iterative solution method such as Gauss—Seidel, Jacobi, or, even better, Successive
Over—Relaxation (SOR); indeed, SOR was originally designed to speed up the solution of
the large-scale linear systems arising from the numerical solution of elliptic partial differ-
ential equations. Detailed discussions of iterative matrix methods can be found in [89;
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Chapter 10] and [118]. For the SOR method, a good choice for the relaxation parameter
is
4
w= . (5.84)
2+ \/4 — cos?(m/m) — cos?(m/n)

Iterative solution methods are even more attractive in dealing with irregular domains,
whose finite difference coefficient matrix, while still sparse, is less structured than in the
rectangular case, and hence less amenable to fast Gaussian Elimination algorithms.

Finally, let us address the question of unique solvability of the finite difference linear
system obtained by discretization of the Poisson equation on a bounded domain subject to
Dirichlet boundary conditions. As in the Uniqueness Theorem 4.10 for the original bound-
ary value, this will follow from an easily established Maximum Principle for the discrete
system that directly mimics the Laplace equation maximum principle of Theorem 4.9.

Theorem 5.8. Let ) be a bounded domain. Then the finite difference linear system
(5.74) has a unique solution.

Proof: The result will follow if we can prove that the only solution to the corresponding
homogeneous linear system Aw = 0 is the trivial solution w = 0. The homogeneous
system corresponds to discretizing the Laplace equation subject to zero Dirichlet boundary
conditions.

Now, in view of (5.71), each equation in the homogeneous linear system can be written
in the form
2 2
I e R LTS (5.85)
2(1+ p2)

If p =1, then (5.85) says that the value of u, ; at the node (z;,y;) is equal to the average
of the values at the four neighboring nodes. For general p, it says that u, ; is a weighted
average of the four neighboring values. In either case, the value of w; . must lie strictly
between the maximum and minimum values of w; _y ;,u; 4 ;,u; ;4 and u; ;41 — unless
all these values are the same, in which case u; ; also has the same Value This observation
suffices to establish a Mazimum Principle for the finite difference system for the Laplace
equation — namely, that its solution cannot achieve a local maximum or minimum at an
interior node.

Now suppose that the homogeneous finite difference system Aw = 0 for the domain
has a nontrivial solution w # 0. Let u; i.j = wy be the maximal entry of this purported
solution. The Maximum Principle requires that all four of its neighboring values must have
the same maximal value. But then the same argument applies to the neighbors of those
entries, to their neighbors, and so on. Eventually one of the neighbors is at a boundary
node, but, since we are dealing with the homogeneous Dirichlet boundary value problem,
its value is zero. This immediately implies that all the entries of w must be zero, which is
a contradiction. Q.E.D.

Rigorously establishing convergence of the finite difference solution to the analytic
solution to the boundary value problem as the step size goes to zero will not be discussed
here, and we refer the reader to [6, 80] for precise results and proofs.
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Exercises

& 5.5.1. Solve the Dirichlet problem Au = 0, u(x,0) = sin® z, u(z,m) = 0, u(0,y) = 0,
u(m,y) = 0, numerically using a finite difference scheme. Compare your approximation with
the solution you obtained in Exercise 4.3.10(a).

& 5.5.2. Solve the Dirichlet problem Au =0, u(z,0) = z, u(z,1) =1 -z, u(0,y) =y, u(l,y) =
1 — y, numerically via finite differences. Compare your approximation with the solution you
obtained in Exercise 4.3.12(d).

& 5.5.3. Consider the Dirichlet boundary value problem Au = 0 wu(z,0) = sinz, u(z,7) =0,
u(0,y) = 0, u(mw,y) =0, on the square {0 < z,y < w}. (a) Find the exact solution. (b) Set
up and solve the finite difference equations based on a square mesh with m = n = 2 squares
on each side of the full square. How close is this value to the exact solution at the center of
the square: u(%ﬂ', %7‘(’)? (¢) Repeat part (b) for m = n = 4 squares per side. Is the value
of your approximation at the center of the unit square closer to the true solution? (d) Use
a computer to find a finite difference approximation to u(% m, % 7r) using m = n = 8 and
16 squares per side. Is your approximation converging to the exact solution as the mesh
becomes finer and finer? Is the convergence rate consistent with the order of the finite dif-
ference approximation?

& 5.5.4.(a) Use finite differences to approximate a solution to the Helmholtz boundary value
problem Au = wu, u(z,0) = u(z,1) = u(0,y) = 0, u(l,y) = 1, on the unit square
0 < z,y < 1. (b) Use separation of variables to construct a series solution. Do your ana-
lytic and numerical solutions match? Explain any discrepancies.

# 5.5.5. A drum is in the shape of an L, as in the accompanying figure, whose
short sides all have length 1. (a) Use a finite difference scheme with mesh
spacing Az = Ay = .1 to find and graph the equilibrium configuration
when the drum is subject to a unit upwards force while all its sides are
fixed to the (z,y)-plane. What is the maximal deflection, and at which
point(s) does it occur? (b) Check the accuracy of your answer in part (a)
by reducing the step size by half: Az = Ay = .05.

& 5.5.6. A metal plate has the shape of a 3 ¢cm square with a 1 cm square hole cut out of the
middle. The plate is heated by making the inner edge have temperature 100° while keep-
ing the outer edge at 0°. (a) Find the (approximate) equilibrium temperature using finite
differences with a mesh width of Az = Ay = .5 cm. Plot your approximate solution us-
ing a three-dimensional graphics program. (b) Let C' denote the square contour lying mid-
way between the inner and outer square boundaries of the plate. Using your finite differ-
ence approximation, determine at what point(s) on C the temperature is (i) minimized;
(i1) maximimized; (%) equal to the average of the two boundary temperatures.

(c) Repeat part (a) using a smaller mesh width of Az = Ay = .2. How much does this
affect your answers in part (b)?

& 5.5.7. Answer Exercise 5.5.6 when the plate is additionally subjected to a constant heat source
f(z,y) = 600z + 800y — 2400.

& 5.5.8.(a) Explain how to adapt the finite difference method to a mixed boundary value prob-
lem on a rectangle with inhomogeneous Neumann conditions. Hint: Use a one-sided differ-
ence formula of the appropriate order to approximate the normal derivative at the bound-
ary. (b) Apply your method to the problem P

Au=0, u(@0)=0, u@)=0 U0y =yl-y), uly)=0,

using mesh sizes Az = Ay = .1,.01, and .001. Compare your answers. (c¢) Solve the
boundary value problem via separation of variables, and compare the value of the solution
and the numerical approximations at the center of the square.



Chapter 6
Generalized Functions and Green’s Functions

Boundary value problems, involving both ordinary and partial differential equations, can
be profitably viewed as the infinite-dimensional function space versions of finite-dimen-
sional systems of linear algebraic equations. As a result, linear algebra not only provides
us with important insights into their underlying mathematical structure, but also motivates
both analytical and numerical solution techniques. In the present chapter, we develop the
method of Green’s functions, pioneered by the early-nineteenth-century self-taught English
mathematician (and miller!) George Green, whose famous Theorem you already encoun-
tered in multivariable calculus. We begin with the simpler case of ordinary differential
equations, and then move on to solving the two-dimensional Poisson equation, where the
Green’s function provides a powerful alternative to the method of separation of variables.

For inhomogeneous linear systems, the basic Superposition Principle says that the
response to a combination of external forces is the self-same combination of responses to the
individual forces. In a finite-dimensional system, any forcing function can be decomposed
into a linear combination of unit impulse forces, each applied to a single component of the
system, and so the full solution can be obtained by combining the solutions to the individual
impulse problems. This simple idea will be adapted to boundary value problems governed
by differential equations, where the response of the system to a concentrated impulse
force is known as the Green’s function. With the Green’s function in hand, the solution
to the inhomogeneous system with a general forcing function can be reconstructed by
superimposing the effects of suitably scaled impulses. Understanding this construction will
become increasingly important as we progress to partial differential equations, where direct
analytic solution techniques are far harder to come by.

The obstruction blocking a direct implementation of this idea is that there is no
ordinary function that represents an idealized concentrated impulse! Indeed, while this
approach was pioneered by Green and Cauchy in the early 1800s, and then developed
into an effective computational tool by Heaviside in the 1880s, it took another 60 years
before mathematicians were able to develop a completely rigorous theory of generalized
functions, also known as distributions. In the language of generalized functions, a unit
impulse is represented by a delta function.! While we do not have the analytic tools to
completely develop the mathematical theory of generalized functions in its full, rigorous
glory, we will spend the first section learning the basic concepts and developing the practical
computational skills, including Fourier methods, required for applications. The second

' Warning: We follow common practice and refer to the “delta distribution” as a function,
even though, as we will see, it is most definitely not a function in the usual sense.
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section will discuss the method of Green’s functions in the context of one-dimensional
boundary value problems governed by ordinary differential equations. In the final section,
we develop the Green’s function method for solving basic boundary value problems for the
two-dimensional Poisson equation, which epitomizes the class of planar elliptic boundary
value problems.

6.1 Generalized Functions

Our goal is to solve inhomogeneous linear boundary value problems by first determining
the effect of a concentrated impulse force. The response to a general forcing function is
then found by linear superposition. But before diving in, let us first review the relevant
constructions in the case of linear systems of algebraic equations.

Consider a system of n linear equations in n unknowns’ u = (uy, u,, ..., u,, )T, written
in matrix form

Au=f. (6.1)

Here A is a fixed n X n matrix, assumed to be nonsingular, which ensures the existence
of a unique solution u for any choice of right-hand side f = ( f, fo, ..., f, )T e R™. We
regard the linear system (6.1) as representing the equilibrium equations of some physical
system, e.g., a system of masses interconnected by springs. In this context, the right hand
side f represents an external forcing, so that its i*h entry, f;, represents the amount of force
exerted on the th mass, while the i* entry of the solution vector, w,, represents the ith
mass’ induced displacement.

Let
1 0 0
0 1 0
0 0 0
e, =1.1, e, =|.[, e,=| .|, (6.2)
0 0 0
0 0 1

denote the standard basis vectors of R™, so that e; has a single 1 in its jth entry and all
other entries 0. We interpret each e; as a concentrated unit impulse force that is applied

solely to the j'h mass in our physical system. Let u; = (u;,... ,uj’")T be the induced
response of the system, that is, the solution to
Auj =e,. (6.3)
Let us suppose that we have calculated the response vectors uy, ..., u, to each such impulse
force. We can express any other force vector as a linear combination,
h
2
f= : :flel+f2e2+ +fnen7 (64)
f

t All vectors are column vectors, but we sometimes write the transpose, which is a row vector,
to save space.
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of the impulse forces. The Superposition Principle of Theorem 1.7 then implies that the
solution to the inhomogeneous system (6.1) is the selfsame linear combination of the indi-
vidual impulse responses:

Thus, knowing how the linear system responds to each impulse force allows us to immedi-
ately calculate its response to a general external force.

Remark: The alert reader will recognize that u,, ..., u,, are the columns of the inverse
matrix, A7!, and so formula (6.5) is, in fact, reconstructing the solution to the linear system
(6.1) by inverting its coefficient matrix: u = A7'f. Thus, this observation is merely a
restatement of a standard linear algebraic system solution technique.

The Delta Function

The aim of this chapter is to adapt the preceding algebraic solution technique to boundary
value problems. Suppose we want to solve a linear boundary value problem governed by
an ordinary differential equation on an interval a < x < b, the boundary conditions being
imposed at the endpoints. The key issue is how to characterize an impulse force that is
concentrated at a single point.

In general, a unit impulse at position a < £ < b will be described by something called
the delta function, and denoted by 55(;5). Since the impulse is supposed to be concentrated
solely at = = &, our first requirement is

0¢(w) =0 for x #E. (6.6)

Moreover, since the delta function represents a unit impulse, we want the total amount
of force to be equal to one. Since we are dealing with a continuum, the total force is
represented by an integral over the entire interval, and so we also require that the delta
function satisfy

b
/ O¢(w)dx =1, provided a<€&<b. (6.7)

Alas, there is no bona fide function that enjoys both of the required properties! Indeed,
according to the basic facts of Riemann (or even Lebesgue) integration, two functions that
are the same everywhere except at a single point have exactly the same integral, [96, 98].
Thus, since 55 is zero except at one point, its integral should be 0, not 1. The mathematical
conclusion is that the two requirements, (6.6-7) are inconsistent!

This unfortunate fact stopped mathematicians dead in their tracks. It took the imagi-
nation of a British engineer, Oliver Heaviside, who was not deterred by the lack of rigorous
justification, to start utilizing delta functions in practical applications — with remarkable
effect. Despite his success, Heaviside was ridiculed by the mathematicians of his day, and
eventually succumbed to mental illness. But, some thirty years later, the great British
theoretical physicist Paul Dirac resurrected the delta function for quantum-mechanical ap-
plications, and this finally made the mathematicians sit up and take notice. (Indeed, the
term “Dirac delta function” is quite common, even though Heaviside should rightly have
priority.) In 1944, the French mathematician Laurent Schwartz finally established a rigor-
ous theory of distributions that incorporated such useful but nonstandard objects, [103].
Thus, to be more accurate, we should really refer to the delta distribution; however, we
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will retain the more common, intuitive designation “delta function” throughout. It is be-
yond the scope of this introductory text to develop a fully rigorous theory of distributions.
Rather, in the spirit of Heaviside, we shall concentrate on learning, through practice with
computations and applications, how to make effective use of these exotic mathematical
creatures.

There are two possible ways to introduce the delta distribution. Both are important
and worth understanding.

Method #1. Limits: The first approach is to regard the delta function d.(z) as a

limit of a sequence of ordinary smooth functions' g, (x). These will represent progressively
more and more concentrated unit forces, which, in the limit, converge to the desired unit
impulse concentrated at a single point, x = £. Thus, we require

lim g, (z) =0, z # ¢, (6.8)

n

while the total amount of force remains fixed at

b
/ g, (x)dx =1 for all n. (6.9)

On a formal level, the limit “function”

6¢(x) = lim g, ()

n — oo

will satisfy the key properties (6.6-7).
An explicit example of such a sequence is provided by the rational functions

n
= ) 1
These functions satisfy
0, x #£0,
li = 6.11
I ACES A, (6.11)
while?
o0 1 oo
/ g,(r)dr = tan'nzx =1. (6.12)
—o0 ™ r=—00
Therefore, formally, we identify the limiting function
lim g, (z)=6d(x) = dy(x) (6.13)

n— oo

with the unit-impulse delta function concentrated at x = 0. As sketched in Figure 6.1, as n
gets larger and larger, each successive function g, (x) forms a more and more concentrated
spike, while maintaining a unit total area under its graph. Thus, the limiting delta function
can be thought of as an infinitely tall spike of zero width, entirely concentrated at the origin.

T To keep the notation compact, we suppress the dependence of the functions g,, on the point
& where the limiting delta function is concentrated.

¥ For the moment, it will be slightly simpler to consider the entire real line —oo < z < .
Exercise 6.1.8 discusses how to adapt the construction to a finite interval.
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Figure 6.1.  Delta function as limit.

Remark: There are many other possible choices for the limiting functions g,,(z). See
Exercise 6.1.7 for another important example.

Remark: This construction of the delta function highlights the perils of interchanging
limits and integrals without rigorous justification. In any standard theory of integration
(Riemann, Lebesgue, etc.), the limit of the functions g, would be indistinguishable from
the zero function, so the limit of their integrals (6.12) would not equal the integral of their
limit:

n — oo n — oo

1= lim gn x)dx # / lim g, (z)dx =0.

The delta function is, in a sense, a means of sidestepping this analytic inconvenience. The
full ramifications and theoretical constructions underlying such limits must, however, be
deferred to a rigorous course in real analysis, [96, 98].

Once we have defined the basic delta function 6(z) = ,(z) concentrated at the ori-
gin, we can obtain the delta function concentrated at any other position £ by a simple
translation:

¢(z) = d(z = §). (6.14)
Thus, d¢(x) can be realized as the limit, as n — oo, of the translated functions
. n
m[1+n?(z—¢)?]

Method #2. Duality: The second approach is a bit more abstract, but much closer
in spirit to the proper rigorous formulation of the theory of distributions like the delta
function. The critical property is that if u(x) is any continuous function, then

(6.15)

/ O¢(w) u(z) dor = u(f), for a<§&<b. (6.16)
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Indeed, since 65(33) = 0 for x # &, the integrand depends only on the value of u at the
point x = &, and so

/5§ daz—/ b () u(€) d = u(€) /:55(:5>dg;:u(5).

Equation (6.16) serves to define a linear functionall L: C%a,b] — R that maps a contin-
uous function u € C°[a, b] to its value at the point = = ¢:

Le[u] = u(§). (6.17)
The basic linearity requirements (1.11) are immediately established:
Lelutv] = u(®) +0(6) = Llul + L[], Leleu] = cu(®) = e Llul,

for any functions wu(z),v(x). In the dual approach to generalized functions, the delta
function is, in fact, defined as this particular linear functional (6.17). The function u(x)
is sometimes referred to as a test function, since it serves to “test” the form of the linear
functional L.

Remark: If the impulse point & lies outside the integration domain, then

b
/ S¢(@) u(z)dr =0 whenever E<a or >0, (6.18)

because the integrand is identically zero on the entire interval. For technical reasons, we
will not attempt to define the integral (6.18) if the impulse point £ = a or & = b lies on the
boundary of the interval of integration.

The interpretation of the linear functional L, as representing a kind of function §, ()
is based on the following line of thought. According to Corollary B.34, every scalar-valued
linear function L:R™ — R on the finite-dimensional vector space R™ is obtained by taking
the dot product with a fixed element a € R", so

Llu]=a-u.

In this sense, linear functions on R™ are the “same” as vectors. Similarly, on the infinite-
dimensional function space C°[a,b], the L? inner product

b
Llu)=(g.u) = [ g@)u(e)dz, (6.19)

taken with a fixed continuous function g € C°[a, b], defines a real-valued linear functional
L, C%a,b] — R. However, unlike the finite-dimensional situation, not every real-valued
linear functional is of this form! In particular, there is no bona fide function d¢(z) such
that the identity

Lefu] = (6, ) / b () () di = u(€) (6.20)

holds for every continuous function w(z). The bottom line is that every (continuous)
function defines a linear functional, but not every linear functional arises in this manner.

T The term “functional” is used to refer to a linear function whose domain is a function space,
thus avoiding confusion with the functions it acts on.
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But the dual interpretation of generalized functions acts as if this were true. Gen-
eralized functions are, in actuality, real-valued linear functionals on function space, but
intuitively interpreted as a kind of function via the L? inner product. Although this iden-
tification is not to be taken too literally, one can, with some care, manipulate generalized
functions as if they were actual functions, but always keeping in mind that a rigorous
justification of such computations must ultimately rely on their innate characterization as
