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PREFACE

Some twenty years ago, it was only necessary to know about a dozen statistical tests
in order to be a practising statistician, and these were all available in the few statistical
textbooks that existed at that time. In recent years the number of tests has grown
tremendously and, while modern books carry the more common tests, it is often quite
difficult for a practising statistician quickly to turn up a reference to some of the less
used but none the less important tests which are now in the literature. Accordingly, we
have attempted to collect together information on most commonly used tests which are
currently available and present it, together with a guide to further reading, to make a
useful reference book for both the applied statistician and the everyday user of statistics.
Naturally, any such compilation must omit some tests through oversight, and the author
would be very pleased to hear from any reader about tests which they feel ought to have
been included.

The work is divided into several sections. In the first we define a number of terms
used in carrying out statistical tests, we define the thinking behind statistical testing and
indicate how some of the tests can be linked together in an investigation. In the second
section we give examples of test procedures and in the third we provide a list of all the
100 statistical tests. The fourth section classifies the tests under a variety of headings.
This became necessary when we tried to arrange the tests in some logical sequence.
Many such logical sequences are available and, to meet the possible needs of the reader,
these cross-reference lists have been provided. The main part of the work describes
most commonly used tests currently available to the working statistician. No attempts
at proof are given, but an elementary knowledge of statistics should be sufficient to
allow the reader to carry out the test. In every case the appropriate formulae are given
and where possible we have used schematic diagrams to preclude any ambiguities
in notation. Where there has been a conflict of notation between existing textbooks,
we have endeavoured to use the most commonly accepted symbols. The next section
provides a list of the statistical tables required for the tests followed by the tables
themselves, and the last section provides references for further information.

Because we have brought together material which is spread over a large number
of sources, we feel that this work will provide a handy reference source, not only for
practising statisticians but also for teachers and students of statistics. We feel that no one
can remember details of all the tests described here. We have tried to provide not only
a memory jogger but also a first reference point for anyone coming across a particular
test with which he or she is unfamiliar.

Lucidity of style and simplicity of expression have been our twin objectives, and
every effort has been made to avoid errors. Constructive criticism and suggestions will
help us in improving the book.
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COMMON SYMBOLS

Each test or method may have its own terminology and symbols but the following are
commonly used by all statisticians.

n number of observations (sample size)
K number of samples (each having n elements)

α level of significance
v degrees of freedom
σ standard deviation (population)
s standard deviation (sample)

µ population mean
x̄ sample mean
ρ population correlation coefficient
r sample correlation coefficient

Z standard normal deviate
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INTRODUCTION TO THE BOOK

This book presents a collection of statistical tests which can help experimenters and
researchers draw conclusions from a series of observational data. The main part of the
book provides a one/two page summary of each of the most common statistical tests,
complete with details of each test objective, the limitations (or assumptions) involved,
a brief outline of the method, a worked example and the numerical calculation. At the
start of the book there are more, detailed, worked examples of the nine most common
tests. The information provides an ideal “memory jog” for statisticians, practitioners
and other regular users of statistics who are competent statisticians but who need a
sourcebook for precise details of some or all the various tests.

100 Statistical Tests lists 100 different inferential tests used to solve a variety of
statistical problems. Each test is presented in an accurate, succinct format with a
suitable formula. The reader can follow an example using the numerical calculation pro-
vided (without the arithmetic steps), refer to the needed table and review the statistical
conclusion.

After a first introduction to statistical testing the second section of the book provides
examples of the test procedures which are laid out clearly while the graphical display
of critical regions are presented in a standard way.

The third section lists the objective of each of the tests described in the text. The next
section gives a useful classification of the tests presented by the type of the tests:
(a) for linear data: parametric classical tests, parametric tests, distribution free tests,
sequential tests and (b) for circular data: parametric tests. This invaluable table also
gives a concise summary of common statistical problem types and a list of tests which
may be appropriate. The problem types are classified by the number of samples (1, 2
or k samples), whether parametric or non-parametric tests are required, and the area of
interest (e.g. central tendency, distribution function, association).

The pages of the next section are devoted to the description of the 100 tests. Under
each test, the object, limitation and the method of testing are presented followed by an
example and the numerical calculation. The listings of limitations add to the compre-
hensive picture of each test. The descriptions of the methods are explained clearly. The
examples cited in the tests help the reader grasp a clear understanding of the methods
of testing.

The first of the following two sections gives the list of tables while second section
displays 39 statistical tables many of which have accompanying diagrams illustrated in
a standard way. This comprehensive list covers all the commonly used standard tables.

The book is concluded with references and index.
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INTRODUCTION TO STATISTICAL TESTING

Having collected together a number of tests, it is necessary to consider what can be
tested, and we include here some very general remarks about the general problem of
hypothesis testing. Students regard this topic as one full of pitfalls for the unwary,
and even teachers and experienced statisticians have been known to misinterpret the
conclusions of their analysis.

Broadly speaking there are two basic concepts to grasp before commencing. First, the
tests are designed neither to prove nor to disprove hypotheses. We never set out to prove
anything; our aim is to show that an idea is untenable as it leads to an unsatisfactorily
small probability. Second, the hypothesis we are trying to disprove is always chosen to
be the one in which there is no change; for example, there is no difference between the
two population means, between the two samples, etc. This is why it is usually referred
to as the null hypothesis, H0. If these concepts were firmly held in mind, we believe
that the subject of hypothesis testing would lose a lot of its mystique. (However, it is
only fair to point out that some hypotheses are not concerned with such matters.)

To describe the process of hypothesis testing we feel that we cannot do better than
follow the five-step method introduced by Neave (1976a):

Step 1 Formulate the practical problem in terms of hypotheses. This can be difficult
in some cases. We should first concentrate on what is called the alternative hypothesis,
H1, since this is the more important from the practical point of view. This should
express the range of situations that we wish the test to be able to diagnose. In this sense,
a positive test can indicate that we should take action of some kind. In fact, a better
name for the alternative hypothesis would be the action hypothesis. Once this is fixed
it should be obvious whether we carry out a one- or two-tailed test.

The null hypothesis needs to be very simple and represents the status quo, i.e. there
is no difference between the processes being tested. It is basically a standard or control
with which the evidence pointing to the alternative can be compared.

Step 2 Calculate a statistic (T), a function purely of the data. All good test statistics
should have two properties: (a) they should tend to behave differently when H0 is
true from when H1 is true; and (b) their probability distribution should be calculable
under the assumption that H0 is true. It is also desirable that tables of this probability
distribution should exist.

Step 3 Choose a critical region. We must be able to decide on the kind of values
of T which will most strongly point to H1 being true rather than H0 being true. Critical
regions can be of three types: right-sided, so that we reject H0 if the test statistic is
greater than or equal to some (right) critical value; left-sided, so that we reject H0 if
the test statistic is less than or equal to some (left) critical value; both-sided, so that
we reject H0 if the test statistic is either greater than or equal to the right critical value
or less than or equal to the left critical value. A value of T lying in a suitably defined
critical region will lead us to reject H0 in favour of H1; if T lies outside the critical
region we do not reject H0. We should never conclude by accepting H0.

Step 4 Decide the size of the critical region. This involves specifying how great
a risk we are prepared to run of coming to an incorrect conclusion. We define the
significance level or size of the test, which we denote by α, as the risk we are prepared
to take in rejecting H0 when it is in fact true. We refer to this as an error of the first
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type or a Type I error. We usually set α to between 1 and 10 per cent, depending on the
severity of the consequences of making such an error.

We also have to contend with the possibility of not rejecting H0 when it is in fact false
and H1 is true. This is an error of the second type or Type II error, and the probability
of this occurring is denoted by β.

Thus in testing any statistical hypothesis, there are four possible situations which
determine whether our decision is correct or in error. These situations are illustrated as
follows:

Situation

H0 is true H0 is false

H0 is not rejected Correct decision Type II errorConclusion

H0 is rejected Type I error Correct decision

Step 5 Many textbooks stop after step 4, but it is instructive to consider just where
in the critical region the calculated value of T lies. If it lies close to the boundary of
the critical region we may say that there is some evidence that H0 should be rejected,
whereas if it is at the other end of the region we would conclude there was consid-
erable evidence. In other words, the actual significance level of T can provide useful
information beyond the fact that T lies in the critical region.

In general, the statistical test provides information from which we can judge the
significance of the increase (or decrease) in any result. If our conclusion shows that the
increase is not significant then it will be necessary to confirm that the experiment had
a fair chance of establishing an increase had there been one present to establish.

In order to do this we generally turn to the power function of the test, which is usually
computed before the experiment is performed, so that if it is insufficiently powerful
then the design can be changed. The power function is the probability of detecting a
genuine increase underlying the observed increase in the result, plotted as a function of
the genuine increase, and therefore the experimental design must be chosen so that the
probability of detecting the increase is high. Also the choice among several possible
designs should be made in favour of the experiment with the highest power. For a given
experiment testing a specific hypothesis, the power of the test is given by 1 − β.

Having discussed the importance of the power function in statistical tests we would
now like to introduce the concept of robustness. The term ‘robust’ was first introduced
in 1953 to denote a statistical procedure which is insensitive to departures from the
assumptions underlying the model on which it is based. Such procedures are in common
use, and several studies of robustness have been carried out in the field of ‘analysis
of variance’. The assumptions usually associated with analysis of variance are that the
errors in the measurements (a) are normally distributed, (b) are statistically independent
and (c) have equal variances.

Most of the parametric tests considered in this book have made the assumption that
the populations involved have normal distributions. Therefore a test should only be
carried out when the normality assumption is not violated. It is also a necessary part of
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the test to check the effect of applying these tests when the assumption of normality is
violated.

In parametric tests the probability distribution of the test statistic under the null
hypothesis can only be calculated by an additional assumption on the frequency distri-
bution of the population. If this assumption is not true then the test loses its validity.
However, in some cases the deviation of the assumption has only a minor influence on
the statistical test, indicating a robust procedure. A parametric test also offers greater
discrimination than the corresponding distribution-free test.

For the non-parametric test no assumption has to be made regarding the frequency
distribution and therefore one can use estimates for the probability that any observation
is greater than a predetermined value.

Neave (1976b) points out that it was the second constraint in step 2, namely that the
probability distribution of the test statistic should be calculable, which led to the growth
of the number of non-parametric tests. An inappropriate assumption of normality had
often to be built into the tests. In fact, when comparing two samples, we need only
look at the relative ranking of the sample members. In this way under H0 all the rank
sequences are equally likely to occur, and so it became possible to generate any required
significance level comparatively easily.

Two simple tests based on this procedure are the Wald–Wolfowitz number of runs
test and the median test proposed by Mood, but these are both low in power. The
Kolmogorov–Smirnov test has higher power but is more difficult to execute. A test
which is extremely powerful and yet still comparatively easy to use is the Wilcoxon–
Mann–Whitney test. Many others are described in later pages of this book.
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EXAMPLES OF TEST PROCEDURES

Test 1 Z-test for a population mean (variance known)

Hypotheses and 1. H0: µ = µ0
alternatives H1: µ �= µ0

2. H0: µ = µ0
H1: µ > µ0

Test statistics Z = x̄ − µ0

σ/
√

n

n is sample size
x̄ is sample mean
σ is population standard deviation

When used When the population variance σ 2 is known and
the population distribution is normal.

Critical region Using α = 0.05 [see Table 1]

1.

0.025 0.025

–1.96 1.96

2.

0.05

1.64

Data H0: µ0 = 4.0
n = 9, x̄ = 4.6
σ = 1.0
∴ Z = 1.8

Conclusion 1. Do not reject H0 [see Table 1].
2. Reject H0
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Test 3 Z-test for two population means (variances known and unequal)

Hypotheses and 1. H0: µ1 − µ2 = µ0
alternatives H1: µ1 − µ2 �= µ0

2. H0: µ1 − µ2 = µ0
H1: µ1 − µ2 > µ0

Test statistics Z = (x̄1 − x̄2) − µ0(
σ 2

1

n1
+ σ 2

2

n2

) 1
2

When used When the variances of both populations, σ 2
1

and σ 2
2 , are known. Populations are normally

distributed.

Critical region Using α = 0.05 [see Table 1]

1.

0.025 0.025

–1.96 1.96

2.

0.05

1.64

Data H0: µ1 − µ2 = 0
n1 = 9, n2 = 16
x̄1 = 1.2, x̄2 = 1.7
σ 2

1 = 1, σ 2
2 = 4

∴ Z = −0.832

Conclusion 1. Do not reject H0.
2. Do not reject H0.
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EXAMPLES OF TEST PROCEDURES 7

Test 7 t-test for a population mean (variance unknown)

Hypotheses and 1. H0: µ = µ0
alternatives H1: µ �= µ0

2. H0: µ = µ0
H1: µ > µ0

Test statistics t = x̄ − µ0

s/
√

n

where

s2 =
∑

(x − x̄)2

n − 1
.

When used If σ 2 is not known and the estimate s2 of σ 2 is
based on a small sample (i.e. n < 20) and a
normal population.

Critical region and
degrees of freedom

1.

0.025 0.025

DF = n –1 

–tn –1; 0.025 tn –1; 0.025

2.

0.05

tn –1; 0.05

Data H0: µ0 = 4.0
n = 9, x̄ = 3.1
s = 1.0
∴ t = −2.7

Conclusion 1. t8; 0.025 = ±2.306 [see Table 2].
Reject H0.

2. t8; 0.05 = −1.860 (left-hand side) [see Table 2].
Reject H0.
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Test 8 t-test for two population means (variance unknown but equal)

Htypotheses and 1. H0: µ1 − µ2 = µ0
alternative H1: µ1 − µ2 �= µ0

2. H0: µ1 − µ2 = µ0
H1: µ1 − µ2 > µ0

Test statistics t = (x̄1 − x̄2) − (µ1 − µ2)

s

(
1

n1
+ 1

n2

) 1
2

where

s2 = (n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

When used Given two samples from normal populations
with equal variances σ 2.

Critical region and
degrees of freedom

1.

0.025 0.025

DF = n1 + n2 – 2

–tn1 + n2 – 2; 0.025 tn1 + n2 – 2; 0.025

2.

tn1 + n2 – 2; 0.05

0.05

Data H0: µ1 − µ2 = 0
n1 = 16, n2 = 16
x̄1 = 5.0, x̄2 = 4
s = 2.0
∴ t = 1.414

Conclusion 1. t30; 0.025 = ±2.042 [see Table 2].
Do not reject H0.

2. t30; 0.05 = 1.697 [see Table 2].
Do not reject H0.



GOKA: “CHAP02” — 2006/6/10 — 17:21 — PAGE 9 — #5

EXAMPLES OF TEST PROCEDURES 9

Test 10 Method of paired comparisons

Hypotheses and 1. H0: µd = 0
alternatives H1: µd �= 0

2. H0: µd = 0
H1: µd > 0

Test statistics t = d − µd

s/
√

n

where di = xi − yi, the difference in the n paired
observations.

When used When an experiment is arranged so that each
observation in one sample can be ‘paired’
with a value from the second sample and the
populations are normally distributed.

Critical region and
degrees of freedom

1.

0.025 0.025

DF = n – 1

–tn – 1; 0.025 tn – 1; 0.025

2.

tn – 1; 0.05

0.05

Data n1 = 16, d = 1.0
s = 1.0
∴ t = 4.0

Conclusion 1. t15; 0.025 = ±2.131 [see Table 2].
Reject H0.

2. t15; 0.05 = 1.753 [see Table 2].
Raject H0.
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Test 15 χ2-test for a population variance

Hypotheses and 1. H0: σ 2 = σ 2
0

alternatives H1: σ 2 �= σ 2
0

2. H0: σ 2 = σ 2
0

H1: σ 2 > σ 2
0

Test statistics χ2 = (n − 1)s2

σ 2
0

When used Given a sample from a normal population with
unknown variance.

Critical region and
degrees of freedom

1.

DF = n – 1

0.025 0.025

χn
2
 – 1; 0.975 χn

2
 – 1; 0.025

2.

0.05

χn
2
 – 1; 0.05

Data H0: σ 2 = 4.0
n1 = 17, s2 = 7.0
∴ χ2 = 28.0

Conclusion 1. χ2
16; 0.025 = 28.85 [see Table 5].

∴ Do not reject H0.
2. χ2

16; 0.05 = 26.30 [see Table 5].
∴ Reject H0.



GOKA: “CHAP02” — 2006/6/10 — 17:21 — PAGE 11 — #7

EXAMPLES OF TEST PROCEDURES 11

Test 16 F -test for two population variances

Hypotheses and 1. H0: σ 2
1 = σ 2

2

alternatives H1: σ 2
1 �= σ 2

2

2. H0: σ 2
1 = σ 2

2

H1: σ 2
1 > σ 2

2

Test statistics F = s2
1

s2
2

, (s2
1 > s2

2)

where s2
1 and s2

2 are sample variances.
(If, in 2, s2

1 < s2
2, do not reject H0.)

When used Given two sample with unknown variances σ 2
1

and σ 2
2 and normal populations.

Critical region and
degrees of freedom

1.

0.025

DF = n1 – 1 and n2 – 1

Fn1 – 1, n2 – 1; 0.025

2.

0.05

Fn1 – 1, n2 – 1; 0.05

Data H0: σ 2
1 = σ 2

2
n1 = 11, n2 = 16
s2

1 = 6.0, s2
2 = 3.0

∴ F = 2.0

Conclusion 1. F10, 15; 0.025 = 3.06.
Do not reject H0.

2. F10, 15; 0.05 = 2.54. [see Table 3].
Do not reject H0.
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Test 37 χ2-test for goodness of fit

Hypotheses and Goodness of fit for Poisson distribution with
alternatives known mean λ

Test statistics χ2 =∑ (Oi − Ei)
2

Ei

Oi is the ith observed frequency, i = 1 to k;
Ei is expected frequency,
where Ei must be >5.

When used To compare observed frequencies against those
obtained under assumptions about the parent
populations.

Critical region and Using α = 0.05 [see Table 5]
degrees of freedom DF: variable, normally one less than the

number of frequency comparisons (k) in the
summation in the test statistic.

0.05

Data H0: Distribution.
Poisson with λ = 2.

xi Oi Ei

0 10 13.5
1 27 27.0
2 30 27.0
3 19 18.0
4 8 9.0

≥5 6 5.5

∴ χ2 = 1.45

Conclusion v = 5.
χ2

5; 0.05 = 11.07 [see Table 5].
Do not reject H0.
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EXAMPLES OF TEST PROCEDURES 13

Test 44 χ2-test for independence

Hypotheses and Contingency table
alternatives

Test statistics χ2 =∑ (Oi − Ei)
2

Ei
[see Table 5]

When used Given a bivariate frequency table for
attributes with m and n levels.

Critical region and Using α = 0.05 [see Table 5]
degrees of freedom

0.05

χν
2

; 0.05

DF = (n – 1) (m – 1)

Data

Machine

I II

Grade Oi Ei Oi Ei Total

A 3 4 7 6 10
B 9 8 11 12 20
C 8 8 12 12 20

Total 20 20 30 30 50

χ2 = 0.625

Conclusion χ2
2; 0.05 = 5.99 [see Table 5].

Do not reject H0. The grades are independent
of the machine.
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LIST OF TESTS
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Test 15 To investigate the difference between a sample variance and an
assumed population variance. 44

Test 16 To investigate the significance of the difference between two
population variances. 45

Test 17 To investigate the difference between two population variances when
there is correlation between the pairs of observations. 46

Test 18 To compare the results of two experiments, each of which yields
a multivariate result. In other words, we wish to know if the mean pattern
obtained from the first experiment agrees with the mean pattern obtained for
the second. 48

Test 19 To investigate the origin of one series of values for random variates,
when one of two markedly different populations may have produced that
particular series. 50
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Test 20 To investigate the significance of the difference between a frequency
distribution based on a given sample and a normal frequency distribution with
the same mean and the same variance. 51

Test 21 To investigate the significance of the difference between a suspicious
extreme value and other values in the sample. 54

Test 22 To test the null hypothesis that the K samples came from K
populations with the same mean. 55

Test 23 To investigate the significance of the difference between two
correlated proportions. 57

Test 24 To investigate the significance of the difference between population
variance and an assumed value. 59

Test 25 To investigate the significance of the difference between two counted
results. 60

Test 26 To investigate the significance of the difference between the overall
mean of K subpopulations and an assumed value for the population mean. 61

Test 27 To investigate which particular set of mean values or linear
combination of mean values shows differences with the other mean values. 63

Test 28 To investigate the significance of all possible differences between
population means when the sample sizes are unequal. 65

Test 29 To investigate the significance of all possible differences between
population means when the sample sizes are equal. 67

Test 30 To investigate the significance of the differences when several
treatments are compared with a control. 69

Test 31 To investigate the significance of the differences between the
variances of samples drawn from normally distributed populations. 71

Test 32 To investigate the significance of the differences between the
variances of normally distributed populations when the sample sizes are equal. 73

Test 33 To investigate the significance of the difference between a frequency
distribution based on a given sample and a normal frequency distribution. 74

Test 34 To investigate the significance of the difference between one rather
large variance and other variances. 75

Test 35 To investigate the significance of the difference between an observed
distribution and specified population distribution. 76

Test 36 To investigate the significance of the difference between two
population distributions, based on two sample distributions. 78

Test 37 To investigate the significance of the differences between observed
frequencies and theoretically expected frequencies. 79

Test 38 To investigate the significance of the differences between
counts. 81

Test 39 To investigate the significance of the differences between observed
frequencies for two dichotomous distributions. 83

Test 40 To investigate the significance of the differences between observed
frequencies for two dichotomous distributions when the sample sizes are large. 85
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Test 41 To investigate the significance of the differences between observed
frequency distributions with a dichotomous classification. 86

Test 42 To investigate the significance of the differences between
distributions of alternative data. 88

Test 43 To investigate the significance of the differences between two
distributions based on two samples spread over some classes. 89

Test 44 To investigate the difference in frequency when classified by one
attribute after classification by a second attribute. 91

Test 45 To investigate the significance of the difference between the
population median and a specified value. 93

Test 46 To investigate the significance of the difference between the medians
of two distributions when the observations are paired. 94

Test 47 To investigate the significance of the difference between a population
mean and a specified value. 95

Test 48 To investigate the significance of the difference between the means
of two similarly shaped distributions. 96

Test 49 To test if two random samples could have come from two
populations with the same frequency distribution. 97

Test 50 To test if two random samples could have come from two
populations with the same frequency distribution. 98

Test 51 To test if K random samples could have come from K populations
with the same frequency distribution. 99

Test 52 To test if two random samples could have come from two
populations with the same means. 101

Test 53 To test if two random samples could have come from two
populations with the same variance. 102

Test 54 To test if K random samples could have come from K populations
with the same mean. 104

Test 55 To test if K random samples came from populations with the same
mean. 106

Test 56 To investigate the difference between the largest mean and K − 1
other population means. 107

Test 57 To test the null hypothesis that all treatments have the same effect
as the control treatment. 108

Test 58 To investigate the significance of the correlation between two series
of observations obtained in pairs. 109

Test 59 To investigate the significance of the correlation between two series
of observations obtained in pairs. 110

Test 60 To test the null hypothesis that the mean µ of a population with
known variance has the value µ0 rather than the value µ1. 112

Test 61 To test the null hypothesis that the standard deviation σ of a
population with a known mean has the value σ0 rather than the value σ1. 114
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Test 62 To test the null hypothesis that the parameter of a population has the
value p0 rather than p1. 116

Test 63 To test the null hypothesis that the fluctuations in a series have a
random nature. 118

Test 64 To test the null hypothesis that the fluctuations in a series have a
random nature. Series could be serially correlated. 120

Test 65 To test the null hypothesis that the variations in a series are
independent of the order of the observations. 121

Test 66 To test the null hypothesis that the fluctuations of a sample are
independent of the order in the sequence. 122

Test 67 To test the null hypothesis that observations in a sample are
independent of the order in the sequence. 123

Test 68 To test the null hypothesis that two samples have been randomly
selected from the same population. 124

Test 69 To test the significance of the order of the observations in a sample. 126

Test 70 To test the random occurrence of plus and minus signs in a sequence
of observations. 128

Test 71 To test that the fluctuations in a sample have a random nature. 129

Test 72 To compare the significance of the differences in response for K
treatments applied to n subjects. 130

Test 73 To investigate the significance of the differences in response for K
treatments applied to n subjects. 131

Test 74 To investigate the significance of the correlation between n series of
rank numbers, assigned by n numbers of a committee to K subjects. 133

Test 75 To test a model for the distribution of a random variable of the
continuous type. 135

Test 76 To test the equality of h independent multinomial distributions. 137

Test 77 To test for non-additivity in a two-way classification. 139

Test 78 To test the various effects for a two-way classification with an equal
number of observations per cell. 142

Test 79 To test the main effects in the case of a two-way classification with
unequal numbers of observations per cell. 145

Test 80 To test for nestedness in the case of a nested or hierarchical
classification. 148

Test 81 To test the presence of regression of variable Y on the observed
value X. 151

Test 82 To test the linearity of regression between the X variable and the Y
variable. 153

Test 83 To test the significance of the reduction of uncertainty of past events. 155

Test 84 To test the significance of the difference in sequential connections
across groups. 156



GOKA: “CHAP03” — 2006/6/10 — 17:21 — PAGE 18 — #5

18 100 STATISTICAL TESTS

Test 85 To test whether the population value of each regression coefficient
is zero in a multiple regression model. 158

Test 86 To test the variances in a balanced random effects model of random
variables. 160

Test 87 To test the interaction effects in a two-way classification random
effects model with equal number of observations per cell. 161

Test 88 To test a parameter of a rectangular population using the likelihood
ratio method. 164

Test 89 To test a parameter of an exponential population using the uniformly
most powerful test method. 165

Test 90 To test the parameter of a Bernoulli population using the sequential
test method. 166

Test 91 To test the ratio between the mean and the standard deviation of a
normal population where both are unknown, using the sequential method. 168

Test 92 To test whether the error terms in a regression model are autocorre-
lated. 169

Test 93 To test the medians of two populations. 171

Test 94 To test whether a proposed distribution is a suitable probabilistic
model for the sample data. 172

Test 95 To test whether the observed angles have a tendency to cluster around
a given angle, indicating a lack of randomness in the distribution. 174

Test 96 To test whether the given distribution fits a random sample of angular
values. 176

Test 97 To test whether two samples from circular observations differ
significantly from each other with respect to mean direction or angular
variance. 177

Test 98 To test whether the mean angles of two independent circular
observations differ significantly from each other. 178

Test 99 To test whether two independent random samples from circular
observations differ significantly from each other with respect to mean angle,
angular variance or both. 180

Test 100 To test whether the treatment effects of independent samples from
von Mises populations differ significantly from each other. 182
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CLASSIFICATION OF TESTS

Test numbers

For linear data 1 sample 2 samples K samples

Parametric classical tests
for central tendency 1, 7, 19 2, 3, 8, 9, 10, 18 22, 26, 27, 28, 29, 30,

77, 78, 79, 80, 87
for proportion 4 5, 6, 25 –
for variability 15, 21, 24, 34 16, 17 31, 32, 86
for distribution functions 20, 33, 75, 88, 89, 94 – 76
for association 11, 12, 13, 81, 82 14, 23, 84, 92 85
for probability 83 – –

Parametric tests
for distribution function 35, 37 36, 39, 40 38, 41, 42, 43, 44

Distribution-free tests
for central tendency 45, 47 46, 48, 50, 52, 93 51, 54, 55, 56, 57
for variability – 53 –
for distribution functions – 49 –
for association 58, 59 – 72, 73, 74
for randomness 63, 64, 65, 66, 67, 68 –

69, 70, 71

Sequential tests
central tendency 60, 90 – –
variability 61 – –
for proportion 62 – –
for ratio 91 – –

Test numbers

For circular data 1 sample 2 samples K samples

Parametric tests
for randomness 95 – –
for distribution function 96 – –
for central tendency – 97, 98 –
for variability – 99 100
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Test 1 Z-test for a population mean (variance known)

Object

To investigate the significance of the difference between an assumed population mean
µ0 and a sample mean x̄.

Limitations

1. It is necessary that the population variance σ 2 is known. (If σ 2 is not known, see the
t-test for a population mean (Test 7).)

2. The test is accurate if the population is normally distributed. If the population is not
normal, the test will still give an approximate guide.

Method

From a population with assumed mean µ0 and known variance σ 2, a random sample
of size n is taken and the sample mean x̄ calculated. The test statistic

Z = x̄ − µ0

σ/
√

n

may be compared with the standard normal distribution using either a one- or two-tailed
test, with critical region of size α.

Example

For a particular range of cosmetics a filling process is set to fill tubs of face powder
with 4 gm on average and standard deviation 1 gm. A quality inspector takes a random
sample of nine tubs and weighs the powder in each. The average weight of powder is
4.6 gm. What can be said about the filling process?

A two-tailed test is used if we are concerned about over- and under-filling.
In this Z = 1.8 and our acceptance range is −1.96 < Z < 1.96, so we do not reject

the null hypothesis. That is, there is no reason to suggest, for this sample, that the filling
process is not running on target.

On the other hand if we are only concerned about over-filling of the cosmetic then
a one-tailed test is appropriate. The acceptance region is now Z < 1.645. Notice that
we have fixed our probability, which determines our acceptance or rejection of the null
hypothesis, at 0.05 (or 10 per cent) whether the test is one- or two-tailed. So now we
reject the null hypothesis and can reasonably suspect that we are over-filling the tubs
with cosmetic.

Quality control inspectors would normally take regular small samples to detect the
departure of a process from its target, but the basis of this process is essentially that
suggested above.
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Numerical calculation

µ0 = 4.0, n = 9, x̄ = 4.6, σ = 1.0

Z = 1.8

Critical value Z0.05 = 1.96 [Table 1].

H0: µ = µ0, H1: µ �= µ0. (Do not reject the null hypothesis H0.)

H0: µ = µ0, H1: µ > µ0. (Reject H0.)
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Test 2 Z-test for two population means (variances
known and equal)

Object

To investigate the significance of the difference between the means of two populations.

Limitations

1. Both populations must have equal variances and this variance σ 2 must be known.
(If σ 2 is not known, see the t-test for two population means (Test 8).)

2. The test is accurate if the populations are normally distributed. If not normal, the
test may be regarded as approximate.

Method

Consider two populations with means µ1 and µ2. Independent random samples of size
n1 and n2 are taken which give sample means x̄1 and x̄2. The test statistic

Z = (x̄1 − x̄2) − (µ1 − µ2)

σ

(
1

n1
+ 1

n2

) 1
2

may be compared with the standard normal distribution using either a one- or two-tailed
test.

Example

Two teams of financial sales persons are compared to see if it is likely that the
instruction each has received could have led to differing success rates. A sample of
nine transactions (which involves the whole team) yields an average success rate of
1.2. Similarly a sample of 16 transactions for the second team yields a success rate
of 1.7. The variances for both teams are equal to 2.0750 (standard deviation 1.4405).
The success rate is calculated using a range of output measures for a transaction.

If we are only interested to know of a difference between the two teams then a
two-tailed test is appropriate. In this case we accept the null hypothesis and can
assume that both teams are equally successful. This is because our acceptance region
is −1.96 < Z < 1.96 and we have computed a Z value, for this sample, of −0.833.

On the other hand, if we suspect that the first team had received better training than
the second team we would use a one-tailed test.

For our example, here, this is certainly not the case since our Z value is negative.
Our acceptance region is Z < 1.645. Since the performance is in the wrong direction
we don’t even need to perform a calculation. Notice that we are not doing all possible
combination of tests so that we can find a significant result. Our test is based on our
design of the ‘experiment’ or survey planned before we collect any data. Our data do
not have a bearing on the form of the testing.
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Numerical calculation

n1 = 9, n2 = 16, x̄1 = 1.2, x̄2 = 1.7, σ = 1.4405, σ 2 = 2.0750

Z = −0.833

Critical value Z0.05 = 1.96 [Table 1].

H0: µ1 − µ2 = 0, H1: µ1 − µ2 �= 0. (Do not reject H0.)

H1: µ1 − µ2 = 0, H1: µ1 − µ2 > 0. (Do not reject H0.)
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Test 3 Z-test for two population means (variances
known and unequal)

Object

To investigate the significance of the difference between the means of two populations.

Limitations

1. It is necessary that the two population variances be known. (If they are not known,
see the t-test for two population means (Test 9).)

2. The test is accurate if the populations are normally distributed. If not normal, the
test may be regarded as approximate.

Method

Consider two populations with means µ1 and µ2 and variances σ 2
1 and σ 2

2 . Independent
random samples of size n1 and n2 are taken and sample means x̄1 and x̄2 are calculated.
The test statistic

Z = (x̄1 − x̄2) − (µ1 − µ2)(
σ 2

1

n1
+ σ 2

2

n2

) 1
2

may be compared with the standard normal distribution using either a one- or two-tailed
test.

Example

Brand A of a jumbo-sized pack of potato crisp is known to have a more variable weight
than brand B of potato crisp. Population variances are 0.000576 gm2 and 0.001089 gm2,
respectively. The respective means for samples of size 13 and 8 are 80.02 gm and
79.98 gm.

Is there a difference between the two brands in terms of the weights of the jumbo
packs? We do not have any pre-conceived notion of which brand might be ‘heavier’ so
we use a two-tailed test. Our acceptance region is −1.96 < Z < 1.96 and our calculated
Z value of 2.98. We therefore reject our null hypothesis and can conclude that there is
a difference with brand B yielding a heavier pack of crisps.

Numerical calculation

n1 = 13, n2 = 8, x̄1 = 80.02, x̄2 = 79.98, σ 2
1 = 0.000576, σ 2

2 = 0.001089

Z = 2.98

Critical value Z0.05 = 1.96 [Table 1].

Reject the null hypothesis of no difference between means.
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Test 4 Z-test for a proportion (binomial distribution)

Object

To investigate the significance of the difference between an assumed proportion p0 and
an observed proportion p.

Limitations

The test is approximate and assumes that the number of observations in the sample is
sufficiently large (i.e. n � 30) to justify the normal approximation to the binomial.

Method

A random sample of n elements is taken from a population in which it is assumed that
a proportion p0 belongs to a specified class. The proportion p of elements in the sample
belonging to this class is calculated. The test statistic is

Z = |p − p0| − 1/2n{
p0(1 − p0)

n

} 1
2

.

This may be compared with a standard normal distribution using either a one- or two-
tailed test.

Example

The pass rate for a national statistics test has been 0.5, or 50 per cent for some years. A
random sample of 100 papers from independent (or non-college based) students yields
a pass rate of 40 per cent. Does this show a significant difference? Our computed Z is
−2.0 and our acceptance region is −1.96 < Z < 1.96. So we reject the null hypothesis
and conclude that there is a difference in pass rates. In this case, the independent
students fare worse than those attending college. While we might have expected this,
there are other possible factors that could point to either an increase or decrease in
the pass rate. Our two-tailed test affirms our ignorance of the possible direction of a
difference, if one exists.

Numerical calculation

n = 100, p = 0.4, p0 = 0.5

Z = −2.1

Critical value Z0.05 = ±1.96 [Table 1].

Reject the null hypothesis of no difference in proportions.
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Test 5 Z-test for the equality of two proportions
(binomial distribution)

Object

To investigate the assumption that the proportions π1 and π2 of elements from two
populations are equal, based on two samples, one from each population.

Limitations

The test is approximate and assumes that the number of observations in the two sam-
ples is sufficiently large (i.e. n1, n2 � 30) to justify the normal approximation to the
binomial.

Method

It is assumed that the populations have proportions π1 and π2 with the same character-
istic. Random samples of size n1 and n2 are taken and respective proportions p1 and p2
calculated. The test statistic is

Z = (p1 − p2){
P(1 − P)

(
1

n1
+ 1

n2

)} 1
2

where

P = p1n1 + p2n2

n1 + n2
.

Under the null hypothesis that π1 = π2, Z is approximately distributed as a standard
normal deviate and the resulting test may be either one- or two-tailed.

Example

Two random samples are taken from two populations, which are two makes of clock
mechanism produced in different factories. The first sample of size 952 yielded the
proportion of clock mechanisms, giving accuracy not within fixed acceptable limits
over a period of time, to be 0.325 per cent. The second sample of size 1168 yielded
5.73 per cent. What can be said about the two populations of clock mechanisms, are
they significantly different? Again, we do not have any pre-conceived notion of whether
one mechanism is better than the other, so a two-tailed test is employed.

With a Z value of −6.93 and an acceptance region of −1.96 < Z < 1.96, we
reject the null hypothesis and conclude that there is significant difference between the
mechanisms in terms of accuracy. The second mechanism is significantly less accurate
than the first.

Numerical calculation

n1 = 952, n2 = 1168, p1 = 0.00325, p2 = 0.0573
Z = −6.93
Critical value Z0.05 = ±1.96 [Table 1].
Reject the null hypothesis.
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Test 6 Z-test for comparing two counts (Poisson
distribution)

Object

To investigate the significance of the difference between two counts.

Limitations

The test is approximate and assumes that the counts are large enough for the normal
approximation to the Poisson to apply.

Method

Let n1 and n2 be the two counts taken over times t1 and t2, respectively. Then the two
average frequencies are R1 = n1/t1 and R2 = n2/t2. To test the assumption of equal
average frequencies we use the test statistic

Z = (R1 − R2)(
R1

t1
+ R2

t2

) 1
2

.

This may be compared with a standard normal distribution using either a one-tailed or
two-tailed test.

Example

Two traffic roundabouts are compared for intensity of traffic at non-peak times with
steady conditions. Roundabout one has 952/2 arrivals over 11 minutes and roundabout
two has 1168/2 arrivals over 15 minutes. The arrival rates, per minute, are therefore
476/11 (43.27) and 584/15 (38.93) respectively.

What do these results say about the two arrival rates or frequency taken over the two
time intervals? We calculate a Z value of 2.4 and have an acceptance region of −1.96 <

Z < 1.96. So we reject the null hypothesis of no difference between the two rates.
Roundabout one has an intensity of arrival significantly higher than roundabout two.

Numerical calculation

n1 = 952, n2 = 1168, R1 = n1

t1
= 43.27, R2 = n2

t2
= 38.93

t1 = 22, t2 = 30

Z = (R1 − R2)(
R1

t1
+ R2

t2

) 1
2

= 4.34

(3.26)
1
2

= 4.34

1.81
= 2.40

Critical value Z0.05 = 1.96 [Table 1].

Reject the null hypothesis of no difference between the counts.
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Test 7 t-test for a population mean (variance
unknown)

Object

To investigate the significance of the difference between an assumed population mean
µ0 and a sample mean x̄.

Limitations

1. If the variance of the population σ 2 is known, a more powerful test is available: the
Z-test for a population mean (Test 1).

2. The test is accurate if the population is normally distributed. If the population is not
normal, the test will give an approximate guide.

Method

From a population with assumed mean µ0 and unknown variance, a random sample
of size n is taken and the sample mean x̄ calculated as well as the sample standard
deviation using the formula

s =

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1
(xi − x̄)

n − 1

⎫⎪⎪⎬⎪⎪⎭
1
2

.

The test statistic is

t = x̄ − µ0

s/
√

n

which may be compared with Student’s t-distribution with n − 1 degrees of freedom.
The test may be either one-tailed or two-tailed.

Example

A sample of nine plastic nuts yielded an average diameter of 3.1 cm with estimated
standard deviation of 1.0 cm. It is assumed from design and manufacturing requirements
that the population mean of nuts is 4.0 cm. What does this say about the mean diameter of
plastic nuts being produced? Since we are concerned about both under- and over-sized
nuts (for different reasons) a two-tailed test is appropriate.

Our computed t value is −2.7 and acceptance region −2.3 < t < 2.3. We reject
the null hypothesis and accept the alternative hypothesis of a difference between the
sample and population means. There is a significant difference (a drop in fact) in the
mean diameters of plastic nuts (i.e. between the sample and population).
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Numerical calculation

µ0 = 4, n = 9, x̄ = 3.1, s = 1.0, ν = n − 1

t = −2.7

Critical value t8; 0.025 = ±2.3 [Table 2].

H0: µ = µ0, H1: µ �= µ0. (Reject H0.)
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Test 8 t-test for two population means (variances
unknown but equal)

Object

To investigate the significance of the difference between the means of two populations.

Limitations

1. If the variance of the populations is known, a more powerful test is available: the
Z-test for two population means (Test 2).

2. The test is accurate if the populations are normally distributed. If the populations
are not normal, the test will give an approximate guide.

Method

Consider two populations with means µ1 and µ2. Independent random samples of size
n1 and n2 are taken from which sample means x̄1 and x̄2 together with sums of squares

s2
1 =

n1∑
i=1

(xi − x̄1)
2

and

s2
2 =

n2∑
i=1

(xi − x̄2)
2

are calculated. The best estimate of the population variance is found as s2 =
[(n1 − 1)s2

1 + (n2 − 1)s2
2]/(n1 + n2 − 2). The test statistic is

t = (x̄1 − x̄2) − (µ1 − µ2)

s

(
1

n1
+ 1

n2

) 1
2

which may be compared with Student’s t-distribution with n1 + n2 − 2 degrees of
freedom. The test may be either one-tailed or two-tailed.

Example

Two snack foods are made and sold in 30 gm packets. Random samples of size 12 are
taken from the production line of each snack food and means and variances obtained
viz.: mean1 31.75 gm, variance1 112.25 gm2; mean2 28.67 gm, variance2 66.64 gm2.
What can be said about the two production processes in relation to the weight of packets?

We use a two-tailed test and find that t is 0.798. Our acceptance region is −2.07 <

t < 2.07 and so we accept our null hypothesis. So we can conclude that the mean
weight of packs from the two production lines is the same.
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Numerical calculation

n1 = 12, n2 = 12, x̄1 = 31.75, x̄2 = 28.67, ν = n1 + n2 − 2

s2
1 = 112.25, s2

2 = 66.64

s2 = 89.445

t = 0.798, ν = 12 + 12 − 2 = 22

Critical value t22; 0.025 = 2.07 [Table 2].

Reject the alternative hypothesis.
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Test 9 t-test for two population means (variances
unknown and unequal)

Object

To investigate the significance of the difference between the means of two populations.

Limitations

1. If the variances of the populations are known, a more powerful test is available: the
Z-test for two population means (Test 3).

2. The test is approximate if the populations are normally distributed or if the sample
sizes are sufficiently large.

3. The test should only be used to test the hypothesis µ1 = µ2.

Method

Consider two populations with means µ1 and µ2. Independent random samples of size
n1 and n2 are taken from which sample means x̄1 and x̄2 and variances

s2
1 =

n1∑
i=1

(xi − x̄1)
2

n1 − 1
and s2

2 =

n2∑
i=1

(xi − x̄2)
2

n2 − 1

are calculated. The test statistic is

t = (x̄1 − x̄2) − (µ1 − µ2)(
s2

1

n1
+ s2

2

n2

) 1
2

which may be compared with Student’s t-distribution with degrees of freedom given
by

ν =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
s2

1

n1
+ s2

2

n2

}2

s4
1

n2
1(n1 − 1)

+ s4
2

n2
2(n2 − 1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Example

Two financial organizations are about to merge and, as part of the rationalization
process, some consideration is to be made of service duplication. Two sales teams
responsible for essentially identical products are compared by selecting samples
from each and reviewing their respective profit contribution levels per employee over
a period of two weeks. These are found to be 3166.00 and 2240.40 with estimated
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variance of 6328.27 and 221 661.3 respectively. How do the two teams compare on
performance?

We compute a t value of 5.72. Our acceptance region is −2.26 < t < 2.26 so we
reject the null hypothesis and accept the alternative. There is a significant difference
between the two teams. Team 1 is more productive than team 2.

Numerical calculation

n1 = 4, n2 = 9, x̄1 = 3166.0, x̄2 = 2240.4, s2
1 = 6328.67, s2

2 = 221 661.3

t = 5.72, ν = 9 (rounded)

Critical value t9; 0.025 = 2.26 [Table 2].

Reject the null hypothesis.
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Test 10 t-test for two population means (method of
paired comparisons)

Object

To investigate the significance of the difference between two population means, µ1 and
µ2. No assumption is made about the population variances.

Limitations

1. The observations for the two samples must be obtained in pairs. Apart from popula-
tion differences, the observations in each pair should be carried out under identical,
or almost identical, conditions.

2. The test is accurate if the populations are normally distributed. If not normal, the
test may be regarded as approximate.

Method

The differences di are formed for each pair of observations. If there are n such pairs of
observations, we can calculate the variance of the differences by

s2 =
n∑

i=1

(di − d̄)2

n − 1

Let the means of the samples from the two populations be denoted by x̄1 and x̄2. Then
the test statistic becomes

t = (x̄1 − x̄2) − 0

s/n
1
2

which follows Student’s t-distribution with n − 1 degrees of freedom. The test may be
either one-tailed or two-tailed.

Example

To compare the efficacy of two treatments for a respiratory condition, ten patients
are selected at random and the treatments are administered using an oral spray. The
patients then perform a treadmill exercise until a maximum exercise rate is reached. The
times for these are compared. A suitable period of time is ensured between treatments
to prevent the effect of treatments to interact. Do the two treatments differ? In this
case we do not expect one particular treatment to be superior to the other so a two-
tailed test is used. We compute a t value of −0.11 and have an acceptance region of
−2.26 < t < 2.26. So we accept the null hypothesis of no difference between the two
treatments. However, in such situations it is often the case that an improvement over an
existing or original treatment is expected. Then a one-tailed test would be appropriate.
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Numerical calculation

d̄ = x̄1 − x̄2 = −0.1, n = 10, ν = n − 1, s = 2.9

t = −0.11, ν = 9

Critical value t9; 0.025 = 2.26 [Table 2].

Do not reject the null hypothesis of no difference between means.
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Test 11 t-test of a regression coefficient

Object

To investigate the significance of the regression coefficient of y on x.

Limitations

The usual assumptions for regression should apply, namely:

1. the variable y follows a normal distribution for each value of x;
2. the variance among the y values remains constant for any given values of x.

Method

In order to estimate a linear regression of the form y = A + B(x − x̄), a sample of n
pairs of points (xi, yi) is required. B is called the regression coefficient, and to test the
null hypothesis that this is equal to zero we first calculate the sample estimate

b =
∑

xiyi − 1

n

∑
xi

∑
yi∑

x2
i − 1

n

(∑
xi

)2
.

The variance of the xs and the variance of the ys about the regression line are calculated
as follows:

s2
x =

∑
(xi − x̄)2

n − 1
and s2

y·x =
∑

{yi − ȳ − b(xi − x̄)}2

n − 2

where x̄ and ȳ are the means of the xs and ys, respectively. The test statistic becomes

t = bsx

sy·x
(n − 1)−

1
2

which follows Student’s t-distribution with n − 2 degrees of freedom. The test must be
two-tailed since b may be positive or negative. However, the test may be one-tailed if
the alternative hypothesis is directional.

Example

In an investigation of the relationship between a reaction test, on a vehicle simulator, and
a composite test a sample of 12 male subjects is selected. The composite test of reactions
is a much cheaper alternative to a vehicle simulator test. A regression relationship is
computed with regression coefficient 5.029 and t value 6.86. The acceptance region for
the null hypothesis is −2.23 < t < 2.23. Since the computed t value lies outside the
acceptance region we conclude that slope (b coefficient) is significantly greater than
zero and a significant regression exists.

Notice that the test does not tell us how good a predictor x is of y, only that the
regression is significant.
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Numerical calculation∑
xi = 766,

∑
yi = 1700,

∑
x2

i = 49 068,∑
y2

i = 246 100,
∑

xiyi = 109 380

n = 12, x̄ = 68.83, ȳ = 141.67, ν = n − 2

s2
x = 15.61, s2

y = 478.8, b = 5.029

s2
y·x = 92.4

t = 6.86, ν = 10

Critical value t10; 0.025 = ±2.23 [Table 2].

Reject the null hypothesis.
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Test 12 t-test of a correlation coefficient

Object

To investigate whether the difference between the sample correlation coefficient and
zero is statistically significant.

Limitations

It is assumed that the x and y values originate from a bivariate normal distribution, and
that the relationship is linear. To test an assumed value of the population coefficient
other than zero, refer to the Z-test for a correlation coefficient (Test 13).

Method

Given a sample of n points (xi, yi) the correlation coefficient r is calculated from the
formula

r =
∑

(xi − x̄)(yi − ȳ)[∑
(xi − x̄)2

∑
(yi − ȳ)2

] 1
2

.

To test the null hypothesis that the population value of r is zero, the test statistic

t = r√
1 − r2

· √
n − 2

is calculated and this follows Student’s t-distribution with n − 2 degrees of freedom.
The test will normally be two-tailed but in certain cases could be one-tailed.

Example

In a study of the possible relationship between advertising on television and product
preferences a panel of television viewers is selected. For two brands of toothpaste, one
supermarket own brand and one popular brand, panel members were asked to score
(on a scale from 1 to 20) their preference for each product. The correlation coefficient
between brands was 0.32, which is modest but is it significantly greater than zero? The
calculated t value is 1.35. Our acceptance region is −1.35 < t < 1.35 so we accept the
null hypothesis. So there is no association between the brands compared, which would
suggest a clear preference for popular brand or own brand. Consumers are less likely to
substitute own brand for popular brand when preferences appear not to be associated.

Numerical calculation

n = 18, r = 0.32, ν = n − 2

t = r
√

n − 2√
1 − r2

= 0.32
√

16√
1 − (0.32)2

= 1.35

Critical value t16; 0.05 = 1.75 [Table 2].

Do not reject the null hypothesis. NB: In this case the x and y variables are independent.
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Test 13 Z-test of a correlation coefficient

Object

To investigate the significance of the difference between a correlation coefficient and a
specified value ρ0.

Limitations

1. The x and y values originate from normal distributions.
2. The variance in the y values is independent of the x values.
3. The relationship is linear.

When these conditions cannot be met, the user should turn to the Kendall rank
correlation test (Test 59).

Method

With r as defined in the t-test of a correlation coefficient (Test 12), using the Fisher
Z-transformation we have

Z1 = 1

2
loge

(
1 + r

1 − r

)
= 1.1513 log10

(
1 + r

1 − r

)
.

The distribution of Z1 is approximately normal with mean µZ1 and standard deviation
σZ1 where

µZ1 = 1

2
loge

(
1 + ρ0

1 − ρ0

)
= 1.1513 log10

(
1 + r

1 − r

)
σZ1 = 1√

n − 3
.

The test statistic is now

Z = Z1 − µZ1

σZ1

.

Example

A market research company has assumed from previous research that the correlation
between two brands in terms of consumer preference is 0.50. This value has a bearing on
stocking levels in supermarkets since one brand will often substitute for another when
the number on the shelves of one product runs out. A panel of 24 consumers produces a
correlation on preference scores (based on a scale of 1 to 20) for the two brands of 0.75.
Can we say that the correlation coefficient is at least 0.50? The Fisher Z-transformation
value, calculated as 0.973, yields a test statistic of 1.94. The acceptance region is
Z < 1.64. Since the calculated value is greater than the critical value we reject the null
hypothesis. This means that the correlation coefficient is at least 0.50 and there is no
need to re-evaluate supermarket stocking policy for these two products.
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Numerical calculation

r = 0.75, ρ0 = 0.50, n = 24

µZ1 = 1.1513 log10 3 = 0.5493, Z1 = 1.1513 log10

(
1 + 0.75

1 − 0.75

)
= 0.9730 [Table 4]

σZ1 = 0.2182

Z = Z1 − µZ1

σZ1

= 1.94.

The critical value at α = 0.10 is 1.64 [Table 1].
The calculated value is greater than the critical value.
Reject the null hypothesis of no difference.
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Test 14 Z-test for two correlation coefficients

Object

To investigate the significance of the difference between the correlation coefficients for
a pair of variables occurring from two different samples and the difference between
two specified values ρ1 and ρ2.

Limitations

1. The x and y values originate from normal distributions.
2. The variance in the y values is independent of the x values.
3. The relationships are linear.

Method

Using the notation of the Z-test of a correlation coefficient, we form for the first sample

Z1 = 1

2
loge

(
1 + r1

1 − r1

)
= 1.1513 log10

(
1 + r1

1 − r1

)
which has mean µZ1 = 1

2 loge[(1 + ρ1)/(1 − ρ1)] and variance σZ1 = 1/
√

n1 − 3,
where n1 is the size of the first sample; Z2 is determined in a similar manner. The test
statistic is now

Z = (Z1 − Z2) − (µZ1 − µZ2)

σ

where σ = (σ 2
Z1

+ σ 2
Z2

)
1
2 . Z is normally distributed with mean 0 and with variance 1.

Example

A market research company is keen to categorize a variety of brands of potato crisp based
on the correlation coefficients of consumer preferences. The market research company
has found that if consumers’ preferences for brands are similar then marketing pro-
grammes can be merged. Two brands of potato crisp are compared for two advertising
regions. Panels are selected of sizes 28 and 35 for the two regions and correlation coef-
ficients for brand preferences are 0.50 and 0.30 respectively. Are the two associations
statistically different or can marketing programmes be merged? The calculated Z value
is 0.8985 and the acceptance region for the null hypothesis is −1.96 < Z < 1.96.
So we accept the null hypothesis and conclude that we can go ahead and merge the
marketing programmes. This, of course, assumes that the correlation coefficient is a
good measure to use for grouping market research programmes.

Numerical calculation

n1 = 28, n2 = 35, r1 = 0.50, r2 = 0.30, α = 0.05

Z1 = 1.1513 log10

(
1 + r1

1 − r1

)
= 0.5493 [Table 4]
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Z2 = 1.1513 log10

(
1 + r2

1 − r2

)
= 0.3095 [Table 4]

σ =
(

1

n1 − 3
+ 1

n2 − 3

) 1
2 = 0.2669

Z = 0.5493 − 0.3095

0.2669
= 0.8985

The critical value at α = 0.05 is 1.96 [Table 1].
Do not reject the null hypothesis.
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Test 15 χ2-test for a population variance

Object

To investigate the difference between a sample variance s2 and an assumed population
variance σ 2

0 .

Limitations

It is assumed that the population from which the sample is drawn follows a normal
distribution.

Method

Given a sample of n values x1, x2, . . . , xn, the values of

x̄ =
∑

xi

n
and s2 =

∑
(xi − x̄)2

n − 1

are calculated. To test the null hypothesis that the population variance is equal to σ 2
0 the

test statistic (n − 1)s2/σ 2
0 will follow a χ2-distributkm with n − 1 degrees of freedom.

The test may be either one-tailed or two-tailed.

Example

A manufacturing process produces a fixed fluid injection into micro-hydraulic systems.
The variability of the volume of injected fluid is critical and is set at 9 sq ml. A sample
of 25 hydraulic systems yields a sample variance of 12 sq ml. Has the variability of
the volume of fluid injected changed? The calculated chi-squared value is 32.0 and
the 5 per cent critical value is 36.42. So we do not reject the null hypothesis of no
difference. This means that we can still consider the variability to be set as required.

Numerical calculation

x̄ = 70, σ 2
0 = 9, n = 25, s2 = 12, ν = 24

χ2 = (n − 1)s2/σ 2
0 = 24 × 12

9
= 32.0

Critical value x2
24; 0.05 = 36.42 [Table 5].

Do not reject the null hypothesis. The difference between the variances is not significant.
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Test 16 F -test for two population variances (variance
ratio test)

Object

To investigate the significance of the difference between two population variances.

Limitations

The two populations should both follow normal distributions. (It is not necessary that
they should have the same means.)

Method

Given samples of size n1 with values x1, x2, . . . , xn1 and size n2 with values
y1, y2, . . . , yn2 from the two populations, the values of

x̄ =
∑

xi

n1
, ȳ =

∑
yi

n2

and

s2
1 =

∑
(xi − x̄)2

n1 − 1
, s2

2 =
∑

(yi − ȳ)2

n2 − 1

can be calculated. Under the null hypothesis that the variances of the two populations
are equal the test statistic F = s2

1/s2
2 follows the F-distribution with (n1 − 1, n2 − 1)

degrees of freedom. The test may be either one-tailed or two-tailed.

Example

Two production lines for the manufacture of springs are compared. It is important that
the variances of the compression resistance (in standard units) for the two production
lines are the same. Two samples are taken, one from each production line and variances
are calculated. What can be said about the two population variances from which the
two samples have been taken? Is it likely that they differ? The variance ratio statistic F
is calculated as the ratio of the two variances and yields a value of 0.36/0.087 = 4.14.
The 5 per cent critical value for F is 5.41. We do not reject our null hypothesis of
no difference between the two population variances. There is no significant difference
between population variances.

Numerical calculation

n1 = 4, n2 = 6,
∑

x = 0.4,
∑

x2 = 0.30, s2
1 = 0.087∑

y = 0.06,
∑

y2 = 1.78, s2
2 = 0.36

F3; 5 = 0.36

0.087
= 4.14

Critical value F3.5; 0.05 = 5.41 [Table 3].

Do not reject the null hypothesis. The two population variances are not significantly
different from each other.
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Test 17 F -test for two population variances (with
correlated observations)

Object

To investigate the difference between two population variances when there is correlation
between the pairs of observations.

Limitations

It is assumed that the observations have been performed in pairs and that correlation
exists between the paired observations. The populations are normally distributed.

Method

A random sample of size n yields the following pairs of observations
(x1, y1), (x2, y2), . . . , (xn, yn). The variance ratio F is calculated as in Test 16. Also
the sample correlation r is found from

r =
∑

(xi − x̄)(yi − ȳ)[∑
(xi − x̄)2

∑
(yi − ȳ)2

] 1
2

.

The quotient

γF = F − 1

[(F + 1)2 − 4r2F] 1
2

provides a test statistic with degrees of freedom ν = n − 2. The critical values for this
test can be found in Table 6. Here the null hypothesis is σ 2

1 = σ 2
2 , when the population

correlation is not zero. Here F is greater than 1.

Example

A researcher tests a sample panel of television viewers on their support for a particular
issue prior to a focus group, during which the issue is discussed in some detail. The panel
members are then asked the same questions after the discussion. The pre-discussion
view is x and the post-discussion view is y. The question, here, is ‘has the focus group
altered the variability of responses?’

We find the test statistic, F, is 0.796. Table 6 gives us a 5 per cent critical value
of 0.811. For this test, since the calculated value is greater than the critical value, we
do not reject the null hypothesis of no difference between variances. Hence the focus
group has not altered the variability of responses.
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Numerical calculation

n1 = n2 = 6,
∑

x = 0.4,
∑

x2 = 0.30, s2
1 = 0.087∑

y = 0.06,
∑

y2 = 1.78, s2
2 = 0.36, F = s2

2

s2
1

= 4.14, r = 0.811

γF = F − 1

[(F + 1)2 − 4r2F] 1
2

= 4.14 − 1

[(5.14)2 − 4r2.4.14] 1
2

= 3.14

[26.42 − 16.56 × 0.658] 1
2

= 0.796

α = 0.05, ν = n − 2 = 4, r = 0.811 [Table 6].
Hence do not reject the hypothesis of no difference between variances.
The null hypothesis σ 2

1 = σ 2
2 has to be reflected when the value of the test-statistic

equals or exceeds the critical value.
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Test 18 Hotelling’s T 2-test for two series of
population means

Object

To compare the results of two experiments, each of which yields a multivariate result.
In other words, we wish to know if the mean pattern obtained from the first experiment
agrees with the mean pattern obtained for the second.

Limitations

All the variables can be assumed to be independent of each other and all variables
follow a multivariate normal distribution. (The variables are usually correlated.)

Method

Denote the results of the two experiments by subscripts A and B. For ease of description
we shall limit the number of variables to three and we shall call these x, y and z. The
number of observations is denoted by nA and nB for the two experiments. It is necessary
to solve the following three equations to find the statistics a, b and c:

a[(xx)A + (xx)B] + b[(xy)A + (xy)B] + c[(xz)A + (xz)B]
= (nA + nB − 2)(x̄A − x̄B)

a[(xy)A + (xy)B] + b[(yy)A + (yy)B] + c[(yz)A + (yz)B]
= (nA + nB − 2)(ȳA − ȳB)

a[(xz)A + (xz)B] + b[(yz)A + (yz)B] + c[(zz)A + (zz)B]
= (nA + nB − 2)(z̄A − z̄B)

where (xx)A =
∑

(xA − x̄A)2, (xy)A =
∑

(xA − x̄A)(yA − ȳA), and similar definitions
exist for other terms.

Hotelling’s T2 is defined as

T2 = nAnB

nA + nB
· {a(x̄A − x̄B) + b(ȳA − ȳB) + c(z̄A − z̄B)}

and the test statistic is

F = nA + nB − p − 1

p(nA + nB − 2)
T2

which follows an F-distribution with (p, nA + nB − p − 1) degrees of freedom. Here p
is the number of variables.

Example

Two batteries of visual stimulus are applied in two experiments on young male and
female volunteer students. A researcher wishes to know if the multivariate pattern of
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responses is the same for males and females. The appropriate F statistic is computed
as 3.60 and compared with the tabulated value of 4.76 [Table 3]. Since the computed F
value is less than the critical F value the null hypothesis is of no difference between the
two multivariate patterns of stimulus. So the males and females do not differ in their
responses on the stimuli.

Numerical calculation

nA = 6, nB = 4, DF = ν = 6 + 4 − 4 = 6, α = 0.05

(xx) = (xx)A + (xx)B = 19, (yy) = 30, (zz) = 18, (xy) = −6, ν1 = p = 3

(xz) = 1, (yz) = −7, x̄A = +7, x̄B = 4.5, ȳA = 8, ȳB = 6, z̄A = 6, z̄B = 5

The equations

19a − 6b + c = 20

−6a + 30b − 7c = 16

a − 7b + 18c = 8

are satisfied by a = 1.320, b = 0.972, c = 0.749. Thus

T2 = 6 × 4

10
· (1.320 × 2.5 + 0.972 × 2 + 0.749 × 1) = 14.38

F = 6

3 × 8
× 14.38 = 3.60

Critical value F3.6; 0.0 = 4.76 [Table 3].
Do not reject the null hypothesis.
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Test 19 Discriminant test for the origin of a p-fold
sample

Object

To investigate the origin of one series of values for p random variates, when one of two
markedly different populations may have produced that particular series.

Limitations

This test provides a decision rule which is closely related to Hotelling’s T2-test (Test
18), hence is subject to the same limitations.

Method

Using the notation of Hotelling’s T2-test, we may take samples from the two populations
and obtain two quantities

DA = ax̄A + bȳA + cz̄A

DB = ax̄B + bȳB + cz̄B

for the two populations. From the series for which the origin has to be traced we can
obtain a third quantity

DS = ax̄S + bȳS + cz̄S.

If DA −DS < DB −DS we say that the series belongs to population A, but if DA −DS >

DB − DS we conclude that population B produced the series under consideration.

Example

A discriminant function is produced for a collection of pre-historic dog bones. A new
relic is found and the appropriate measurements are taken. There are two ancient pop-
ulations of dog A or B to which the new bones could belong. To which population do
the new bones belong? This procedure is normally performed by statistical computer
software. The DA and DB values as well as the DS value are computed. The DS value
is closer to DA and so the new dog bone relic belongs to population A.

Numerical calculation

a = 1.320, b = 0.972, c = 0.749

x̄A = 7, ȳA = 8, z̄A = 6, x̄B = 4.5, ȳB = 6, z̄B = 5

DA = 1.320 × 7 + 0.972 × 8 + 0.749 × 6 = 21.510

DB = 1.320 × 4.5 + 0.972 × 6 + 0.749 × 5 = 15.517

If x̄S = 6, ȳS = 6 and z̄S = 7, then

DS = 1.320 × 6 + 0.972 × 6 + 0.749 × 7 = 18.995

DA − DS = 21.510 − 18.995 = 2.515

DB − DS = 15.517 − 18.995 = −3.478

DS lies closer to DA. DS belongs to population A.
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Test 20 Fisher’s cumulant test for normality of a
population

Object

To investigate the significance of the difference between a frequency distribution based
on a given sample and a normal frequency distribution with the same mean and the
same variance.

Limitations

The sample size should be large, say n > 50. If the two distributions do not have the
same mean and the same variance then the w/s-test (Test 33) can be used.

Method

Sample moments can be calculated by

Mr =
n∑

i=1

xr
i or Mr =

n∑
i=1

xn
i fi

where the xi are the interval midpoints in the case of grouped data and fi is the frequency.
The first four sample cumulants (Fisher’s K-statistics) are

K1 = M1

n

K2 = nM2 − M2
1

n(n − 1)

K3 = n2M3 − 3nM2M1 + 2M3
1

n(n − 1)(n − 2)

K4 = (n3 + n2)M4 − 4(n2 + n)M3M1 − 3(n2 − n)M2
2 + 12M2M2

1 − 6M4
1

n(n − 1)(n − 2)(n − 3)

To test for skewness the test statistic is

u1 = K3

(K2)
3
2

×
(n

6

) 1
2

which should follow a standard normal distribution.
To test for kurtosis the test statistic is

u2 = K4

(K2)2
×
( n

24

) 1
2

which should follow a standard normal distribution.
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A combined test can be obtained using the test statistic

χ2 =
[

K3

(K2)
3
2

×
(n

6

) 1
2

]2

+
[

K4

(K2)2
×
( n

24

) 1
2
]2

which will approximately follow a χ2-distribution with two degrees of freedom.

Example

Example A

A large sample of 190 component measurements yields the following calculations (see
table). Do the sample data follow a normal distribution? The test for skewness is a u1
statistic of 0.473 and the critical value of the normal test statistic is 1.96. Since u1 is
less than this critical value we do not reject the null hypothesis of no difference. So for
skewness the data are similar to a normal distribution. For kurtosis we have u2 statistic
of 0.474 and, again, a critical value of 1.96. So, again, we accept the null hypothesis;
kurtosis is not significantly different from that of a normal distribution with the same
mean and variance. The combined test gives a calculated chi-squared value 0.449 which
is smaller than the 5 per cent critical value of 5.99. So we conclude that the data follow
a normal distribution.

Example B

We calculate the values of skewness and kurtosis together with their respective standard
deviations and produce:

u1 = skewness/s d = 0.477

u2 = kurtosis/s d = 0.480

Table 7 gives (for sample sizes 200 and 175) critical values for u1 of 0.282 to 0.301
and for u2 of 0.62 to 0.66. So, again, we accept the null hypothesis.

Numerical calculation

Example A∑
f = n = 190,

∑
fx = 151,

∑
fx2 = 805,∑

fx3 = 1837,
∑

fx4 = 10 753

i.e. M1 = 151, M2 = 805, M3 = 1837, M4 = 10 753

K2 = (190 × 805) − (151)2

190 × 189
= 3.624310

K3 = (190)2 × 1837 − 3 × 190 × 805 × 151 + 2(151)3

190 × 189 × 188
= 0.5799445

K4 = 2 795 421 924

190 × 189 × 188 × 187
= 2.214280
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Test for skewness

u1 = 0.579945

3.62431
√

3.624310
× 5.6273 = 0.08405 × 5.6273 = 0.473

The critical value at α = 0.05 is 1.96.
Do not reject the null hypothesis [Table 1].

Test for kurtosis

u2 = 2.214279

(3.62431)2
×
(

190

24

) 1
2 = 0.1686 × 2.813657 = 0.474

The critical value at α = 0.05 is 1.96.
Do not reject the null hypothesis [Table 1].

Combined test

χ2 = (0.473)2 + (0.474)2 = 0.2237 + 0.2250 = 0.449

which is smaller than the critical value 5.99 [Table 5].

Example B

Let skewness = g1 = K3

K2
√

K2
= 0.579945

3.624310
√

3.624310

= 0.084052

kurtosis = g2 = K4

K2
2

= 2.214279

(3.624310)2
= 0.168570

standard deviation σ(g1) =
√

6n(n − 1)

(n − 2)(n + 1)(n + 3)

=
√

6 × 190 × 189

188 × 191 × 193
= √

0.0310898 = 0.176323

standard deviation σ(g2) =
√

24n(n − 1)2

(n − 3)(n − 2)(n + 3)(n + 5)

=
√

24 × 190 × 1892

187 × 188 × 193 × 195
= 0.350872

Here u1 = 0.084052

0.176323
= 0.477, u2 = 0.168570

0.350872
= 0.480.

Critical values for g1 lie between 0.282 (for 200) and 0.301 (for 175) [Table 7].
The right-side critical value for g2 lies between 0.62 and 0.66 [Table 7].
Hence the null hypothesis should not be rejected.
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Test 21 Dixon’s test for outliers

Object

To investigate the significance of the difference between a suspicious extreme value
and other values in the sample.

Limitations

1. The sample size should be greater than 3.
2. The population which is being sampled is assumed normal.

Method

Consider a sample of size n, where the sample is arranged with the suspect value in
front, its nearest neighbour next and then the following values arranged in ascending (or
descending) order. The order is determined by whether the suspect value is the largest
or the smallest. Denoting the ordered series by x1, x2, . . . , xn, the test statistic r where

r = (x2 − x1)/(xn − x1) if 3 < n � 7,
r = (x2 − x1)/(xn−1 − x1) if 8 � n � 10,
r = (x3 − x1)/(xn−1 − x1) if 11 � n � 13,
r = (x3 − x1)/(xn−2 − x1) if 14 � n � 25.

Critical values for r can be obtained from Table 8. The null hypothesis that the outlier
belongs to the sample is rejected if the observed value of r exceeds the critical value.

Example

As part of a quality control programmed/implementation small samples are taken, at
regular intervals, for a number of processes. On several of these processes there is
the potential for inaccuracies occurring in the measurements that are taken due to the
complexity of the measuring process and the inexperience of the process workers. One
such sample of size 4 is tested for potential outliers and the following are produced:
x1 = 326, x2 = 177, x3 = 176, x4 = 157.

Dixon’s ratio yields r = 0.882.

The critical value at the 5 per cent level from Table 8 is 0.765, so the calculated value
exceeds the critical value. We thus reject the null hypothesis that the outlier belongs
to the sample. Thus we need to re-sample and measure again or only use three sample
values in this case.

Numerical calculation

x1, = 326, x2 = 177, x3 = 176, x4 = 157, n = 4

Here r = x2 − x1

xn − x1
= 177 − 326

157 − 326
= 0.882

The critical value at α = 0.05 is 0.765 [Table 8].
The calculated value exceeds the critical value.
Hence reject the null hypothesis that the value x1 comes from the same population.
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Test 22 F -test for K population means (analysis of
variance)

Object

To test the null hypothesis that K samples are from K populations with the same mean.

Limitations

It is assumed that the populations are normally distributed and have equal variances. It
is also assumed that the samples are independent of each other.

Method

Let the jth sample contain nj elements ( j = 1, . . . , K). Then the total number of
elements is

N =
K∑

j=1

nj

The ith element of the jth sample can be denoted by xij (i = 1, . . . , nj), and the mean
of the jth sample becomes

x· j =
n∑

j=1

xij/nj

The variance of the observations with respect to their own sample means becomes

s2
1 =

∑
j

∑
i

(xij − x· j)
2

N − K

or equivalently, denoting the total sum of squares of all the observations as s2
T,

(s2
T − s2

2)/(N − K)

with N − K degrees of freedom. Similarly, the variance of the sample means with
respect to the grand mean becomes

s2
2 =

∑
j

nj(x· j − x· ·)2

K − 1

where

x· · = 1

K

∑
i

∑
j

xij

and s2
2 has K − 1 degrees of freedom.
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The test statistic is F = s2
2/s2

1, which follows the F-distribution with (K − 1, N − K)
degrees of freedom. A one-tailed test is carried out as it is necessary to ascertain whether
s2

2 is larger than s2
1.

Example

A petroleum company tests three additives on its premium unleaded petrol to assess their
effect on petrol consumption. The company uses a basic car of a particular make and
model with cars randomly allocated to treatments (additives). An analysis of variance
compares the effect of the additives on petrol consumption. Since the calculated F
statistic at 37 is greater than the tabulated value of 4.26 the variance between additives
is greater than the variance within additives. The additives have an effect on petrol
consumption.

Numerical calculation

K = 3, N = 12, n1 = 3, n2 = 5, n3 = 4, α = 0.05
n1∑

i=1

xi1 = 53.5,
n2∑

i=1

xi2 = 102.5,
n3∑

i=1

xi3 = 64.4

T = 53.5 + 102.5 + 64.4 = 220.4

x1 = 17.83, x2 = 20.50, x3 = 16.10, x. . = T/N = 18.37

T2/N = 4048.01

s2
T =

[( n1∑
i=1

x2
i1 +

n2∑
i=1

x2
i2 +

n3∑
i=1

x2
i3

)
− T2

N

]
= [(954.43 + 2105.13 + 1037.98) − 4048.01]
= 4097.54 − 4048.01

= 49.53

s2
2 = 44.17

F2,9 = s2
2/(K − 1)

s2
1/(N − K)

= s2
2/(K − 1)

(s2
T − s2

2)/(N − K)

= 44.17/2

(49.53 − 44.17)/9
� 37

Critical value F2,9; 0.05 = 4.26 [Table 3].
The calculated value is greater than the critical value.
The variance between the samples is significantly larger than the variance within the
samples.
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Test 23 The Z-test for correlated proportions

Object

To investigate the significance of the difference between two correlated proportions in
opinion surveys. It can also be used for more general applications.

Limitations

1. The same people are questioned both times on a yes–no basis.
2. The sample size must be quite large.

Method

N people respond to a yes–no question both before and after a certain stimulus. The
following two-way table can then be built up:

First poll

Yes No

Second Yes a b

poll No c d

N

To decide whether the stimulus has produced a significant change in the proportion
answering ‘yes’, we calculate the test statistic

Z = b − c

Nσ

where

σ =
√

(b + c) − (b − c)2/N

N(N − 1)
.

Example

Sampled panels of potential buyers of a financial product are asked if they might buy
the product. They are then shown a product advertisement of 30 seconds duration and
asked again if they would buy the product. Has the advertising stimulus produced a
significant change in the proportion of the panel responding ‘yes’?

We have

First poll

Yes No
Second Yes 30 15
poll No 9 51
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which yields the test statistic Z = 1.23. The 5 per cent critical value from the normal
distribution is 1.96. Since 1.23 is less than 1.96 we do not reject the null hypothesis of
no difference. The advertisement does not increase the proportion saying ‘yes’. Notice
that we have used a one-tailed test, here, because we are only interested in an increase,
i.e. a positive effect of advertising.

Numerical calculation

a = 30, b = 15, c = 9, d = 51, N = 105

The null hypothesis is that there is no apparent change due to the stimulus.
The difference in proportion is

b − c

N
= 15

105
− 9

105
= 6

105
= 0.0571

σ =
√

(15 + 9) − (15 − 9)2/105

105 × 104
= 0.0465

Z = 0.0571

0.0465
= 1.23

The critical value at α = 0.05 is 1.96 [Table 1].
The calculated value is less than the critical value.
Do not reject the null hypothesis.
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Test 24 χ2-test for an assumed population variance

Object

To investigate the significance of the difference between a population variance σ 2 and
an assumed value σ 2

0 .

Limitations

It is assumed that the sample is taken from a normal population.

Method

The sample variance

s2 =

n∑
i=1

(xi − x̄)2

n − 1

is calculated. The test statistic is then

χ2 = s2

σ 2
0

(n − 1)

which follows a χ2-distribution with n − 1 degrees of freedom.

Example

An engineering process has specified variance for a machined component of 9 square
cm. A sample of 25 components is selected at random from the production and the
mean value for a critical dimension on the component is measured at 71 cm with
sample variance of 12 square cm. Is there a difference between variances? A calculated
chi-squared value of 32 is less than the tabulated value of 36.4 suggesting no difference
between variances.

Numerical calculation

n = 25, x̄ = 71, s2 = 12, σ 2
0 = 9

H0: σ 2 = σ 2
0 , H1: σ 2 �= σ 2

0

χ2 = 24 × 12

9
= 32

Critical value χ2
24; 0.05 = 36.4 [Table 5].

Do not reject the null hypothesis. The difference between the variances is not significant.
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Test 25 F -test for two counts (Poisson distribution)

Object

To investigate the significance of the difference between two counted results (based on
a Poisson distribution).

Limitations

It is assumed that the counts satisfy a Poisson distribution and that the two samples
were obtained under similar conditions.

Method

Let µ1 and µ2 denote the means of the two populations and N1 and N2 the two counts.
To test the hypothesis µ1 = µ2 we calculate the test statistic

F = N1

N2 + 1

which follows the F-distribution with (2(N2 + 1), 2N1) degrees of freedom. When the
counts are obtained over different periods of time t1 and t2, it is necessary to compare
the counting rates N1/t1 and N2/t2. Hence the appropriate test statistic is

F =
1

t1
(N1 + 0.5)

1

t2
(N1 + 0.5)

which follows the F-distribution with (2N1 + 1, 2N2 + 1) degrees of freedom.

Example

Two automated kiln processes (producing baked plant pots) are compared over their
standard cycle times, i.e. 4 hours. Kiln 1 produced 13 triggered process corrections and
kiln 2 produced 3 corrections. What can we say about the two kiln mean correction
rates, are they the same? The calculated F statistic is 3.25 and the critical value from
Table 3 is 2.32. Since the calculated value exceeds the critical value we conclude that
there is a statistical difference between the two counts. Kiln 1 has a higher error rate
than kiln 2.

Numerical calculation

N1 = 13, N2 = 3, t1 = t2
f1 = 2(N2 + 1) = 2(3 + 1) = 8, f2 = 2N1 = 2 × 13 = 26

F = N1

N2 + 1
= 13

3 + 1
= 3.25

Critical value F8,26; 0.05 = 2.32 [Table 3].
The calculated value exceeds the table value.
Hence reject the null hypothesis.



GOKA: “CHAP05B” — 2006/6/10 — 17:22 — PAGE 61 — #1

THE TESTS 61

Test 26 F -test for the overall mean of K
subpopulations (analysis of variance)

Object

To investigate the significance of the difference between the overall mean of K sub-
populations and an assumed value µ0 for the population mean. Two different null
hypotheses are tested; the first being that the K subpopulations have the same mean
(µ1 = µ2 = · · · = µK ) and the second that the overall mean is equal to the assumed
value (µ = µ0).

Limitations

The K samples from the subpopulations are independent of each other. The subpopu-
lations should also be normally distributed and have the same variance.

Methods

Method A

To test H0 : µ1 = µ2 = · · · = µK , we calculate the test statistic

F = s2
1/(K − 1)

s2
2/(N − K)

where N is the total number of observations in the K samples, nj is the number of
observations in the jth sample,

s2
1 =

∑
j

nj(x· j − x· ·)2

s2
2 =

∑
i

∑
j

(xij − x· j)
2

⎫⎪⎪⎬⎪⎪⎭ i = 1, . . . , nj, j = 1, . . . , K ,

and xij is the ith observation in the jth sample

x· j = 1

nj

∑
i

xij

x· · = 1

N

∑
i

∑
j

xij

The value of F should follow the F-distribution with (K−1, N −K) degrees of freedom.

Method B

To test H0: µ = µ0, we calculate the test statistic

F = N(x· · − µ0)
2

s2
1/(K − 1)

which should follow the F-distribution with (1, K − 1) degrees of freedom.
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Example

A nutritional researcher wishes to test the palatability of six different formulations
of vitamin/mineral supplement which are added to children’s food. They differ only
in their taste. Are they equally palatable? Do they, overall, produce a given average
consumption of food? In a trial, six groups each of five children are given the different
formulations. The first calculated F value of 4.60 tests for equality of palatability. Since
this exceeds the tabulated value of 2.62 the null hypothesis of no difference is rejected.
The formulations do affect the palatability of the food eaten since different quantities
are eaten. The second F value of 2.01, since it is less than the tabulated value of 6.61,
suggests that the formulations, if used together over a period of time, will not affect
consumption.

Numerical calculation

n1 = n2 = n3 = n4 = n5 = n6 = 5, K = 6, N = 30, µ0 = 1500

x·1 = 1505, x·2 = 1528, x·3 = 1564, x·4 = 1498, x·5 = 1600, x·6 = 1470

x̄· · = 9165/6 = 1527.5

s2
1/5 = 11 272, s2

2/24 = 2451, s2
T = 3972

N(x· · − µ0)
2 = 22 687.5

(a) F = 11 272/2451 = 4.60.
Critical value F5, 24; 0.05 = 2.62 [Table 3].
Reject the null hypothesis.

(b) F = 22 687.5/11 272 = 2.01.
Critical value F1,5; 0.05 = 6.61 [Table 3].
Do not reject the null hypothesis.
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Test 27 F -test for multiple comparison of contrasts
between K population means

Object

This test is an extension of the preceding one, to investigate which particular set of
mean values or linear combination of mean values shows differences with the other
mean values.

Limitations

As for the preceding test, with the addition that the comparisons to be examined should
be decided on at or before the start of the analysis.

Method

With the notation as before, we must define a contrast as a linear function of the means

λ =
K∑

j=1

ajµj

under the condition that
∑K

j=1 aj = 0.
The test statistic becomes

F = 1

s2

⎛⎝ K∑
j=1

ajx· j

⎞⎠2

K∑
j=1

a2
j /nj

(see Test 26) which should follow the F-distribution with (1, N−K) degrees of freedom.
Here,

s2 =

K∑
j=1

nj∑
i=1

(xij)
2 −

K∑
j=1

njx̄
2
j

N − K
.

For simple differences of the type x̄· i − x̄· j the test statistic becomes

F =
(x̄· i − x̄· j)

/(
1

ni
+ 1

nj

)
s2
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Example

Three different filters are used on an artificial lighting system for plant production. An
agricultural researcher wishes to test whether any filter is better than the others in terms
of the yield of a crop. He designs and conducts his experiment and performs the F test.
He compares each plant yield with the others.

For comparing filter 1 with filter 2 his calculated F value is 0.646; for comparing
filter 1 with filter 3 his F value is 36.78 and for comparing filter 2 with filter 3 his
F value is 39.90. So it appears that filter 1 and filter 2 are similar in relation to plant
growth but there is a difference between filter 1 and filter 3 and filter 2 and filter 3.

Numerical calculation

n1 = 6, n2 = 4, n3 = 2, N = 12, K = 3, ν1 = 1, ν2 = 9

x̄·1 = 2.070, x̄·2 = 2.015, x̄·3 = 2.595, x̄ = 2.139∑
i

∑
j

x2
ij = 55.5195,

∑
njx̄

2
j = 55.41835

λ1 = µ1 − µ2, λ2 = µ1 − µ3, λ3 = µ2 − µ3 (contrasts)

x̄·1 − x̄·2 = 0.055

x̄·1 − x̄·3 = −0.525

x̄·2 − x̄·3 = −0.580

(x·1 − x·2)2(
1

n1
+ 1

n2

) = (0.055)2(
1

6
+ 1

4

) = 0.00726

(x·1 − x·3)2(
1

n1
+ 1

n3

) = (−0.525)2(
1

6
+ 1

2

) = 0.4134

(x·2 − x·3)2(
1

n2
+ 1

n3

) = (−0.580)2(
1

4
+ 1

2

) = 0.4485

s2 = 55.5195 − 55.41835

9
= 0.10115

9
= 0.01124

F1 = 0.00726

0.01124
= 0.646, F2 = 0.4134

0.01124
= 36.78, F3 = 0.4485

0.01124
= 39.90

Critical value F1,9;0.05 = 5.12 [Table 3]. Both F2 and F3 are larger than 5.12. There
is no significant difference between the means for group 1 and group 2, but there is a
significant difference between group 3 and groups 1 and 2.
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Test 28 Tukey test for multiple comparison of K
population means (unequal sample sizes)

Object

To investigate the significance of all possible differences between K population means.

Limitations

The K populations are normally distributed with equal variances.

Method

Consider samples of size n1, n2, . . . , nK from the K populations. From Table 9 the
critical values of q can be found using degrees of freedom

ν =
⎛⎝ K∑

j=1

nj

⎞⎠− K .

The total variance of the samples is now calculated from

s2 =

K∑
j=1

(nj − 1) · s2
j

N − K

where s2
j is the variance of the jth sample and N is the total sample size. Finally, a limit

W is calculated

W = qs

n
1
2

where q (= w/s) is the Studentized range and

n = K(
1

n1
+ 1

n2
+ · · · + 1

nK

) .

If this limit W is exceeded by the absolute difference between any two sample means,
then the corresponding population means differ significantly.

Example

Five different grades of grit used for agricultural purposes are produced. A filling
machine fills small sacks with a nominal 500 gm weight, although more is usually dis-
pensed. An agricultural merchant is concerned that the weight does not differ between
grades. He uses Tukey’s test to compare all five grades and produces a critical limit of
W at 55.3. Since the largest difference grades is 35.8 and is less than 55.17 he concludes
that the grades do not differ with respect to weight.
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Numerical calculation

n1 = n2 = n3 = n4 = n5 = 5, K = 5, N = 25

s2
1 = 406.0, s2

2 = 574.8, s2
3 = 636.8, s2

4 = 159.3, s2
5 = 943.2

x̄1 = 534.0, x̄2 = 536.4, x̄3 = 562.6, x̄4 = 549.4, x̄5 = 526.8

s2 = 2720.1

5
= 544.02, s = 23.32, ν = 25 − 5 = 20

Critical value for q for K = 5, and ν = 20 at α = 0.05 is 5.29 [Table 9].

W = 5.29 × 23.32√
5

= 55.17

The largest difference between the sample means is 562.6−526.8 = 35.8 which is less
than 55.17. Hence the population means do not differ significantly.
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Test 29 The Link–Wallace test for multiple
comparison of K population means
(equal sample sizes)

Object

To investigate the significance of all possible differences between K population means.

Limitations

1. The K populations are normally distributed with equal variances.
2. The K samples each contain n observations.

Method

The test statistic is

KL = nw(x̄)
k∑

i=1

wi(x)

where wi(x) is the range of the x values for the ith sample
w(x̄) is the range of the sample means
n is the sample size.

The null hypothesis µ1 = µ2 = · · · = µK is rejected if the observed value of KL is
larger than the critical value obtained from Table 10.

Example

Three advertising theme tunes are compared using three panels to assess their pleasure,
using a set of scales. The test statistic D is computed as 2.51, and then the three
differences between the ranges of means are also calculated. Tunes 3 and 2 differ as do
tunes 3 and 1, but tunes 1 and 2 do not.

Numerical calculation

n = 8, w1(x) = 7, w2(x) = 6, w3(x) = 4, K = 3

w1(x̄) = 4.750, w2(x̄) = 4.625, w3(x̄) = 7.750

KL = nw(x̄)
k∑

i=1

wi(x)

= 8(7.750 − 4.625)

7 + 6 + 4
= 1.47

Critical value K8,3;0.05 = 1.18 [Table 10].
Reject the null hypothesis of equal means.
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Using K8,3;0.05 = 1.18, the critical value for the sample mean differences is

D = 1.18
∑

wi(x)

n
= 1.18 × 17

8
= 2.51

Since w1(x̄) − w2(x̄) = 0.125 (less than D)
w3(w̄) − w2(x̄) = 3.125 (greater than D)
w3(x̄) − w1(x̄) = 3.00 (greater than D)

reject the null hypothesis µ1 = µ3 and µ2 = µ3.
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Test 30 Dunnett’s test for comparing K treatments
with a control

Object

To investigate the significance of the differences, when several treatments are compared
with a control.

Limitations

1. The K + 1 samples, consisting of K treatments and one control, all have the same
size n.

2. The samples are drawn independently from normally distributed populations with
equal variances.

Method

The variance within the K + 1 groups is calculated from

S2
W = S2

0 + S2
1 + · · · + S2

K

(K − 1)(n − 1)

where S2
0 is the sum of squares of deviations from the group mean for the control group

and S2
j is a similar expression for the jth treatment group. The standard deviation of the

differences between treatment means and control means is then

S(d̄) =
√

2S2
W/n

The quotients

Dj = x̄j − x̄0

S(d̄)
( j = 1, 2, . . . , K)

are found and compared with the critical values of |Dj| found from Table 11. If
an observed value is larger than the tabulated value, one may conclude that the
corresponding difference in means between treatment j and the control is significant.

Example

Four new topical treatments for athlete’s foot are compared with a control, which is
the current accepted treatment. Patients are randomly allocated to each treatment and
the number of days to clear up of the condition is the treatment outcome. Do the new
treatments differ from the control? The critical value, D, from Table 11 is 2.23 and all
standardized differences are compared. Treatment 1 shows a difference from control
which is significant. This treatment results in a longer time to clear up.
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Numerical calculation

K = 4, n = 10, x̄0 = 14.5, x̄1 = 25.0, x̄2 = 15.7, x̄3 = 18.1, x̄4 = 21.9

S2
0 = 261.0, S2

1 = 586.0, S2
2 = 292.6, S2

3 = 320.4, S2
4 = 556.4

S2
W = 261 + 586 + 292.6 + 320.4 + 556.4

(4 − 1)(10 − 1)
= 74.681

S(d̄) =
√

2S2
W/n =

(
2 × 74.681

10

) 1
2 = 3.865

Critical value D4,45;0.05 = 2.23 [Table 11].

D1 = 2.72, D2 = 0.31, D3 = 0.93, D4 = 1.91

The value of D1 is larger than the critical value. Hence D1 is significantly different
from the control value.
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Test 31 Bartlett’s test for equality of K variances

Object

To investigate the significance of the differences between the variances of K normally
distributed populations.

Limitations

It is assumed that all the populations follow a normal distribution.

Method

Samples are drawn from each of the populations. Let s2
j denote the variance of a sample

of nj items from the jth population ( j = 1, . . . , K). The overall variance is defined by

s2 =

K∑
j=1

(nj − 1) · s2
j

K∑
j=1

(nj − 1)

.

The test statistic is

B = 2.30259

C

{∑
(nj − 1) log s2 −

∑
(nj − 1) log s2

j

}
where

C = 1 + 1

3(K + 1)

{∑ 1

(nj − 1)
− 1∑

(nj − 1)

}
and loge 10 = 2.30259.

Case A (nj > 6)

B will approximate to a χ2-distribution with K − 1 degrees of freedom. The null
hypothesis of equal variances is rejected if B is larger than the critical value.

Case B (nj � 6)

The test statistic becomes BC = M and this should be referred to Table 12. When the
value of M exceeds the tabulated value, the null hypothesis can be rejected.

Example

A bank of four machining heads is compared in relation to the variability of the end
machined components. A quality engineer has collected a randomized sequence of
components and measured the relevant component dimensions. In his first test he has
large samples and computes the test statistic B, which is 7.31. This is less than the
critical value of 7.81 from Table 5. He so concludes that the variabilities for the four
machine heads are the same.
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In a subsequent test of equality of variances the engineer takes smaller samples which
necessitate his use of tables for comparison. In this case his sample values produce an
M value which is less than the tabulated value of 9.21 from Table 12. So again he
concludes that the variances are the same.

Numerical calculation

Example A

n1 = 31, n2 = 15, n3 = 20, n4 = 42, K = 4

s2
1 = 5.47, s2

2 = 4.64, s2
3 = 11.47, s2

4 = 11.29

s2 = 910

104
= 8.75, log s2 = 0.94201, C = 1.01∑

(nj − 1) log s2 = 97.9690,
∑

(nj − 1) log s2
j = 94.7630

B = 1

1.01
[2.30259(97.9690 − 94.7630)] = 7.38

1.01
= 7.31

Critical value χ2
3;0.05 = 7.81 [Table 5].

Hence the null hypothesis is not rejected.

Example B

n1 = 3, n2 = 3, n3 = 3, n4 = 4

s2
1 = 6.33, s2

2 = 1.33, s2
3 = 4.33, s2

4 = 4.33

Pooled variance s2 = (12.66 + 2.66 + 8.66 + 12.99)

2 + 2 + 2 + 3
= 4.11

Further

M = 2.30259{9 log 4.11 − 2 log 6.33 − 2 log 1.33 − 2 log 4.33 − 3 log 4.33}
= 2.30259{9 × 0.6138 − 2 × 0.8014 − 2 × 0.1239 − 2 × 0.6365

− 3 × 0.6365} = 1.131

C =
{

1
2 + 1

2 + 1
2 + 1

3 − 1
9

}
= 1.7222

The critical value of M for α = 0.05, K = 4 is 9.21 [Table 12]; even for C = 2.0. Do
not reject the null hypothesis.
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Test 32 Hartley’s test for equality of K variances

Object

To investigate the significance of the differences between the variances of K normally
distributed populations.

Limitations

1. The populations should be normally distributed.
2. The sizes of the K samples should be (approximately) equal.

Method

Samples are drawn from each of the populations. The test statistic is Fmax = s2
max/s2

min
where s2

max is the largest of the K sample variances and s2
min is the smallest of the K

sample variances.
Critical values of Fmax can be obtained from Table 13. If the observed ratio exceeds

this critical value, the null hypothesis of equal variances should be rejected.

Example

Four types of spring are tested for their response to a fixed weight since they are used
to calibrate a safety shut-off device. It is important that the variability of responses
is equal. Samples of responses to a weight on each spring are taken. The Hartley F
statistic is calculated to be 2.59 and is compared with the critical tabulated value of
2.61 [Table 13]. Since the calculated statistic is less than the tabulated value the null
hypothesis of equal variances is accepted.

Numerical calculation

n1 = n2 = n3 = n4 = 30, K = 4
s2

1 = 16.72, s2
2 = 36.27, s2

3 = 14.0, s2
4 = 15.91

F = 36.27

14.0
= 2.59

The critical value of Fmax, at a 5 per cent level of significance, for n = 30, K = 4 is
2.61 [Table 13].
Hence do not reject the null hypothesis.



GOKA: “CHAP05B” — 2006/6/10 — 17:22 — PAGE 74 — #14

74 100 STATISTICAL TESTS

Test 33 The w/s-test for normality of a population

Object

To investigate the significance of the difference between a frequency distribution based
on a given sample and a normal frequency distribution.

Limitations

This test is applicable if the sample is taken from a population with continuous
distribution.

Method

This is a much simpler test than Fisher’s cumulant test (Test 20). The sample standard
deviation (s) and the range (w) are first determined. Then the Studentized range q = w/s
is found.

The test statistic is q and critical values are available for q from Table 14. If the
observed value of q lies outside the two critical values, the sample distribution cannot
be considered as a normal distribution.

Example

For this test of normality we produce the ratio of sample range divided by sample
standard deviation and compare with critical values from Table 14.

We have two samples for consideration. They are taken from two fluid injection
processes. The two test statistics, q1 and q2, are both within their critical values. Hence
we accept the null hypothesis that both samples could have been taken from normal
distributions. Such tests are particularly relevant to quality control situations.

Numerical calculation

n1 = 4, n2 = 9, x̄1 = 3166, x̄2 = 2240.4, α = 0.025

s2
1 = 6328.67, s2

2 = 221 661.3, s1 = 79.6, s2 = 471

w1 = 171, w2 = 1333

q1 = w1

s1
= 2.15, q2 = w2

s2
= 2.83

Critical values for this test are:
for n1 = 4, 1.93 and 2.44 [Table 14];
for n2 = 9, 2.51 and 3.63 [Table 14].
Hence the null hypothesis cannot be rejected.
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Test 34 Cochran’s test for variance outliers

Object

To investigate the significance of the difference between one rather large variance and
K − 1 other variances.

Limitations

1. It is assumed that the K samples are taken from normally distributed populations.
2. Each sample is of equal size.

Method

The test statistic is

C = largest of the s2
i

sum of all s2
i

where s2
i denotes the variance of the ith sample. Critical values of C are available from

Table 15. The null hypothesis that the large variance does not differ significantly from
the others is rejected if the observed value of C exceeds the critical value.

Example

In a test for the equality of k means (analysis of variance) it is assumed that the k
populations have equal variances. In this situation a quality control inspector suspects
that errors in data recording have led to one variance being larger than expected. She
performs this test to see if her suspicions are well founded and, therefore, if she needs
to repeat sampling for this population (a machine process line). Her test statistic, C =
0.302 and the 5 per cent critical value from Table 15 is 0.4241. Since the test statistic
is less than the critical value she has no need to suspect data collection error since the
largest variance is not statistically different from the others.

Numerical calculation

s2
1 = 26, s2

2 = 51, s2
3 = 40, s2

4 = 24, s2
5 = 28

n1 = n2 = n3 = n4 = n5 = 10, K = 5, ν = n − 1 = 9

C = 51

26 + 51 + 40 + 24 + 28
= 0.302

Critical value C9;0.05 = 0.4241 [Table 15].
The calculated value is less than the critical value.
Do not reject the null hypothesis.
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Test 35 The Kolmogorov–Smirnov test for goodness
of fit

Object

To investigate the significance of the difference between an observed distribution and
a specified population distribution.

Limitations

This test is applicable when the population distribution function is continuous.

Method

From the sample, the cumulative distribution Sn(x) is determined and plotted as a step
function. The cumulative distribution F(x) of the assumed population is also plotted
on the same diagram.

The maximum difference between these two distributions

D = |F − Sn|
provides the test statistic and this is compared with the value D(α) obtained from
Table 16.

If D > Dα the null hypothesis that the sample came from the assumed population is
rejected.

Example

As part of the calibration of a traffic flow model, a traffic engineer has collected a large
amount of data. In one part of his model he wishes to test an assumption that traffic
arrival at a particular road intersection follows a Poisson model, with mean 7.6 arrivals
per unit time interval. Can he reasonably assume that this assumption is true?

His test statistic, maximum D is 0.332 and the 5 per cent critical value from
Table 16 is 0.028. So he cannot assume such an arrival distribution and must seek
another to use in his traffic model. Without a good distributional fit his traffic model
would not produce robust predictions of flow.

Numerical calculation

To test the hypothesis that the data constitute a random sample from a Poisson population
with mean 7.6.

F(x) = e−λλx

x! , λ = 7.6, n = 3366

Sn(xi) = cu(xi)

3366
, F(xi) = e−7.67.66

6! = 0.3646 etc.
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No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

xi 5 14 24 57 111 197 278 378 418 461 433 413 358 219
cu(xi) 5 19 43 100 211 408 686 1064 1482 1943 2376 2789 3147 3366
Sn(xi) 0.001 0.005 0.012 0.029 0.062 0.121 0.204 0.316 0.440 0.577 0.705 0.828 0.935 1.0
F(xi) 0.004 0.009 0.055 0.125 0.231 0.365 0.510 0.648 0.765 0.854 0.915 0.954 0.976 0.989
D 0.003 0.014 0.043 0.096 0.169 0.244 0.306 0.332 0.325 0.277 0.210 0.126 0.041 0.011

max D = 0.332, D14;0.01 = 1.63√
3366

= 1.63

58.01
= 0.028 where D > Dα [Table 16].

The hypothesis may be rejected.
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Test 36 The Kolmogorov–Smirnov test for comparing
two populations

Object

To investigate the significance of the difference between two population distributions,
based on two sample distributions.

Limitations

The best results are obtained when the samples are sufficiently large – say, 15 or over.

Method

Given samples of size n1 and n2 from the two populations, the cumulative distribu-
tion functions Sn1(x) and Sn2(y) can be determined and plotted. Hence the maximum
value of the difference between the plots can be found and compared with a critical
value obtained from Table 16. If the observed value exceeds the critical value the null
hypothesis that the two population distributions are identical is rejected.

Example

A quality control engineer uses an empirical distribution as a calibration for a particular
machining process. He finds that he has better results using this than any other theoretical
model. He compares his sample via the Kolmogorov–Smirnov test statistic d = 0.053.
Since this is less than the 5 per cent critical value of Table 16 he can assume that both
samples came from the same population.

Numerical calculation

n1 − n2 = n = 10

Sample x 0.6 1.2 1.6 1.7 1.7 2.1 2.8 2.9 3.0 3.2
cu(x) 0.6 1.8 3.4 5.1 6.8 8.9 11.7 14.6 17.6 20.8

Sample y 2.1 2.3 3.0 3.1 3.2 3.2 3.5 3.8 4.6 7.2
cu(y) 2.1 4.4 7.4 10.5 13.7 16.9 20.4 24.2 28.8 36.0

Sn1(x) 0.029 0.086 0.163 0.245 0.327 0.428 0.562 0.702 0.846 1.0
Sn2 (y) 0.058 0.122 0.205 0.291 0.380 0.469 0.566 0.672 0.800 1.00

Difference D 0.029 0.036 0.042 0.046 0.053 0.041 0.004 0.03 0.046 0

max D = 0.053
Critical value D20;0.01 = 0.356 [Table 16].
Do not reject the hypothesis. Both samples come from the same population.
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Test 37 The χ2-test for goodness of fit

Object

To investigate the significance of the differences between observed data arranged in K
classes, and the theoretically expected frequencies in the K classes.

Limitations

1. The observed and theoretical distributions should contain the same number of
elements.

2. The division into classes must be the same for both distributions.
3. The expected frequency in each class should be at least 5.
4. The observed frequencies are assumed to be obtained by random sampling.

Method

The test statistic is

χ2 =
K∑

i=1

(Oi − Ei)
2

Ei

where Oi and Ei represent the observed and theoretical frequencies respectively for each
of the K classes. This statistic is compared with a value obtained from χ2 tables with
ν degrees of freedom. In general, ν = K − 1. However, if the theoretical distribution
contains m parameters to be estimated from the observed data, then ν becomes K−1−m.
For example, to fit data to a normal distribution may require the estimation of the mean
and variance from the observed data. In this case ν would become K − 1 − 2.

If χ2 is greater than the critical value we reject the null hypothesis that the observed
and theoretical distributions agree.

Example

The experiment of throwing a die can be regarded as a general application and numerous
specific situations can be postulated. In this case we have six classes or outcomes, each
of which is equally likely to occur. The outcomes could be time (10 minute intervals)
of the hour for an event to occur, e.g. failure of a component, choice of supermarket
checkout by customers, consumer preferences for one of six types of beer, etc. Since
the calculated value is less than the critical value from the table it can be reasonably
assumed that the die is not biased towards any side or number. That is, it is a fair die.
The outcomes are equally likely.

Numerical calculation

A die is thrown 120 times. Denote the observed number of occurrences of i by Oi,
i = 1, . . . , 6. Can we consider the die to be fair at the 5 per cent level of significance?

K = 6, ν = 6 − 1

O1 = 25, O2 = 17, O3 = 15, O4 = 23, O5 = 24, O6 = 16
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E1 = 20, E2 = 20, E3 = 20, E4 = 20, E5 = 20, E6 = 20

χ2 = 25

20
+ 9

20
+ 25

20
+ 9

20
+ 16

20
+ 16

20
= 5.0

Critical value χ2
5;0.05 = 11.1 [Table 5].

The calculated value is less than the critical value.
Hence there are no indications that the die is not fair.
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Test 38 The χ2-test for compatibility of K counts

Object

To investigate the significance of the differences between K counts.

Limitations

The counts must be obtained under comparable conditions.

Method

Method (a) Times for counts are all equal

Let the ith count be denoted by Ni. Then the null hypothesis is that Ni = constant, for
i = 1, . . . , K . The test statistic is

χ2 =
K∑

i=1

(Ni − N̄)2

N̄

where N̄ is the mean of the K counts
∑K

i=1 Ni/K . This is compared with a value
obtained from χ2 tables with K − 1 degrees of freedom. If χ2 exceeds this value the
null hypothesis is rejected.

Method (b) Times for counts are not all equal

Let the time to obtain the ith count be ti. The test statistic becomes

χ2 =
K∑

i=1

(Ni − tiR̄)2

tiR̄

where R̄ =∑Ni/
∑

ti. This is compared with Table 5 as above.

Example

A lime producing rotary kiln is operated on a shift-based regime with four shift workers.
A training system is to be adopted and it is desired to have some idea about how the
workers operate in terms of out-of-control warning alerts. Do all the four shift workers
operate the kiln in a similar way? The number of alerts over a full shift is recorded and
the test statistic is calculated. Do the four workers operate the kiln in a similar way? The
answer to this question has bearing on the sort of training that could be implemented
for the workers.

The chi-squared test statistic is 13.6 and the 5 per cent critical value of the chi-squared
distribution from Table 5 is 7.81. Since the calculated chi-squared value exceeds the
5 per cent critical value we reject the null hypothesis that the counts are effectively
the same and conclude that the four counts are not consistent with each other. The
four workers operate the kiln differently. Hence different training schemes may be
appropriate.
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Numerical calculation

N1 = 5, N2 = 12, N3 = 18, N4 = 19, N̄ = 11, ν = K − 1 = 4 − 1 = 3
Using method (a), χ2 = 13.6.
The critical value χ2

3;0.05 = 7.81 [Table 5].
Hence reject the null hypothesis. The four counts are not consistent with each other.
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Test 39 Fisher’s exact test for consistency in a 2 × 2
table

Object

To investigate the significance of the differences between observed frequencies for two
dichotomous distributions.

Limitations

This test is applicable if the classification is dichotomous and the elements originate
from two sources. It is usually applied when the number of elements is small or the
expected frequencies are less than 5.

Method

A 2 × 2 contingency table is built up as follows:

Class 1 Class 2 Total

Sample 1 a b a + b
Sample 2 c d c + d

Total a + c b + d n = a + b + c + d

The test statistic is∑
p = (a + b)!(c + d)!(a + c)!(b + d)!

n!
∑

i

1

ai!bi!ci!di!

where the summation is over all possible 2 × 2 schemes with a cell frequency equal
to or smaller than the smallest experimental frequency (keeping the row and column
totals fixed as above).

If
∑

p is less than the significance level chosen, we may reject the null hypothesis of
independence between samples and classes, i.e. that the two samples have been drawn
from one common population.

Example

A medical officer has data from two groups of potential airline pilot recruits. Two
different reaction tests have been used in selection of the potential recruits. He uses a
more sophisticated test and finds the results given for the two samples. Class 1 repre-
sents quick reactions and class 2 represents less speedy reactions. Is there a difference
between the two selection tests?

Since some cell frequencies are less than 5 the medical officer uses Fisher’s exact
test, which produces a probability of 0.156. This is greater than 0.05 (our usual level)
so the medical officer does not reject the null hypothesis of no difference between the
selection tests.
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Numerical calculation

class 1 = accepted, class 2 = rejected, significance level α = 0.05
a = 9, b = 2, c = 7, d = 6, a + b = 11, c + d = 13, a + c = 16, b + d = 8
Two possible sets of data which deviate more from the null hypothesis are a = 10,
b = 1, c = 6, d = 7 and a = 11, b = 0, c = 5, d = 8.

We add the three probabilities of the three schemes according to hyper-geometric
distributions. This gives∑

p = 11! 13! 16! 8!
24!

{
1

2! 6! 7! 9! + 1

1! 6! 7! 10! + 1

0! 5! 8! 11!
}

= 0.156.

This is greater than 0.05. Do not reject the null hypothesis.
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Test 40 The χ2-test for consistency in a 2 × 2 table

Object

To investigate the significance of the differences between observed frequencies for two
dichotomous distributions.

Limitations

It is necessary that the two sample sizes are large enough. This condition is assumed
to be satisfied if the total frequency is n > 20 and if all the cell frequencies are greater
than 3. When continuous distributions are applied to discrete values one has to apply
Yates’ correction for small sample sizes.

Method

When two samples are each divided into two classes the following 2 × 2 table can be
built up:

Class 1 Class 2 Total

Sample 1 a b a + b
Sample 2 c d c + d

Total a + c b + d n = a + b + c + d

The test statistic is

χ2 = (n − 1)(ad − bc)2

(a + b)(a + c)(b + d)(c + d)
.

This is compared with a value obtained from χ2 tables with 1 degree of freedom. If
χ2 exceeds the critical value the null hypothesis of independence between samples and
classes is rejected. In other words, the two samples were not drawn from one common
population.

Example

In this case the medical officer (in Test 39) has a larger sample and can use the chi-
squared test.

He obtains a chi-squared value of 4.79 which is greater than the tabulated value of
2.7 from Table 5. Hence he rejects the null hypothesis and now concludes that the two
selection methods do produce when compared with the sophisticated reaction test.

Numerical calculation

a = 15, b = 85, c = 4, d = 77
a + b = 100, c + d = 81, a + c = 19, b + d = 162
α = 0.10, ν = 1, χ2

1;0.10 = 2.7, n = 181 [Table 5]

χ2 = 180(15 × 77 − 4 × 85)2

100 × 81 × 19 × 162
= 4.79

Hence reject the null hypothesis, H0.
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Test 41 The χ2-test for consistency in a K × 2 table

Object

To investigate the significance of the differences between K observed frequency
distributions with a dichotomous classification.

Limitations

It is necessary that the K sample sizes are large enough. This is usually assumed to be
satisfied if the cell frequencies are equal to 5.

Method

When the observations in K samples are divided into two classes the following K × 2
table can be built up:

Class 1 Class 2 Total

Sample 1 x1 n1 − x1 n1
...

...
...

...
Sample i xi ni − xi ni

...
...

...
...

Sample K xK nK − xK nK

Total x =
K∑

i=1

xi n − x n =
K∑

i=1

ni

The test statistic is

χ2 = n2

x(n − x)

{(
K∑

i=1

x2
i

ni

)
−
(

x2

n

)}
.

This is compared with a value obtained from χ2 tables with K − 1 degrees of free-
dom. The null hypothesis of independence between samples and classes is rejected if
χ2 exceeds the critical value.

Example

Our medical officer (as in Test 39) now has four different colour-blindness selection
tests and wishes to see if they produce differences when compared with the recruitment
standards. Her data produce a chi-squared value of 5.495 compared with the tabulated
value of 5.99. She does not rejects the null hypothesis and concludes that the colour
blindness tests do not differ in their outcome.
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Numerical calculation

x11 = 14, x12 = 22, x21 = 18, x22 = 16, x31 = 8, x32 = 2
(Here xi1 = x1 and xi2 = n1 − x1.)
n1 = 36, n2 = 34, n3 = 10, n =∑ ni = 80
α = 0.05, ν = 2, χ2

2;0.05 = 5.99, n = 80, x = 40 [Table 5]

χ2 = 802

40 × 40

[
142

36
+ 182

34
+ 82

10

]
− 402

80
= 5.495

Hence do not reject the null hypothesis.
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Test 42 The Cochran test for consistency in an n × K
table of dichotomous data

Object

To investigate the significance of the differences between K treatments on the same n
elements with a binomial distribution.

Limitations

1. It is assumed that there are K series of observations on the same n elements.
2. The observations are dichotomous and the observations in the two classes are

represented by 0 or 1.
3. The number of elements must be sufficiently large – say, greater than 10.

Method

From the n × K table, let Ri denote the row totals (i = 1, . . . , n) and Cj denote the
column totals ( j = 1, . . . , K). Let S denote the total score, i.e. S = ∑

i Ri = ∑
j Cj.

The test statistic is

Q =
K(K − 1)

∑
j

(Cj − C̄)2

KS −
∑

i

R2
i

where C̄ =

∑
j

Cj

K
.

This approximately follows a χ2-distribution with K − 1 degrees of freedom.
The null hypothesis that the K samples come from one common dichotomous

distribution is rejected if Q is larger than the tabulated value.

Example

A panel of expert judges assess whether each of four book cover formats is acceptable
or not. Each book cover format, therefore, receives an acceptability score. The Cochran
Q statistic is calculated as 12.51, which is larger than the tabulated chi-squared value of
7.81 [Table 5]. It seems that the book covers are not equally acceptable to the judges.

Numerical calculation

K = 4, C1 = 12, C2 = 8, C3 = 6, C4 = 3,
∑

C2
i = 253∑

Ri = 29, C̄ = 7.25,
∑

R2
i = 75

α = 0.05, ν = 3, χ2
3;0.05 = 7.81 [Table 5]

Q = 4(3 × 253 − 292)

4 × 29 − 75
= 513

41
= 12.51

Hence reject the null hypothesis.
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Test 43 The χ2-test for consistency in a 2 × K table

Object

To investigate the significance of the differences between two distributions based on
two samples spread over K classes.

Limitations

1. The two samples are sufficiently large.
2. The K classes when put together form a complete series.

Method

The 2 × K table can be described symbolically by the following table:

Class
1 2 . . . j . . . K Total

Sample 1 n11 n12 . . . n1j . . . n1K N1
Sample 2 n21 n22 . . . n2j . . . n2K N2

Total n·1 n·2 . . . n·j . . . n·K N1 + N2

where nij represents the frequency of individuals in the ith sample in the jth class
(i = 1, 2 and j = 1, . . . , K). Another table of expected frequencies is now calculated
where the value in the ith row and jth column is

eij = Nin·j
N1 + N2

.

The test statistic is

χ2 =
K∑

j=1

(n1j − e1j )
2

e1j

+
K∑

j=1

(n2j − e2j )
2

e2j

.

This is compared with the value obtained from a χ2 table with K−1 degrees of freedom.
If χ2 exceeds this critical value, the null hypothesis that the two samples originate from
two populations with the same distribution is rejected.

Example

Our medical officer from Tests 39 and 40 now wishes to have a third (or middle)
class which represents a reserve list of potential recruits who do not quite satisfy the
stringent class1 requirements. She can still use the chi-squared test to compare the
reaction selection tests. Her data produce a chi-squared value of 4.84, which is less
than the tabulated critical value of 5.99. She concludes that the reaction tests do not
differ when a third classification of an intermediate reaction is introduced.
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Numerical calculation

n11 = 50, n12 = 47, n13 = 56, n21 = 5, n22 = 14, n23 = 8
n·1 = 55, n·2 = 61, n·3 = 64, N1 = 153, N2 = 27, N = 180
e11 = 46.75, e12 = 51.85, e13 = 54.40, e21 = 8.25, e22 = 9.15, e23 = 9.60
α = 0.05, ν = (3 − 1)(2 − 1) = 2, χ2

2;0.05 = 5.99 [Table 5]

χ2 = 3.252

46.75
+ (−4.85)2

51.85
+ 1.62

54.40
+ (−3.25)2

8.25
+ 4.852

9.15
+ (−1.6)2

9.60
= 4.84

Do not reject the null hypothesis.



GOKA: “CHAP05B” — 2006/6/10 — 17:22 — PAGE 91 — #31

THE TESTS 91

Test 44 The χ2-test for independence in a p × q table

Object

To investigate the difference in frequency when classified by one attribute after
classification by a second attribute.

Limitations

The sample should be sufficiently large. This condition will be satisfied if each cell
frequency is greater than 5.

Method

The sample, of size N , can be categorized into p classes by the first attribute and into
q classes by the second. The frequencies of individuals in each classification can be
shown symbolically by the table:

First attribute
1 2 . . . i . . . p Total

1 n11 n21 . . . ni1 . . . np1 n·1
2 n12 n22 . . . ni2 . . . np2 n·2

Second
...

...
...

...
...

...
attribute j n1j n2j . . . nij . . . npj n·j

...
...

...
...

...
...

q n1q n2q . . . niq . . . npq n·q
Total n1· n2· . . . ni· . . . np· N

The test statistic is

χ2 =
p∑

i=1

q∑
j=1

(nij − ni·n·j/N)2

ni·n·j/N

which follows a χ2 distribution with (p − 1)(q − 1) degrees of freedom. If χ2 exceeds
the critical value then the null hypothesis that the two attributes are independent of each
other is rejected.

Example

An educational researcher has collected data on parents’ preferences for their children’s
education. There are three categories of parents’ educational achievement level (1, low;
2, medium; 3, high) and two levels for preferences (1, yes; 2, no). She calculates a
chi-squared value of 10.67 and compares this with a value of 5.99 from the table. She,
therefore, rejects the null hypothesis and concludes that parents’ preferences vary with
their own educational achievement.
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Numerical calculation

n11 = 32, n21 = 12, n12 = 14, n22 = 22, n13 = 6, n23 = 9
n1· = 52, n2· = 43, n·1 = 44, n·2 = 36, n·3 = 15, N = 95
α = 0.05, ν = (3 − 1)(2 − 1) = 2, χ2

2;0.05 = 5.99 [Table 5]

χ2 = 7.92

24.1
+ (−7.9)2

19.9
+ (−5.7)2

19.7
+ (5.7)2

16.3
+ (−2.2)2

8.2
+ 2.22

6.8
= 10.67

Hence reject the null hypothesis.



GOKA: “CHAP05B” — 2006/6/10 — 17:22 — PAGE 93 — #33

THE TESTS 93

Test 45 The sign test for a median

Object

To investigate the significance of the difference between a population median and a
specified value M0.

Limitations

It is assumed that the observations in the sample are independent of each other. Any
sample values equal to M0 should be discarded from the sample.

Method

A count is made of the number n1 of sample values exceeding M0, and also of the
number n2 below M0. The null hypothesis is that the population median equals M0. If
the alternative hypothesis is that the population median does not equal M0 then the test
statistic, T , is the smaller of n1 and n2 with n taken as the sum of n1 and n2.

If the alternative hypothesis is that the population median is greater than M0, then
T = n1. If the alternative hypothesis is that the population median is greater than M0,
then T = n2. The null hypothesis is rejected if T is greater than the critical value
obtained from Table 17.

Example

It is assumed that the median value of a financial ratio is 0.28; this being the recycled
material cost for new build domestic constructions. A random sample of ten new builds
is taken and the ratios computed. Can it be assumed that the sample has been taken
from a population of ratios with median 0.28? Since the calculated T value of 4 is less
than the critical value of 7 (from Table 17) this assumption is accepted.

Numerical calculation

Sample values x1 = 0.28, x2 = 0.18, x3 = 0.24, x4 = 0.30, x5 = 0.40
x6 = 0.36, x7 = 0.15, x8 = 0.42, x9 = 0.23, x10 = 0.48
Null hypothesis: H0 = 0.28
n1 = 5, n2 = 4, T = 4, n = 5 + 4 = 9
The critical value at α = 0.05 is 7 [Table 17].
Hence do not reject the null hypothesis.
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Test 46 The sign test for two medians (paired
observations)

Object

To investigate the significance of the difference between the medians of two distribu-
tions.

Limitations

The observations in the two samples should be taken in pairs, one from each distribution.
Each one of a pair of observations should be taken under the same conditions, but it is
not necessary that different pairs should be taken under similar conditions.

It is not necessary to take readings provided the sign of the difference between two
observations of a pair can be determined.

Method

The signs of the differences between each pair of observations are recorded. The test
statistic, r, is the number of times that the least frequent sign occurs. If this is less than
the critical value obtained from Table 18 the null hypothesis that the two population
medians are equal is rejected.

Example

A quality engineer takes two samples from a production line, one before a maintenance
modification and one after. Has the modification altered the median value of a critical
measurement (standard units) from the production items? For each pair of values the
production machine settings are the same. He obtains a value of r = 3 and compares
this with a value of 1 from Table 18. The maintenance has altered the median value
since the critical value is less than the calculated value.

Numerical calculation

xi 0.19 0.22 0.18 0.17 1.20 0.14 0.09 0.13 0.26 0.66
yi 0.21 0.27 0.15 0.18 0.40 0.08 0.14 0.28 0.30 0.68
Sign − − + − + + − − − −

There are 3 plus signs. 7 minus signs, r = 3
n = 10, r10;0.10 = 1 [Table 18].
Do not reject the null hypothesis.
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Test 47 The signed rank test for a mean

Object

To investigate the significance of the difference between a population mean and a
specified value µ0.

Limitations

This is a distribution-free test and requires a symmetrical population. The observations
must be obtained randomly and independently from a continuous distribution.

Method

From the sample values xi determine the differences xi − µ0 and arrange them in
ascending order irrespective of sign. Sample values equal to xi − µ0 = 0 are not
included in the analysis.

Rank numbers are now assigned to the differences. Where ties occur among differ-
ences, the ranks are averaged among them. Then each rank number is given the sign of
the corresponding difference xi − µ0.

The sum of the ranks with a positive sign and the sum of the ranks with a negative
sign are calculated. The test statistic T is the smaller of these two sums. Critical values
of this statistic can be found from Table 17. When the value of T falls in the critical
region, i.e. less than the tabulated values the null hypothesis that the population mean
is equal to µ0 is rejected.

Example

The mean deposit rate (GBP per savings level) for a sample of ten investors is examined
to see if mail advertising has altered this from a value of 0.28. The signed rank test
is used and produces a T value of 17. Since this calculated value is greater than the
tabulated value we do not reject the null hypotheses. It would appear that the advertising
has not altered the mean deposit level.

Numerical calculation

µ0 = 0.28, n = 10, α = 0.05, T9;α = 7
Here n = 10 − 1 = 9 (one zero).

xi 0.28 0.18 0.24 0.30 0.40 0.36 0.15 0.42 0.23 0.48
xi − µ0 0 −0.10 −0.04 +0.02 +0.12 +0.08 −0.13 +0.14 −0.05 +0.20

Signed rank − −5 −2 +1 +6 +4 −7 +8 −3 +9

Sum of plus ranks = 28, sum of minus ranks = 17, T = 17
T > T9;α [Table 17].
Hence do not reject the null hypothesis.
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Test 48 The signed rank test for two means (paired
observations)

Object

To investigate the significance of the difference between the means of two similarly
shaped distributions.

Limitations

The observations in the two samples should be taken in pairs, one from each distribution.
Each one of a pair of observations should be taken under the same conditions, but it is
not necessary that different pairs should be taken under similar conditions. Any pair of
observations giving equal values will be ignored in the analysis.

Method

The differences between pairs of observations are formed and these are ranked, irre-
spective of sign. Where ties occur, the average of the corresponding ranks is used. Then
each rank is allocated the sign from the corresponding difference.

The sum of the ranks with a positive sign and the sum of the ranks with a negative
sign are calculated. The test statistic T is the smaller of these two sums. Critical values
of this statistic can be found from Table 19. When the value of T is less than the critical
value, the null hypothesis of equal population means is rejected.

Example

A manually operated component punch produces two springs at each operation. It is
desired to test if the mean component specification differs between the two springs. The
sample of pairs of springs produces a signed rank test statistic, T , of 11, which is less
than the tabulated value of 17. Hence the null hypothesis of no difference is rejected.
The punch needs re-setting.

Numerical calculation

xi 1.38 9.69 0.39 1.42 0.54 5.94 0.59 2.67 2.44 0.56 0.69 0.71 0.95 0.50
yi 1.42 10.37 0.39 1.46 0.55 6.15 0.61 2.69 2.68 0.53 0.72 0.72 0.93 0.53

xi − yi −0.04 −0.68 0 −0.04 −0.01 −0.21 −0.02 −0.02 −0.24 +0.03 −0.03 −0.01 +0.02 −0.03
Rank −9.5 −13 0 −9.5 −1.5 −11 −4 −4 −12 +7 −7 −1.5 +4 −7

Minus signs = 11, plus signs = 2, rank for plus sign = 4 + 7 = 11
T13;0.05 = 17 [Table l9]
Reject the null hypothesis.
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Test 49 The Wilcoxon inversion test (U-test)

Object

To test if two random samples could have come from two populations with the same
frequency distribution.

Limitations

It is assumed that the two frequency distributions are continuous and that the two
samples are random and independent.

Method

Samples of size n1 and n2 are taken from the two populations. When the two samples are
merged and arranged in ascending order, there will be a number of jumps (or inversions)
from one series to the other. The smaller of the number of inversions and the number
of non-inversions forms the test statistic, U. The null hypothesis of the same frequency
distribution is rejected if U exceeds the critical value obtained from Table 20.

Example

An educational researcher has two sets of adjusted reading scores for two sets of five
pupils who have been taught by different methods. It is possible that the two samples
could have come from the same population frequency distribution.

The collected data produce a calculated U value of 4. Since the sample U value
equals the tabulated critical value the educational researcher rejects the null hypothe-
sis of no difference. The data suggest that the two reading teaching methods produce
different results.

Numerical calculation

n1 = 5, n2 = 5, α = 0.05

xi 11.79 11.21 13.20 12.66 13.37
yi 10.34 11.40 10.19 12.10 11.46

Rearrangement gives the following series

10.19, 10.34,
11.21

(2)
, 11.40, 11.46,

11.79

(4)
, 12.10,

12.66

(5)
,

13.20

(5)
,

13.37

(5)

where underlined values come from the first row (xi). Below these underlines, the
corresponding number of inversions, i.e. the number of times a y-value comes after an
x-value, is given in parentheses.
The number of inversions is 2 + 4 + 5 + 5 + 5 = 21.
The number of non-inversions is n1n2 − 21 = 25 − 21 = 4.
The critical value at α = 0.05 is 4 [Table 20].
The sample value of U is equal to the critical value.
The null hypothesis may be rejected; alternatively, the experiment could be repeated
by collecting a second set of data.
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Test 50 The median test of two populations

Object

To test if two random samples could have come from two populations with the same
frequency distribution.

Limitations

The two samples are assumed to be reasonably large.

Method

The median of the combined sample of n1 +n2 elements is found. Then, for each series
in turn, the number of elements above and below this median can be found and entered
in a 2 × 2 table of the form:

Sample 1 Sample 2 Total

Left of median a b a + b
Right of median c d c + d

Total n1 = a + c n2 = b + d N = n1 + n2

The test statistic is

χ2 = {|ad − bc| − 1
2 N}2N

(a + b)(a + c)(b + d)(c + d)
.

If this value exceeds the critical value obtained from χ2 tables with one degree of
freedom, the null hypothesis of the same frequency distribution is rejected.

Example

A housing officer has data relating to residents’ assessment of their housing conditions
in a small, isolated estate. Half of the houses in the estate are maintained by one mainte-
nance company and the other half by another company. Do the repair regimes of the two
companies produce similar results from the residents? Samples of 15 residents are taken
from each half. The calculated chi-squared value is 0.53, which is less than the tabulated
value of 3.84. The housing officer does not reject the null hypothesis and concludes
that the two maintenance companies produce similar results from their repair regimes.

Numerical calculation

a = 9, b = 6, c = 6, d = 9
a + b = a + c = b + d = c + d = 15
n1 = 15, n2 = 15, N = 30

χ2 = {|92 − 62| − 15}2 × 30

15 × 15 × 15 × 15
= 8

15
= 0.53

χ2
1;0.05 = 3.84 [Table 5]

Do not reject the null hypothesis.
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Test 51 The median test of K populations

Object

To test if K random samples could have come from K populations with the same
frequency distribution.

Limitations

The K samples are assumed to be reasonably large – say, greater than 5.

Method

The K samples are first amalgamated and treated as a single grand sample, of which
the median is found. Then, for each of the K samples, the number of elements above
and below this median can be found. These can be arranged in the form of a 2 × K
table and then a χ2-test can be carried out.

Sample
1 2 . . . j . . . K Total

Above median a11 a12 . . . a1j . . . a1K A
Below median a21 a22 . . . a2j . . . a2K B

Total a1 a2 . . . aj . . . aK N

In this table, a1j represents the number of elements above the median and a2j the number
of elements below the median in the jth sample ( j = 1, 2, . . . , K). Expected frequencies
are calculated from

e1j = Aaj

N
and e2j = Baj

N
.

The test statistic is

χ2 =
K∑

j=1

(a1j − e1j)
2

e1j
+

K∑
j=1

(a2j − e2j)
2

e2j
.

This is compared with a critical value from Table 5 with K −1 degrees of freedom. The
null hypothesis that the K populations have the same frequency distribution is rejected
if χ2 exceeds the critical value.

Example

The housing officer in test 50 has a larger estate which is maintained by five maintenance
companies. He has sampled the residents receiving maintenance from each company in
proportion to the number of houses each company maintains. The officer now produces a
chi-squared value of 0.2041. Do the five maintenance companies differ in their effect on
resident’s assessment? The tabulated chi-squared value is 9.49, so the officer concludes
that the standards of maintenance are the same.
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Numerical calculation
Sample

1 2 3 4 5 Total

Above median 20 30 25 40 30 145
Below median 25 35 30 45 32 167

Total 45 65 55 85 62 312

e11 = 145 × 45

312
= 20.91 e21 = 167 × 45

312
= 24.08

e12 = 30.21 e22 = 34.79
e13 = 25.56 e23 = 29.44
e14 = 39.50 e24 = 45.50
e15 = 28.81 e25 = 33.19

χ2 = 0.0396 + 0.0015 + 0.0123 + 0.0063 + 0.0491

+ 0.0351 + 0.0013 + 0.0107 + 0.0055 + 0.0427

= 0.2041

χ2
4; 0.05 = 9.49 [Table 5].

Hence do not reject the null hypothesis.
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Test 52 The Wilcoxon–Mann–Whitney rank sum test
of two populations

Object

To test if two random samples could have come from two populations with the same
mean.

Limitations

It is assumed that the two populations have continuous frequency distributions with the
same shape and spread.

Method

The results of the two samples x and y are combined and arranged in order of increasing
size and given a rank number. In cases where equal results occur the mean of the avail-
able rank numbers is assigned. The rank sum R of the smaller sample is now found. Let
N denote the size of the combined samples and n denote the size of the smaller sample.

A second quantity

R1 = n(N + 1) − R

is now calculated. The values R and R1 are compared with critical values obtained from
Table 21. If either R or R1 is less than the critical value the null hypothesis of equal
means would be rejected.

Note If the samples are of equal size, then the rank sum R is taken as the smaller of
the two rank sums which occur.

Example

A tax inspector wishes to compare the means of two samples of expenses claims taken
from the same company but separated by a period of time (the values have been adjusted
to account for inflation). Are the mean expenses for the two periods the same? He
calculates a test statistic, R1 of 103 and compares this with the tabulated value of 69.
Since the calculated value is greater than the tabulated critical value he concludes that
the mean expenses have not changed.

Numerical calculation

Total

x 50.5 37.5 49.8 56.0 42.0 56.0 50.0 54.0 48.0
Rank 9 1 7 15.5 2 15.5 8 13 6 77

y 57.0 52.0 51.0 44.2 55.0 62.0 59.0 45.2 53.5 44.4
Rank 17 11 10 3 14 19 18 5 12 4 113

R = 77, n1 = 9, n2 = 10, N = 19, R1 = 9 × 20 − 77 = 103
The critical value at α = 0.05 is 69 [Table 21].
Hence there is no difference between the two means.
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Test 53 The Siegel–Tukey rank sum dispersion test
of two variances

Object

To test if two random samples could have come from two populations with the same
variance.

Limitations

It is assumed that the two populations have continuous frequency distributions and that
the sample sizes are not too small, e.g. n1 + n2 > 20.

Method

The results of the two samples are combined and arranged in order of increasing size.
Ranks are allocated according to the following scheme:

• The lowest value is ranked 1.
• The highest two values are ranked 2 and 3 (the largest value is given the value 2).
• The lowest two unranked values are ranked 4 and 5 (the smallest value is given the

value 4).
• The highest two unranked values are ranked 6 and 7 (the largest value is given the

value 6).

This procedure continues, working from the ends towards the centre, until no more than
one unranked value remains. That is to say, if the number of values is odd, the middle
value has no rank assigned to it.

Let n1 and n2 denote the sizes of the two samples and let n1 � n2. Let R1 be the rank
sum of the series of size n1. The test statistic is

Z = R1 − n1(n1 + n2 + 1)/2 + 1
2√

n1n2(n1 + n2 + 1)/12
.

This will approximately follow a standard normal distribution. The null hypothesis of
equal variance is rejected if Z falls in the critical region.

Example

A catering manager wants to know if two types of pre-prepared sauce give the same
spread or variability of values. This is because he has to set his dispensers to a fixed
value and an unusually large value will cause problems. He takes a sample of ten sauces
of each type and compares them using the Siegel–Tukey rank sum dispersion test. He
produces a Z value of −2.154 which is outside the acceptance region [Table 1] of ±1.96.
He rejects the null hypothesis of no difference and concludes, in this case, that sauce
type y has greater dispersion than type x.
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Numerical calculation

Combined rank assignment of two sample data x, y:

Sample x y y y y y x x y x
Value 2.4 2.9 3.3 3.6 4.2 4.9 6.1 7.3 7.3 8.5
Rank 1 4 5 8 9 12 13 16 17 20

Sample x x x x x y x y y y
Value 8.8 9.4 9.8 10.1 10.l 11.7 12.6 13.1 15.3 16.5
Rank 19 18 15 14 11 10 7 6 3 2

n1 = n2 = 10
Rx = 1 + 13 + 16 + 20 + 19 + 18 + 15 + 14 + 11 + 7 = 134
Ry = 4 + 5 + 8 + 9 + 12 + 17 + 10 + 6 + 3 + 2 = 76
Hence R1 = 76

Z = 76 − 10(10 + 10 + 1)/2 + 1
2√

10 · 10(10 + 10 + 1)/12
= −28.5√

175
= −28.5

13.23
= −2.154

The critical values at α = 0.05 are −1.96 and +1.96 [Table 1].
Hence reject the null hypothesis.
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Test 54 The Kruskall–Wallis rank sum test of
K populations (H-test)

Object

To test if K random samples could have come from K populations with the same mean.

Limitations

Each sample size should be at least 5 in order for χ2 to be used, though sample sizes
need not be equal. The K frequency distributions should be continuous.

Method

The K samples are combined and arranged in order of increasing size and given a rank
number. Where ties occur the mean of the available rank numbers is used. The rank
sum for each of the K samples is calculated.

Let Rj be the rank sum of the jth sample, nj be the size of the jth sample, and N be
the size of the combined sample. The test statistic is

H =
⎧⎨⎩ 12

N(N + 1)

K∑
j=1

R2
i

nj

⎫⎬⎭− 3(N + 1).

This follows a χ2-distribution with K − 1 degrees of freedom. The null hypothesis
of equal means is rejected when H exceeds the critical value. Critical values of H for
small sample sizes and K = 3, 4, 5 are given in Table 22.

Example

A cake preference score is a combination of four components, viz. tastes, appearance,
smell and texture. The minimum score is 0 and the maximum 100. Three cake formula-
tions are compared using these scores by three panels of accredited tasters. The results
produce an H test statistic of 2.15. This is less than the tabulated value of 4.61 [Table 5].
The catering manager concludes the three cake formulations are equally preferred.

Numerical calculation

Combined rank assignment of three sample data x1, x2, x3:

Sample x1 x1 x1 x1 x1 x1 x1 x1 x1 x2
Value 1.7 1.9 6.1 12.5 16.5 25.1 30.5 42.1 82.5 13.6
Rank 1 2 3 4 7 10.5 14 15 20 6



GOKA: “CHAP05C” — 2006/6/10 — 17:23 — PAGE 105 — #7

THE TESTS 105

Sample x2 x2 x2 x2 x2 x3 x3 x3 x3 x3
Value 19.8 25.2 46.2 46.2 61.1 13.4 20.9 25.1 29.7 46.9
Rank 8 12 16.5 16.5 19 5 9 10.5 13 18

R1 = 76.5, R2 = 78.0, R3 = 55.5

H = 12

420
(2280.30) − 63 = 2.15, χ2

2; 0.10 = 4.61 [Table 5].

Do not reject the hypothesis.
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Test 55 The rank sum difference test for the multiple
comparison of K population means

Object

To test if K random samples came from populations with the same mean.

Limitations

The K samples must have the same size, and the frequency distributions of the
population are assumed continuous.

Method

The K samples are combined and arranged in order of increasing size and then given a
rank number. The highest raw value is assigned rank 1. For each sample the rank sum
is determined.

To compare two population means the rank sums of the corresponding samples, Ri
and Rj, are taken and the test statistic is Ri − Rj. Critical values of this test statistic can
be obtained from Table 23. When Ri − Rj exceeds the critical value the null hypothesis
of equal means is rejected.

Example

A perfume manufacturer has four floral fragrances and wishes to compare each one
against the others in a preference test. Selected perfume testers can give a perfume a
score between 1 and 100. For each of these four fragrances four testers are used and
the results are shown. The critical value from Table 23 is 34.6. Fragrances 1 and 2 and
1 and 3 are viewed as different, with fragrance 1 generally preferred.

Numerical calculation

Sample
1 2 3 4

70 (16) 12 (2) 10 (1) 29 (6)
52 (14) 18 (3) 43 (11) 31 (7)
51 (13) 35 (8) 28 (5) 41 (10)
67 (15) 36 (9) 26 (4) 44 (12)

R1 = 58 R2 = 22 R3 = 21 R4 = 35

n = 4, K = 4
The values in the brackets are the assigned rank numbers.

Here R1 − R2 = 58 − 22 = 36 R2 − R3 = 22 − 21 = 1
R1 − R3 = 58 − 21 = 37 R2 − R4 = 22 − 35 = −13
R1 − R4 = 58 − 35 = 23 R3 − R4 = 21 − 35 = −14

The critical value at α = 0.05 is 34.6 [Table 23].
Hence samples 1 and 2 and samples 1 and 3 are significantly different.
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Test 56 The rank sum maximum test for the largest
K population means

Object

To investigate the difference between the largest mean and the K − 1 other population
means.

Limitations

It is assumed that the populations have continuous frequency distributions and that the
K samples are of equal size n.

Method

The K samples are merged together and rank numbers allocated to the Kn observations.
The sum of the rank numbers of the observations belonging to a particular sample is
formed. This is repeated for each sample and the test statistic is the largest of these
rank sums. When the test statistic exceeds the critical value obtained from Table 24 the
mean of the population generating the maximum rank sum is said to be significantly
large.

Example

As an alternative to Test 55 the perfume manufacturer uses the rank sum maximum test
for the largest 4 population means. The largest R value is R1 at 58 which is greater than
the tabulated value of 52. Hence fragrance 1 is significantly greater (in preference) than
the other fragrances. This is a similar result to that found with Test 55.

Numerical calculation

Combined rank assignment of four samples, i.e. K = 4, n = 4.

Sample x1 x1 x1 x1 x2 x2 x2 x2 x3 x3 x3 x3 x4 x4 x4 x4

Value 70 52 51 67 12 18 35 36 10 43 28 26 29 31 41 44
Rank 16 14 13 15 2 3 8 9 1 11 5 4 6 7 10 12

R1 = 58, R2 = 22, R3 = 21, R4 = 35
The critical value at α = 0.05 is 52 [Table 24].
The calculated value of R1 is greater than the critical value.
Hence the sample 1 is statistically significantly greater than the others.
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Test 57 The Steel test for comparing K treatments
with a control

Object

To test the null hypothesis that all treatments have the same effect as the control
treatment.

Limitations

The K samples, one from each treatment and one from the control, should all be of the
same size.

Method

Each of the treatment samples is compared with the control sample in turn. To test
the jth sample, it is merged with the control sample and rank numbers are allocated
to the 2n observations. This provides two rank sums and the smallest of these is used
as the test statistic if a two-tailed test is desired. To test the alternative hypothesis that
treatment j has a smaller effect than the control treatment, the rank sum for the jth
control sample forms the test statistic. In both cases, the null hypothesis that there is
no difference between the jth treatment and the control is rejected if the test statistic is
less than the critical value obtained from Table 25.

Example

Four different sprain relief creams are compared with controls. Treatments are allocated
at random and each is compared with its control. The results show that rank sums for
controls 1 and 4 are less than the critical tabulated value of 76 (Table 25). Hence
treatment creams 1 and 4 are significant and hence more effective than placebo in
relieving sprain effects.

Numerical calculation

n = 10, K = 4
Rank assignment and rank sums are as follows:

Total

Control 1 1.5 1.5 3 4 6 7 8 11 13 14.5 69.5
Treatment1 5 9 10 12 14.5 16 17 18 19 20 140.5

Control 2 2.5 2.5 5 7 8 9 12 15 18 19 98
Treatment 2 1 4 6 10.5 10.5 13 15 15 17 20 112

Control 3 1.5 1.5 3 5 8 9 10.5 14 15 18 85.5
Treatment 3 4 6.5 6.5 10.5 12 13 16.5 16.5 19 20 124.5

Control 4 1.5 1.5 3 5 6 7 9 12 15 16 76
Treatment 4 4 8 10 12 13 14 17 18 19 20 135

The critical value at α = 0.05 is 76 [Table 25].
Since control 1 and control 4 are less than or equal to the critical value, treatments 1
and 4 are significant.
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Test 58 The Spearman rank correlation test
(paired observations)

Object

To investigate the significance of the correlation between two series of observations
obtained in pairs.

Limitations

It is assumed that the two population distributions are continuous and that the
observations xi and yi have been obtained in pairs.

Method

The xi observations are assigned the rank numbers 1, 2, . . . , n in order of increasing
magnitude. A similar procedure is carried out for all the yi observations. For each
pair of observations, the difference in the ranks, di, can be determined. The quantity
R =∑n

i=1 d2
i is now calculated.

For large samples (n > 10) the test statistic is

Z = 6R − n(n2 − 1)

n(n + 1)
√

(n − 1)

which may be compared with tables of the standard normal distribution. For small
samples, the test statistic

rS = 1 − 6R

n(n2 − 1)

must be compared with critical values obtained from Table 26. In both cases, if the
experimental value lies in the critical region one has to reject the null hypothesis of no
correlation between the two series.

Example

A panel of consumers is asked to rate two brands of vegetarian sausage. It is hoped that
advertising can be combined in a mail out to potential consumers. A small sample is
taken and panel members are asked to rate each brand. The results produce a Z value
of −2.82. The critical value for Z is 1.64 so the null hypothesis of zero correlation is
rejected. Consumers tend to report similar preferences for the two brands of sausage.

Numerical calculation

di: 0, −1, −2, 0, +3, −1, −1, +2, 0, 0, 2
Hence R = 24, n = 11

Z = 6 × 24 − 11(112 − 1)

11 × 12
√

10
= 144 − 1320

132 × 3.1623
= −1176

417.42
= −2.82

The critical value of Z at α = 0.05 is 1.64 [Table 1].
Hence reject the null hypothesis.
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Test 59 The Kendall rank correlation test
(paired observations)

Object

To investigate the significance of the correlation between two series of observations
obtained in pairs.

Limitations

It is assumed that the two population distributions are continuous and that the
observations xi, and yi, have been obtained in pairs.

Method

The xi observations are assigned the rank numbers 1, 2, . . . , n in order of increasing
magnitude. A similar procedure is carried out for all the yi observations. Each of the
possible pairs of rank numbers (there will be 1

2 n(n − 1) of these) is now examined.
Each pair (xi, yi) will be compared successively and systematically with each other pair
(xj, yj). When xi − xj and yi − yj have the same sign a score of +1 is obtained. When
they have opposite signs a score of −1 is obtained. When there is a difference of zero,
no score is obtained. These scores are summed together and this sum is denoted S. In
this manner we can work with observational results without having determined the rank
numbers.

For large n (n > 10), Z follows a normal distribution and hence the test statistic

Z = S

{n(n − 1)(2n + 5)/18} 1
2

may be compared with tables of the standard normal distribution. For small samples,
critical values of S may be obtained from Table 27.

In both cases, if the experimental value lies in the critical region one has to reject the
null hypothesis of no correlation between the two series.

Example

A tax inspector wishes to investigate whether there is any correlation between total
investment incomes (£00’s), obs1 and total additional income (£00’s), obs 2. He has
collected a sample of 10 tax forms and calculates an S value of 33. He compares this
with the critical value of 21 obtained from Table 27. Since the calculated value is greater
than the tabulated value he concludes that there is a significant correlation.

Numerical calculation

Observation 1 7.1 8.3 10.7 9.4 12.6 11.1 10.3 13.1 9.6 12.4
Observation 2 62 66 74 74 82 76 72 79 68 74
Plus scores 9 8 5 3 4 3 3 2 1 0
Minus scores 0 0 0 2 1 1 1 0 0 0
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Total plus scores = 38, total minus scores = 5
S = 38 − 5 = 33, n = 10
Critical value S10;005 = 21 [Table 27].
The calculated value is greater than the critical value.
Reject the null hypothesis.
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Test 60 The sequential test for a population mean
(variance known)

Object

To test the null hypothesis that the mean µ of a population with known variance has
the value µ0 rather than the value µ1.

Limitations

1. The observations can be obtained sequentially as necessary.
2. The observations are independent and follow a normal distribution with known

variance σ 2.

Method

First the Type I and Type II errors for the test must be fixed, say, α and β. The test consists
of plotting a sequential analysis chart. In this case, as the observations are obtained
the cumulative value

∑m
i=1(xi − c) is plotted against the sample size to date, m. The

constant c is chosen as a convenient value close to 1
2 (µ0 + µ1)

On the chart are two boundary lines:

m∑
i=1

(xi − c) = σ 2

µ1 − µ0
log

(
1 − β

α

)
+ m

(
µ0 + µ1

2
− c

)
,

m∑
i=1

(xi − c) = σ 2

µ1 − µ0
log

(
β

1 − α

)
+ m

(
µ0 + µ1

2
− c

)
.

If the plot crosses the upper boundary the null hypothesis is rejected, and it will not be
rejected if the plot crosses the lower boundary.

Example

As part of a quality monitoring programme, measurements of a critical dimension of an
automotive component are taken at regular intervals. The quality engineer uses a cu-sum
and a sequential test for the process mean. His test is that the mean is constant at 8.30
units, i.e. the specified value rather than 8.33 units, when problems would occur. He
produces a cu-sum chart and plots the sequential values upon it. What does he conclude
about the process? He has three options, viz. reject the null hypothesis that the mean
is 8.30, do not reject the null hypothesis that the mean is 8.30 or continue testing.

Since the lower boundary is crossed at observation 7 he accepts the null hypothesis
and stops testing.

Numerical calculation

Successive observations: 8.34, 8.29, 8.30, 8.31, 8.30, 8.32, 8.30
µ0 = 8.30, µ1 = 8.33, α = 0.05, β = 0.05
µ1 − µ0 = 8.33 − 8.30 = 0.03, µ̄ = 8.315
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Let the standard deviation be 0.02.

σ 2

µ1 − µ0
log

(
β

1 − α

)
= 0.022

0.03
× log

(
0.05

0.95

)
= −0.039

σ 2

µ1 − µ0
log

(
1 − β

α

)
= +0.039

Critical boundary lines are∑
xi = −0.039 − 8.315m or

∑
x′

i = −0.039 + 0.015m

and∑
xi = 0.039 − 8.315m or

∑
x′

i = 0.039 + 0.015m

m 1 2 3 4 5 6 7 8 9 10

x′
i 0.04 −0.01 0.00 0.01 0.00 +0.02 0.00

cu-sum 0.04 0.03 0.03 0.04 0.04 0.06 0.06
H0 boundary −0.024 −0.009 0.006 0.021 0.036 0.051 0.066 0.081 0.096 0.111
H1 boundary 0.054 0.069 0.084 0.099 0.114 0.129 0.144 0.159 0.174 0.189
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Test 61 The sequential test for a standard deviation
(mean known)

Object

To test the null hypothesis that the standard deviation σ , of a population with known
mean, has the value σ0 rather than the value σ1.

Limitations

1. The observations can be obtained sequentially as necessary.
2. The observations are independent and come from a normal distribution with known

mean µ.

Method

First the Type I and Type II errors for the test must be decided upon, say, α and β. The
test consists of plotting a sequential analysis chart. As the observations are obtained
the cumulative value

∑m
i=1(xi − µ)2 is plotted against the sample size to date, m.

On the chart are two boundary lines:

m∑
i=1

(xi − µ)2 = 2σ 2
0 σ 2

1

σ 2
1 − σ 2

0

log

(
1 − β

α

)
− m

2σ 2
0 σ 2

1

σ 2
1 − σ 2

0

log

(
σ 2

0

σ 2
1

)
,

m∑
i=1

(xi − µ)2 = 2σ 2
0 σ 2

1

σ 2
1 − σ 2

0

log

(
β

1 − α

)
− m

2σ 2
0 σ 2

1

σ 2
1 − σ 2

0

log

(
σ 2

0

σ 2
1

)
.

If the plot crosses the upper boundary, the null hypothesis is rejected; if the plot crosses
the lower boundary, the null hypothesis is not rejected.

Example

A quality engineer wants to set up a sequential test for a standard deviation. His process
has a mean specification of 2 units and variance 4 units (standard deviation 2 units). He
sets his Type I error at 0.15 and his Type II error at 0.25. He calculates his cumulative
sum of squared deviations from the specified standard deviation of 2 units. If this
cumulative sum lies within the range 8.37 to 37.90 he continues to sample. If the
sum is less than 8.37 or greater than 37.90 he respectively accepts or rejects the null
hypothesis.

Numerical calculation

Consider a sample from N(2, σ 2) and
H0: σ 2

0 = 4 against H1: σ 2
1 = 6.

Let α = 0.15, β = 0.25 and m = 10.
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Then continue sampling if

24

[
2 log

(
0.25

0.85

)
+ 10 log

(
4

6

)]
6 − 4

<

m∑
i=1

(xi − 2)2 <

24

[
2 log

(
0.75

0.15

)
+ 10 log

(
4

6

)]
6 − 4

24[−1.0628 + 1.76]
2

<

m∑
i=1

(xi − 2)2 <
24[1.398 + 1.76]

2

or

8.37 <

m∑
i=1

(xi − 2)2 < 37.90

Hence do not reject H0 if
∑m

i=1(xi−2)2 � 8.37 and reject H0 if
∑m

i=1(xi−2)2 � 37.90.
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Test 62 The sequential test for a dichotomous
classification

Object

To test the null hypothesis that the parameter p of a population has the value p0 rather
than the value p1.

Limitations

1. The observations can be obtained sequentially as necessary.
2. The observations are independent and follow a Bernoulli distribution.

Method

This test is typically used in quality control when we wish to determine if the proportion
defective in a sample falls below p0 (accept batch) or exceeds p1 (reject batch). First
we need to decide on the Type I and Type II errors for the test, say α and β.

The test consists of plotting a sequential analysis chart. As the observations are
obtained the number of defective items rm is plotted against the sample size to date, m.
On the chart are two boundary lines:

rm

{
log

(
p1

p0

)
− log

(
1 − p1

1 − p0

)}
+ m log

(
1 − p1

1 − p0

)
= log

(
β

1 − α

)
rm

{
log

(
p1

p0

)
− log

(
1 − p1

1 − p0

)}
+ m log

(
1 − p1

1 − p0

)
= log

(
1 − β

α

)
.

If the plot crosses the upper boundary the null hypothesis is rejected; if the plot crosses
the lower boundary the null hypothesis is not rejected.

Example

A quality control engineer sets up a sequential test for the proportion defective in a
sample from a large batch. If the proportion is below 0.10 he accepts the batch, but
if the proportion is above 0.20 he rejects the batch, otherwise he continues to sample.
After the 21st observation the plot of the number of defective items versus the sample
number crosses the upper boundary line. This suggests that he should reject the null
hypothesis (p = 0.10) and accept the alternative hypothesis (p = 0.20). The whole
batch is therefore rejected.

Numerical calculation

H0: p = p0 = 0.10 and H1: p = p1 = 0.20
Let α = 0.01 and β = 0.05, and results are:
a, a, a, r, a, r, a, a, r, a, a, a, r, r, a, r, r, a, r
(where a = not defective and r = defective).
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Then

log

(
p1

p0

)
= log

(
0.20

0.10

)
= 0.693

log

(
1 − p1

1 − p0

)
= log

(
0.80

0.90

)
= −0.118

log

(
β

1 − α

)
= log

(
0.05

0.99

)
= −2.986

log

(
1 − β

α

)
= log

(
0.95

0.01

)
= 4.554

Boundary lines are:
0.811rm − 0.118m = −2.986
0.811rm − 0.118m = 4.554.
If m = 0, the two boundary lines are rm1 = −3.68 and rm2 = 5.62.
If m = 30, the two boundary lines are rm1 = 0.68 and rm2 = 9.98.
The first line intersects the m-axis at m = 25.31. The sequential analysis chart is now
as follows:

After the 21st observation we can conclude that the alternative hypothesis H1 may
not be rejected. This means that p � 0.20. The percentage of defective elements is too
large. The whole lot has to be rejected.
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Test 63 The adjacency test for randomness of
fluctuations

Object

To test the null hypothesis that the fluctuations in a series are random in nature.

Limitations

It is assumed that the observations are obtained independently of each other and under
similar conditions.

Method

For a series of n terms, xi (i = 1, . . . , n), the test statistic is defined as

L = 1 −

n−1∑
i=1

(xi+1 − xi)
2

2
n∑

i=1

(xi − x̄)2

.

For n > 25, this approximately follows a normal distribution with mean zero and
variance √

(n − 2)

(n − 1)(n + 1)
.

For n < 25, critical values for

D =

n−1∑
i=1

(xi+1 − xi)
2

n∑
i=1

(xi − x̄)2

are available in Table 28.
In both cases the null hypothesis is rejected if L exceeds the critical values.

Example

An energy forecaster has produced a model of energy demand which she has fitted to
some data for an industry sector over a standard time period. To assess the goodness of
fit of the model she performs a test for randomness on the residuals from the model. If
these are random then the model is a good fit to the data. She calculates the D statistic
and compares it with the values from Table 28 of 1.37 and 2.63. Since D is less then
the lower critical value she rejects the null hypothesis of randomness and concludes
that the model is not a good fit to the data.
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Numerical calculation∑
xi = 2081.94,

∑
x2

i = 166 736.9454

n∑
i=1

(xi − x̄)2 = 26.4006,
n−1∑
i=1

(xi+1 − xi)
2 = 31.7348, n = 25

D =

n−1∑
i=1

(xi+1 − xi)
2

n∑
i=1

(xi − x̄)2

= 31.7348

26.4006
= 1.20

The critical values at α = 0.05 are 1.37 (lower limit) and 2.63 (upper limit) [Table 28].
The calculated value is less than the lower limit.
Hence the null hypothesis is to be rejected.
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Test 64 The serial correlation test for randomness of
fluctuations

Object

To test the null hypothesis that the fluctuations in a series have a random nature.

Limitations

It is assumed that the observations are obtained independently of each other and under
similar conditions.

Method

The first serial correlation coefficient for a series of n terms, xi (i = 1, . . . , n), is
defined as

r1 = n

n − 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1∑
i=1

(xi − x̄)(xi+1 − x̄)

n∑
i=1

(xi − x̄)2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and this forms the test statistic.

For n � 30, critical values for r1 can be found from Table 29. For n > 30, the normal
distribution provides a reasonable approximation. In both cases the null hypothesis is
rejected if the test statistic exceeds the critical values.

Example

A production line is tested for a systematic trend in the values of a measured charac-
teristic of the components produced. A serial correlation test for randomness is used.
If there is a significant correlation then the quality engineer will look for an assignable
cause and so improve the resulting quality of components. He computes his first serial
correlation as 0.585. The critical value from Table 29 is 0.276. So the correlation
between successive components is significant.

Numerical calculation

xi: 69.76, 67.88, 68.28, 68.48, 70.15, 71.25, 69.94, 71.82, 71.27, 68.79, 68.89, 69.70,
69.86, 68.35, 67.61, 67.64, 68.06, 68.72, 69.37, 68.18, 69.35, 69.72, 70.46, 70.94,
69.26, 70.20

n = 26,
∑

xi = 1804.38, x̄ = 69.40,
∑

(xi − x̄)2 = 34.169∑
xi+1 • xi = 125 242.565,

∑
xi+1 • xi − (∑ xi

)2
/n = 19.981

r1 = 19.981

34.169
= 0.585

The critical value at α = 0.05 is about 0.276 [Table 29].
Hence the null hypothesis is rejected; the correlation between successive observations
is significant.
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Test 65 The turning point test for randomness of
fluctuations

Object

To test the null hypothesis that the variations in a series are independent of the order of
the observations.

Limitations

It is assumed that the number of observations, n, is greater than 15, and the observations
are made under similar conditions.

Method

The number of turning points, i.e. peaks and troughs, in the series is determined and
this value forms the test statistic. For large n, it may be assumed to follow a normal
distribution with mean 2

3 (n−2) and variance (16n−29)/90. If the test statistic exceeds
the critical value, the null hypothesis is rejected.

Example

An investment analyst wishes to examine a time series for a particular investment
portfolio. She is especially keen to know if there are any turning points or if the series
is effectively random in nature. She calculates her test statistic to be 1.31 which is less
than the tabulated value of 1.96 [Table 1]. She concludes that the series is effectively
random and no turning points can be detected.

Numerical calculation

p = peak, t = trough, n = 19, α = 0.05

0.68; 0.34(t); 0.62; 0.73(p); 0.57;
0.32(t); 0.58( p); 0.34(t); 0.59( p); 0.56;
0.49; 0.17(t); 0.30; 0.39; 0.42( p);
0.41(t); 0.46; 0.50; 0.45

Mean = 2

3
× 17 = 11.3, variance = 16 × 19 − 29

90
= 3.05,

standard deviation = 1.75

Test statistic =
∣∣∣∣9 − 11.3

1.75

∣∣∣∣ = 1.33

The critical value at α = 0.05 is 1.96 [Table 1].
Hence the departure from randomness is not significant.



GOKA: “CHAP05C” — 2006/6/10 — 17:23 — PAGE 122 — #24

122 100 STATISTICAL TESTS

Test 66 The difference sign test for randomness in
a sample

Object

To test the null hypothesis that the fluctuations of a sample are independent of the order
in the sequence.

Limitations

It is assumed that the number of observations is large and that they have been obtained
under similar conditions.

Method

From the sequence of observations a sequence of successive differences is formed. The
number of + signs, p, in this derived sequence forms the test statistic.

Let n be the initial sample size. For large n, p may be assumed to follow a normal
distribution with mean (n − 1)/2 and variance (n + 1)/12. When the test statistic lies
in the critical region the null hypothesis is rejected.

Example

A quality engineer suspects that there is some systematic departure from randomness in
machined component production lines. He uses the difference sign test for randomness
to assess this. His test statistic of 4.54 is for his first sample of size 20 from production
line 1. Since this value is greater than the tabulated value of 1.64 from Table 1 he
concludes that there is a positive trend in this case. In the other samples from the other
production lines he cannot reject the null hypothesis of randomness.

Numerical calculation

n = 20, α = 0.05

List S1 S2 S3 S4 S5
p 16 11 10 9 10

Mean = n − 1

2
= 19

2
= 9.5, variance = 20 + 1

12
= 1.75,

standard deviation = 1.32

p(S1) = 16 − 9.5 − 0.5

1.32
= 4.54

The critical value at α = 0.05 is 1.64 [Table 1].
Reject the null hypothesis in this case.
However, p(S2) = 0.76, p(S3) = 0.0, p(S4) = −0.76, p(S5) = 0.
Do not reject the null hypothesis in these cases, where a positive trend is not indicated.
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Test 67 The run test on successive differences for
randomness in a sample

Object

To test the null hypothesis that observations in a sample are independent of the order
in the sequence.

Limitations

It is necessary that the observations in the sample be obtained under similar conditions.

Method

From the sequence of observations, a sequence of successive differences is formed, i.e.
each observation has the preceding one subtracted from it. The number of runs of +
and − signs in this sequence of differences, K , provides the test statistic.

Let n be the initial sample size. For 5 � n � 40, critical values of K can be obtained
from Table 30. For n > 40, K may be assumed to follow a normal distribution with
mean (2n − 1)/3 and variance (16n − 29)/90. In both cases. when the test statistic lies
in the critical region, the null hypothesis is rejected.

Example

A quality engineer tests five production lines for systematic effects. He uses the run
test on successive differences. He calculates the number of successive plus or minus
signs for each line. He then compares these with the tabulated values of 9 and 17, from
Table 30. For line A his number of runs is 7 which is less than the critical value, 9, so
he rejects the null hypothesis of randomness. The values of 6 and 19 for lines C and
D result in a similar conclusion. The test statistics for lines B and E do not lie in the
critical region so he accepts the null hypothesis for these.

Numerical calculation

Lists A B C D E
Number (K) of runs (plus and minus) 7 12 6 19 12

n = 20, α = 0.05
The critical values are (left) 9 and (right) 17 [Table 30].

For cases A, C and D

K(A) = 7 and K(C) = 6, which are less than 9, and K(D) = 19 which is greater
than 17.
Hence reject the null hypothesis.

For cases B and E

Test statistics do not lie in the critical region [Table 30].
Do not reject the null hypothesis.
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Test 68 The run test for randomness of two related
samples

Object

To test the null hypothesis that the two samples have been randomly selected from the
same population.

Limitations

It is assumed that the two samples have been taken under similar conditions and that
the observations are independent of each other.

Method

The first sample of n1 elements are all given a + sign and the second sample of n2
elements are all given a − sign. The two samples are then merged and arranged in
increasing order of magnitude (the allocated signs are to differentiate between the two
samples and do not affect their magnitudes). A succession of values with the same sign,
i.e. from the same sample, is called a run. The number of runs (K) of the combined
samples is found and is used to calculate the test statistic, Z . For n1 and n2 � 10,

Z = K − µK + 1
2

σK

can be compared with the standard normal distribution: here

µK = 2n1n2

n1 + n2
+ 1 and σ 2

K = 2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2 · (n1 + n2 − 1)
.

When the test statistic lies in the critical region, reject the null hypothesis.

Example

A maintenance programme has been conducted on a plastic forming component produc-
tion line. The supervisor responsible for the line wants to ensure that the maintenance
has not altered the machine settings and so she performs the run test for randomness
of two related samples. She collects two samples from the line, one before the mainte-
nance and one after. The test statistic value is 0.23 which is outside the critical value
of ±1.96. She concludes that the production line is running as usual.

Numerical calculation

n1 = 10, n2 = 10, K = 11, α = 0.05
Sample S1: 26.3, 28.6, 25.4, 29.2, 27.6, 25.6, 26.4, 27.7, 28.2, 29.0
Sample S2: 28.5, 30.0, 28.8. 25.3, 28.4, 26.5, 27.2, 29.3, 26.2, 27.5
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S1 and S2 are merged and arranged in increasing order of magnitude, and signs are
allocated to obtain the number of runs K :
− + + − + + − − − + + + − − + − + + − −
µK = 2 × 10 × 10

10 + 10
+ 1 = 200

20
+ 1 = 11

σ 2
K = 2 × 10 × 10(2 × 10 × 10 − 10 − 10)

(10 + 10)2(10 + 10 − 1)
= 4.74, σK = 2.18

Z = 11 − 11 + 1
2

2.18
= 0.23. Critical value at α = 0.05 is 1.96 [Table 1].

Hence do not reject the hypothesis.
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Test 69 The run test for randomness in a sample

Object

To test the significance of the order of the observations in a sample.

Limitations

It is necessary that the observations in the sample be obtained under similar conditions.

Method

All the observations in the sample larger than the median value are given a + sign and
those below the median are given a − sign. If there is an odd number of observations
then the median observation is ignored. This ensures that the number of + signs (n) is
equal to the number of − signs. A succession of values with the same sign is called a
run and the number of runs, K , of the sample in the order of selection is found. This
forms the test statistic.

For n > 30, this test statistic can be compared with a normal distribution with mean
n + 1 and variance 1

2 n(2n − 2)/(2n − 1). The test may be one- or two-tailed depending
on whether we wish to test if K is too high, too low or possibly both.

For n < 30, critical values for K are provided in Table 31. In both cases the null
hypothesis that the observations in the sample occurred in a random order is rejected
if the test statistic lies in the critical region.

Example

A quality control engineer has two similar processes, which produce dual threaded
nuts. He suspects that there is some intermittent fault on atleast one process and so
decides to test for randomness using the run test for randomness. In his first sample,
from process A, he calculates the number of runs of the same sign to be 6. For his
second process, B, he calculates the number of runs to be 11. The critical values are 9
and 19, from Table 31. Since for the process A, 6 is in the critical region, his suspicions
for this process are well founded. Process B shows no departure from randomness.

Numerical calculation

n1 = n2 = 13

Sample A

81.02, 80.08, 80.05, 79.70, 79.13, 77.09, 80.09,
(+) (−) (−) (−) (−) (−) (−)

79.40, 80.56, 80.97, 80.17, 81.35, 79.64, 80.82, 81.26,
(−) (+) (+) (+) (+) (−) (+) (+)

80.75, 80.74, 81.59, 80.14, 80.75, 81.01, 79.09,
(+) (+) (+) (+) (+) (+) (−)

78.73, 78.45, 79.56, 79.80
(−) (−) (−) (−)

Median value = 80.12 and number of runs = 6.
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Sample B

69.76, 67.88, 68.28, 68.48, 70.15, 71.25, 69.94,
(+) (−) (−) (−) (+) (+) (+)

71.82, 71.27, 69.70, 68.89, 69.24, 69.86, 68.35,
(+) (+) (+) (−) (−) (+) (−)

67.61, 67.64, 68.06, 68.72, 69.37, 68.18, 69.35,
(−) (−) (−) (−) (+) (−) (−)

69.72, 70.46, 70.94, 69.26, 70.20
(+) (+) (+) (−) (+)

Median value = 69.36 and number of runs = 11.
The critical values at α = 0.10 are (lower) 9 and (upper) 19 [Table 31].
For Sample A number of runs K = 6 lies in the critical region. Hence reject the null
hypothesis (i.e. the fluctuation is not random).
For Sample B number of runs K = 11 does not lie in the critical region.
Do not reject the null hypothesis (i.e. the fluctuation may be considered to be random).
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Test 70 The Wilcoxon–Mann–Whitney rank sum test
for the randomness of signs

Object

To test that the occurrence of + and − signs in a sequence is random.

Limitations

This is a distribution-free test, applicable if the observations are random and
independent and the two frequency distributions are continuous.

Method

Let n1 be the number of + or − signs, whichever is the larger, n2 be the number of
opposite signs and N = n1 + n2. From the integers describing the natural order of
the signs, the rank sum R of the smallest number of signs is determined. The value
R′ = n2(N + 1) − R is calculated. The smaller of R and R′ is used as the test statistic.
If it is less than the critical value obtained from Table 21 the null hypothesis of random
+ and − signs is rejected.

Example

A simple fuel monitoring system has a target fuel usage level and fuel use is determined
at regular intervals. If the fuel use is higher or lower than the target value then a plus or
minus sign is recorded. Departures from target on either side would signal a potential
problem. An energy monitoring officer has recorded some data and uses the Wilcoxon–
Mann–Witney rank sum test for randomness. He obtains a minimum rank sum of 29
and, since this lies in the critical region (Table 21), he concludes that he has a fuel usage
problem.

Numerical calculation

Successive observations in a sequence are coded with a plus or minus sign:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
+ + + − + + + + − − − + − −
n1 = 8, n2 = 6 (minus signs), N = 14
Rank sum of minus signs = 4 + 9 + 10 + 11 + 13 + 14 = 61
R′ = 6(14 + 1) − 61 = 29
The critical value at α = 0.025 is 29 [Table 21].
Reject the null hypothesis; alternatively, the experiment could be repeated.
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Test 71 The rank correlation test for randomness of
a sample

Object

To test that the fluctuations in a sample have a random nature. This test may be used to
test the elements of a time series for the presence of a trend.

Limitations

This is a distribution-free test, applicable if the observations occur in a natural sequence
and have been obtained under similar or comparable conditions. It is sensitive to the
occurrence of a positive or negative trend, and relatively insensitive to the occurrence
of sudden jumps.

Method

The observations are ranked in increasing order of magnitude Ri. The correlation
between these rank and the integers representing the natural order of the observations
is then calculated. This can be tested using the Spearman rank correlation test (Test 58)
or the Kendall rank correlation test (Test 59). If the sample is larger than the T statistic
T can be compared with the critical value of the normal distribution.

Example

A merchandising manager observes the sales of a particular item of clothing across all
her stores. She is looking for a discernable trend so that she can be pre-emptive of stock
challenges. She produces a Spearman rank correlation between the natural order and
the sorted data order of 0.771. Her T statistic is 3.36 which is in the critical region. She
thus rejects the null hypothesis of randomness and is able to adjust production levels
to account for this trend.

Numerical calculation

Order (xi) 1 2 3 4 5 6 7 8 9 10
Obs. 98 101 110 105 99 106 104 109 100 102
Rank (yi) 1 4 10 7 2 8 6 9 3 5

Order (xi) 11 12 13 14 15 16 17 18 19 20
Obs. 119 123 118 116 122 130 115 124 127 114
Rank (yi) 15 17 14 13 16 20 12 18 19 11

∑
(xi − yi)

2 = 304 = R

rR = 1 − 6R

n(n2 − 1)
= 0.771

T = 6R − n(n2 − 1)

n(n + 1)
√

n − 1
= −3.36

The critical value at α = 0.05 is 1.96 [Table 1].
The calculated value is greater than the critical value.
Reject the null hypothesis.
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Test 72 The Wilcoxon–Wilcox test for comparison of
multiple treatments of a series of subjects

Object

To compare the significance of the difference in response for K treatments applied to n
subjects.

Limitations

It is assumed that a subject’s response to one treatment is not affected by the same
subject’s response to another treatment; and that the response distribution for each
subject is continuous.

Method

The data are represented by a table of n rows and K columns. The rank numbers
1, 2, . . . , K are assigned to each row and then the sum of the rank numbers for each
column, Rj( j = 1, 2, . . . , K) is determined. A pair of treatments, say p and q, can
now be compared by using as test statistic |Rp − Rq|. If this exceeds the critical value
obtained from Table 32 the null hypothesis of equal effects of the p and q treatments is
rejected.

Example

Six different ice cream flavours are compared by six tasters who assign a score (1 to 25)
to each flavour. The food technologist wishes to compare each flavour with the others
and uses the Wilcoxon–Wilcox test of multiple treatments. She finds that the rank sum
difference for the flavours comparisons A–E, A–F and D–F are significant.

Numerical calculation
Rank sums

Sample
Serial no. A B C D E F

1 1 5 3 2 4 6
2 1 3 6 2 4 5
3 2 3 4 1 5 6
4 1 4 3 2 6 5
5 2 5 3 1 4 6
6 1 3 6 2 4 5

Rank sum 8 23 25 10 27 33

Rank sum differences |Rp − Rq|
D B C E F

A 8 2 15 17 19* 25*
D 10 13 15 17 23*
B 23 2 4 10
C 25 2 8
E 27 6

* Exceeds critical value.

K = 6, n = 6, α = 0.05, critical value = 18.5 [Table 32].
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Test 73 Friedman’s test for multiple treatment of
a series of subjects

Object

To investigate the significance of the differences in response for K treatments applied
to n subjects.

Limitations

It is assumed that a subject’s response to one treatment is not affected by the same
subject’s response to another treatment; and that the response distribution for each
subject is continuous.

Method

The data can be represented by a table of n rows and K columns. In each row the
rank numbers 1, 2, . . . , K are assigned in order of increasing value. For each of the K
columns the rank sum Rj( j = 1, 2, . . . , K) is determined.

The test statistic is

G = 12

nK(K + 1)

K∑
j=1

R2
j − 3n(K + 1).

If this exceeds the critical χ2 value obtained from Table 5 with K−1 degrees of freedom,
the null hypothesis that the effects of the K treatments are all the same is rejected.

If ties occur in the ranking procedure one has to assign the average rank member for
each series of equal results. In this case the test statistic becomes

G = 12(K − 1)S

nK3 − D

where S =∑K
j=1(Rj − R̄)2 and D =∑ fit3

i .

Example

Four different newspaper advertisement styles are compared to see if they produce
the same effect on a panel of viewers/consumers. The different styles relate to size
and position. There are 15 panel members and they rank each advertisement. The test
statistic produced by this procedure is 12.51. The critical value from Table 5 is 7.81.
So we conclude that the advertisement styles are not equally effective.

Numerical calculation

ti is the size of the ith group of equal observations.

n = 15, K = 4, R̄ = n(K + 1)

2
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Rank numbers (showing many ties)

Columns (K)
Rows (n) c1 c2 c3 c4

1 3.5 3.5 1.5 1.5
2 4.0 2.0 2.0 2.0
3 1.5 3.5 2.5 2.5
4 3.5 3.5 1.5 1.5
5 3.0 3.0 3.0 1.0
6 3.0 3.0 1.0 3.0
7 3.5 1.5 3.5 1.5
8 2.5 2.5 2.5 2.5
9 3.0 3.0 1.0 3.0

10 2.5 2.5 2.5 2.5
11 3.5 1.5 3.5 1.5
12 4.0 2.0 2.0 2.0
13 2.5 2.5 2.5 2.5
14 3.0 3.0 3.0 1.0
15 4.0 2.0 3.0 1.0

Rj 47 39 35 29
R̄ 37.5 37.5 37.5 37.5
Rj − R̄ +9.5 +1.5 −2.5 −8.5

S =
∑

(Rj − R̄)2 = 171

Here 1, 2, 3 and 4 are the size of the groups of equal observations and D =∑ fit3
i .

ti fi fiti fit3
i

1 7 7 7
2 10 20 80
3 7 21 189
4 3 12 192

Total 60 468

Hence D = 468

G = 12 × (4 − 1) × 171

15 × 43 − 468
= 12.51

The critical value is χ2
3;005 = 7.81 [Table 5].

Since G > 7.81, reject the null hypothesis.
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Test 74 The rank correlation test for agreement in
multiple judgements

Object

To investigate the significance of the correlation between n series of rank numbers,
assigned by n members of a committee to K subjects.

Limitations

This test can be applied if the judges decide independently and if the subjects show
obvious differences in the quality being judged.

Method

Let n judges give rank numbers to K subjects.
Compute S = nK(K2 − 1)/12 and SD = the sum of squares of the differences

between subjects’ mean ranks and the overall mean rank. Let

D1 = SD

n1
, D2 = S − D1, S2

1 = D1

K − 1
, S2

2 = D2

K(n − 1)
.

The test statistic is F = S2
1/S2

2 which follows the F-distribution with (K − 1, K(n− 1))

degrees of freedom. If this exceeds the critical value obtained from Table 3, the null
hypothesis of agreement between the judgements is rejected.

Example

A wine tasting panel is selected by asking a number of questions and also by tasting
assessment. In one assessment three judges are compared for agreement. One of the
judges is an expert taster. Ten wines are taken and the judges are asked to rank them
on a particular taste criterion. Are the three judges consistent? The test statistic, F is
0.60,which is less than the tabulated value of 2.39. So the new panel members can be
recruited.

Numerical calculation

n = 3, K = 10, ν1 = K − 1 = 9, ν2 = K(n − 1) = 20

Rank number
A B C D E F G H I J Total

Judge 1 1 2 3 4 5 6 7 8 9 10 55
Judge 2 7 10 4 1 6 8 9 5 2 3 55
Judge 3 9 6 10 3 5 4 7 8 2 1 55

Total score 17 18 17 8 16 18 23 21 13 14 165
Mean 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 165
Difference 0.5 1.5 0.5 −8.5 −0.5 1.5 6.5 4.5 −3.5 −2.5
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S = 3 × 10(100 − 1)

12
= 247.5, SD = 158.50,

D1 = 158.50

3
= 52.83, D2 = S − D1 = 247.50 − 52.83 = 194.67,

S2
1 = 52.83

9
= 5.87, S2

2 = 194.67

10 × 2
= 194.67

20
= 9.73

F = S2
1/S2

2 = 5.87

9.73
= 0.60

Critical value F9; 20; 0.05 = 2.39 [Table 3].
Do not reject the null hypothesis.
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Test 75 A test for the continuous distribution of
a random variable

Object

To test a model for the distribution of a random variable of the continuous type.

Limitations

This test is applicable if some known continuous distribution function is being tested.
A partition of the random values into different sets must be available using the closed
interval [0.1].

Method

Let F(W) be the distribution function of W which we want to test. The null hypothesis
is

H0: F(W) = F0(W)

where F0(W) is some known continuous distribution function.
The test is based on the χ2 statistic. In order to use this, we must partition the set

of possible values of W into k (not necessarily equal) sets. Partition the interval [0, 1]
into k sets such that 0 = b0 < · · · < bk = 1. Let ai = F−1

0 (bi), i = 1, 2, . . . , k − 1,
A1 = [−α, a1], Ai = [−ai−1, ai], for i = 2, 3, . . . , k − 1 and Ak = (ak−1, α); pi =
P(W ∈ Ai), i = 1, 2, . . . , k. Let Yi denote the number of times the observed value of
W belongs to Ai, i = 1, 2, . . . , k in n independent repetitions of the experiment. Then
Y1, Y2, . . . , Yk have a multinomial distribution with parameters n, p1, p2, . . . , pk . Let
πi = P(W ∈ Ai) when the distribution function of W is F0(W).

Then we test the hypothesis:

H∗
0 : pi = πi, i = 1, 2, . . . , k.

H∗
0 is rejected if the observed value of the χ2 statistic

Qk−1 =
k−1∑
i=1

(Yi − nπi)
2

nπi

is at least as great as C, where C is selected to yield the desired significance level.

Example

A continuous distribution is tested by calculating Q9 which follows approximately a
chi-squared distribution. The value of 4.0 is compared with 16.92 from Table 5. Since
the calculated value is not in the critical region, the null hypothesis that the data follows
the given continuous distribution is accepted.
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Numerical calculation

Let W denote the outcome of a random experiment. Let F(W) denote the distribution
function of W and let

F0(W) =

⎧⎪⎨⎪⎩
0, W < −1
1
2 (W3 + 1), −1 � W < 1
1, W � 1.

The interval [−1, 1] can be partitioned into 10 sets of equal probability with the point
bi = i/10, i = 0, 1, . . . , 10.

If ai = F−1(bi) = (2bi − 1)
1
3 , i = 1, 2, . . . , 9 then the sets A1 = [−1, a1], A2 =

[a1, a2], . . . , A10 = [A9, 1] will each have probability 0.1. If the random sample of size
n = 50 is observed then nπi = 50 × 0.1 = 5.0. Let the summary of the 50 observed
values be

A1 = 6, A2 = 4, A3 = 5, A4 = 6, A5 = 4, A6 = 4, A7 = 6, A8 = 8, A9 = 3, A10 = 4.

Then the calculated value of Q9 is

Q9 = (6 − 5)2

5
+ (4 − 5)2

5
+ · · · + (4 − 5)2

5
= 4.0.

Critical value χ2
9;0.05 = 16.92 [Table 5].

Hence do not reject the null hypothesis.
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Test 76 A test for the equality of multinomial
distributions

Object

To test the equality of h independent multinomial distributions.

Limitations

If pi is the probability of an item being assigned to the ith class, then this test is applicable
if yij is the number of items occurring in the class associated with pi.

Method

Let pij = P(Ai), i = 1, 2, . . . , k; j = 1, 2, . . . , h. It is required to test

H0: pi1 = pi2 = · · · = pih = pi, i = 1, 2, . . . , k.

Carry out the jth experiment nj times, making sure that the nj instances are independent,
and let Y1j, Y2j, . . . , Ykj denote the frequencies of the respective events A1, A2, . . . , Ak .
Then

Q =
h∑

j=1

k∑
i=1

(Yij − njpij)
2

njpij

has an approximate χ2-distribution with h(k − 1) degrees of freedom. Under H0 we
estimate k − 1 probabilities from

p̂i =

h∑
j=1

Yij

h∑
j=1

nj

, i = 1, 2, . . . , k − 1;

the estimate of pk then follows from p̂k = 1 −∑k−1
i=1 p̂i. Then

Q =
h∑

j=1

k∑
i=1

(Yij − njp̂i)
2

njp̂i

has an approximate χ2-distribution with

h(k − 1) − (k − 1) = (h − 1)(k − 1)

degrees of freedom.
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Example

An electronic allocation of visual stimuli to one of five categories, or grades ensures
that the allocations are equally likely and not subject to any bias effects. An experiment
to allocate 50 stimuli to 5 grades is repeated once. Are the allocations equally likely?
The computed Q statistic of 5.18 is less than the tabulated value of 9.488 (Table 5) so
there is no justification to suspect unequal allocation probabilities.

Numerical calculation

Grade
Group A1 A2 A3 A4 A5 Total

1 8 13 16 10 3 50
2 4 9 14 16 7 50

n = 50

P(A1) = 8 + 4

100
= 0.12, P(A2) = 0.22, P(A3) = 0.30

P(A4) = 0.26, P(A5) = 0.10

Thus we have estimates of n1Pi1 = 6, n2Pi2 = 11, n3Pi3 = 15, n4Pi4 = 13 and
n5Pi5 = 5, respectively.
Hence the computed value of Q is:

Q = (8 − 6)2

6
+ (13 − 11)2

11
+ (16 − 15)2

15
+ (10 − 13)2

13
+ (3 − 5)2

5

+ (4 − 6)2

6
+ (9 − 11)2

11
+ (14 − 15)2

15
+ (16 − 13)2

13
+ (7 − 5)2

5
= 5.18

The critical value is χ2
4; 005 = 9.488 [Table 5].

The calculated value is less than the critical value. Do not reject the null hypothesis.
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Test 77 F -test for non-additivity

Object

To test for non-additivity in a two-way classification.

Limitations

This test is applicable if the observations are independently and normally distributed
with constant variance.

Method

In the two-way classification with one observation per cell (fixed effects model), we
assume additivity (absence of interaction effects). In the case of any doubt about this
additivity, Tukey proposed a test under the following set-up:

Yij = µ + αi + βj + λαiβj + eij

subject to the conditions that ∑
i

αi =
∑

j

βj = 0

and that the eij are independently N(0, σ 2). Under this set-up, the interaction effect is
represented by λαiβj, where ∑

i
all j

λαiβj =
∑

j
all i

λαiβj = 0.

A test for non-additivity is obtained by a test for H0: λ = 0 or equivalently by a test
H0: E(Yij) = µ + αi + βj under this set-up. But this set-up does not conform to the
Gauss–Markov model for E(Yij) which are not linear in the parameter µ, αi, βj and λ.
A set of unbiased estimators for, µ, αi and βj are:

µ∗ = Y00, α∗
i = Yi0 − Y00, β∗

j = Y0j − Y00.

The least squares (unbiased) estimator of λ is obtained by minimizing

s2
E =

∑
i

∑
j

(Yij − µ − αi − βj − λαiβj)
2

with respect to λ under the assumption that αi and βj are known. Thus

λ∗ =

∑
i

∑
j

αiβjYij∑
i

α2
i

∑
j

β2
j

.
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Then the sum of squares due to interaction, i.e. due to λ∗, is given by

s2
λ∗ =

⎡⎣∑
i

∑
j

αiβjYij

⎤⎦2

∑
i

α2
i

∑
j

β2
j

with l degrees of freedom. The sum of squares due to non-additivity is given by

s2
N =

⎡⎣∑
i

∑
j

α∗
i β∗

j Yij

⎤⎦2

∑
i

α∗2
i

∑
j

β∗2
j

.

For all given α∗
i , β∗

j , for all i, j, we have that s2
N/σ 2 and (s2

E − s2
N)/σ 2 = s2

R are

independent and have χ2-distribution with 1 and ( p−1)(q−1)−1 degrees of freedom,
respectively.

We reject H0: λ = 0 at level α if the variance ratio for non-additivity is too large,
i.e. if

[( p − 1)(q − 1) − 1]s2
N

s2
R

> F1,(p−1)(q−1)−1; α

and fail to reject otherwise.

Example

A thermal bond is tested to assess whether the resultant strength of the bond is the result
of the combination of the main effects of temperature and pressure only. That is, no
temperature/pressure interaction exists. There are four levels of temperature and three
levels of pressure. The F test statistic for non-additivity is 0.2236 which is compared
with the critical tabulated value of 6.61 [Table 3]. Since the calculated F is less than
the critical value the assumption of no interaction is upheld.

Numerical calculation

j
i 1 2 3 4 Yi0 Ȳi0

1 14 2 1 2 19 4.75
2 2 0 2 2 6 1.5
3 2 1 5 0 8 2
Y0j 18 3 8 4 33
Ȳ0j 6 1 2.7 1.33
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µ = Y00 = 33

12
= 2.75

α∗
1 = 19 − 2.75 = 16.25, α∗

2 = 3.25, α∗
3 = 5.25

β∗
1 = 18 − 2.75 = 15.25, β∗

2 = 0.25, β∗
3 = 5.25, β∗

4 = 1.25

λ∗ = 4023.75

79 229.788
= 0.05079, s2

E = 4568.38, s2
N = 204.35

Let σ 2 = 16, then
s2

E

σ 2
= 285.52 and

s2
N

σ 2
= 12.77, s2

R = 272.75.

Hence F = 12.77/1

285.52/5
= 0.2236.

Critical value F1.5; 0.52 = 6.61 [Table 3].
We do not reject the null hypothesis λ = 0.
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Test 78 F -test for testing main effects and interaction
effects in a two-way classification

Object

To test the main effects and interaction effects for the case of a two-way classification
with an equal number of observations per cell.

Limitations

This test is applicable if the error in different measurements is normally distributed; if
the relative size of these errors is unrelated to any factor of the experiment; and if the
different measurements themselves are independent.

Method

Suppose we have n observations per cell of the two-way table, the observations being
Yijk , i = 1, 2, . . . , p (level of A); j = 1, 2, . . . , q (level of B) and k = 1, 2, . . . , r. We use
the model:

Yijk = µ + αi + βj + (αβ)ij + eijk

subject to the conditions that∑
i

αi =
∑

j

βj =
∑

j
all j

(αβ)ij =
∑

i
all i

(αβ)ij = 0

and that the eij are independently N(0, σ 2). Here (αβ)ij is the interaction effect due to
simultaneous occurrence of the ith level of A and the jth level of B. We are interested
in testing:

HAB: all (αβ)ij = 0,

HA: all αi = 0,

HB: all βj = 0.

Under the present set-up, the sum of squares due to the residual is given by

s2
E =

∑
i

∑
j

∑
k

(Yijk − Yij0)
2,

with rpq − pjq degrees of freedom, and the interaction sum of squares due to HAB is

r
∑

i

∑
j

(α̂β)2
ij,
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with (p − 1)(q − 1) degrees of freedom, where

(α̂β)ij = Yij0 − Yi00 − Y0j0 + Y000

and this is also called the sum of squares due to the interaction effects.
Denoting the interaction and error mean squares by s̄2

AB and s̄2
E respectively. The null

hypothesis HAB is tested at the α level of significance by rejecting HAB if

s̄2
AB

s̄2
E

> F(p−1)(q−1), pq(r−1); α

and failing to reject it otherwise.
For testing HA: ai = σ for all i, the restricted residual sum of squares is

s2
1 =

∑
i

∑
j

∑
k

(Yijk − Yij0 + Yi00 − Y000)
2

= s2
E + rq

∑
i

(Yi00 − Y000)
2,

with rpq − pq + p − 1 degrees of freedom, and

s2
A = rq

∑
i

(Yi00 − Y000)
2,

with p − 1 degrees of freedom. With notation analogous to that for the test for HAB, the
test for HA is then performed at level α by rejecting HA if

s̄2
A

s̄2
E

> F(p−1), pq(r−1); α

and failing to reject it otherwise. The test for HB is similar.

Example

An experiment is conducted in which a crop yield is compared for three different levels
of pesticide spray and three different levels of anti-fungal seed treatment. There are
four replications of the experiment at each level combination. Do the different levels
of pesticide spray and anti-fungal treatment effect crop yield and is there a significant
interaction? The ANOVA table yields F ratios that are all below the appropriate F value
from Table 3 so the experiment has yielded no significant effects and the experimenter
needs to find more successful treatments.
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Numerical calculation

B
A I II III

1 95 60 86
85 90 77
74 80 75
74 70 70

2 90 89 83
80 90 70
92 91 75
82 86 72

3 70 68 74
80 73 86
85 78 91
85 93 89

Table of means

Ȳij Ȳi· ·

1 82 75 77 78.0
2 86 89 75 83.3
3 80 78 85 81.0

Ȳ···
Ȳ.j. 82.7 80.7 79.0 80.8

s2
A = 3 × 4 ×

∑
i

(Ȳi·· − Ȳ···)2 = 3 × 4 × 14.13 = 169.56

s2
B = 3 × 4 ×

∑
j

(Ȳ·j· − Ȳ···)2 = 12 × 6.86 = 82.32

s2
AB = 4

∑
i

∑
j

(Ȳij· − Ȳi· · − Ȳ·j· + Ȳ···)2 = 4 × 140.45 = 561.80

s2
E =

∑
i

∑
j

∑
k

(Yijk − Ȳij·)2 = 1830.0

ANOVA table

Source SS DF MS F ratio

A 169.56 2 84.78 1.25
B 82.32 2 41.16 0.61
AB 561.80 4 140.45 2.07
Error 1830.00 27 67.78

Critical values F2, 27(0.05) = 3.35 [Table 3],
F4, 27(0.05) = 2.73 [Table 3].

Hence we do not reject any of the three hypotheses.
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Test 79 F -test for testing main effects in a two-way
classification

Object

To test the main effects in the case of a two-way classification with unequal numbers
of observations per cell.

Limitations

This test is applicable if the error in different measurements is normally distributed; if
the relative size of these errors is unrelated to any factor of the experiment; and if the
different measurements themselves are independent.

Method

We consider the case of testing the null hypothesis

HA: αi = 0 for all i and HB: βj = 0 for all j

under additivity. Under HA, the model is:

Yijk = µ + βj + eijk ,

with the eijk independently N(0, σ 2). The residual sum of squares (SS) under HA is

s2
2 =

∑
i

∑
j

∑
k

Y2
ijk −

∑
j

C2
j /n·j·

with n−q degrees of freedom, where n·j·(µ+βj)+∑i nijαi = Cj and nij is the number
of observations in the (i, j)th cell and

∑
j nij = ni· and

∑
i nij = n·j· the adjusted SS

due to A is

SSA∗ = s2
2 − s2

1 =
∑

i

⎛⎝Ri −
∑

j

pijCj

⎞⎠ α̂i

with p − 1 degrees of freedom, where ni·(µ + αi) +∑j nijβj = Ri, pij = nij/n.j.
Under additivity, the test statistic for HA is

SSA∗

s2
1

n − p − q + 1

p − 1
,

which, under HA, has the F-distribution with (p−1, n−p−q+1) degrees of freedom.
Similarly, the test statistic for HB is

SSB∗

s2
1

n − p − q + 1

q − 1
,
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which, under HB, has the F-distribution with (q−1, n−p−q+1) degrees of freedom;
where SSB∗ =∑j(Cj −∑i qijRi)β̂j is the adjusted SS due to B, with q − 1 degrees of
freedom.

Example

Three different chelating methods (A) are used on three grades of vitamin supplement
(B). The availability of vitamin is tested by a standard timed-release method. Since some
of the tests failed there are unequal cell numbers. An appropriate analysis of variance is
conducted, so that the sums of squares are adjusted accordingly. Here chelating method
produce significantly different results but no interaction is indicated. However, Grade
of vitamin has indicated no differences.

Numerical calculation

A
B 1 2 3 Total

22 60
(126)

88 26 66 369
1 (172) (71) [0.2857]

84 23
[0.2500] [0.4286]

108 82
98 10 54

2 (308) (34) (196) 538
102 24 60

[0.3750] [0.2857] [0.4286]

108
80 20 50

3 (276) (36) (82) 394
88 16 32

[0.3750] [0.2857] [0.2857]

Total 756 141 404 1301

Note
1. Values in parentheses are the totals.
2. Values in brackets are the ratio of the number of observations divided by the column

total number of observations, e.g. the first column has 2/8 = 0.25.

T = 1301, and T2 = observation sum of squares = 100 021

CF (correction factor) = T2

N
= 76 936.41

Total SS = T2 − T2

N
= 23 084.59



GOKA: “CHAP05D” — 2006/6/10 — 17:23 — PAGE 147 — #11

THE TESTS 147

SS between cells = 1
2 (172)2 + 1

3 (71)2 + · · · + 1
2 (82)2 − CF = 21 880.59

SS within cells (error) = total SS − SS between cells = 1204.00
SSA unadjusted = 1

8 (756)2 + 1
7 (141)2 + 1

7 (404)2 − CF = 20 662.30
SSB unadjusted = 1

7 (369)2 + 1
8 (538)2 + 1

7 (394)2 − CF = 872.23

C11 = 7 − 2(0.2500) − 3(0.4286) − 2(0.2857) = 4.6428

C12 = −5.0178, Q1 = 369 − 756(0.2500) − 141(0.4286)

− 404(0.2857) = 4.145

Q2 = 41.062, Q3 = −45.2065, α̂1 = 0.8341, α̂2 = 5.4146, α̂3 = −6.2487

SSB adjusted = Q1α̂1 + Q2α̂2 + Q3α̂3 = 508.27

SSA adjusted = SSB adjusted + SSA unadjusted

− SSB unadjusted = 20 298.34

SS interaction = SS between cells − SSB adjusted

− SSA unadjusted = 710.02

ANOVA table

Source DF SS MS F ratio

SSA adjusted 2 20 298.34 10 149.17 109.58
SSB adjusted 2 508.27 254.14 2.744
Interaction AB 4 710.02 177.50 1.92
Error 13 1 204.00 92.62

Critical values F2,13; 0.05 = 3.81 [Table 3]
F4,13; 0.05 = 3.18 [Table 3]

The main effects of A is significantly different, whereas the main effect B and interaction
between A and B are not significant.
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Test 80 F -test for nested or hierarchical classification

Object

To test for nestedness in the case of a nested or hierarchical classification.

Limitations

This test is applicable if the error in different measurements is normally distributed; if
the relative size of these errors is unrelated to any factor of the experiment; and if the
different measurements themselves are independent.

Method

In the case of a nested classification, the levels of factor B will be said to be nested with
the levels of factor A if any level of B occurs with only a single level of A. This means
that if A has p levels, then the q levels of B will be grouped into p mutually exclusive
and exhaustive groups, such that the ith group of levels of B occurs only with the ith
level of A in the observations. Here we shall only consider two-factor nesting, where
the number of levels of B associated with the ith level of A is qi, i.e. we consider the
case where there are

∑
i qi levels of B.

For example, consider a chemical experiment where factor A stands for the method
of analysing a chemical, there being p different methods. Factor B may represent the
different analysts, there being qi analysts associated with the ith method.

The jth analyst performs the nij experiments allotted to him. The corresponding fixed
effects model is:

Yijk = µ + αi + βij + eijk , i = 1, 2, . . . , p; j = 1, 2, . . . , qi;
k = 1, 2, . . . , nij,

p∑
i=l

niαi =
∑

j
all j

nijβj = 0

ni =
∑

j

nij, n =
∑

i

ni and eijk are independently N(0, σ 2).

We are interested in testing HA: αi = 0, for all i, and HB: βij = 0, for all i, j.
The residual sum of squares is given by

s2
E =

∑
i

∑
j

∑
k

(Yijk − Yij0)
2

with
∑

ij(nij − 1) degrees of freedom; the sums of squares due respectively to A and B
are

s2
A =

∑
i

ni(Yi00 − Y000)
2



GOKA: “CHAP05D” — 2006/6/10 — 17:23 — PAGE 149 — #13

THE TESTS 149

with p − 1 degrees of freedom, and

s2
B =

∑
i

∑
j

nij(Yij0 − Yi00)

with
∑

i(qi − 1) degrees of freedom.
To perform the tests for HA and HB we first require the mean squares, s̄2

E, s̄2
A and s̄2

B,
corresponding to these sums of squares; we then calculate s̄2

A/s̄2
E to test HA and s̄2

B/s̄2
E to

test HB, each of which, under the respective null hypothesis, follows the F-distribution
with appropriate degrees of freedom.

Nested models are frequently used in sample survey investigations.

Example

An educational researcher wishes to establish the relative contribution from the teachers
and schools towards pupils’ reading scores. She has collected data relating to twelve
teachers (three in each of four schools). The analysis of variance table produces an F
ratio of 1.46 which is less than the critical value of 2.10 from Table 3. So the differences
between teachers are not significant. The differences between schools are, however,
significant since the calculated F ratio of 6.47 is greater than the critical value of 4.07.
Why the schools should be different is another question.

Numerical calculation

Scores of pupils from three teachers in each of four schools are shown in the following
table.

Schools
I II III IV

Teacher Teacher Teacher Teacher
1 2 3 1 2 3 1 2 3 1 2 3

44 39 39 51 48 44 46 45 43 42 45 39
41 37 36 49 43 43 43 40 41 39 40 38
39 35 33 45 42 42 41 38 39 38 37 35
36 35 31 44 40 39 40 38 37 36 37 35
35 34 28 40 37 37 36 35 34 34 32 35
32 30 26 40 34 36 34 34 33 31 32 29

Teacher total 227 210 193 269 244 241 240 230 227 220 223 211
Mean 37.83 35.0 32.17 44.83 40.67 40.17 40.0 38.33 37.83 36.67 37.17 35.17

School total 630 754 697 654 2735
Mean 35.00 41.89 38.72 36.34

T = 2735

CF (correction factor) = 27352

72
= 103 892.01

Total sum of squares = 105 637.00 − 103 892.01 = 1744.99
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Between-schools sum of squares

= 6302

18
+ 7542

18
+ 6972

18
+ 6542

18
− CF = 493.60

Between teachers (within school) sum of squares

= 2272

6
+ 2102

6
+ 1932

6
+ 6302

18
+ similar terms for schools II, III and IV = 203.55

Within-group sum of squares = 1744.99 − 493.60 − 203.55 = 1047.84.

ANOVA table

DF SS Mean square

Schools 3 493.60 164.53
Teachers within school 8 203.55 25.44
Pupils within teachers 60 1047.84 17.46

Total 71 1744.99

Teacher differences:

F = 25.44

17.46
= 1.46

Critical value F8,60; 0.05 = 2.10 [Table 3].
The calculated value is less than the critical value.
Hence the differences between teachers are not significant.
School differences:

F = 164.53

25.44
= 6.47

Critical value F3,8; 0.05 = 4.07 [Table 3].
The calculated value is greater than the critical value.
Hence the differences between schools are significant.
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Test 81 F -test for testing regression

Object

To test the presence of regression of variable Y on the observed value X.

Limitations

For given X, the Ys are normally and independently distributed. The error terms are
normally and independently distributed with mean zero.

Method

Suppose, corresponding to each value Xi (i = 1, 2, . . . , p) of the independent random
variable X, we have a corresponding array of observations Yij ( j = 1, 2, . . . , ni) on the
dependent variable Y . Using the model:

Yij = µi + eij, i = 1, 2, . . . , p, j = 1, 2, . . . , ni,

where the eij are independently N(0, σ 2), we are interested in testing H0: all µi are
equal, against H1: not all µi are equal. ‘H0 is true’ implies the absence of regression of
Y on X. Then the sums of squares are given by

s2
B =

∑
i

ni(Yi0 − Y00)
2, s2

E =
∑

i

∑
j

(Yij − Yi0)
2.

Denoting the corresponding mean squares by s̄2
B and s̄2

E respectively, then, under H0,
F = s̄2

B/s̄2
E follows the F-distribution with (p − 1, n − p) degrees of freedom.

Example

It is desired to test for the presence of regression (i.e. non-zero slope) in comparing an
independent variable X, with a dependent variable Y .

A small-scale experiment is set up to measure perceptions on a simple dimension
(Y ) to a visual stimulus (X). The results test for the presence of a regression of Y on X.
The experiment is repeated three times at two levels of X.

Since the calculated F value of 24 is larger than the critical F value from Table 3,
the null hypothesis is rejected, indicating the presence of regression.

Numerical calculation

Yij

X1

X2

1 2 3

7 5 6

n1 = 3, where Yi0 =
ni∑

j=1

Yij

ni
, i = 1, 2, . . . , p

n2 = 3, and Y00 =
∑

i

∑
j

Yij

n
, n =∑ ni
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Hence Y10 = 1 + 2 + 3

3
= 2, Y20 = 7 + 5 + 6

3
= 6,

Y00 = 1 + 2 + 3 + 7 + 5 + 6

6
= 4

s2
B = 3(2 − 4)2 + 3(6 − 4)2 = 24

s2
E = (1 − 2)2 + (2 − 2)2 + (3 − 2)2 + (7 − 6)2 + (5 − 6)2 + (6 − 6)2 = 4

s̄2
B = 24/1 = 24, s̄2

E = 4/4 = 1, F = 24/1 = 24

Critical value F1,4; 0.05 = 7.71 [Table 3].
Hence reject the null hypothesis, indicating the presence of regression.
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Test 82 F -test for testing linearity of regression

Object

To test the linearity of regression between an X variable and a Y variable.

Limitations

For given X, the Ys are normally and independently distributed. The error terms are
normally and independently distributed with mean zero.

Method

Once the relationship between X and Y is established using Test 81, we would further
like to know whether the regression is linear or not. Under the same set-up as Test 81,
we are interested in testing:

H0: µi = α + βXi, i = 1, 2, . . . , n,

Under H0,

s2
E =

∑
i

(yi − ȳ) − b2
∑

i

ni(xi − x̄)2,

with n − 2 degrees of freedom, and the sum of squares due to regression

s2
R = b2

∑
i

ni(xi − x̄)2,

with 1 degree of freedom. The ratio of mean squares
F = s̄2

R/s̄2
E is used to test H0 with (1, n − 2) degrees of freedom.

Example

In a chemical reaction the quantity of plastic polymer (Y ) is measured at each of four
levels of an enzyme additive (X). The experiment is repeated three times at each level
of X to enable a test of linearity of regression to be performed.

The data produce an F value of 105.80 and this is compared with the critical F value
of 4.96 from Table 3. Since the critical value is exceeded we conclude that there is a
significant regression.

Numerical calculation

i 1 2 3 4 5 6 7 8 9 10 11 12

xi 150 150 150 200 200 200 250 250 250 300 300 300
yi 77.4 76.7 78.2 84.1 84.5 83.7 88.9 89.2 89.7 94.8 94.7 95.9

n = 12, n − 2 = 10. For β = 0, test H0: β = 0 against H1: β �= 0
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The total sum of squares is∑
y2

i −
(∑

yi

)2 /
n = 513.1167,

and

s2
R = b

(∑
xiyi − 1

n

∑
xiyi

)2

∑
x2

i − 1

n
(xi)2

= 509.10,

s2
E = 4.0117, s̄2

R = 42.425, s̄2
E = 0.401, F = 105.80

Critical value F1,10; 0.05 = 4.96 [Table 3].

Hence reject the null hypothesis and conclude that β �= 0.
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Test 83 Z-test for the uncertainty of events

Object

To test the significance of the reduction of uncertainty of past events.

Limitations

Unlike sequential analyses, this test procedure requires a probability distribution of a
variable.

Method

It is well known that the reduction of uncertainty by knowledge of past events is the
basic concept of sequential analysis. The purpose here is to test the significance of this
reduction of uncertainty using the statistic

Z = P(B+k|A) − P(B)√
P(B)[1 − P(B)][1 − P(A)]

(n − k)P(A)

where P(A) = probability of A, P(B) = probability of B and P(B+k|A) = P(B|A) at lag k.

Example

An economic researcher wishes to test for the reduction of uncertainty of past events.
He notes that following a financial market crash (event A) a particular economic index
rises (event B). His test statistic of Z = 2.20 is greater than the tabulated value of
1.96 from Table 1. This is a significant result allowing him to claim a reduction of
uncertainty for events A and B.

Numerical calculation

Consider a sequence of A and B: AA BA BA BB AB AB

n = 12, k = 1, P(A) = 6

12
= 0.5, P(B) = 6

12
= 0.5

We note that A occurs six times and that of these six times B occurs immediately after
A five times. Given that A just occurred we have

P(B|A) at lag one = P(B+1|A) = 5

6
= 0.83.

Therefore the test statistic is

Z = 0.83 − 0.50√
0.50(1 − 0.50)(1 − 0.50)

(12 − 1)(0.50)

= 2.20.

The critical value at α = 0.05 is 1.96 [Table 1].
The calculated value is greater than the critical value.
Hence it is significant.
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Test 84 Z-test for comparing sequential
contingencies across two groups using the
‘log odds ratio’

Object

To test the significance of the difference in sequential connections across groups.

Limitations

This test is applicable when a logit transformation can be used and 2 × 2 contingency
tables are available.

Method

Consider a person’s antecedent behaviour (Wt) taking one of the two values:

Wt =
{

1 for negative effect
0 for positive effect.

Let us use Ht + 1, a similar notation, for the spouse’s consequent behaviour. A funda-
mental distinction may be made between measures of association in contingency tables
which are either sensitive or insensitive to the marginal (row) totals. A measure that
is invariant to the marginal total is provided by the so-called logit transformation. The
logit is defined by:

logit (P) = loge
P

1 − P
.

We can now define a statistic β as follows:

β = logit [Pr(Ht+k = 1|Wt = 1)] − logit[Pr(Ht+k = 1|Wt = 0)].
Hence β is known as the logarithm of the ‘odds ratio’ which is the cross product ratio in
a 2 × 2 contingency table, i.e. if we have a table in which first row is (a, b) and second
row is (c, d) then

β = log

(
ad

bc

)
.

In order to test whether β is different across groups we use the statistic

Z = β1 − β2√∑(
1

fi

)
where fi is the frequency in the ith cell and Z is the standard normal variate, i.e. N(0, 1).



GOKA: “CHAP05D” — 2006/6/10 — 17:23 — PAGE 157 — #21

THE TESTS 157

Example

A social researcher wishes to test a hypothesis concerning the behaviour of adult
couples. She compares a man’s behaviour with a consequent spouse’s behaviour for
couples in financial distress and for those not in financial distress. A log-odds ratio test
is used. In this case the Z value of 1.493 is less than the critical value of 1.96 from
Table 1. She concludes that there is insufficient evidence to suggest financial distress
affects couples’ behaviour in the way she hypothesizes.

Numerical calculation

Distressed couples Non-distressed couples
Wt+1 Wt+1

Ht 1 0 1 0

1 76 100 80 63
0 79 200 43 39

β1 = loge
76 × 200

79 × 100
= 0.654; β2 = loge

80 × 39

43 × 63
= 0.141

Z = 0.654 − 0.141√
1

76
+ 1

79
+ 1

100
+ 1

200
+ 1

80
+ 1

43
+ 1

63
+ 1

39

= 1.493

The critical value at α = 0.05 is 1.96 [Table 1].
The calculated value is less than the critical value.
Hence it is not significant and the null hypothesis (that β is not different across groups)
cannot be rejected.
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Test 85 F -test for testing the coefficient of multiple
regression

Object

A multiple linear regression model is used in order to test whether the population value
of each multiple regression coefficient is zero.

Limitations

This test is applicable if the observations are independent and the error term is normally
distributed with mean zero.

Method

Let X1, X2, . . . , Xk be k independent variables and X1i, X2i, . . . , Xki be their fixed values,
corresponding to dependent variables Yi. We consider the model:

Yi = β0 + β1X ′
1i + · · · + βkX ′

ki + ei

where X ′
ji = Xji − X̄j and the ei are independently N(0, σ 2).

We are interested in testing whether the population value of each multiple regression
coefficient is zero. We want to test:

H0: β1 = β2 = · · · = βk = 0 against H1: not all βk = 0

for k = 1, 2, . . . , p − 1, where p is the number of parameters. The error sum of squares
is

s2
E =

∑
i

(Yi − Ȳ)2 −
∑

j

bj

∑
i

YiX
′
ji

with n − k − 1 degrees of freedom, where bj is the least-squares estimator of βj.
The sum of squares due to H0 is

s2
H =

∑
j

bj

∑
i

YiX
′
ji

with k degrees of freedom. Denoting the corresponding mean squares by s̄2
E and s̄2

H
respectively, then, under H0, F = s̄2

H/s̄2
E follows the F-distribution with (k, n − k − 1)

degrees of freedom and can be used for testing H0.
The appropriate decision rule is: if the calculated F � Fp−1, n−p; 0.05, do not reject

H0; if the calculated F > Fp−1, n−p; 0.05, reject H0.

Example

In an investigation of the strength of concrete (Y ), a number of variables were measured
(X1, X2, . . . , Xk) and a multiple regression analysis performed. The global F test is a
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test of whether any of the X variables is significant (i.e. any of the βi coefficients,
i = 1, . . . , k are non-zero).

The calculated F value of 334.35 is greater than the tabulated F value of 3.81 [Table 3].
So at least one of the X variables is useful in the prediction of Y .

Numerical calculation

n = 16, p = 3, ν = p − 1, ν2 = n − p
Critical value F2, 13; 0.05 = 3.81 [Table 3].
From the computer output of a certain set of data

s̄2
H = 96.74439, s̄2

E = 0.28935

F = 96.74439/0.28935 = 334.35

Hence reject the null hypothesis.
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Test 86 F -test for variance of a random effects model

Object

To test for variance in a balanced random effects model of random variables.

Limitations

This test is applicable if the random variables are independently and normally
distributed with mean zero.

Method

Let the random variable Yij···m for a balanced case be such that:

Yij···m = µ + ai + bij + cijk + · · · + eijk···m

where µ is a constant and the random variables ai, bij, cijk , . . . , eijk···m are completely
independent and ai ∼ N(0, σ 2

a ), . . . , bij ∼ N(0, σ 2
b ), cijk ∼ N(0, σ 2

c ), . . . , eijk···m ∼
N(0, σ 2

e ).
Then the test for H0 = σ 2

i = σ 2
j (i �= j) against H1 = σ 2

i > σ 2
j is given by s2

i /s2
j

which is distributed as (σ 2
i /σ 2

j )F and follows the F-distribution with (fi, fj) degrees of

freedom. Here s2
i and s2

j are the estimates of σ 2
i and σ 2

j .

Example

An electronic engineer wishes to test for company and sample electrical static dif-
ferences for a component used in a special process. He selects three companies at
random and also two samples. He collects four measurements of static from selected
components. Are the companies all the same with respect to electrical resistance of
the particular component? His analysis of variance calculation produces an F value of
1.279. He compares this with the tabulated F value of 9.55 [Table 3] and concludes
that there is no evidence to suggest company differences.

Numerical calculation

s2
1 = 5.69, s2

2 = 4.45, f1 = 2, f2 = 3

H0: σ 2
1 = σ 2

2 ; H1: σ 2
1 > σ 2

2

F = s2
1

s2
2

= 5.69

4.45
= 1.279

Critical value F2,3; 0.05 = 9.55 [Table 3]
Hence we do not reject the null hypothesis H0.
f1 = n1 − 1 Here: n1 = 3, n2 = 2
f2 = 2n2 − 1
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Test 87 F -test for factors A and B and an interaction
effect

Object

To test for the homogeneity of factors A and B and the absence of an interaction effect.

Limitations

This test is applicable if the random variables and interaction effects are jointly normal
with mean zero and the error terms are independently normally distributed with mean
zero.

Method

Let the factor having fixed levels be labelled A and represented by the columns of the
table and let the randomly sampled factor be B and represented by the rows. Let

Yijk = µ + αi + bk + cjk + eijk

where
αi is the fixed effect of the treatment indicated by the column i;
bk = random variable associated with the kth row;
cjk = random interaction effect operating on the ( j, k)th cell; and
eijk = random error associated with observation i in the ( j, k)th cell.

We make the following assumptions:
1. bk and cjk are jointly normal with mean zero and with variance σ 2

B and σ 2
AB,

respectively;
2. eijk are normally distributed with mean zero and variance σ 2

E;
3. eijk are independent of bk and cjk;
4. eijk are independent of each other.

Denoting the column, interaction, row and error mean squares by s̄2
C, s̄2

I , s̄2
R and s̄2

E
respectively, then s̄2

C/s̄2
I ∼ Fc−1,(r−1)(c−1) provides an appropriate test for the column

effects, i.e. H0: σ 2
A = 0; s̄2

R/s̄2
E ∼ Fr−1, rc(n−1) provides a test for H0: σ 2

B = 0; and
s̄2

I /s̄2
E ∼ F(r−1)(c−1),r(n−1) provides a test for H0: σ 2

AB = 0.

Example

An educational researcher has collected data on pupils’ performance in relation to three
tasks; six classes are compared. The analysis of variance suggests that neither classroom
nor task factors is significant but their interaction is significant.
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Numerical calculation

In the following table the values are a combination of classroom and task and represent
the independent performance of two subjects in each cell.

Tasks
Classroom I II III Total

1 7.8 11.1 11.7
(16.5) (23.1) (21.7) 61.3

8.7 12.0 10.0
2 8.0 11.3 9.8

(17.2) (21.9) (21.7) 60.8
9.2 10.6 11.9

3 4.0 9.8 11.7
(10.9) (19.9) (24.3) 55.1

6.9 10.1 12.6
4 10.3 11.4 7.9

(19.7) (21.9) (16.0) 57.6
9.4 10.5 8.1

5 9.3 13.0 8.3
(19.9) (24.7) (16.2) 60.8

10.6 11.7 7.9
6 9.5 12.2 8.6

(19.3) (24.5) (19.1) 62.9
9.8 12.3 10.5

Total 103.5 136.0 119.0 358.5

CF (correction factor) = 358.52/36 = 3570.0625
TSS = 7.82 + · · · + 10.52 − (3570.0625) = 123.57
The sums of squares are given by

s2
C = (103.5)2 + (136.0)2 + (119.0)2

12
− CF = 44.04

s2
R = 61.32 + · · · + 62.92

6
− CF = 6.80

s2
E = 7.82 + · · · + 10.52 − 16.52 + · · · + 19.12

2
= 14.54

s2
I = 123.57 − 44.04 − 6.8 − 14.54 = 58.19
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ANOVA table

Source DF SS MS F

Column 2 44.04 22.02 3.78
Row 5 6.80 1.36 1.68
Interaction 10 58.19 5.82 7.19
Error 18 14.54 0.81

Total 35 123.57

Critical values F10,18;0.05 = 2.41 [Table 3]
F2,10; 0.05 = 4.10
F5,18; 0.05 = 2.77

Hence H0: σAB = 0 is rejected.
H0: σ 2

A = 0 is not rejected.

H0: σ 2
B = 0 is not rejected.
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Test 88 Likelihood ratio test for the parameter of
a rectangular population

Object

To test for one of the parameters of a rectangular population with probability density
function

f0(X) =
⎧⎨⎩

1

2β
, α − β � X � α + β

0, otherwise.

Limitations

This test is applicable if the observations are a random sample from a rectangular
distribution.

Method

Let X1, X2, . . . , Xn be a random sample from the above rectangular population. We are
interested in testing H0: α = 0 against H1: α �= 0. Then, the likelihood ratio test
criterion for testing H0 is:

λ =
(

X(n) − X(1)

2Z

)n

=
(

R

2Z

)n

,

where R is the sample range and Z = max[−X(1), X(n)]. Then the asymptotic
distribution of 2 loge λ is χ2

2 .

Example

An electronic component test profile follows a rectangular distribution at stepped input
levels. An electronic engineer wishes to test a particular component type and collects
his data. He uses a likelihood ratio test. He obtains a value of his test statistic of −4.2809
and compares this with his tabulated value. He thus rejects the null hypothesis that one
parameter is zero.

Numerical calculation

Consider (−0.2, −0.3, −0.4, 0.4, 0.3, 0.5) as a random sample from a rectangular
distribution. Here,

n = 6

R = 0.5 − (−0.2) = 0.7, Z = max[0.4, 0.5] = 0.5

λ =
(

R

2Z

)6

= (0.7)6 = 0.1176, 2 loge λ = −4.2809

Critical value χ2
2; 0.05 = 5.99 [Table 5].

Hence we reject the null hypothesis that α = 0.
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Test 89 Uniformly most powerful test for the
parameter of an exponential population

Object

To test the parameter (θ) of the exponential population with probability density function

f (X , θ) = θe−θX , X > 0.

Limitations

The test is applicable if the observations are a random sample from an exponential
distribution.

Method

Let X1, X2, . . . , Xn be a random sample from an exponential distribution with parame-
ter θ . Let our null hypothesis be H0: θ = θ0 against the alternative H1: θ = θ1(θ1 �= θ0).

Case (a) θ1 > θ0: The most powerful critical region is given by:

W0 =
[

X =
∑

i

Xi � χ2
2n; 1−α/2θ0

]
.

Since W0 is independent of θ1, so W0 is uniformly most powerful for testing H0: θ = θ0
against H1: θ > θ0.

Case (b) θ1 < θ0: The most powerful critical region is given by:

W1 =
[
X =

∑
Xi > χ2

2n; α/2θ0

]
.

Again W1 is independent of θ1 and so it is also uniformly most powerful for testing
H0: θ = θ0 against H1: θ < θ0.

Example

An electronic component is tested for an exponential failure distribution with a given
parameter. The given example produces a critical region for the test of parameter equal
to 1 against the alternative hypothesis that it equals 2.

Numerical calculation

Let us consider a sample of size 2 from the population f (X1θ) = θe−θX , X > 0.
Consider testing H0: θ = 1 against H1: θ = 2, i.e. θ > θ0. The critical region is

W =
{
X
/∑

Xi � χ2
0.95,4/2

}
=
{
X
/∑

Xi � 0.71/2
}

[Table 5]

=
{
X
/∑

Xi � 0.36
}
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Test 90 Sequential test for the parameter of
a Bernoulli population

Object

To test the parameter of the Bernoulli population by the sequential method.

Limitations

This test is applicable if the observations are independent and identically follow the
Bernoulli distribution.

Method

Let X1, X2, . . . , Xm be independent and identically distributed random variables having
the distribution with probability density function (PDF)

f (x)
0 =

{
θx(1 − θ)1−x, X = 0, 1
0, otherwise.

where 0 < θ < 1. We want to test H0: θ = θ0 against H1: θ = θ1.
We fail to reject H0 if Sm � am, and we reject H0 if Sm � rm. We continue sampling,

i.e. taking observations, if am < Sm < rm, where Sm =∑m
i=1 Xi and

am =
log

β

1 − α

log

(
θ1

θ0

)
− log

(
1 − θ1

1 − θ0

) +
m log

(
1 − θ0

1 − θ1

)
log

(
θ1

θ0

)
− log

(
1 − θ1

1 − θ0

)

rm =
log

1 − β

α

log

(
θ1

θ0

)
− log

(
1 − θ1

1 − θ0

) +
m log

(
1 − θ0

1 − θ1

)
log

(
θ1

θ0

)
− log

(
1 − θ1

1 − θ0

) .

Example

Same as Numerical calculation.

Numerical calculation

While dealing with the sampling of manufactured products, θ may be looked upon as
the true proportion of defectives under a new production process. A manufacturer may
be willing to adopt the new process if θ � θ0 and will reject it if θ � θ1 and he may
not be decisive if θ0 < θ < θ1. To reach a decision, he may use a sequential sampling
plan, taking one item at each stage and at random. Here Sm will be the number of
defectives up to the mth stage, am the corresponding acceptance number and rm the
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rejection number. If θ0 = 0.04 and θ1 = 0.08, α = 0.15, β = 0.25, then the graphical
representation of the sequential plan is:

As soon as (m, Sm) lies on or below the line for am or on or above the line for rm,
sampling is to be stopped; the new process is to be considered in the former case and
rejected in the latter.
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Test 91 Sequential probability ratio test

Object

A sequential test for the ratio between the mean and the standard deviation of a normal
population where both are unknown.

Limitations

This test is applicable if the observations are normally distributed with unknown mean
and variance.

Method

Let X ∼ N(µ, σ 2), where both µ and σ 2 are unknown. We want to find a sequential
test for testing H0: µ/σ = r0 against H1: µ/σ = r1. The sequential probability ratio
test procedure is as follows.

1. Continue sampling if bn < tn < an, where

tn =

n∑
i=1

Xi√√√√ n∑
i=1

X2
i

=

n∑
i=1

yi√√√√ n∑
i=1

y2
i

where yi = Xi/|Xi|, i = 1, 2, . . . , n,

an = log
1 − β

α
and bn = log

β

1 − α
.

2. Fail to reject H0 if tn � bn and reject H0 if tn � an.

Example

A useful measure is the ratio of mean divided by standard deviation since it is inde-
pendent of measured units. Here we set up a sequential test for the ratio equal to 0.2
versus the alternative that it is equal to 0.4. The rule is that if the test statistic is less
than log(7/15) do not reject the null hypothesis and if the test statistic is greater than
log(13/5) then reject the null hypothesis; otherwise continue to sample.

Numerical calculation

Consider a sample from N(µ, σ 2) where µ and σ are both unknown. Then we want a
sequential test for testing H0: µ/σ = 0.2 against H1: µ/σ = 0.4.
Let α = 0.25, β = 0.35, an = log(0.65/0.25), bn = log(0.35/0.75).
If log 7/15 < tn < log 13/5 then continue sampling.
If tn � log 7/15 do not reject H0, and if tn � log 13/5 reject H0.
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Test 92 Durbin–Watson test

Object

To test whether the error terms in a regression model are autocorrelated.

Limitations

This test is applicable if the autocorrelation parameter and error terms are independently
normally distributed with mean zero and variance s2.

Method

This test is based on the first-order autoregressive error model εt = ϕεt−1 + ut where
ϕ is the autocorrelation parameter and the ut , are independently normally distributed
with zero mean and variance σ 2. When one is concerned with positive autocorrelation
the alternatives are given as follows:

H0: ϕ � 0 H1: ϕ > 0.

Here H0 implies that error terms are uncorrelated or negatively correlated, while H1
implies that they are positively autocorrelated. This test is based on the difference
between adjacent residuals εt − εt−1 and is given by

d =

n∑
t=2

(et − et−1)
2

n∑
t=1

e2
t

where et is the regression residual for period t, and n is the number of time periods
used in fitting the regression model.

When the error terms are positively autocorrelated the adjacent residuals will tend to
be of similar magnitude and the numerator of the test statistic d will be small. If the error
terms are either not correlated or negatively correlated et and et−1 will tend to differ
and the numerator of the test statistic will be larger. The exact action limit for this test
is difficult to calculate and the test is used with lower bound dL and the upper bound
dU . When the statistic d is less than the lower bound dL, we conclude that positive
autocorrelation is present. Similarly, when the test statistic exceeds the upper bound
dU , we conclude that positive autocorrelation is not present. When dL < d < dU , the
test is inconclusive.

Example

Data on the sales (£m) of a large company (Y) compared with its sector total (X) have
been collected over a five-year period. In order to test the significance of the regression
of Y on X, and to obtain confidence intervals on predictions, it is necessary to perform a
test of serial correlation on the error term or residuals. The Durbin–Watson test statistic
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(d) is equal to 0.4765 and is less than the lower d value (dL) of 1.20 [Table 33]. So the
residuals are positively autocorrelated. An appropriate adjustment to the error sum of
squares is necessary.

Numerical calculation

n = 20, α = 0.05

Quarter-t Company sale Industry sales
Yi Xi

1 77.044 746.512
2 78.613 762.345
3 80.124 778.179
4 – –
– – –
– – –
– – –
– – –
20 102.481 1006.882

A computer run of a regression package provided us with the value of the test statistic
d = 0.4765: dL = 1.20 and dU = 1.41 from Table 33. Since d = 0.4765 < 1.20, the
error terms are positively autocorrelated.
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Test 93 Duckworth’s test for comparing the medians
of two populations

Object

A quick and easy test for comparing the medians of two populations which could be
used for a wide range of m and n observations.

Limitations

This is not a powerful test but it is easy to use and the table values can be easily obtained.
It works only on the largest and the smallest values of the observations from different
populations.

Method

Consider the smallest observation from the X population and the largest from the Y
population. Then the test statistic, D, is the sum of the overlaps, the number of X
observations that are smaller than the smallest Y , plus the number of Y observations
that are larger than the largest X. If either 3+4n/3 � m � 2n or vice versa we subtract
1 from D. Under these circumstances, the table of critical values consists of the three
numbers; 7, 10 and 13. If D � 7 we reject the hypothesis of equal medians at α = 0.05.

Example

Two groups of workers are compared in terms of their daily rates of pay. Are they
significantly different? We use Duckworth’s test since the median is an appropriate
measure of central tendency for an income variable. The test statistic is 5 which is less
than 7 and so not significant. We have no reason to assume any difference in rates of
pay between the two groups.

Numerical calculation

m = n = 12

1 2 3 4 5 6 7 8 9 10 11 12
66.3 68.3 68.5 69.2 70.0 70.1 70.4 70.9 71.1 71.2 72.1 72.1
X X X Y Y X X Y X X Y Y

13 14 15 16 17 18 19 20 21 22 23 24
72.1 72.7 72.8 73.3 73.6 74.1 74.2 74.6 74.7 74.8 75.5 75.8
X X Y Y X X Y Y Y X Y Y

We note that there are three X observations below all the Y observations and two Ys
above all the Xs. The total is D = 5, which is less than 7 and so not significant.
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Test 94 χ2-test for a suitable probabilistic model

Object

Many experiments yield a set of data, say X1, X2, . . . , Xn, and the experimenter is often
interested in determining whether the data can be treated as the observed values of the
random sample X1, X2, . . . , Xn from a given distribution. That is, would this proposed
distribution be a reasonable probabilistic model for these sample items?

Limitations

This test is applicable if both distributions have the same interval classification and the
same number of elements. The observed data are observed by random sampling.

Method

Let X1 denote the number of heads that occur when coins are tossed at random, under
the assumptions that the coins are independent and the probability of heads for each
coin has a binomial distribution. An experiment resulted in certain observed values at
Yi corresponding to 0, 1, 2, 3 and 4 heads.

Let A1 = {0}, A2 = {1}, A3 = {2}, A4 = {3}, A5 = {4} be the corresponding heads
and if πi = P(X ∈ Ai) when X is B(4, 1

2 ), then we have

π1 = π5 =
(

4
0

)(
1

2

)4

= 0.0625

π2 = π4 =
(

4
1

)(
1

2

)4

= 0.25

π3 =
(

4
2

)(
1

2

)4

= 0.375.

If α = 0.05, then the null hypothesis

H0: p1 = π1, p2 = π2, p3 = π3, p4 = π4, p5 = π5

is rejected if the calculated value is greater than the tabulated value using[
qk−1 =

k∑
i=1

(yi − nπi)
2

nπi

]
∼ χ2

k−1.

Example

We wish to test whether a binomial distribution is a good model for an application area.
A full group of prisoner trainees consists of up to five members. Each full group must
have two escorts if five members turn up for training. If up to three turn up for training
then only one escort is needed. Data is collected over 100 group turnouts. Is a binomial
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model a good fit? The calculated chi-squared statistic of 4.47 is less than the critical
value of 9.49 [Table 5] so a binomial model is an acceptable model for this data.

Numerical calculation

In this case y1 = 7, y2 = 18, y3 = 40, y4 = 31 and y5 = 4. The computed value is

q4 = (7 − 6.25)2

6.25
+ (18 − 25)2

25
+ (40 − 37.5)2

37.5
+ (31 − 25)2

25

+ (4 − 6.25)2

6.25
= 4.47.

Critical value χ2
4 (0.05) = 9.49 [Table 5].

Hence the hypothesis is not rejected. Thus the data support the hypothesis that B(4, 1
2 )

is a reasonable probabilistic model for X .
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Test 95 V -test (modified Rayleigh)

Object

To test whether the observed angles have a tendency to cluster around a given angle
indicating a lack of randomness in the distribution.

Limitations

For grouped data the length of the mean vector must be adjusted, and for axial data all
angles must be doubled.

Method

Given a random sample of n angular values 
1, 
2, . . . , 
n and a given theoretical
direction determined by an angle θ0, then the test statistic for the test of randomness is:

V = (2n)
1
2 ϑ

where ϑ = r cos(
̄ − θ0) and r is the length of the mean vector

r = 1

n
+
[(∑

cos 
i

)2 +
(∑

sin 
i

)2
]

= (x̄2 + ȳ2)
1
2


̄ =

⎧⎪⎪⎨⎪⎪⎩
arctan

(
ȳ

x̄

)
if x̄ > 0

180◦ + arctan

(
ȳ

x̄

)
if x̄ < 0.

If V is greater than or equal to the critical V(α), the null hypothesis, that the parent
population is uniformly distributed (randomness), is rejected.

Example

A radar screen produces a series of traces; angles from a centre are measured. Do these
cluster around a value of 265 degrees? The calculated V statistic is 3.884, which is
greater than the critical value of 2.302 [Table 34]. So the angles are not random and do
cluster.

Numerical calculation

n = 15


1 = 250◦, 
2 = 275◦, 
3 = 285◦, 
4 = 285◦, 
5 = 290◦, 
6 = 290◦,


7 = 295◦, 
8 = 300◦, 
9 = 305◦, 
10 = 310◦, 
11 = 315◦, 
12 = 320◦,


13 = 330◦, 
14 = 330◦, 
15 = 5◦, θ0 = 265◦

x̄ = 1

n
(cos 
1 + · · · + cos 
15) = 7.287

15
= 0.4858
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ȳ = 1

n
(sin 
1 + · · · + sin 
15) = −11.367

15
= −0.7578

r = (x̄2 + ȳ2)
1
2 = (0.48582 + 0.75782)

1
2 = 0.9001


̄ = arctan

(−0.7578

0.4858

)
= −57.3◦, which is equivalent to 303◦.

ϑ = r cos(
̄ − θ0) = 0.9001 × cos(303◦ − 265◦) = 0.9001 × 0.7880 = 0.7093

V = (2 × 15)
1
2 × 0.7093 = 5.4772 × 0.7092 = 3.885

Critical value V15; 0.01 = 2.302 [Table 34].
Hence reject the null hypothesis of randomness.
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Test 96 Watson’s U2
n-test

Object

To test whether the given distribution fits a random sample of angular values.

Limitations

This test is suitable for both unimodal and the multimodal cases. The test is very
practical if a computer program is available. It can be used as a test for randomness.

Method

Given a random sample of n angular values 
1, 
2, . . . , 
n rearranged in ascending
order: 
1 � 
2 � · · · � 
n. Suppose F(
) is the distribution function of the given
theoretical distribution and let

Vi = F(
i), i = 1, 2, . . . , n

V̄ = 1

n

∑
Vi and Ci = 2i − 1.

Then the test statistic is:

U2
n =

n∑
i=1

V2
i −

n∑
i=1

(
CiVi

n

)
+ n

[
1
3 −

(
V̄ − 1

2

)2
]

.

If the sample value of U2
n exceeds the critical value the null hypothesis is rejected.

Otherwise the fit is satisfactory.

Example

A particle atomizer produces traces on a filter paper, which is calibrated on an angular
scale. Are the particles equally spaced on an angular scale? The distribution is one
of equal angles and the calculated U squared statistic is 0.1361. This is smaller than
the critical value of 0.184 [Table 35] so the null hypothesis of no difference from the
theoretical distribution is accepted.

Numerical calculation

n = 13, F(
) = 
/360◦, 
1 = 20◦, 
2 = 135◦, 
3 = 145◦, 
4 = 165◦,

5 = 170◦, 
6 = 200◦, 
7 = 300◦, 
8 = 325◦, 
9 = 335◦, 
10 = 350◦,

11 = 350◦, 
12 = 350◦, 
13 = 355◦

Vi = 
i/13, i = 1, . . . , 13∑
Vi = 8.8889,

∑
V2

i = 7.2310,
∑

CiVi/n = 10.9893, V̄ = 0.68376

U2
n = 7.2310 − 10.9893 + 13

[
1
3 − (0.18376)2

]
= 0.1361

Critical value U2
13; 0.05 = 0.184 [Table 35].

Do not reject the null hypothesis. The sample comes from the given theoretical
distribution.
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Test 97 Watson’s U2-test

Object

To test whether two samples from circular observations differ significantly from each
other with regard to mean direction or angular variance.

Limitation

Both samples must come from a continuous distribution. In the case of grouping the
class interval should not exceed 5◦.

Method

Given two random samples of n and m circular observations 
1, 
2, . . . , 
n and
�1, �2, . . . , �m, let n + m = N and d1, d2, . . . , dN (k = 1, 2, . . . , N) be the differ-
ences between the sample distribution function, and let d̄ denote the mean of the N
differences. Then the test statistic is given by:

U2 = nm

N2

⎡⎣ N∑
k=1

d2
k − 1

N

(
N∑

k=1

dk

)2⎤⎦ .

If U2 > U2(α), reject the null hypothesis.

Example

Two prototype machines produce two angular displacement scales. Are they essentially
the same with regard to mean direction and angular variance? The calculated U squared
statistic is 0.261. Since this is greater than the critical value of 0.185 [Table 36] the null
hypothesis of no difference is rejected. The two prototype machines differ.

Numerical calculation

n = 8, m = 10,
16∑

k=1

dk = 6.525,
16∑

k=1

d2
k = 3.422

U2 = 80

182

(
3.422 − 6.525 × 6.525

18

)
= 0.261

Critical value U2
8,10; 0.05 = 0.185 [Table 36].

The calculated value is greater than the critical value.

Reject the hypothesis. The two samples deviate significantly from each other.
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Test 98 Watson–Williams test

Object

To test whether the mean angles of two independent circular observations differ
significantly from each other.

Limitations

Samples are drawn from a von Mises distribution and the concentration parameter
k (>2) must have the same value in each population.

Method

Given two independent random samples of n and m circular observations

1, 
2, . . . , 
n and �1, �2, . . . , �m, for each sample, calculate the components of
the resultant vectors

C1 =
n∑

i=1

cos 
i S1 =
n∑

i=1

sin 
i

C2 =
m∑

i=1

cos �i S2 =
m∑

i=1

sin �i

with the resultant lengths

R1 = (C2
1 + S2

1)
1
2 R2 = (C2

2 + S2
2)

1
2 .

The directions of the resultant vectors are given by 
̄ and �̄. For the combined sample,
the components of the resultant vector are

C = C1 + C2 and S = S1 + S2.

Hence, the length of the resultant vector is

R = (C2 + S2)
1
2 .

To test the unknown mean angles of the population use the test statistic

F = g(N − 2)
R1 + R2 − R

N − (R1 + R2)

where N = n + m and g = 1 − 3/8k̂, with k determined from

R̄ = R1 + R2

N

and Table 37. Reject the null hypothesis if the calculated value F is greater than the
critical value F1, N−2.



GOKA: “CHAP05D” — 2006/6/10 — 17:23 — PAGE 179 — #43

THE TESTS 179

Example

A trainee-building surveyor has calibrated two angular measuring devices. Do they
produce similar results? She takes ten measurements from each device and then uses
the Watson–Williams test to compare them. Her F test statistic is 8.43, which is greater
than the critical value of 8.29 [Table 3]. So the null hypothesis of no difference between
the samples is rejected suggesting that the two devices have been calibrated differently.

Numerical calculation

n = 10, m = 10, N = 20, ν1 = 1, ν2 = N − 2
C1 = 9.833, C2 = 9.849, C = 19.682
S1 = −1.558, S2 = 0.342, S = −1.216
R1 = 9.956, R2 = 9.854, R = 19.721

R̄ = 0.991 for k̂ greater than 10, g = 1
k̂ = 50.241 [Table 37]

F = 18 × 0.089

0.190
= 8.432

Critical value F1,18; 0.01 = 8.29 [Table 3].
Reject the null hypothesis.
Hence the mean directions differ significantly.
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Test 99 Mardia–Watson–Wheeler test

Object

To test whether two independent random samples from circular observations differ
significantly from each other regarding mean angle, angular variance or both.

Limitation

There are no ties between the samples and the populations have a continuous circular
distribution.

Method

Consider two independent samples of n and m circular observations 
1, 
2, . . . , 
n and
�1, �2, . . . , �m. We observe the order in which the random samples are arranged and
then alter the space between successive sample points in such a way that all these spaces
become the same size. Having spaced the sample points equally, the sample points are
then ranked. Let r1, r2, . . . , rn be the ranks of the first sample and βi = riδ (i = 1, . . . , n)

be the angles, where δ and N = n + m are known as uniform scores. Then the resultant
vector of the first sample has components

C1 =
∑

cos βi S1 =
∑

sin βi

and the length of the resultant vector is

R1 = (C2 + S2)
1
2 .

The test statistic is given by

B = R2
1.

If B > Bα , reject the null hypothesis. When N > 17, the quantity χ2 = 2(N −1)R2
1/nm

has a χ2-distribution with 2 degrees of freedom if H0 is true.

Example

A new improved boat navigation system is compared with the old one. Is the way they
work similar in terms of the observations taken? A sailor uses the Mardia–Watson–
Wheeler test and computes a B statistic of 3.618. This is smaller than the tabulated
value of 9.47 [Table 37] so he concludes that there is no difference between the two
systems.

Numerical calculation

n = 6, m = 4, N = 10, δ = 360◦/10 = 36◦, α = 0.05
Here m is the smaller sample size.
For the first sample:
r1 = 1, r2 = 2, r3 = 3, r4 = 4, r5 = 8, r6 = 9
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β1 = 36◦, β2 = 72◦, β3 = 108◦, β4 = 144◦, β5 = 288◦, β6 = 324◦
C1 = 1.118, S1 = 1.539, R1 = 1.902
B = 3.618
Critical value BN , m; α = B10, 4; 0.05 = 9.47 [Table 38].
The calculated value B is less than the critical value Bα .
Hence there are no significant differences between the samples. (The second sample
would lead to the same result.)
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Test 100 Harrison–Kanji–Gadsden test (analysis of
variance for angular data)

Object

To test whether the treatment effects of the q independent random samples from von
Mises populations differ significantly from each other.

Limitations

1. Samples are drawn from a von Mises population.
2. The concentration parameter k has the same value for each sample.
3. k must be at least 2.

Method

Given a one-way classification situation with µ0, βj and eij denoting the overall mean
direction, treatment effect and random error variation respectively, then


ij = µ0 + βj + eij, i = 1, . . . , p; j = 1, 2, . . . , q

where each observation 
ij is an independent observation from a von Mises distribution
with mean µ0 + βj and concentration parameter k.

For the one-way situation, the components of variation are similarly

k

[
N − R2

N

]
= k

⎡⎣ q∑
j=1

(
R2·j
N·j

− R2

N

)⎤⎦+ k

⎡⎣N −
q∑

j=1

(
R2·j
N·j

)⎤⎦
(Total variation) = (Between variation) + (Residual variation)

and the test statistic for a large value of k is given by

F ′
q−1,N−q = β

⎡⎢⎢⎢⎢⎢⎢⎣
(N − q)

⎛⎝ q∑
j=1

(
R2·j
N·j

)
− R2

N

⎞⎠
(q − 1)

⎧⎨⎩N −
q∑

j=1

(
R2·j
N·j

)⎫⎬⎭

⎤⎥⎥⎥⎥⎥⎥⎦
where

∑p
i=1

∑q
j=1 cos(
ij − µ̂0) = R, and 
̄·j are the jth mean angles with

corresponding resultant length r·j.
Let x·i and y·j be the rectangular components of r·j. Then:

r· · =
⎡⎢⎣
⎛⎝1

q

q∑
j=1

r·j cos 
̄·j

⎞⎠2

+
⎛⎝1

q

q∑
j=1

r·j sin 
̄·j

⎞⎠2
⎤⎥⎦

1
2
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and R = Nr· ·, R·j =∑q
j=1 cos(
ij − 
̄·j),


̄·j = arctan

(
ȳ

x̄

)
, r·j = [(x̄2 + ȳ2)] 1

2

where

x̄ = 1

q
[cos 
1 j + cos 
2 j + · · · + cos 
q j]

ȳ = 1

q
[sin 
1 j + sin 
2 j + · · · + sin 
q j]

k̂ is found by calculating the resultant R̄ and using Table 37. Here R̄ = R/N .

Example

Five different magnification systems are compared for their effect on automatic angular
differentiation. A flight simulation researcher uses the Harrison–Kanji–Gadsden test
and computes the F statistic as 1.628. This is less than the tabulated value of 2.37
[Table 3]. So the researcher concludes that all five magnification systems are equally
effective.

Numerical calculation

Magnification

100 82, 71, 85, 89, 78, 77, 74, 71, 68, 83, 72, 73, 81, 65, 62, 90, 92, 80, 77, 93, 75, 80, 69, 74,
77, 75, 71, 82, 84, 79, 78, 81, 89, 79, 82, 81, 85, 76, 71, 80, 94, 68, 72, 70, 59, 80, 86, 98,
82, 73

200 75, 74, 71, 63, 83, 74, 82, 78, 87, 87, 82, 71, 60, 66, 63, 85, 81, 78, 80, 89, 82, 82, 92, 80,
81, 74, 90, 78, 73, 72, 80, 59, 64, 78, 73, 70, 79, 79, 77, 81, 72, 76, 69, 73, 75, 84, 81, 51,
76, 88

400 70, 76, 79, 86, 77, 86, 77, 90, 88, 82, 84, 70, 87, 61, 71, 89,72, 90, 74, 88, 82, 68, 83, 75,
90, 79, 89, 78, 74, 73, 71, 80, 83, 89, 68, 81, 47, 88, 69, 76, 71, 67, 76, 90, 84, 70, 80, 77,
93, 89

1200 78, 90, 72, 91, 73, 79, 82, 87, 78, 83, 74, 82, 85, 75, 67, 72, 78, 88, 89, 71, 73, 77, 90, 82,
80, 81, 89, 87, 78, 73, 78, 86, 73, 84, 68, 75, 70, 89, 54, 80, 90, 88, 81, 82, 88, 82, 75, 79,
83, 82

400 × 1.3 88, 69, 64, 78, 71, 68, 54, 80, 73, 72, 65, 73, 93, 84, 80, 49, 78, 82, 95, 69, 87, 83, 52, 79,
85, 67, 82, 84, 87, 83, 88, 79, 83, 77, 78, 89, 75, 72, 88, 78, 62, 86, 89, 74, 71, 73, 84, 56,
77, 71

q = 5, N.1 = N.2 = · · · = N.q = 50, N = 250
ν1 = q − 1 = 4, ν2 = N − q = 245

R = 238.550,
q∑

j=1

[
R2·j
N·j

]
= 228.1931,

R2

N
= 227.6244
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Between variation = 0.5687, within variation = 21.8069

F ′
q−1, N−q = β

[
0.142175

0.089007

]
= β(1.597337)

k̂ = 11.02,
1

β
= 1 − 1

5k̂
− 1

10k̂2
or β = 1.01959,

where R̄ = R

N
= 0.954 [Table 37]

Modified F ′ = β × F4,245 = 1.01959 × 1.597337 or F ′
4,245 = 1.628

Critical value F4, 245; 0.05 = 2.37 [Table 3].
Hence there are no significant differences between the treatments.
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Table 1 The normal curve

(a) Area under the normal curve z0

Area

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0124 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Table 1(a) continued

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Source: Walpole and Myers, 1989
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(b) critical values for a standard normal distribution

The normal distribution is symmetrical with respect to µ = 0.

Level of significance α

zTwo-sided One-sided

0.001 0.0005 3.29
0.002 0.001 3.09
0.0026 0.0013 3.00
0.01 0.05 2.58
0.02 0.01 2.33
0.0456 0.0228 2.00
0.05 0.025 1.96
0.10 0.05 1.64
0.20 0.10 1.28
0.318 0.159 1.00
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tα

α

0

Table 2 Critical values of the t-distribution

Level of significance α

ν 0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
∞ 1.282 1.645 1.960 2.326 2.576

Source: Fisher and Yates, 1974
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tα0

α

Table 3 Critical values of the F -distribution

Level of significance α = 0.05

ν1
ν2 1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88
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Table 3 continued
Level of significance α = 0.05

ν1
ν2 10 12 15 20 24 30 40 60 120 ∞

1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table 3 continued
Level of significance α = 0.01

ν1
ν2 1 2 3 4 5 6 7 8 9

1 4052 4999 5403 5625 5764 5859 5928 5981 6022
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Table 3 continued
Level of significance α = 0.01

ν1
ν2 10 12 15 20 24 30 40 60 120 ∞

1 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13
4 14.55 14.37 14.20 14.02 13.39 13.84 13.75 13.65 13.56 13.46

5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Source: Pearson and Hartley, 1970
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Table 4 Fisher z-transformation

z(r) = 1
2 loge

(
1 + r

1 − r

)
= tanh−1r = 1.1513 log10

(
1 + r

1 − r

)
z 0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0601 0.0701 0.0802 0.0902
0.1 0.1003 0.1104 0.1206 0.1307 0.1409 0.1511 0.1614 0.1717 0.1820 0.1923
0.2 0.2027 0.2132 0.2237 0.2341 0.2448 0.2554 0.2661 0.2769 0.2877 0.2986
0.3 0.3095 0.3205 0.3316 0.3428 0.3541 0.3654 0.3769 0.3884 0.4001 0.4118
0.4 0.4236 0.4356 0.4477 0.4599 0.4722 0.4847 0.4973 0.5101 0.5230 0.5361
0.5 0.5493 0.5627 0.5763 0.5901 0.6042 0.6184 0.6328 0.6475 0.6625 0.6777
0.6 0.6931 0.7089 0.7250 0.7414 0.7582 0.7753 0.7928 0.8107 0.8291 0.8480
0.7 0.8673 0.8872 0.9076 0.9287 0.9505 0.9730 0.9962 1.0203 1.0454 1.0714
0.8 1.0986 1.1270 1.1568 1.1881 1.2212 1.2562 1.2933 1.3331 1.3758 1.4219

0.90 1.4722 1.4775 1.4828 1.4882 1.4937 1.4992 1.5047 1.5103 1.5160 1.5217
0.91 1.5275 1.5334 1.5393 1.5453 1.5513 1.5574 1.5636 1.5698 1.5762 1.5826
0.92 1.5890 1.5956 1.6022 1.6089 1.6157 1.6226 1.6296 1.6366 1.6438 1.6510
0.93 1.6584 1.6658 1.6734 1.6811 1.6888 1.6967 1.7047 1.7129 1.7211 1.7295
0.94 1.7380 1.7467 1.7555 1.7645 1.7736 1.7828 1.7923 1.8019 1.8117 1.8216
0.95 1.8318 1.8421 1.8527 1.8635 1.8745 1.8857 1.8972 1.9090 1.9210 1.9333
0.96 1.9459 1.9588 1.9721 1.9857 1.9996 2.0139 2.0287 2.0439 2.0595 2.0756
0.97 2.0923 2.1095 2.1273 2.1457 2.1649 2.1847 2.2054 2.2269 2.2494 2.2729
0.98 2.2976 2.3235 2.3507 2.3796 2.4101 2.4427 2.4774 2.5147 2.5550 2.5987
0.99 2.6467 2.6995 2.7587 2.8257 2.9031 2.9945 3.1063 3.2504 3.4534 3.8002

Source: Neave, 1978
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Table 5 Critical values for the χ2-distribution
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.

Level of significance α

Two-sided 0.20 0.10 0.05 0.01
One-sided 0.10 0.05 0.025 0.005

ν a b a b a b a b

1 0.016 2.71 39.10−4 3.84 98.10−5 5.02 16.10−5 6.63
2 0.21 4.61 0.10 5.99 0.05 7.38 0.02 9.21
3 0.58 6.25 0.35 7.81 0.22 9.35 0.11 11.34
4 1.06 7.78 0.71 9.49 0.48 11.14 0.30 13.28
5 1.61 9.24 1.15 11.07 0.83 12.83 0.55 15.09

6 2.20 10.64 1.64 12.59 1.24 14.45 0.87 16.81
7 2.83 12.02 2.17 14.07 1.69 16.01 1.24 18.48
8 3.49 13.36 2.73 15.51 2.18 17.53 1.65 20.09
9 4.17 14.68 3.33 16.92 2.70 19.02 2.09 21.67

10 4.87 15.99 3.94 18.31 3.25 20.48 2.56 23.21

11 5.58 17.28 4.57 19.68 3.82 21.92 3.05 24.73
12 6.30 18.55 5.23 21.03 4.40 23.34 3.57 26.22
13 7.04 19.81 5.89 22.36 5.01 24.74 4.11 27.69
14 7.79 21.06 6.57 23.68 5.63 26.12 4.66 29.14
15 8.55 22.31 7.26 25.00 6.26 27.49 5.23 30.58

16 9.31 23.54 7.96 26.30 6.91 28.85 5.81 32.00
17 10.09 24.77 8.67 27.59 7.56 30.19 6.41 33.41
18 10.86 25.99 9.39 28.87 8.23 31.53 7.01 34.81
19 11.65 27.20 10.12 30.14 8.91 32.85 7.63 36.19
20 12.44 28.41 10.85 31.41 9.59 34.17 8.26 37.57

21 13.24 29.62 11.59 32.67 10.28 35.48 8.90 38.93
22 14.04 30.81 12.34 33.92 10.98 36.78 9.54 40.29
23 14.85 32.01 13.09 35.17 11.69 38.08 10.20 41.64
24 15.66 33.20 13.85 36.42 12.40 39.36 10.86 42.98
25 16.47 34.38 14.61 37.65 13.12 40.65 11.52 44.31

26 17.29 35.56 15.38 38.89 13.84 41.92 12.20 45.64
27 18.11 36.74 16.15 40.11 14.57 43.19 12.88 46.96
28 18.94 37.92 16.93 41.34 15.31 44.46 13.56 48.28
29 19.77 39.09 17.71 42.56 16.05 45.72 14.26 49.59
30 20.60 40.26 18.49 43.77 16.79 46.98 14.95 50.89

40 29.05 51.81 26.51 55.76 24.43 59.34 22.16 63.69
50 37.69 63.17 34.76 67.50 32.36 71.42 29.71 76.15
60 46.46 74.40 43.19 79.08 40.48 83.30 37.48 88.38
70 55.33 85.53 51.74 90.53 48.76 95.02 45.44 100.43
80 64.28 96.58 60.39 101.88 57.15 106.63 53.54 112.33
90 73.29 107.57 69.13 113.15 65.65 118.14 61.75 124.12

100 82.36 118.50 77.93 124.34 74.22 129.56 70.06 135.81
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Table 6 Critical values of r for the correlation test with ρ = 0
The distribution is symmetrical with respect to ρ = 0.

Level of significance α

Two-sided 0.10 0.05 0.02 0.01 0.001
One-sided 0.05 0.025 0.01 0.005 0.0005

ν = n − 2

1 0.988 0.997 0.9995 0.9999 1.000
2 0.900 0.950 0.980 0.990 0.999
3 0.805 0.878 0.934 0.959 0.991
4 0.729 0.811 0.882 0.917 0.974
5 0.669 0.754 0.833 0.874 0.951

6 0.622 0.707 0.789 0.834 0.925
7 0.582 0.666 0.750 0.798 0.898
8 0.549 0.632 0.716 0.765 0.872
9 0.521 0.602 0.685 0.735 0.847

10 0.497 0.576 0.658 0.708 0.823

11 0.476 0.553 0.634 0.684 0.801
12 0.458 0.532 0.612 0.661 0.780
13 0.441 0.514 0.592 0.641 0.760
14 0.426 0.497 0.574 0.623 0.742
15 0.412 0.482 0.558 0.606 0.725

16 0.400 0.468 0.542 0.590 0.708
17 0.389 0.456 0.528 0.575 0.693
18 0.378 0.444 0.516 0.561 0.679
19 0.369 0.433 0.503 0.549 0.665
20 0.360 0.423 0.492 0.537 0.652

22 0.344 0.404 0.472 0.515 0.629
24 0.330 0.388 0.453 0.496 0.607
25 0.323 0.381 0.445 0.487 0.597
30 0.296 0.349 0.409 0.449 0.554
35 0.275 0.325 0.381 0.418 0.519

40 0.257 0.304 0.358 0.372 0.490
45 0.243 0.288 0.338 0.372 0.415
50 0.231 0.273 0.322 0.354 0.443
55 0.220 0.261 0.307 0.338 0.424
60 0.211 0.250 0.295 0.325 0.408

65 0.203 0.240 0.284 0.312 0.393
70 0.195 0.232 0.274 0.302 0.380
75 0.189 0.224 0.264 0.292 0.368
80 0.183 0.217 0.256 0.283 0.357
85 0.178 0.211 0.249 0.275 0.347

90 0.173 0.205 0.242 0.267 0.338
95 0.168 0.200 0.236 0.260 0.329

100 0.164 0.195 0.230 0.254 0.321
125 0.147 0.174 0.206 0.228 0.288
150 0.134 0.159 0.189 0.208 0.264

175 0.124 0.148 0.174 0.194 0.248
200 0.116 0.138 0.164 0.181 0.235
300 0.095 0.113 0.134 0.148 0.188
500 0.074 0.088 0.104 0.115 0.148

1000 0.052 0.062 0.073 0.081 0.104
2000 0.037 0.044 0.056 0.058 0.074

Source: De Jonge, 1963–4
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Table 7 Critical values of g1 and g2 for Fisher’s cumulant test
The g1 distribution may be considered as symmetrical with respect to 0;
the g2 distribution has to be considered as asymmetrical.
The columns a denote the lower boundaries or left-sided critical values.
The columns b denote the upper boundaries or right-sided critical values.

g1 g2

Level of significance α

Two-sided 0.10 0.02 0.10 0.02
One-sided 0.05 0.01 0.05 0.01

n a b a b

50 0.550 0.812 – – – –
75 0.454 0.664 – – – –

100 0.395 0.576 −0.62 1.53 −0.80 1.53
125 0.354 0.514 −0.57 1.34 −0.74 1.34
150 0.324 0.469 −0.53 1.22 −0.69 1.22

175 0.301 0.434 −0.50 1.11 −0.66 1.11
200 0.282 0.406 −0.47 1.04 −0.62 1.04
250 0.253 0.362 −0.44 0.91 −0.57 0.91
300 0.231 0.331 −0.40 0.82 −0.53 0.82
350 0.214 0.306 −0.37 0.75 −0.49 0.75

400 0.201 0.286 −0.35 0.69 −0.48 0.69
450 0.189 0.270 −0.33 0.65 −0.44 0.65
500 0.180 0.256 −0.32 0.62 −0.42 0.62
550 0.171 0.244 −0.30 0.59 −0.41 0.59
600 0.163 0.234 −0.29 0.55 −0.39 0.55

650 0.157 0.225 −0.28 0.53 −0.38 0.53
700 0.151 0.215 −0.27 0.51 −0.37 0.51
750 0.146 0.208 −0.26 0.49 −0.35 0.49
800 0.142 0.202 −0.25 0.47 −0.34 0.47
850 0.138 0.196 −0.25 0.46 −0.33 0.46

900 0.134 0.190 −0.24 0.44 −0.33 0.44
950 0.130 0.185 −0.23 0.43 −0.32 0.43

1000 0.127 0.180 −0.23 0.42 −0.31 0.42

Source: Geary and Pearson, n.d.; Bennett and Franklin, 1961



GOKA: “CHAP06A” — 2006/6/10 — 17:23 — PAGE 198 — #14

198 100 STATISTICAL TESTS

Table 8 Critical values for the Dixon test of outliers

Test Level of significance α

Statistic n 0.30 0.20 0.10 0.05 0.02 0.01 0.005

3 0.684 0.781 0.886 0.941 0.976 0.988 0.994
4 0.471 0.560 0.679 0.765 0.846 0.889 0.926
5 0.373 0.451 0.557 0.642 0.729 0.780 0.821r10 = x2 − x1

xn − x1 6 0.318 0.386 0.482 0.560 0.644 0.698 0.740
7 0.281 0.344 0.434 0.507 0.586 0.637 0.680

8 0.318 0.385 0.479 0.554 0.631 0.683 0.725
9 0.288 0.352 0.441 0.512 0.587 0.635 0.677r11 = x2 − x1

xn−1 − x1 10 0.265 0.325 0.409 0.477 0.551 0.597 0.639

11 0.391 0.442 0.517 0.576 0.638 0.679 0.713
12 0.370 0.419 0.490 0.546 0.605 0.642 0.675r21 = x3 − x1

xn−1 − x1 13 0.351 0.399 0.467 0.521 0.578 0.615 0.649

14 0.370 0.421 0.492 0.546 0.602 0.641 0.674
15 0.353 0.402 0.472 0.525 0.579 0.616 0.647
16 0.338 0.386 0.454 0.507 0.559 0.595 0.624
17 0.325 0.373 0.438 0.490 0.542 0.577 0.605
18 0.314 0.361 0.424 0.475 0.527 0.561 0.589

r22 = x3 − x1

xn−2 − x1
19 0.304 0.350 0.412 0.462 0.514 0.547 0.575
20 0.295 0.340 0.401 0.450 0.502 0.535 0.562
21 0.287 0.331 0.391 0.440 0.491 0.524 0.551
22 0.280 0.323 0.382 0.430 0.481 0.514 0.541
23 0.274 0.316 0.374 0.421 0.472 0.505 0.532
24 0.268 0.310 0.367 0.413 0.464 0.497 0.524
25 0.262 0.304 0.360 0.406 0.457 0.489 0.516

Source: Dixon and Massey, 1957
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Table 9 Critical values of the Studentized range for multiple comparison

Level of significance α = 0.05

K
ν2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 17.969 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 50.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83 59.56
2 6.085 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77
3 4.501 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.15 10.35 10.52 10.69 10.84 10.98 11.11 11.24
4 3.926 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66 8.79 8.91 9.03 9.13 9.23

5 3.635 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21
6 3.460 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59
7 3.344 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17
8 3.261 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87
9 3.199 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64

10 3.151 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11 6.19 6.27 6.34 6.40 6.47
11 3.113 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33
12 3.081 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21
13 3.055 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.85 5.93 5.99 6.05 6.11
14 3.033 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71 5.79 5.85 5.91 5.97 6.03

15 3.014 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96
16 2.998 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90
17 2.984 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84
18 2.971 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79
19 2.960 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75

20 2.950 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71
21 2.941 3.56 3.94 4.21 4.43 4.60 4.74 4.87 4.98 5.08 5.17 5.25 5.33 5.40 5.46 5.52 5.58 5.62 5.67
22 2.933 3.55 3.93 4.20 4.41 4.58 4.72 4.85 4.96 5.05 5.15 5.23 5.30 5.37 5.43 5.49 5.55 5.59 5.64
23 2.926 3.54 3.91 4.18 4.39 4.56 4.70 4.83 4.94 5.03 5.12 5.20 5.27 5.34 5.40 5.46 5.52 5.57 5.62
24 2.919 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59



G
O

K
A

:
“C

H
A

P06A
”

—
2006/6/10

—
17:23

—
PA

G
E

200
—

#16

200
1

0
0

S
T

A
T

IS
T

IC
A

L
T

E
S

T
S

Table 9 continued
K

ν2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

25 2.913 3.52 3.89 4.16 4.36 4.52 4.66 4.79 4.90 4.99 5.08 5.16 5.23 5.30 5.36 5.42 5.48 5.52 5.57
26 2.907 3.51 3.88 4.14 4.34 4.51 4.65 4.78 4.89 4.97 5.06 5.14 5.21 5.28 5.34 5.40 5.46 5.50 5.55
27 2.902 3.51 3.87 4.13 4.33 4.50 4.63 4.76 4.87 4.96 5.04 5.12 5.19 5.26 5.32 5.38 5.43 5.48 5.53
28 2.897 3.50 3.86 4.12 4.32 4.48 4.62 4.75 4.86 4.94 5.03 5.11 5.18 5.24 5.30 5.36 5.42 5.46 5.51
29 2.892 3.49 3.85 4.11 4.31 4.47 4.61 4.73 4.84 4.93 5.01 5.09 5.16 5.23 5.29 5.35 5.40 5.44 5.49

30 2.888 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47
31 2.884 3.48 3.83 4.09 4.29 4.45 4.59 4.71 4.82 4.91 4.99 5.07 5.14 5.20 5.26 5.32 5.37 5.41 5.46
32 2.881 3.48 3.83 4.09 4.28 4.44 4.58 4.70 4.81 4.89 4.98 5.06 5.13 5.19 5.24 5.30 5.35 5.40 5.45
33 2.877 3.47 3.82 4.08 4.27 4.44 4.57 4.69 4.80 4.88 4.97 5.04 5.11 5.17 5.23 5.29 5.34 5.39 5.44
34 2.874 3.47 3.82 4.07 4.27 4.43 4.56 4.68 4.79 4.87 4.96 5.03 5.10 5.16 5.22 5.28 5.33 5.37 5.42

35 2.871 3.46 3.81 4.07 4.26 4.42 4.55 4.67 4.78 4.86 4.95 5.02 5.09 5.15 5.21 5.27 5.32 5.36 5.41
36 2.868 3.46 3.81 4.06 4.25 4.41 4.55 4.66 4.77 4.85 4.94 5.01 5.08 5.14 5.20 5.26 5.31 5.35 5.40
37 2.865 3.45 3.80 4.05 5.25 4.41 4.54 4.65 4.76 4.84 4.93 5.00 5.08 5.14 5.19 5.25 5.30 5.34 5.39
38 2.863 3.45 3.80 4.05 4.24 4.40 4.53 4.64 4.75 4.84 4.92 5.00 5.07 5.13 5.18 5.24 5.29 5.33 5.38
39 2.861 3.44 3.79 4.04 4.24 4.40 4.53 4.64 4.75 4.83 4.92 4.99 5.06 5.12 5.17 5.23 5.28 5.32 5.37

40 2.858 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.22 5.36
50 2.841 3.41 3.76 4.00 4.19 4.34 4.47 4.58 4.69 4.76 4.85 4.92 4.99 5.05 5.10 5.15 5.20 5.24 5.29
60 2.829 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24

120 2.800 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13
∞ 2.772 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01
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Table 9 continued
Level of significance α = 0.01

K
ν2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 90.025 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6 253.2 260.0 266.2 271.8 277.0 281.8 286.3 290.4 294.3 298.0
2 14.036 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69 32.59 33.40 34.13 34.81 35.43 36.00 36.53 37.03 37.50 37.95
3 8.260 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69 17.13 17.53 17.89 18.22 18.52 18.81 19.07 19.32 19.55 19.77
4 6.511 8.12 9.17 9.96 10.58 11.10 11.55 11.93 12.27 12.57 12.84 13.09 13.32 13.53 13.73 13.91 14.08 14.24 14.40

5 5.702 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93
6 5.243 6.33 7.08 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54
7 4.949 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65
8 4.745 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03
9 4.596 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.49 8.57

10 4.482 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49 7.60 7.71 7.81 7.91 7.99 8.08 8.15 8.23
11 4.392 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 7.95
12 4.320 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36 7.44 7.52 7.59 7.66 7.73
13 4.260 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19 7.27 7.35 7.42 7.48 7.55
14 4.210 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05 7.13 7.20 7.27 7.33 7.39

15 4.167 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93 7.00 7.07 7.14 7.20 7.26
16 4.131 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15
17 4.099 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73 6.81 6.87 6.94 7.00 7.05
18 4.071 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65 6.73 6.79 6.85 6.91 6.97
19 4.045 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89

20 4.024 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82
21 4.004 4.61 4.99 5.26 5.47 5.65 5.80 5.92 6.04 6.14 6.24 6.32 6.39 6.47 6.53 6.59 6.65 6.70 6.76
22 3.986 4.58 4.96 5.22 5.43 5.61 5.76 5.88 6.00 6.10 6.19 6.27 6.35 6.42 6.48 6.54 6.60 6.65 6.70
23 3.970 4.56 4.93 5.20 5.40 5.57 5.72 5.84 5.96 6.06 6.15 6.23 6.30 6.37 6.43 6.49 6.55 6.60 6.65
24 3.955 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61
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Table 9 continued
K

ν2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

25 3.942 4.52 4.89 5.15 5.34 5.51 5.66 5.78 5.89 5.99 6.07 6.15 6.22 6.29 6.35 6.41 6.47 6.52 6.57
26 3.930 4.50 4.87 5.12 5.32 5.49 5.63 5.75 5.86 5.95 6.04 6.12 6.19 6.26 6.32 6.38 6.43 6.48 6.53
27 3.918 4.49 4.85 5.10 5.30 5.46 5.61 5.72 5.83 5.93 6.01 6.09 6.16 6.22 6.28 6.34 6.40 6.45 6.50
28 3.908 4.47 4.83 5.08 5.28 5.44 5.58 5.70 5.80 5.90 5.98 6.06 6.13 6.19 6.25 6.31 6.37 6.42 6.47
29 3.889 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41

30 3.889 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41
31 3.881 4.44 4.79 5.03 5.22 5.38 5.52 5.63 5.74 5.83 5.91 5.99 6.06 6.12 6.18 6.23 6.29 6.34 6.38
32 3.873 4.43 4.78 5.02 5.21 5.37 5.50 5.61 5.72 5.81 5.89 5.97 6.03 6.09 6.16 6.21 6.26 6.31 6.36
33 3.865 4.42 4.76 5.01 5.19 5.35 5.48 5.59 5.70 5.79 5.87 5.95 6.01 6.07 6.13 6.19 6.24 6.29 6.34
34 3.859 4.41 4.75 4.99 5.18 5.34 5.47 5.58 5.68 5.77 5.86 5.93 5.99 6.05 6.12 6.17 6.22 6.27 6.31

35 3.852 4.41 4.74 4.98 5.16 5.33 5.45 5.56 5.67 5.76 5.84 5.91 5.98 6.04 6.10 6.15 6.20 6.25 6.29
36 3.846 4.40 4.73 4.97 5.15 5.31 5.44 5.55 5.65 5.74 S.82 5.90 5.96 6.02 6.08 6.13 6.18 6.23 6.28
37 3.841 4.39 4.72 4.96 5.14 5.30 5.43 5.54 5.64 5.73 5.81 5.88 5.94 6.00 6.06 6.12 6.17 6.22 6.26
38 3.835 4.38 4.72 4.95 5.13 5.29 5.41 5.52 5.62 5.72 5.80 5.87 5.93 5.99 6.05 6.10 6.15 6.20 6.24
39 3.830 4.38 4.71 4.94 5.12 5.28 5.40 5.51 5.62 5.70 5.78 5.85 5.91 5.97 6.03 6.08 6.13 6.18 6.23

40 3.825 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76 5.83 5.90 5.96 6.02 6.07 6.12 6.16 6.21
50 3.787 4.32 4.64 4.86 5.04 5.19 5.30 5.41 5.51 5.59 5.67 5.74 5.80 5.86 5.91 5.96 6.01 6.06 6.09
60 3.762 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.78 5.84 5.89 5.93 5.97 6.01

120 3.702 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44 5.50 5.56 5.61 5.66 5.71 5.75 5.79 5.83
∞ 3.643 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65

Source: Sachs, 1972
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Table 10 Critical values of K for the Link–Wallace test
Level of significance α = 0.05

K
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50

2 3.43 2.35 1.74 1.39 1.15 0.99 0.87 0.77 0.70 0.63 0.58 0.54 0.50 0.47 0.443 0.418 0.396 0.376 0.158 0.245 0.187 0.151
3 1.90 1.44 1.14 0.94 0.80 0.70 0.62 0.56 0.51 0.47 0.43 0.40 0.38 0.35 0.335 0.317 0.301 0.287 0.274 0.189 0.146 0.119
4 1.62 1.25 1.01 0.84 0.72 0.63 0.57 0.51 0.47 1.43 0.40 0.37 0.35 0.33 0.310 0.294 0.279 0.266 0.254 0.177 0.136 0.112
5 1.53 1.19 0.96 0.81 0.70 0.61 0.55 0.50 0.45 0.42 0.39 0.36 0.34 0.32 0.303 0.287 0.273 0.260 0.249 0.173 0.134 0.110

6 1.50 1.17 0.95 0.80 0.69 0.61 0.55 0.49 0.45 0.42 0.39 0.36 0.34 0.32 0.302 0.287 0.273 0.260 0.249 0.174 0.135 0.110
7 1.49 1.17 0.95 0.80 0.69 0.61 0.55 0.50 0.45 0.42 0.39 0.36 0.34 0.32 0.304 0.289 0.275 0.262 0.251 0.175 0.136 0.111
8 1.49 1.18 0.96 0.81 0.70 0.62 0.55 0.50 0.46 0.42 0.39 0.37 0.35 0.33 0.308 0.292 0.278 0.265 0.254 0.178 0.138 0.113
9 1.50 1.19 0.97 0.82 0.71 0.62 0.56 0.51 0.47 0.43 0.40 0.37 0.35 0.33 0.312 0.297 0.282 0.269 0.258 0.180 0.140 0.115

10 1.52 1.20 0.98 0.83 0.72 0.63 0.57 0.52 0.47 0.44 0.41 0.38 0.36 0.34 0.317 0.301 0.287 0.274 0.262 0.183 0.142 0.117

11 1.54 1.22 0.99 0.84 0.73 0.64 0.58 0.52 0.48 0.44 0.41 0.38 0.36 0.34 0.322 0.306 0.291 0.278 0.266 0.186 0.145 0.119
12 1.56 1.23 1.01 0.85 0.74 0.65 0.58 0.53 0.49 0.45 0.42 0.39 0.37 0.35 0.327 0.311 0.296 0.282 0.270 0.189 0.147 0.121
13 1.58 1.25 1.02 0.86 0.75 0.66 0.59 0.54 0.49 0.46 0.42 0.40 0.37 0.35 0.332 0.316 0.300 0.287 0.274 0.192 0.149 0.122
14 1.60 1.26 1.03 0.87 0.76 0.67 0.60 0.55 0.50 0.46 0.43 0.40 0.38 0.36 0.337 0.320 0.305 0.291 0.279 0.195 0.152 0.124
15 1.62 1.28 1.05 0.89 0.77 0.68 0.61 0.55 0.51 0.47 0.44 0.41 0.38 0.36 0.342 0.325 0.310 0.295 0.283 0.198 0.154 0.126

16 1.64 1.30 1.06 0.90 0.78 0.69 0.62 0.56 0.52 0.48 0.44 0.41 0.39 0.37 0.348 0.330 0.314 0.300 0.287 0.201 0.156 0.128
17 1.66 1.32 1.08 0.91 0.79 0.70 0.63 0.57 0.52 0.48 0.45 0.42 0.39 0.37 0.352 0.335 0.319 0.304 0.291 0.204 0.158 0.130
18 1.68 1.33 1.09 0.92 0.80 0.71 0.64 0.58 0.53 0.49 0.46 0.43 0.40 0.38 0.357 0.339 0.323 0.308 0.295 0.207 0.161 0.132
19 1.70 1.35 1.10 0.93 0.81 0.72 0.64 0.59 0.54 0.50 0.46 0.43 0.41 0.38 0.362 0.344 0.327 0.312 0.299 0.210 0.163 0.134
20 1.72 1.36 1.12 0.95 0.82 0.73 0.65 0.59 0.54 0.50 0.47 0.44 0.41 0.39 0.367 0.348 0.3.32 0.317 0.303 0.212 0.165 0.135

30 1.92 1.52 1.24 1.05 0.91 0.81 0.73 0.66 0.60 0.56 0.52 0.49 0.46 0.43 0.408 0.387 0.369 0.352 0.337 0.237 0.184 0.151
40 2.08 1.66 1.35 1.14 0.99 0.88 0.79 0.72 0.66 0.61 0.57 0.53 0.50 0.47 0.444 0.422 0.402 0.384 0.367 0.258 0.201 0.165
50 2.23 1.77 1.45 1.22 1.06 0.94 0.85 0.77 0.71 0.65 0.61 0.57 0.53 0.50 0.476 0.453 0.431 0.412 0.394 0.277 0.216 0.177

100 2.81 2.23 1.83 1.55 1.34 1.19 1.07 0.97 0.89 0.83 0.77 0.72 0.67 0.64 0.60 0.573 0.546 0.521 0.499 0.351 0.273 0.224
200 3.61 2.88 2.35 1.99 1.73 1.53 1.38 1.25 1.15 1.06 0.99 0.93 0.87 0.82 0.78 0.74 0.70 0.67 0.64 0.454 0.353 0.290
500 5.15 4.10 3.35 2.84 2.47 2.19 1.97 1.79 1.64 1.52 1.42 1.32 1.24 1.17 1.11 1.06 1.01 0.96 0.92 0.65 0.504 0.414

1000 6.81 5.43 4.44 3.77 3.28 2.90 2.61 2.37 2.18 2.22 1.88 1.76 1.65 1.56 1.47 1.40 1.33 1.27 1.22 0.86 0.669 0.549
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Table 10 continued
Level of significance α = 0.01

K
V2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50

2 7.92 4.32 2.84 2.10 1.66 1.38 1.17 1.02 0.91 0.82 0.74 0.68 0.63 0.58 0.54 0.51 0.480 0.454 0.430 0.285 0.214 0.172
3 3.14 2.12 1.57 1.25 1.04 0.89 0.78 0.69 0.62 1.57 0.52 0.48 0.45 0.42 0.39 0.37 0.352 0.334 0.318 0.217 0.165 0.134
4 2.48 1.74 1.33 1.08 0.91 0.78 0.69 0.62 0.56 0.51 0.47 0.44 0.41 0.38 0.36 0.34 0.323 0.307 0.293 0.200 0.153 0.125
5 2.24 1.60 1.24 1.02 0.86 0.75 0.66 0.59 0.54 0.49 0.46 0.42 0.40 0.37 0.35 0.33 0.314 0.299 0.285 0.196 0.151 0.123

6 2.14 1.55 1.21 0.99 0.85 0.74 0.65 0.59 0.53 0.49 0.45 0.42 0.39 0.37 0.35 0.33 0.313 0.298 0.284 0.196 0.151 0.123
7 2.10 1.53 1.20 0.99 0.84 0.73 0.65 0.59 0.53 0.49 0.45 0.42 0.39 0.37 0.35 0.33 0.314 0.299 0.286 0.198 0.152 0.124
8 2.09 1.53 1.20 0.99 0.85 0.74 0.66 0.59 0.54 0.49 0.46 0.43 0.40 0.37 0.35 0.33 0.318 0.303 0.289 0.200 0.154 0.126
9 2.09 1.54 1.21 1.00 0.85 0.75 0.66 0.60 0.54 0.50 0.46 0.43 0.40 0.38 0.36 0.34 0.322 0.307 0.293 0.200 0.156 0.127

10 2.10 1.55 1.22 1.01 0.86 0.76 0.67 0.61 0.55 0.51 0.47 0.44 0.41 0.38 0.36 0.34 0.327 0.311 0.297 0.206 0.159 0.129

11 2.11 1.56 1.23 1.02 0.87 0.76 0.68 0.61 0.56 0.51 0.48 0.44 0.42 0.39 0.37 0.35 0.332 0.316 0.302 0.209 0.161 0.132
12 2.13 1.58 1.25 1.04 0.89 0.78 0.69 0.62 0.57 0.52 0.48 0.45 0.42 0.40 0.37 0.35 0.337 0.321 0.306 0.213 0.164 0.134
13 2.15 1.60 1.26 1.05 0.90 0.79 0.70 0.63 0.58 0.53 0.49 0.46 0.43 0.40 0.38 0.36 0.342 0.326 0.311 0.216 0.166 0.136
14 2.18 1.62 1.28 1.06 0.91 0.80 0.71 0.64 0.58 0.54 0.50 0.46 0.43 0.41 0.39 0.36 0.347 0.330 0.316 0.219 0.169 0.138
15 2.20 1.63 1.30 1.08 0.92 0.81 0.72 0.65 0.59 0.54 0.50 0.47 0.44 0.41 0.39 0.37 0.352 0.335 0.320 0.222 0.171 0.140

16 2.22 1.65 1.31 1.09 0.93 0.82 0.73 0.66 0.60 0.55 0.51 0.48 0.45 0.42 0.40 0.38 0.357 0.340 0.325 0.226 0.174 0.142
17 2.25 1.67 1.33 1.10 0.95 0.83 0.74 0.67 0.61 0.56 0.52 0.48 0.45 0.43 0.40 0.38 0.362 0.345 0.329 0.229 0.176 0.144
18 2.27 1.69 1.34 1.12 0.96 0.84 0.75 0.68 0.62 0.57 0.53 0.49 0.46 0.43 0.41 0.39 0.367 0.350 0.334 0.232 0.179 0.146
19 2.30 1.71 1.36 1.13 0.97 0.85 0.76 0.68 0.62 0.57 0.53 0.50 0.46 0.44 0.41 0.39 0.372 0.354 0.338 0.235 0.181 0.148
20 2.32 1.73 1.38 1.14 0.98 0.86 0.77 0.69 0.63 0.58 0.54 0.50 0.47 0.44 0.42 0.40 0.376 0.359 0.343 0.238 0.184 0.150

30 2.59 1.95 1.54 1.27 1.09 0.96 0.85 0.77 0.70 0.65 0.60 0.56 0.52 0.49 0.46 0.44 0.419 0.399 0.381 0.266 0.205 0.168
40 2.80 2.11 1.66 1.38 1.18 1.04 0.93 0.84 0.76 0.70 0.65 0.61 0.57 0.54 0.51 0.48 0.456 0.435 0.415 0.289 0.223 0.183
50 2.99 2.25 1.78 1.48 1.27 1.11 0.99 0.90 0.82 0.75 0.70 0.65 0.61 0.57 0.54 0.51 0.489 0.466 0.446 0.310 0.240 0.196

100 3.74 2.83 2.24 1.86 1.60 1.40 1.25 1.13 1.03 0.95 0.88 0.82 0.77 0.73 0.69 0.65 0.62 0.590 0.564 0.393 0.304 0.248
200 4.79 3.63 2.88 2.39 2.06 1.81 1.61 1.46 1.33 1.23 1.14 1.06 0.99 0.94 0.88 0.84 0.80 0.76 0.73 0.507 0.392 0.320
500 6.81 5.16 4.10 3.41 2.93 2.58 2.30 2.08 1.90 1.75 1.62 1.52 1.42 1.34 1.26 1.20 1.14 1.09 1.04 0.73 0.560 0.458

1000 9.01 6.83 5.42 4.52 3.88 3.41 3.05 2.76 2.52 2.32 2.15 2.01 1.88 1.77 1.68 1.59 1.51 1.44 1.38 0.96 0.743 0.608

Source: Sachs, 1972
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Table 11 Critical values for the Dunnett test
Level of significance α = 0.01

K
ν 2 3 4 5 6 7 8 9

5 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03
6 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59
7 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30
8 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09
9 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

10 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
11 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
12 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67
13 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
14 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56

15 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52
16 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48
17 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.43
18 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
20 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38

24 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
30 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24
40 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18
60 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

120 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06
∞ 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00

Level of significance α = 0.05

K
ν 2 3 4 5 6 7 8 9

5 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
6 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
7 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
8 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
9 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

10 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
11 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
12 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
13 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
14 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

15 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
16 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
17 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
18 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
20 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60

24 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57
30 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
40 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
60 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48

120 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
∞ 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.46

Source: De Jonge, 1963–4
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Table 12 Critical values of M for the Bartlett test

C = constant values.

Level of significance α = 0.01

Ci
K 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0

3 9.21 9.92 10.47 10.78 10.81 10.50 9.83 – – – – – – – – –
4 11.34 11.95 12.46 12.86 13.11 13.18 13.03 12.65 12.03 – – – – – – –
5 13.28 13.81 14.30 14.71 15.03 15.25 15.34 15.28 15.06 14.66 14.07 – – – – –
6 15.09 15.58 16.03 16.44 16.79 17.07 17.27 17.37 17.37 17.24 16.98 16.03 – – – –
7 16.81 17.27 17.70 18.10 18.46 18.77 19.02 19.21 19.32 19.35 19.28 18.84 17.92 – – –

8 18.48 18.91 19.32 19.71 20.07 20.39 20.67 20.90 21.08 21.20 21.35 21.13 20.64 19.76 – –
9 20.09 20.50 20.90 21.28 21.64 21.97 22.26 22.52 22.74 22.91 23.03 23.10 22.91 22.41 21.56 –

10 21.67 22.06 22.45 22.82 23.17 23.50 23.80 24.08 24.32 24.52 24.69 24.90 24.90 24.66 24.15 23.33
11 23.21 23.59 23.97 24.33 24.67 25.00 25.31 25.59 25.85 26.08 26.28 26.57 26.70 26.65 26.38 25.86
12 24.72 25.10 25.46 25.81 26.15 26.48 26.79 27.08 27.35 27.59 27.81 28.16 28.39 28.46 28.37 28.07

13 26.22 26.58 26.93 27.28 27.62 27.94 28.25 28.54 28.81 29.07 29.30 29.70 29.99 30.16 30.19 30.06
14 27.69 28.04 28.39 28.73 29.06 29.38 29.69 29.98 30.26 30.52 30.77 31.19 31.53 31.77 31.89 31.88
15 29.14 29.39 29.83 30.16 30.49 30.80 30.11 31.40 31.68 31.95 32.20 32.66 33.03 33.32 33.51 33.59
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Table 12 continued
Level of significance α = 0.05

Ci
K 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0

3 5.99 6.47 5.89 7.20 7.38 7.39 7.22 – – – – – – – – –
4 7.81 8.24 8.63 8.96 9.21 9.38 9.43 9.37 9.18 – – – – – – –
5 9.49 9.88 10.24 10.57 10.86 11.08 11.24 11.32 11.31 11.21 11.02 – – – – –
6 11.07 11.43 11.78 12.11 12.40 12.65 12.86 13.01 13.11 13.14 13.10 12.78 – – – –
7 12.59 12.94 13.27 13.59 13.88 14.15 14.38 14.58 14.73 14.83 14.88 14.81 14.49 – – –

8 14.07 14.40 14.72 15.03 15.32 15.60 15.84 16.06 16.25 16.40 16.51 16.60 16.49 16.16 – –
9 15.51 15.83 16.14 16.44 16.73 17.01 17.26 17.49 17.70 17.88 18.03 16.22 18.26 18.12 17.79 –

10 16.92 17.23 17.54 17.83 18.12 18.39 18.65 18.89 19.11 19.31 19.48 19.75 19.89 19.89 19.73 19.40
11 18.31 18.61 18.91 19.20 19.48 19.76 20.02 20.26 20.49 20.70 20.89 21.21 21.42 21.52 21.49 21.32
12 19.68 19.97 20.26 20.55 20.83 21.10 21.36 21.61 21.84 22.06 22.27 22.62 22.88 23.06 23.12 23.07

13 21.03 21.32 21.60 21.89 22.16 22.43 22.69 22.94 23.18 23.40 23.62 23.99 24.30 24.53 24.66 24.70
14 22.36 22.65 22.93 23.21 23.48 23.75 24.01 24.26 24.50 24.73 24.95 25.34 25.68 25.95 26.14 26.25
15 23.68 23.97 24.24 24.52 24.79 25.05 25.31 25.56 25.80 26.04 26.26 26.67 27.03 27.33 27.56 27.73

Source: Merrington and Thompson, 1946
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Table 13 Critical values for the Hartley test (right-sided)

Level of significance α = 0.01

K
n − 1 2 3 4 5 6 7 8 9 10 11 12

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605
3 47.5 85 120 151 184 216∗ 249∗ 281∗ 310∗ 337∗ 361∗
4 23.2 37 49 59 69 79 89 97 106 113 120
5 14.9 22 28 33 38 42 46 50 54 57 60
6 11.1 15.5 19.1 22 25 27 30 32 34 36 37

7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6

15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7
∞ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

∗ The unit digit is uncertain.
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Table 13 continued
Level of significance α = 0.05

K
n − 1 2 3 4 5 6 7 8 9 10 11 12

2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Source: De Jonge, 1963–4
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Table 14 Critical values of w/s for the normality test
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.

Level of significance α

n 0.000 0.005 0.01 0.025 0.05 0.10

a b a b a b a b a b a b

3 1.732 2.000 1.735 2.000 1.737 2.000 1.745 2.000 1.758 1.999 1.782 1.997
4 1.732 2.449 1.82 2.447 1.87 2.445 1.93 2.439 1.98 2.429 2.04 2.409
5 1.826 2.828 1.98 2.813 2.02 2.803 2.09 2.782 2.15 2.753 2.22 2.712

6 1.826 3.162 2.11 3.115 2.15 3.095 2.22 3.056 2.28 3.012 2.37 2.949
7 1.871 3.464 2.22 3.369 2.26 3.338 2.33 3.282 2.40 3.222 2.49 3.143
8 1.871 3.742 2.31 3.585 2.35 3.543 2.43 3.471 2.50 3.399 2.59 3.308
9 1.897 4.000 2.39 3.772 2.44 3.720 2.51 3.634 2.59 3.552 2.68 3.449

10 1.897 4.243 2.46 3.935 2.51 3.875 2.59 3.777 2.67 3.685 2.76 3.57

11 1.915 4.472 2.53 4.079 2.58 4.012 2.66 3.903 2.74 3.80 2.84 3.68
12 1.915 4.690 2.59 4.208 2.64 4.134 2.72 4.02 2.80 3.91 2.90 3.78
13 1.927 4.899 2.64 4.325 2.70 4.244 2.78 4.12 2.86 4.00 2.96 3.87
14 1.927 5.099 2.70 4.431 2.75 4.34 2.83 4.21 2.92 4.09 3.02 3.95
15 1.936 5.292 2.74 4.53 2.80 4.44 2.88 4.29 2.97 4.17 3.07 4.02

16 1.936 5.477 2.79 4.62 2.84 4.52 2.93 4.37 3.01 4.24 3.12 4.09
17 1.944 5.657 2.83 4.70 2.88 4.60 2.97 4.44 3.06 4.31 3.17 4.15
18 1.944 5.831 2.87 4.78 2.92 4.67 3.01 4.51 3.10 4.37 3.21 4.21
19 1.949 6.000 2.90 4.85 2.96 4.74 3.05 4.56 3.14 4.43 3.25 4.27
20 1.949 6.164 2.94 4.91 2.99 4.80 3.09 4.63 3.18 4.49 3.29 4.32

25 1.961 6.93 3.09 5.19 3.15 5.06 3.24 4.87 3.34 4.71 3.45 4.53
30 1.966 7.62 3.21 5.40 3.27 5.26 3.37 5.06 3.47 4.89 3.59 4.70
35 1.972 8.25 3.32 5.57 3.38 5.42 3.48 5.21 3.58 5.04 3.70 4.84
40 1.975 8.83 3.41 5.71 3.47 5.56 3.57 5.34 3.67 5.16 3.79 4.96
45 1.978 9.38 3.49 5.83 3.55 5.67 3.66 5.45 3.75 5.26 3.88 5.06

50 1.980 9.90 3.56 5.93 3.62 5.77 3.73 5.54 3.83 5.35 3.95 5.14
55 1.982 10.39 3.62 6.02 3.69 5.86 3.80 5.63 3.90 5.43 4.02 5.22
60 1.983 10.86 3.68 6.10 3.75 5.94 3.86 5.70 3.96 5.51 4.08 5.29
65 1.985 11.31 3.74 6.17 3.80 6.01 3.91 5.77 4.01 5.57 4.14 5.35
70 1.986 11.75 3.79 6.24 3.85 6.07 3.96 5.83 4.06 5.63 4.19 5.41

75 1.987 12.17 3.83 6.30 3.90 6.13 4.01 5.88 4.11 5.68 4.24 5.46
80 1.987 12.57 3.88 6.35 3.94 6.18 4.05 5.93 4.16 5.73 4.28 5.51
85 1.988 12.96 3.92 6.40 3.99 6.23 4.09 5.98 4.20 5.78 4.33 5.56
90 1.989 13.34 3.96 6.45 4.02 6.27 4.13 6.03 4.24 5.82 4.36 5.60
95 1.990 13.71 3.99 6.49 4.06 6.32 4.17 6.07 4.27 5.86 4.40 5.64

100 1.990 14.07 4.03 6.53 4.10 6.36 4.21 6.11 4.31 5.90 4.44 5.68
150 1.993 17.26 4.32 6.82 4.38 6.64 4.48 6.39 4.59 6.18 4.72 5.96
200 1.995 19.95 4.53 7.01 4.59 6.84 4.68 6.60 4.78 6.39 4.90 6.15
500 1.998 31.59 5.06 7.60 5.13 7.42 5.25 7.15 5.47 6.94 5.49 6.72

1000 1.999 44.70 5.50 7.99 5.57 7.80 5.68 7.54 5.79 7.33 5.92 7.11

Source: Sachs, 1972
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Table 15 Critical values for the Cochran test for variance outliers

Degrees of freedom ν = n − 1.
Level of significance α = 0.01

νx
K 1 2 3 4 5 6 7 8 9 10 16 36 144 ∞

2 0.9999 0.9950 0.9794 0.9586 0.9373 0.9172 0.8988 0.8823 0.8674 0.8539 0.7949 0.7067 0.6062 0.5000
3 0.9933 0.9423 0.8831 0.8335 0.7933 0.7606 0.7335 0.7107 0.6912 0.6743 0.6059 0.5153 0.4230 0.3333
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.6410 0.6129 0.5897 0.5702 0.5536 0.4884 0.4057 0.3251 0.2500
5 0.9279 0.7885 0.6957 0.6329 0.5875 0.5531 0.5259 0.5037 0.4854 0.4697 0.4094 0.3351 0.2644 0.2000

6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4866 0.4608 0.4401 0.4229 0.4084 0.3529 0.2858 0.2229 0.1667
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.4347 0.4105 0.3911 0.3751 0.3616 0.3105 0.2494 0.1929 0.1429
8 0.7945 0.6152 0.5209 0.4627 0.4226 0.3932 0.3704 0.3522 0.3373 0.3248 0.2779 0.2214 0.1700 0.1250
9 0.7544 0.5727 0.4810 0.4251 0.3870 0.3592 0.3378 0.3207 0.3067 0.2950 0.2514 0.1992 0.1521 0.1111

10 0.7175 0.5358 0.4469 0.3934 0.3572 0.3308 0.3106 0.2945 0.2813 0.2704 0.2297 0.1811 0.1376 0.1000

12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2861 0.2680 0.2535 0.2419 0.2320 0.1961 0.1535 0.1157 0.0833
15 0.5747 0.4069 0.3317 0.2882 0.2593 0.2386 0.2228 0.2104 0.2002 0.1918 0.1612 0.1251 0.0934 0.0667
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1877 0.1748 0.1646 0.1567 0.1501 0.1248 0.0960 0.0709 0.0500
24 0.4247 0.2871 0.2295 0.1970 0.1759 0.1608 0.1495 0.1406 0.1338 0.1283 0.1060 0.0810 0.0595 0.0417
30 0.3632 0.2412 0.1913 0.1635 0.1454 0.1327 0.1232 0.1157 0.1100 0.1054 0.0867 0.0658 0.0480 0.0333

40 0.2940 0.1915 0.1508 0.1281 0.1135 0.1033 0.0957 0.0898 0.0853 0.0816 0.0668 0.0503 0.0363 0.0250
60 0.2151 0.1371 0.1069 0.0902 0.0796 0.0722 0.0668 0.0625 0.0594 0.0567 0.0461 0.0344 0.0245 0.0167

120 0.1225 0.0759 0.0585 0.0489 0.0429 0.0387 0.0357 0.0334 0.0316 0.0302 0.0242 0.0178 0.0125 0.0083
∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 15 continued
Level of significance α = 0.05

νx
K 1 2 3 4 5 6 7 8 9 10 16 36 144 ∞

2 0.9985 0.9750 0.9392 0.9057 0.8772 0.8534 0.8332 0.8159 0.8010 0.7880 0.7341 0.6602 0.5813 0.5000
3 0.9669 0.8709 0.7977 0.7457 0.7071 0.6771 0.6530 0.6333 0.6167 0.6025 0.5466 0.4748 0.4031 0.3333
4 0.9065 0.7679 0.6841 0.6287 0.5895 0.5598 0.5365 0.5175 0.5017 0.4884 0.4366 0.3720 0.3093 0.2500
5 0.8412 0.6838 0.5981 0.5441 0.5065 0.4783 0.4564 0.4387 0.4241 0.4118 0.3645 0.3066 0.2513 0.2000

6 0.7808 0.6161 0.5321 0.4803 0.4447 0.4184 0.3980 0.3817 0.3682 0.3568 0.3135 0.2612 0.2119 0.1667
7 0.7271 0.5612 0.4800 0.4307 0.3974 0.3726 0.3535 0.3384 0.3259 0.3154 0.2756 0.2278 0.1833 0.1429
8 0.6798 0.5157 0.4377 0.3910 0.3595 0.3362 0.3185 0.3043 0.2926 0.2829 0.2462 0.2022 0.1616 0.1250
9 0.6385 0.4775 0.4027 0.3584 0.3286 0.3067 0.2901 0.2768 0.2659 0.2568 0.2226 0.1820 0.1446 0.1111

10 0.6020 0.4450 0.3733 0.3311 0.3029 0.2823 0.2666 0.2541 0.2439 0.2353 0.2032 0.1655 0.1308 0.1000

12 0.5410 0.3924 0.3264 0.2880 0.2624 0.2439 0.2299 0.2187 0.2098 0.2020 0.1737 0.1403 0.1100 0.0833
15 0.4709 0.3346 0.2758 0.2419 0.2195 0.2034 0.1911 0.1815 0.1736 0.1671 0.1429 0.1144 0.0889 0.0667
20 0.3894 0.2705 0.2205 0.1921 0.1735 O.1602 0.1501 0.1422 0.1357 0.1303 0.1108 0.0879 0.0675 0.0500
24 0.3434 0.2354 0.1907 0.1656 0.1493 0.1374 0.1286 0.1216 0.1160 0.1113 0.0942 0.0743 0.0567 0.0417
30 0.2929 0.1980 0.1593 0.1377 0.1237 0.1137 0.1061 0.1002 0.0958 0.0921 0.0771 0.0604 0.0457 0.0333

40 0.2370 0.1576 0.1259 0.1082 0.0968 0.0887 0.0827 0.0780 0.0745 0.0713 0.0595 0.0462 0.0347 0.0250
60 0.1737 0.1131 0.0895 0.0765 0.0682 0.0623 0.0583 0.0552 0.0520 0.0497 0.0411 0.0316 0.0234 0.0167

120 0.0998 0.0632 0.0495 0.0419 0.0371 0.0337 0.0312 0.0292 0.0279 0.0266 0.0218 0.0165 0.0120 0.0083
∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source: Dixon and Massey, 1957
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Table 16 Critical values of D for the Kolmogorov–Smirnov
one-sample test
D = maximum values of the differences.

n Level of significance α

0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.823
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669

6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490

11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404

16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356

25 0.21 0.22 0.24 0.27 0.32
30 0.19 0.20 0.22 0.24 0.29
35 0.18 0.19 0.21 0.23 0.27

Over 35
1.07√

n

1.14√
n

1.22√
n

1.36√
n

1.63√
n

Source: Massey, 1951
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Table 17 Critical values of T for the sign test

Level of significance α Level of significance α

Two-sided 0.10 0.05 0.02 0.01 Two-sided 0.10 0.05 0.02 0.01
One-sided 0.05 0.025 0.01 0.005 One-sided 0.05 0.025 0.01 0.005

n n

1 – – – – 31 11 13 15 17
2 – – – – 32 12 14 16 16
3 – – – – 33 11 13 15 17
4 – – – – 34 12 14 16 16
5 5 – – – 35 11 13 15 17
6 6 6 – – 36 12 14 16 18
7 7 7 7 – 37 11 13 17 17
8 6 8 8 8 38 12 14 16 18
9 7 7 9 9 39 13 15 17 17

10 8 8 10 10 40 12 14 16 18
11 7 9 9 11 45 13 15 17 19
12 8 8 10 10 46 14 16 18 20
13 7 9 11 11 49 13 15 19 19
14 8 10 10 12 50 14 16 18 20
15 9 9 11 11 55 15 17 19 21
16 8 10 12 12 56 14 16 18 20
17 9 9 11 13 59 15 17 19 21
18 8 10 12 12 60 14 18 20 22
19 9 11 11 13 65 15 17 21 23
20 10 10 12 14 66 16 18 20 22
21 9 11 13 13 69 15 19 23 25
22 10 12 12 14 70 16 18 22 24
23 9 11 13 15 75 17 19 23 25
24 10 12 14 14 76 16 20 22 24
25 11 11 13 15 79 17 19 23 25
26 10 12 14 14 80 16 20 22 24
27 11 13 13 15 89 17 21 23 27
28 10 12 14 16 90 18 20 24 26
29 11 13 15 15 99 19 21 25 27
30 10 12 14 16 100 18 22 26 28

Source: Wijvekate, 1962
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r

F (r )

r = 0

Table 18 Critical values of r for the sign test for paired observations

N is the total number of equally probable dichotomous events, r
the smaller of the number of events of either kind. If r ≤ rN ;α
then there are too few events of one kind at the 1 − α confidence level.
For large values of N , r is approximately distributed as z.
Use µ = N/2, σ = √

N/2 and Zα = (µ − rN ;α)/σ .

N rN ;0.10 rN ;0.05 rN ;0.01 rN ;0.005 rN ;0.001

8 1 0 0
10 1 1 0 0
12 2 2 1 0 0
14 3 2 1 0 0
16 4 3 1 0 0

18 5 4 3 2 1
20 5 5 3 3 2
22 6 5 4 4 3
25 7 7 5 5 4
30 10 9 7 6 5

35 12 11 9 8 7
40 14 13 11 10 9
45 16 15 13 12 11
50 18 17 15 15 13
55 20 19 17 17 15

Source: Dixon and Massey, 1957
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Table 19 Critical values of T for the signed rank test for paired
differences
n is the number of pairs of observations.

Level of significance α Level of significance α

n Two-sided One-sided n Two-sided One-sided

0.05 0.01 0.001 0.05 0.01 0.05 0.01 0.001 0.05 0.01

6 0 2 36 208 171 130 227 185
7 2 3 0 37 221 182 140 241 198
8 3 0 5 1 38 235 194 150 256 211
9 5 1 8 3 39 249 207 161 271 224

10 8 3 10 5 40 264 220 172 286 238
11 10 5 0 13 7 41 279 233 183 302 252
12 13 7 1 17 9 42 294 247 195 319 266
13 17 9 2 21 12 43 310 261 207 336 281
14 21 12 4 25 15 44 327 276 220 353 296
15 25 15 6 30 19 45 343 291 233 371 312

16 29 19 8 35 23 46 361 307 246 389 328
17 34 23 11 41 27 47 378 322 260 407 345
18 40 27 14 47 32 48 396 339 274 426 362
19 46 32 18 53 37 49 415 355 289 446 379
20 52 37 21 60 43 50 434 373 304 466 397
21 58 42 25 67 49 51 453 390 319 486 416
22 65 48 30 75 55 52 473 408 335 507 434
23 73 54 35 83 62 53 494 427 351 429 454
24 81 61 40 91 69 54 514 445 368 550 473
25 89 68 45 100 76 55 536 465 385 573 493

26 98 75 51 110 84 56 557 484 402 595 514
27 107 83 57 119 92 57 579 504 420 618 535
28 116 91 64 130 101 58 602 525 438 642 556
29 126 100 71 140 110 59 625 546 457 666 578
30 137 109 78 151 120 60 648 567 476 690 600
31 147 118 86 163 130 61 672 589 495 715 623
32 159 128 94 175 140 62 697 611 515 741 646
33 170 138 102 187 151 63 721 634 535 767 669
34 182 148 111 200 162 64 747 657 556 793 693
35 195 159 120 213 173 65 772 681 577 820 718

Source: Sachs, 1972
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Table 20 Critical values of U for the Wilcoxon inversion test
n1 = number of elements in the largest sample;
n2 = number of elements in the smallest sample.

Level of significance α Level of significance α

Two-sided 0.10 0.05 0.02 0.01 Two-sided 0.10 0.05 0.02 0.01
One-sided 0.05 0.025 0.01 0.005 One-sided 0.05 0.025 0.01 0.005

n1 n2 n1 n2

3 3 0 – – – 9 2 1 0 – –
4 3 0 – – – 9 3 4 2 1 0
4 4 1 0 – – 9 4 6 4 3 1

9 5 9 7 5 3
5 2 0 – – – 9 6 12 10 7 5
5 3 1 0 – – 9 7 15 12 9 7
5 4 2 1 0 – 9 8 18 15 12 9
5 5 4 2 1 0 9 9 21 17 14 11

6 2 0 – – – 10 2 1 0
6 3 2 1 – – 10 3 4 3 1 0
6 4 3 2 1 0 10 4 7 5 3 2
6 5 5 3 2 1 10 5 11 8 6 4
6 6 7 5 3 2 10 6 14 11 8 6

10 7 17 14 11 9
7 2 0 – – – 10 8 20 17 13 11
7 3 2 1 0 – 10 9 24 20 16 13
7 4 4 3 1 0 10 10 27 23 19 16
7 5 6 5 3 1
7 6 8 6 4 3
7 7 11 8 6 4

8 2 1 0 – –
8 3 3 2 0 –
8 4 5 4 2 1
8 5 8 6 4 2
8 6 10 8 6 4
8 7 13 10 7 6
8 8 15 13 9 7

Source: Wijvekate, 1962
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Table 21 Critical values of the smallest rank sum for the
Wilcoxon–Mann–Whitney test
n1 = number of elements in the largest sample;
n2 = number of elements in the smallest sample.

Level of significance α Level of significance α

Two-sided 0.20 0.10 0.05 0.01 Two-sided 0.20 0.10 0.05 0.01
One-sided 0.10 0.05 0.025 0.005 One-sided 0.10 0.05 0.025 0.005

n1 n2 n1 n2

3 2 3 – – – 10 6 38 35 32 27
3 3 7 6 – – 10 7 49 45 42 37
4 2 3 – – – 10 8 60 56 53 47
4 3 7 6 – – 10 9 73 69 65 58
4 4 13 11 10 – 10 10 87 82 78 71

5 2 4 3 – – 11 1 1 – – –
5 3 8 7 6 – 11 2 6 4 3 –
5 4 14 12 11 – 11 3 13 11 9 6
5 5 20 19 17 15 11 4 21 18 16 12

11 5 30 27 24 20
6 2 4 3 – – 11 6 40 37 34 28
6 3 9 8 7 – 11 7 51 47 44 38
6 4 15 13 12 10 11 8 63 59 55 49
6 5 22 20 18 16 11 9 76 72 68 61
6 6 30 28 26 13 11 10 91 86 81 73

11 11 106 100 96 87
7 2 4 3 – –
7 3 10 8 7 – 12 1 1 – – –
7 4 16 14 13 10 12 2 7 5 4 –
7 5 23 21 20 16 12 3 14 11 10 7
7 6 32 29 27 24 12 4 22 19 17 13
7 7 41 39 36 32 12 5 32 28 26 21

12 6 42 38 35 30
8 2 5 4 3 – 12 7 54 49 46 40
8 3 11 9 8 – 12 8 66 62 58 51
8 4 17 15 14 11 12 9 80 75 71 63
8 5 25 23 21 17 12 10 94 89 84 76
8 6 34 31 29 25 12 11 110 104 99 90
8 7 44 41 38 34 12 12 127 120 115 105
8 8 55 51 49 43

13 1 – – – –
9 1 1 – – – 13 2 7 5 4 –
9 2 5 4 3 – 13 3 15 12 10 7
9 3 11 9 8 6 13 4 23 20 18 14
9 4 19 16 14 11 13 5 33 30 27 22
9 5 27 24 22 18 13 6 44 40 37 31
9 6 36 33 31 26 13 7 56 52 48 44
9 7 46 43 40 35 13 8 69 64 60 53
9 8 58 54 51 45 13 9 83 78 73 65
9 9 70 66 62 56 13 10 98 92 88 79

13 11 114 108 103 93
10 1 1 – – – 13 12 131 125 119 109
10 2 6 4 3 – 13 13 149 142 136 125
10 3 12 10 9 6
10 4 20 17 15 12
10 5 28 26 23 19
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Table 21 continued

Level of significance α Level of significance α

Two-sided 0.20 0.10 0.05 0.01 Two-sided 0.20 0.10 0.05 0.01
One-sided 0.10 0.05 0.025 0.005 One-sided 0.10 0.05 0.025 0.005

n1 n2 n1 n2

14 1 1 – – – 17 4 28 25 21 16
14 2 7 5 4 – 17 5 40 35 32 25
14 3 16 13 11 7 17 6 52 47 43 36
14 4 25 21 19 14 17 7 66 61 56 47
14 5 35 31 28 22 17 8 81 75 70 60
14 6 46 42 38 32 17 9 97 90 84 74
14 7 59 54 50 43 17 10 113 106 100 89
14 8 72 67 62 54 17 11 131 123 117 105
14 9 86 81 76 67 17 12 150 142 135 122
14 10 102 96 91 81 17 13 170 161 154 140
14 11 118 112 106 96 17 14 190 182 174 159
14 12 136 129 123 112 17 15 212 203 195 180
14 13 154 147 141 129 17 16 235 225 217 201
14 14 174 166 160 147 17 17 259 249 240 223

15 1 1 – – – 18 1 1 – – –
15 2 8 6 4 – 18 2 9 7 5 –
15 3 16 13 11 8 18 3 19 15 13 8
15 4 26 22 20 15 18 4 30 26 22 16
15 5 37 33 29 23 18 5 42 37 33 26
15 6 48 44 40 33 18 6 55 49 45 37
15 7 61 56 52 44 18 7 69 63 58 49
15 8 75 69 65 56 18 8 84 77 72 62
15 9 90 84 79 69 18 9 100 93 87 76
15 10 106 99 94 84 18 10 117 110 103 92
15 11 123 116 110 99 18 11 135 127 121 108
15 12 141 133 127 115 18 12 155 146 139 125
15 13 159 152 145 133 18 13 175 166 158 144
15 14 179 171 164 151 18 14 196 187 179 163
15 15 200 192 184 171 18 15 218 208 200 184

18 16 242 231 222 206
16 1 1 – – – 18 17 266 255 246 228
16 2 8 6 4 – 18 18 291 280 270 252
16 3 17 14 12 8
16 4 27 24 21 15 19 1 2 1 – –
16 5 38 34 30 24 19 2 10 7 5 3
16 6 50 46 42 34 19 3 20 16 13 9
16 7 64 58 54 46 19 4 31 27 23 17
16 8 78 72 67 58 19 5 43 38 34 27
16 9 93 87 82 72 19 6 57 51 46 38
16 10 109 103 97 86 19 7 71 65 60 50
16 11 127 120 113 102 19 8 87 80 74 64
16 12 145 138 131 119 19 9 103 96 90 78
16 13 165 156 150 130 19 10 121 113 107 94
16 14 185 176 169 155 19 11 139 131 124 111
16 15 206 197 190 175 19 12 159 150 143 129
16 16 229 219 211 196 19 13 180 171 163 147

19 14 202 192 182 168
17 1 1 – – – 19 15 224 214 205 189
17 2 9 6 5 – 19 16 248 237 228 210
17 3 18 15 12 8

Source: Natrella, 1963
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Table 22 The Kruskal–Wallis test
Critical region: H ≥ tabulated value.

K = 3 K = 4 K = 5

Sample α = 0.05 α = 0.01 Sample α = 0.05 α = 0.01 Sample α = 0.05 α = 0.01
sizes sizes sizes

2 2 2 – – 2 2 1 1 – – 2 2 1 1 1 – –
2 2 2 1 5.679 – 2 2 2 1 1 6.750 –

3 2 1 – – 2 2 2 2 6.167 6.667 2 2 2 2 1 7.133 7.533
3 2 2 4.714 – 2 2 2 2 2 7.418 8.291
3 3 1 5.143 – 3 1 1 1 – –
3 3 2 5.361 – 3 2 1 1 – – 3 1 1 1 1 – –
3 3 3 5.600 7.200 3 2 2 1 5.833 – 3 2 1 1 1 6.583 –

3 2 2 2 6.333 7.133 3 2 2 1 1 6.800 7.600
4 2 1 – – 3 3 1 1 6.333 – 3 2 2 2 1 7.309 8.127
4 2 2 5.333 – 3 3 2 1 6.244 7.200 3 2 2 2 2 7.682 8.682
4 3 1 5.208 – 3 3 2 2 6.527 7.636 3 3 1 1 1 7.111 –
4 3 2 5.444 6.444 3 3 3 1 6.600 7.400 3 3 2 1 1 7.200 8.073
4 3 3 5.791 6.745 3 3 3 2 6.727 8.015 3 3 2 2 1 7.591 8.576
4 4 1 4.967 6.667 3 3 3 3 7.000 8.538 3 3 2 2 2 7.910 9.115
4 4 2 5.455 7.036 3 3 3 1 1 7.576 8.424
4 4 3 5.598 7.144 4 1 1 1 – – 3 3 3 2 1 7.769 9.051
4 4 4 5.692 7.654 4 2 1 1 5.833 – 3 3 3 2 2 8.044 9.505

4 2 2 1 6.133 7.000 3 3 3 3 1 8.000 9.451
5 2 1 5.000 – 4 2 2 2 6.545 7.391 3 3 3 3 2 8.200 9.876
5 2 2 5.160 6.533 4 3 1 1 6.178 7.067 3 3 3 3 3 8.333 10.20
5 3 1 4.960 – 4 3 2 1 6.309 7.455
5 3 2 5.251 6.909 4 3 2 2 6.621 7.871
5 3 3 5.648 7.079 4 3 3 1 6.545 7.758
5 4 1 4.985 6.955 4 3 3 2 6.795 8.333
5 4 2 5.273 7.205 4 3 3 3 6.984 8.659
5 4 3 5.656 7.445 4 4 1 1 5.945 7.909
5 4 4 5.657 7.760 4 4 2 1 6.386 7.909
5 5 1 5.127 7.309 4 4 2 2 6.731 8.346
5 5 2 5.338 7.338 4 4 3 1 6.635 8.231
5 5 3 5.705 7.578 4 4 3 2 6.874 8.621
5 5 4 5.666 7.823 4 4 3 3 7.038 8.876
5 5 5 5.780 8.000 4 4 4 1 6.725 8.588

4 4 4 2 6.957 8.871
6 1 1 – – 4 4 4 3 7.142 9.075
6 2 1 4.822 – 4 4 4 4 7.235 9.287

Source: Neave, 1978
6 2 2 5.345 6.655
6 3 1 4.855 6.873
6 3 2 5.348 6.970
6 3 3 5.615 7.410
6 4 1 4.947 7.106
6 4 2 5.340 7.340
6 4 3 5.610 7.500
6 4 4 5.681 7.795
6 5 1 4.990 7.182
6 5 2 5.338 7.376
6 5 3 5.602 7.590
6 5 4 5.661 7.936
6 5 5 5.729 8.028
6 6 1 4.945 7.121
6 6 2 5.410 7.467
6 6 3 5.625 7.725
6 6 4 5.724 8.000
6 6 5 5.765 8.124
6 6 6 5.801 8.222

7 7 7 5.819 8.378

8 8 8 5.805 8.465
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Table 23 Critical values for the rank sum difference test
(two-sided)

Level of significance α = 0.01

K
n 3 4 5 6 7 8 9 10

1 4.1 5.7 7.3 8.9 10.5 12.2 13.9 15.6
2 10.9 15.3 19.7 24.3 28.9 33.6 38.3 43.1
3 19.5 27.5 35.7 44.0 52.5 61.1 69.8 78.6
4 29.7 41.9 54.5 67.3 80.3 93.6 107.0 120.6
5 41.2 58.2 75.8 93.6 111.9 130.4 149.1 168.1

6 53.9 76.3 99.3 122.8 146.7 171.0 195.7 220.6
7 67.6 95.8 124.8 154.4 184.6 215.2 246.3 277.7
8 82.4 116.8 152.2 188.4 225.2 262.6 300.6 339.0
9 98.1 139.2 181.4 224.5 268.5 313.1 358.4 404.2

10 114.7 162.8 212.2 262.7 314.2 366.5 419.5 473.1

11 132.1 187.6 244.6 302.9 362.2 422.6 483.7 545.6
12 150.4 213.5 278.5 344.9 412.5 481.2 551.0 621.4
13 169.4 240.6 313.8 388.7 464.9 542.4 621.0 700.5
14 189.1 268.7 350.5 434.2 519.4 606.0 693.8 782.6
15 209.6 297.8 388.5 481.3 575.8 671.9 769.3 867.7

16 230.7 327.9 427.9 530.1 634.2 740.0 847.3 955.7
17 252.5 359.0 468.4 580.3 694.4 810.2 927.8 1046.5
18 275.0 391.0 510.2 632.1 756.4 882.6 1010.6 1140.0
19 298.1 423.8 553.1 685.4 820.1 957.0 1095.8 1236.2
20 321.8 457.6 597.2 740.0 885.5 1033.3 1183.3 1334.9

21 346.1 492.2 642.4 796.0 952.6 1111.6 1273.0 1436.0
22 371.0 527.6 688.7 853.4 1021.3 1191.8 1364.8 1539.7
23 396.4 563.8 736.0 912.1 1091.5 1273.8 1458.8 1645.7
24 422.4 600.9 784.4 972.1 1163.4 1357.6 1554.8 1754.0
25 449.0 638.7 833.8 1033.3 1236.7 1443.2 1652.8 1864.6

Level of significance α = 0.05

K
n 3 4 5 6 7 8 9 10

1 3.3 4.7 6.1 7.5 9.0 10.5 12.0 13.5
2 8.8 12.6 16.5 20.5 24.7 28.9 33.1 37.4
3 15.7 22.7 29.9 37.3 44.8 52.5 60.3 68.2
4 23.9 34.6 45.6 57.0 68.6 80.4 92.4 104.6
5 33.1 48.1 63.5 79.3 95.5 112.0 128.8 145.8

6 43.3 62.9 83.2 104.0 125.3 147.0 169.1 191.4
7 54.4 79.1 104.6 130.8 157.6 184.9 212.8 240.9
8 66.3 96.4 127.6 159.6 192.4 225.7 259.7 294.1
9 7.89 114.8 152.0 190.2 229.3 269.1 309.6 350.6

10 92.3 134.3 177.8 222.6 268.4 315.0 362.4 410.5

11 106.3 154.8 205.0 256.6 309.4 363.2 417.9 473.3
12 120.9 176.2 233.4 292.2 352.4 413.6 476.0 539.1
13 136.2 198.5 263.0 329.3 397.1 466.2 536.5 607.7
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Table 23 continued
Level of significance α = 0.05

K
n 3 4 5 6 7 8 9 10

14 152.1 221.7 293.8 367.8 443.6 520.8 599.4 679.0
15 168.6 245.7 325.7 407.8 491.9 577.4 664.6 752.8

16 185.6 270.6 358.6 449.1 541.7 635.9 732.0 829.2
17 203.1 296.2 392.6 491.7 593.1 696.3 801.5 907.9
18 221.2 322.6 427.6 535.5 646.1 758.5 873.1 989.0
19 239.8 349.7 463.6 580.6 700.5 822.4 946.7 1072.4
20 258.8 377.6 500.5 626.9 756.4 888.1 1022.3 1158.1

21 278.4 406.1 538.4 674.4 813.7 955.4 1099.8 1245.9
22 298.4 435.3 577.2 723.0 872.3 1024.3 1179.1 1335.7
23 318.9 464.2 616.9 772.7 932.4 1094.8 1260.3 1427.7
24 339.8 495.8 657.4 823.5 993.7 1166.8 1343.2 1521.7
25 361.1 527.0 698.8 875.4 1056.3 1240.4 1427.9 1616.6

Level of significance α = 0.10

K
n 3 4 5 6 7 8 9 10

1 2.9 4.2 5.5 6.8 8.2 9.6 11.1 12.5
2 7.6 11.2 14.9 18.7 22.5 26.5 30.5 34.5
3 13.8 20.2 26.9 33.9 40.9 48.1 55.5 63.0
4 20.9 30.9 41.2 51.8 62.6 73.8 85.1 96.5
5 29.0 42.9 57.2 72.1 87.3 102.8 118.6 134.6

6 37.9 56.1 75.0 94.5 114.4 134.8 155.6 176.6
7 47.6 70.5 94.3 118.8 144.0 169.6 195.8 222.3
8 58.0 86.0 115.0 145.0 175.7 207.0 239.0 271.4
9 69.1 102.4 137.0 172.8 209.4 246.8 284.9 323.6

10 80.8 119.8 160.3 202.2 245.1 288.9 333.5 378.8

11 93.1 138.0 184.8 233.1 282.6 333.1 384.6 436.8
12 105.9 157.1 210.4 265.4 321.8 379.3 438.0 497.5
13 119.3 177.0 237.1 299.1 362.7 427.6 493.7 560.8
14 133.2 197.7 264.8 334.1 405.1 477.7 551.6 626.6
15 147.6 219.1 293.6 370.4 449.2 529.6 611.6 694.8

16 162.5 241.3 323.3 407.9 494.7 583.3 673.6 765.2
17 177.9 264.2 353.9 446.6 541.6 638.7 737.6 837.9
18 193.7 287.7 385.5 486.5 590.0 695.7 803.4 912.8
19 210.0 311.9 417.9 527.5 639.7 754.3 871.2 989.7
20 226.7 336.7 451.2 569.5 690.7 814.5 940.7 1068.8

21 243.8 362.2 485.4 612.6 743.0 876.2 1012.0 1149.8
22 261.3 388.2 520.4 656.8 796.6 939.4 1085.0 1232.7
23 279.2 414.9 556.1 702.0 851.4 1004.1 1159.7 1317.6
24 297.5 442.2 592.7 748.1 907.4 1070.2 1236.0 1404.3
25 316.2 470.0 630.0 795.3 964.6 1137.6 1314.0 1492.9

Source: Sachs, 1972



GOKA: “CHAP06C” — 2006/6/10 — 17:24 — PAGE 223 — #6

TABLES 223

Table 24 Critical values for the rank sum maximum test

n K Level of significance α

0.10 0.05 0.01 0.001

3 3 22 23
4 30 31
5 38 39
6 46 48 50

4 2 24 25
3 37 38 41
4 50 52 55
5 63 66 70 73
6 77 80 85 89

5 2 35 37 39
3 55 57 61 64
4 75 78 83 87
5 95 98 105 111
6 115 119 127 134

6 2 49 51 54
3 77 79 85 90
4 104 108 115 122
5 133 138 149 161
6 161 167 180 196

7 2 65 68 72 76
3 102 105 112 119
4 138 144 154 167
5 176 182 196 212
6 213 221 237 257

8 2 84 87 92 97
3 130 135 144 156
4 177 183 197 212
5 225 233 249 269
6 273 282 302 326

Source: Sachs, 1970
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Table 25 Critical values for the Steel test
One-sided testing

Number of samples K

n α 2 3 4 5 6 7 8 9

4 0.05 11 10 10 10 10 – – –
0.01 – – – – – – –

5 0.05 18 17 17 16 16 16 16 15
0.01 15 – – – – – – –

6 0.05 27 26 25 25 24 24 24 23
0.01 23 22 21 21 – – – –

7 0.05 37 36 35 35 34 34 33 33
0.01 32 31 30 30 29 29 29 29

8 0.05 49 48 47 46 46 45 45 44
0.01 43 42 41 40 40 40 39 39

9 0.05 63 62 61 60 59 59 58 58
0.01 56 55 54 53 52 52 51 51

10 0.05 79 77 76 75 74 74 73 72
0.01 71 69 68 67 66 66 65 65

11 0.05 97 95 93 92 91 90 90 89
0.01 87 85 84 83 82 81 81 80

12 0.05 116 114 112 111 110 109 108 108
0.01 105 103 102 100 99 99 98 98

13 0.05 138 135 133 132 130 129 129 128
0.01 125 123 121 120 119 118 117 117

14 0.05 161 158 155 154 153 152 151 150
0.01 147 144 142 141 140 139 138 137

15 0.05 186 182 180 178 177 176 175 174
0.01 170 167 165 164 162 161 160 160

16 0.05 213 209 206 204 203 201 200 199
0.01 196 192 190 188 187 186 185 184

17 0.05 241 237 234 232 231 229 228 227
0.01 223 219 217 215 213 212 211 210

18 0.05 272 267 264 262 260 259 257 256
0.01 252 248 245 243 241 240 239 238

19 0.05 304 299 296 294 292 290 288 287
0.01 282 278 275 273 271 270 268 267

20 0.05 339 333 330 327 325 323 322 320
0.01 315 310 307 305 303 301 300 299
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Table 25 continued
Two-sided testing

Number of samples K

n α 2 3 4 5 6 7 8 9

4 0.05 10 – – – – – – –
0.01 – – – – – – – –

5 0.05 16 16 16 15 – – – –
0.01 – – – – – – – –

6 0.05 25 24 23 23 22 22 22 21
0.01 21 – – – – – – –

7 0.05 35 33 33 32 32 31 31 30
0.01 30 29 28 28 – – – –

8 0.05 46 45 44 43 43 42 42 41
0.01 41 40 39 38 38 37 37 37

9 0.05 60 58 57 56 55 55 54 54
0.01 53 52 51 50 49 49 49 48

10 0.05 75 73 72 71 70 69 69 68
0.01 68 66 65 64 63 62 62 62

11 0.05 92 90 88 87 86 85 85 84
0.01 84 82 80 79 78 78 77 77

12 0.05 111 108 107 105 104 103 103 102
0.01 101 99 97 96 95 94 94 93

13 0.05 132 129 127 125 124 123 122 121
0.01 121 118 116 115 114 113 112 112

14 0.05 154 151 149 147 145 144 144 143
0.01 142 139 137 135 134 133 132 132

15 0.05 179 175 172 171 169 168 167 166
0.01 165 162 159 158 156 155 154 154

16 0.05 205 201 196 196 194 193 192 191
0.01 189 186 184 182 180 179 178 177

17 0.05 233 228 225 223 221 219 218 217
0.01 216 212 210 208 206 205 204 203

18 0.05 263 258 254 252 250 248 247 246
0.01 244 240 237 235 233 232 231 230

19 0.05 294 289 285 283 280 279 277 276
0.01 274 270 267 265 262 261 260 259

20 0.05 328 322 318 315 313 311 309 308
0.01 306 302 298 296 293 292 290 289

Source: De Jonge, 1963–4
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Table 26 Critical values of rs for the Spearman
rank correlation test

n Level of significance α

0.001 0.005 0.010 0.025 0.050 0.100

4 – – – – 0.8000 0.8000
5 – – 0.9000 0.9000 0.8000 0.7000

6 – 0.9429 0.8857 0.8286 0.7714 0.6000
7 0.9643 0.8929 0.8571 0.7450 0.6786 0.5357
8 0.9286 0.8571 0.8095 0.6905 0.5952 0.4762
9 0.9000 0.8167 0.7667 0.6833 0.5833 0.4667

10 0.8667 0.7818 0.7333 0.6364 0.5515 0.4424

11 0.8455 0.7545 0.7000 0.6091 0.5273 0.4182
12 0.8182 0.7273 0.6713 0.5804 0.4965 0.3986
13 0.7912 0.6978 0.6429 0.5549 0.4780 0.3791
14 0.7670 0.6747 0.6220 0.5341 0.4593 0.3626
15 0.7464 0.6536 0.6000 0.5179 0.4429 0.3500

16 0.7265 0.6324 0.5824 0.5000 0.4265 0.3382
17 0.7083 0.6152 0.5637 0.4853 0.4118 0.3260
18 0.6904 0.5975 0.5480 0.4716 0.3994 0.3148
19 0.6737 0.5825 0.5333 0.4579 0.3895 0.3070
20 0.6586 0.5684 0.5203 0.4451 0.3789 0.2977

21 0.6455 0.5545 0.5078 0.4351 0.3688 0.2909
22 0.6318 0.5426 0.4963 0.4241 0.3597 0.2829
23 0.6186 0.5306 0.4852 0.4150 0.3518 0.2767
24 0.6070 0.5200 0.4748 0.4061 0.3435 0.2704
25 0.5962 0.5100 0.4654 0.3977 0.3362 0.2646

26 0.5856 0.5002 0.4564 0.3894 0.3299 0.2588
27 0.5757 0.4915 0.4481 0.3822 0.3236 0.2540
28 0.5660 0.4828 0.4401 0.3749 0.3175 0.2490
29 0.5567 0.4744 0.4320 0.3685 0.3113 0.2443
30 0.5479 0.4665 0.4251 0.3620 0.3059 0.2400

Source: Sachs, 1972
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Table 27 Critical values of S for the Kendall rank
correlation test

Level of significance α

Two-sided 0.10 0.05 0.02 0.05
One-sided 0.05 0.025 0.01 0.005

n

4 6 – –
5 8 10 10 –

6 11 13 13 15
7 13 15 17 19
8 16 18 20 22
9 18 20 24 26

10 21 23 27 29

11 23 27 31 33
12 26 30 36 38
13 28 34 40 44
14 33 37 43 47
15 35 41 49 53

16 38 46 52 58
17 42 50 58 64
18 45 53 63 69
19 49 57 67 75
20 52 62 72 80

21 56 66 78 86
22 61 71 83 91
23 65 75 89 99
24 68 80 94 104
25 72 86 100 110

26 77 91 107 117
27 81 95 113 125
28 86 100 118 130
29 90 106 126 138
30 95 111 131 145

31 99 117 137 151
32 104 122 144 160
33 108 128 152 166
34 113 133 157 175
35 117 139 165 181

36 122 146 172 190
37 128 152 178 198
38 133 157 185 205
39 139 163 193 213
40 144 170 200 222

Source: De Jonge, 1963–4
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Table 28 Critical values of D for the adjacency test
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.

Level of significance α

Two-sided 0.10 0.02
One-sided 0.05 0.01

n a b a b

4 0.78 3.22 0.63 3.37
5 0.82 3.18 0.54 3.46

6 0.89 3.11 0.56 3.44
7 0.94 3.06 0.61 3.39
8 0.98 3.02 0.66 3.34
9 1.02 2.98 0.71 3.29

10 1.06 2.94 0.75 3.25

11 1.10 2.90 0.79 3.21
12 1.13 2.87 0.83 3.17
15 1.21 2.79 0.92 3.08
20 1.30 2.70 1.04 2.96
25 1.37 2.63 1.13 2.87

Source: Hart, 1942

Table 29 Critical values of r for the serial correlation test
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.

Level of significance α

Two-sided 0.10 0.02
One-sided 0.05 0.01

n a b a b

5 −0.753 0.253 −0.798 0.297
6 −0.708 0.345 −0.863 0.447
7 −0.674 0.370 −0.799 0.510
8 −0.625 0.371 −0.764 0.531
9 −0.593 0.366 −0.737 0.533

10 −0.564 0.360 −0.705 0.525

11 −0.539 0.353 −0.679 0.515
12 −0.516 0.348 −0.655 0.505
13 −0.497 0.341 −0.634 0.495
14 −0.479 0.335 −0.615 0.485
15 −0.462 0.328 −0.597 0.475

20 −0.399 0.328 −0.524 0.432
25 −0.356 0.276 −0.473 0.398
30 −0.325 0.257 −0.433 0.370

Source: Anderson, 1942
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Table 30 Critical values for the run test on successive
differences
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.

Level of significance α

Two-sided 0.02 0.10
One-sided 0.01 0.05

n a b a b

5 – – 1 –
6 1 – 1 –
7 1 – 2 –
8 2 – 2 –
9 2 – 3 8

10 3 – 3 9

11 3 – 4 10
12 4 – 4 11
13 4 – 5 12
14 5 13 6 12
15 5 14 6 13

16 6 15 7 14
17 6 16 7 15
18 7 17 8 15
19 7 17 8 16
20 8 18 9 17

21 8 19 10 18
22 9 20 10 18
23 10 21 11 19
24 10 21 11 20
25 11 22 12 21

26 11 23 13 21
27 12 24 13 22
28 12 24 14 23
29 13 25 14 24
30 13 26 15 24

31 14 27 16 25
32 15 27 16 26
33 15 28 17 27
34 16 29 17 27
35 16 30 18 28

36 17 30 19 29
37 18 31 19 29
38 18 32 20 30
39 19 33 20 31
40 19 33 21 32

Source: De Jonge, 1963–4
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Table 31 Critical values for the run test (equal sample sizes)
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.

Level of significance α

Two-sided 0.10 0.05 0.02 0.01
One-sided 0.05 0.025 0.01 0.005

n1 = n2 a b a b a b a b

5 3 9 2 10
6 3 11 2 12
7 4 12 3 13
8 5 13 4 14
9 6 14 4 16

10 6 16 5 17
11 7 17 7 16 6 18 5 18
12 8 18 7 18 7 19 6 19
13 9 19 8 19 7 21 7 20
14 10 20 9 20 8 22 7 22
15 11 21 10 21 9 23 8 23
16 11 23 11 22 10 24 9 24
17 12 24 11 24 10 26 10 25
18 13 25 12 25 11 27 10 27
19 14 26 13 26 12 28 11 28
20 15 27 14 27 13 29 12 29
21 16 28 14 30
22 17 29 14 32
23 17 31 15 33
24 18 32 16 34
25 19 33 18 33 17 35 16 35
26 20 34 18 36
27 21 35 19 37
28 22 36 19 39
29 23 37 20 40
30 24 38 22 39 21 41 20 41
35 28 43 27 44 25 46 24 47
40 33 48 31 50 30 51 29 52
45 37 54 36 55 34 57 33 58
50 42 59 40 61 38 63 37 64
55 46 65 45 66 43 68 42 69
60 51 70 49 72 47 74 46 75
65 56 75 54 77 52 79 50 81
70 60 81 58 83 56 85 55 86
75 65 86 63 88 61 90 59 92
80 70 91 68 93 65 96 64 97
85 74 97 72 99 70 101 68 103
90 79 102 77 104 74 107 73 108
95 84 107 82 109 79 112 77 114

100 88 117 80 115 84 113 82 119

Source: Dixon and Massey, 1957
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Table 32 Critical values for the Wilcoxon–Wilcox
test (two-sided)

Level of significance α = 0.01

K
n 3 4 5 6 7 8 9 10

1 4.1 5.7 7.3 8.9 10.5 12.2 13.9 15.6
2 5.8 8.0 10.3 12.6 14.9 17.3 19.7 22.1
3 7.1 9.8 12.6 15.4 18.3 21.2 24.1 27.0
4 8.2 11.4 14.6 17.8 21.1 24.4 27.8 31.2
5 9.2 12.7 16.3 19.9 23.6 27.3 31.1 34.9

6 10.1 13.9 17.8 21.8 25.8 29.9 34.1 38.2
7 10.9 15.0 19.3 23.5 27.9 32.3 36.8 41.3
8 11.7 16.1 20.6 25.2 29.8 34.6 39.3 44.2
9 12.4 17.1 21.8 26.7 31.6 36.6 41.7 46.8

10 13.0 18.0 23.0 28.1 33.4 38.6 44.0 49.4

11 13.7 18.9 24.1 29.5 35.0 40.5 46.1 51.8
12 14.3 19.7 25.2 30.8 36.5 42.3 48.2 54.1
13 14.9 20.5 26.2 32.1 38.0 44.0 50.1 56.3
14 15.4 21.3 27.2 33.3 39.5 45.7 52.0 58.4
15 16.0 22.0 28.2 34.5 40.8 47.3 53.9 60.5

16 16.5 22.7 29.1 35.6 42.2 48.9 55.6 62.5
17 17.0 23.4 30.0 36.7 43.5 50.4 57.3 64.4
18 17.5 24.1 30.9 37.8 44.7 51.8 59.0 66.2
19 18.0 24.8 31.7 38.8 46.0 53.2 60.6 68.1
20 18.4 25.4 32.5 39.8 47.2 54.6 62.2 69.8

21 18.9 26.0 33.4 40.9 48.3 56.0 63.7 71.6
22 19.3 26.7 34.1 41.7 49.5 57.3 65.2 73.2
23 19.8 27.3 34.9 42.7 50.6 58.6 66.7 74.9
24 20.2 27.8 35.7 43.6 51.7 59.8 68.1 76.5
25 20.6 28.4 36.4 44.5 52.7 61.1 69.5 78.1

Level of significance α = 0.05

K
n 3 4 5 6 7 8 9 10

1 3.3 4.7 6.1 7.5 9.0 10.5 12.0 13.5
2 4.7 6.6 8.6 10.7 12.7 14.8 17.0 19.2
3 5.7 8.1 10.6 13.1 15.6 18.2 20.8 23.5
4 6.6 9.4 12.2 15.1 18.0 21.0 24.0 27.1
5 7.4 10.5 13.6 16.9 20.1 23.5 26.9 30.3

6 8.1 11.5 14.9 18.5 22.1 25.7 29.4 33.2
7 8.8 12.4 16.1 19.9 23.9 27.8 31.8 35.8
8 9.4 13.3 17.3 21.3 25.5 29.7 34.0 38.3
9 9.9 14.1 18.3 22.6 27.0 31.5 36.0 40.6

10 10.5 14.8 19.3 23.8 28.5 33.2 38.0 42.8

11 11.0 15.6 20.2 25.0 29.9 34.8 39.8 44.9
12 11.5 16.2 21.1 26.1 31.2 36.4 41.6 46.9
13 11.9 16.9 22.0 27.2 32.5 37.9 43.3 48.8
14 12.4 17.5 22.8 28.2 33.7 39.3 45.0 50.7
15 12.8 18.2 23.6 29.2 34.9 40.7 46.5 52.5
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Table 32 continued
Level of significance α = 0.05

K
n 3 4 5 6 7 8 9 10

16 13.3 18.8 24.4 30.2 36.0 42.0 48.1 54.2
17 13.7 19.3 25.2 31.1 37.1 43.3 49.5 55.9
18 14.1 19.9 25.9 32.0 38.2 44.5 51.0 57.5
19 14.4 20.4 26.6 32.9 39.3 45.8 52.4 59.0
20 14.8 21.0 27.3 33.7 40.3 47.0 53.7 60.6

21 15.2 21.5 28.0 34.6 41.3 48.1 55.1 62.1
22 15.5 22.0 28.6 35.4 42.3 49.2 56.4 63.5
23 15.9 22.5 29.3 36.2 43.2 50.3 57.6 65.0
24 16.2 23.0 29.9 36.9 44.1 51.4 58.9 66.4
25 16.6 23.5 30.5 37.7 45.0 52.5 60.1 67.7

Level of significance α = 0.10

K
n 3 4 5 6 7 8 9 10

1 2.9 4.2 5.5 6.8 8.2 9.6 11.1 12.5
2 4.1 5.9 7.8 9.7 11.6 13.6 15.6 17.7
3 5.0 7.2 9.5 11.9 14.2 16.7 19.1 21.7
4 5.8 8.4 11.0 13.7 16.5 19.3 22.1 25.0
5 6.5 9.4 12.3 15.3 18.4 21.5 24.7 28.0

6 7.1 10.2 13.5 16.8 20.2 23.6 27.1 30.6
7 7.7 11.1 14.5 18.1 21.8 25.5 29.3 33.1
8 8.2 11.8 15.6 19.4 23.3 27.2 31.3 35.4
9 8.7 12.5 16.5 20.5 24.7 28.9 33.2 37.5

10 9.2 13.2 17.4 21.7 26.0 30.4 35.0 39.5

11 9.6 13.9 18.2 22.7 27.3 31.9 36.7 41.5
12 10.1 14.5 19.0 23.7 28.5 33.4 38.3 43.3
13 10.5 15.1 19.8 24.7 29.7 34.7 39.9 45.1
14 10.9 15.7 20.6 25.6 30.8 36.0 41.4 46.8
15 11.2 16.2 21.3 26.5 31.9 37.3 42.8 48.4

16 11.6 16.7 22.0 27.4 32.9 38.5 44.2 50.0
17 12.0 17.2 22.7 28.2 33.9 39.7 45.6 51.5
18 12.3 17.7 23.3 29.1 34.9 40.9 46.9 53.0
19 12.6 18.2 24.0 29.9 35.9 42.0 48.2 54.5
20 13.0 18.7 24.6 30.6 36.8 43.1 49.4 55.9

21 13.3 19.2 25.2 31.4 37.7 44.1 50.7 57.3
22 13.6 19.6 25.8 32.1 38.6 45.2 51.9 58.6
23 13.9 20.1 26.4 32.8 39.5 46.2 53.0 60.0
24 14.2 20.5 26.9 33.6 40.3 47.2 54.2 61.2
25 14.5 20.9 27.5 34.2 41.1 48.1 55.3 62.5

Source: Sachs, 1972
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Table 33 Durbin–Watson test bounds
dL denotes the lower boundary or left-sided critical values.
dU denotes the upper boundary or right-sided critical values.
Example: for n = 20, α = 0.01, and two independent variables,
dL = 0.86 and dU = 1.27.

Level of significance α = 0.05

Number of independent variables ( p − 1)

1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.27 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78
100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78
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Table 33 continued
Level of significance α = 0.01

Number of independent variables ( p − 1)

1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64
100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: Durbin and Watson, 1951
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Table 34 Modified Rayleigh test (V -test)

Level of significance α

n 0.10 0.05 0.01 0.005 0.001 0.0001

5 1.3051 1.6524 2.2505 2.4459 2.7938 3.0825
6 1.3009 1.6509 2.2640 2.4695 2.8502 3.2114
7 1.2980 1.6499 2.2734 2.4858 2.8886 3.2970
8 1.2958 1.6492 2.2803 2.4978 2.9164 3.3578
9 1.2942 1.6484 2.2856 2.5070 2.9375 3.4034

10 1.2929 1.6482 2.2899 2.5143 2.9540 3.4387
11 1.2918 1.6479 2.2933 2.5201 2.9672 3.4669
12 1.2909 1.6476 2.2961 2.5250 2.9782 3.4899
13 1.2902 1.6474 2.2985 2.5290 2.9873 3.5091
14 1.2895 1.6472 2.3006 2.5325 2.9950 3.5253

15 1.2890 1.6470 2.3023 2.5355 3.0017 3.5392
16 1.2885 1.6469 2.3039 2.5381 3.0075 3.5512
17 1.2881 1.6467 2.3052 2.5404 3.0126 3.5617
18 1.2877 1.6466 2.3064 2.5424 3.0171 3.5710
19 1.2874 1.6465 2.3075 2.5442 3.0211 3.5792

20 1.2871 1.6464 2.3085 2.5458 3.0247 3.5866
21 1.2868 1.6464 2.3093 2.5473 3.0279 3.5932
22 1.2866 1.6463 2.3101 2.5486 3.0308 3.5992
23 1.2864 1.6462 2.3108 2.5498 3.0335 3.6047
24 1.2862 1.6462 2.3115 2.5509 3.0359 3.6096

25 1.2860 1.6461 2.3121 2.5519 3.0382 3.6142
26 1.2858 1.6461 2.3127 2.5529 3.0402 3.6184
27 1.2856 1.6460 2.3132 2.5538 3.0421 3.6223
28 1.2855 1.6460 2.3136 2.5546 3.0439 3.6258
29 1.2853 1.6459 2.3141 2.5553 3.0455 3.6292

30 1.2852 1.6459 2.3145 2.5560 3.0471 3.6323
40 1.2843 1.6456 2.3175 2.5610 3.0580 3.6545
50 1.2837 1.6455 2.3193 2.5640 3.0646 3.6677
60 1.2834 1.6454 2.3205 2.5660 3.0689 3.6764
70 1.2831 1.6453 2.3213 2.5674 3.0720 3.6826

100 1.2826 1.6452 2.3228 2.5699 3.0775 3.6936
500 1.2818 1.6449 2.3256 2.5747 3.0877 3.7140

1000 1.2817 1.6449 2.3260 2.5752 3.0890 3.7165

Source: Batschelet, 1981; original provided by W.T. Keeton
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Table 35 Watson’s U2
n-test

Level of significance α

n 0.10 0.05 0.025 0.01 0.005

2 0.143 O.155 0.161 0.164 0.165
3 0.145 0.173 0.194 0.213 0.224
4 0.146 0.176 0.202 0.233 0.252

5 0.148 0.177 0.205 0.238 0.262
6 0.149 0.179 0.208 0.243 0.269
7 0.149 0.180 0.210 0.247 0.274
8 0.150 0.181 0.211 0.250 0.278
9 0.150 0.182 0.212 0.252 0.281

10 0.150 0.182 0.213 0.254 0.283
12 0.150 0.183 0.215 0.256 0.287
14 0.151 0.184 0.216 0.258 0.290
16 0.151 0.184 0.216 0.259 0.291
18 0.151 0.184 0.217 0.259 0.292

20 0.151 0.185 0.217 0.261 0.293
30 0.152 0.185 0.219 0.263 0.296
40 0.152 0.186 0.219 0.264 0.298
50 0.152 0.186 0.220 0.265 0.299

100 0.152 0.186 0.221 0.266 0.301

∞ 0.152 0.187 0.221 0.267 0.302

Source: Batschelet, 1981; adapted from Stephens, 1964



GOKA: “CHAP06D” — 2006/6/10 — 17:24 — PAGE 237 — #8

TABLES 237

Table 36 Watson’s two-sample U2-test
n and m are sample sizes.

Level of significance α

n m 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001

5 5 0.089 0.161 0.225 0.225
5 6 0.085 0.133 0.182 0.242
5 7 0.086 0.128 0.171 0.200 0.257
5 8 0.085 0.131 0.165 0.215 0.269
5 9 0.080 0.124 0.159 0.191 0.280 0.280
5 10 0.084 0.124 0.161 0.196 0.241 0.289 0.289
5 11 0.081 0.124 0.156 0.190 0.229 0.297 0.297
5 12 0.078 0.124 0.155 0.186 0.226 0.261 0.304

6 6 0.088 0.132 0.171 0.206 0.264
6 7 0.081 0.121 0.154 0.194 0.282 0.282
6 8 0.083 0.127 0.161 0.196 0.246 0.298 0.298
6 9 0.082 0.126 0.156 0.193 0.232 0.262 0.311
6 10 0.077 0.126 0.156 0.190 0.231 0.248 0.323 0.323
6 11 0.078 0.121 0.157 0.187 0.225 0.262 0.289 0.333
6 12 0.080 0.124 0.155 0.183 0.226 0.259 0.275 0.343 0.343

7 7 0.079 0.135 0.158 0.199 0.251 0.304 0.304
7 8 0.079 0.120 0.156 0.182 0.225 0.272 0.322
7 9 0.079 0.122 0.156 0.182 0.222 0.255 0.291 0.339
7 10 0.077 0.123 0.155 0.187 0.227 0.262 0.277 0.353 0.353
7 11 0.077 0.122 0.155 0.184 0.221 0.253 0.281 0.323 0.366
7 12 0.076 0.122 0.154 0.186 0.226 0.252 0.276 0.308 0.377

8 8 0.078 0.125 0.156 0.184 0.226 0.250 0.296 0.344
8 9 0.078 0.123 0.155 0.186 0.226 0.258 0.283 0.363 0.363
8 10 0.078 0.122 0.155 0.185 0.222 0.249 0.280 0.336 0.380
8 11 0.077 0.122 0.154 0.184 0.225 0.252 0.280 0.319 0.353
8 12 0.077 0.121 0.156 0.185 0.223 0.252 0.281 0.317 0.340

9 9 0.077 0.125 0.155 0.187 0.225 0.266 0.286 0.340 0.384
9 10 0.076 0.122 0.154 0.186 0.226 0.254 0.287 0.321 0.361
9 11 0.076 0.121 0.154 0.185 0.225 0.255 0.281 0.317 0.341
9 12 0.077 0.122 0.154 0.185 0.226 0.254 0.280 0.316 0.340

10 10 0.075 0.123 0.155 0.185 0.225 0.255 0.283 0.317 0.345
10 11 0.076 0.122 0.154 0.186 0.224 0.255 0.279 0.317 0.341
10 12 0.076 0.121 0.153 0.185 0.225 0.255 0.282 0.316 0.341

∞ ∞ 0.071 0.117 0.152 0.187 0.233 0.268 0.304 0.350 0.385

Source: Batschelet, 1981: adapted from Zar, 1974
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Table 37 Maximum likelihood estimate k̂ for
given R̄ in the von Mises case

For the solution k = A−1(ρ), replace k̂ by k, R̄ by ρ.

R̄ k̂ R̄ k̂ R̄ k̂

0.00 0.00000 0.35 0.74783 0.70 2.01363
0.01 0.02000 0.36 0.77241 0.71 2.07685
0.02 0.04001 0.37 0.79730 0.72 2.14359
0.03 0.06003 0.38 0.82253 0.73 2.21425
0.04 0.08006 0.39 0.84812 0.74 2.28930

0.05 0.10013 0.40 0.87408 0.75 2.36930
0.06 0.12022 0.41 0.90043 0.76 2.45490
0.07 0.14034 0.42 0.92720 0.77 2.54686
0.08 0.16051 0.43 0.95440 0.78 2.64613
0.09 0.18073 0.44 0.98207 0.79 2.75382

0.10 0.20101 0.45 1.01022 0.80 2.87129
0.11 0.22134 0.46 1.03889 0.81 3.00020
0.12 0.24175 0.47 1.06810 0.82 3.14262
0.13 0.26223 0.48 1.09788 0.83 3.30114
0.14 0.28279 0.49 1.12828 0.84 3.47901

0.15 0.30344 0.50 1.15932 0.85 3.68041
0.16 0.32419 0.51 1.19105 0.86 3.91072
0.17 0.34503 0.52 1.22350 0.87 4.17703
0.18 0.36599 0.53 1.25672 0.88 4.48876
0.19 0.38707 0.54 1.29077 0.89 4.85871

0.20 0.40828 0.55 1.32570 0.90 5.3047
0.21 0.42962 0.56 1.36156 0.91 5.8522
0.22 0.45110 0.57 1.39842 0.92 6.5394
0.23 0.47273 0.58 1.43635 0.93 7.4257
0.24 0.49453 0.59 1.47543 0.94 8.6104

0.25 0.51649 0.60 1.51574 0.95 10.2716
0.26 0.53863 0.61 1.55738 0.96 12.7661
0.27 0.56097 0.62 1.60044 0.97 16.9266
0.28 0.58350 0.63 1.64506 0.98 25.2522
0.29 0.60625 0.64 1.69134 0.99 50.2421

0.30 0.62922 0.65 1.73945 1.00 ∞
0.31 0.65242 0.66 1.78953
0.32 0.67587 0.67 1.84177
0.33 0.69958 0.68 1.89637
0.34 0.72356 0.69 1.95357

Source: Mardia, 1972
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Table 38 Mardia–Watson–Wheeler test
n1 = smaller of the two sample sizes n1, n2; n = n1 + n2.

Level of significance α

n n1 0.001 0.01 0.05 0.10

8 4 6.83

9 3 6.41
4 8.29 4.88

10 3 6.85
4 9.47 6.24
5 10.47 6.85

11 3 7.20 5.23
4 10.42 7.43
5 12.34 8.74 6.60

12 3 7.46 5.73
4 11.20 8.46 7.46
5 13.93 10.46 7.46
6 14.93 11.20 7.46

13 3 7.68 6.15
4 11.83 9.35 7.03
5 15.26 10.15 7.39
6 17.31 10.42 8.04

14 3 7.85 6.49
4 12.34 9.30 7.60
5 16.39 10.30 7.85
6 19.20 15.59 12.21 7.94
7 20.20 16.39 11.65 8.85

15 3 7.99 6.78
4 12.78 8.74 7.91
5 17.35 14.52 10.36 7.91
6 20.92 17.48 11.61 9.12
7 22.88 16.14 11.57 9.06

16 3 8.11 5.83
4 13.14 9.44 7.38
5 18.16 15.55 10.44 9.03
6 22.43 16.98 11.54 9.11
7 25.27 18.16 12.66 9.78

17 3 8.21 7.23 6.14
4 13.44 11.76 9.74 7.64
5 18.86 16.44 11.03 8.76
6 23.73 17.76 12.21 9.41
7 27.40 17.98 12.63 10.11
8 29.37 19.11 13.36 10.15

Source: Mardia, 1972
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adjacency test 118
alternative hypothesis 2
analysis of variance 55, 61, 182
angular values 174, 176, 182
angular variance 18, 177

Bartlett’s test 71
Bernoulli population 166
binomial distribution 26, 27

chi-square (χ2) distribution
44, 59

chi-square (χ2) test 10, 44, 59,
81, 85, 86, 89, 91, 173

circular observations 18, 177, 178
Cochran’s test 75, 88
consistency 83, 85, 86, 88, 89
contingency tables 13, 83
contrast 63
control group 69, 108
correlated proportions 57
correlation coefficient 39, 40, 42
correlations 46
counts 81
critical region 2, 3
critical value 40, 42, 44, 45, 57
cumulant test 51
cumulative distribution 76

degrees of freedom 7, 8, 9, 10, 11
delta test, see

Kolmogorov–Smirnov test
76, 78

dichotomous classification 16, 83,
86, 116

difference sign test 122
discriminant test 50
distribution-free test 19
Dixon test 54
Duckworth’s test 171
Dunnett’s test 69
Durbin–Watson test 169

equality of variances 71, 73
exponential population 18, 165

F-test 11, 45, 46, 55, 60, 61, 63,
139, 142, 145, 148, 151, 153,
158, 160, 161

Fisher’s combined test 52
Fisher’s cumulant test 51
Fisher’s exact test 83
Fisher’s Z-transformation 194
Friedman’s test 131

goodness of fit test 12, 76, 79

H-test 104
Harrison–Kanji–Gadsden

test 182
Hartley’s test 73
Hotelling’s T2 test 48
hypothesis testing 2

independence test 91
interaction effect 142, 161
inversion test 97

judgement 133

K-statistics 51
Kendall rank correlation

test 110
Kolmogorov–Smirnov test

76, 78
Kruskall–Wallis rank sum test 104
kurtosis 51, 53

level of significance 3
likelihood ratio test 18, 164
Link–Wallace test 67
log odds ratio 156

Mardia–Watson–Wheeler
test 180

mean 55, 61, 95, 96
mean angles 18, 178
median test 93, 94, 98, 99, 171
modified Rayleigh test 174
multinomial distribution 137
multiple comparison 65, 67, 106
multiple regression 18, 158

Neave 2
nested classification 148

non-additivity 17, 139
normal distribution 16,

25, 44
normality 74
null hypothesis 1, 4, 17

outliers 54, 75

paired observations 9, 35, 46, 96,
109, 110

Poisson distribution 28, 60
probabilistic model 18, 172

q-test 65
Q-test 88

random effects model 18, 160
randomness 118, 120, 121,

122, 123, 124, 126, 128,
129, 174

rank correlation test 109, 110,
129, 133

rank sum difference test 106
rank sum maximum test 107
rectangular population

18, 164
regression 37, 151, 153
run test 123, 124, 126

sequential contingencies 156
sequential probability ratio

test 168
sequential test 18, 112, 114,

116, 166
serial correlation test 120
Siegel–Tukey rank sum dispersion

test 102
sign test 93, 94
signed rank test 95, 96
significance level 2
skewness 51, 53
Spearman rank correlation

test 109
standard deviation 114
Steel test 108
Studentized range 65, 74
Student’s t distribution 29, 31, 33,

35, 37
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t-test 7, 8, 29, 31, 33, 35,
37, 39

Tukey’s test 65, 139
turning point test 121
two-way classification 139,

142, 145

U-test 97
UMP test 165
uncertainty of events 155

V -test 174
variance 59
variance ratio test 45
von Mises population

18, 182

w/s-test 74
Watson–Williams test 178
Watson’s U2 test 177
Watson’s U2

n test 176

Wilcoxon inversion test 97
Wilcoxon–Wilcox test 130
Wilcoxons–Mann–Whitney rank

sum test 101, 128

Yates correction 85

Z-test 5, 6, 21, 23, 25, 26, 27, 28,
40, 42, 57, 155, 156

Z-transformation 194



GOKA: “INDEX” — 2006/6/10 — 17:44 — PAGE 243 — #3



GOKA: “INDEX” — 2006/6/10 — 17:44 — PAGE 244 — #4



GOKA: “INDEX” — 2006/6/10 — 17:44 — PAGE 245 — #5



GOKA: “INDEX” — 2006/6/10 — 17:44 — PAGE 246 — #6



GOKA: “INDEX” — 2006/6/10 — 17:44 — PAGE 247 — #7



GOKA: “INDEX” — 2006/6/10 — 17:44 — PAGE 248 — #8


	Contents
	Acknowledgements
	Preface
	Common symbols
	Introduction to the book
	Introduction to statistical testing
	Examples of test procedures
	List of tests
	Classification of tests
	The tests
	List of tables
	Tables
	References
	Index



