Module title: Topics in Nonlinear Analysis

Lecturer: Dr Hamid Baghani

Module Subjects:

Linear Spaces

 $\mathbf{1}^{\text{th}} \, \textbf{week:}$ Linear spaces, Normed spaces, Metric spaces

 $2^{\mbox{\tiny th}}$ week: Convergence, Banach spaces, Completion of normed spaces

 $\mathbf{3}^{\text{th}}$ week: Inner product spaces, Orthogonality

 $\mathbf{4}^{\mathrm{th}}$ week: Spaces of continuously differentiable functions, Holder spaces, L_P spaces, Compact sets

Elementary Fixed Point Theorems

 $\mathbf{5}^{\text{th}}$ week: Results Based on Completeness

- 6th-7th weeks: Order-Theoretic Results
- $8^{\text{th}}\,\text{-}9^{\text{th}}$ weeks: Results Based on Convexity

 $\mathbf{10}^{th}\,\mathbf{-11}^{th}$ weeks: Further Results and Applications

Theorem of Borsuk and Topological Transversality

- $\mathbf{12}^{th}$ week: Theorems of Brouwer and Borsuk
- 13th-14thweeks:Fixed Points for Compact Maps in Normed Linear Spaces
- 15 th weak: Compact and Completely Continuous Operators
- 16th weak: Equation x = F(x). The Leray- Schauder Principle and Birkhoff- Kellogg Theorem.