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Introduction

This document contains a complete set of viewgraphs for lecture presentation of all the
material in Quantum Mechanics for Scientists and Engineers (Cambridge University Press,
2008) (except for the Appendices). It can be used in the form given here, or as a resource for
lecturers preparing their own presentation materials.

The material is divided into sections corresponding to those in the book, and also into lectures.
All of the sections and lectures can be accessed by bookmarks in this pdf file. The division into
lectures is nominal — in presenting this material | have often deviated from the precise
divisions here depending on the needs of the students. The lecture units here are paced for
approximately 50 minute presentations. A pace of three such lectures per week is suitable for
graduate students with a good background in analytical subjects, and is just accessible for well-
prepared undergraduates. For a more typical undergraduate class, a slower pace is likely
preferable (e.g., 2/3 of this pace), possibly with more worked examples (e.g., from the solved
problems available on the book website www.cambridge.org/9780521897839) and extended
discussion.

There are 56 lectures altogether. At three lectures per week, in a two quarter sequence with
approximately 25 lectures per quarter, the majority of the material in the book can therefore be
taught, with some optional sections omitted. With a slightly more relaxed pace, the entire
material in the book could be taught in a two semester or three quarter full year course
sequence. An undergraduate course omitting some of the more advanced topics and optional
material could be taught comfortably in a full year sequence. The possible sequences of
material are discussed in the introduction to the book itself, and all optional material is clearly
marked throughout the book.

The progression of the viewgraphs exactly follows the text in the book. The only minor
exception to this is in Chapter 10 on the hydrogen atom. The solution for the hydrogen atom
involves many steps, so a presummary of the radial equation solution is added just before the
actual detailed solution, and an overall summary of the entire hydrogen atom solution is added
at the end of this chapter’s viewgraphs.

All the equations in the book are included in these viewgraphs, with equation numbers. All the
figures are also included, here often in color versions. The animations of various of the figures
are embedded, and can be accessed by mouse clicks on the indicated areas. To allow
embedding of the animations, this pdf file is created using Adobe Acrobat® version 8, so
Acrobat® Reader version 8 or later may be required to view them. The embedded animation
files are in AVI format, which may require additional plug-ins for viewing, though the
Acrobat® software may find these automatically.

David A. B. Miller
Stanford, California
March 2008



Introduction

Reading — Chapter 1

Quantum mechanics and real life
Quantum mechanics as an intellectual achievement

Using quantum mechanics




Quantum mechanics and real life

Quantum mechanics is part of everyday life!

e.g., quantum mechanics is needed to explain the color of an object
essentially no classical model correctly explains the color of anything
most colors result from specific absorbing transitions in materials
the transition energies
and hence frequencies
and hence colors

are determined quantum mechanically

even the color of the glow of very hot objects is determined by the quantum
statistics of radiation.

e.g., qguantum mechanics is an essential part of chemistry




Quantum mechanics in engineering

guantum mechanics is essential for handling information

electronics for processing information
guantum mechanics underpins all of solid state physics
enables us to make transistors and integrated circuits

limiting processes in small electronic devices can only be understood through
guantum mechanics.

e.g., tunneling through gate oxide

new quantum mechanical devices beyond the transistor?

optics for sending information

heavily quantum mechanical
e.g., photons

optoelectronic devices are quantum mechanical on many different levels
they are solid state devices
they send and receive photons

modern light-emitting diodes, semiconductor lasers, and modulators are quantum
mechanically engineered

storing information
magnetism of materials is a quantum mechanical phenomenon
optical storage relies also on quantum-mechanical optoelectronic devices




Quantum mechanics for understanding how the world works

Quantum mechanics is an astonishing intellectual achievement
arguably the greatest of the twentieth century
It challenges many of our prior beliefs about how the world actually works
It is apparently never wrong

It has bizarre, but true consequences
“tunneling” allows particles to penetrate barriers that are “too high”

we cannot know simultaneously both the position and the momentum of a
particle

Heisenberg’'s uncertainty principle
a particle may exist in a superposition state,
e.g., it is neither definitely on the left, or on the right
when we measure it, we always find it to have a definite value
known as “collapse of the wavefunction”
e.g., to be definitely on the left or on the right.
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Basic issues raised by quantum mechanics

e.g., what do we mean by a measurement of a quantum system
Schrodinger cat paradox

guantum mechanics is “non-local”
an event here can apparently instantaneously give a consequence
elsewhere

(though it is not apparently possible to use such a phenomenon to
communicate information faster than the velocity of light)

despite its statistical nature

guantum mechanics may well be a complete theory

unlike classical statistical mechanics, which presumes well defined positions
and momenta exist for all particles

Bell’s inequalities, and experiments that verify them,
tell us that the world cannot be described by purely local hidden variables
(e.g., that we simply have not yet been able to see)
all with definite values




Continuing story of quantum mechanics

continuing interest in the theory of elementary particles
and the implications of such theories for the nature of the universe

some of the strange features of quantum mechanics may be used for
handling information

e.g., use quantum mechanics to create “uncrackable” coded transmission
of information

e.g., quantum computing

guantum mechanics, because it can naturally deal with so-called “entangled
states,”

may enable solution of problems that are practically impossible for any classical
computer that could ever be built




Using quantum mechanics as a practical tool

The recipes for using quantum mechanics in a broad range of practical
problems and engineering designs are relatively straightforward

though strange and expressed using a different set of ideas and concepts

If we only ask questions about quantities that can be measured

there are no philosophical problems that prevent us from calculating
anything that we could measure

(the philosophical approach of only dealing with questions that can be
answered by measurement, and regarding all other questions as
meaningless, is known as “logical positivism”)

When we use quantum mechanical principles in tangible applications
e.g., electronic or optical devices and systems
the apparently bizarre aspects become routine




Quantum mechanical calculations

The mathematical techniques used in quantum mechanics are familiar

Most calculations require

performing integrals or
manipulating matrices.

Many underlying mathematical concepts are quite familiar to engineers

e.g., Fourier analysis,
or other linear transforms.




Learning quantum mechanics

Arguably the main difficulties in learning quantum mechanics center around

knowing which classical notions have to be discarded, and
what new notions we have to use to replace them.

Learning quantum mechanics

IS a qualitative change in one’s view of the world
IS certainly one of the most fascinating things to do with one’s brain!
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The Time-Independent Schrodinger Equation - 1

Reading — Sections 2.1 - 2.3

Electrons as waves
De Broglie hypothesis

Rationalization of Schrdodinger’s (time-independent) equation
Probability amplitudes

Diffraction by two slits




Rationalization of Schrodinger’s equation

The Schrodinger equation
Is a very useful relation
it solves many problems for quantum mechanical particles that have mass
e.g., a single electron moving slowly
l.e., much slower than the velocity of light
and neglecting any magnetic effects.
IS a good example of qguantum mechanics
it exposes many general concepts, e.qg.,
working with quantum mechanical amplitudes
linearity
eigenstates.

Why propose such an equation?
consider here the simplest, time-independent case first.




Electrons as waves

Experimentally, electrons can behave like waves.

e.g., make a beam of electrons by applying a large electric field in a
vacuum to pull electrons out of a metal

arrange that the electrons all have essentially the same kinetic energy
e.q., by accelerating them through some fixed electric potential

If we shine this beam of electrons at a crystal,

we will get a diffraction pattern
e.g., let the scattered electrons land on a phosphor screen
get a pattern of dots on the screen

behaves like the diffraction pattern we get when we shine a
monochromatic light beam at a periodic structure of periodicity
comparable to the wavelength

The fact that electrons behave both

as particles
they have a specific mass and a specific charge, for example

and as waves
IS known as “wave-particle duality.”
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Electrons as waves

Electrons behave as if they have a wavelength

a=n (2.1)
p

where p is the electron momentum, and h is Planck’s constant

h = 6.626x10"**Joule - seconds.
This is known as de Broglie’s hypothesis

E.g., an electron can behave as a plane wave, propagating in the z direction
w ocexp(2rziz/ ). (2.2)

Hence we need a wave equation for the electron
The simplest choice —

the “Helmholtz” wave equation for a monochromatic wave
in one dimension, the Helmholtz equation is

d2
dz"’z’ — K2y (2.3)

It has solutions such as
sin(kz), cos(kz), and exp(ikz) (and sin(—kz), cos(—kz), and exp(—ikz))




Helmholtz equation in three dimensions

In three dimensions, we can write this as
Vi = —k2y (2.4)

where the symbol V?
known as
the Laplacian operator
“del squared” and
“nabla squared”, and
sometimes written A
means

2 2 2
SR (2.5)
ox® oy® oz
where X, y, and z are the usual Cartesian coordinates, all at right angles to one
another
This has solutions such as
sin(k.r),
cos(k.r), and
exp(ik.r)
(and sin(-k.r), cos(-k.r), and exp(-ik.r)), where k and r are vectors.

VZ




Helmholtz equation to Schrddinger equation (1)

In general for our Helmholtz equation
The wavevector magnitude, k, is defined as

k=274 (2.6)
or, equivalently, given the empirical wavelength exhibited by the electrons
k=p/h (2.7)

where
h=h/2z =1.055x10"* Joule - seconds
With our expression for k (Eq. (2.7)), we can rewrite our simple wave
equation (Eq. (2.4) Vi =—k*y) as
~n*Viy = py (2.8)
Now divide both sides by 2m,, where, for the case of an electron, m, is the
free electron rest mass
m, =9.11x10* kg

to obtain

v (2.9)




Helmholtz equation to Schrddinger equation (2)

But we know from classical mechanics

with p=my (with v as the velocity), that
2

P
2m

= kinetic energy of electron (2.10)

0

and, in general,
Total energy (E)=Kinetic energy + Potential energy (V (r)) (2.11)

Hence, we can postulate that we can rewrite our wave equation (Eq. (2.9)

hz ) p2
— Vay = as
2m v 2m l//)

0 0

hz
2m,

Vi =(E-V(r))y (2.12)
or, in a slightly more standard way of writing this,

2
(—;’no V? +V(r)jgy: Ey (2.13)

which is the time-independent Schrodinger equation for a particle of
mass m,.




“Derivation” of Schrdodinger’s equation

Note that we have not “derived” Schrodinger’s equation.

We have merely suggested it as an equation that agrees with at least one
experiment.

There is no way to derive Schrodinger’s equation from first principles

there are no “first principles” in the physics that precedes quantum
mechanics that predicts anything like such wave behavior for the
electron.

Schrddinger’s equation has to be postulated,
just like Newton’s laws of motion were originally postulated.

The only justification for making such a postulate is that it works!
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Probability densities

We find in practice that
the probability P(r) of finding the electron near any specific point r in
space

is proportional to the modulus squared, * of the wave w(r).

w(r)

Using the squared modulus
assures that we always have a positive quantity
we would not know how to interpret a negative probability!
IS consistent with some other uses of squared amplitudes with waves

e.g., squared amplitude tells us the intensity (power per unit area) or energy
density in a wave motion such as a sound wave or an electromagnetic wave

we would also find electromagnetism that the probability of finding a photon at a
specific point was proportional to the squared wave amplitude

if we choose to use complex notation to describe an electromagnetic wave,
we use the modulus squared of the wave amplitude to describe wave intensity,
and hence also the probability of finding a photon at a given point in space




Probability Amplitude or Quantum Mechanical Amplitude

Since the probability is given by the modulus squared of the wavefunction v,
we call the wavefunction a

“probability amplitude” or
“quantum mechanical amplitude.”
Note that this probability amplitude is quite distinct from the probability itself.

The probability amplitude has little or no precedent in classical physics or
classical statistics.

For now, we think of that probability amplitude as being the amplitude of a
wave

We will find later that the concept of probability amplitudes extends into
quite different descriptions,

still retaining the concept of the modulus squared representing a probability.




Diffraction by two slits (1)

Now we can calculate a simple electron diffraction problem,

an electron wave being diffracted by a pair of slits
(known as Young'’s slits in optics)

Consider two very narrow slits, separated by a distance s

slits screen 4 X
electron >
beam i 1 d,
—_— S I
—
—
< > g

7 brightness
on screen




Diffraction by two slits (2)

We shine a monochromatic electron
beam of wavevector k at the screen

slits screen

electron
beam

We also presume the screen is far - I
away from the slits for simplicity,
l.e., z,>>5s.

T

A

Z, " brightness
on screen

We can use Huygens’ principle, taking each source as being a source of
circularly expanding waves.

Hence the net wave at the screen iIs
ws(x)ocexp[ik\/(x—SIZ)z+z§}+exp[ik\/(x+s/2)2+z§} (2.14)

If we presume we are only interested in relatively small angles, i.e., x<<z,,
then

\/(x—s/2)2+z§ = zo\/1+(x—s/2)2/202 =7, +(x-s/2)" 12z,
=7, +X° /22, +5° /82, — sx/ 2z,

and similarly for the other exponent (though with opposite sign for the term
Ins).

(2.15)




Diffraction by two slits (3)

Hence, using 2cos(0)=exp(i@)+exp(—id), we obtain
w, (X)ocexp(ig)cos(ksx/2z,)=exp(ig)cos(zsx/ Az, ) (2.16)
where ¢ is a real number (¢=k(zo+x2/220+52/820)), so exp(ig) is simply a phase
factor.

Hence,
v (X)| oc cos? (msx/ 224) = %[H cos(27zsx/ A1,) | (2.17)
dlits screen 4 X Hence a beam of monoenergetic
electrons produces a (co)sinusoidal
electron . 7 . 7
oo a interference pattern, or “fringes”, on
— s ] the screen,
with the fringes separated by a distance
d, =4z, /s.

>

»

7 " brightness
on screen




Quantum mechanics and electron diffraction by two slits (1)

These interference effects have some bizarre consequences that we simply
cannot understand classically

Suppose that we block one of the slits so the electrons can only go
through one slit.

Then we would not see the interference fringes

If we now uncover the second slit,
parts of the screen that were formerly bright now become dark

How can we explain that opening a second source of particles actually
reduces the number of particles arriving at some point in the screen?
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Quantum mechanics and electron diffraction by two slits (2)

We might argue that the particles from the second slit were bouncing off the
ones from the first slit,

and hence avoiding some particular part of the screen because of these
collisions.

If we repeat the experiment with extremely low electron currents so that
there are never two electrons in the apparatus at a given time,
and take a time-exposure picture of the phosphorescent screen,
we will, however, see exactly the same interference pattern emerge.
Hence we must describe the electrons in terms of interference of amplitudes,

and we also find that the wave description postulated above does explain the
behavior quantitatively.

Electron interference movie http://www.hqgrd.hitachi.co.jp/em/doubleslit.cfm




Use of electron diffraction

Electron diffraction is routinely used as a diagnostic and measurement tool.

The wavelength associated with such accelerated electrons can be very
small

e.g.,1Aor0.1nm

Diffractive effects are strong when the wavelength is comparable to the size
of an object

Electrons diffract strongly off crystal surfaces,

for example, where the spacings between the atoms are on the order of
Angstroms or fractions of a nanometer.

E.g., reflection high-energy electron diffraction (RHEED), for example,
monitors the form of a crystal surface during the growth of crystalline layers

Electron diffraction is intrinsic to electron microscopes.

The fact the electron wavelength can be so small means that electron
microscopes can be used to view very small objects
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The Time-Independent Schrodinger Equation - 2

Reading — Sections 2.4 - 2.6

Linearity of quantum mechanics
multiplying by a constant

Normalization of the wavefunction
getting unit total probability

Particle in an infinitely deep potential well (“particle in a box”)
classic simple example of quantum mechanics
shows clear “quantum” behavior of discrete levels
gives example sizes and energies




Linearity of quantum mechanics: multiplying by a constant (1)

In Schrodinger’s equation

we could multiply both sides by a constant a and
the equation would still hold

If v is a solution of Schrodinger’s equation, so also is ay
possible because Schrddinger’s equation is linear
wavefunction only appeatrs in first order (i.e., to the power one) in the equation
there are no second order terms,
such as y?,
or any other higher order terms in




Linearity of quantum mechanics: multiplying by a constant (2)

This linearity of equations in quantum mechanics is very general and
Important

guantum mechanical equations are linear in the quantum mechanical
amplitude for which the equation is being solved

In classical systems

we often use linear equations as a first approximation to nonlinear
behavior,

e.g., a pendulum oscillates at a slightly different frequency for larger
amplitudes

but the equation is not exactly linear in the amplitude

In quantum mechanics

The linearity of the equations with respect to the quantum mechanical
amplitude is not an approximation of any kind
it is apparently an absolute property of such equations in guantum mechanics

this linearity allows the full use of linear algebra for the mathematics of quantum
mechanics

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 2.4



Normalization of the wavefunction (1)

We postulated that
the probability P(r)of finding a particle near a point r is oc\l//(r)\z

Specifically, let us define
P(r) - the probability per unit volume of finding the particle near point r
P(r) is a “probability density”

For some very small (infinitesimal) volume d°r around r,
the probability of finding the particle in that volume is P(r)d® o |y (r) d°r

The sum of such probabilities should equal unity, i.e.,
[P(r)d®r=1 (2.18)



Normalization of the wavefunction

In general,
unless we have been very lucky,

solving Schrodinger’s equation will give some w for whichﬂw(r)\zdg’r =1.

This integral will be real, so we will in general have

[lw(r) d3r_‘ - (2.19)

where a is some number (possibly complex).
But we know from the discussion above on linearity that,
If v is a solution, so also Is yy =ay,
and we now have
[y (r) ) dr =1 (2.20)

This wavefunction solution y is referred to as a “normalized” wavefunction

gives direct correspondence between probability density and the modulus
squared of the wavefunction, i.e., P(r ‘WN ‘2




Exact solutions of Schrodinger’s equation for simple problems

Now we can proceed to solve some simple problems.
The
“particle in abox” and the
“harmonic oscillator”
are both easily solvable and very useful

The particle-in-a-box problem is used to design the “quantum well”
optoelectronic structures

The harmonic oscillator problem allows us to understand vibrating systems
of many kinds, including

acoustic vibrations in solids
electromagnetic waves (where it leads to the concept of photons)

Not many other useful problems can be solved exactly.

Hence it is important to understand the few that can also for the insight
they give




Particle in infinitely deep potential well (“particle in a box™) (1)

Consider a particle,
of mass m,

with a spatially-varying potential V(z) in the z direction.

The (time-independent) Schrodinger equation for the particle's motion in the
z-direction is then the simple differential equation

~ n? d%y(z)
2m  dz?

+V (z)y(z)=Ey(2) (2.21)

where E is the energy of the particle and y(z) is the wavefunction.




Particle in infinitely deep potential well (“particle in a box™) (2)

Suppose the potential is a simple “rectangular” (or,
equivalently, “square™) potential well energy

(i.e., one in what the potential energy is constant inside the
well and rises abruptly at the walls)

of thickness L,.

Choose the potential V =0in the well for simplicity

On either side of the well (i.e., for z<0 or z>L,), the |~==eecece=
potential, V, is presumed infinitely high.

Because these potentials are infinitely high,

but the particle's energy E is presumably finite, >

we presume there is no possibility of finding the particle in L
these regions outside the well

Hence the wavefunction v must be zero inside the walls of the well, and
we reasonably ask that the wavefunction must go to zero at the walls




Particle in infinitely deep potential well (“particle in a box™) (3)

Formally putting this "infinite well" potential into Eq. (2.21),

n? d%y(z)
— +V (z Z)=Ey(z
om g2 TV (v (2)=Ey(2)
we are therefore now solving the equation
n? d%y(z)
— =Ey(z
2m  dz? v(2)
within the well, subject to the boundary conditions
w=0;, z=0,L,

The general solution to this equation can be written
w(z) = Asin(kz)+ Bcos(kz)
where A and B are constants, and

k=v2mE/#? .

(2.22)

(2.23)

(2.24)




Particle in infinitely deep potential well (“particle in a box™) (4)

The requirement that the wavefunction ehergy
goes to zero at z=0 meansthat B=0in | _______ n=3
w(z)=Asin(kz)+Bcos(kz) (Eq. (2.24)).
Because we are now left only with the |--==---- n=2
sine part of (2.24), _
the requirement that the wavefunction [ n=1

goes to zero also at z=L, then means <€—»

L

k=nz/L,, where n is an integer. z

Hence, we find that solutions to this equation are, for the wave,

wn(2)=&8in(nfzj

z

wavefunction

(2.25)

where A,is a (real or complex) constant, with associated energies

n* (nr ’
E,.=—| —
2m{ L,

(2.26)



Particle in infinitely deep potential well (“particle in a box™) (5)

We can restrict n to being a positive integer, i.e.,
n=12,... (2.27)
for the following reasons.
Since sin(-a)=-sin(a) for any real number a,
the solutions with negative n are the same solutions as those with positive n

The solution with n=0 is trivial with a zero wavefunction everywhere

If the wavefunction is zero everywhere, the particle is simply not anywhere, so
the n=0 can be discarded.

energy wavefunction
........ n=3 ZV-\
........ n=2 . N
________ n=1 PN
>




Eigenvalues and eigenfunctions

Solutions

with a specific set of allowed values of a parameter (here energy)
eigenvalues

and with a particular function solution associated with each such value,
eigenfunctions

are called eigensolutions

It is possible to have more than one eigenfunction with a given eigenvalue,
a phenomenon known as degeneracy.
The number of such states with the same eigenvalue is called the degeneracy.

Here, since the parameter is an energy,
we can call the eigenvalues the
eigenenergies,
and can refer to the eigenfunctions as the
energy eigenfunctions.

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 2.6




Parity — “odd” and “even” functions (1)

Note that the above eigenfunctions have definite symmetry

The lowest (n=1) eigenfunction is the same on the right as on the left.
Such a function is an

“even” function,
or, equivalently, is said to have

“even parity”.

The second (n = 2) eigenfunction is an exact inverted image, with

the value at any point to the right of the center being exactly minus the
value of the mirror image point on the left of the center.

Such a function is an energy wavefunction
“odd” function
-------- n=3 [V"\
or has
“odd parity”.
........ n=2 ——p -
........ n=1 Q
>




Parity — “odd” and “even” functions (2)

For this symmetric well problem,
the functions alternate between being even and odd,

and
all of the solutions are either even or odd,
l.e., all the solutions have a definite parity.

Note:

It Is quite possible for solutions of quantum mechanical problems not to
have either odd or even behavior,

e.g., if the potential was not itself symmetric.
When the potential is symmetric, odd and even behavior is very common

Definite parity is useful since it makes certain integrals vanish exactly.




Normalization of infinite well solutions

Normalizing the eigenfunctions, we have

L,
I\Al\zsinz(nli[z]dz =\Ah\2% (2.28)
0 z

To have this integral equal one for a normalized wavefunction,

choose |A|=4/2/L,.

Note that A, can in general be complex, and it should be noted that the
eigenfunctions are arbitrary within a complex factor

We choose the eigenfunctions to be real for simplicity, so the normalized

wavefunctions become
2 . (nrz
Z)= /—sm 2.29
l//n( ) I_Z ( I_Z j ( )




Emergence of “quantum” behavior

We started out noting that electrons behave like propagating waves

We constructed a simple wave equation that could describe such effects for
monochromatic (and hence monoenergetic) electrons.

Now we find that,

If we continue with this equation that assumes the particle has a well-
defined energy and

put that particle in a box,

then we find that there are only discrete values of that energy possible,
with specific wave functions associated with each such value of energy.

This is the first truly “quantum” behavior we have seen with “quantum”
steps in energy between the different allowed states.




General points about quantum confinement

This "particle-in-a-box" behavior is very different from the classical case
1 - there is only a discrete set of possible values for the energy
2 - there is a minimum possible energy for the particle,

above the energy of the classical "bottom" of the box,
corresponding ton =1,

here E =(#*/2m)(z/L,)’

sometimes called a "zero point" energy.
3 - the particle is not uniformly distributed over the box, and
its distribution is different for different energies.
It is almost never found very near to the walls of the box
the probability obeys a standing wave pattern.
In the lowest state (n=1),
it is most likely to be found near the center of the box.
In higher states,
there are points inside the box, where the particle will never be found.

Note that each successively higher energy state has one more “zero” in the
eigenfunction

this is very common behavior in quantum mechanics.




Orders of magnitude

E.g., confine an electron in a box that is
5 A (0.5 nm) thick

The first allowed level for the electron is found at
E, = (12 /2m,)(7/5x107°) = 2.4x10 ) =15 eV

(1 eV (electron-volt) 21.602x10™J is the energy acquired by an electron as
It passes through 1V of electrical potential).

The separation between the first and second allowed energies is
(E,—E;=3E))is~4.5¢eV,

which is a characteristic size of major energy separations between levels
In an atom.




The Time-Independent Schrodinger Equation - 3

Readings — Section 2.7 — 2.8

Properties of sets of eigenfunctions
Completeness of sets
Orthogonality
Expansion coefficients

Particles and barriers of finite heights
Boundary conditions
Reflections from barriers of finite heights




Example of completeness of sets of eigenfunctions — Fourier
series

The set of eigenfunctions for this problem is

the set of all the harmonics of a sine wave that has exactly one half period
within the well.

This set of functions has a very important mathematical property called
“completeness”.

The reader may already understand this from Fourier analysis.
The movement of an audio loudspeaker can be described either

In terms of the actual displacements of the loudspeaker cone at each
successive instant in time,

or, equivalently,

In terms of the amplitudes (and phases) of the various frequency
components that make up the music being played.

Both are “complete”; any conceivable motion can be described by either
The calculation of the frequency components required is Fourier analysis

The way of representing the motion Iin terms of these frequency
components is called a Fourier series.
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Fourier series

When we are interested in the behavior from time zero to time t,,

an appropriate Fourier series to represent the loudspeaker displacement,
f(t) would be

f(t):iansin[”ftj (2.30)
n=1

0

where a,are the relevant amplitudes.

We could similarly represent any function f(z) between the positions z=0
and z=L, as what we will now call,

an “expansion in the set of eigenfunctions”, y,(z)

f(z):iansin(nfzjzibny/n(z) (2.31)

where b, =,/L,/2 a, to account for our formal normalization of the y,.

We have found that
we can express any function between positions z=0 and z=L, as

an expansion in the eigenfunctions of this quantum mechanical problem.
Note that there are many other sets of functions that are also complete.




Basis sets

A set of functions such as the y, that can be used to represent a function
such as the f(z) is referred to as
a “basis set of functions”
or, more simply,
a “basis”.
The set of coefficients (amplitudes) b, is then
the “representation” of f(z) in the basis y,.
Because of the completeness of the set of basis functions y,,

this representation is just as good a one as the set of the amplitudes at
every point z between zero and L, required to specify or “represent” the
function f(z) in ordinary space.

The eigenfunctions of differential equations are very often complete sets of
functions.

The sets of eigenfunctions we encounter in solving quantum mechanical
problems are complete sets,

which is mathematically very useful.
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Example of orthogonality of eigenfunctions

In addition to being “complete”,
the set of functions y,(z) are “orthogonal”.

In this context, two functions g(z) and h(z)are orthogonal if

[ ¢ (2)h(2)dz=0 (2.32)
0

It is easy to show for the specific v, sine functions y,(z)= Lisin[nfzj (Eq.

Z z

(2.29)) that

J' wa ( z)dz=0 for n=m (2.33)

and hence that the different eigenfunctions are orthogonal to one another.




Orthonormality

Introducing the notation known as the Kronecker delta

Oym =0, N#mM (2.34)
Son =1 '

we can therefore write

j v ( z)dz = S, (2.35)

because the functions are normalized.

A set of functions that is both normalized and mutually orthogonal, i.e
obeying arelation like Eg. (2.35), is said to be “orthonormal”

Eg. (2.35) is sometimes described as the orthonormality condition.

Orthonormal sets are very convenient mathematically, so most basis sets
are chosen to be orthonormal.

Note that orthogonality of different eigenfunctions is very common in
guantum mechanics,

and is not restricted to this specific example where the eigenfunctions are
sine waves.




Expansion coefficients

The orthogonality (and orthonormality) of a set of functions makes it very
easy to evaluate the expansion coefficients.

Suppose we want to write the function f(x) in terms of a complete set of
orthonormal functions y,(x), i.e.,

f(x)= Zn:cnz//n (x) (2.36)

It is simple to evaluate the expansion coefficients c, in Eq. (2.36).
Explicitly, multiplying Eq. (2.36) on the left by y;,(x) and integrating, we have

J‘l//; (x) f(x)dx= Iw,’; (x){zn:cnwn (X)}dx
:;C”IW;(X)‘””(X)dX (2.37)
:ZCn§mn

=C

m




Boundary conditions (1)

Now we consider problems with finite potentials, such as a finite potential
step.

What should be the boundary conditions on
the wavefunction, v,
and its derivative, dy/dz,

at such a step?

The basic theory of second order differential equations says,

If we know both of these quantities on the boundaries,
we can solve the equation.

We want solutions for situations where
Vis finite everywhere, and
where the eigenenergy E is also a finite number.




Boundary conditions (2)

If E and V are to be finite, then,

d°y/dz* must also be finite everywhere.
For d?y/dz” to be finite,

dy/dz must be continuous (2.38)

(if there were a jump in dyfdz, d°w/dz* would be infinite at the position of the
jump)
and
dy/dz must be finite

(otherwise d?yfdz* could also be infinite, being a limit of a difference involving
an infinite quantity).

For dy/dz to be finite,
w must be continuous (2.39)

These two conditions will be the boundary conditions we will use to solve
problems with finite steps in the potential.




Particle incident on a potential step

A classical particle, such as a ball, when it encounters a finite potential
barrier

will reflect off a wall,

even if the kinetic energy of the ball is more than the potential energy it would
have at the top of the wall

If the barrier is a slope, the ball

will continue over the barrier if its kinetic energy exceeds the (potential
energy) height of the barrier.

The ball could not get to the other side of the barrier if its kinetic energy was
less than the barrier height.

The ball could never be found inside the barrier.

A gquantum mechanical particle
can be found within the barrier and

can get to the other side of the barrier,
even if its energy is less than the height of the potential barrier.




Infinitely thick barrier (1)

Consider a barrier of finite height, V,, and infinite thickness.

Choose the potential to be zero in the region to the left of the barrier.
V

0]

Energy

z=0 Z

A gquantum mechanical wave is incident from the left on the barrier

Presume the energy, E, associated with this wave, is positive (i.e., E > 0).




Infinitely thick barrier (2)

We allow for reflection of the wave from the barrier into the region on the left.

We use the general solution of the wave equation in this region.
We choose complex exponential waves
Wit (2) =Cexp(ikz) + Dexp(—ikz) (2.40)

where we have, as before, k=v2mE/#*.
exp(ikz) represents a wave traveling to the right (i.e., in the positive z direction).
exp(—ikz) represents a wave traveling to the left (i.e., in the negative z direction).

The right traveling wave, Cexp(ikz), is the incident wave.
The left-traveling wave, Dexp(-ikz), is the reflected wave from the barrier.

V

0]

Energy




Infinitely thick barrier (3)

Presume that E<V,,
l.e., the particle does not have enough energy to get over this barrier.
Inside the barrier, the wave equation therefore becomes

—h? d%y
BV _ (v _E 2.41
2m dz? (Vo —E)y (2.41)
The solution is straightforward, for the wave, ., on the right (i.e., for z>0),
Wiight (2) = Fexp(xz) +Gexp(—«z) (2.42)

where « =/2m(V, —E)/#?
We presume that F = 0.

Otherwise the wave increases exponentially to the right for ever,

which does not correspond to any classical or quantum mechanical behavior
we see for particles incident from the left. Hence

Wiight (2) = Gexp(—x2) (2.43)
This solution proposes that the wave inside the barrier is not zero;
It falls off exponentially!




Infinitely thick barrier (4)

We formally complete the mathematical solution here.
Continuity of the wavefunction (2.39) gives us
C+D=G
and continuity of the derivative, (2.38), gives us

c-D="XgG
K

Addition of Eqgs. (2.44) and (2.45) gives us

G- 2k_ C:2kgk—|;<):2E—|\/(Vo—E)EC
K+ix K+« V,
Subtraction of Egs. (2.44) and (2.45) gives us
D:k—iKCZZE—VO—Zi\/(VO—E)E
K+ix \Y/

0

Just as a check here, we find from Eq. (2.47) that |D/C|” =1,

SO any incident particle is completely reflected.
D/C is, however, complex,

which means that there is a phase shift on reflection from the barrier,
an effect with no classical precedent.

(2.44)

(2.45)

(2.46)

(2.47)
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Tunneling (1)

Note the exponential decay of the wavefunction into the barrier.
So there must be a probability of finding the particle inside the barrier.

This kind of behavior is sometimes called
“tunneling” or “tunneling penetration”,
by analogy with the classical idea of digging a tunnel.

There is, however, no mathematical connection between the classical idea of a
tunnel and this quantum mechanical process.

The wavefunction has fallen off to 1/e of its initial amplitude in a distance 1/x.

That distance is short when E << V,,
becoming longer as E approaches V,;

the smaller the energy deficit, V, — E, the longer the tunneling penetration into the
barrier.




Tunneling (2)

Suppose that the barrier is V,=2eV high and that we are considering
incident electrons with 1 eV energy. Then

K = \/2><9.1095><10—31x(2—1)><1.602><1o—19 /(1.055><1o—34)2 ~5x10°m™

l.e., the attenuation length of the wave amplitude into the barrier (i.e., the
length to fall to 1/e of its initial value) is

1/x=0.2 nm=2A.

Note that the probability amplitude falls off twice as fast, i.e.,
w(2)] «exp(-2x2),

so the penetration depth of the electron into the barrier is ~1/2x =1A.




Wavefunction at an infinitely thick barrier

Click on the image for animation





Probability Density at an Infinitely Thick Barrier

z (nm)

Click on the image for animation





Reflection from an infinitely thick barrier

Note that the reflection from the barrier leads to a standing wave pattern in
the electron wavefunction and probability density.

The position of the standing wave pattern depends on the phase change
on reflection from the barrier,

and this changes as the electron energy changes.

For a very high barrier,
the phase change on reflection is
(i.e., 180°, or, equivalently, phase reversal), and
when the electron energy approaches the barrier energy,
the phase change becomes ~ 0.




Examples of Solving Schrodinger’'s Equation - 1

Readings — Sections 2.9 - 2.10
Particle in a finite potential well

Harmonic oscillator




Particle in a finite potential well - 1

Now we consider a particle in a “square” potential well of finite depth.
Here we choose the origin for z in the middle of the potential well.

V

A

0

Energy

0 >
Z -L,/2 +L,/2

We consider the case where E <V,.

Such solutions are known as bound states.
We know the nature of the solutions in the barriers
exponential decays away from the potential well
and in the well
sinusoidal
and the boundary conditions that link these solutions.



Particle in a finite potential well - 2

We first need to find

the values of the energy for which there are solutions to the Schrddinger
equation, then

deduce the corresponding wavefunctions.
In the potential well,
the form of Schrodinger’s equation
and the form of the solutions,
are the same as we had for the infinite well, though
the valid energies E

and the corresponding values of k (=v2mE/#*)
will be different from the infinite well case.
In the barriers,

the solution in the barrier is exponential

but the solution in the left barrier will be exponentially decaying to the
left.
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Particle in a finite potential well - 3

Hence, formally, the solutions are of the form
w(z)=Gexp(xz),z<-L,/2

w(z)=Asinkz+Bcoskz, -L,/2 <z < +L,/2
w(z)=Fexp(-«xz),z>L,/2
where amplitudes A, B, F, G, and energy E
(and consequently k, and «k = \/ 2m(V, —E)/%* )

are constants to be determined.
For simplicity of notation, we choose to write
X, =exp(-«L,/2), S, =sin(kL,/2), C_=cos(kL,/2)
so the boundary conditions give
from continuity of the wavefunction
GX,_=-AS, +BC,
FX, =AS, +BC,

from continuity of the derivative of the wavefunction

—E FX, = AC_ - BS,

(2.48)

(2.49)
(2.50)

(2.51)

(2.52)




Particle in a finite potential well - 4

Adding Egs. (2.49) GX, =-AS, + BC, and (2.50) FX, = AS, + BC, gives
2BC, =(F +G)X, (2.53)

Subtracting Eq. (2.52) —E FX, = AC, —BS, from Eq. (2.51) —% FX, = AC, - BS, gives

2BS, :E(F +G)X, (2.54)

As long as F =-G, we can divide Eq. (2.54) by Eq. (2.53) to obtain
tan(kL,/2) =« /k (2.55)

Alternatively, subtracting Eq. (2.49) GX, =-AS +BC, from Eq. (2.50)
FX_=AS, +BC, gives
2AS, =(F-G)X, (2.56)

and adding Egs. (2.51) EGXL =AC, +BS, and (2.52) —EFXL = AC, —BS, gives

2AC, :—E(F—G)XL (2.57)

Hence, as long as F =G, we can divide Eq. (2.57) by Eq. (2.56) to obtain
—cot(kL,/2)=x/k (2.58)




Particle in a finite potential well - 5

For any situation other than F=G
(which leaves Eq. (2.55) tan(kL,/2)=x/k applicable but Eqg. (2.58)
—cot(kL,/2)=«x/k not)
or F=-G
(which leaves Eq. (2.58) applicable but Eq. (2.55) not),
the two relations (2.55) and (2.58) would contradict each other,
so the only possibilities are
(i) F =G with relation (2.55), and
(i) F =-G with relation (2.58).
For F=G , we see from Egs. (2.56) 2AS =(F-G)X_, and (2.57)

2AC, =—E(F—G)XL that A=0,

so we are left with only the cosine wavefunction in the well,
and the overall wavefunction is symmetrical from left to right
(i.e., has even parity).
Similarly, for F=-G, B=0,
we are left only with the sine wavefunction in the well,
and the overall wavefunction is antisymmetric from left to right
(i.e., has odd parity).




Particle in a finite potential well - 6

Hence, we are left with two sets of solutions.
To write these solutions more conveniently, we change notation.

We define a useful energy unit,

the energy of the first level in the infinite potential well of the same width L,,

2 2
SO (2.59)
2m{ L,
and define a dimensionless energy
f= (2.60)
B
and a dimensionless barrier height
Vv
v, =—2 2.61
= (2.61)




Particle in a finite potential well - 7

Consequently,

E:J%‘E:J%‘g (2.62)
k E g

kLZ T E 72'\/’

K,_z |[E _7 2.63

2 2\gF 2 (2.63)
kL, o= V,-E =«

=— =—JV, — 2.64
2 2\ Ef 2V’ (2.64)

We can also conveniently define two quantities that will appear in the
wavefunctions

C, cos(kL,/2) COS(” 8/2)

"X, exp(—«L,/2) exp(—fr /Vo_g/z) (2.6)
' sin( /12
s, = S, sin(kL,/2) ( ) (2.66)

XL - exp(-«L,/2) - exp(—;z A —5/2)

and it will be convenient to define a dimensionless distance
§=z/L, (2.67)



Particle in a finite potential well - 8

We can therefore write the two sets of solutions as follows.

Symmetric solution
The allowed energies satisfy

\Etan(%\/gjzm
The wavefunctions are
w({)=Bc, exp(nmg), & <-1/2
w($)= Bcos(m/gg), -1/2<¢ <112
v (¢)=Be exp(-m\Vo -4 ), & >1/2

Antisymmetric solution
The allowed energies satisfy

— gcot(%\/;j =V, —&
The wavefunctions are
w (&) =—As exp(mv, —gg),g <-1/2
p (&)= Asin(zveg), -112<¢ <1/2

w($)=As, exp(—yz./v0 —gg“), g >1/2

(2.68)

(2.69)

(2.70)

(2.71)




Particle in a finite potential well - 8

In these solutions A and B are normalization coefficients that will in general
be different for each different solution.

The relations (2.68)

ﬁtan(gﬁjzm

and (2.70)

_ gcot(gﬁjzm

do not give simple formulae for the allowed energies;
these relations have to be solved to deduce the allowed energies.




Graphical solution for energies

[
(
|
| /
/
|

24
Allowed energies gcorrespond to points where the appropriate solid curve
(corresponding to the right hand side of these relations)
intersects with one of the broken curves
(corresponding to the left hand sides of these relations)

dashed curve intersections correspond to a symmetric solution, and
dot-dashed curve intersections correspond to an antisymmetric solution.




Example solution for finite well

For v, =8, there are three possible solutions:
(i) a symmetric solution at £=0.663;
(i) an antisymmetric solution at ¢=2.603; and
(1l) a symmetric solution at £=5.609.




Solutions for the finite well

Note that these solutions for E <V ,have two important characteristics.

(1) there are solutions of the time-independent Schrodinger equation only
for specific discrete energies.

(2) the particle is still largely found in the vicinity of the potential well,

though there is some probability of finding the particle in the barriers near the
well.

This problem can also be solved for energies above the top of the barrier.
In that case, there are solutions possible for all energies,
a so-called continuum of energy eigenstates,

just as there are solutions possible for all energies in the simple problem
where V Is a constant everywhere

(the well-known plane waves we have been using to discuss diffraction and
waves reflecting from single barriers).
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Harmonic oscillator

Consider the harmonic oscillator,
another quantum mechanical problem that can be solved exactly.
This system is one of the most useful in quantum mechanics,

being the first approximation to nearly all oscillating systems

e.g., describing photons.

We consider here a simple mechanical oscillator.




Classical harmonic oscillator

Classical harmonic oscillators give a simple, sinusoidal oscillation in time.

E.g., with linear springs whose (restoring) force,
F, is proportional to distance, z,
with some spring constant, s,
lL.e., F=-sz.

With a mass m, we obtain from Newton’s second law
(F=ma where a is acceleration, d’z/dt%)
md—zzz—sz (2.72)
dt?

The solutions to such a classical motion are sinusoidal with angular
frequency

®=~/s/m (2.73)

e.g., of the form sin(wt)




Quantum mechanical harmonic oscillator - 1

To analyze this using Schrodinger’s equation,
we need to cast the problem in terms of potential energy.

The potential energy, V(z), is the integral of
force exerted on the spring (i.e., —F) times distance, i.e.,

V(z) =_[OZ—F dz :%sz2 =%ma)222 (2.74)

Hence, for a quantum mechanical oscillator, we have a Schrédinger equation

———+%ma) 2y =Ey (2.75)

To make this more manageable mathematically, we define a dimensionless
unit of distance

£= %z (2.76)
Changing to this variable, and dividing by 7@, we obtain

d’y  _, 2E
_ g2, = _cE 2.77




Quantum mechanical harmonic oscillator - 2

dzl// 2 2E -
qav_ ——"—w is of the form
E SV=—V

w ocexp(=¢°12)
(with a corresponding energy E=%w/2).
This suggests that we make a choice of form of function

va (&)= Aexp(—£2/2)H, (£) (2.78)

where H,(¢) is some set of functions still to be determined.

One specific solution to this equation

Substituting this form in the Schrdodinger equation (2.77), we obtain

d°H, (&) . dH, (&) (2E
— 272 L -1|H =0 2.79
B I G 2.79
This equation is the defining differential equation for the Hermite
polynomials.
Solutions exist provided
2E

—=-1=2n,n=0,1, 2, ... (2.80)
how

le., E =(n+%)ha) (2.81)

(Note that here n starts from zero, not 1.)




Quantum mechanical harmonic oscillator - 3

Here we see the first remarkable property of the harmonic oscillator

the allowed energy levels are equally spaced,
separated by an amount 7w,

where o is the classical oscillation frequency.
Like the potential well, there is also a “zero point energy”

the first allowed state is not at zero energy,

but instead here at Zw/2 compared to the classical minimum energy.




Hermite polynomials

The first few Hermite polynomials are as follows.

H,(£)=16£" —48£% +12

Note that
the functions are either entirely odd or entirely even,
I.e., they have a definite parity.

The polynomials satisfy a “recurrence relation”
H,(£)=26H,.4(8)-2(n-1)H, ,($)

(2.82)
(2.83)

(2.84)
(2.85)
(2.86)

(2.87)

the successive Hermite polynomials can be calculated from the previous

two.




Harmonic oscillator solutions - 1

E,V

Ny O

ho




Harmonic oscillator solutions - 2

The normalization coefficient, A , in the wavefunction (2.78)

(€)= Avexp(-£212)H, (£)

1
A= Jr2™n!

(2.88)

and the wavefunction can be written explicitly in the original coordinate

system as

1 |mw Mo - M
= exp| ———2° |H,| /—2Z
¥n(2) \/2”n!\/7zh Xp( 2hzj ”L h j

(2.89)




Harmonic oscillator and oscillations

Note we have found the solution to Schrédinger’s time-independent wave
equation for the case of the harmonic oscillator,

just as we did for the infinite and finite potential wells.
But why is it not oscillating?

We have calculated stationary states for this oscillator,

including stationary states in which the oscillator has energy much greater
than zero.

This would be meaningless classically;
an oscillator that has energy ought to oscillate!?

To understand how we recover oscillating behavior,
we need to understand the time-dependent Schrddinger equation.




Examples of Solving Schrodinger’'s Equation - 2

Reading — Section 2.11

Particle in a linearly varying potential




Particle in a linearly varying potential - 1

Another common situation is a

uniform electric field, E, e.g., in the z direction
leading to a potential that varies linearly in distance.
An electron will see a potential energy of
V =eEz (2.90)
E.g., in semiconductor devices

In the formal solution for tunneling into the gate oxide in Metal-Oxide-
Semiconductor (MOS) transistors

as used in semiconductor optical modulators with field-dependent optical
absorption

This is of basic interest also to
understand how an electron is accelerated by a field

Approach - put this potential into the Schrodinger equation and solve

n? d?
- Z/Zgz)JreEZ(//(z):Ew(z) (2.91)

This kind of equation has solutions that are “Airy” functions.
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Particle in a linearly varying potential - 2

The standard form of differential equation that defines Airy functions is

d*f (<)
dg?

-¢f(¢)=0 (2.92)

The solutions are formally the Airy functions Ai({) and Bi(¢),
I.e., the general solution to this equation is

f()=aAi(¢)+bBi(<) (2.93)

To get Eq. (2.91)
n* dy(2) _
R T +eEzy (z)=Ey(2)

into the form of Eq. (2.92), we make a change of variable to

omeEY(  E
4“=( Py j (Z—e—Ej (2.94)




Airy functions

2
15 ]
1~ —
05 [~ . /‘\ i
0 O\\\y/\\‘//l-\\\\/ ",’ \
05 - .
_ I I I I
-10 -8 —6 -4 -2 0 2
o
Airy functions Ai(¢) (solid line) and Bi(¢) (broken line)

Note that

(i) both functions are oscillatory for negative arguments, with a shorter and shorter
period as the argument becomes more negative.

(i) The Al function decays in an exponential-like fashion for positive arguments.
(i) The Bi function diverges for positive arguments.




Linear potential without boundaries - 1

Consider a potential that varies linearly without any boundaries or walls.
There are two possible solutions,

one based on the Ai function,

and the other based on the Bi function.

Physically, we discard the BIl solution here because it diverges for positive
arguments, becoming larger and larger.

We are left only with the Ai function in this case.

Substituting back from the change of variable, Eq. (2.94), the Ai({) solution

becomes explicitly
((2meE " E
WE(Z)—AI[( 2 J (Z_eEjJ (2.95)




Linear potential without boundaries - 2

This solution is sketched, for a specific eigenenergy E,, together with the
potential energy.




Linear potential without boundaries - 3

There are several interesting aspects about this solution.
(i) There are mathematical solutions for any possible value of the
eigenenergy E.
This behavior reminds us of the uniform zero potential (i.e., V =0 everywhere),
which leads to plane wave solutions for any positive energy.

In the present case also, the allowed values of the eigenenergies are
continuous, not discrete.

Also like the uniform potential problem, it is a problem in which the eigenstates
are not bound to some finite region (at least for negative z).

(i) The solution is oscillatory when the eigenenergy is greater than the
potential energy,

which occurs on the left of the point z=E_ /€E,

and decaying to the right of this point.

This point is known as the classical turning point, because it is the furthest to the
right that a classical particle of energy E, could go.

(ii1) The eigenfunction solutions for different energies are the same except
they are shifted sideways (i.e., shifted in z).

(iv) Unlike the uniform potential, the solutions are not running waves;
rather, they are standing waves, more like the case of the particle in a box.




Linear potential without boundaries - 4

Just like the harmonic oscillator

we have eigenstates, i.e., states that are stable in time.

Just as in the harmonic oscillator case, where we expected to get an
oscillation

here we would have expected to get states that correspond to the electron being
accelerated.

We have put an electron in an electric field, and the electron is not moving!

Again, to resolve this

we need to consider the time-dependent Schrddinger equation




Linear potential without boundaries - 5

How could we even have a standing wave in this case?

For particle in a box, we can rationalize that the particle is reflecting off of
the walls

In the present case, we could accept that the particle should bounce off the
Increasing potential,

So we see why there is a reflection at the right.

The reason why there is any reflection on the left is that

any change in potential (or change of impedance in the case of acoustic or
electromagnetic waves),

even if it is smooth rather than abrupt,
leads to reflections.

Effectively, there is a distributed reflection on the left from the continuously
changing potential there.

The fact that there is such a distributed reflection explains why the wave
amplitude decreases progressively as we go to the left.

The fact that we have a standing wave is apparently because, integrated up,
that reflection does eventually add up to 100%.
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Linear potential without boundaries - 6

Why does the period of the oscillations in the wave decrease (i.e., the
oscillations become faster) as we move to the left?

Suppose in Schroédinger’s equation we divide both sides by w, so
—hzidzw
2m y dz?

+V(z)=E (2.96)

For any eigenstate of the Schrdodinger equation, E is a constant (the
eigenenergy).

In such a state, if V decreases, then -(1/y)(d*y /dz®) must increase.

If we imagine that we have an oscillating wave,
which we presume is locally approximately sinusoidal, of the form ~sin(kz + )
for some phase angle 6,
“idy

— ~ k2 (2.97)

Hence, if V decreases, the wavevector kK must increase (the period decreases).

We could imagine that the particle is going increasingly fast as it goes
towards the left, consistent with smaller periods as we go to the left.

This particle view is weak reasoning, though there is a kernel of truth to it,
but for a full understanding in terms of particle motion, we need the
time-dependent Schrdodinger equation.




Triangular potential well - 1

If we put a hard barrier on the left, we again get a discrete set of
eigenenergies.

Formally, put an infinitely high potential barrier at z=0, with the potential
taken to be zero at z=0 (or at least just to the right of z=0).

—»
2= 10 4

For all z>0, we have the same potential as we considered above.




Triangular potential well - 2

Again we can discard the Bi solution because it diverges, so we are left with
the Ai solution.

Now we have the additional boundary condition imposed by the infinitely
high potential at z=0,

which means the wavefunction must go to zero there.

This is easily achieved with the Al function if we position it laterally so that one of
its zeros is found at z=0.

The Ai(¢) function will have zeros for a set of values ¢,.
The first few of these are

£, =-2.338
£, =—4.088
£, =-5521 (2.98)
£, =—6.787

(s =—T7.944




Triangular potential well - 3

107
8__

2 ©

>

o

Z

LUl Av S T~
2__

0o 2 4 6 8 10
Distance (Angstroms)

Graphs of wavefunctions and energy levels for the first three levels in a triangular
potential well, for a field of 1V/A.




Triangular potential well - 4

To get the solution Eq. (2.95)

WE(z)=A‘((2r;fE)U3(Z‘eEEJJ

to be zero at z=0 means therefore that
1/3
Ai (meE) 0-<||=0 (2.99)
h ek

l.e., the argument must be one of the zeros of the Ai function,

omeEN"}( E
( 2 j (—E—Ej—é (2.100)

or, equivalently, the possible energy eigenvalues are

E, = —(h—zj (eE)" ¢, (2.101)

2m




Infinite potential well with field - 1

Now include also an infinitely high barrier on the right.

Now have the additional boundary condition that the potential is infinite,
and hence the wavefunction is zero, at z=1L,.
Now we cannot discard the Bi solution
the potential forces the wavefunction to zero at the right wall
so there will be no wavefunction amplitude to the right
and so the divergence of the Bi function no longer matters for normalization
(we would only be normalizing inside the box)

Hence we have to work with the general solution, Eqg. (2.93), with both Ai and
Bi functions.

The two boundary conditions are that the wavefunction must be zero at
z=0and at z=L , or equivalently at £=¢, and {=¢,, where

1/3
2m
{;OE_(hZeZEZj E (2.102)
2mekE Y3 E
= L —— 2.103

These boundary conditions will establish what the possible values of E are,
I.e., the energy eigenvalues.



Infinite potential well with field - 2

These boundary conditions result in two equations

aAi(&,)+bBi(¢,)=0 (2.104)
aAi(¢,)+bBi(¢,)=0 (2.105)
or, in matrix form
Al(&) - Big, mzo 2.106
) sl .
The usual condition for a solution of such equations is

Ai(<,) Bi(<,)
=0 2.107
N() Bi(G) o

or, equivalently,

Ai(£,)Bi(£) - Ai(£,)Bi(¢,)=0 (2.108)




Infinite potential well with field - 3

The next mathematical step is to find for what values of £ Eq. (2.108)
Ai(g“o)Bi(gL)—Ai({L)Bi(g“o):O
can be satisfied. This can be done numerically.

First, we change to dimensionless units.
In this problem, there are two relevant energies.

One is the natural unit for discussing potential well energies — the energy of the
lowest state in an infinitely deep potential well,

(7°12m)(z/L,)?
which here we will call E” to avoid confusion with the final energy eigenstates
for this problem
Hence we will use the dimensionless “energy”
s=E/IES

The second energy in the problem is the potential drop from one side of the well
to the other resulting from the electric field, which is

V, =eEL, (2.109)
or, in dimensionless form
v, =V IE’ (2.110)




Infinite potential well with field - 4

With these definitions ¢=E/E”and v, =V, /E", we can rewrite Eqgs. (2.102)

(./;Os—( 2m j E) and (2.103) (gLs(ZZZEEj [LZ—EJ) as, respectively,

H2e’E? eF
2/3
OE—[ij £ (2.111)
Vi
2/3
c=l 2| (v, -¢ (2.112)
L v L
L

Now we choose a specific 11, which corresponds to choosing the electric
field for a given well width.

Suppose, for example, that we consider a 6 A wide well with a field of 1
V/A. Then E” =1.0455eV, and v, =5.739 (i.e., the potential change from one

side of the well to the other is =5.739E").

Next we numerically find the values of ¢ that make the determinant function
from Eq. (2.108),

D(¢)=Ai(&,(¢))Bi(< () Ai(<,(£))Bi(&(¢)) (2.113)
equal to zero

e.g., graph this function from =0 upwards to find the approximate position of
the zero crossings, then use a numerical root finder




Infinite potential well with field - 5

With these eigenvalues of ¢we can evaluate the wavefunctions.

From Eq. (2.104) (aAi(¢,)+bBi({,)=0), we have for the coefficients a and b

of the general solution, Eq. (2.93) (f(¢{)=aAi({)+bBi(¢)) , for each
eigenenergy g,
b Ai(S(5))
S 2.114
a,  Bi(&,(s)) ( )

The resulting wavefunction is therefore, for a given energy eigenstate, using
the same notation as for Eqgs. (2.111) and (2.112) with the dimensionless

energies

w7 o)) o)

For the example numbers here, we have

(2.115)

& E; (eV) bla
First level (/ = 1) 3.53 3.69 -0.04
Second level (i = 2) 6.95 7.27 -2.48
Third level (i = 3) 11.93 12.47 -0.12




Infinite potential well with field — 6
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First three eigenstates in a 6 A potential well with infinitely high barriers at each side, for
an electron in a field of 1 V/A. The potential is also sketched.




Infinite potential well with field - 7

Note that

(1) All the wavefunctions go to zero
at both sides of the well,
as required by the infinitely high
potential energies there.

>
(i) The lowest solution is almost
Identical in energy and >
wavefunction to that of the (T
lowest state in the triangular
well. AV
The fraction of the Bi Airy function
Is very small, -0.04. 21

The energy is actually slightly
higher because the wavefunction

is slightly more confined. 0 1 2 3 4 5
Distance (Angstroms)



Infinite potential well with field - 8

(ili) The second solution is now
guite strongly influenced by the
potential barrier at the right,

with a significantly higher energy
than in the triangular well.

1471

121

107

(iv) The third solution is very close
In form to that of the third level
of a simple rectangular well.

To the eye, it looks to be
approximately sinusoidal,

though the period is slightly 41
Shorter on the left hand side,

consistent with our previous
discussion of the effect on the
wavefunction oscillation period
from changes in potential.

Energy (eV)

0o 1 2 3 4 5 6
Distance (Angstroms)
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Infinite potential well with field - 9

In the lowest state, the electron is
pulled closer to the left hand side,

as we would expect classically
from such an electric field.

Note, though, that our classical
Intuition does not work for the
higher levels.

In fact, in the second level,

the electron is more likely to bein
the right half (~ 64%) of the well
than in the left half (~ 36%)!

1471

121

107
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Time-Dependent Schrdodinger Equation - 1
Reading — Sections 3.1 — 3.5

Rationalization of the time-dependent Schrddinger equation

Relation to the time-independent Schrodinger equation

Solutions of the time-dependent Schrddinger equation

Linearity of quantum mechanics: linear superposition

Time dependence and expansion in the energy eigenstates
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Time-dependent Schrddinger equation

So far, we presumed the spatial probability distribution was steady in time
but quantum mechanics must model situations that are not stationary.

To understand such changes
we need a time-dependent extension of Schrdodinger’s equation.

Here we rationalize a time-dependent version of Schrddinger’s equation.

It differs from the kind of time-dependent wave equation typical for
classical waves.

Then we introduce a very important concept in qguantum mechanics,

superposition states.
These let us handle time evolution of quantum mechanical systems easily.




Rationalization of the relation between frequency and energy

The key to understanding time-dependence and Schrodinger’s equation is
the relation between frequency and energy in quantum mechanics.
One well known example is the case of electromagnetic waves and photons.
Imagine two experiments with a monochromatic electromagnetic wave.
In one experiment, we measure the frequency of the oscillation in the wave.
In a second experiment, we count the number of photons per second.
Hence we can count how many photons per second correspond to a
particular power at this frequency.
We would find in such an experiment that the energy per photon was
E=hv=lhw (3.1)
i.e., energy proportional to frequency
This discussion is for photons,
not the electrons or other particles with mass
for which the Schrdodinger equation supposedly applies.
But hydrogen atoms emit photons as they transition between energy levels
We expect some oscillation in the electrons at the corresponding
frequency during the emission of the photon,

S0 we expect a similar relation between energy and frequency associated with
the electron levels.
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Rationalization of the time-dependent Schrodinger equation

We want a wave equation
with this relation E=hv =% between energy and frequency,
and with a solution of the form exp[i(kz—-&t)] in a uniform potential

Schrodinger postulated the time-dependent equation
n s 0P (rt)
ﬂv LP(r,t)+V(r,t)\P(r,t)_|h—at

exp{—i (E + kzﬂ = exp(—i Ej exp(Fikz)
h h
with E = e and k =+2mE /A2,

are indeed solutions when V =0 everywhere.
Schrodinger chose a specific sign on the right hand side,
so a wave with a spatial part «<exp(ikz) is definitely a wave propagating in
the positive z direction for all positive energies E

(i.,e., the wave, including its time-dependence, would be of the form
exp|i(kz—Et/n)]).

(3.2)

Waves of the form




Contrast to common wave equations

The more common classical wave equation has the different form
VeS| _kaot (3.3)
w® o’
for which f ocexp|i(kz—ot) | would also be solution.

This equation (3.3) has a second derivative with respect to time,

as opposed to the first derivative in the time-dependent Schrédinger equation
(3.2).

Note, incidentally, that Schrddinger’s use of complex notation means that
the wavefunction is required to be a complex entity.

Unlike the use of complex notation with classical waves,

It IS not the case that the “actual” wave iIs taken at the end of the
calculation to be the real part of the calculated wave.
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Relation to the time-independent Schrddinger equation - 1

Suppose that we had a solution where the spatial behavior of the
wavefunction did not change its form with time.

We could allow for a time-varying multiplying factor, A(t), in front of the
spatial part of the wavefunction, i.e., we could write
P(rt)=A(t)y(r) (3.4)
where, explicitly, we are presuming that y (r)is not changing in time.

Solutions whose spatial behavior is steady in time should satisfy the time-

Independent equation
h2

5V (N)+V (Nw(r)=Ey(r) (3.5)

Adding the factor A(t) in front of (r) makes no difference in Eq. (3.5)

¥ (r,t) would also be a solution of Eq. (3.5), regardless of the form of A(t),

I.e., we would have

A(t){—h—zvzw(r)jtv(r)z//(r)}: EA()y (1) (3.6

2m




Relation to the time-independent Schrddinger equation - 2

Substituting the form (3.4) WY(r,t)=A(t)y(r) into the time-dependent

Schrodinger equation (3.2) (presuming the potential V is constant in time)
then gives

2
A)] 252 (1) +V (P (1) =EA(t)c,u(r)=ihc,u(r)aA(;£t) (3.7)
s EA(t) = ihaAa—it) (3.8)
l.e., for some constant A,  A(t)= A exp(—-iEt/7) (3.9)

Hence, if the spatial part of the wavefunction is steady in time
the full time-dependent wavefunction can be written in the form
W(r,t)=A exp(—iEt/n)y(r) (3.10)

We do now have a time-dependent part to the wavefunction for a situation
that is stable in time.

But the probability density is stable in time. Explicitly,
W (r,t) =] exp(+HEt/n)y" (r) | [ exp(—iEt/ )y (r) =y (r)] (3.11)

Hence, with the choice Eqg. (3.9), the time-independent and time-dependent
Schrddinger equations are consistent.




Solutions of the time-dependent Schrodinger equation - 1

The time-dependent Schrddinger equation,
he o _ O¥(r,t)
——VY(r,t)+V (r,t)¥(rt)=1h
S VAR (0 4V () ¥ () =in ™
unlike the time-independent one,
IS not an eigenvalue equation.

It is not an equation that only has solutions for a particular set of values of
some parameter.

Instead, it allows us to calculate what happens in time
If we knew the wavefunction at every point in space at some time t,,

i.e., if we knew ¥(r,t,) for allr,

we could evaluate the left hand side of the equation at that time for all r.
So we would know how the wavefunction changes in time at every position
l.e., we would know o¥(r,t)/ot for all r,

so we could integrate the equation to deduce ¥(r,t) at all times.




Solutions of the time-dependent Schrodinger equation - 2

Explicitly, we would have

ov

¥ (r,t,+6t)=¥(r,t,)+ St (3.12)

r,to

Because Schrodinger’s equation tells us o¥/éat at time t, if we know W (r.t,),
we have everything we need to know to calculate ¥ (r,t, +6t).

In other words,

the whole subsequent evolution of the wavefunction could be deduced
from its spatial form at some given time.




Solutions of the time-dependent Schrodinger equation - 3

We could view this ability to deduce the wave function at all future times as
the reason why this equation has a first derivative in time

as opposed to the second derivative in common classical wave equations

Knowing only the second time derivative would not be sufficient to deduce the
evolution in time.

Any spatial function could be a solution of the time-dependent Schrddinger
equation at a given time

as long as it has a finite, well-behaved second derivative

That spatial function sets the subsequent time-evolution of the wavefunction

Note that
if the spatial wavefunction is in an eigenstate,
there is no subsequent variation in time of the wavefunction,
other than the oscillation exp(—iEt/#).




Linearity of quantum mechanics: linear superposition

The time-dependent Schrodinger equation is linear in the wavefunction ¥

No higher powers of ¥ appear anywhere in the equation.
Hence, if ¥ is a solution, then so also is AY, where A is any constant.

Another consequence of linearity is linear superposition of solutions
If ¥, (r,t) and ¥, (r,t) are solutions,
then so also is W, (r,t)="Y,(r.t)+¥,(rt). (3.13)

This is easily verified by substitution into the time-dependent
Schrddinger equation.

We can also multiply the individual solutions by arbitrary constants and still
have a solution to the equation, i.e.,

Y. (rt)=c, ¥, (r.t)+c, ¥, (r,t) (3.14)
where c, and ¢, are (complex) constants
IS also a solution.




Concept of linear superposition

The concept of linear superposition solutions is strange classically
In classical mechanics,
a particle simply has a “state” that is defined by its position and momentum,

Now we say a particle may exist in a superposition of states

each of which may have different energies (or possibly positions or
momenta).

Such superpositions are actually necessary in guantum mechanics
SO we can recover the behavior we expect classically from particles




Time dependence and expansion in the energy eigenstates - 1

We expand the wavefunction in the energy eigenfunction basis.
If V Is constant in time,

each of the energy eigenstates is separately a solution of the time-dependent
Schrodinger equation.

Explicitly, the n-th energy eigenfunction can be written, following Eq. (3.10) above
W, (r,t)=exp(-iEt/7)y,(r) (3.15)
where E, is the nth energy eigenvalue,
and now we presume that the y, (and consequently the ¥, ) are normalized.
This function is a solution of the time-dependent Schrdodinger equation.

Because of the linear superposition defined above,

any sum of such solutions is also a solution.

Hence the usefulness of linear superpositions for the time-dependent
Schrodinger equation




Time dependence and expansion in the energy eigenstates - 2

Suppose we expand the original spatial solution at time t=0 in energy
eigenfunctions, i.e.,

l//(r)zzanl;”n(r) (3.16)

where the a are the expansion coefficients
(the a, are fixed complex numbers).

Any spatial function w(r) can be expanded this way because of the
completeness of the eigenfunctions y, (r)

We can now write a corresponding time-dependent function
Y(rt)=>a¥,(rt)=> a,exp(—iEt/7)y,(r) (3.17)
n n

We know this is a solution to the time-dependent Schrodinger equation
because it is made up from alinear combination of solutions to the equation.
As a check, at t =0 this correctly gives the known spatial form of the solution.




Time dependence and expansion in the energy eigenstates - 3

Hence Eq. (3.17)
Y(rt)=>a¥,(rt)=> a,exp(—iEt/7)y,(r)

Is the solution to the time-dependent Schrodinger equation
(for the case where V does not vary in time)
with the initial condition

Y(r,0)=yp(r)=> aw,(r) (3.18)

Hence,

If we expand the spatial wavefunction in the energy eigenstates at t =0,
we have solved for the time evolution of the state thereafter;
we have no further integration to do,
merely a calculation of the sum (3.17)

Y(rt)=>a¥,(rt)=> a,exp(—iEt/7)y,(r)

at each time of interest to us.




Time-Dependent Schrdodinger Equation - 2

Reading — Sections 3.6 — 3.7 up to Group velocity

Time evolution of superpositions
in an infinitely deep potential well
in the harmonic oscillator

Time evolution of wavepackets
concept of group velocity




Examples of time-evolution of a linear superposition state —
Infinite quantum well and harmonic oscillator

Now we look at the time evolution for example cases where
the potential is fixed in time (i.e., V(r,t)=V (r)) and
the system is in a superposition state.

Simple linear superposition in an infinite potential well

Harmonic oscillator




Simple linear superposition in an infinite potential well

Suppose we have an infinite potential well (i.e., one with infinitely high
barriers), and that

the particle in that well is in a (hormalized) linear superposition state
with equal parts of the first and second states of the well, e.qg.,

¥(z,t)= %{exp(—i %tjsin (t—zj + exp(—i %t)sin(zfzﬂ (3.19)

Then the probability density is given by

\‘P(z,t)\z:i sin2| Z2 |+ sin?[ %2 |+ 2cos( E2=Evt |sin| %2 |sin| 272 (3.20)
L, L, L, h L, L,

This probability density has a part that oscillates at an angular frequency

Note that the absolute energy origin does not matter here.

We could have added an arbitrary amount onto both of the two energies
E. and E,

without making any difference to the resulting oscillation.



Simple linear superposition in an infinite potential well

Probability Density
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Oscillation from the linear
superposition of the first and
second levels in a potential

well  with infinitely  high
barriers.
Here, the well has unit

thickness, and

the unit of time is taken to be
hlE,.

The oscillation angular
frequency, @,1, IS 3 per unit
time

because the energy

separation of the first and
second levels is 3E;

so the probability density
oscillates back and forwards
3 times in 2 units of time.





Harmonic oscillator example

We construct a linear superposition state for the harmonic oscillator to see
the time behavior.

For example, a superposition with equal parts of the first and second
states.

Quite generally,
If we make a linear combination of two energy eigenstates with energies

E. and E,,
the resulting probability distribution will oscillate at the frequency
Wap =|Ea — Ep|/ 7.
I.e., if we have a superposition wavefunction
W (rt)=cexp(—Et/ i)y, (r)+c,exp(—iEpt/ )y, (1) (3.21)

then the probability distribution will be
W (1) =[P ra (1) 1oy (1)

(Ea_Eb)t_e

+2 b

(3.22)
cgy/;(r)cbwb(r)‘cos{ }

where 0y, =arg (CaWa (r)CSWS (I’)) .




Harmonic oscillator — superposition of first two states
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Time evolution of an equal linear superposition of the first and second eigenstates of a
harmonic oscillator.
The position is in dimensionless units (i.e., units v/ me where m is the particle’s mass).

This probability density oscillates at the (angular) frequency, o, of the classical harmonic
oscillator





Harmonic oscillator — “coherent state”

The linear superpositions that correspond best to our classical
understanding of harmonic oscillators are known as “coherent states”.

The coherent state for a harmonic oscillator of frequency o is

¥y (cf,t):ic,\,n exp[—i(n+%)a)t}wn(§) (3.23)
n=0
where
Chn = \/ v exr?l(_N) (3.24)

and the (&) are the harmonic oscillator eigenstates of Chapter 2

Incidentally, notice that

e NTexp(=N) (3.25)
n!

IS the Poisson distribution from statistics, with mean N (and also standard
deviation /N).

‘CNn

We can calculate the resulting probability density numerically by simply
including a finite but sufficient number of terms in the series (3.23)



Harmonic oscillator in a coherent statefor N=1
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Probability distribution (not to scale vertically) for a coherent state of a harmonic
oscillator with N =1 at time t=0. Also shown is the parabolic potential energy in this
case.





Harmonic oscillator in a coherent state for N =10
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Probability distribution (not to scale vertically) for a coherent state of a harmonic
oscillator with N =10 at time t = 0. Also shown is the parabolic potential energy in this
case.





Harmonic oscillator in a coherent state for N =100
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Probability distribution (not to scale vertically) for a coherent state of a harmonic
oscillator with N = 100 at time t = 0. Also shown is the parabolic potential energy in this
case.





Harmonic oscillator in a coherent state

In each case,

the probability distribution essentially oscillates back and forth from one
side of the potential to the other,

with angular frequency o,
retaining essentially the same shape as it does so.

For higher N, the spatial width of the probability distribution becomes a
smaller fraction of the oscillation amplitude,

the probability distribution will appear to be very localized relative to the
size of the oscillation

recovering the classical idea of oscillation

In general, a system in a linear superposition of multiple energy eigenstates
does not execute a simple harmonic motion like this harmonic oscillator
does.

That harmonic motion is a special consequence of the fact that all the
energy levels are equally spaced in the harmonic oscillator case.
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Non-repetitive linear superposition in a finite well

Click on the image for animation

Probability density at three different times for an equal linear superposition of the first three
levels of a finite potential well. (i) t =0 (solid line); (i) t = 412 (dotted line); (iii) t = z (dashed
line). The time units are 7/E;” where E["is the energy of the first level in a well of the same
width but with infinitely high barriers.

Because the energy separations between the levels are not in integer ratios,
the resulting probability density does not repeat in time.





Waves and particle motion - 1

Consider propagation of wave packets.
Imagine that the potential energy, V, is constant everywhere.
For simplicity, we could take V to be zero.

Then there is a solution of the time-independent Schrodinger equation
possible for every energy E (greater than zero).

In fact there are two such solutions for every energy, a “right-
propagating” one

Wer (2) =exp(ikz) (3.26)
and a “left-propagating” one
we (2)=exp(-ikz) (3.27)

where k=+2mE/#% as usual.

The corresponding solutions of the time-dependent Schrodinger equation
are

Wer(2,t) =exp| —i(ot—kz)] (3.28)
and

W (z,t) =exp| —i(wt +kz)] (3.29)
where o =E/#.



Waves and particle motion - 2

We want to understand the correspondence between the movement of such
a “free” particle

In the quantum mechanical description and
In the classical one.

We might at first ask for the “phase velocity” of the wave, which would be

2
k  n\2mE  Vom

That would lead to a relation

2
E:2mvp,

which does not correspond with the classical relation between kinetic energy
and velocity of

E =(1/2)mv°.




Waves and particle motion - 3

If we examine the ¥ (z,t)" or [¥(zt)" associated with either of these
waves,
Yer(zt)=exp|—i(ot—kz)| or Wg (z,t)=exp|—i(ot+kz)]

we will, however, find that they are uniform in space and time,
and it is not meaningful to ask if there is any movement associated with them.

To understand movement,

we have to construct a “wave-packet”

— a linear superposition of waves that adds up to give a “packet” that is
approximately localized in space at any given time.

To understand what behavior we expect from such packets,
we have to introduce the concept of group velocity.




Time-Dependent Schrdodinger Equation - 3

Reading — Section 3.7 starting from Group Velocity

Time evolution of wavepackets
freely propagating wave packets
wavepackets hitting a barrier




Waves and particle motion - group velocity - 1

Elementary wave theory says the velocity of the center of a wave packet or
pulse is the “group velocity”

L
° dk
where o iIs the frequency and k is the wavevector.

(3.31)

To understand this,
consider atotal wave made up out of a superposition of two waves,
both propagating to the right,
one at frequency o + 6w, with a wavevector k + ok,
and one at a frequency o — oéw and a wavevector k — oK.

Then the total wave is
f(z,t)=exp{-i[(@+d0)t—(k+05k)z]} +exp{-i[ (0 —-dw)t—(k-ok)z]| (3.32)




Waves and particle motion - group velocity - 2

We can rewrite this as
f (z,t) = 2cos(Swt — Skz)exp| —i(wt —kz) | (3.33)

which can be viewed as
an underlying wave exp| —i(wt—kz) |

Ay

|V /|

modulated by an envelope cos(Swt —5kz).

This envelope can be seen to move at a the “group velocity”
ow

V, =— 3.34

0= 5 (3.34)

dw

or, in the limit of very small 6o and ok, (3.31)




Group velocity and dispersion for light

Often, for waves such as
light waves in free space, or sound waves in ordinary air in aroom,
the velocity of the waves does not depend substantially on the frequency
so de/dk=w/k, and phase and group velocities are equal.

When wis not proportional to k, we have “dispersion”, e.g.,

(1) near to some optical absorption line, such as in an atomic vapor,
the refractive index changes quite rapidly with frequency,
the variation of refractive index with frequency
known as material dispersion
is not negligible, and the group and phase velocities are no longer the same.
(2) in waveguides, different modes propagate with different velocities,
so there is dispersion from the geometry of the structure
a structural dispersion.
In long optical fibers,
the effects of dispersion and of group velocity are not negligible
(3) any structure whose physical properties,
such as refractive index,
change on a scale comparable to the wavelength
will show structural dispersion.




Group velocity for a free electron - 1

For a particle such as an electron,

phase velocity and group velocity of quantum mechanical waves are
almost never the same.

For the simple free electron,
the frequency wis not proportional to the wavevector magnitude k.
the time-independent Schrdodinger equation tells us that,
for any wave component y (z) o« exp(+ikz)

In fact (for zero potential energy),

Ie.,
c_ ’;‘;2 (3.36)

So
_E_IK e pock? (3.37)




Group velocity for a free electron - 2

We see then that the propagation of the electron wave is always highly
dispersive.

Hence, we have a velocity for a wavepacket made up out of a linear
superposition of waves of energies near E,

1 1 2E

vy = _ — (3.38)
dk/dew hdk/dE m
so that
1
E =§mv§ (3.39)

Hence,
the quantum mechanical description in terms of propagation as a
superposition of waves
leading to wavepackets propagating at the group velocity

does correspond to the same velocity as we would have expected from a
classical particle of the same energy.




Examples of motion of wavepackets

Here we examine two examples of wavepacket propagation
Freely propagating wave packet

Wavepacket arriving at a barrier




Freely propagating wave packet

There are many form of linear superposition that could give a wavepacket.

One common example - a Gaussian wavepacket, e.g.,
for a wavepacket propagating in the positive z direction we could have

Zexplz (2 :ﬂexp{—i[a)(k)t—kz]} (3.40)

where
k is the value at the center of the distribution of k values, and
the parameter Ak is a width parameter for the Gaussian function.
The sum here runs over all possible values of k, presumed evenly spaced

wavepackets made from finite sums of evenly spaced k values are useful for
simulations.

It is useful also to introduce the idea of integration rather than summation
when we are dealing with parameters that are continuous.

Instead of (3.40) above, we could choose to write

LPG(z,t)oc£exp{—(k2AkT:lexp{ i o(k)t—kz ]} dk (3.41)

Though this is now an integral rather than a sum,

it Is still just a linear combination of eigenfunctions of the time-dependent
Schrddinger equation.




Motion of a Gaussian wavepacket - 1
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Click on the image for animation

lllustration of a wavepacket propagating in free space. The wavepacket is a Gaussian
wavepacket in k-space, centered round a wavevector k = 0.5 A™, which corresponds to
an energy of ~ 0.953 eV, with a Gaussian width parameter Ak of 0.14 A™. The units of
time are #1/e=0.66fs.





Motion of a Gaussian wavepacket - 2

We see first of all that

the wavepacket does move to the right as we expect,
with the center moving linearly in time.

We also see that
the wavepacket gets broader in time.

This increase in width I1s because

the group velocity itself is not even the same for different wave
components in the wave packet,

a phenomenon called group-velocity dispersion.

There will be group velocity dispersion
If dw/dk Is not a constant over the region of wavevectors of interest,
i.e., if d°w/dk* =0, which is certainly the case for our free electron, for which
dv, d’w *&
dk dk? m

0

(3.42)
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Wavepacket hitting a barrier - 1

A more complex example is a wavepacket hitting a finite barrier.
We can start by solving for the wavefunction of the time-independent
Schrodinger equation
in the presence of afinite barrier for the situation
where there is no wave incident from the right.

We find that there are solutions for every energy.

Each of these solutions contains
a forward (right) propagating wave on the left of the barrier,
as well as a reflected wave there,
forward and backward waves within the barrier

(which may be exponentially growing and decaying for energies below the top of
the barrier), and

a forward wave on the right.

We then form a superposition of these solutions with Gaussian weights.

The procedure is identical to that of (3.40) except the waves are these
more complex solutions.



Wavepacket hitting a barrier - 2
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Click on the image for animation

Simulation of an electron wavepacket hitting a barrier. The barrier is 1 eV high and 10 A
thick, and is centered around the zero position. The wavepacket is a Gaussian
wavepacket in k-space, centered round a wavevector k = 0.5 A™, which corresponds to
an energy of ~ 0.953 eV, with a Gaussian width parameter Ak of 0.14 A™*. The units of

time are s/e =0.66fs.





Wavepacket hitting a barrier - 3

Click here for animation
at an energy of 1.372 eV

Simulating at a higher energy, such as the one corresponding to the first resonance
above the barrier at an energy ~ 1.37 eV, shows similar kinds of behaviors, but has a
larger transmission and a smaller reflection.





Wavepacket hitting a barrier - 3

First the wavepacket approaches the barrier at times t=-10 and t = -5.

Near t = 0, we see strong interference effects.
Attimet=5and t =10,
we see a pulse propagating to the right on the right side of the batrrier,
corresponding to a pulse that has propagated through the barrier
(in this case mostly by tunneling),
as well as a reflected pulse propagating backwards.
All of these phenomena in the time dependent behavior arise from
the interference of the various energy eigenstates of the problem,
with the time dependence itself arising from
the change in phase in time between the various components as the exp(—iEt/1)
phase factors evolve in time.

With the energy eigenstates already calculated for the problem, the time
behavior arises simply from

a linear sum of these different components
with their time-dependent phase factors.




Time-Dependent Schrodinger Equation - 4

Reading — Sections 3.8 — 3.11

Quantum mechanical measurement and expectation values
Stern-Gerlach experiment

The Hamiltonian
Operators and expectation values

Time evolution and the Hamiltonian operator




Quantum mechanical measurement and expectation values

Probabilities and expansion coefficients

When a normalized wavefunction is expanded in an orthonormal set, e.g.,
Y(r.t)=> c,(t)w,(r) (3.43)
n

then the normalization integral requires that

o0

[reeoee= [ 000 ] Sonwn(r) e -1 .4

—00

If we look at the integral over the sums,
we see that because of the orthogonality of the basis functions,
the only terms that will survive after integration will be for n=m,
and because of the orthonormality of the basis functions,

the result from any such term in the integration will simply be \cn (t)\z.

Hence, we have

> lea) =1 (3.45)




Quantum mechanical measurement

In qguantum mechanics,

when we make a measurement on a small system with a large measuring
apparatus,

of some quantity such as energy,
we find the following behavior,

which is sometimes elevated to a postulate or hypothesis in quantum
mechanics:

On measurement, the system collapses into an eigenstate of the quantity
being measured, with probability

P, =[c,|° (3.46)

where ¢, Is the expansion coefficient in the (orthonormal) eigenfunctions
of the quantity being measured.

(Our conclusion (3.45) [Z\cn\z =1] is certainly consistent with using the \cn\z as
n

probabilities, since they add up to one.)
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Measurement theory

This statement of
collapse into an eigenstate of the quantity being measured
IS problematic if we consider it as anything other than

an empirical observation for measurements by large systems on small
ones.

Resolving these difficulties has been a major activity in quantum mechanics
up to the present day

modern pictures of these resolutions are much different from those
originally envisaged in the early days of quantum mechanics.

The branch of quantum mechanics that deals with these problems is known
as measurement theory,

the core problem is known as the measurement problem.
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Expectation value of the energy

Suppose we measure the energy of our system in such an experiment.

We could repeat the experiment many times, and get a statistical
distribution of results.

Given the probabilities, the average value of energy E that we would measure
would be

(E)=Y"E,P, = E,lc,’ (3.47)

where we are using the notation (E) to denote the average value of E,
a quantity we call the “expectation value of E” in quantum mechanics.




Energy expectation value example

For example, for the coherent state discussed above with parameter N, we
have

(E)- iEn N"exp(-N)

0 n!

{i N" exp( )}%hw (3.48)
L1
i

We can show that having an energy =~ Naw for the large N implicit in a
classical situation corresponds very well to our notions of energy,
frequency and oscillation amplitude in a classical oscillator
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Stern-Gerlach experiment - 1

An electron has another property,

In addition to having a mass and
a charge
“spin”.

Electron spin makes the electron
behave like a very small bar
magnet
with the same strength for all

electrons.

If we pass a bar magnet through a
uniform magnetic field

nothing will happen to the
position of the bar

the North and South poles of the
bar magnet are pulled with
equal and opposite force



Stern-Gerlach experiment - 2

If the field is not uniform,

the pole in the stronger part of the
field will experience more force,

and the bar magnet will be deflected
If the bar magnet’s south pole faces
up
the magnet would be deflected
upwards

If the bar magnet’s north pole faces
up
the magnet would be deflected
downwards

If the Dbar magnet started out
oriented in the horizontal plane

it would not be deflected at all

r (d)

! Pattern on screen
i - classical magnets
|

In any other orientation of the bar magnet, it would be deflected by some
intermediate amount

expect to see a line of points where the magnets hit the screen




Stern-Gerlach experiment - 3

When we do this experiment with
electrons

all the electrons land only at an
upper position, or at a lower
position
This is very surprising.
The electrons were not prepared
In any way that always alighed
their spins in the “up” or
“down” directions.

It also does not matter if we change
the direction of the magnets

The pattern of two dots just
rotates as we rotate the
external magnets

r (d)
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- classical magnets
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Pattern on screen
- electrons
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Stern-Gerlach experiment - 4

The guantum mechanical
explanation is that

this apparatus “measures” the
vertical component of the
electron spin

When we make a measurement

we “collapse” the state of the
system into one of the eigen
states
here “spin up” or “spin down”
of the quantity being measured

here the vertical electron spin
component
This measurement behavior is truly
strange, and totally counter to our
classical intuition.

(d)

@ ,
-
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Pattern on screen
classical magnets

Pattern on screen
- electrons
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The Hamiltonian

An important concept in advanced descriptions of classical mechanics is the
Hamiltonian,

a function, usually of positions and momenta, essentially representing
the total energy in the system.

There are many formal links and correspondences between the Hamiltonian of
classical mechanics and quantum mechanics.

In quantum mechanics that can be analyzed by Schrddinger’s equation, we
can define the entity

" o,
H=——V°+V(r,t 3.49
2m (r.t) ( )
so that we can write the time-dependent Schrodinger equation in the form
- 0¥ (r,
H\P(r,t):lhm (3.50)

or the time-independent Schrodinger equation as
Hy (r)=Ey(r) (3.51)
(where y(r) is now restricted to being an eigenfunction with associated
eigenenergy E).




Hamiltonian operator

The entity H is not a number,

and it is not a function.
It is instead an “operator”,
just like the entity d/dz is a spatial derivative operator.

We use the notation with a “hat” above the letter here to distinguish operators
from functions and numbers.

The most general definition of an operator is
an entity that turns one function into another.

The particular operator H is called the Hamiltonian operator
because it is related to the total energy of the system.

The idea of the Hamiltonian operator extends beyond the specific definition
here that applies to single, non-magnetic particles;

In general in non-relativistic quantum mechanics,

the Hamiltonian operator is the operator related to the total energy of the
system.




Operators and expectation values - 1

We can now show an important but simple relation between
the Hamiltonian operator,
the wavefunction, and
the expectation value of the energy.
Consider the integral
| =¥ (r,t)H¥(r,t)d’r (3.52)
where ¥(r,t) is the wavefunction of some system of interest.

We can expand this wavefunction in energy eigenstates, as in Eq.(3.43).
We know that, with y,(r) as the energy eigenstates (of the time-

Independent Schrodinger equation)
2

A (r,t) = {_h_vz Y (r,t)}l’(r,t) . {_h_zvz Y (r,t)}znlcn (), (1)

2m 2m

_ZC n':”n

(3.53)

and so

o (r)H¥(r,t)d T{Zcr’; } {ch(t)Enwn(r)}de’r (3.54)

—ooLL M n




Operators and expectation values - 2

Given the orthonormality of the y,(r), we have
I‘P (r,t)H¥(r,t)d r_ZE \c\ (3.55)

But comparing to the result (3.47), we therefore have
= [W*(r,t)H¥ (r,t)d%r (3.56)

This kind of relation between
the operator (here H),
the qguantum mechanical state (here ¥(r,t)) and

the expected value of the quantity associated with the operator (here E)
IS quite general in guantum mechanics.




Benefit of use of operator

Question:
iIf we already knew how to calculate (E) from Eq.(3.47),

<E>:ZEnPn :ZEn‘Cn‘z
n n
what is the benefit of this new relation, Eq. (3.56)?
(E)= " (r,t)H¥(r,t)d°r

Answer:

We do not have to solve for the eigenfunctions of the operator (here H) to
calculate the result.

We used the decomposition into eigenfunctions to prove the result (3.56),
but we do not have to do that decomposition to evaluate (E) from (3.56).

All we need is
the quantum mechanical state (here the wavefunction ¥ (r,t)),

and the operator associated with the quantity (E) (here H ).




Time evolution and the Hamiltonian operator - 1

Looking at Schrddinger’s time-dependent equation in the form as in Eq.
(3.50)

Aw (e, —in P
ot
and rewriting it slightly as
o¥(r,t) iH
= ¥(r,t 3.57
ot h (r.t) ( )
presuming that Hdoes not depend on time (i.e., the potential V (ris constant

in time),

it is tempting to wonder if it is “legal” and meaningful to integrate this equation
directly to obtain

v (r, t1> = exp ) (3.58)

hi 70

iﬁ(tlt())]\l!(rt

Certainly if H were replaced by a constant number
a rather trivial case of an operator!
we could perform such an integration.




Time evolution and the Hamiltonian operator - 2

If it were legal and meaningful to do this for an actual time-independent
Hamiltonian,

we would have an operator that,
in one operation,
gave us the state of the system at time t_directly from its state at time .

To think about this “legality”, first we note that,
because A is alinear operator, for any number a,
H[a¥ (r,t)] = aH¥ (r,t) (3.59)
The operator H “commutes” with the scalar quantity (i.e., the number) a.
Because this relation holds for any function ¥(r,t), we can write
Ha = oH (3.60)

(Note that any time we have such an equation relating the operators
themselves on either side, we are implicitly saying that this relation holds for
these operators operating on any function in the space. l.e., the relation

~

A=B (3.61)
for any two operators A and B is really a shorthand for the statement
AY = BY (3.62)

where ¥ is any arbitrary function in the space in question.)




Time evolution and the Hamiltonian operator - 3

Next we have to define what we mean by an operator raised to a power.
By A? we mean
H*U (r,t) = H|HY (r,t) (3.63)
Specifically, for example, for the energy eigenfunction v, ()
0, @ = H|Hy, ®| = H[E,, ®] = E,H, @ = ), @) (3.64)

We can proceed by an inductive process to define the meaning of all higher
powers of an operator, i.e.,

H""' =H|H"| (3.65)

which will give, for the case of an energy eigenfunction
H™), ) = EM, () (3.66)




Time evolution and the Hamiltonian operator - 4

Now let us look at the time evolution of some wavefunction ¥(r,t) between
times ¢ and ¢,.

Suppose the wavefunction at time ¢, Is @,

which we can expand in the energy eigenfunctions ¢, (r) as
Y () = Zanzpn (r) (3.67)
Then we know

(see Eq.(3.17) ¥(r,t)=> a,¥,(r,t)=> a,exp(—iEt/7)y,(r), for example)

n

iE (t —t
@(r,tl):z:an exp|— n(;'z 0)}% (r) (3.68)
We can write the exponential factors as power series, noting that
2 3
exp@ =14+az+ 2 +2 4. (3.69)
2! 3!
so (3.68) can be written as
E,(t, —t,) E, (1 t)2
1 — 1 —
U(rt)=> a,|1+|-—" ;_l 0 +% S— ;l 071 4 oeefa), (@ (3.70)




Time evolution and the Hamiltonian operator - 5

Because of Eq. (3.66),
everywhere we have E™y, @), we can substitute B™y, @,

and so we have

\I!<r,t1) = zn:an

Because the operator A, and all its powers as defined above, commute with
scalar quantities (humbers), we can rewrite (3.71) as

il (1 -1,

1 1

o (3.71)

1+ + Py, (O

S oA 2
\Il(r,tl)— 1+ —ZH(tlh_tO) —|—% —ZH(tli_l_t()) + .- Zan¢n(r)
- (3.72)
iH(t—t)| 1 iH(t,—1)




Time evolution and the Hamiltonian operator - 6

So, provided we define the exponential of the operator in terms of a power
series, i.e.,
ifl (t 1)
h

i { _tO)] +} (3.73)

exp

h 21 h

_l1+[_iﬁ(t1to)]+ 1

with powers of operators as given by (3.63) and (3.65),
we can indeed write Eq. (3.58).

\I!<r,t1> = exp

= iﬁ(tl}_l_ tO)]\P(r, t)

Hence we have established that
there is a well-defined operator that,
given the quantum mechanical wavefunction or “state” at time ¢,
will tell us what the state is at atime ¢,.

The particular operator we have derived here is valid for situations where the
Hamiltonian is not explicitly dependent on time

which usually means that the potential V does not depend on time.

It iIs possible to derive operators that deal with more complex situations,
though we will not consider those here.




Time-Dependent Schrdodinger Equation - 5

Reading — Sections 3.12 — 3.15

Momentum operator
Position operator
The Uncertainty Principle

Particle current




Momentum and the momentum operator - 1

Thus far, the only operator we have considered has been

the Hamiltonian H
associated with
the energy E.

In quantum mechanics,

we can construct operators associated with many other measurable
guantities.

Here we consider the momentum operator, which we will write as §.
For p, we postulate the operator
p=—inv (3.74)
with

0 o _ 0
Ty, Lz, L 3.75
R Pk (3.75)

where Xx,, y,, and z, are unit vectors in the x, y, and z directions.

V=X
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Momentum and the momentum operator - 2

With this postulated form, p=-iav (3.74), we find that
LAV (3.76)
and we have a correspondence between the classical notion of the energy E
E=P v (3.77)
2m
and the corresponding Hamiltonian operator of the Schrodinger equation
2 A2
bl v2ov Py (3.78)
2m 2m
The plane waves exp(ik-r) are the eigenfunctions of the operator p, since

pexp(ik-r)=rkexp(ik-r) (3.79)
with eigenvalues 7k.

We can therefore make the identification for these eigenstates that the
momentum is

p =7k (3.80)

Note that the p in Eq. (3.80) is a vector, with three components with scalar
values, not an operator.




Position and position operator

For the position operator,

the postulated operator is almost trivial when we are working with
functions of position.

It is simply the position vector, r, itself.

At least when we are working in a representation that is in terms of position,

we therefore typically do not write r,
though rigorously perhaps we should.

The operator for the z-component of position would, for example, also simply
be z itself.




Uncertainty principle - 1

A commonly quoted form is to say that

we cannot simultaneously know both the position and momentum of a
particle.

Classical mechanics implicitly assumes that knowing both position and
momentum is possible.

Here we illustrate the position-momentum uncertainty principle by example.
We defined a Gaussian wavepacket above in Eq. (3.41)

Yo (z,t) o {exp{—(kzzk(j :lexp{—i[a)(k)t —kz |} dk

as

an integral over a set of waves with Gaussian weightings on their amplitudes
about some central k value, k.

We could rewrite Eq. (3.41) at time t=0 as
W (2,0) = [ W, (k)exp(ikz)dk (3.81)
k

where

Wy (k) exp{—(k_ka} (3.82)

2AK




Uncertainty principle - 2

¥, (k) is the representation of the wavefunction in k space.

\\Pk(k)\2 is the probability Py (strictly, the probability density) that,
if we measured the momentum of the particle (actually the z component of
momentum),
it was found to have value 7k.
This probability would have a statistical distribution

_ 2 o (k=K)°
R =¥ (k) p[ 2(Ak)2] (3.83)

The Gaussian in Eq. (3.83) corresponds to the statistical Gaussian
probability distribution, with standard deviation Ak.



Uncertainty principle - 3

Note also that
Eq. (3.81)  W(z,0)=[W,(k)exp(ikz)dk
k

Is simply the Fourier transform of ¥, (k).
The Fourier transform of a Gaussian is a Gaussian.
Explicitly performing that Fourier transform, therefore, we can write

¥ (2,0) o< exp| —(Ak)* 27 (3.84)

Now considering the probability (or more strictly, the probability density) of

finding the particle at point zat timet =0 as \‘P(z,o)z, we have
2
2 2 2 Z
Y(z,0 exp| —2(Ak)” z° |=exp| - 3.85
¥ (2,0)f" o< exp| ~2(ak)* 2 | p{ 2(Az)2:| (3.85)

where Az is chosen so that it is the standard deviation of the probability
distribution in real space.




Uncertainty principle - 4

From Eqg. (3.85), we find the relation

AKAZ =% (3.86)

or, with momentum (here strictly the zcomponent of momentum) p =17k,
ApAz=g (3.87)

where Ap =#hAk.

When the wavepacket propagated it got wider,

that is, Az became larger, though Ak had not changed

the same Gaussian distribution of magnitudes of amplitudes of k components
remained,

though their relative phases had now changed with time.

The Gaussian distribution and its Fourier transform have the minimum
product AkAz of any distribution,

and so we find the “uncertainty principle”
ApAZ > 1l 2 (3.88)




Uncertainty principle

Though demonstrated here only for a specific example,
this uncertainty principle is quite general.

It expresses the non-classical notion that,
If we know the position of a particle very accurately,
we cannot know its momentum very accurately.

Our modern understanding of guantum mechanics says that

it iIs not merely that we cannot simultaneously measure these two
guantities,

or that quantum mechanics is only some incomplete statistical theory that
does not tell us both momentum and position simultaneously even though
they both exist to arbitrary accuracy.

Quantum mechanics is apparently a complete theory,

not merely a statistical “image” of some underlying deterministic theory;

a particle simply does not have simultaneously both a well defined position
and a well defined momentum.




Uncertainty principles in other contexts

Uncertainty principles are well known in Fourier analysis.
One cannot simultaneously have both
a well defined frequency
and
a well defined time
for a signal.

If a sighal is a short pulse,
It is necessarily made up out of a range of frequencies.

The shorter the pulse is,
the larger the range of frequencies that must be used to make it up, i.e.,

AwAt z% (3.89)

The mathematics of this well-known Fourier analysis result is identical to that
for the uncertainty principle discussed above.




Uncertainty principles in other contexts

Another common example is found in the diffraction angle of a beam,

propagating, for example in the x direction,
emerging from a finite slit with some width in the z direction.

Smaller slits correspond to more tightly defined position in the z direction, and
give rise to larger diffraction angles.

The diffraction angle corresponds to the uncertainty in the z component of the
wavevector.

If we think of light propagation as being due to momentum of photons,

diffraction is understood as the uncertainty principle giving momentum
uncertainty in the z direction for this example.
Specifically
propagation of Gaussian laser beams corresponds exactly to the above analysis

if we define the beams with the correct parameters that correspond to the
statistical definition of Gaussian distributions for the beam intensity.




Particle current

Classical intuition leads us to expect that particles with kinetic energy must
be moving,
and hence there will be particle currents or current densities (i.e.,
particles crossing unit area per unit time).

We have, however, apparently deduced from quantum mechanics that there
are stationary states where the particle has energy exceeding the potential

energy,
and we are now expecting that there may well be no current associated
with such energy eigenstates.

We need a meaningful way of calculating particle current in quantum
mechanics so that we can check these notions.




Particle Current - 1

In general, if we are to conserve particles, we expect that we will have a
relation of the form

oS i

—=-V. 3.90

- Iy (3.90)
where s is the particle density and J, is the particle current density

! (We remember that divergence gives the
! net flow out of the faces of a small box. Eq.
: oz (3.90) is an example of a “continuity
| (Xr Yo Z0) equation”)

/ OX

In our quantum mechanical case, the particle density is | ¥(r,t)|°,

so we are looking for a relation of the form of Eq. (3.90) but with |¥#(r,t)]*
Instead of s.

To do this requires a little algebra, and a clever substitution.




Particle Current - 2

We know that
ov(rt) 1 -
=—HWY(r,t 3.91
a i r(ny (3.91)
which is simply Schrédinger’s equation.

We can also take the complex conjugate of both sides, i.e.,

oV (rit) 1 .. .
— < =——H Y (r,t 3.92
ot 12 ( ) ( )
Hence, we can write
a * I 213 T % *
a[\? LP]+£(‘P HY —WH"¢") =0 (3.93)

If the potential is real and does not depend on time, then we can rewrite Eq.
(3.93) as

Q[T*‘P]+£(‘P*V2‘P—‘PV2‘P*)
ot 2m
Now we use an algebraic “trick” to rearrange this, i.e.,

PV VY = WV L VPV VPV VY

:V-(‘PV‘P* —‘P*V‘P)

0 (3.94)

(3.95)




Particle Current - 3

Hence we have

o) :—ﬂv-(wvxp*—w*vw)
ot 2m
which is an equation of the form of Eq. (3.90)
oS :
a
If we identify
i, :%(‘PV\P*—‘P*V\P)

as the particle current.

(3.96)

(3.97)

Hence we have found an expression for particle currents for situations

where the potential does not depend on time.




Particle currents and stationary states
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The expression Eq. (3.97) jp:%(‘PV‘P*—\P*V‘P) applies also for an energy
eigenstate.
Explicitly presuming we are in the nth energy eigenstate, we have
: Vi " *
Jpn(r,t):%(‘Pn(r,t)V‘Pn(r,t)—‘Pn(r,t)V‘Pn(r,t)) (3.98)

We can write out %,(r,t) explicitly as
LPn(r,t):exp(—i%t)wn(r) (3.99)

The gradient operator vV has no effect on the exponential time factor,
so the time factors in each term can be factored to the front of the expression,
and anyway multiply to unity because of the complex conjugation

jpn(r,t)zzi—hexp(_i%tjexp(i%tj(%(r)w;(r)_wg(r)wn(r))

m

" (3.100)
= (¥ (VD) -pa (N)Vya(r))
Hence j,, does not depend on time, i.e., for any energy eigenstate n
Jon (1 t)=Jpn (1) (3.101)

Therefore particle current is constant in any energy eigenstate.




Electrical current density and radiation

For a particle such as an electron, the electrical current density is simply ej,.
A steady current does not radiate any electromagnetic radiation.

This means that an electron in an energy eigenstate does not radiate
electromagnetic radiation.
Should a hydrogen atom in an energy eigenstate be radiating?

Classically, the electron orbiting round the nucleus would have a time varying
current;

the electron in a classical orbit is continually being accelerated because its

direction is changing all the time to keep it in its orbit, and so it would radiate
electromagnetic energy.

This quantum mechanical result says that the atom in such a state does not
radiate electromagnetic energy because there is no changing current.

The quantum mechanical picture agrees with the reality for hydrogen atoms in
states,

and the classical picture does not.

Note also, when the spatial part of the energy eigenstate (i.e., y(r)) is real,
or can be written as a real function multiplied by a complex constant,

the right hand side of Eqg. (3.100) is zero, and there is zero particle or
electrical current.




Functions and Operators — 1

Reading — Section 4.1
Functions as vectors
Dirac bra-ket notation
Expansion coefficients in Dirac bra-ket notation

State vectors




Functions and Operators - 1

We have introduced quantum mechanics through
the Schrodinger equation and
the spatial and temporal wavefunctions that are solutions to it.

Quantum mechanics is much broader, however.
E.g., photons are not described by this kind of Schrdodinger equation

We need a more general mathematical formalism to go much further.

This formalism is mostly linear algebra, as in
matrix algebra,
Fourier transforms,
solutions of differential equations,
integral equations,
analysis of linear systems in general.
Here we assume at least the matrix version of linear algebra
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Functions and Operators - 2

The formalism of quantum mechanics is based on linear algebra

because quantum mechanics is apparently absolutely linear in certain
specific ways
l.e., in the quantum mechanical “amplitude”

To generalize linear algebra for quantum mechanics,

we introduce shorthand notations
especially Dirac’s “bra-ket” notation
but the underlying concepts are standard for linear algebra

The mathematical approach here is deliberately informal
The emphasis is on grasping the core concepts and
ways of visualizing the mathematical operations

The major goals of this mathematical approach are
to visualizing quantum mechanics, and

to develop an intuitive understanding of quantum mechanics that extends
to a broad range of problems.
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Functions as vectors - 1

A function, e.g., f(x), is essentially

a mapping from one set of numbers
(the “argument”, x, of the function)

to another
(the “result” or “value”, f(x), of the function).

The fundamentals of this concept are not changed
for functions of multiple variables, or
for functions with complex number or vector results.

We can imagine that

the set of possible values of the argument is a list of numbers, and
the corresponding set of values of the function is another list.
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Functions as vectors - 2

One kind of list of arguments would be the list of all real numbers,
which we could list in order as
X1, X2, X3 ...
and so on.

This is an infinitely long list,
and the adjacent values in the list are infinitesimally close together,
but we will regard these infinities as details!

If we presume that we know this list of possible arguments of the function,
we can write out the function as the corresponding list of values, and
we choose to write this list as a column vector, i.e.,
(X))
f(x)
f (%)
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Functions as vectors - 3

For example,

we could specify the function at a discrete set of points spaced by some
small amount &,

With X, = X1 + X, X3 = X, + &X and so on;

We would do this
for sufficiently many values of x and
over a sufficient range of x
to get a sufficiently useful representation for some calculation,
such as an integral.

The integral of [f(x)|* could then be written as

[IEPdx=[£(x) ' (x) (%) -] Fe)] 5, (4.1)




Visualizing a function as a vector - 1

Suppose the function fw) is approximated by its values at three points,

T, T, and Z,,
and is represented as a vector
(%)
f=|f (Xz)
(%)

Then we can visualize the function as a vector in normal geometrical space.

I3 aXI1S

f(z) /
f(@) \/ iz fx)|  f

T, axis

(a) (b)

/

f(z)

T, axis




Visualizing a function as a vector - 2

Though the functions in quantum mechanics are complex, not merely real,
and, since there are many elements in the vector
possibly an infinite number,
the space may need a very large (possibly infinite) number of dimensions

But we will still visualize the function
and, more generally, the qguantum mechanical state
as a vector in a space.

I3 aX1S

f(x)

f(z,) f
f(z)

' f (/12> ZI?l axis

T, axis

(@) (b)




Dirac bra-ket notation - 1

Now let us introduce the first part of the so-called Dirac “bra-ket” notation.

We will introduce the notation
\ f(x)>, called a “ket”,

to refer to an appropriate form of our column vector.

For the case of our function f(x),
one way to define the “ket” is

f (% )V
f(%)Vox
f (%)X

or, more strictly, the limit of this as 6x— 0.

(%)=

We have incorporated +dx into the vector to handle normalization
but the concept is still that the function is a vector list of numbers.

(4.2)




Dirac bra-ket notation - 2

We can similarly define the “bra” (f(x) to refer a row vector, in this case
(F()[=] T ()Vox 1 (x)Vox 17 (xg)Vox -] (4.3)

where again we more strictly mean the limit of this as §x— 0.

Note that, in our row vector, we take the complex conjugate of all the values.
The vector
l:al* a’zl< a; :|
Is called, variously,
the Hermitian adjoint,
the Hermitian transpose,
the Hermitian conjugate,
the adjoint,
of the vector




Hermitian adjoint - 1

A common notation used to indicate the Hermitian adjoint is to use the
character “t” as a superscript, i.e.,
-t

:[al* a, a, ] (4.4)

Forming the Hermitian adjoint is like
reflecting about a -45° line,
then taking the complex conjugate of all the elements
— _-|- — —_
8y x %
a, o a.2a2 . — a; a, a, -
= a




Hermitian adjoint - 2

The “bra” is the Hermitian adjoint of the “ket” and vice versa.

Note also that

NG | L
al f al
a T a
2 — l:a]’-" a; a;: :| — 2 (45)
a3 a3




Bra-ket notation for functions

Considering f(x) as a vector,
with the definitions (4.1), (4.2), and (4.3) we find

f (% )Vox
JI100f ax=[ 100X 1 (e)Vox 1 ()Vox -] Xig
=3 £ (%, )NOXF (%)X - w6

=(f (x)|f(x))

where again the strict equality applies in the limit when §x— 0.

Writing this as a vector multiplication

eliminates the need to write a summation or integral
That is implicit in the vector multiplication.

Note the shorthand for the vector product of the “bra” and “ket”

\glx|f)=(g/f) (4.7)




Bra-ket notation with different functions

This notation is also useful when we are dealing with integrals of two

different functions,
l.e.,

f(%)Vox
f (% )Vox
f (%3)v/x

[9"(0) f (=] " ()Vox 0" ()40% g" (x)Vox -]

= 29" (% )Voxf (x,)Vox

n

=(9(x)| f(x))

(4.8)




Inner product

In general this kind of “product”
(9lx| f)=(g[f)

Is called an inner product in linear algebra.
The geometric vector dot product is an inner product,
the bra-ket “product” is an inner product,

and the “overlap integral” on the left of Eq. (4.8)
J'g*(x) f (x)dx

IS an inner product.

It is “inner” because

It takes two vectors and turns them into a number,
a “smaller” entity.

The bra-ket notation gives an inner “feel” to this multiplication
The special parentheses at either end give a “closed” look




Bra-ket notation and expansions on basis sets - 1

Suppose the function is not represented directly as a set of values for each
point in ordinary geometrical space,

but instead as an expansion in a complete orthonormal basis set, y,(x),

f (x)=zn:cnc,yn(x) (4.9)

We could also write the function as a vector or “ket”
(which would also in general have an infinite number of elements)

f(x))= (4.10)

In this case, the “bra” becomes

()

o oo oo o (4.11)




Bra-ket notation and expansions on basis sets - 2

When we write the function in this different form,

as a vector containing these expansion coefficients,
we say we have changed its “representation”.

The function f Is still the same function as it was before,
and we visualize the vector | f ) as being the same vector in our space.

We have merely changed the axes in that space that we use to represent the
function,

and hence the coordinates of the vector have changed

now they are the numbers ¢, ¢,, c

91 Cgeven




Bra-ket notation and expansions on basis sets - 3

Just as before, we could evaluate

[[F () dx= (%) f(x)dx
—I{chwn }{Zcmwm }

EZCnCmIWn

n,m

EZ(:|i1l<(:m5nm

n,m

EZ‘Cn‘Z

n
G

=l ¢ ¢ - C2 (4.12)
Cs




Bra-ket notation and expansions on basis sets - 4

Similarly, with
g(x)=2 dw;(x) (4.13)
we have
o
C
“(x)f(x)dx=|d’ di di 2
Jo () £ (x)dx [1 S :|C3 (4.14)

with similar intermediate algebraic steps to those of Eq. (4.12).




Bra-ket expressions

Note that the result of a bra-ket expression like
(FO0[ £ () or (g(x)| (%))

IS simply a number (in general a complex one),
which is easy to see if we think of this as a vector multiplication.

Note too that

this number is not changed as we change the representation,
as we would expect by analogy with the dot product of two vectors,
which is independent of the coordinate system.




Expansion coefficients

Evaluating the c, in Eq. (4.9) (or the d, in Eq. (4.13)) is simple

because we choose the set of functions y,(x) to be orthonormal.

Since y,(x) is just another function,

we can also write it as a ket.
To evaluate the coefficient c,,, we premultiply by the bra (y,|

(m (%) T ( >ZC (W ()| (%)) = Cp

Using bra-ket notation, we can write (4.9) (f (x chwn X)) as
(X)) = 2C0|wn (%)) = \wn X)>
:Zn:‘wn(x)>< ‘ >

Because ¢, is just a number, it can be moved about in the product

(4.15)

(4.16)

(formally, multiplication of a vector and a number is commutative, though, or

course, multiplication of vectors or matrices generally is not.)
Often in using the bra-ket notation, we may drop arguments like Xx.
Then we can write Eq. (4.16) as

=2 wn)(wal )

n

(4.17)




Reason for bra-ket notation

Here we see a key reason for introducing the Dirac bra-ket notation;
It is a generalized shorthand way of writing the underlying linear algebra
operations we need to perform,
and can be used whether we are thinking about representing functions as
continuous functions in some space, or as
summations over basis sets.

It will also continue to be useful as we consider other quantum
mechanical attributes

ones that are not represented as functions in normal geometric space;

an example (to which we will return much later) is the “spin” of an electron, a
magnetic property of the electron.




State vectors

In quantum mechanics

where the function f represents the state of the quantum mechanical
system

(for example, it might be the wavefunction),

the set of numbers represented by the bra ((f|) or ket (|f)) vector
represents the state of the system, and

hence we refer to the ket vector that represents f as the “state vector” of the
system,

and the corresponding bra vector as the (Hermitian) adjoint of that state
vector.

In guantum mechanics,

the bra or ket always represents either
the quantum mechanical state of the system
(such as the spatial wavefunction y (x)),

or some state that the system could be in
(such as one of the basis states v, (x)).
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Convention for symbols inside bra and ket vectors - 1

The convention for what symbols we put inside the bra or ket is loose,
and usually one deduces from the context what exactly is being meant.

For example,

If it is obvious what basis we were working with,

we might use the notation \n} to represent the nth basis function (or basis
“state”)

rather than the notation |y, (X)) or |y,).

In general,

the symbols inside the bra or ket should be enough to make it clear what
state we are discussing in a given context

There are otherwise essentially no rules for the notation inside the bra or ket.

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 4.1




Convention for symbols inside bra and ket vectors - 1

For example,
We could write

The state where the electron has the lowest
possible energy in a harmonic oscillator with

potential energy 0.375x?

but since we likely already know we are discussing such a harmonic
oscillator,

it will save us time and space simply to write
0)
with the zero representing the quantum number of that state.

Either would be correct mathematically.




Functions and Operators — 2

Reading — Section 4.2 -4.5
Vector space
Operators
Linear operators as matrices

Evaluating matrix elements for operators




Vector space -1

We need a “space” in which our vectors exist.

For a vector with three components

we imagine a conventional three dimensional Cartesian space.
The vector can be visualized as a line in that space, starting from the origin,

with projected lengths a,, a,, and az along the x, y, and z axes respectively,
with each of these axes being at right angles to each other axis.
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Vector space - 2

For a function expressed as its value at a set of points,
Instead of 3 axes labeled x,y, and z,

we may have an infinite number of different, orthogonal axes,
labeled with the basis function with which they are associated,

e.g., v,.

Just as we may label the axes in conventional space with unit vectors
(e.g., one notation is X, ¥, and z for the unit vectors),

so also here we can label the axes with the kets associated with the basis
functions, |y, );

either notation is acceptable.




Mathematical properties of geometrical space and vector space

Inner product

The geometrical space has a vector dot product that defines both the
orthogonality of the axes, e.qg.,

X-y=0 (4.18)
and defines the components of a vector along those axes, e.g.,
f=fx+fy+1,2 (4.19)
with
f,=F-X (4.20)

and similarly for the other components.

Our vector space has an inner product that defines both the orthogonality
of the basis functions

(W Wn)=Om (4.21)
as well as the components

G = (W] ) (4.22)
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Mathematical properties of geometrical space and vector space

Addition of vectors

With respect to addition of vectors,

both spaces are commutative
at+b=b+a (4.23)

f)+[g)=[g)+[f) (4.24)

and associative

a+(b+c)

f)+(lg)+M)

(a+b)+c (4.25)
(| T)+]g))+h) (4.26)




Mathematical properties of geometrical space and vector space

Linearity

They are both linear
with respect to multiplying by constants, e.g.,
c(a+b)=ca+cb (4.27)
c(|f)+lg))=c[f)+c|g) (4.28)
(The constants in the our vector space case are certainly allowed to be complex.)

The inner product is linear
both in multiplying by constants, e.g.,

a.(cb)=c(ab) (4.29)
(fleg)=c(f|g) (4.30)

and in superposition of vectors
a(b+c)=ab+ac (4.31)

(Fig)+Im)=CFlg)+(fh (4.32)




Mathematical properties of geometrical space and vector space

Length of vector (“norm” of vector)

There is a well-defined “length” to a vector in both cases (formally, a
norm)

a| =Vaa (4.33)
MENSIES (4.34)

Completeness and “compactness”

In both cases,

any vector in the space can be represented to an arbitrary degree of accuracy
as alinear combination of the basis vectors

this is the completeness requirement on the basis set

In vector spaces, this property of the vector space is sometimes described as
“‘compactness”.




Mathematical properties of geometrical space and vector space

Inner product and commutativity

The inner products in geometrical space and our vector space differ
slightly
In geometrical space the lengths a;, a,, and az of a vector are real,
So there the inner product (vector dot product) is commutative, i.e.,
ab=Dba (4.35)

In working with complex coefficients rather than real lengths,

it Is more useful to have an inner product (as we do) that has a complex
conjugate relation
(flg)=((g

Such a relation ensures that <f
numbers,

as required for it to be a useful norm.

£)) (4.36)

f) is real, even if we work with complex

(The existence of a norm is formally required to prove properties like
completeness or compactness by showing that the norm of the
difference of two vectors can be as small as desired.)
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Mathematical properties of geometrical space and vector space

Additional mathematical properties and requirements
Both spaces have a “null” or zero vector

Both spaces have an “antivector” that added to the vector gives the null
vector




Linear vector spaces and Hilbert spaces

The elementary mathematical properties above, other than the inner product,
are sufficient to define these two spaces as “linear vector spaces”

With the properties of the inner product,
these are what are called “Hilbert spaces”.

The Hilbert space is the space in which the vector representation of the
function exists,

just as normal Cartesian geometrical space is the space in which a
geometrical vector exists.

The main differences between our vector space and geometrical space are
() our components can be complex numbers rather than only real ones,
(i) we can have more dimensions (possibly an infinite number).

but we can use the idea of a geometrical space as a starting point for
visualizing our vector space.

Our vector space can also be called a function space.
A vector in this space is a representation of a function.

The set of basis vectors (basis functions) that can be used to represent
vectors in this space is said in linear algebra to “span” the space.
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Operators -1

A function turns one number (the argument) into another (the result).
An operator turns one function into another.

In the vector space representation of a function, an operator turns one
vector into another.

Suppose that we are constructing the new function g(y) from the function
F(x)
by acting on f(x) with the operator A.
The variables x and y might actually be the same kind of variable,

as in the case where the operator corresponds to differentiation of the
function, e.qg.,

d
9(x) = (&j f (%) (4.37)
or they might be quite different,

as In the case of a Fourier transform operation where x might represent
time and y might represent frequency e.g.,

\/_ j X )exp (—iyx)dx (4.38)

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 4.3




Operators - 2

A standard notation for writing such an operation on a function is
g(y)=Af (x) (4.39)
Note that this is not a multiplication of f(x) by Ain the normal algebraic
sense,
but should be read as A operating on f(x).

For A to be the most general operation possible,
it should be possible for the value of g(y),

for example at some particular value of y = y;,
to depend on the values of f(x) for all values of the argument x.

This is the case, for example in the Fourier transform operation of Eq. (4.38).

\/_ J' x)exp(—iyx)dx




Linear operators

We interested here solely in what are called linear operators.
They are the only ones we will use in quantum mechanics,
again because of the fundamental linearity of quantum mechanics.
A linear operator has the following characteristics,
Al T (x)+h(x)]= Af (x)+ Ah(x) (4.40)

Al cf (x)]=CcAf (x) (4.41)

for any complex number c.




Consequences of linearity for representation of operators - 1

Let us consider how, in the most general way,
we could have the function g(y) at some specific value y, of its argument,
l.e., g(y,), related to the values of f(x) for possibly all values of x

and still retain the linearity implied by Eqgs. (4.40) and (4.41).

Think of the function f(x) as being represented by a list of values,

f(x), (%), F(X3), --n
just as we did when considering f(x) as a vector.
Again,
we can take the values of x to be as closely spaced as we want,

and we believe that this representation can give us as accurate a representation
of f(x) as we need for any calculation we need to perform.




Consequences of linearity for representation of operators - 2

Then we propose that, for a linear operation, the value of g(y,;) might be
related to the values of f(x) by arelation of the form

where the a; are complex constants.

This form certainly has the linearity of the form required by Eqgs. (4.40) and
(4.41),

l.e., if we were to replace f(x) by f(x)+h(x), then we would have
g(yy)=ay| f(x)+h(x)]|+ay,] f(X)+h(X;)]|+ass| f(X5)+h(x3)]+...
=a, (X)) +a,f(X)+asf(x)+... (4.43)
+a N (%) +ah (X, ) +aih(X) +...
as required by Eq. (4.40),
and similarly if we were to replace f(x) by cf (x), we would have
g(y1)=ancf (X )+a,cf (X, ) +acf (Xg)+...

=cla,f(x)+a,f(%)+asf(x)+...] (4.44)




Generality of our proposed form

Now let us consider whether the form Eq. (4.42)
g(yi)=anf(x)+apf(X)+asf(x)+...
IS the most general it could be.
We can see this by trying to add other powers and “cross terms” of f(x).

Any more complicated function relating g(y;) to f(x) could presumably be
written as a power series in f(x), possibly involving f(x) for different
values of x (i.e., cross terms).

If we were to add

higher powers of f(x), such as [ f(x)],
or cross terms such as f(x)f(x,) into the series (4.42),

it would no longer have the required linear behavior of Egs. (4.43) and (4.44).
We also cannot add a constant term to the series (4.42);
that would violate the second linearity condition, (4.41),
since the additive constant would not be multiplied by c.

Hence we conclude Eq. (4.42) is the most general form possible for the
relation between g(y;) and f(x) if this relation is to correspond to a linear

operator.




Construction of the entire operator

To construct the entire function g(y),
we should construct series like Eq. (4.42) for each value of y, i.e., y,, V3, ...

If we write the functions f(x) and g(y) as vectors,
then this general linear operation that relates the function g(y) to the

function f(x) can be written as a matrix-vector multiplication,

_g(yl)_ (A, a, a3 - f(Xl)_
9(y2) _ |81 8 3 v f(x) (4.45)
a(Yys) 83, A3 ag | F(X3)
with the operator
A, a, a3 |
A Ayp Ay dyz (4.46)
dy; A dgg

Any linear operator can be represented this way.
At least in so far as we presume functions can be represented as vectors,

then linear operators can be represented by matrices.
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Bra-ket notation and operators

In bra-ket notation, we can write Eq. (4.39) (g(y)=Af(x)) as
g)=Alf) (4.47)
If we regard the ket as a vector,
we now regard the (linear) operator A as a matrix.

In the language of vector (function) spaces,
the operator takes one vector (function) and turns it into another.

All of the following linear mathematical operations can be described in this
way:
differentiation,
rotation (and dilatation) of a vector,
all linear transforms (Fourier, Laplace, Hankel, z-transform, ... ),
convolutions,
Green’s functions in integral equations,
linear integral equations generally.
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Linear operators and quantum mechanics

In qguantum mechanics,

such linear operators are used as operators associated with measurable
variables such as

the Hamiltonian operator for energy, and
the momentum operator for momentum,

as operators corresponding to changing the representation of a function
(changing the basis),

and for a few other specific purposes,

with the associated vectors representing quantum mechanical states.
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Consequences of linear operator algebra

A very important consequence of the mathematical equivalence of matrices
and linear operators is that the

algebra for such operators is identical to that of matrices.
In particular,
operators do not in general commute, i.e.,
AB|f) is not in general equal to BA|f) (4.48)
for any arbitrary | f ).

If we understand that we are considering the operators to be operating on an
arbitrary vector in the space,

we can drop the vector itself,
and write relations between operators,
e.g., we can say, instead of Eq. (4.48)
AB is not in general equal to BA (4.49)

which we would regard as an obvious statement if we are thinking of the
operators as matrices.

Whether or not operators commute is also of central importance in quantum
mechanics.




Generalization to expansion coefficients

We presented the argument above for functions of a variable x or y
but we could instead talk about expansion coefficients on basis sets.
For example, we had expanded f(x) on a basis set in Eq. (4.9)

F(x)= 2w (%)
We similarly had expanded g(x)on a basis set in Eq. (4.13)

g(X)=;ann(X)

We could follow an argument as above, requiring that each expansion
coefficient d, depend linearly on all the expansion coefficients c,,

obtaining a matrix vector statement of the same form, i.e.,

d| [Ar Ay Ay |l

d, _ Ay Ay Ay |G (4.50)

o B R s

and the bra-ket statement of the relation between f, g, and A, Eq.(4.47),
lg)=A|f), remains unchanged.




Evaluating the elements of the matrix associated with an

operator -1
Suppose we start with f@) = Y @), or equivalently
=) (4.51)

l.e., we choose f) to be the jth basis function.
In the expansion Eq. (4.9)

f(X)=;ann(X)
this means we are choosing ¢, =1 and setting all the other ¢’s to be zero.
Now we operate on this |f) with A as in Eq. (4.47)
9)=Alf)
to get the resulting function |g).

Suppose we want to know specifically what the resulting coefficient d. is of
the :th basis function in the expansion of this function
l.e., as in Eq.(4.13).

g(x):;dnlﬂn(x)




Evaluating the elements of the matrix associated with an
operator - 2

It is obvious from the matrix form, Eq.(4.50),

d] [Ar Ay Az g
d, Ay Ay Ay |G
ds Ay A.az A;3 - C.3

of the operation of A on this ),
with the choice ¢, = 1 and all other ¢'s zero, that

d=A (4.52)

tj

For example, for the specific case of j=2, we would have

d, A12- -Au A12 A13 ][]
d, A22 A21 A22 A23 |1

SR (4.53)

d, A32 A31 A32 A33 O

and so
cl3 = A32. (4.54)




Evaluating the elements of the matrix associated with an

operator - 3

But, from the expansions for |f) and |¢g) we have, for the specific case of
£ =1v,;),

9) =2 d,|¢,) = Al¢y) (4.55)

To extract 4, from this expression, we multiply by (¢, on both sides to
obtain

d = (p,|A ¢j> (4.56)

and hence we conclude, from Eq. (4.52) (d, = AZ.].)
Ay =(wi|Alwj) (4.57)

If we now think back to integrals considered as vector-vector multiplications,
then we can see that the matrix elements corresponding to the operator A
are

A; :J'z//i*(x)Ay/j (x)dx (4.58)




Visualization of a matrix element in Hilbert space

‘ ¢k> axis

‘¢j> axis
Operator A acting on the unit vector ‘¢j>, generates the vector A‘¢j>, which in general

has a different length and direction from the original vector ‘¢j>-

The matrix element Aij — <¢¢‘A‘¢j> IS the projection of the vector A‘¢j> onto the ‘¢Z>
axis.




Evaluating the elements of the matrix associated with an
operator - 4

We can if we wish write out the matrix explicitly for the operator i, obtaining,
with the notation of Eq. (4.57)

(| Alw) (Al (8| Al
A elAle) WlAe) (6]l 4.50)
(g | Aly) (0] Alay) (0] A4,

We have therefore deduced how to set up both
the function as a vector in function space and

a linear operator as a matrix that operates on those vectors in the
function space.




Functions and Operators — 3

Reading — Section 4.6 — 4.10 up to “Use of unitary operators to change basis
sets for representing vectors”

Bilinear expansion of operators

Specific types of linear operators
Identity operator
Inverse operators
Unitary operators
conservation of length and inner product under unitary transformations




Bilinear expansion of linear operators - 1

We know that we can expand functions in a basis set,
as in Egs. (4.9), f(x)=>cw,(x), or EQ.(4.16), |f(x))=D_c,|w,(x)).

What is the equivalent form of expansion for an operator?
We can deduce this from our matrix representation above.

Considering an arbitrary function f, written in ket form as |f),
from which a function g (written as the ket |g)) can be calculated

by acting with a specific operator A ie.,
g)=Alf) (4.60)




Bilinear expansion of linear operators - 2

We presume that g and f are expanded on the basis set y;,
l.e., In function space we have

9)=2 dilwi) (4.61)
f)=2¢v;) (4.62)
J

From our matrix representation, Eq. (4.50), of the expression (4.60)
(lg)=A|f)), we know that

di =2 Ayc; (4.63)
J
and, by definition of the expansion coefficient, we know that
¢ =(wj|f) (4.64)

Hence, (4.63) becomes

di =Y Ay (w| ) (4.65)




Bilinear expansion of linear operators - 3

Substituting d; =3 A;(y;| f) back into (4.61) (g)=>d;|v)),
9)=2 A (w5 f)lwi) (4.66)

Remember that (y;|f)=c; is simply a number, so we can move it within the
multiplicative expression.
Hence we have

9) =2 Aylwi) (v f) (4.67)

But | f) represents an arbitrary function in the space,
so we therefore conclude that the operator A can be represented as

AEZA]‘%X%‘ (4.68)
i

This form, Eq. (4.68), is referred to as

a “bilinear expansion” of the operator,
and is analogous to the linear expansion of a vector.




Bilinear expansion of linear operators - 4

In integral notation for functions of a simple variable, we have, analogously,
the relation

g(x)szf (% )dx, (4.69)
which leads to the analogous form of the bilinear expansion
A= A (v (%) (4.70)
1]

Note that these bilinear expansions can completely represent any linear
operator that operates within the space,

l.e., for which the result of operating on a vector (function) with the
operator is always a vector (function) in the same space.




Outer product

An expression of the form of Eq. (4.68)
A=D Aylyi)w) (4.68)
1]

contains an outer product of two vectors.
An inner product expression of the form (g|f) results in a single, complex
number,
An outer product expression of the form |g)(f | generates a matrix, e.g.,

d, | diel dicy dics

d . e d,cc d,c, d,c;
o(fl=| Flla o ¢ e T2 T (4.71)

3 dic;  diC,  djCq

The specific summation in Eg. (4.68) is actually, then, a sum of matrices,
with the matrix |y;)(w;| having the element in the ith row and the jth
column being one, and all other elements being zero

Such outer product expressions for operators are very common in quantum
mechanics.




Specific important types of linear operators

In the use of Hilbert spaces, there are specific important types of linear
operators that are very important. Four of those are

(1) the identity operator,
important for operator algebra

(if) inverse operators,

finding these often solves a physical problem mathematically, and they are
also important in operator algebra

(ii1) unitary operators,
very useful for changing the basis for representing the vectors, and
describing the evolution of quantum mechanical systems

(iv) Hermitian operators.
used to represent measurable quantities in quantum mechanics, and
they have some very powerful mathematical properties




ldentity operator - 1

The identity operator I is that operator that, when it operates on a vector
(function), leaves it unchanged.

In matrix form, the identity operator is, obviously,
(1 0 0 |

010
0 01

(4.72)

_>
I

In bra-ket form, the identity operator can be written in the form

i\:Z‘l/ji><Wi‘ (4.73)

where the ‘¢2> form a complete basis for the function space of interest.



ldentity operator - 2

Let us prove the statement Eq. (4.73) (I = |w;)(w]).

Consider the arbitrary function

=2 e v (4.74)
By definition we know that
Crn = (Y| f) (4.75)
so, explicitly 1) = Z<¢Z f),) (4.76)
Now consider I|f) where we use the definition of / we proposed in Eq.
(4.73)
I1f)y=>"Jw) (v ) (4.77)
But (y,|f) is simply a number, and so can be moved in the product. Hence
I1fy=>(0, )], (4.78)
and hence, using Eq. (4.76), we have proved that, for arbitrary | f),
If)=1f) (4.79)

and so our proposed representation of the identity operator, Eq.(4.73), is
correct.




ldentity operator - 3
Why prove Eq.(4.73) (|A=Z\Wi><%\)?

The statement Eq. (4.73)

i\:Zi:‘l//i><Wi‘
IS trivial if w} IS the basis being used to represent the space.
Then
1] 0] 0]
0 1 0
) =gl %) =gl %) =) - (4.80)
so that
1 0 O 0 0 O 0 0 O
00 0 010 - 000 -
‘¢1><¢1‘:O 0 0 ‘¢2><¢2‘:0 0 0 "¢3><¢3‘:0 0o 1 - (4.81)

and obviously >"|v,)(¢,| gives the identity matrix of Eq.(4.73).




ldentity operator - 4

Note, however,

the statement Eq. (4.73) is true
even if the basis being used to represent the space is not \¢Z> In that case,

‘¢¢> is not a simple vector with the ith element equal to one and all other
elements zero,
and the matrix |4, )(¢,| in general has possibly all of its elements non-zero.

Nonetheless, the sum of all of those matrices |y,)(y,| still leads to the
identity matrix of Eq.(4.72).

The important point is that we can choose any convenient complete basis
to write the identity operator in the form Eq. (4.73).
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ldentity operator - 5

We can understand why the identity operator can be written this way for an
arbitrary complete set of basis vectors (functions) M}

In an expression

=2

7

),

f) (4.82)

the bra <¢Z‘ projects out the component, ¢, of the vector (function) |f) of
interest,

and multiplying by the ket‘¢i> adds into the resulting vector (function) on the
left an amount ¢, of the vector (function) ‘¢Z>

Adding up all such components in the sum merely reconstructs the entire
vector (function) |f).




ldentity operator and coordinate axes

An important point is that

the vector is the same vector regardless of which set of coordinate axes
we choose to use to represent it.

If we think about the identity operator in terms of vectors,

then the identity operator is that operator that leaves any vector
unchanged.

Looked at that way,

It IS obvious that the identity operator is independent of what coordinate
axes we use in the space.

Our algebra here is merely showing that we have set up the rules for the vector
space so that we get the behavior we wanted to have.
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Trace of an operator - 1

The identity matrix can be very useful in formal proofs.

The tricks are,

first, that we can insert it, expressed on any convenient basis, within other
expressions, and,

second, we can often rearrange expressions to find identity operators buried
within them that we can then eliminate to simplify the expressions.

A good illustration of this is the proof that the sum of the diagonal elements
of an operator is independent of the basis on which we represent the
operator;

that sum of diagonal elements is called the “trace” of the operator, and is
written as Tr(A).

The trace itself can be quite useful in various situations related to operators,
and some of these will occur below.




Trace of an operator - 2

Let us consider the sum, S, of the diagonal elements of an operator A, on
some complete orthonormal basis |y,), i.e

S :iZ<Wi‘A‘Wi> (4.83)

n)-

Now let us suppose we have some other complete orthonormal basis,

We can therefore write the identity operator as

= 30} (4.89

We can insert an identity operator just before the operator A in Eq. (4.83),

which makes no difference to the result, since 1A= A
SO we have

S = X0 ) = Xl Sl ol |l (.85




Trace of an operator - 3

Rearranging S zz<%\|‘£\\wi>:z<%\(; 5,)(6 UAW gives

S =;Z<wi 8.) (| Alw)
=;Z<¢m \AALS (4.86)

Sl Sl o]

where, betweenAthe first and second lines, we have used the fact that
(wi|¢,) and (g,|Aly;) are simply numbers and so can be swapped.

Now we see that we have another identity operator inside an expression in
the bottom line, i.e.,

I’\:Z‘l/li><lﬂi‘ (4.87)

~

and so, since Al =A, we can remove this operator from the expression,
leaving

5= 2 {dn|Algh) (4.88)




Trace of an operator - 4

Hence, from Eqgs. (4.83) (S=Z<wi\,&\wi>) and (4.88) (S=>(¢.|Al4,)), we have

proved that the sum of the diagonal elements,

l.e., the trace, of an operator is independent of the basis used to represent
the operator,

which is why the trace can be a useful property of an operator.




Inverse operator

If we consider an operator A operating on an arbitrary function |f),
then the inverse operator,

If it exists,
is that operator A~ such that
f)=ATAlf) (4.89)
Since the function |f) is arbitrary, we can therefore identify
ATA=1] (4.90)
The operator A takes an “input” vector and, in general, stretches it and
reorients it.

The inverse operator does exactly the opposite, restoring the original
Input vector.

Since the operator can be represented by a matrix,

finding the inverse of the operator reduces to finding the inverse of a
matrix.

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 4.9




Existence of inverse operators

Just as in matrix theory, not all operators have inverses.
For example, the projection operator

P =|f){f] (4.91)
In general has no inverse,

because it projects all input vectors onto only one axis in the space,
the one corresponding to the vector | f).

This is a “many to one” mapping in vector space,

and there is no way of knowing anything about the specific input vector other
than its component along this axis.

Hence in general we cannot go backwards to the original input vector starting
from this information alone.




Unitary operators

A unitary operator, U, is one for which
Ut=0" (4.92)
that is,

its inverse is its Hermitian transpose (or adjoint).

The Hermitian transpose of a matrix is formed by reflecting the matrix about its
diagonal, and taking the complex conjugate.

* * *

Uy Uy Uy ] |y Uy Uy

’11,21 U22 ’11,23 ulg uQQ ugg e

u31 U32 USS e — u* u* u* L (4-93)
13 23 33




Conservation of length and inner product under unitary
transformations - 1

When a unitary operator operates on a vector,

it does not change the length of the vector.
This is consistent with the “unit” part of the term “unitary”.

In fact, more generally, when we operate on two vectors with the same
unitary operator,

It does not change their inner product
the conservation of length follows from this as a special case, as we will show.




Conservation of length and inner product under unitary
transformations - 2

Consider the unitary operator U and the two vectors |f ) and |g ).

We form two new vectors by operating with U,

A

o) =U\f,) (4.94)

and

A

Guew) =Ulg,,) (4.95)

In conventional matrix (or matrix-vector) multiplication with real matrix
elements, we know that

(AB)" = BTA" (4.96)
where the superscript “T” indicates the transpose (reflection about the
diagonal).
In matrix or operator multiplication with complex elements, we obtain

(AB) = B A (4.97)
and, explicitly, for matrix-vector multiplication
(AR = (n| AT (4.98)




Conservation of length and inner product under unitary
transformations - 3

Hence, with our definitions [£,,) = 0|f,,) and |g,..) = U'|g,) from above

<gnew ‘ fnew>

S0, as promised,

U'U

foa)
U0\ f,)
1)
Toa)

(4.99)

the inner product is not changed if both vectors are transformed this way.

In particular,

<fnew ‘fnew> — <fold

f ld> (4.100)

l.e., the length of a vector is not changed by a unitary operator.




Functions and Operators — 4

Reading — Sections 4.10 “Use of unitary operators to change basis sets for
representing vectors” - 4.13

Unitary operators

use of unitary operators to change basis sets for representing vectors
use of unitary operators for changing the representation of operators
unitary operators that change the state vector

Hermitian operators

Matrix form of derivative operators

Matrix corresponding to multiplying by a function




Unitary operators to change representations of vectors - 1

One major use of unitary operators is to change basis sets
or, equivalently, representations or coordinate axes.
Suppose that we have a vector (function) \fold> that is represented,
when we express it as an expansion on the functions |, ),
as the mathematical column vector

L) =|e (4.101)

These numbers ¢, c,, c,, ... are the projections of ‘fold>

31
on the orthogonal coordinate axes in the vector space labeled with ‘¢1>,

) ..

),




Unitary operators to change representations of vectors - 2

Suppose we want to represent this vector on a new set of orthogonal axes,
which we will label |¢,), [¢,), [#;), .- -

Changing the axes,
which is equivalent to changing the basis set of functions,
does not, of course, change the vector we are representing,
but it does change the column of numbers used to represent the vector.
For example, suppose the original vector was actually the first basis vector
in the old basis, |¢).

Then in this new representation,

the elements in the column of numbers would be the projections of this vector
on the various new coordinate axes,

each of which is simply <qu ‘¢1>,

I.e., under this coordinate transformation (or change of basis),

17 |(afv)]
0
= i9:/%) (4.102)

[l




Unitary operators to change representations of vectors - 3

We could write out similar transformations for each basis vectors |y, ).

We get the correct transformation if we define a matrix

ull ’U,12 U13

’U,2 1 U22 U23

U= Ugy  Ugy  Ugg o (4.103)

where
u, = (¢,|¥,) (4.104)
and define our new column of numbers |f,.,) as
o) = U L) (4.105)




Unitary operators to change representations of vectors - 4

Note incidentally that \fold> and |f,.,) are the same vector in the vector space;

It is only the representation (the coordinate axes), and, consequently
the column of numbers,

that have changed,
not the vector itself.

Suppose we have a sculpture of an arrow sticking at an angle up out of the
floor.

We could write down a representation of the arrow’s length and direction

e.g., the tip of the arrow is 2.5 m above the floor, leaning 50 cm to the left and
20 cm back toward us

If we move to another position,
the representation we write down changes,
though the arrow remains the same




Unitary operators to change representations of vectors - 5

Now we can prove that U is unitary.
Writing the matrix multiplication in its sum form, we have

(lﬁ(j)@ - u;iumj - ;@m ¢¢>* <¢m ‘¢j>
= 301 60 )= 5 1w o0 | ) (4.106
— <¢z‘ j‘¢j> — <¢¢ ¢j>
SO Z]
0t = 1 (4.107)

and hence U is unitary since its Hermitian transpose is therefore its
inverse (Eq. (4.92)).
Hence any change in basis can be implemented with a unitary operator.
We can also say that

any such change in representation to a new orthonormal basis is a unitary
transform.

Note also, incidentally, that
UUt = (010) =1t =1 (4.108)




Unitary operators to change representations of vectors - 6

Given that we concluded above that a unitary transform did not change any
inner product,

we can now also conclude that a transformation to a new orthonormal
basis does not change any inner product.

Again, this is as we would have expected from thinking about the inner
product being like a vector dot product of two geometrical vectors;

of course such an inner product does not depend on the coordinate axes,
only on the directions and lengths of the vectors themselves.




Unitary operators to change representations of operators

What happens to the matrix of an operator when we change the basis?
Consider an expression such as

new | A | Fre) = (9new)) Aucu| Frcw)
= ([j gold>)T A ((j fozcz>) = <gold

where the vectors | f) and |g) are arbitrary.

S (4.109)
UTATLGU)U

Fua)

Note here also that the subscripts new and old refer to the representations,
not the vectors (or operators).

The actual vectors and operators are not changed by the change of
representation,

only the sets of numbers that represent them are changed.
Hence this result should not be changed by changing the representation.

So we believe that

(Guew | Avew| Frcw) = (90| Ay | ) (4.110)

old
Consequently, we can deduce that

A =U'A U (4.111)
or, equivalently ~ UA U'=(UU')A,, (UU")=4,, (4.112)




Unitary operators that change the state vector

Operators that change the quantum mechanical state are also unitary.
Such operators are not changing the basis set —
they are actually changing the state of the quantum mechanical system,
and are changing the vector’s orientation in vector space.
Why such operators arise in quantum mechanics is simple.
If we are working, for example, with a single particle,
then the sum of all the occupation probabilities of all possible states is unity.
l.e., if the quantum mechanical state |¢) is expanded on the basis |y, ),

)= a,|¥,) (4.113)

then > \an\z =1, and if the particle is to be conserved

n

then this sum is retained as the quantum mechanical system evolves in time.
But this sum is just the square of the length of the vector |v).

Hence a unitary operator, which conserves length,
IS an appropriate operator for describing changes that conserve the particle.

For example, the time-evolution operator for a system where the Hamiltonian
does not change in time, exp(—z’ﬁt / h) can be shown to be unitary.




Hermitian operators - 1

A Hermitian operator is one that is its own Hermitian adjoint, i.e.,

M =M (4.114)
We can also equivalently say that a Hermitian operator is self-adjoint.
Expressed in matrix terms, we have, with

-M11 M12 M13
. 21 22 23
M = (4.115)
M31 M32 M33
that
My M, My
M= Mf M? Mil (4.116)
13 23 33

so the Hermiticity condition, Eq. (4.114), implies
M, = M (4.117)
for all i and j, from which we can also conclude that the diagonal elements
of a Hermitian operator must be real.




Hermitian operators - 2

To understand what the Hermiticity statement (4.114) means for actions on
functions in general,

we can examine the result
(g M| f).
We can consider the Hermitian adjoint of this result,
(/811 1),
using the rules for the adjoints of the products of matrices
(and vectors as special cases of matrices),
specifically the relation Eq. (4.97) ((fAlB)Jr — B'A").

Of course, in the specific case of the result (g| M| f),

the resulting matrix is a “one-by-one” matrix that can also be considered as
simply a number, and so

(g M1 1)) = ((g| M1 1)) (4.118)




Hermitian operators - 3

Hence we have, using the rule for the adjoint of products of matrices, for any
functions f and g,

(gl 21 1))" = (tg1811 1)) =[(gl(871)]

= (3117)) (o) = (1) 31 (g (4.119)
= (f|M'|g)

Now we use the Hermiticity of M, M' = M (Eq. (4.114)), and obtain
(f|M|g)= (gl M| 1)) (4.120)

which could be regarded as the most complete and general way of stating the
Hermiticity of an operator M.

Note this is true even if | f) and |g) are not orthogonal.
The statement for the matrix elements, Eq. (4.117), is just a special case.




Hermitian operators - 4

In integral form, for functions f and g,
the statement Eqg. (4.120) of the Hermiticity of M can be written

fg* () Mf () dx = [ff* () Mg () dz ' (4.121)
We can rewrite the right hand side using the property
(ab)" = a’b”
of complex conjugates to obtain
fg* <x>Mf<x>d:z::ff<x>{Mg<x>}* dz (4.122)
and a simple rearrangement leads to
fg* ) Mf () do = f{Mg(x)}*f(x)dzL’ (4.123)

Authors who prefer to introduce Hermitian operators in the integral form
often use the form Eq. (4.123) to define the operator Mas Hermitian.

The forms Egs. (4.114), M' = M,
(4.117), M, = M,

(4.120), (f|M|g) = ((g|M|f)),

and, for functions of a continuous variable, (4.123), can all be regarded as
equivalent statements of the Hermiticity of the operator 7.




Bra-ket and integral notations

Note that the bra-ket notation is more elegant than the integral notation in
one important way.

In the bra-ket notation,
the operator can also be considered to operate to the left —
(g| A is just as meaningful a statement as the statement A|f),

and it does not matter how we group the multiplications in the bra-ket
notation, i.e.,

(gl Al f)=((g|A) £) = (g](Al 1)) (4.124)
because of the associativity of matrix multiplication.
Conventional operators in the notation used in integration,
such as a differential operator, d/dx,
do not have any meaning when they operate “to the left”,
hence we end up with the somewhat clumsy form Eq. (4.123)
fg* () Mf (@) dx = f{Mg(x)}*f(x)dx

for Hermiticity in this notation.




Properties of Hermitian operators

The eigenvalues and eigenvectors of Hermitian operators have some special
properties, some of which are very easily proved.

The important properties are

Reality of eigenvalues

Orthogonality of eigenfunctions with different eigenvalues

Completeness of the set of eigenfunctions




Reality of eigenvalues

Suppose |4,) is a normalized eigenvector of the Hermitian operator M with
eigenvalue p,.

Then, by definition,

M|,) = p,|,) (4.125)
Therefore

(W, | M |0,) = p, (W, [1,) = (4.126)

But from the Hermiticity of & we know
(| M19,) = (&, [ M]85,)) = 1 (4.127)
and hence p, must be real.

This suggests that such an operator may be useful for representing a
guantity that is real, such as a measurable quantity.




Orthogonality of eigenfunctions for different eigenvalues

The eigenfunctions of a Hermitian operator corresponding to different

eigenvalues are orthogonal, as can easily be proved in bra-ket notation.
Trivially,

A

0 = (¢, | M|,) — (), | M |9),) (4.128)
So, by associativity and the rule Eq. (4.97) ((AB)T = BfAh)

0 = (b | 37)[90,) — (8o (|, )) = (31 [ 45,)' ) — (at | (31]93,) (4.129)

Now, using
the Hermiticity of M (M = M"),
the Hermitian adjoint of a complex number is its complex conjugate
and the fact that the eigenvalues of a Hermitian operator are real anyway,
we have
0= f (U | Un) =ty (U | 00) = (i, — 18,) (0 | ) (4.130)
But, by assumption, p,, and p, are different,

and hence
(W |0,) =0 (4.131)

and we have proved that the eigenfunctions associated with different
eigenvalues of a Hermitian operator are orthogonal.




Degeneracy

It is quite possible
and actually common in problems that are highly symmetric in some way
or another
to have more than one eigenfunction associated with a given eigenvalue.

This situation is known as degeneracy.

It is provable that
the number of such degenerate solutions for a given finite eigenvalue is
itself finite.
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Completeness of sets of eigenfunctions

A very important result for compact Hermitian operators is that,
provided the operator is bounded,

that is, it gives a resulting vector of finite length when it operates on any finite
input vector,

the set of eigenfunctions is complete,
l.e., it spans the space on which the operator is compact.

The proof of this result is understandable with effort,

but requires setting up a mathematical framework for functional analysis
that is beyond what we can justify here.

This result means in practice that we can use the eigenfunctions of any
bounded Hermitian operator to expand functions.

This greatly increases the available basis sets beyond the simple spatial
or Fourier transform sets.

For many problems, it means we can greatly simplify the description of them.




Hermitian operators and quantum mechanics

Bounded Hermitian operators have the attractive properties of having
real eigenvalues,
orthogonal eigenfunctions, and
complete sets of eigenfunctions.

As far as we know,

the physically measurable quantities in quantum mechanics can be
represented by bounded Hermitian operators.

Some state this as an axiom of quantum mechanics.
We have already seen

momentum and

energy (Hamiltonian) operators.

We will encounter several other such operators corresponding to other
physical quantities as we get further into quantum mechanics

with the same algebra and properties as discussed here, and

we hence have a very general, sound, and useful mathematical methodology
for discussing quantum mechanics.




Matrix form of derivative operators - 1

So far, we have not related matrices to the differential operators,
such as d?/dx* or d/dx,

that we have used in actual guantum mechanics,
as in the Schrodinger equation or the momentum operator,

and it may not be immediately obvious that those can be described as
matrices.

It iIs usually more convenient to handle such operators using the integral
form of inner products and matrix elements.

We merely wish to show matrix forms for conceptual completeness.




Matrix form of derivative operators - 2

If we return to our original discussion of functions as vectors,

we can postulate that an appropriate form for the differential operator
d/dx would be

1 1
; _ﬂ 0 - 0 ---
a_ 20X (4.132)
dx .o L 1

where as usual we are presuming we can take the limit as 6x — 0.




Matrix form of derivative operators - 3

If we were to multiply the column vector whose elements are the values of
the function f(x) at a set of values spaced by an amount §x, then we would

obtain

where again we understand that we are taking the limit as §x— 0.
Hence we have a way of representing a derivative as a matrix.

S SR |

20X 25X
.o L
20X

f(xi+§x);f(xi—5x)

20X
f(&'+25%)_'f(&)
20X

ﬁ

dx
ﬂ
dx

X

Xj +O0X

f(xi.—éx)
F(x)

f(x +0x)

f (X +26x)

(4.133)




Matrix form of derivative operators - 4

Note that we have postulated a form that has a symmetry about the matrix
diagonal.

In this case the matrix is antisymmetric in reflection about the diagonal.
This matrix is not, however, Hermitian,

which reflects the fact that the operator d/dx is not a Hermitian operator,
as can be verified from any of the definitions above of Hermiticity.

We can see from this matrix representation, by contrast, that

the operator id/dx (or, for that matter, —id/dx)
would be Hermitian,

and hence that the momentum operator,

such as its x component p, =—ihd /dx

would be Hermitian.

It is left as an exercise for the reader to show how the second derivative,

for —example, d*/dx*= lim [(f(x+5x)—2f(x)+ f(x+6x))/(6x)2] can be

ox—0
represented as a matrix, and that the corresponding matrix is Hermitian.
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Matrix corresponding to multiplying by a function

We can formally “operate” on the function fa by multiplying it by the
function vV (» to generate another function g =V @) f @.
Since the function V) is performing the role of an operator (even though
It is a particularly simple form of operator),
we can if we wish represent it as a matrix,

and in that case, it is a simple diagonal matrix whose elements are the values of
the function at each of the different points.

If the function is real,
the corresponding matrix is Hermitian
(though it is not if the function is complex).

Hence, one can conclude that the Hamiltonian as used in Schrodinger’s
equation,

being the sum of two Hermitian matrices,

e.g., in the one dimensional case, one corresponding to the Hermitian operator
(—h2 /zm)02 /0z* and the other corresponding to the “operator” V (z)

IS Hermitian.



Operators and quantum mechanics - 1

Reading — Sections 5.1 — 5.2

Commutation of operators

Commuting operators and sets of eigenfunctions

General form of the uncertainty principle

Position-momentum uncertainty principle
Energy time uncertainty principle




Operators and quantum mechanics

A postulate of quantum mechanics

all measurable quantities can be associated with a Hermitian operator.
e.g.,
energy
momentum
also will see
position
“orbital” angular momentum
spin angular momentum

Now we examine some of the important properties of operators associated
with measurable quantities.

Note: some operators that are useful in quantum mechanics are not
Hermitian;

for example,

non-Hermitian creation and annihilation operators that are used
extensively in quantum optics.




Commutation of operators - 1

A very important property of Hermitian operators representing physical
variables is whether they commute,

l.e., whether

AB = BA (5.1)
where A and B are two Hermitian operators.
Remember that,

because these linear operators obey the same algebra as matrices,
in general operators do not commute.

For quantum mechanics, we formally define an entity
[A, é] = AB - BA (5.2)

This entity is called the commutator.

An equivalent statement to Eq. (5.1) is then
[A,é]zo (5.3)




Commutation of operators - 2

If the operators do not commute,
then Eq. (5.3) ([A,é]:o) does not hold,

and in general we can choose to write
[A, é]:ié (5.4)

where C is sometimes referred to as
the remainder of commutation or
the commutation rest.

Commuting operators and sets of eigenfunctions

Operators that commute share the same set of eigenfunctions, and
operators that share the same set of eigenfunctions commute.

We will now prove both of these statements.
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Operators that commute share the same set of eigenfunctions

Suppose that operators A and B commute,
and suppose the |y,) are the eigenfunctions of A with eigenvalues A.

Then
AB|y,)=BA|y,)=BA|y,) = ABly,) (5.5)

e,
A[é‘w,>]:A[l§‘l//,>] (5.6)
But this means that the vector B|y,) is also the eigenvector |y,) or is

proportional to it,
l.e., for some number B

é‘l//i>:Bi‘Wi> (5.7)
This kind of relation holds for all the eigenfunctions |y,),

so these eigenfunctions are also the eigenfunctions of the operator B,
with associated eigenvalues B..

Hence we have proved the first statement that operators that commute share the
same set of eigenfunctions.

Note that the eigenvalues A and B, are not in general equal to one another.




Operators that share the same set of eigenfunctions commute

Suppose that the Hermitian operators A and B share the same complete set
of eigenfunctions |y,)

with associated sets of eigenvalues A and B, respectively.
Then

Aé‘wi>:ABi‘l/Ji>:ABi‘l/Ji> (5.8)
and similarly

BAly,)=BAv,) =BA|v,) (5.9)

Hence, for any function |f), which can always be expanded in this complete
set of functions

\f>:Zci\wi> (5.10)
we have

AB|f)=>"cAB|w)=> cBA|w)=BA f) (5.11)

Since we have proved this for an arbitrary function |f), we have proved that
the operators commute, hence proving the second statement.




Equivalence of commutation and shared eigenvectors

This equivalence has an important qguantum mechanical consequence.

Suppose the commuting operators represent different measurable
guantities.

An example of such a situation is the case of a free particle, i.e., one for which
the potential is constant everywhere;

in this case, the energy operator (Hamiltonian) and the momentum operator have
the same eigenfunctions (plane waves)

and the operators for energy and momentum commute with one another.

In this case, if the particle is in an energy eigenstate, then it is also in a
momentum eigenstate,

and the particle in this case can simultaneously have both a well-defined energy
and a well-defined momentum.

We can measure both of these quantities and get perfectly well-defined values
for both.

What happens when the operators do not commute?




General form of the uncertainty principle - 1

First, we need to set up the concepts of the mean and variance of an
expectation value.

Using A to denote the mean value of a quantity A,
we have, in the bra-ket notation,

for a measurable quantity associated with the Hermitian operator A when the
state of the systemis | f)

A=(A)=(f|A|f) (5.12)

Let us define a new operator AA associated with the difference between the
measured value of A and its average value, i.e.,
AA=A—A (5.13)
Now, A is just areal number, and so this operator is also Hermitian.
So that we can examine the variance of the quantity A,
we examine the expectation value of the operator (AA)?.

Expanding the arbitrary function |f) on the basis of the eigenfunctions,
Of A, |e, f>:ZCi‘l//i>’

we can formally evaluate the expectation value of (AA)%.

Wi>’




General form of the uncertainty principle - 2

We have
((aRy?*) = (Zc (7 U(A— A) (;CJ “"’J‘>j
(et A=A S (4R

= Z,Ci* (v (Zj:c,- (A~ 'E‘)Z"’”1>j
=3af (A-A)

Because the |c| are the probabilities that the system is found, on
measurement, to be in the state i (or, equivalently, |y,)),

and the quantity (A—K)Z simply represents the squared deviation of the

value of the quantity A from its average value,
then by definition

(AAY E<(AA)2>:<(A_Z\)Z>:<f\(A_z\)z\ f) (5.15)

is the mean squared deviation we will find for the quantity A on repeatedly
measuring the system prepared in state | f ).

(5.14)




General form of the uncertainty principle - 3

In statistical language, this quantity (AA)2 Is called the variance,
and the square root of the variance, which we can write as

AA=/(AA) (5.16)
IS the standard deviation.

The standard deviation gives a well-defined measure of the width of a
distribution.

We can also consider some other quantity B associated with the Hermitian
operator B,

B=(B)=(f|B|f) (5.17)
and, with similar definitions
(AB)2z<(Aé)Z>:<(é—§)Z>=<f\(é—E‘;)Z\f> (5.18)

(5.15) and (5.18), give us ways of calculating the uncertainty in the
measurements of the quantities A and B when the system is in a state |f).

Now we use these in our general proof of the uncertainty principle.




General form of the uncertainty principle - 4

Suppose that the two Hermitian operators A and B do not commute,
and have a commutation rest C as defined in Eq. (5.4) ([A,é]zié) above.

Consider, for some arbitrary real number «, the number
G(a)= <(aAA—iAé) f ‘(aAA— iAB) f>z 0 (5.19)
By ‘(aAA—iAé) f>, we simply mean the vector (aaA-iAB)|f),

but we wrote it in this form to emphasize that it is simply a vector,
and as a result has a positive inner product with itself,
which must be greater than or equal to zero,
as in this equation (5.19).

Now we rearrange (5.19) to obtain
~ ~\T A~
G(a)=(f|(aAA-iAB) (anA-iA
B

\—/

R (5.20)
:<f‘(aAAT+iA T)(oeAA )‘




General form of the uncertainty principle - 5

By Hermiticity of the operators, we have then
G(a)=(f|(arA+iAB)(arA-iAB)|f)

f aZ(AA 2+

B) —ic(ARAB - ABAA f)

( (4
—(f aZ(AA +(A ) Ia[AAAB]U
( (

f aZ(AA +(AB ) +aC\

l.e.

G(a)= ocz(AA)2 + (AB)2 +aC

—(AA){M c }+(AB)2

©) .,
4(AA)°

2(AA)°

The last step is a simple though not very obvious rearrangement.

(5.21)




General form of the uncertainty principle - 6

But this relation (5.21) must be true for arbitrary «, and so it is true for the
specific value

go__C : (5.22)
2(AA)
which sets the first term equal to zero in (5.21), and so we have
—\2
C
(AAY'(ABY’ Z(T) (5.23)

This is the general form of the uncertainty principle.

It tells us the relative minimum size of the uncertainties in two gquantities
If we perform a measurement.
Only if the operators associated with the two quantities commute

and hence give C and therefore C =0 )
can there be no width to the distribution of results for both quantities.

This is a very non-classical result, and is one of the core results of quantum
mechanics that differs fundamentally from classical mechanics.




Position-momentum uncertainty principle - 1

We now formally derive the position-momentum relation.

Consider the commutator of p_ and x. (We treat the function x as the
operator for position.)

To be sure we are taking derivatives correctly, we consider this
commutator operating on an arbitrary function |f).

[@xﬂwz—M(gm—xEJH>

X dx
| d d
= —ifd —(x| F)) = x—|
)] o2
: d d
= it | £ )4 X | £ )= x— | f
.hﬂ g d >}
=—in|f)
So, since |f) is arbitrary, we can write
[P, X]=—in (5.25)

and the commutation rest operator Cis simply the number
C=-h (5.26)




Position-momentum uncertainty principle - 2

Hence
C=-#h (5.27)

N —

—\2
C
and so, from (5.23) ((AA)Z(AB)2 Z(T) we have

2
(Ap, )} (A%)* 2 h? (5.28)
or, equivalently,

Ap,AX > g (5.29)




Energy-time uncertainty principle

We can proceed to calculate a similar relation between energy uncertainty
and time uncertainty.

The energy operator is the Hamiltonian, H.
From Schrédinger’'s time-dependent equation, we know that

~ o,
H ‘l//> = Iha‘g@ (5.30)

for an arbitrary state |y ).

If we take the time operator to be just the function t, then we have,

using essentially identical algebra to that used above for the momentum-
position uncertainty principle,

~1 (8. .9 .
[H,t]:lh(at—tanlh (5.31)

and so, similarly we have
2
> h

(AE)’ (At) > (5.32)
or
L
ABAL> (5.33)

which is the energy-time uncertainty principle.




Frequency-time uncertainty principle

We can relate this result mathematically to the frequency-time uncertainty
principle that occurs in Fourier analysis.
Noting that E=#sw INn quantum mechanics, we have

AwAt > % (5.34)




Operators and guantum mechanics — 2

Reading — Sections 5.3 — 5.4 through “Delta function in 3 dimensions”
Transitioning from sums to integrals

Continuous eigenvalues and delta functions
Dirac delta function




Transitioning from sums to integrals - 1

We need to be able to transition from sums to integrals

we can do this transition when the different states involved are closely
spaced in some parameter (e.g., momentum or energy),

and when all the terms in the sum vary smoothly with that parameter.
Imagine we have states,

Indexed by an integer q,
and for each of those q,
some quantity has the value f,.
Hence, summing all of those would give a result

S=>f, (5.35)

It could be that f, can also be written as a function of some parameter u
that itself takes on some value for each q, i.e.,

f,=1(u,)
For example, the different q states could represent states of different
momentum 7Kk,

in which case uq could be the momentum,
and f, could be some matrix element that depended on momentum.
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Transitioning from sums to integrals - 2

Then we could just as well write, instead of Eq. (5.35) (S =Z f, ),
q

S=>f(u,) (5.36)

Suppose now that the uy and the f; are very closely spaced as we change q,
and vary relatively smoothly with q.

We suppose that this smooth change of u, with g is such that we can
represent u as some smooth, and differentiable, function of g.

Hence,
u,,—u :d_u
q+1 q dq
l.e., we are approximating ou/oq by du/dq,

(5.37)

and we note that 6q,

the separation in q between adjacent values of g
is just unity, since q is by choice an integer.




Transitioning from sums to integrals - 3

So, if we were to consider some range Au,

the number of different terms in the sum that would lie within that range
IS Au/(du/dqg),

or defining a “density of states”

(5.38)

9()={qu/d)
the number of terms in the sum that lie within Au is g(u)Au.

Hence, instead of summing over q,

we could instead consider a range of values of U,
each separated by an amount Au,
and write the sum over all those values, i.e.,

S=>"f,=> f(u)=> f(u)g(u)au (5.39)

Finally, we can formally let Au become very small, and approximate the sum
by an integral, to obtain

s:jf(u)g(u)du (5.40)




Transitioning from sums to integrals - 4

The rule, therefore, in going from a sum to an integral,

IS to insert the density of states in the integration variable into the
Integrand, i.e.,

Zq:...—>j...g(u)du (5.41)

Of course, the limits of the integral must correspond to the limits in the sum.




Continuous eigenvalues and delta functions - 1

At the beginning, we talked about plane waves as solutions of Schrdodinger’s
wave equation in empty space;

such waves cannot be normalized in the way we have discussed so far.
E.g., for a plane wave in the z direction, such a wave can be written in the form

v, (2)=C,exp(ikz) (5.42)
Obviously
() =[e (5.43)
and so, if we integrate |y, (z)‘zover the infinite range of all possible z,

we will get an infinite result for any finite value of C.

Hence we cannot define a normalization coefficient C in the same way we
did before.

Note these are the eigenfunctions of the momentum operator for the z
direction,

p,=-inol/oz, with eigenvalues 7k

where the quantity k can take on any real value.




Continuous eigenvalues and delta functions - 2

This normalization problem is common when eigenvalues can take on any
value within a continuous range, e.g.,

energy eigenvalues of unbounded systems, such as
the states above the “top” of a finite potential well,
or states above the ionization energy of a hydrogen atom.
The situation for energy eigenvalues can be resolved mathematically by
putting the whole system within a large but finite box,
with infinitely high “walls”,
and letting the size of the box become arbitrarily large.
That is not always mathematically convenient, however.
Furthermore, for the case of the momentum eigenfunctions,

building a box with potential barriers may make no difference to the
momentum eigenfunctions

the potential does not appear in the momentum eigenfunction equation

and the solutions to that mathematical problem are still infinite plane waves no
matter what potential box we build.

Solution
iIntroduce the Dirac delta function.




Dirac delta function

The Dirac delta function, &Xx), is essentially a very narrow peak, of unit area,
centered onx=0.

It is infinitesimally wide, and infinitely high, but still with unit area.
It is not strictly a function because,
In the one place that it really matters (x = 0),
its value is not strictly defined.
The formal definition of the delta function is

0

[ 8(x)dx=1, 5(x)=0 for x=0 (5.44)

—00

Its most important property is that, for any continuous function f(x),
[ £(x)5(x)dx=f(0) (5.45)

This relation, Eq. (5.45), is an operational definition of the delta function,
from which we can deduce

[ £(x)5(x-a)dx= 1 (a) (5.46)

ox —a)is avery sharply peaked function round about x = a.
l.e., it pulls the value f(a) out of the integral.




Representing the delta function

The delta function in practice can be defined as
the limit of just about any symmetrical peaked function in the limit as
the width of the peak goes to zero and
the height goes to infinity,
provided we make sure the function retains unit area as we take the limit.




Sinc function representation

Based on the “sinc” function,

wzsincx (5.47)
X
we can write
5(x) = lim SN X (5.48)
Lo T X
where we have used the fact that
j %d X =7 (5.49)
1 | | | |
0 \//\\/ \//\\/
| | | | |




Other representations

Exponential integral representation
A form that is very useful in formal evaluations of integrals is

5(x):i]oexp(ixt)dt (5.50)

which can readily be proved using the result Eq. (5.49) (jﬂdx ) above.

Lorentzian representation
Based on the Lorentzian function,
common as, for example, aline shape in atomic spectra,
with a line width (half width at half maximum) of €, we have
1 1

=i 551
(%) 0 7r81+(x/g) (5:51)

where we have used the result

| 1+1X2 dx = 7 (5.52)




Other representations

Gaussian representation
Based on the Gaussian function of 1/e half width w, we have

5(x )_Mg " exp[—x—z] (5.53)

where we have used the result

Ooexp —x2)dx =7 (5.54)
oo+

Square pulse representation

One of the simplest representations is that of a “square pulse” function
that we could define as

(0, X<-nl2
s(x)=<1/n, —nl2<x<nl2 (5.55)
|0 X>nl2
which is a function of width 7, and height 1/5, centered at x=0. With this

square pulse function, we have
5(x)=lims(x) (5.56)

n—0




Relation to Heaviside function

The square pulse function can be written in terms of the Heaviside function
l.e., the “unit step” function

1 x>0
o(x) ={01 ’): ; (5.57)

in terms of which we have the square pulse from above

S(X):@(X+77/2)—®(X—77/2) (5.58)
n
In the limit as n — 0, this is simply the definition of the derivative of 6,

and so we have also

O(Xx+n/2)-O(x—nl2
5(x) = lim 20 1/2) =0 (x=n/2)
n—0 n
_do(x)
-~ dx
From this, we can immediately conclude that the Heaviside function is the
integral of the delta function, i.e.,

(5.59)

X

O(x)= [ &(x)dx, (5.60)

—00




Basis function representation and closure - 1

Another representation that is particularly general and useful is a
representation in terms of any complete set.

Suppose we have a complete orthonormal set of functions, ¢(x).

Then we can expand any function in this set, i.e.,

f(x)= Zn:anqﬁn (x) (5.61)

As usual, we find an expansion coefficient a, by premultiplying by ¢ (x) and
Integrating over x, I.e.,

J# 00 F (x)ox=Xa, [, (x)h (x) = 2281 = 2, (5.62)

Now we can use the far left of (5.62) to substitute for the expansion
coefficients in (5.61), i.e., writing

a =_[¢:(x’) f(x")dx’ (5.63)
we have

f(x)= ;( [ () £ ()X )i (x) (5.64)

Interchanging the order of the integral and the sum, we have

f (x):f f (x’)(zn:gz}:(x’)@(x)jdx’ (5.65)




Basis function representation and closure - 2

Comparing

Eq. (5.65) (f(x)= f(x (Z¢ jdx)to

Eq. (5.46) (_[ f(x)5(x—a)dx=f(a)),

we see that this sum is performing exactly as the delta function, i.e.,
24 ()¢, (x)=6(x =x) (=5 (x~x)) (5.66)

Hence we have a general representation of the delta function in terms of
any complete set. This can be formally useful.

This property, Eq. (5.66), of the set of functions is known as

closure,
and is a consequence of the completeness of the set.




Basis function representation and closure - 3

We can also see that Eq. (5.66)
Zn:¢:(x')¢n(x):5(x’—x) (=56(x-x))
is simply the expansion of the delta function in the set ¢(x),
with the expansion coefficients simply being the numbers g¢;(x).

Hence, e.g., the expansion of §(x) would have expansion coefficients ¢;(0).

We can understand intuitively that,
If a set of functions can represent such an extreme function as a delta
function,
then it can represent any other reasonable function,

and so we can understand how this property of closure is related to
completeness.




Delta function in 3 dimensions

It is straightforward to construct delta functions in higher dimensions.

The result is merely the product of the various one-dimensional delta
functions.

For example, using the short-hand §(r) to represent the delta function for
three dimensions, we can write

5(r)=5(x)5(y)s(z2) (5.67)
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Normalizing to a delta function - 1

Now that we have introduced the delta function,

we can use it to perform a kind of normalization for these functions that
are not normalizable in the previous sense.

e.g., momentum eigenfunctions discussed above (Eq. (5.42) y, (z)=C, exp(ikz)).

Consider the “orthogonality” integral of two momentum eigenfunctions,

deliberately restricting the range of integration to a large range *L, i.e.,
L

j v (2w, (2)dz=C,,C, | exp(-ik,z)exp(ikz)dz

-L

=Cy.C, | exp[i(k—k,)z|dz (5.68)

-L

. sinf(k—k)L]

= Cklck (k—k )
1

Hence, taking the limit as L becomes very large, we have

j v (2)w, (2)dz=22C;,C.5(k -k, (5.69)
where we have used the sinc function representation, Eq. (5.48)
(6(x)=Ilim il I‘X), of the delta function.

L—owo 7Z'X




Normalizing to a delta function - 2

So, if we choose
1

C = 5.70
= 2n (5.70)
l.e., If we choose the momentum eigenfunctions to be defined as
1 .
wk(z):ﬁexp(lkz) (5.71)

then we at least get a tidy form for the orthogonality integral.

Specifically, instead of Eq. (5.69), .[W:1(Z)Wk(2)d2=27ZC:1Ck5(k—kl), we have

[wis(2)w (2)d2 = (k—k,) (5.72)

This choice of normalization, Eq. (5.72) is called

“normalization to a delta function”.

We can construct a viable mathematics for handling such “unnormalizable”
functions if we normalize in this way.




Normalizing to a delta function - 3

Compare Eq. (5.72)
stl(z)Wk (Z)dZ :5(k _kl)

with the orthonormality relation for conventional normalizable functions, Eq.
(2.35).

v[';”n dZ—

In that former case, the integral limits may be finite,
but the equations are otherwise essentially identical except that we now have
a Dirac delta function, &K — Ky),
instead of the Kronecker delta, ony,.
This substitution of
Dirac delta function for
Kronecker delta

IS quite a general feature as we compare the results for the two classes of
functions.




Using functions normalized to a delta function - 1

Functions normalized to a delta function can be handled
provided we work with integrals rather than sums,
with careful use of the density of states

Suppose we have an orthonormal basis set of functions v (z),
and we expand some other function, ¢(z), on this set

#(2)=3 fw () 579

The sum of the squares of the expansion coefficients gives
Jlo(2) dz =311, v (W (2)dz= 2|, (5.74)
P.q q

so the normalization of the function is the same as that of the expansion
coefficients

as usual.




Using functions normalized to a delta function - 2

Presume now there is a quantity uj (such as momentum) associated with the
g that allows us to write, instead of ¢(z Z f.w,(2), equivalently,

(v, 575

where f(u,)=f, and y(u,.z)=y,(2).
(Note, for any specific value of ug, such as a value v, we can write
=jw*(v,z)¢(z)dz (5.76)

in the usual way of evaluating expansion coefficients.)

Now, let us transform the sum, Eq. (5.75), into an integral,
1
(du/dq)

using the density of states, g(u)=1/(du/dqg) as in Eqgs. (5.38) (g(u)= )

and (5.41) (Z - [..g(u)du) above

¢(z):jf(u)w(u,z)g(u)du (5.77)




Using functions normalized to a delta function - 3

Now we can substitute this form of ¢(z)=jf(u)gu(u,z)g(u)du back into Eq.
(5.76) (f (v .["” (v,z)¢(z)dz) to give

f(v)=[ ()| [y (v.2)w(uz)g(u)dz |du (5.78)
from which we see, by the definition of the delta function, Eq. (5.46),
(j (x—a)dx= f(a)) that

the term in square brackets is performing as a delta function, i.e.,

_[y/*(v,z)gy(u,z)g(u)dz=5(v—u) (5.79)




Using functions normalized to a delta function - 4

The functions so far are all presumed to be normalized conventionally.

Now, however, we have a way of choosing other functions
that works with the delta function normalization to give useful results.

First, we make the restriction that the density of states is a constant, i.e.,
g(u)=g (5.80)
e.g., for momentum eigenfunctions, or plane waves in a large box.

Now, let us define two new functions,
folding the square root of the density of states into each function, i.e.,

F(u)=1/gf(u) (5.81)
‘I’(u,z):\/az//(u,z) (5.82)




Using functions normalized to a delta function - 5

Then with these new functions (F(u)=./g f(u) and ¥(u,z)=+/gy(u,z)) we find,

first, that the ¥ (u,z) are basis functions normalized to a delta function,
i.e., Eqg. (5.79) (J.l//* (v,2)w(u,z)g(u)dz=5(v—u)) becomes
j‘P*(v,z)‘P(u,z)dz=5(v—u) (5.83)

second, the expansion in functions normalized to a delta function,
i.e., Eq. (5.77) (¢(z):j (u)w(u z)g(u )du) becomes
2)=[F(u)¥(u,z)du (5.84)

and we can also write for the expansion coefficient (or now expansion
function), from (5.76) (f (v)= [y (v,2)¢(z)dz)

F(v):j‘P*(v,z)¢(z)dz (5.85)

third, F(u) has a simple normalization

flo(@)f oz = 3| = J|f (u)f odu = [IF (u)f" o (5.86)




Using functions normalized to a delta function - 6

This use of functions normalized to delta functions
can be done any time the density of states is large and uniform.

The fact that the final results do not depend on the density of states

means that these expressions continue to be meaningful in the limit as
the density of states becomes effectively infinite,

as is the case for momentum eigenfunctions.

The incorporation of the square root of the density of states into each of the
expansion coefficients and the basis functions avoids two problems.

Otherwise, as the density of states increases,

the expansion coefficients themselves become very small,
as does the amplitude of the basis functions

The incorporation of the square root of the density of states into both
expansion coefficients and basis functions

leaves them both quite finite, and

leaves us with a simple mathematics for handling the resulting functions,
without infinities or other singularities.




Box and delta function normalization

Now as an example we examine plane waves of the form Cyexp(ikz),
In two different approaches of “box” and delta function normalizations
In a box of length L,

normalizing such an exponential plane wave gives
L/2

| Ciexp(-ikz)C, exp(ikz)dz =|C,|" L =1 (5.87)
-L/2

o c .1 (5.88)

e., T .

so the box-normalized wavefunction is
1 .

Z)=w(k,z)=—=exp(ikz 5.89
wk()w()ﬁp() (5.89)

To transform this to a wavefunction normalized to a delta function,
we multiply by the square root of the density of states.

Taking the density of states to be g=L/2x, corresponding to adjacent k values
being spaced by 2z/L in such a box, we have

\P(k,z)z\/al//(k,z)z\/g%exp(ikz):%exp(ikz) (5.90)

as proposed before in Eq. (5.71) when considering plane waves normalized to
a delta function.




Relation to Fourier transforms

When our basis functions are the plane waves,

\P(u,z)siexp(—iuz) (5.91)

J2x

the expansion of the function F(u) in those functions is exactly equivalent
to the mathematics of the Fourier transform, i.e.,

¢(z):%T F (u)exp(—iuz)dz (5.92)

where ¢(z) is the Fourier transform of the function F(u).

Note that then Eq. (5.86)

_ﬂqﬁ(z)‘zdz :_[‘F(u)‘zdu

Is simply a statement of Parseval’s theorem,

which in turn is saying that the Fourier transform is a transform that does not
change the length of the vector in Hilbert space,

and it is a unitary transform.




Periodic boundary conditions

We like to work with exponential waves rather than sines and cosines
because the mathematics is easier to handle.
Putting exponential waves in a box causes a minor formal problem.

If we ask that the wavefunction reaches zero at the walls of the box,
then the allowed solutions are sine waves, not exponentials.

A mathematical trick is to pretend that the boundary conditions are periodic
with the length, L, of the box being the period, i.e., to pretend that

exp(ikz)=exp|ik(z+L)] (5.93)
This leads to the requirement that
exp(ikL)=1 (5.94)
which in turn means that
K :ZmT” (5.95)

where m is a positive or negative integer or zero.
The allowed values of k are therefore spaced by 2L,

and the density of states in K (the number of states per unit K) is therefore
L

"2

g (5.96)




Position eigenfunctions - 1

Thus far the only quantum mechanical functions we have dealt with explicitly
that are normalized to a delta function are plane waves,

which are also the momentum eigenfunctions.

There is another very simple example
the position eigenfunctions.

In the representation where functions are described in terms of position
the position operator is simply the position, z, itself (in the one-
dimensional case).
What are the functions that,
when operated on by the position operator,

give results that are simply an eigenvalue (which should be a “value” of
position) times the function?




Position eigenfunctions - 2

Answer - the position eigen functions are delta functions.

For example, consider the function
v, (2)=6(z-1,) (5.97)
Then we can see that
2y, (2) =12, (2) (5.98)
where we have explicitly written the position operator as 7.
The only value of z for which the eigen function is non-zero is the one z=1z,

so in any expression involving 2y, (z) we can simply replace it by z,y, (z).




Normalization of the delta function

The delta function itself is normalized to a delta function.
To see this consider the integral

j5(21—2)5(22—z)dz=§(zl—22) (5.99)

To understand why this integral itself evaluates to a delta function,
consider the first delta function as being one of its other representations,
such as a Gaussian as in Eq. (5.53),
before we have quite taken the limit.
Then by the definition of the delta function

'f L exp[—(zl_zz)zJé(zz—z)dz: 1 exp(—(zl_?)z] (5.100)

WA 7T w WA/ T w

Then take the limit of large w of the right hand side,
which is the delta function on the right of Eqg. (5.99).




Expansion of a function in position eigenfunctions

We expect that the position eigenfunctions form a complete set,
and so we can expand other functions in them.

Suppose that we have some set of expansion coefficients F(z,) that we use
in an expansion of the form of Eq. (5.84), ¢(z IF (u,z)dz

as appropriate for expansion in functions normallzed to a delta function.
Then we have, using the position eigenfunctions as in Eqg. (5.97) above,

2)=[F(z,)8(z-12,)dz, (5.101)

Given the definition of the delta functlon, l.e., we have
¢(z):F(z) (5.102)
l.e., a function ¢(z) of position is its own set of expansion coefficients in the
expansion in position eigenfunctions.
Wavefunction amplitudes are just expansions on position eigenfunctions.

Our wavefunction normalization integrals of the form H¢ 2dz are just the

normalization, Eq. (5.86), H¢( dz _H du for expansions in functions
normalized to a delta functions.

We have actually been using the concept of functions normalized to a delta
function all along.



Change of basis for sets normalized to a delta function - 1

Consider changing between position and momentum basis sets,
an example that is the most common such transformation.

Presume we have function ¢,,(z) expressed in the “old”, position basis.

The “new” basis set,
also normalized to a delta function,
Is the set of momentum eigenfunctions, (1/27[)1’2exp(ikz), as in Eq. (5.90).

Then, according to our expansion formula for functions normalized to a delta
function, Eq. (5.85),

we have

[ 845 (2)exp(ikz)dz (5.103)




Change of basis for sets normalized to a delta function - 2

We can if we wish formally write this transformation in terms of an (integral)
operator

i1 [exn(-i
U=\/§jexp( ikz)dz (5.104)

Note that U is an operator. One can only actually perform the integral
once this operator operates on a function of z.

In this form, we can then write Eq (5.103),

¢new r I¢°|d EXp |kZ)dZ ,
In the form we have used before for basis transformations, as
‘¢new> = L’j ‘¢o|d > (5 105)

where in our notation we are anticipating that this operator U is unitary (a
proof that is left to the reader).




Change of basis for sets normalized to a delta function - 3

Let us look at the specific case where the function ¢,(z) is actually the
position basis function |¢4,,)=5(z-z,).

Then we find that, in what is now the momentum representation, that
basis function is now expressed as

. 1 .
z—z ex —ikz )dz =———=exp(—ikz 5.106
Jexp(-ike) dz ~——exp(-ikz, (5.106)

| o) = J—I5
In other words,
a position eigenfunction
In the momentum representation
is (1/27)"* exp(—ikz,),
where k takes on an unrestricted range of values,
just as for a specific value of k =Kk,

the momentum eigenfunction
In the position representation
is (1/27)"* exp(ik,z)
where z takes on an unrestricted range of values.
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Change of basis for sets normalized to a delta function - 4

The operator that will take us back to the position representation we can
guess by the symmetry of this particular problem will be

G :%Iexp(ikz)dk (5.107)
T

Note that in constructing this adjoint,
we have taken the complex conjugate,
and we have interchanged the roles of k and z,

which is analogous to the formation of an adjoint in our conventionally
normalizable basis representations,

where we take the complex conjugate,
and interchange indices on the matrix elements or basis functions.




Change of basis for sets normalized to a delta function -5

We can now formally transform the position operator into the momentum
basis,

using the usual formula for such transformations,
i.e., formally operating on an arbitrary function |f)

2\new‘ f>:020IdU\T‘ f>

:ij‘exp(—ikz)jzexp(ik’z)f(k)dk’dz_—”zexp[ k—k)z | f(k)dk'dz

_ (5.108)
2m ”exp[ i(k—k)z |dzf (k") dk _|—j5 k) f(K')dk
. 0 :
=i—f(k)=i—|f
(k)= 1)
Note we have used the algebraic trick —izexp[—i(k —k")z]=(0/ k) exp[-i(k —k")z].
Since |f) is arbitrary, then we can write the position operator in the
momentum representation as

" .0
7 =]— 5.109
new 8k ( )

Note the symmetry between this and the z momentum operator in the
position representation, which s p, =(—in)(o/oz)




Approximation methods in guantum mechanics — 1

Reading — Sections 6.1 and 6.2. Also read Section 2.11 for background.

Approximation methods on quantum mechanics
for practical reasons of calculations
for conceptual reasons — idea of processes
Time-independent problems
Example problem
potential well with an electric field
Use of finite matrices




Approximation methods in quantum mechanics

For all the equations used in quantum mechanics, e.g.,
Schrodinger’s equation
extensions of Schrddinger’s equation to include electron spin
relativistically correct qguantum mechanical equations
equations appropriate for describing photons

relatively few problems are simple enough to be solved exactly.

Relatively few classical mechanics problems can be solved exactly either.

Problems with multiple bodies or interactions between multiple systems are
often difficult to solve.

It is useful,
both from the practical point of view
I.e., we can actually do the problems ourselves

and the conceptual one
I.e., we can know what we are doing!

to understand key approximation methods of guantum mechanics.
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Approximation techniques

There are several techniques,

and it is quite common to invent new techniques or variants of old ones
to tackle particular problems.

These techniques also often offer physical insight into the problem

Among the most common techniques are
(i) use of finite basis subsets (finite matrices),
(1) perturbation theory,
which comes in two flavors,
time-independent and
time-dependent,

(i11) the variational method

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 6.1




Example problem — one-dimensional potential well with an
electric field

To illustrate the methods, we analyze a particular problem,

a one-dimensional, infinitely deep potential well for an electron with an
applied electric field.

This problem is solvable exactly analytically (see Section 2.11)
though the solution functions are somewhat obscure (Airy functions).

We can solve this problem by various approximation methods without using
Airy functions

these methods can be easier than evaluating the “exact” solutions.

This problem has a specific practical application,
In the design of quantum well electroabsorption modulators.

The shifts in the energy levels calculated here translate into

shifts in the optical absorption edge in semiconductor quantum well
structures with applied electric fields.

This shift in turn is used to modulate the transmission of a light beam in high
speed modulators in optical communications systems.




Potential well with electric field

without field with field
E
—
Q0 Q0 Q0 Q0
A A A A
-------------- A
< > N
L

eEL




Construction of Hamiltonian - 1

The energy of an electron in an electric field E simply increases linearly with
distance.

A positive electric field in the positive z direction pushes the electron in
the negative z direction with a force of magnitude ek,

and so the potential energy of the electron increases in the positive Z direction
with the form eEz.

We choose the potential to be zero in the middle of the well.
Hence, within the well, the potential energy is

V(z)=eE(z-L,/2) (6.1)
and the Hamiltonian becomes
N K d?
H :———2+eE(z—LZ/2) (6.2)

2m dz



Construction of Hamiltonian - 2

It is convenient to define dimensionless units for this problem.

A convenient unit of energy, E’, Is the confinement energy of the first
state of the original infinitely deep well, i.e.,

W i
Ef=—| —
2m|{ L,
and in those units the eigenenergy of the nth state will be

= (6.3)

A convenient unit of field is that field, E_, that will give one unit of energy,
E.’, of potential change from one side of the well to the other, i.e.,

ECD
E =— 6.4
° el (6-4)
and in those units, the (dimensionless) field will be
E
f=— 6.5
= (6.5)

0

A convenient unit of distance will be the thickness of the well, and so the
dimensionless distance will be

E=1/L, (6.6)
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Construction of Hamiltonian - 3

2 2

Dividing throughout by E,, the Hamiltonian (H =—h—d—2+eE(z—LZ/2)) within

2m dz
the well can now be written in these dimensionless units as
~ 1 d?
H=—— +f(&-1/2 6.7

with the corresponding time-independent Schrodinger equation
Ho(&)=n¢(¢) (6.8)

For the original “unperturbed” problem without field, we will write the
“unperturbed” Hamiltonian within the well as

2
a :_%ddgz (6.9)
The normalized solutions of the corresponding Schrodinger equation
HAOWH =&V, (6.10)
are then
w, (&) =+2sin(nzg) (6.11)

We have now completed the setup of this problem in dimensionless units
Now we can use it to illustrate various approximation methods.




Use of finite matrices (finite basis subsets)

Though the use of finite basis subsets is quite common,
It is not normally discussed explicitly in quantum mechanics texts.

Quantum mechanical problems can often be reduced to linear algebra

with operators represented by matrices and functions by vectors.
The practical solution of some problem,
such as energy eigenvalues and eigenstates,
then reduces to a problem of finding the eigenvectors of a matrix.
Commonly, no exact analytic solution is known.
Then we may have to solve numerically for eigenvalues and eigenvectors,
which means we have to restrict the matrix to being a finite one.

We can also sometimes consider analytically a finite matrix
and solve that simpler problem exactly.
Then one can have an approximate analytic solution.

This approach is taken, for example, in the so-called k:p (“k dot p”) method of
calculating band structures in semiconductors,

the principal band structure method used for calculating optical properties for,
e.g., semiconductor lasers




Choice of basis function subset

In practice,
there is no substitute for intelligence in choosing the finite basis set
and this is something of an art.

If we choose the form of the basis set badly,

or make a poor choice as to what elements to include in our finite subset,
then we will end up with a poor approximation to the result,
or a matrix that is ill-conditioned.

A very frequent choice is to use

the energy eigenfunctions of the “unperturbed” problem,
or at least those of a simpler, though related, problem.
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Finite matrix method for electron in a potential well with field - 1

We will need to construct the matrix of the Hamiltonian.
The matrix elements are

H; =—i2jwi*(§)

T

d’ P
a7 v (£)dE+f[y) (£)(&-1/2)w (£)d¢ (6.12)
0
(In this particular case, because the wavefunctions happen to be real, the
complex conjugation makes no difference in the integrals.)

For our explicit example here,
we will consider a field of 3 dimensionless units (i.e., f=3),
and we will take as our finite basis
the first three energy eigenfunctions of the “unperturbed” problem.

Then, performing the integrals in Eq. (6.12) numerically with the
v, (£)=+2sin(nz&), we obtain the approximate Hamiltonian matrix

1 —0.54 0

H=|-054 4 -0584 (6.13)
0 0584 9

Note that this matrix is Hermitian, as expected.




Finite matrix method for electron in a potential well with field - 2

Now we can numerically find the eigenvalues of this matrix, which are
1, =0.904, n,=4.028, n, =9.068 (6.14)
Note that these are quite near to the “unperturbed” (zero field) values
(which would be 1, 4, and 9, respectively).

We see also that the lowest energy eigenvalue has reduced from its
unperturbed value.

These can be compared with the results from the exact, Airy function
solutions, which are

g =0.90419, &, = 4.0275, ¢, =9.0173 (6.15)
The corresponding eigenvectors are solved numerically as
0.985 | (—0.175 —0.007 |
|4)=|0.174|, |¢,)=| 0.978 |, |¢,)=| —0.115 (6.16)
0.013 | 0.115 | 0.993 |

(These are normalized, with the sum of the squares of the elements of the
vectors each adding to 1.)

Explicitly, this means that, for example, the first eigenfunction is
#,(&)=0.985v2sin (&) +0.174/2sin(27&) + 0.013y/2 sin (37¢) (6.17)




Calculated wavefunction

=
o

|

o
Ul

Wavefunction amplitude

Position, &

Unperturbed (zero field) wavefunction (broken line) and calculated wavefunction with 3
units of field for the first energy eigenstate in an infinitely deep quantum well

Note that the electron wavefunction with field has moved to the left.

Adding more elements to the finite basis set used makes negligible change in
the calculated eigenvalue for the first state (i.e., < one part in athousand).




Calculated probability densities

2.5
With field = \\
_ 2r (f=3) SN
p= ’ N\
2 n \
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2 15 / \ Zero field
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Position in well, &

Relative probability density at zero field and with 3 units of field for the first
energy eigenstate in an infinitely deep potential well, calculated

(1) using the finite basis subset method with a 3x3 matrix - solid line; and
(2) using first-order perturbation theory — dashed line.




Approximation methods in guantum mechanics — 2

Reading — Section 6.3 up to start of “Example of well with field”

Time-independent non-degenerate perturbation theory
first-order perturbation theory
second-order perturbation theory




Time-independent (stationary) non-degenerate perturbation
theory

Presume some unperturbed Hamiltonian, H , that has known normalized
eigen solutions, i.e.,

HAO‘l//n>:En‘l//n> (618)
We can imagine that the perturbation we are considering could be
progressively mathematically “turned on”, at least in a mathematical sense.

For example, we could imagine that we are progressively increasing the
applied field, E, from zero.

In perturbation theory we can successively look for the changes in the
solutions that are

proportional first to E (so-called “first-order corrections”),
proportional to E*(“second-order corrections”)
proportional to E°, and so on.

Usually in this perturbation theory method, we stop at the first non-zero
order.




Perturbation theory and a “house-keeping” parameter - 1

In general, we imagine that our perturbed system has some additional term

in the Hamiltonian, the “perturbing Hamiltonian”, H .

In our example case of an infinitely deep potential well with an applied
field, that perturbing Hamiltonian would be H, =eE(z-L,/2).

We could construct the perturbation theory directly using the powers of E as
discussed above.

More generally we introduce a mathematical “house-keeping” parameter .
In this way of writing the theory,
we say that the perturbing Hamiltonian is ;/I:ID,

where H  can be physically a fixed perturbation,

and we imagine we can smoothly increase y,

looking instead for changes in the solutions that are proportional to
y (for first-order corrections),

»* (for second-order corrections), and so on.




Perturbation theory and a “house-keeping” parameter - 2

In the end,

having used the powers of y to help separate out the different orders of
corrections,

we can set y =1,

or indeed to any other value we like as long as yﬁp corresponds to the
actual physical perturbation of the system.
If this concept is confusing at a first reading,

just imagine that y is the strength of the electric field in our example
problem.
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Construction of the orders of the perturbation theory - 1

With this way of thinking about the problem mathematically, we can write for
our Hamiltonian (e.g., Schrodinger) equation

(ﬁo+yﬁp)\¢>=E\¢> (6.19)

We now presume that we can express the resulting perturbed eigenfunction
and eigenvalue as power series in this parameter, i.e.,

9)=[0")+ 7|9} +7°[6°) 47| ¢ (6.20)
E=E”+yEY +?E? 4+ W +... (6.21)

Now we substitute these power series into the equation (6.19).
(Fy 74, )|+ 7}6%) 7707 )

:(E(O)+7/E(1)+72E(2)+---)(‘¢(0)>+7 ¢(1>>+7z‘¢<z>>+,,_)

(6.22)




Construction of the orders of the perturbation theory - 2

If this power series description is to hold for any y (at least within some
convergence range),

It must be possible to equate terms in given powers of y on the two sides
of the equation.
Quite generally, if we had two power series that were equal, i.e.,

a,tay+ay +ay +-=by+hy+by®+by’ 4+ =1(y) (6.23)
the only way this can be true for arbitrary y is for the individual terms to be equal,
e, a =b.
This is the same as saying that the power series expansion of a function f (7/) IS
unique.
Hence, equating powers of y, we can obtain, from (6.22),

(i 916"}
=(E(°) +yEW 4 2E@ +...)(‘¢(0>>+7‘¢(1>>+72‘¢<2>>+...)

a progressive set of equations.




Progressive set of perturbation theory equations - 1

(8, )¢+ 1) 1) -
:(E(m+yE<1>+7zE<2>+...)(‘¢<o>>+7‘¢(1>>+72 ¢(2>>+...)
Equating terms in »°(i.e., terms without ») gives the “zeroth” order equation
¢<0>>: 30 ¢<0>> (6.24)

l.e., the original unperturbed Hamiltonian equation,
with eigenfunctions |y, ) and eigenvalues E,.

Consider now a particular state |y, ) and how it is perturbed.

~

H

0

We will therefore write |y, instead of |¢*) and E, instead of E©.

With this notation, our progressive set of equations, each equating a
different power of y, becomes

HAo‘l//m>: Em‘Wm> (625)
HAo ¢(1)>+ﬁp‘Wm>:Em ¢(1)>+E(1)")”m> (6.26)
A, ¢(z)>+ H“p ¢(1)>: E ¢(2)>+ E® ¢(1)>+ E(Z)Wm> (6.27)

and so on.



Progressive set of perturbation theory equations - 2

We can choose to rewrite these equations, (6.25) - (6.27), as

A=) (A, ~E, ) =0 (6.28
) =€) E0l0) > (A5 (0 -, 629
ﬁo‘¢(2)>+ﬁp ¢(1)>: E. ¢(2)>+E(1) ¢(l)>+E(2)‘lﬂm> N

¢<2>>:(E<1>_,qp)

(H,-E,) pV)+E@ly,)  (6.30)

and so on.




First order perturbation theory - 1

Now we proceed to show how to calculate the various perturbation terms.

It is straightforward to calculate E” from Eg. (6.29).

(Ho—Eq)j0")=(E" = H, v
Premultiplying by <Wm\ gives
Val A= B8 = (vl A~ B0 |9 = (B0 - E0)] ) =0

EY —(yu|H, |¥n)

=(n|EY —H,|w,)
l.e.,
EY =y, [H,|w,)

(6.31)

(6.32)

Hence we have quite a simple formula for the first-order correction, EY, to the

energy in the presence of our perturbation ﬁp.

Note that it depends only on the zeroth order (i.e., the unperturbed)

eigenfunction.




First order perturbation theory - 2

To calculate the first order correction,

that correction in the basis set |y, ), i.e.,
¢(1)> = a"|y, )
Substituting this is in Eq. (6.29)
(go —Em) ¢(1)>=(E(1)—ﬁp)\wm>
and premultiplying by (y;| gives
(wilH, —E, |67} =(E ~E,)(w|¢")=(E -E,)a"

=i |EY —H, ) =EYpilwn) — (vi[H wn)
We presume that the energy eigenvalue E_ is not degenerate,

l.e., there is only one eigenfunction corresponding to this eigenvalue.

We are restricting to “non-degenerate” perturbation theory.
Degeneracy needs to be handled somewhat differently.

¢(1)>, to the wavefunction, we expand

(6.33)

(6.34)




First order perturbation theory - 3

With no degeneracy, we still need to distinguish two cases in Eq. (6.34).
First, for i=m, we have from (6.34) (E, -E,)a"” =—(y;|H,|w,,), i.€.,

a_(l):<9”i‘Hp‘Wm>
| Em_Ei
For i=m, Eg. (6.34) gives us no additional information. Explicitly,
(Em o Em)ar(nl) :Oar(nl)
=E(1)—<l//m‘HAp‘l//m>=E(l)—E(l)=0

(6.35)

(6.36)

This means we are free to choose a'.
The choice that makes the algebra simplest is to set alV =0,

which is the same as saying that we choose to make

¢(1)> orthogonal to |y,,).

The same happens for the higher order equations, such as (6.30).
Adding an arbitrary amount of |y, ) into ‘¢(”> makes no difference to the left

hand side of the equation.
Hence we make the convenient choice

(a9} =0 (6.37)




First order perturbation theory - 4

Hence with (6.35) a" :<W;E‘Hp‘|;//m> and alV =0

m i

we obtain, for the first order correction to the wavefunction

i

and we remember our result for the first order correction to the energy
EY = (yn[H, o) (6.32)
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Second order perturbation theory - 1

We can continue similarly to find the higher order terms.
Premultiplying (6.30)

(A, -E,)|0?)=(E¥ -1, )[¢")+ E?|y,)
on both sides by (v, | gives
(Wul(Ho~En)|6™) = (yal(E, ~E,)[¢) =0

=(wa|(EY-H, )¢ > + (Y| ED |y (6.39)

=EY (wy[0Y) ~(va|H, oY)+ E®
Since we have chosen |y, ) orthogonal to ‘qﬁ’ > (Eq. (6.37)), we have

E® =y, H, o) (6.40)
or, explicitly, using (6.38)

EY =, |H, (Z <W.";‘ : p‘EW”’> wn>j (6.41)
l.e.,
AERUA

(v
=y E E (6.42)




Second order perturbation theory - 2

For the second order wavefunction correction,
We expand

¢(2)>, noting now that

¢(2)> is orthogonal to |y, ), to obtain
49 =" a|y,) (6.43)

n#m

We premultiply Eqg. (6.30)
(Ho~E)

¢(2)> (E(l) _H p)

¢(1)> L E® ‘l//m>

by (| to obtain

<Wi ‘(I:Io — Em)

#”)=(E -E,)a”
=(I(E A, )l + (i E®lw) (6.44)

=E% -3 a (i |H, |v,)

n#m

Note that we can write the summation in (6.44) excluding the term n=m

because we chose

¢(1)> to be orthogonal to |y, ) (i.e., we have chosen a\! =0).

Hence, for izm we have

O/l IH PN
an <W|prn>}_ E ai (645)

(2) _
i {; Em o Ei Em o Ei




Second order perturbation theory - 3

Note that the second order wavefunction depends only on the first order
energy and wavefunction.

We can write out (6.45) explicitly, using (6.32) to substitute for E® and (6.38)
for a”, to obtain

22 | 5 Wl Holvn) [ Holyrn) _walH [y wa | Hlvn) (6.46)

i (En—E)(E,-E,) (E.—E)

We can now gather these results together, and write the perturbed energy
and wavefunction up to second order as

2

) A LNTA
SEPRCRPRES S AUl

m n

(6.47)

9=y S Yl

m n

+Z[(Z<l/ji ‘ I_Alpl//”><wnlrlpl//m>]_ <l//iHAp(//m><WmHApl//m>:|Wi> o

n=m (Em_Ei)(Em_En) (Em_Ei)2

i=m

l.e.,

IZM

E —E E_—E < (E,-E)(E,-E,)

m n

‘ ¢>5Wm>+z{<%ﬁpwm>{l_<wmﬁpwm>j+z<wiH“pwn><wnﬁpwm>]%> 6.49)




Approximation methods in guantum mechanics — 3

Reading — Section 6.3 starting from “Example of well with field" — Section 6.4

Time-independent non-degenerate perturbation theory
example of well with field
remarks on perturbation theory

Degenerate perturbation theory




Example of well with field

Now we consider the problem of the infinitely deep potential well with an
applied field.

We write the Hamiltonian as the sum of the unperturbed Hamiltonian,
which is, in the well, in the dimensionless units we chose,

~ 1 d?

H =-—= 6.50
and the perturbing Hamiltonian

H, =f(&-1/2) (6.51)

where again we will take f=3 for our explicit calculation.

Let us now calculate the various corrections.




First order energy correction - 1

In first order, the energy shift with applied field is
1
EW =<wm\ﬁp\wm>:fjﬁsin(ng)(g—1/2)J§sin(m7z§)d§
0

1
= 2f[(&-1/2)sin’ (mzg)dé (6.52)
0
=0
The integrals here are zero for all m

because the sine squared function is even with respect to the center of the
well, whereas the (£-1/2) is odd.

Hence, for this particular problem there is no first order energy
correction.




First order energy correction - 2

Why is there no first order energy correction?
because of the symmetry of the problem.

Suppose that there was an energy correction proportional to the applied
field f.

Then, if we changed the direction of f, the energy correction would also have
to change sign.

But, by the symmetry of this problem,
the resulting change in energy cannot depend on the direction of the field;
the problem is symmetric in the + or - £ directions,

so there cannot be any change in energy linearly proportional to the field, f.
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Matrix elements for perturbation calculations

The general matrix elements that we will need for further perturbation
calculations are

H .., =fjﬁsin(uz§)(§—1/2)x/§sin(wz§)d§ (6.53)

In general we need u and v to have opposite parity
l.e., if one is odd, the other must be even
for these matrix elements to be non-zero,
since otherwise the overall integrand is odd about £=1/2.




First order correction to the wavefunction - 1

Now we can calculate the first order correction to the wavefunction, for the
first state

Py, (£) (6.54)

where
¢, =U° are the energies of the unperturbed states, and
q is a finite number that we must choose in practice.

For these calculations here, we chose q=6, though a smaller number would
likely be quite accurate

even =2 gives almost identical numerical answers, for reasons that will
become apparent

Explicitly, for the expansion coefficients a’=H ,/(s-¢,) , we have
numerically

al’ ~0.180, al” =0, a\" =0.003 (6.55)

Here the value of 0.180 for al” compares closely with the value of 0.174 for

the second expansion coefficient in Eq. (6.16) obtained above in the
finite basis subset method.




First order correction to the wavefunction - 2

=
= U

Wavefunction amplitude

Position, &

Comparison of the unperturbed (zero field) wavefunction (dashed line) and the
wavefunction with 3 units of field for the first energy eigenstate in an infinitely deep
guantum well, calculated using the finite basis subset method (dotted line) and the first
order perturbation method (solid line).




Second order energy correction

Since the first order correction to the energy was zero,

we have to go to second order to get a perturbation correction to the
energy.

Explicitly, we have

2) : Hpul
E® ~ Z;Ll i (6.56)
which numerically here gives
E® =-0.0975 (6.57)
or a final estimate of the total energy of
n =& +EY+E® =0.9025 (6.58)

which compares with the result of 7 =0.904 from the finite basis subset
method.




Approximate analytic formulae - 1

Note that the second order energy correction, E®is analytically proportional
to the square of the field, f.

Hence perturbation theory gives us an approximate analytic result for the
energy,

which we can now use for any field without performing the perturbation theory
calculation again.

Explicitly, we can write
n, = &, —0.0108f (6.59)
This is a typical kind of a result from a perturbation calculation, allowing

us to obtain an approximate analytic formula valid for small
perturbations.

We similarly find that

the corrections to the wavefunction are approximately analytically
proportional to the field,

and we have an approximate wavefunction of

#(&)=/2sin(7&) +0.06fy/2sin (27¢) (6.60)
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Approximate analytic formulae - 2

We have dropped higher terms

because the next non-zero term (the term in sin(4z£)) 1s some 60 times
smaller (see Eg. (6.55)).

To a good degree of approximation,

the perturbed wavefunction at low fields simply involves an admixture of
the second basis function.

Since it is the first order wavefunction that is used to calculate the second
order energy,

we can now see why even including only one term in the sums (i.e.,
setting q=2 in the sums (6.54) and (6.56)) is quite accurate in this case.
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Remarks on perturbation theory

Perturbation theory
Is particularly useful for calculations involving small perturbations to the
system
can give simple analytic formulae and values of coefficients for various
effects involving weak interactions.
IS also conceptually useful in understanding interactions in general

we can use perturbation theory to judge whether or not to include some level
in, for example, a finite basis subset calculation.

If
the level is far away in energy and/or
has a matrix element small compared to some closer level,

we can safely neglect that farther level because of the energy separations that
appear in the denominators in the perturbation terms.
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Higher order perturbation theory

Generally, perturbation calculations are most useful for the first non-zero
order of correction.
Specific effects sometimes require higher order calculations.

For example, nonlinear optical effects of different types are associated with
particular orders of (time-dependent) perturbation theory calculations.

Linear optics is based on first order perturbation theory;

linear electro-optic effects, second-harmonic generation, and optical parametric
generation use second order perturbation;

non-linear refraction and four-wave mixing (quite common effects in long-
distance optical fiber systems) need third order perturbation calculations.




Normalization

The perturbation wavefunction formulae are not quite normalized;
we are merely adding the corrections to the original wavefunction in Eq.
(6.20).
This is not a substantial issue for small corrections.

It is quite straightforward also to normalize the corrected wavefunctions if this is
important.




Energies and wavefunctions

It is quite generally true of approximation methods that

energies can be calculated reasonably accurately even with relatively
poor wavefunctions.

In perturbation theory,

the nth approximation to the energy only requires the (n-1)th
approximation to the wavefunction.
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Convergence of perturbation series

The particular kind of perturbation method we have discussed here
known as Rayleigh-Schrodinger perturbation theory
tends to lead to a series that does not converges very rapidly.

Trying to get a more accurate calculation by adding more terms to the series
Is often not very productive.

This kind of perturbation approach is most often used up to only with the
lowest non-zero terms in the perturbation expansion.

Such an approach often gives physical insight, and a first reasonable estimate
of the effect of interest.

Other numerical techniques,

Including other perturbation approaches (such as the Brillouin-Wigner
theory)

can give more accurate numerical answers.




Degenerate perturbation theory - 1

Above we avoided above the “degenerate” case

Degeneracy is not uncommon in quantum mechanics,

especially in problems that are quite symmetric.
For example, the three different P orbitals of a hydrogen atom,
each corresponding to a different one of the directions x, y, and z,

all have the same energy.
Often perturbations, such as an electric field, will remove the degeneracy,
making each of the states have different energies,

and defining the distinct eigenfunctions uniquely.

We consider this case now, at least for first order perturbation theory.




Degenerate perturbation theory - 2

Suppose that there are
r degenerate orthonormal eigenfunctions, |y,) (where s=12,..r )
associated with the eigenenergy E_ of the unperturbed problem.

Then In general we can write a wavefunction corresponding to this
eigenenergy as a linear combination of these, i.e.,

W ntot) = D g |Wins ) (6.61)
s=1

Now let us consider the first order perturbation equation, Eq.(6.29),
(Ho—Eq)|¢)=(EY -, J|w,)

In a fashion similar to before,
but now with the “unperturbed” or “zero order” wavefunction |y,.), i.e.,

(H,~E,) ¢(1)>=(E(1)—ﬁp)\wmtot> (6.62)




Degenerate perturbation theory - 3

(HAO_Em) (1)>:(E(1)_HAD)‘Wmtot> (6.62)

Now let us premultiply by a specific one of the degenerate basis functions
lv,;) to obtain (analogously to Eq. (6.31))

|H D =((w.;|H, —E,, )|6™) = (v, |(E, —E,)|¢") =0
<Wm|‘ 0 > (<Wm|‘ 10 Am) > <Wr1n|‘( m m)¢ > ) (663)
:<Wmi‘E()_Hp‘Wmtot>:E()<Wmi‘l/jmtot>_<Wmi‘Hp‘Wmtot>
l.e.,
<Wmi ‘ HA p ‘l/jmtot> = E(l) <l//mi ‘Wmtot> (664)
or, explicitly in summation form
Z H pmins@ins = EV (6.65)
where

H pmims - <l//mi ‘ HA p ‘Wms> (666)




Degenerate perturbation theory - 4

We can repeat Eq. (6.65)

-

H  a_ =E%Ya

pmims = ms mi
s=1

for every i=12,---r,
and so obtain a set of r equations of the form of Eq. (6.65).
But this set of equations is simply identical to the matrix-vector equation

H pmiml H pmim2 H pmlmr aml aml
H pm2ml H pm2m2 H pm2mr amz . E(l) am2 (6 67)
i H pmrm1 H pmm2 H pmrmr || Ay ] _amr |

This is just a matrix eigen equation,

a special case of the finite basis subset model

In this case, the finite basis we choose is the set of r degenerate
eigenfunctions corresponding to a particular unperturbed energy eigenvalue
E

m"*




Degenerate perturbation theory - 5

The solution of the equation (6.67)

H pmiml H pmim?2 H pmlmr aml aml
H pm2ml H pm2m2 ' H pm2mr amz . E(l) a‘m2
| H pmrml H pmrm?2 T H pmrmr || amr | _amr _

will give

a set of r first order corrections to the energy,
which we could call EY,

each associated with a particular new eigenvector |g,) that is a linear
combination of the degenerate basis functions |y,,).

All of these new eigenvectors \¢mi> are orthogonal to one another.

To the extent that the energies E"” are different from one another, the
perturbation has “lifted the degeneracy”.




Degenerate perturbation theory - 6

Note the eigenvectors |¢,,) are actually still zero-order wavefunctions,

not first-order wavefunctions;
each of them is an exact solution of the unperturbed problem with energy E .

Indeed, any linear combination of the |y,,) or the |4,) is a solution of the
unperturbed problem with energy E, .

The perturbation theory has selected a particular set of linear
combination of the unperturbed degenerate solutions.

This I1s consistent with the result for the non-degenerate perturbation theory,

In which the first-order energy correction depends only on the zero-order
wavefunctions.




Approximation methods in guantum mechanics — 4

Reading — Sections 6.5 - 6.6

Tight binding model

Variational method




Coupled potential wells - 1

Consider two identical potential wells with a finite barrier thickness between
them.

This Is similar to a degenerate perturbation theory problem,

though it is slightly difficult mathematically to force it into a form where we are
adding a simple perturbing potential.

We can certainly think of it as a finite basis set approach using
approximate starting basis functions.

Solid state physicists would call this a “tight-binding” calculation.




Coupled potential wells - 2

\Y

V| eft

—— ¥ ______

ZAEI
—— ] e — ] e ——

Schematic illustration of a coupled potential well, showing the two coupled states formed
from the lowest states of the isolated wells. The lower state is symmetric, and the upper
state is antisymmetric.




Coupled potential wells - 3

We imagine two separate “unperturbed”
potential wells

If we had the “left” potential well
present on its own,

with corresponding potential V(z),

we would have the wavefunction
solution w,,(z),

with associated energy E, for the first

state,

a problem we already know how to solve
exactly numerically.

Similarly, if we considered the right
potential well on its own,

with potential Vv, (2),
we would have the wavefunction solution
Wright(z)
which is the same as v, (z)

except that it is shifted over to the right,
and would have the same energy E,.

0




Coupled potential wells - 4

The actual potential for which we wish to
calculate the states is, however, the
potential v,

which we could call a coupled potential
well.

Note here we have chosen the origin for
the potential at the top of the well

so we can say V(z)=Vi(2)+Vig(2)
simplifying the algebra.

With our choice of energy origin, the
Hamiltonian for this system is

—h* d*?
2m dz?

HA +Vleft ( ) +Vr|ght ( ) (668)




Coupled potential wells -5

We now solve using the finite basis subset v
model,

choosing the wavefunctions in the
Isolated wells,

Vleft
Wiex @Nd W right » 0
for our basis wavefunctions. L N
El_-g—-_{_/_ _____ &-——.
These two functions are approximately Vign
orthogonal as long as the barrier is 0
reasonably thick TN

hence the term “tight-binding”

the basis wavefunctions are each
assumed to be relatively tightly

confined in one well, _-f—/___f:ﬁ*:; e
with little wavefunction “leakage” into the 2AE I
adjacent well. === ——f-—--- ==

Hence the wavefunction can be written approximately in the form
Vo= ay e + 0 gy (6.69)



Coupled potential wells - 6

\
0
With the presumed form y =ay,, +by,,, IN
matrix form,
our finite basis subset approximate v.
version of Schrdodinger’s equation is 0 -
LT N
H H E—"'ﬁ _____ ¥___
11 || & a !
P NN
H, H,|b b v
0 ¢}
RN
where we srzloduzld have, for example, S S, ~__
. —h
Hy, :IWIeft(Z)( om F"‘Vleft(Z)"'Vright(z)j%eft(z)dz
(6.71) | —
2AEI—--—:;< _____ *UP_
—— e — — e ——r—————




Coupled potential wells -7

Because we presume the barrier to be 0 v
relatively thick,
the amplitude of the left wavefunction
IS essentially zero inside the right
We”’ 0 Vleft
so the integrand in
L N
. _h2 d2 El_._.g-=4 _____ —
Hll:IWIeft(Z)(mﬁ+vleft(Z)—I_Vright(z)jWIeﬁ(Z)dz
Vright
Is essentially zero for all z inside the 0
right hand well, PN
and hence the term £, === ===~ -
IWIth(Z)Vright(Z)WIeft(Z)dz
can be neglected. g
——— SN — — — — ] —_—
We can argue similarly for H,, ZAEI I
HenCe ——— ] — e ———————

H,=H,, =E (6.72)



Coupled potential wells - 8

For the same reason 0 v
(that y,,(z)=0 in the right hand well)
or the complementary one
(that v, (z)=0 in the left hand well), Vi
0
we neglect
L N
J.l//:ight (Z)Vleft'//right (Z)dZ ’ £, ———=== === -
and Vi
when we are integrating within either 0
|l L N
.Vv*e El_-—-¢=_/__/_ _____ 5-_*
J Wleft( ) rlghtl)ynght( )dZ
.W;th(z) Ieftl)”rlght( )dz
* . L
] Wright (Z) right%eft( )dZ e I — - I S
] W:ight(z)vleftl)yleft( )dZ —=1--—- TT1T o] i




Coupled potential wells -9

We do, however, retain the interaction
within the (middle) barrier

where the wavefunctions, though small,
are presumed not negligible,

l.e., we retain a result
AE =
h* d? : .
j y/,’;ﬁ(z)(—ﬂﬁ +V(z)(=0in barrler)jl//right(z)dz

barrier

(6.73)

neglecting contributions that would have
come from regions outside the barrier

because again we presume one or other
basis wavefunction to be zero there.

(Note: AE is a negative number here
because the second derivative is > 0)




Coupled potential wells - 10

With these simplifications, we have 0
E, AE | a a
- =E (6.74)
AE* E, ||b b
(AE here will in practice be real because Vi
the wavefunctions of this problem can 0
be chosen to be real, but the complex L N
conjugate is shown for completeness.) == e
We find the energy eigenvalues of v
Eq. (6.74) in the usual way by setting 0 =
LN
E.—-E AE
det| * _, =0 (6.75) R s
AE* E -E
l.e.,
(E,—E)’ —|AE[ = E2 - 2EE, + E2 ~|AE[' =0 (6.76) I =g
2AE
obtaining eigenvalues ST . ——1__ - —

E = E, +|AE] (6.77)




Coupled potential wells - 11

Note, at least within the approximations
here, that

the energy levels are split by the
coupling between the wells,
approximately symmetrically about the
original "single-well" energy, E,.
Substituting the eigenvalues back into
Eqg. (6.74)

B

gives us

v_= %(WIeft + Wright) andy, = %(l//left _Wright)(6-78)




Coupled potential wells - 12

The lower energy state is associated
with a

symmetric linear combination of the
single-well eigenfunctions

(i.,e., the wavefunction has the same
sign in both wells),
and the upper energy state is
associated with
the anti-symmetric combination
(i.e., the wavefunction has the opposite
sign in the two wells).

Note now that we can no longer view the
states as corresponding to an electron
in the "left" well or an electron in the
"right” well;

In both states the electron is equally iIn
both wells.




Coupled potential wells - 13

This general form of wavefunctions,

one symmetric, one antisymmetric,

IS characteristic of such a symmetric
problem,

and Is retained even as we perform 0
more accurate calculations.

Bringing two identical systems together

leads to

splitting of the degenerate eigenvalues 0

and o

coupling of the states.
This is a very general phenomenon in

guantum mechanics.
It occurs, for example, when we bring

2AE
atoms together to form a crystalline I__-ﬂﬁ

solid,

and leads to the formation of energy bands of very closely spaced states
rather than the discrete separated energy levels of the constituent atoms.



A relation to chemical bonding

Note that this calculation has features also found in molecular bonding.

If we have one electron to share between two potential wells,
as we bring these two potential wells together, two possible states emerge,
one of which has lower energy than any of the states the system previously had.

If we think of these potential wells as being analogous to atoms,
we get lower energy in this lowest state by bringing the “atoms” closer.

We would have to add energy to the electron if we were to try to pull the potential
wells or “atoms” apart.

Hence this lowest state corresponds to a kind of chemically bonded state.

The actual theory of molecular bonding is more complex than this because it
has to account for

multiple electrons in the system, and
potentials that are not simply square wells.
The symmetric and antisymmetric solutions are sometimes called
“bonding”
and
“anti-bonding”
states respectively.




Variational method - 1

Consider an arbitrary quantum mechanical state,

¢), of some system.

The Hamiltonian of the system is H,
and we want the expectation value of the energy, (E).

Since the Hamiltonian is presumably an appropriate Hermitian operator,
it has some complete set of eigenfunctions, |y,), with associated
eigenenergies E_;
we may not know what they are —

they may be mathematically difficult to calculate —
but we do know that they exist.

(For simplicity here, we assume the eigenvalues are not degenerate.)
Consequently, we can certainly expand any arbitrary state in them,
and so we can write as usual, for some set of expansion coefficients a,,

‘¢>:Zai“”i> (6.79)

We presume this representation of the state is normalized, so

>lal =1 (6.80)
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Variational method - 2

Hence, the expectation value of the energy becomes, as usual,
(E)=(¢[Fi]¢)=Yla[ E (681

We also presume for convenience here that

we have ordered all of the eigenfunctions in order of the eigenvalues,
starting with the smallest, E,.

What is the smallest possible expectation value of the energy that we can
have for any state |¢)?

The answer is obvious from Eq. (6.81).
The smallest energy expectation value we can have is E,,
with correspondingly a, =1 and all the other expansion coefficients zero.
If we made one of the other expansion coefficients a; finite,
then the energy expectation value would become,
using the normalization sum Eq. (6.80),2\@\2 =1,
(E)=|a[ E +[a| E, :(1—\aj\2)E1+\aj\2 E,=E +[a["(E,-E)
(6.82)
> E,
l.e., the energy would have to increase.




Variational method - 3

This property
that the lowest possible expectation value of the energy is for the lowest
energy eigenstate,

allows us to construct an approximate method of solution of quantum
mechanical problems for the ground state (the lowest energy state),

and especially for its energy.
The key idea is that we choose some mathematical form of state, called
the trial wavefunction,

that is mathematically convenient for us

and which we believe reasonably fits at least the expected qualitative features
of the ground state,

and then vary some parameter in this mathematical form to minimize the
resulting expectation value of the energy

As aresult of this minimization with respect to variation,
this is known as the variational method.




Variational method - 4

If we use this method, we do not formally know how accurate our result is for
the energy,

but we do know that lower iIs better,

and we can if we wish keep refining our mathematical form so as to reduce the
resulting calculated energy expectation value.

Why would we use such a method?

(i) it allows us to calculate an approximation for the ground state energy
without having to solve for the exact eigenfunctions of any problem.

(i1) if we are careful in the choice of the form of the function to be varied,
so that the algebra of minimization gives simple analytic results,
we may get approximate analytic results for some perturbation.

Why does this method return even reasonable answers?

Go back to a point we discussed in relation to perturbation theory above;
we can get good answers for energies even with approximate wavefunctions;

remember that the first order energy correction uses the zero order wavefunction,
for example.
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Variational method for other levels

The variational approach can be progressively extended to higher levels of
the system

If we force the next trial wavefunction to be mathematically orthogonal to
all the previous (lower energy) ones.

As far as numerical calculations are concerned,
the variational method is nearly always used only for ground states.
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Variational method and eigenfunctions

The variational method points out a basic, exact property of eigenfunctions
and eigenvalues that is actually obvious from the equation (6.81)

(€)= (¢lFile)- S E.

The eigenfunction corresponding to the lowest eigenvalue is that function
that minimizes the expectation value.

The eigenfunction corresponding to the second eigenvalue is that
function that minimizes the expectation value,

subject to the constraint that it is orthogonal to the first eigenfunction.

This property extends to higher eigenfunctions,
with successive eigenfunctions constrained orthogonal to the previous ones.

Indeed, this successive minimization property can be used mathematically to
define eigenfunctions and eigenvalues.




Example of variational method - 1

We can calculate our example problem of an electron in an infinitely deep
potential well with applied field.

We use as our trial function an unknown linear combination of the first two
states of the infinitely deep quantum well,

though variational calculations more commonly choose some function
unrelated to exact eigenfunctions of any problem.

Hence, our trial function is

¢trial (é:’ avar) = \/]% (Sin 72'5 + a‘var Sin 27[5)

(6.83)

where a_, is the parameter we will vary to minimize the energy expectation
value.

Note that we have normalized this wavefunction by dividing by 1+aZ, .




Example of variational method - 2

The expectation value of the energy then becomes, as a function of the
parameter a_,

<E(avar)> U(\/—S|n7z§+avarx/—3|n27r§)}
_|_
A : (6.84)
1 0
x[—?§+f( 1/2)j(f5|nz§+avarfsm2m§) <
Using
the result
1
jsinz§(§—1/2)sin27r§d§=—i2, (6.85)
S O
the known eigenenergies of the unperturbed problem,
and the orthogonality of the sine functions,
Eqg. (6.84) becomes
B , \ 32a,,f
(E (@) 1 [31(1+4av )- 222, } (6.86)




Example of variational method - 3

Now to find the minimum in this expectation value,
we take the derivative, with respect to a_ , of

var 1

(a2

+ 8, 4
to obtain
d(E y "By —
< (avar)> _ 22 16favar +2107 a\zlar 161 (687)
da,, o7 (1+ afar)

This derivative is zero when the quadratic in the numerator is zero.

The root that gives the lowest value of (E(a,,)) is

27x+ \/(277r2 )2 +1024f

a‘varmin =
32f

(6.88)




Example of variational method - 4

For f=3in our example,
we find a,, . =0.175,

varmin —

which compares with
0.174 from the finite basis subset method and
0.180 from the perturbation calculation.

The corresponding energy expectation value,

which is the approximation to the ground state energy in the presence of
the field, is,
substituting the value of a

(E(0.175)) = 0.906,

back into (6.86),

var min

which compares with
0.904 from the finite basis subset method and
0.9025 from the perturbation calculation.
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Variational method and finite basis method

Incidentally, it can be shown that
a variational approach like this
using the same basis functions as a finite basis subset calculation
gives exactly the same results as that finite basis subset method,;

If we had calculated the finite basis subset method using only the first two
basis functions,

we would get exactly the same answer as our variational calculation here.

This is fundamentally because of the minimization property of eigenfunctions
and eigenvalues discussed above.




Time-dependent perturbation theory - 1

Reading — Sections 7.1 — Section 7.2 up to the end of the paragraph after Eq.
(7.25)

Time-dependent perturbations

Simple oscillating perturbations




Time-dependent perturbation theory - 1

For time-dependent problems,
we consider some time-dependent perturbation,

H, (1),
to an unperturbed Hamiltonian,
H,,
that is itself not dependent on time.

The total Hamiltonian is then

To deal with such a situation,
we return to the time-dependent Schrédinger equation

.. 0 A
h—|W)=H|¥
il w)=A|v)

where now the ket |¥) is time-varying in general.
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Time-dependent perturbation theory - 2

With |y,) and E, as the energy eigenfunctions and eigenvalues of the time-
iIndependent equation

ﬁo‘wn>:En‘wn> (7.3)

we expand the solution of the time-dependent Schroédinger equation |¥)
as

) = Za )exp(—iEt/7)|y,) (7.4)

Note we chose to include the time-dependent factor exp(-iE,t/7) explicitly in
the expansion.
We could have left that out, and merely included it in a,(t).

It is usually better to take out any major underlying time dependence
leaving the time dependence of a,(t) to deal only with the additional
changes.




Time-dependent perturbation theory - 3

Now we can substitute the expansion (7 4)
¥ = Za )exp(—iEt/7)|y,)

Into the time-dependent Schrodinger equation (7.2),

.. O ~
—|¥)=H|¥
in ) =A)
obtaining
Y (ina, +a,E, )exp(—iE t/7)|y,) = Za (Ho+H, (t))exp(—iE,t/7)|w,) (7.5)
where a = o, (7.6)
ot

Using the time-independent Schrédinger equation (7.3) to replace HAJV/Q with
E,|v,) leads to the cancellation of terms in E,|y,) from the two sides.

Now premultiplying by (v,| on both sides of (7.5) leads to
ina, (t)exp(—iE /)= Za Jexp(—iE,t/7)(w, |H, (t)]w,) (7.7)
We have made no approximations in going from (7.2) ih%\q'}: H|¥) to (7.7);

these are entirely equivalent equations.




Time-dependent perturbation theory - 4

Now we consider a perturbation series.
We introduce the expansion parameter y just as before,

now writing our perturbation as yI:Ip.

As before, we can set this parameter to a value of 1 at the end.

We presume that we can express the expansion coefficients a, as a power
series

a =a%+yal +y%% +... (7.8)
and we substitute this expansion into Eq. (7.7).
ina, (t)exp(—iE,t/7)= Za )exp(—iE,t/ ) <l//q‘H )w.)

Equating powers of y, we obtain for the zero order term
al”(t)=0 (7.9)

q
The zero order solution simply corresponds to the unperturbed solution,
and hence there is no change in the expansion coefficients in time.




Time-dependent perturbation theory - 5

Repeating the relevant equations
a, =a"% +ya + y%a? +

ina, (t)exp(—iEt/h)= Za )exp(—iE,t/ 7 <wq‘H )w.)
For the first order term, we have
. 1 .
all (t) = EZ a\” exp iyt (v,

where we have introduced the notation
Oy =(E,—E, )/ 7 (7.11)

H, ()|w,) (7.10)

Note here that the a” are all constants;

we deduced in Eq. (7.9) that they do not change in time.
They represent the “starting” state of the system at time t =0.

We note now that, if we know
the starting state, and
the perturbing potential and
the unperturbed eigenvalues and eigenfunctions,

we can integrate Eq. (7.10) to obtain the first order, time-dependent
correction, al’(t), to the expansion coefficients.




Time-dependent perturbation theory - 6

If we know the new approximate expansion coefficients,
a,=a,) +a; (1) (7.12)

then we know the new wavefunction,
and can calculate the behavior of the system from this new wavefunction.

We can proceed to higher order in this time-dependent perturbation theory.
In general, equating powers of progressively higher order, we obtain

al" ) ( Za exp(la) t)< Ap(t)‘l//n> (7.13)

We see that this perturbation theory is also a method of successive
approximations,

just like the time-independent perturbation theory.
We calculate each higher order correction from the preceding correction.




Time-dependent perturbation theory - 7

Just as for the time-independent perturbation theory,

the time-dependent theory is often most useful for calculating some
process to the lowest non-zero order.

Higher order time-dependent perturbation theory is very useful, for example,
for understanding nonlinear optical processes.

First order time-dependent perturbation theory gives the ordinary, linear
optical properties of materials.

Higher order time-dependent perturbation theory is used to calculate
processes such as

second harmonic generation and
two photon absorption

In nonlinear optics,
processes that are seen routinely with the high intensities of modern lasers.

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 7.1




Simple oscillating perturbations - 1

One of the most useful applications is the case of oscillating perturbations.

We will consider this problem here in first order time-dependent
perturbation theory.

For example, the interaction of a monochromatic electromagnetic wave with
a material

the perturbation, the electromagnetic field, is varying sinusoidally in time.

Such a sinusoidal perturbation is also called

a harmonic perturbation,
the same use of the term “harmonic” as in the harmonic oscillator.

One common form would be to have an electric field in, say, the z direction
E(t)=E,| exp(-ict)+exp(iot) | =2, cos(at) (7.14)

where @ is a positive (angular) frequency.




Simple oscillating perturbations - 2

With
E(t)=E,| exp(-iet)+exp(iot) | =2, cos(at)
for an electron,

the resulting electrostatic energy in this field, relative to position z=0,
gives a perturbing Hamiltonian
H,(t)=eE(t)z=H,, | exp(—iat)+exp(iot) | (7.15)
where, in this case,

H,, =€,z (7.16)

Note that this operator does not depend on time.

This particular form of the perturbing Hamiltonian is called
the electric dipole approximation.

In this particular case, this operator is just a scalar function of z,

though in other formulations of this problem it often has stronger operator
character.




Simple oscillating perturbations - 3

We will presume that this perturbing Hamiltonian is only “on” for some finite
time.

For simplicity, we presume that
the perturbation starts at time t=0

and ends attime t=t_,
so formally we have
H (t)=0,t<0
=H [ exp(—iot)+exp(iot) |, 0<t<t, (7.17)

=0,t>t,

To be specific,

we will be interested in a situation where, for times before t=0, the system
IS in some specific energy eigenstate, |y,,).

We expect that the time-dependent perturbation theory will tell us
with what probability the system will make transitions into other states.




Simple oscillating perturbations -4

With this choice,
all of the a%, the initial expansion coefficients, are zero

except a'¥, which has the value 1.

With this simplification of the initial state to |y,,),
the first order perturbation solution, Eq. (7.10),

. 1 : ~
(0= 23 2o 1)y, (v,

becomes

H, (V)W) (7.18)

al (t) = %exp(ia)qmt)@/q




Simple oscillating perturbations -5

Then we have, substituting the perturbing Hamiltonian, Eq. (7.17),
H,(t)=0,t<0
= ﬁpo[exp(—iwt)+exp(iwt)], O<t<t, into (7.18) afj) (t)=%exp(ia)qmt)<y/q
=0,t>t,

H, (1))

and integrating over time

2 t>t __j<wq ‘l/jm exp(la)qmtl)dtl
t,
,;< i) [0 ()t o0 i + o)t o,
:_%@/q A ) exp(i(a)qm —a))to)—l+ exp(i(a)qm +a))t0)—1
a)qm — Q@ a)qm + @
exp[i(a)qm —a))to /2] Sin|:<a)qm —co)to /2]
=5y Ay (om-e)t12 |
Vo | Hpo ¥/ | sin| (g, + o)t,/2 | 719
+eXp|:|(a)qm + a))to /2:| (a)qm + a))tO/Z .




Simple oscillating perturbations - 6

47 -2TC 0 2T 4t
. - 2

Plot of the functions snx (solid line) and (%j (dashed line)
X X

The function sinc(x)=(sinx)/x peaks at 1 for x=0

It is essentially only appreciably large for x=0,
which tells us we have a strongly resonant behavior,
with relatively strong perturbations for the frequency o close to ta@,,.




Simple oscillating perturbations - 7

What we have now calculated is the new quantum mechanical state for times
t>t , which is, to first order,

W) = exp(—iE, t/7)|w, )+ > al(t >t,)exp(-iEt/A)|y, ) (7.20)
q

with the al’(t>t,) given by Eq. (7.19).

( A

sin[(a)qm —a))tolz]

(a)qm —a))t0/2

Sin[(a)qm +a))t0/2]
(a)qm +a))t0/2

exp[i (a)qm — a))to /2]
H oo V)

tO
ac(ll) (t>t,)= E<l/jq

+exp[i (a)qm + a))to /2]

" J

Now that we have established our approximation to the new state,
we can start calculating the time dependence of measurable quantities.




Transition probabilities

In our example here, we chose the system initially to be in the energy
eigenstate |y, ).

The application of the perturbation has changed the state of the system

We would like to know,

if we were to make a measurement of the energy after the perturbation is over
(i.e., for t>t),

what is the probability that the system will be found in some other state,
vi).
i.e., we want to know the transition probability from state |y,,) to ‘z//j>.




Transition probability calculation - 1

Provided we are dealing with small perturbations
the probability, P(j), of finding the system in state |y, ) is

P(j)=[a}" (7.21)
l.e.,
”Fn[(a)m a))tO/ZJT [sin[(o+ a))tO/Z]T
F’(J'):% AR (@n =)t /2 (@ @)t 12 > (7.22)
i sin[(a)jm —a))tolz] sin[(a)jm + o)t /2]
fzcos(w%) (op-0)t/2  (op+o)t,/2 |

The sinc function and its square fall off rapidly for arguments >> 1.
Hence, for sufficiently long t_,

either one or the other of the two sinc functions in the last term in Eq. (7.22)
will be small.

Essentially, as the time t, is increased, these two sinc line functions get

sharper and sharper, and they will eventually not overlap for any value
of w.




Transition probability calculation - 2

Presuming we take t, sufficiently large, we are left with

2 Fn[(% — o), /Z]T +{sin[(% Lo, /Z]T 7.23)

(a)jm —a))t0/2 (a)jm +a))t0/2

~

t2
H o[ W)

P(j):h—(’z<wj

We now have some finite probability that the system has changed state from
its initial state, |y, ), to another “final” state, y/j>.

This probability depends on
the strength of the perturbation squared, and

specifically on the modulus squared of the matrix element of the perturbation
between the initial and final states.

In the case where the perturbation is the oscillating electric field acting on an
electron,

this probability is proportional to the square of the electric field
amplitude, E?,
which in turn is proportional to the intensity | (power per unit area).
Hence, the probability of making a transition is proportional to the intensity, I.
This is the kind of behavior we expect for linear optical absorption.




Absorption and emission terms

What is the meaning of the two different terms in Eq. (7.23)?

(ECE0 L)

. —a)t 2 o +o)t /2
J J

Lt
P(i)="%

~

H o [¥)

(v,

The first term is significant if o, ~o, I.€., If
ho~E;-E, (7.24)
Since we chose w to be a positive quantity,
this term is significant if we are absorbing energy into the system,
raising from a lower energy state, \wm>, to a higher energy state, ‘Wj>'

We note that the amount of energy we are absorbing is = 7iw.
This term behaves as we would require for absorption of a photon.

By contrast, the second term is significant if o,, ~-w, I.€., If
ho~E —E, (7.25)
This can only be the case if the system is moving
from a higher energy state \wm>, to a lower energy state,

l//j>'
This term behaves as we would require for emission of a photon.

In fact, the process associated with this term is stimulated emission, the process
used in lasers.




Time-dependent perturbation theory - 2

Reading — Section 7.2 from the paragraph before Eq. (7.26) — Section 7.3
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Refractive index




Absorption - 1

Now let us consider only the case associated with absorption,

presuming we are starting in a lower energy state and transitioning to a
higher energy one.

(The treatment of the stimulated emission case is essentially identical, with
the energies of the states reversed.)

Then we have
t2 >2[sin[(a)1m _a))to/ZJT 26

P (i)=12

~

Hoo v

<W, (a)jm —a))t0/2

Analyzing the case of a transition between one state and exactly one other
state using this approach has some formal difficulties;

as we let the time t, become arbitrarily large,

the form of the sinc squared term becomes arbitrarily sharp in @, and unless
we get the frequency exactly correct, we will get no absorption.

This problem can be resolved for calculating, for example, transitions
between states in atoms,
though it requires a more sophisticated analysis than we discuss here
specifically, the use of density matrices




Absorption - 2

Essentially,

we end up replacing the sinc squared function with a Lorentzian line
whose width in angular frequency is ~1/T,,

where T, is the time between scattering events (e.g., collisions with other

atoms) that disrupt at least the phase of the quantum mechanical oscillation
of the wave function.

We can rationalize such a change based on an energy-time uncertainty
relation;

If the system only exists in its original form for some time T,,
then we should expect that the energy of the transition is only defined
in energy to ~ +4/2T,, or
in angular frequency to ~ £1/2T,.




Absorption into dense sets of possible transitions - 1

Fortunately, however, a major class of problems can be analyzed using the
present approach.

Suppose we have not one possible transition with energy difference no,,,

but a whole dense set of such possible transitions in the vicinity of the
photon energy rw,
all with essentially identical matrix elements.

This kind of situation occurs routinely in solids.

We presume that this set is very dense,
with a density g, (%) per unit energy near the photon energy #w.

(g, (ha)) IS sometimes known as a “joint density of states” since it refers to

transitions between states, not the density of states of only the starting or
ending states.)




Absorption into dense sets of possible transitions - 2

Then adding up all the probabilities for absorbing transitions, we obtain a
total probability of absorption by this set of transitions of

2 o SIN| (@, —@)t, /2 2
j{ | (E()w_w;)t)/z ]} 9, (ho,,)dhaoy, (7.27)

H oo [W/n)

2
P, = <Wj

_0
tot = L2
h

g, (hw) is essentially constant over any small energy range,

and the sinc squared term is essentially quite narrow in o,,,

hence we can take g, (#w,,) out of the integral as, approximately, g, (7).

Formally changing the variable in the integral to x=(w,, -|t,/2 gives

t? ~ 2 2h sinx |’
I:)tot :?<l//j Hpo‘l)ym> t_gJ (h(())J‘ T dx (728)
Using the mathematical result
0 - 2
| (wj dx =7 (7.29)
S X
we obtain
27t ~ 2
I:)tot = T <l//1 H po ‘l/jm> g, (ha)) (730)




Fermi’'s Golden Rule

Now we see that we have a total probability of making some transition that is
proportional to the time, t, that the perturbation is turned on.

This allows us now to deduce a transition rate, or rate of absorption of
photons,

W :2—ﬂ<1//j

h "9, (ho) (7.31)

H o [W/m)

This result is sometimes known as “Fermi’'s Golden Rule” or, more
completely, “Fermi’s Golden Rule No. 2”.

It is one of the most useful results of time-dependent perturbation theory,

and forms the basis for calculation of, for example, the optical absorption
spectra of solids.

Though we have discussed it here in the context of optical absorption, it
applies to any simple harmonic perturbation.




Alternative statement of Fermi’'s Golden Rule

This rule is sometimes also stated in the form
27 ~
= HDO‘Wm>

2
Wi == |(w; 5(E
where w,, is the transition rate between the specific states |y,,) and ‘wj>,

n —ho) (7.32)

h

from which one calculates the total transition rate involving all the possible
similar transitions in the neighborhood as

W = [w,.g, (hoy, )dhao,, (7.33)

which gives the expression (7.31).




Refractive index

We show how to calculate refractive index quantum mechanically using first-
order time-dependent perturbation theory.

In classical electromagnetism, the relation between electric field and
polarization for the linear case is

P=¢ yE (7.34)
where
y Is the susceptibility and
g, Is the permittivity of free space.

The refractive index, n, can be deduced through the relation

n =yl+y (7.35)

(at least if the material is transparent (non-absorbing) at the frequencies of
interest).

Hence, if we can calculate the proportionality between P and E, we can
deduce the refractive index.
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Calculation of refractive index

Consider a system with a single electron,
or in which our interactions are only with a single electron.

Classically the dipole moment, x4, associated with moving a single electron
through a distance z is, by definition,
Hip = —€Z (7.36)

(the minus sign arises because the electron charge is negative).

The polarization P is the dipole moment per unit volume,
and so the qguantum mechanical expectation value of the polarization is

(P)= %@ (7.37)

where V is the volume of the system.

Our quantum mechanical task of calculating refractive index reduces
essentially to calculating (P).




First-order perturbation calculation - 1

Since we are working in first-order perturbation theory, we can write the total
state of the system as, approximately,

@) =|0)+| ) (7.38)

where we note now that we are dealing with the full time-dependent state
vectors (kets).

Here

‘CD(°)> IS the unperturbed (time-dependent) state vector, and

‘CD(1)> is the first-order (time-dependent) correction

‘ > Za Jexp(—iw,t)|y,) (7.39)
where
o =E Ih (7.40)

and \c,un> are the time-independent energy eigenfunctions of the unperturbed
system.




First-order perturbation calculation - 2

With such a state vector,

‘P>:‘CI)(°)>+‘CD(1)> (7.38), the expectation value of the

polarization would be

)=z}

il
The first term
—e<(1)(°)‘z‘cb(°)>

IS just the static dipole moment of the material in its unperturbed state, so we
will not consider it further.

The fourth term,
_e<q)(1) Z‘(D(l)>

IS second order in the perturbation, and hence, in this first order calculation,
we drop it also.

(7.41)

2|0®) + (0

2|0) + (0

2|0+ (@

o®)]




First-order perturbation calculation - 3

So,
noting that <cD(1) <°>> _ <q)(0) (1)>*
(which follows from the Hermiticity of z as an operator),
we have

] a2

For the sake of definiteness, we now presume that the system is initially in
the eigenstate m, i.e.,

‘(D(O)> =exp(—io,t)|w,) (7.43)

Hence, using the expansion (7.39) for ‘cb(l)>

‘ > Za Jexp(—iw,t)|y,)

we have, from (7.42),

p)=-2 Re{zn:af]l) (t)exp(ia)mnt)<wm\z\z//n>} (7.48




First-order perturbation calculation - 4

We are interested here in the steady-state situation with a continuous
oscillating field,

and we take the perturbing Hamiltonian (7.15)
H,(t)=eE(t)z=H,, | exp(—iat)+exp(iot) | as valid for all times.

We can rewrite Eq. (7.18)

. 1 : ~
400~ Lexp(io )y, Ol
as
, E . . .
a” (t)= ei—h0<y/q ‘ 2|y, ) exp (i@t ) exp(—iat) +exp(iet) | (7.45)
to obtain

exp[i(a)qm —a))t] exp[i(a)qm +a))t]

0
a, (t)= 7 <‘//q‘z“//m> ( + (a)qm+60) (7.46)

gm

4 —0))




First-order perturbation calculation - 5

Substituting (7.46)

(1) = —§<Wq ‘ Zwm>[exp[i(wqm —a))t] exp[i(a)qm +a))t]}

| (0p-0)  (op+o)

into (7.44) <P>:——Re{2a Jexp(io, t)<wm\z\%>} gives

Y B R e s i
R A e e A

2e2E cos(wt) 1
o Z‘ l//m‘ ‘l//n |:( nm_a))+(a)nm+a))i|
and so we have, from (7.34) P=¢_4E,
2 1 1
= 7.48
gV 5 Wal2ly) {(a)nm—a))+(a)nm+a))} (7.48)

from which we deduce the refractive index, n, from Eq. (7.35) n. =1+ #,
completing our calculation of refractive index.




Relation between absorption and refractive index - 1

Note a key difference

For absorption, the frequency » must match the transition frequency w_.

very closely for that particular transition to give rise to absorption of
photons.

For the refractive index, the contribution of a particular possible
transition |y, }—|y,) to the susceptibility (and hence the refractive index)

IS finite
even when the frequencies do not match exactly or even closely;
that contribution to the susceptibility rises steadily as @ rises towards o, .

Note that
If we have an absorbing transition at some frequency o,
it contributes to refractive index at all frequencies.

refractive index (in a region where the material is transparent) arises
entirely because of the absorption at other frequencies.

If there is a refractive index different from unity then there must be
absorption at some other frequency or frequencies.
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Relation between absorption and refractive index - 2

The fundamental relation between refractive index and absorption is known
from classical physics,

and is expressed through the so-called Kramers-Kronig relations.
The derivation of those relations is entirely mathematical,

shedding no light on the physical mechanism whereby absorption and
refractive index are related.

With our quantum mechanical expressions for these two processes,
we can understand any particular aspect in the relation between the two.
In the quantum mechanical picture, we find that,
even though we are in the transparent region of the material,
there are finite occupation probabilities for all of the states of the system.
such probabilities are essential if the material has a polarization

The polarization arises because the charges in the material change their physical
wavefunctions in response to the field,

mixing in other states of the system in response to the perturbation.
If we examined the expectation value of the energy of the material,

we would also find quite real energy stored in the material as a result.




Time-dependent perturbation theory - 3

Reading — Section 7.4

Nonlinear optical coefficients




Nonlinear optical coefficients

We now extend the formalism of linear refractive index to calculate nonlinear
optical effects

Nonlinear optical effects are important in, e.g.,
engineering long-distance fiber optic communication

electric-field dependence of refractive index used in some optical
modulators,

and a broad variety of effects that generate new optical frequencies by
combining existing ones

such as second and third harmonic generations, difference frequency mixing,
and optical parametric oscillators
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Perturbation classification of nonlinear optical effects

Nonlinear optical effects are also an excellent example of higher order time-
dependent perturbation theory

they show how the perturbation approach generates and classifies
different processes.

Second order time-dependent perturbation theory leads, e.g., to
second harmonic generation
linear electro-optic effect
three-wave mixing.

Third order theory leads, e.g., to
intensity dependent refractive index
refractive index changes proportional to the square of the static electric field
third harmonic generation and four-wave mixing.

Second and third order cover nearly all processes used practically

the strongest effects are generally second-order ones
though the material needs to be asymmetric in a particular way.
|sotropic materials or those with a “center of symmetry”,
such as glass and non-polar materials such as silicon,
do not show second-order phenomena,
and their lowest order nonlinear effects are therefore third order phenomena.




Formalism for nonlinear optical coefficients

Nonlinear optical phenomena are usually weak effects,
We can expand the response of the material, the polarization P(t), as a
power series in the electric field E(t), i.e.,

@ _ YE()+ 2 PE (1) 4 4B (1) (7.49)

In general both the electric field E and the polarization P are vectors,

and the susceptibility coefficients 4%, 49, 4% etc., are tensors.

We will neglect such anisotropic effects here and treat the electric field and
polarization as always being in the same direction, and hence scalars.

In Eq.(7.49),
7Y is simply the linear susceptibility
7Y and 4©® are respectively the second and third order nonlinear
susceptibilities.
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Formalism for multiple frequency components in the field

Many nonlinear optical effects involve multiple different frequencies
For two frequency components, at @, and w,, the total field is

E(t)=2E, cos(at+d,)+2E,cos(m,t+5,)

=E, {exp[ -i(@t+6,) |+ exp[i(mt+5,) |} +E,, {exp[ iyt +8,) [+ exp[i(wt +3,) |} {7:50)

where we formally allow the two fields to have different phase angles ¢, and J,.

Another way of writing (7.50) IS
ZE Jexp(—imgt) (7.51)

where E(w,)=E, exp(-id,) (7.52)
and the sum now also includes the “negative” frequencies, -», and -w,.

Hence there are four terms in the sum (7.51) for this two frequency case,
corresponding to the four terms in the second line of Eq. (7.50).

Note also that
E(-w,)=E"(w,) (7.53)

as can be deduced from Eq. (7.52),
and is required for the actual electric field to be real.

We keep the form (7.51) as we extend to more different frequency
components in the electric field.




Formal calculation of perturbative corrections - 1

We consider nonlinearities up to third order in electric field (i.e., up to ),

and hence consider up to third order time-dependent perturbation
corrections.

Now we use expression (7.51) for the electric field,
and hence having a perturbing Hamiltonian

H o(t) = z—ezZE )exp(—iagt) (7.54)

Presuming the system starts in state m, as in Eq. (7.18)

4 (t) =—expienat) (i |, (1))

or (7.45) & (t)= eil" (w2l )exp(iay,t )| exp(—ict) +exp(ict)]

we have

4 ”quE Jexp[ (g~ @, )t (7.55)

where we define electric dipole moment between states
ton =—€(V, |2|w,) (7.56)




Formal calculation of perturbative corrections - 2

Integrating Eq. (7.55)

al _ﬂqm > E(e, exp[ (2 —a)s)t]

over time, we have

a’ (t)=%z Horf () exp[i(a)qm —a)s)t] (7.57)

(O )

We may then use the relation (7.13)
<(p+ 1 . 3
a’ 1)(t):EZaﬁp)exp(la)qnt)@/q H, (t)|w,)

to calculate subsequent levels of perturbative correction from the
preceding one, to obtain

Za quZE exp[ (), —a)u)t]

LE y E( ) (7.58)
19 gm :
= Zq:; (a) . ) exp[l(a)jm — ), —a)u)t]
where we have noted that
Wjq T Oy = Oy (7.59)




Formal calculation of perturbative corrections - 2

Hence
@1y L H#iE(@,) onE (@) -
a;” (t) —?Zq:;(wjm fws _wu;(wqm _ws)exp[l(a)jm — o, —a)u)t] (7.60)
Similarly,
. -1 .
al% =02 agz)ijZE(a)v)exp[l(a)kj —a)v)t]
i v
(7.61)
:__1 'ukjE(a)v)ﬂqu(Q)U)ﬂqu(Q)S) : . B . t
Ih3§5UZV (a)jm_a)s_a)u>(wqm_a)5> exp[l(wkm @G C()V) :|
and so
(3) (t :i 'ukjE(COV)ﬂqu(wu)/uqu(Q)S)
ik ( ) n éz’(a)km — W — @, _a)v)(a)jm — _a)u)(a)qm —C()S) (762)

xexp[i(a)km ) —a)v)t]
Note in these sums,
j and g are indices going over all possible states of the system, and

s, u, and v are indices going over all the frequencies of electric fields,
including both their positive and negative versions.




Formal calculation of linear and nonlinear susceptibilities - 1

In general, including all possible terms in the polarization up to third order in
the perturbation, we have,

now formally write the expectation value of the polarization as being the
observable quantity,
and with x=-ez being formally the dipole moment (operator)
(P(t))= \%(\11\ W) = \%<cp<°) + oY 1 p? 4 CD(S)‘ y‘(l)(o) GCENGIC c1>(3)>

= (P (t))+ (P (1)) + (P® (1)) + (PO (1))

(7.63)




Formal calculation of linear and nonlinear susceptibilities - 2

The polarization terms are

i (P°) :V1<cp<°>\ u|@®) (7.64)
IS the static polarization of the material,
(i) (P"(t)) = V1(<q><°> |0+ (0] ,u‘CD(O)>) (7.65)

Is the linear polarization giving linear refractive index
(i) (P™)(t)) = V1(<cp<°> 1| @)+ (@] 1|0+ (@ ,u‘(l)(l)>) (7.66)

Is the second order polarization, giving rise to phenomena such as second

harmonic generation, and sum and difference frequency mixing,
) (P70 (00" + (070 0 |ufo) (00 7.6

Is the third order polarization, giving rise to phenomena such as third
harmonic generation, nonlinear refractive index, and four-wave mixing.




Linear susceptibility

We have already calculated this, but we Dbriefly repeat the result in the
present notation as used in nonlinear optics.

Since by choice ‘®(°)>:exp(—ia)mt)\z//m>, and using the standard expansion
notation (7.39)

‘ > Za Jexp(—ia,t)|w, )

for ‘cb(l)>, we have,

from the definition (7.65) <P(1)(t)>:V£(<q)(°)‘ﬂ‘q)(l)>+<(p(l)

y‘®(°)>) above

(l) -~ f%E(ws)exp(iwmqt)exp[i(a)qm_a,s)t]
(PU(0) =77 2L |
S s 2 .)exp(ia, t)exp[ (g — )t] 7.68)
N a)qm _a)S )

Qq a)qm — Wy

Zzﬂmqﬂqm{ E(_) exp (- ia)st)+E(_w‘°’)eXp(ia)st)}




Formal algebraic rearrangement trick

Since we are summing over positive and negative values of o,
we can change o, t0 -, In any terms we wish without changing the final

result for the sum.
Hence we can write

<p<1>(t)>=j;;§umquqm{ T }E(ws)eXp(—iwst) (7.69)

Oy — Oy Oy, + O

We can if we wish now write

(3)
m:Zl(l)(ws;a)s)E(a)s)exp(—ia)st) (7.70)

where by yY(w,;®,) we mean the (linear) susceptibility that gives rise to a
polarization at frequency o, in response to a field at frequency w,, and

1 | |
Z(l)(a)s;a)s)—goh\/zq:ququ{wm —+ :l (7.71)

g~ 05 O+ O

We can see directly from this, incidentally, that
;((l)(a)s;a)s) :Z(l)(—ws;—a)s) (7.72)




Second order susceptibility - 1

In the second order case, we use (7.66)

03[0 400 o)

For the first pair of terms, we have
11
) =7 bt

Ll60], lo®
L{(0 o)+ (o

><{E(a)u)E(a)s)exp[—i(cou+a)S t] E' (w0, )E (@) exp[l a)u+a)s)t]]

+
(a)jm_a)u_a)s)(a)qm_a)s) (a)jm_a)u_a)s)(a)qm_a)s)

Y7,

o)

(7.73)

Making the formal substitution of -, for o, and -, for o,, we obtain.

(@) {000 < oSS sttt ()

J,.q S,u

{( 1 + 1 ]exp[i(a)u +o,)t |

W, — O, —cos)(a)qm —a)s) (a)jm +o, + a)s)(a)qm + a)s)

(7.74)




Second order susceptibility - 2

Now examining the third term above in (7.66)
<|:)(2) (t)>: vl (<q)(0) ﬂ‘®<z>> N <c1>(2> ﬂ‘q)<o>> N <(D<1>

we similarly have

o)

1 11 E (o, )E(e,) |
V<(D(l) /J‘Cp(l)> _V?%:sz,t;lumj/’qu/uqm (a)jm —a)u)(a)qm _a)s)eXpD(CUu —C()S)t:|
(7.75)
11 E(@, )E(@,) N
_V hz %;ﬂmjﬂjqﬂqm (a)Jm —|—a)u)(a)qm _a)s)eXp[ |(Cf)u +C()s)t:|

where we made the formal substitution of —@, for w,.

Hence, now having all terms arranged with the same formal time dependence
of exp| -i(w, +w,)t |, we can write

<p(2) (t)>

o

=Y 7o, + 00, 0,)E(0,)E(e,)exp| -i(o, + o, )t] (7.76)

1 1
5 D Moy i
gOV h2 = 1/77]9/77°Q

where 7% (o, +o,;0,0,)=




Second order nonlinear optical phenomena

For example, if we consider o, =o,,
we see that this y?(2e,;0,,0,) gives the strength of the second harmonic
generation process with input frequency w,.

We can see, incidentally, that this effect would be relatively quite strong if
we had an energy level j such that o,, was close to 2w,, and if

there was another energy level g such that o, was close to «,,
because then we would have two strong resonant denominators.
If the electric field has two frequency components, o, and .,
79 (o, + ,;0,,@,) gives the strength of the sum frequency generation.

The negative of the actual frequency should be considered as well since it is
iIncluded in the sums over frequencies, and so

we have a process whose strength is given by 4% (a, - o,;0,~a,),

which is one of the difference frequency generation terms.

We can proceed with any combination of input frequencies to calculate the
strengths of the processes giving rise to all of the new generated
frequencies given by this second order perturbation correction.




Symmetry and second order effects

If all the states in a system have definite parity (in the single direction we are
considering),

there will be exactly no second order nonlinear optical effects.

If the states have definite parity, then
for u,, to be finite,
states ¢ and m must have opposite parity,
for u.to be finite, states j and g must have opposite parity,

which then means that states j and m must have the same parity,
and hence y,; must be zero.

Hence the product of these three matrix elements is always zero if all the
states have definite parity.

Hence a certain asymmetry is required in the material if the second order
effects are to be finite.




Third order susceptibility

)

Using g,

_ Z Z(3)(50v + o, + o0, 0, 0,)E(o,)E(a, E(e,)

S,u,v

(7.78)
xexp| —i(@, + o, + o, )t |

gives

11
~ ?kz P i L M
0 v 1,0

1
(a)km —Q, —Q, _a)s)(a)jm —Q, _a)s)(a)qm _a)s)
1
(@ +a)v)(a)jm ) —a)s)(a)qm —a)s)
1
(@, + a)v)(a)jm + o, + a)u)(a)qm —a)s)
1

(@ + a)v)(a)jm +, + a)u)(a)qm + o, + o, + a)s) (7.79)

(3) : _
770, +o,+o;0, 0, 0,)=

_|_

_|_

_|_

For example, setting o, =0, = a,,

as would be particularly relevant if there was only one input frequency,
would give the strength of the process for third harmonic generation.




Quantum mechanics in crystalline materials — 1

Reading — Sections 8.1 — 8.4

This is of major importance for engineering applications in
Electronics
Optoelectronics

Here we summarize some key quantum mechanical approaches for
crystalline materials

Crystals
One electron approximation
Bloch theorem

Density of states in k-space




Crystals - 1

Crystal

material whose measurable
properties are periodic in
space.

Crystal structure

IS one that can fill all space by
the regular stacking of
Identical blocks or unit cells.

Crystal lattice

If we put a mark on the same
spot of the surface of each
block, these spots would form
a crystal lattice.

oV
[\
—

SEEr e
Ry RS
Ve vl

Qo
-



Crystals - 2

: ® o o o o o o o
Lattice vectors
. ® o o o o o o o
The set of lattice vectors
consists of all of the vectors & & 6 ¢ ¢ o o
that link points on this lattice, ® ® ® ® /O ® ® ®
e, o o o o/ o o o o
R, =mna +mna, +na, (8.1) ® ® ® Z ® ® o ®
a,, a,, and a, are the three linearly ® ® R ® ] ® ®
independent vectors that take us > o o /o ® o o o
from a given point in one unit o o / — o o o o
cell to the equivalent point in the
adjacent unit cell. ) (R GRN AR AR R AR AR ¢
In a simple cubic lattice, these 5, 4 ) G AR G AR AR AN R
vectors lie along the z, y, and o ® i ® o ® ® ®
z directions. a, '

The numbers n , n,, and n, range through all (positive and negative)

Integer values.




Bravais lattices

In three dimensions, there are only 14 distinct kinds of crystal lattice
(Bravais lattices) that can be made that will fill all space by the stacking of
Identical blocks.

A large fraction of the semiconductor f
materials of practical interest,

such as silicon, germanium, and most
of the IlI-V (e.g., GaAs) and II-VI (e.g.,
ZnSe) materials

have a specific form of cubic lattice. Dt G e

This lattice is based on two
interlocking face-centered cubic e ’
lattices.

Zinc-blende — (most IlI-V and II-VI materials)

the group Il (or 1l) atoms lie on one such face-centered cubic lattice, and the
group V (or VI) lie on the interlocking face-centered cubic lattice.

Diamond — (some group IV materials (e.g., silicon, germanium))
both interlocking lattices of course have the same atoms on them




One electron approximation - 1

How can we start to deal with 10 atoms and/or electrons?
Key first approximation

presume that any given electron sees a periodic potential, V, (r), periodic with
the same periodicity as the crystal lattice.

Because it is periodic with the crystal lattice periodicity, we have
V,(r+R,)=V,@® (8.2)
This represents the effective periodic potential

from the charged nuclei, which are presumed to be fixed,

from all the other electrons, whose charge distribution is also presumed to be
effectively fixed.

Note this is only an approximation

Any given electron state will tend to distort the crystal lattice by pulling
on the nucleil.

Any given electron state will also in reality interact with other electrons
There are also many other interactions that we can consider

These interactions are very often handled as perturbations, starting with
the one-electron model results as the “unperturbed” solutions.

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 8.2




One electron approximation - 2

In this approximation,

we therefore presume that we can write an effective, approximate

Schrodinger equation for the one electron in which we are interested
2

£ V, @@ = Epa (8.3)

2m,

and this will constitute our one-electron approximation.

D. A. B. Miller Quantum Mechanics for Scientists and Engineers Section 8.2




Bloch theorem

The Bloch theorem is a very important simplification for crystalline
structures

enables us to separate the problem into two parts,
one that is the same in every unit cell, and
one that describes global behavior.

For simplicity, we will prove this in one direction and then generalize to
three dimensions.

We know that the crystal is periodic, having the same potential at z + sa as it
has at = (where s is an integer).

Any observable quantity must also have the same periodicity because the
crystal must look the same in every unit cell.

For example charge density p « \W must be periodic in the same way. Hence

Y@l =@+ a)f (8.4)
which means

V@) =CY(x+a) (8.5)
where C is a complex number of unit amplitude.

Note that there is no requirement that the wavefunction itself be periodic with
the crystal periodicity since it is not apparently an observable or measurable
guantity.




Periodic boundary conditions - 1

As is often the case, the boundary conditions lead to the quantization of the
problem.

What boundary conditions represent a crystal?
How can we introduce the concept of the finiteness of the crystal,
and corresponding finite countings of states,
without having to abandon our simple description in terms of infinite periodicity?
In one dimension, we could argue as follows.
Suppose that we had a very long chain of Nequally spaced atoms,
and that we joined the two ends of the chain together.
With x as the distance along this loop; then on this loop,
V,(x+ma)=V, @),
where m is any integer
even much larger than N.
just like our definition for the infinite crystal
If this chain is very long,

we do not expect that its internal properties will be substantially different
from an infinitely long chain,

and so this finite system will be a good model.




Periodic boundary conditions - 2

Such aloop introduces a boundary condition, however.

We do expect that the wavefunction is a single-valued function
(otherwise how could we differentiate it, evaluate its squared modulus, etc.)

So when we go round the loop we must get back to where we started, i.e.,
explicitly

U(z) = Y(z + Na) (8.6)
This is known as a periodic boundary condition
also known as a Born-von Karman boundary condition.
Combining this with our condition (8.5), we have

¥(z) = (2 + Na) = C"¢(x) (8.7)
SO
oV =1 (8.8)
and so C is one of the Nroots of unity, i.e.,
C =exp(2mis/N);s=0,1,2,...N —1 (8.9)

(We could also choose

C = exp[zm‘ (% -+ m)], s=0,12,...N —1, m any integer (8.10)

so there is some arbitrariness here.)




Periodic boundary conditions - 3

Substituting ¢ from (8.9)
C =exp(2mis/N);s=0,1,2,...N —1

In (8.7),
U(z + a) = exp(ika) () (8.11)
where we could choose
=" 50,12 . . N—1 (8.12)
Na
Note we could also choose
F=2T L 2T 019 N1 (8.13)
Na a
Conventionally, we choose
E=2T =0, 41,42+ N /2 (8.14)
Na
which still gives essentially N states, but now symmetrically disposed about

k=0.
Note the allowed %k values are evenly spaced by 2x/L where L = 