✓ Chapter 4: The Formal Theory Of Potential Scattering

- The time-dependent
 - The free wave packet state
 - The time-dependent scattering state
- The time-independent formalism
 - The stationary scattering states
 - The Lippmann-schwinger equation
 - Orthogonality and completeness
 - The T-matrix
 - The S-matrix
 - The unitary of the S-matrix. The optical theorem
- Asymptotic properties and the cross section
 - The asymptotic stationary scattering wave function
 - Asymptotic wave packet. The cross section
- Coherence properties of particle beams
 - The structure of the physical probability current
 - A model for the incident beam

✓ Chapter 5: The Formal Theory Of Reactions

- The general formalism for two-body channels
 - Channel
 - Reaction state
 - The T and S-matrices
 - The optical theorem
 - The cross section
 - The principle of micro-reversibility
- The differential reaction cross section
 - Spin-coupled channel state
 - Spin-coupled scattering matrices
 - The unpolarized differential cross section
- Single step-approximation
 - The plan wave born approximation(PWBA)
 - The distorted wave born approximation(DWBA)

- Coupled channels
 - The Coupled channel formalism for inelastic scattering
 - The Coupled channel Born approximation (CCBA)
 - Coupled reaction channels
- ✓ Chapter 6: The Optical Model
- The generalized optical model (GOP)
 - The general form of the GOP operator
 - A schematic model: the model space
 - Derivation of the model-GOP
 - Analyticity, non-locality and the pauli principle
- The optical potential
 - The elastic S-matrix
 - Compound-elastic and shape-elastic scattering
 - The optical potential in the proper sense
 - The relation between the GOP and the optical potential
- The equivalent local optical potential
 - The trivially equivalent local potential
 - The equivalent local potential in WKB
- Dispersion relation
 - Derivation of the dispersion relation
 - An application of the dispersion relation