
Optimal control
Optimal control theory deals with the problem of finding a control law for a given system such that a certain 

optimality criterion is achieved.

It is an extension of the calculus of variations, and is a mathematical optimization method for deriving control 

policies. The method is largely due to the work of Lev Pontryagin and Richard Bellman in the 1950s, after 

contributions to calculus of variations by Edward J. McShane.[1] Optimal control can be seen as a control strategy

in control theory.
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Optimal control deals with the problem of finding a control law for a given system such that a certain optimality 

criterion is achieved. A control problem includes a cost functional that is a function of state and control variables. 

An optimal control is a set of differential equations describing the paths of the control variables that minimize 

the cost function. The optimal control can be derived using Pontryagin's maximum principle (a necessary 

condition also known as Pontryagin's minimum principle or simply Pontryagin's Principle),[2] or by solving the 

Hamilton–Jacobi–Bellman equation (a sufficient condition).

We begin with a simple example. Consider a car traveling in a straight line on a hilly road. The question is, how 

should the driver press the accelerator pedal in order to minimize the total traveling time? Clearly in this example, 

the term control law refers specifically to the way in which the driver presses the accelerator and shifts the gears. 

The system consists of both the car and the road, and the optimality criterion is the minimization of the total 

traveling time. Control problems usually include ancillary constraints. For example, the amount of available fuel 

might be limited, the accelerator pedal cannot be pushed through the floor of the car, speed limits, etc.

This approach may be applied in cosmology and astrophysics, [3] A proper cost function will be a mathematical 

expression giving the traveling time as a function of the speed, geometrical considerations, and initial conditions

of the system. It is often the case that the constraints are interchangeable with the cost function.

Contents

General method



Another optimal control problem is to find the way to drive the car so as to minimize its fuel consumption, given 

that it must complete a given course in a time not exceeding some amount. Yet another control problem is to 

minimize the total monetary cost of completing the trip, given assumed monetary prices for time and fuel.

A more abstract framework goes as follows. Minimize the continuous-time cost functional

subject to the first-order dynamic constraints (the state equation)

the algebraic path constraints

and the boundary conditions

where  is the state,  is the control,  is the independent variable (generally speaking, time),  is the initial 

time, and  is the terminal time. The terms  and  are called the endpoint cost and Lagrangian, respectively. 

Furthermore, it is noted that the path constraints are in general inequality constraints and thus may not be active 

(i.e., equal to zero) at the optimal solution. It is also noted that the optimal control problem as stated above may 

have multiple solutions (i.e., the solution may not be unique). Thus, it is most often the case that any solution 

 to the optimal control problem is locally minimizing.

A special case of the general nonlinear optimal control problem given in the previous section is the linear 

quadratic (LQ) optimal control problem. The LQ problem is stated as follows. Minimize the quadratic

continuous-time cost functional

Subject to the linear first-order dynamic constraints

and the initial condition

A particular form of the LQ problem that arises in many control system problems is that of the linear quadratic 

regulator (LQR) where all of the matrices (i.e., , , , and ) are constant, the initial time is arbitrarily set to 

zero, and the terminal time is taken in the limit  (this last assumption is what is known as infinite 

horizon). The LQR problem is stated as follows. Minimize the infinite horizon quadratic continuous-time cost 

functional

Linear quadratic control



Subject to the linear time-invariant first-order dynamic constraints

and the initial condition

In the finite-horizon case the matrices are restricted in that  and  are positive semi-definite and positive 

definite, respectively. In the infinite-horizon case, however, the matrices  and  are not only positive-

semidefinite and positive-definite, respectively, but are also constant. These additional restrictions on  and  in 

the infinite-horizon case are enforced to ensure that the cost functional remains positive. Furthermore, in order to 

ensure that the cost function is bounded, the additional restriction is imposed that the pair  is controllable. 

Note that the LQ or LQR cost functional can be thought of physically as attempting to minimize the control 

energy (measured as a quadratic form).

The infinite horizon problem (i.e., LQR) may seem overly restrictive and essentially useless because it assumes 

that the operator is driving the system to zero-state and hence driving the output of the system to zero. This is 

indeed correct. However the problem of driving the output to a desired nonzero level can be solved after the zero 

output one is. In fact, it can be proved that this secondary LQR problem can be solved in a very straightforward 

manner. It has been shown in classical optimal control theory that the LQ (or LQR) optimal control has the 

feedback form

where  is a properly dimensioned matrix, given as

and  is the solution of the differential Riccati equation. The differential Riccati equation is given as

For the finite horizon LQ problem, the Riccati equation is integrated backward in time using the terminal 

boundary condition

For the infinite horizon LQR problem, the differential Riccati equation is replaced with the algebraic Riccati 

equation (ARE) given as



Understanding that the ARE arises from infinite horizon problem, the matrices , , , and  are all constant. 

It is noted that there are in general multiple solutions to the algebraic Riccati equation and the positive definite

(or positive semi-definite) solution is the one that is used to compute the feedback gain. The LQ (LQR) problem 

was elegantly solved by Rudolf Kalman.[4]

Optimal control problems are generally nonlinear and therefore, generally do not have analytic solutions (e.g., like 

the linear-quadratic optimal control problem). As a result, it is necessary to employ numerical methods to solve 

optimal control problems. In the early years of optimal control (c. 1950s to 1980s) the favored approach for 

solving optimal control problems was that of indirect methods. In an indirect method, the calculus of variations is 

employed to obtain the first-order optimality conditions. These conditions result in a two-point (or, in the case of 

a complex problem, a multi-point) boundary-value problem. This boundary-value problem actually has a special 

structure because it arises from taking the derivative of a Hamiltonian. Thus, the resulting dynamical system is a 

Hamiltonian system of the form

where

is the augmented Hamiltonian and in an indirect method, the boundary-value problem is solved (using the 

appropriate boundary or transversality conditions). The beauty of using an indirect method is that the state and 

adjoint (i.e., ) are solved for and the resulting solution is readily verified to be an extremal trajectory. The 

disadvantage of indirect methods is that the boundary-value problem is often extremely difficult to solve 

(particularly for problems that span large time intervals or problems with interior point constraints). A well-

known software program that implements indirect methods is BNDSCO.[5]

The approach that has risen to prominence in numerical optimal control over the past two decades (i.e., from the 

1980s to the present) is that of so-called direct methods. In a direct method, the state and/or control are 

approximated using an appropriate function approximation (e.g., polynomial approximation or piecewise 

constant parameterization). Simultaneously, the cost functional is approximated as a cost function. Then, the 

coefficients of the function approximations are treated as optimization variables and the problem is "transcribed" 

to a nonlinear optimization problem of the form:

Minimize

subject to the algebraic constraints

Depending upon the type of direct method employed, the size of the nonlinear optimization problem can be quite 

small (e.g., as in a direct shooting or quasilinearization method), moderate (e.g. pseudospectral optimal control[6]) 

or may be quite large (e.g., a direct collocation method[7]). In the latter case (i.e., a collocation method), the 

nonlinear optimization problem may be literally thousands to tens of thousands of variables and constraints. 
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Given the size of many NLPs arising from a direct method, it may appear somewhat counter-intuitive that solving 

the nonlinear optimization problem is easier than solving the boundary-value problem. It is, however, the fact 

that the NLP is easier to solve than the boundary-value problem. The reason for the relative ease of computation, 

particularly of a direct collocation method, is that the NLP is sparse and many well-known software programs 

exist (e.g., SNOPT[8]) to solve large sparse NLPs. As a result, the range of problems that can be solved via direct 

methods (particularly direct collocation methods which are very popular these days) is significantly larger than 

the range of problems that can be solved via indirect methods. In fact, direct methods have become so popular 

these days that many people have written elaborate software programs that employ these methods. In particular, 

many such programs include DIRCOL,[9] SOCS,[10] OTIS,[11] GESOP/ASTOS,[12] DITAN.[13] and PyGMO/PyKEP.[14]

In recent years, due to the advent of the MATLAB programming language, optimal control software in MATLAB 

has become more common. Examples of academically developed MATLAB software tools implementing direct 

methods include RIOTS,[15]DIDO,[16] DIRECT,[17] and GPOPS,[18] while an example of an industry developed 

MATLAB tool is PROPT.[19] These software tools have increased significantly the opportunity for people to explore 

complex optimal control problems both for academic research and industrial problems. Finally, it is noted that 

general-purpose MATLAB optimization environments such as TOMLAB have made coding complex optimal 

control problems significantly easier than was previously possible in languages such as C and FORTRAN.

The examples thus far have shown continuous time systems and control solutions. In fact, as optimal control 

solutions are now often implemented digitally, contemporary control theory is now primarily concerned with 

discrete time systems and solutions. The Theory of Consistent Approximations[20] provides conditions under 

which solutions to a series of increasingly accurate discretized optimal control problem converge to the solution of 

the original, continuous-time problem. Not all discretization methods have this property, even seemingly obvious 

ones. For instance, using a variable step-size routine to integrate the problem's dynamic equations may generate a 

gradient which does not converge to zero (or point in the right direction) as the solution is approached. The direct 

method RIOTS (http://www.schwartz-home.com/RIOTS) is based on the Theory of Consistent Approximation.

A common solution strategy in many optimal control problems is to solve for the costate (sometimes called the 

shadow price) . The costate summarizes in one number the marginal value of expanding or contracting the 

state variable next turn. The marginal value is not only the gains accruing to it next turn but associated with the 

duration of the program. It is nice when  can be solved analytically, but usually the most one can do is 

describe it sufficiently well that the intuition can grasp the character of the solution and an equation solver can 

solve numerically for the values.

Having obtained , the turn-t optimal value for the control can usually be solved as a differential equation 

conditional on knowledge of . Again it is infrequent, especially in continuous-time problems, that one obtains 

the value of the control or the state explicitly. Usually the strategy is to solve for thresholds and regions that 

characterize the optimal control and use a numerical solver to isolate the actual choice values in time.

Consider the problem of a mine owner who must decide at what rate to extract ore from his mine. He owns rights 

to the ore from date  to date . At date  there is  ore in the ground, and the instantaneous stock of ore 

declines at the rate the mine owner extracts it . The mine owner extracts ore at cost  and sells ore 
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at a constant price . He does not value the ore remaining in the ground at time  (there is no "scrap value"). He 

chooses the rate of extraction in time  to maximize profits over the period of ownership with no time 

discounting.

1. Discrete-time version 

The manager maximizes profit :

subject to the law of evolution for the state variable 

Form the Hamiltonian and differentiate:

As the mine owner does not value the ore remaining at 

time ,

Using the above equations, it is easy to solve for the 

and  series

and using the initial and turn-T conditions, the  series 

can be solved explicitly, giving .

2. Continuous-time version 

The manager maximizes profit :

subject to the law of evolution for the state variable 

Form the Hamiltonian and differentiate:

As the mine owner does not value the ore remaining 

at time ,

Using the above equations, it is easy to solve for the 

differential equations governing  and 

and using the initial and turn-T conditions, the 

functions can be solved to yield
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