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Preface

Mathematical models of dynamical systems (systems with links between past
history and present behaviour) are required in engineering, physics, medicine,
economics, ecology and in most areas of scientific enquiry. In control
engineering, model-building from measurements on a dynamical system is
known as identification, and has enjoyed a sustained boom as a research topic
for a decade and a half. In that time technique and theory have developed at
such a pace that, although there are a number of good advanced or specialised
textbooks on identification, a gap has opened in the coverage at the
undergraduate and introductory graduate level. This book is aimed at that
gap. As the book gives a broad view at a fairly modest mathematical level, it
should also suit the reader who, with a particular modelling problem in mind,
needs a quick appraisal of established methods and their limitations.

A serious attempt has been made to recognise that identification, like any
engineering activity, is an art backed up by some science, and not a branch of
applied mathematics. The presentation is therefore informal and more
concerned with usefulness than with elegance. It 1s also highly selective,
inevitably so in such a diverse and eclectic field.

The mathematical requisites increase gradually from Chapter 1 to
Chapter 7, but never go far beyond what appears in most first-degree courses
in electrical or control engineering. All necessary topics are well covered in
many textbooks, so brief reviews and references in the text are given rather
than additional mathematical appendices. With few exceptions results are
derived in full, but questions of rigour are mentioned only when absolutely
necessary. Chapters 2 and 3 use classical single-input -single-output linear-
system methods embracing superposition, Fourier and Laplace transforms, =
transforms, transfer functions, correlation functions, power spectra and a
minute amount of probability theory. Matrix algebra first appears in Chapter
4, including inner products, quadratic forms, gradient vectors, Jacobian and
Hessian matrices, inverses and singularity, positive definiteness, rank and
linear dependence, Euclidean norm, orthogonality of vectors, orthogonal
matrices, eigenvalues and eigenvectors. Probability and statistics are required
from Chapter 5 on but they are introduced in an elementary way, that is,
intuitively rather than axiomatically. Convergence of random sequences is
discussed in connection with asymptotic properties of estimators, but no
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background in analysis is needed. Some acquaintance with state-variable
methods will help in Sections 7.3, 7.5, 8.2, 8.6 and 8.7.

Selections for special purposes could be made as follows: basic topics for an
undergraduate course, introducing classical methods with modest math-
ematical requirements: Chapters 1 to 4 as far as Section 4.2.1; estimation
theory. suitable for state estimation as well as identification: Chapters 4. 5, 6
and 7 up to Section 7.3; computational methods for parameter estimation:
Chapters 3, 4, 7, 8 and 10 (presupposing some background in probability);
review of some recent and current areas of activity: Section 7.5, Chapters 8
and 9; practice of identification for linear, lumped systems: Chapters 2, 3,4, 7,
9 and 10. The most specialised sections are starred.

My debt to a handful of prominent workers in identification is obvious from
the text and is shared by everyone in the field. Less obvious but no less
appreciated are debts to friends and collaborators over the years, which range
from odds and ends of technique to shaping of an attitude to the subject.
Rather than attempting a list, I shall just mention two people whose influence
at crucial times has been especially valued: Percy Hammond, in whose group
at the NPL I encountered identification as an inexhaustible source of interest,
and Keith Godfrey, whose stimulus is responsible for this book being written.
Thanks are also due to Graham Goodwin for facilities and encouragement
during a sabbatical at the University of Newcastle, New South Wales, in which
early sections were written. and to my long-suffering family.

Provision of records by the Hydro-Electric Commission of Tasmania, the
Institute of Hydrology and Dr. Alan Knell of Warwick Hospital is gratefully
acknowledged, as is the provision of Exercise 9.2.1 by Dr. Alan Robins of
British Aerospace, Dynamics Group (Bristol).

Finally, 1T must thank Mandy Dunn for her cheerful good nature and
efficiency throughout the preparation of the typescript, a far longer job than
either of us expected.

Birmingham J. P. NORTON
November 1985
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Chapter 1

Introduction

1.1 WHAT IS IDENTIFICATION?

Identification is the process of constructing a mathematical model of a
dynamical system from observations and prior knowledge. This definition
raises quite a few questions. Why should we want a model ? What exactly does
“dynamical” signify? What sort of mathematical model? What sort of prior
knowledge and observations? How do you construct such a model? How do
you decide whether it is any good? The first two questions can be answered
fairly quickly, as we shall soon see, but the others will take the rest of the book
to answer even partially.

1.2 WHY SHOULD WE WANT A MODEL?

To make any sense, identification must have some definite purpose, although
it is sometimes not clearly stated. Dynamical models find application in areas
as diverse as engineering and the hard sciences, economics, medicine and the
life sciences, ecology and agriculture; the references at the start of Chapter 7
give some idea of the range. The same few basic purposes underlic
identification in all these fields.

1.2.1 Models to Satisfy Scientific Curiosity

A characteristic of science is its use of mathematical models to extract the
essentials from complicated evidence and to quantify the implications.
Identification has a long history in science.

Example 1.2.1 Halley conducted an identification exercise in 1704 when,

realising that reports of comets in 1531, 1607 and 1682 related to a single

object, he calculated the parameters of its orbit from the limited observations,
1




2 1 INTRODUCTION

and hence predicted its return in 1758 (Asimov, 1983: Murdin and Allen,
1979). The orbit determination relied on prior knowledge, from Newtonian

dynamics and gravitational theory, that the orbit would be an ellipse.
We shall return to this example more than once, appropriately enough.
A

The aim in scientific modelling is to increase understanding of some
mechanism by finding the connections between observations relating to it.
Any predictive ability of the model is an incidental benefit, valuable as a means
of testing the model.

Example 1.2.2 Halley would have been pleased, no doubt, to know that the
comet did return in 1758, sixteen years after he died, and pleased that his
model was the reason for people reaching for their binoculars in 1985/6,
but his immediate satisfaction came from understanding better how the comet
behaved. A

1.2.2 Models for Prediction and Control

A wish to predict is a common and powerful motive for dynamical modelling.
On a utilitarian view, a prediction model should be judged solely on the
accuracy of its predictions. The plausibility and simplicity of the prediction
model and its power to give insight are all incidental, although they help in
model construction and acceptance. The narrowness of prediction as an aim
paradoxically makes the choice of model wider.

Example 1.2.3 Hydrologists have a range of techniques for predicting river
flow from measurements of rainfall and flow (Kitanidis and Bras, 1980;
Kashyap and Rao, 1976). At one extreme a runoff-routing model represents in
detail the physical features of areas within the catchment, and traces the
passage of water through all the areas. At the other extreme a black-box model
is estimated from measurements of fiow at one place and rainfall at one place
or averaged over the catchment. It makes no attempt to depict the internal
workings of the catchment, but aggregates the catchment dynamics as they
affect that particular flow. Runoff-routing' models require much more field
measurement to construct. They force a detailed examination of catchment
peculiarities and, perhaps for that reason, inspire confidence in spite of the
difficulty of testing such a large model. Black-box models have the advantages
of a simple and standard form, e.g. linear difference equations, and fairly
standard estimation techniques. They are simple enough to be updated
continually according to recent prediction performance, though they may not
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be flexible enough, even with updating, to match the complicated non-linear
dynamics of the catchment. A

Prediction by a dynamical model is important in control-system design.
Design of any control scheme more ambitious than the traditional trial-and-
error-tuned two-term controller requires a model (D’Azzo and Houpis, 1981 ;
Richards, 1979). To keep the design procedure tractable, the model must be
simple, even if that means rough. An accurate model may not be a realistic aim
in any case, because of variability in the system to be controlled. Ideally the
model would indicate the extent of the variability, so that the controller could
be designed to have acceptable worst-case performance. This is less than
straightforward, as disturbances, measurement inaccuracy and the limitations
of the model structure also contribute uncertainty to the model (Ashworth,
1982).

Most control-design models employ a model for prediction only in the
sense of saying how the system will respond to a standard input such as a step
in the desired output value, or a specified disturbance. Prediction is more
directly involved in two control techniques, feed-forward and self-tuning
control, which have been underexploited through lack of reliable models. In
feed-forward control, a disturbance is detected early in its progress through
the system and fed forward, suitably shaped and inverted, to cancel its own
effects further on. Self-tuning control recalculates the controlling input to the
system periodically by reference to a periodically updated prediction model of
the effect of that input. The identification aspects of self-tuning control are
discussed briefly in Section 8.3.3.

1.2.3 Models for State Estimation

The object of state estimation is to track variables which characterise some
dynamical behaviour, by processing observations afflicted by errors, wholly or
partly random. The 1960’s and early 1970’s saw strikingly successful examples
of state estimation in space navigation, including the Apollo moon landings,
Mariner Mars orbiter and flybys of Venus and Mercury. The state estimated
then was the position and velocity of a space vehicle, or equivalently its orbital
parameters. The range of applications of state estimation has expanded
rapidly, now embracing radar tracking, terrestrial navigation, stabilisation of
ship motion, remote sensing, geophysical exploration, regulation of various
industrial processes, monitoring of power systems and applications in
demography (/EEE Transactions on Automatic Control, special issue, 1983).

State estimators rely on a model to relate the state variables to each other,
to the observations and to the forcing. Commonly, some model parameters
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are initially unknown and must be identified, before or during state
estimation. Section 8.9 considers combined state and parameter estimation.

Example 1.2.4 When a digital message is transmitted over a communication
channel at a rate close to the maximum attainable, the channel dynamics
smear out each signalling pulse and cause cach received pulse to overlap
several others. This inter-symbol interference must be corrected il the
transmitted message is to be recovered (Clark, 1977). Fixed filters called
equalisers can do the job if the channel dynamics are fixed. In a switched
system such as the public telephone network the channel varies from
connection to connection. Itis also affected by temperature changes, and there
is noise due to switching, poor contacts, crosstalk and induction from power
apparatus. The equaliser must therefore adapt to the channel and, ideally, the
noise characteristics. Many adaptive equaliser structures have been proposed,
one being to estimate the message computationally as the state of an initially
unknown and varying system consisting of the channel, its filters, coder and
decoder, modulator and demodulator. The message estimator requires a
model of the channel dynamics, which is updated continually (Lee and
Cunningham, 1976: Luvison and Pirani, 1979). A

1.2.4 Modelling for Diagnosis of Faults and Inadequacies

A great benefit of identification, seldom acknowledged, is its ability to uncover
shortcomings and anomalies. For instance, when an attempt is made to identify
the dynamics of a system, the measurements are often found to be inadequate.
Examples are a noisy thermocouple on a distillation column, incomplete
economic statistics, too few rain gauges or too many ungauged inflows in
hydrology, and physiological measurements too widely spaced because of the
discomfort they cause. A deficiency like this may not be easy to put right. but
the awareness of its importance may be worth the effort vainly spent on
identification. Disclosure of unexpected or untypical behaviour of the system
is equally valuable whether unpremeditated, as in the first example below, or
the main reason for identifying a model. as in the second.

Example 1.2.5 A digital simulation of a pilot-scale gas-heated catalytic
reactor was developed from results of tests on one reactor tube, physical
chemistry and design information (Norton and Smith, 1972). The simulation
was initially unable to match the observed steady-state temperature prefile of
the reagents. The trouble was traced to stagnation of the heating gas at one
end of the reactor. pointing to a potential design improvement. The reactor
model was also useful in a positive way in explaining an unexpected difference
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between the responses of the reagent temperature to perturbations of the inlet
heating-gas temperature and flow rate. A

Example 1.2.6 A methionine tolerance test consists of giving a human subject
an oral dose of methionine then sampling its concentration in the blood at five
to ten instants over the next three hours or so. Abnormality in the variation of
the concentration may be due to liver disease or diabetes. To aid interpretation
and classification of the response, a model made up of two or three rate
equations may be fitted to it (Brown ¢r al., 1979). A

1.2.5 Models for Simulation and Operator Training

Models make it possible to explore situations which in the actual system would
be hazardous, difficult or expensive to set up. Aircraft and space-vehicle
simulators are well-known examples. Comprehensiveness and accuracy ate at
a premium for this application, whereas cheapness and simplicity are less so.
As well as operator training, simulation models are valuable for “what if "
analyses. Accuracy and completeness may be less crucial for the latter, when
qualitative outcomes are being explored rather than precise numerical
consequences. The discussion and thought stimulated by notorious world-
growth models some years ago (Forrester, 1971; Meadows, 1973) justified
their construction, imperfect as they may have been.

1.2.6 Models and Serendipity

We all sometimes stumble across something interesting when looking for
something else entirely. This also happens in identification.

Example 1.2.7 In 1758 Messier was searching for Halley's comet, to validate
Halley's orbit model. He found the Crab ncbula and labelled it M1 in his
catalogue. It was subsequently found to be a strong radio source (1948) and to
have a pulsar at its centre (1968). In fact, it turned out to be more interesting
than Halley's comet. A

Serendipity is hardly a motive for modelling, but it can be a weighty
retrospective justification.
1.3 WHAT SORT OF MODEL?

One special family of dynamical models has identification methods far more
fully developed than the rest: linear, lumped. time-invariant, finite-order




6 1 INTRODUCTION

models. The reason is that they are versatile, yet comparatively simple to
identify, analyse and understand. We had better examine the properties of
these models. In doing so, we shall incidentally say what we mean by
“dynamical”.

1.3.1 Dynamical Models; Model Order

The feature that distinguishes a dynamical system is that its output at any
instant depends on its history, not just on the present input as in an
instantancous system. In other words, a dynamical system has memory. Often
the memory can be attributed to some easily recognisable stored energy. If the
present output can be expressed in terms of the input and output values an
infinitesimal time ago, the input—output relation is a differential equation.

Example 1.3.1 The voltage v(¢) at time ¢ across the capacitor in Fig. 1.3.1 is
related 1o the source voltage u(¢) by v(f) = [u(r) — v(1)}/CR. This equation is
the limit, as time increment &7 tends to zero, of v(t) =ov(t — ot) +
otlu(t — ot) — v(t — 61)}/CR.

4
Input 1 I T QOutput
u(t) c v(r)
O— | —O

Fig. I.3.1 A dynamical system.

An initial condition v(¢,) and knowledge of u(¢) from t, onwards will give
u(¢) from ¢, on. Conceptually, we find v(t) from u(s — ot) successively at
I=1y+ 031, 1o +20t and so on. In the limit, we integrate the differential
equation to obtain

fo—1 1 ! —
U(l):v(to)exp< OCR >+C§ j u(t)exp(%)dt

iy

whatever the value of 7, so v(f,) is enough to determine the effects of the
history up to ¢, on the later behaviour. The capacitor charge q(ty)is Co(1,), so
the stored electric-field energy ¢*(1,)/2C is determined by v(f,) and can be
regarded as the memory of the system. A

The past of a system or model influences the future by way of a number of
initial conditions or stored energies (one, in Example 1.3.1). The number is
called the system or model order. Any model must describe how each of its
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energy storages contributes to the output, so the number of model parameters
is at least equal to the model order. Some parameters may be known in
advance, e.g. known to be zero, and the size of the model may well be reduced
further by ignoring some energy storages because they give rise to dynamics
which are too rapid, too slow or too small in amplitude to show.

Example 1.3.2 The resistor and wiring in Example 1.3.1 have a small stray
inductance L, which modifies the input-output relation to LCi(t) +
RCu(t) + v(t) = u(?). Two initial conditions are now needed before we can
solve for v(¢), as there are two energy storages, electric-field energy in
the capacitor and magnetic-field energy LC?5%(1)/2 in the inductance.
However, the magnetic-field energy can be ignored unless we are interested in
circumstances giving very large rates of change of v(¢). A

The story is more complicated if there is significant pure delay in the
system. Some delay is always present, since changes propagate through the
system at finite velocity, but it may be negligible. A delay ¢, right at the input
merely delays the response by ¢,, so it adds nothing to the ditticulty of
analysing the response. The same goes for a delay right at the output, and we
have only to write y(r + t,) for y(¢)at the end of the analysis or u(t — ¢,) for u(r)
at the start in either case. Such delay is called dead time. With noticeable delay
anywhere else, the response from any instant onwards depends not just on the
conditions at that instant and the forcing, but also on the behaviour of the
delayed vanable throughout the delay interval, i.e. at an infinite number of
instants. The number of initial conditions to be specified, and hence the system
order, is infinite, making analysis more difficult (Problem 1.1).

We shall be paying most attention to models which relate the output at a
succession of evenly spaced sampling instants to input and output at earlier
sample instants. They also are hard to analyse when they contain a delay not at
the input or output, even if it is an integer number of samples long, if the
variables being sampled exist between samples as well. The difficulty does not
arise, however, if the delay is in a part of the system which is entirely discrete in
time, such as a digital filter or controller, since a complete specification of the
delayed variable then only amounts to a finite number of sample values
(Problem 1.2).

1.3.2 Lumped Models
When we write the variables describing a system as functions of time only, we

imply that each is located at one point in space or has no spatial significance:
the system is lumped, not distributed.
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Example 1.3.3 Halley's comet extends over a considerable distance and alters
in shape as it orbits. Its velocity is theoretically a function of three spatial
dimensions and time. An astronomer is, in practice, content to know fairly
precisely how its centre of gravity moves and, as a separate issue,
approximately what happens to its shape. A

Example 1.3.4 Studies of water quality in rivers and lakes are concerned with
diffusion and circulation of pollutants, nutrients and dissolved oxygen.
Rather than modelling these quantities through partial differential equations
as functions of two or three spatial dimensions as well as time, it may be
permissible to represent rivers as cascades of well-mixed reaches, and lakes by
two- or three-dimensional arrays of compartments. Exchanges of material
between reaches or compartments are then described by a set of ordinary
differential equations (Whitehead ¢r al., 1979). A

When a distributed variable is represented by one or more lumped
variables, approximation error is incurred in the dynamics in addition to loss
of resolution. Even so, the question is how to lump, not whether to lump, since
digital computation requiring a lumped representation will be necessary at
some stage in the analysis of the system unless the system and its boundary
conditions are very simple.

1.3.3 Time-Invariant Models

A dynamical system is time-invariant if the sole effect of delaying its forcing
and initial conditions is to delay its response by the same amount. In other
words, the input-output relations do not vary with time and are relatively easy
to analyse.

A time-varying model may be preferred to a more comprehensive but
complicated time-invariant model, with the time variation showing the effects
of the omitted part of the time-invariant model. Section 8.1 discusses this
point further.

Example 1.3.5 (Dumont, 1982) Chip refiners in the wood-pulp and paper
industry consist of two contra-rotating grooved plates which grind a mixture
of wood chips and water. The wood-chip feed rate and motor power to the
plates must be adjusted to control the energy input per unit mass of wood
fibres. The motor load is adjusted by a hydraulic actuator which varies the gap
between the grinding plates. Unfortunately the gain from plate gap to load
power is non-stationary, because the plates wear, relatively slowly in normal
operation but rapidly if the plates clash.
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An “open-loop™ estimate of the gain may be obtained [rom a wear index
which records the plate age and number and severity of clashes. This is
implicitly a model of the mechanism determining the gain. A more satisfactory
solution is to update an empirical estimate of the gain at short intervals, as
part ol a closed identification and control loop. A

1.3.4 Lincar Models

Consider a system with no initial stored energy. If its response to an input u (1)
is 3,(r) and its response to wu,(r) is y,(r), it is linear if its response to
ou, (1) + Pus(r), with o and f any constants, is oy, (1) + fr,(r). A similar
definition of linearity goes for systems with more than one input variable and
response (output) variable. Linearity allows us to find the response to any
input, however complicated, by breaking the input into simple components
then adding the responses to each component. In identification, this implies
that only the response to a suitable standard input need be identified, as in
Chapters 2 and 3.

From Chapter 4 onwards, the model is required to be linear in its
coeflicients but not necessarily in its dynamics. That is. if we write the model as

SOy ™00, 0,)=0 (1.3.1)

)

where 3 means d'y/dr" and similarly for u, and 0, to 0, are the coefticients to
be estimated, the derivative of f'with respect to each () must be independent of
all the 0's but the same is not necessary for the input- and output-dependent
arguments of f, as it would be for lincar dynamics.

Example 1.3.6 The circuit in Exercise 1.3.2 has linear dynamics but is non-
linear in parameters L, C and R. Itis linear in LC and RC, though, and they
can be regarded as its parameters if we do not insist on keeping L, C and R
separate. JAN

1.3.5 Other Model Categories

Within the family of linear, lumped, time-invariant, finite-order models there
are quite a few further distinctions to be made.

(1) Input=Output versus State-Variable Models. State-variable models
between the inputs and outputs. The dynamics are expressed by a set of first-

order ordinary differential equations, one per state variable. By this means the
analysis of linear models of different orders is unified and brought within the
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Differential
state
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Initial
conditions
x{7y)

Fig. 1.3.2  State-variable model.

scope of linear algebra (Kailath, 1980). Models with multiple inputs and/or
outputs fit into this framework as comfortably as single-input-single-output
systems.

Any given input-output relation can be realised with any one of an infinity
of equally valid choices of state variables. A suitable choice can either put the
state equations into a convenient form, e.g. with certain coefficients zero
(Problem 1.3), or make as many state variables physically meaningful as
possible. This free choice, all within a standard form of model, is helpful in
general but makes identification more complicated. The trouble is that the
coeflicients in a preferred state-variable model may not be identifiable from
input-output behaviour alone, a point which must be checked for every
candidate choice of state.

Example 1.3.7 The second-order input-output relation L+ RCo + v —u
of Exercise 1.3.2 can be rewritten as two first-order equations in state variables
v and i/, the capacitor voltage and source current:

i=(—Ri—v+u)/L
b=i/C

or equally well in terms of v and v + Ri:

d ) 1 R v Ru
a0 TR (RC L>W+RU RCTL
X 1 Ri v
D=——0 -
rRe VTR =325

or v and v, the latter denoted by w to avoid a cryptic equation ¢ = ¢':

w=(—RCw—v+u)/LC

V=w
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Any two independent linear combinations of v and i will do as state variables.
Notice that the second and third alternatives have 1/RC, 1/LC and R/L as
parameters, easily related to the parameters of the second-order input-output
equation and thus identifiable from the input-output behaviour. The first
pair of state equations, however, has parameters R/L, 1/L and 1/C, only the
first of which can be identified from the input--output relation between u and v.

A

Since the choice of state-variable models for identification requires more
background in linear algebra than the identification of input- output models,
we touch on it only briefly among the more advanced topics in Chapter 8.

(i1) Time-Domain versus Transform Models. Linear, time-invariant models
may be differential equations or impulse responses in the time domain, or
transfer functions in the frequency or Laplace-transform domain (Gabel and
Roberts, 1980; Ziemer ¢r al., 1983). The two are formally equivalent; we can
move readily from one to the other, and the choice is a matter of practical
convenience (Ljung and Glover, [981). The great majority of recent
developments in identification concern time-domain methods and so does
most of this book.

(iil) Deterministic versus Stochastic Models. 1dentification methods span
a range from making no provision for uncertainty in the measurements or the
model to treating the model coefficients as random variables and modelling
the errors and impairments in the measurements in some detail. The resulting
models are respectively deterministic, i.e. certain, and stochastic, i.e.
probabilistic with time as an independent variable (Helstrom, 1984; Melsa
and Sage, 1973). As a compromise, some methods identify deterministic
models but take care to allow for impaired measurements. Chapters 2-4
examine such methods.

(1v) Single-Input-Single-Output versus Multi-Input-Multi-Output Models.
Identification methods for single-input-single-output (s.1.5.0.) models will be
our main focus. They form the foundation of methods for multi-input—multi-
output (m.1.m.o.) models. Section 8.7 looks briefly at m.i.m.o. models. An
important feature of linearity in the dynamics is additivity of the output
responses to separate inputs. Non-linear dynamics cause the response to any
one input variable to be atfected by the behaviour of the other inputs, and so it
is necessary to identify the relations between all the input variables and the
output simultaneously. The relations may be identified one at a time in a linear
system, in principle, treating all but one of the inputs as sources of output
disturbance (admittedly structured) while each input-output relation is
identified.
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(v) Continuous-Time versus Discrete-Time Models. All large systems and
many small ones are identified from records taken at a succession of discrete
instants, either because the data-logging or parameter estimation is digital or
becausc the observations become available only periodically. Typical
periodical observations are quarterly or monthly economic statistics, shift
records from industrial processes and sampled signals [rom digital
communication channels. The natural thing to do with discrete-time records is
to identify a model which relates sample-time values but says nothing about
what happens between samples. Such a model is convenient if it is intended for
digital control design, state estimation or periodic prediction.

Information in continuous-time variables is lost when they are sampled un-
less the sampling rate is high enough (Gabel and Roberts, 1980, Chapter 5;
Reid, 1983, Chapter 3; Ziemer et al., 1983, Chapter 7). Without going into
details, we note that the rate must be at least 2/to preserve a component at a fre-
quency £, in the sense that accurate recovery of the component is theoretically
possible by lowpass filtering of the sample sequence, if the sampler and filter are
perfect. Allowing for imperfections and the gradual rather than abrupt decline
of signtficant content with increasing frequency, a realistic sampling rate is 10
or so per period at the frequency at which the power starts to drop oft rapidly,
or at the cut-off frequency of a lowpass filter applied to the variable before
sampling. Conversely, it 1s unwise to draw conclusions from a discrete-time
model about behaviour at frequencies approaching half the sampling
frequency.

Too-rapid sampling has its own drawbacks, fortunately serious only in
rather specialised circumstances. It yields non-minimum-phase discrete-time
models of some minimum-phase continuous-time systems (Astrom et al..
1984), making some adaptive control methods unfeasible. We shall not pay
any further attention to this problem. Sampling will be assumed to be at a
satistactory rate and uniform in time whenever we consider discrete-time
models.

(vi) Parametric versus Non-Parametric Models. One way 1o represent
dynamical behaviour is by a function, say the output response /(1) of a linear
system o an impulse input, which is not parameterised. Thatis, the function ts
specified directly by the result it gives for each value of its argument. The
alternative 1s to nominate first a family of functions, such as all sums of
exponentials, then one or more parameter values to pick one member out,
such as the number of exponentials to be included in our model, and finally
cocefficient values, like the initial value and coefficient of time in the exponent
for each exponential.

The benefit of restricting the model to a parametric lamily 1s economy
relatively few parameters and coefficients are needed to describe it. Such
economy is achieved by taking the trouble to find a suitable model structure,
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then going through a more complicated and less general dentification
procedure than for a non-parametric model. The impulse-response. step-
response and frequency-response methods of Chapters 2 and 3 are non-
parametric, while the methods of later chapters arc most often applied to
parametric models. Wellstead (1981) reviews non-parametric identification
methods from a practical viewpoint.

In practice the distinction between parametric and non-parametric maodels
is not sharp. For instance, the number of instants we evaluate /(1) at, and the
interval, are in effect parameters. A working definition of “parametric model”
is “pretty restrictive model, identified in stages (structure. parameters.
coefficients)”. “Non-parametric model™ might be interpreted as “fairly
unrestrictive model, identified all in one go™.

A potential source of confusion is that “parameter” is used in identification
both in the sense cmployed here and to mean any number which is not a
variable, e.g. the coefficient of each term in a non-parametric linear model.
The mix-up is firmly established and there is a lack of alternative words with
precise enough meanings, so we shall just try not to read too much into the
word.

(vil) Sectioned versus Unitary Models. Sectioning a model can simplify
identification by separating aspects of behaviour which can be identified one
at a time. A natural and often intuitively obvious basis for sectioning is
local regional-global. For example, a distillation column might be modelled
on two scales, local s.i.s.0. relations between feed flow rate or temperature and
product flow rate or column temperature, for instance, forming parts of a
model of the column as a whole. The column model might then form part of a
model of a refinery. Controlis conveniently split up in the same way, with local
single-loop controllers co-ordinated by manipulation of their set-points, and
overall control exerted through a relatively long-term scheduling process. in a
control hierarchy.

Differences in time scale are also a basis for sectioning. Indeed. models are
often split up by time scale with little conscious thought, treating slow
components of an output as drift while identilying faster dynamics. and fast
dynamics as instantaneous while identifying slower ones. When the spread of
speeds is large, separate treatment of fast and slow dynamics is highly
desirable, as otherwise the choice of sampling rate is difficult. A rate high
cnough for the fastest dynamics implies a large number of samples to cover the
slowest. Resolution of the fast dynamics may be lost, or estimation of the slow
dynamics spoilt by cumulative error.

Example 1.3.8 With R*C/L = 100 in the circuit of Exercise [.3.7. the response
(1) to an impulse input u(7) contains two decaying exponentials. The ratio
between the exponents is 98:1. In an interval L/R, the faster exponential
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decays by a factor 2.718 and the slower by less than 1 %,. To determine the
faster component accurately the output should be sampled at intervals not
much over 0.4L/R, the time to decay by 33%,. An unparameterised impulse-
response model would then need over 750 terms to cover the time up to when
the slower component has decayed to 59, of its initial value.

A parametric second-order transfer-function model (Section 2.3) gives the
same response with only three coefficients. However, an error of 0.1 in the
decay of the slower component over one 0.4L/R interval gives an error of
1129, in the calculated value of the impulse response at a lag of 750 samples,
so the model coefficients would have to be found to an impossible degree of
accuracy. The remedy is to use a longer sampling interval, around 40L/R, in
estimating the slower component (Problem 2.3.) A

Large systems with relatively few internal connections are easily split into
sections if those connections are accessible for measurement. So are systems
with response components spanning a large range of speeds but not too many
of similar speed. It is a different story for large systems with complicated
internal connections and systems with a fairly uniform spread of response
speeds. Reduction of models with linear dynamics has received a good deal of
attention, with an eye on simplified models for control design, and is the
subject of Section 8.5. Methods for decomposing large systems for
identification (Mahmoud and Singh, 1981) have not yet had much impact on
the cut-and-try approach usual in identification. A fundamental obstacle to
automation of the identification of large systems (and small ones, come to
that) is the need, in the end, to decide part by part whether the model is
credible. If model testing and validation has to be piecemeal. and it has, there
is less incentive to avoid a piecemeal approach to identification.

We should note that a system may be large and strongly interacting without
necessarily being difficult to section for identification and control design. The
accessibility of variables for measurement is the determining factor. An
example is a steelworks cold-rolling mill (Bryant and Higham, 1973), where
the effects of control action at different stands interact strongly but through a
small number of well-instrumented variables such as strip gauge, tension and
speed.

(viil) Markor-Chain Models. We shall look only at models based directly
or indirectly on differential equations, or, in discrete time, difference
equations, with the system inputs and outputs as variables. Other types of
model are valuable in some applications, notably Markov-chain models.
These specify the probability of every possible transition from a state at one
instant to a state at the next (Luenberger, 1979, Chapter 7; Wadsworth and
Bryan, 1974, Chapter 9). The variables are the probabilities of being in each
possible state at each instant. The transition probabilities are assumed
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constant and independent of previous history. At first sight a Markov-chain
model looks very different from a difference-equation model, which gives the
next output in terms of input values over a range of times. When the difference
equation includes an additive random-variable “noise” term to account for
unknown disturbances and measurement error, some similaritics can be
traced. We can rewrite the difference-equation model as a set of first-order
difference equations, i.e. a state-variable model, with the next state expressed
in terms of present, not past, state, input and noise. Moreover, the next state lb
given as a probability distribution, determined by the probability distri-
butions of the noise and present state, although for simplicity we usually quote
(and compute) only the mean value of the output and perhaps some measure
of its variability about the mean. Thus we see that a stochastic ditference-
equation model also gives future state probabilities from present state
probabilities. The remaining difference between Markov-chain and ordinary
difference-equation models is one of emphasis. The difference-equation model
gives the next state mainly as a deterministic function of present state and
known input, with the uncertainty brought in via the noise. The Markov-
chain model is entirely probabilistic, with no mechanism describing how the
next state is determined, other than the transition probabilities.

Identification of a Markov-chain model presupposes either enough
observations of each possible state transition to yield its probability, ora good
knowledge of the causes which determine the probabilities.

1.4 HOW DO YOU CONSTRUCT A MODEL?

No straight answer can be given to the question of how to construct a model.
The best way to construct a model depends on a host of practicalities, not all
foreseeable. and all we can do is generalise by pointing out a few of the stages
and some of the constraints on the choice of technique.

1.4.1 Stages in ldentification

Chapters 2-8 introduce identification methods, Chapter 9 talks about
experiment design and Chapter 10 discusses the analysis of results. Very
seldom does an identification project consist of a single pass through the
sequence (i) pick a model, (i1) design the experiment. (iii) do the experiment
and (iv) analyse the results. Figure l.4.1 sketches identification more
realistically. Most items in Fig. 1.4.1 are just common sense, but two of these
items deserve more attention than they tend to get in the literature, namely
informal checks on the records and model validation. Both are discussed at
length in Chapter 10.
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1.4.2 Constraints on Identification Methods and Results

Once the aim of the identification exercise is clear and the system to be
modelled has been defined, the methods adopted and results obtained depend
on

(1) access to the system: historical records, e.g. economic or hydrological,
with no opportunity to influence them, or normal operating records with no
control over the input but some chance to improve instrumentation, or
responses to planned input perturbations in the presence of other disturbances
and drift, or responses from bench tests in controlled conditions, or detailed
examination of a system which can be dismantled and tested in sections, or,
most likely of all, some combination of these; repeatability of tests and volume
of records are other important factors;

(ii) time available: the response of a bandpass communication channel
might be found in milliseconds or less at little cost, while a blast furnace with
transient responses lasting a day or two has to be logged tfor weeks or months
to get sufficient records (Norton, 1973), so its identification is costly (but so is
ignorance of its dynamics);

(1i1) instruments and actuators: the average power, instantaneous value,
rate of change and smoothness of change of input perturbations are limited by
the input actuators and the system; the size of an output response to a
perturbation is normally stringently limited in process plant, to ensure usable
product; the sampling rate may be limited by instruments or logger, or by the
time taken to collect records, particularly in the life sciences or economics; test
duration may be limited by instrument and actuator unreliability or by human
endurance when manual collection of records is involved (Stebbing ¢t al.,
1984): instrument noise or sampling error may be the predominant factor
limiting the quality of the records;

(iv) computing facilities: lack of computing power is not the constraint it
once was, but an important question is still whether the model can be updated
sequentially as measurements are taken, or requires off-line iteration through
the records; the back-of-an-envelope calculation of approximate model
parameters, e.g. gains and time constants from Bode plots or step responses
(Chapters 2 and 3), is still a great attraction of some classical identification
methods:

(v) availability of specialised equipment and methods. transfer-function
analysers and cross-correlators (Chapters 2 and 3) make identification
relatively quick and easy in circumstances that suit them: specialised methods
of estimating models have developed in many ficlds, such as reverberation
testing of rooms (Parkin and Humphreys, 1958) or “curve-peeling” for
separating exponentials in biomedical test results (Jacquez, 1972, Chapter 7),
but we have not the space to cover them;
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(vi) precision and completeness required.: effort is not unlimited, even for
academics, and the law of diminishing returns applies as much to
identification as to anything else.

1.5 HOW TO READ THIS BOOK

Identification is not a spectator sport. The only way to find out what the
various techniques really can and cannot do is to try them. There are pieces of
fairly portable technique with a firm theoretical base, otherwise this book
would hardly be justified, but they all have their weaknesses, and every
application seems to have some non-standard feature to test them. The book
recognises the numerical and empirical nature of identification by resorting to
numerical examples as often as possible. They are intended to be followed
through in detail and often raise significant points: they are not just
illustrations. In many of them it would be worthwhile to alter some of the
numbers or details and explore the consequences. Similarly, the end-of-
chapter problems are not primarily drill exercises, but are intended to
encourage scrutiny of further practical issues. The best accompaniments to
the text, though, are a set of records from an actual dynamic system, and
someone who knows their peculiarities and wants a model from them.
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PROBLEMS

1.1 A system containing a pure delay 7 is described by
¥y +av(t — 1) = bu(r)

Its output y(7) is zero over the interval T up to time zero. The input u(r) is zero
at all times except zero, when it is a very short, unit-area impulse. Find y(t),
1(21), »(31), and if you have the patience, »(41), by integration over 0 < < 1,
t <1 < 2rand so on. Compare these values of y(r), and the effort it costs to get
them, with those of the system described by

(1) +av(r) = bu(r)
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1.2 The output y(¢) from a digital controller is related to the input «(7) by the
discrete-time equation
ﬂ 1%—1—)“ +av[(i — k)YT)=bul(i — DT], i=1,2,3 ...

where T'is the sampling interval, a and b are constants and k is a fixed positive
integer. The output is zero up to and including time zero. A unit-pulse input,
which is one at time zero and zero at all other times, isapplied. For (i) k = 1, (ii)
k = 3 find the resulting output, over a long enough period for its behaviour to
become clear. Does the extra delay in (ii)) make the output any more
complicated ?

1.3 Verify that for the system of Exercises 1.3.2 and 1.3.7, state variables

Xy =(l4+a)/2 + Lai/CR, Xy = (1 —o)p/2 — Lai/CR
give decoupled state equations of the form

Xy =A4x 4 ou/CR, Xy =4,x, —oui/CR

where o = (1 —4L/CR?) "2 and 4,. 2, are the poles (eigenvalues) of the system.
What is the observation equation relating ©(7) to these state variables? By
integrating the state equations find the response v(r) to a unit-impulse input
u(r) for (1) 4L < CR?, (ii) 4L > CR?. What functions of R, L and C can be
identified from this response ? If the amplitude of the response is unknown but
its waveform is otherwise known accurately, is there any change in what can be
identified ?

1.4 (Mainly forelectricalengineers) How would youfind LC and RCin the
input-output o.d.e. of Exercises 1.3.2and 1.3.7, if you could choose u(r) freely
but only record v(r), making no other measurements? If the network were in a
vandal-proof box on the bench, with the input and output terminals labelled,
but you knew only that the box contained passive, bilateral components,
could you identify the nature, configuration and values of the components? If
so, you would be relying on electrical cngineering background.

This problem illustrates the large difference between “black box™
identification of input-output dynamics and identification of the internal
structure of the system from external measurements. The latter requires more
thought and more background knowledge about the system.




Chapter 2

Classical Methods of Identification:
Impulse, Step and Sine-Wave Testing

2.1 TIME-DOMAIN DESCRIPTION OF RESPONSE

The identification methods of this chapter rely on the theory of s.i.s.0., linear,
time-invariant dynamical systems as covered by electrical and control
engineering degree courses and many others. Suitable textbooks, useful also
for later chapters, include Gabel and Roberts (1980), Reid (1983) and Ziemer
et al. (1983). A reminder of the theoretical background will be given for each
method to minimise the need for background reading.

2.1.1 Impulse Response and Initial-Condition Response

Linearity allows us to find the response of a linear system to any forcing u(z),
>0, by

(1) calculating or measuring the response to some very simple standard
waveform, say a step of size | or a short rectangular pulse of area 1, then
(i1) breaking u(¢) up into a collection of components, each a scaled and
delayed version of the standard waveform, approximating u(z) if necessary,
and finally,
(iii) building up the total response by summing the responses to the
components (“superposition”).

Figure 2.1.1 illustrates this procedure with a short, rectangular, unit-area
pulse as the standard waveform. The shorter the pulse, the better u(r) can be
approximated. If we make the pulse width tend to zero, keeping the area unity,
the standard waveform becomes a unit (area) impulse or Dirac 6 function. The
unit impulse at time zero is defined by

o(t)=0 forall r#0, j o(tydr=1 2.1.D

-
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Standard input Response to
waveform standard input

L AN

u(F) Linear i*ﬁ/(/)

system
/™ .~ Total
/N0, response
Input and its Total response
components and i1ts components

Fig. 2.1.1  Finding response of linear system by superposition.

The section of input covering a short time At about time 7 is roughly a
rectangular pulse with area u(t) At. As At tends to zero, this tends to u(t) At
times a unit impulse occurring at time t, d(r — t). If h(t) is the unit-impulse
response of the system to (1), the response to the impulse 8(/ — 1)u(t) At is
h(t — t)u(t) Ar. Summing the contributions from infinitesimally short sections
of input all the way from its start at t = 0 to the present time t = r we find the
total forced response as the convolution or superposition integral

1
}'(l):f h(t — tu(t) dr, t>0 (2.1.2)
0
Any non-zero initial conditions, due to initial stored energy in the system,
also contribute to the response. The initial-condition response just adds to the
forced response, because of linearity. In fact, it can be thought of as the
response to an input before time zero, which was carefully designed to
establish the specified conditions at time zero. The presence of an initial-
condition response in an identification experiment means that to identify the
system we must first know, or find out, the initial conditions, e.g. 1(0) and ¥(0)
for a second-order system. As they generally include derivatives of a noisy
signal, they may not be easy to measure. We therefore either arrange zero
initial conditions by letting the system settle to quiescence before perturbingit,
or observe y(t) for long enough for the forced response to predominate as the
initial-condition response dies away. The (unit-) impulse response is found by
solving (2.1.2), e.g. by Laplace transforms. If a parametric model such as a
differential equation is then fitted, the response to any specified initial
conditions (i.c.) can also be found.
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Example 2.1.1 A stable system is modelled by V' +a,y +a,) = bu. Taking
Laplace transforms of this equation,

s[sY(s) —y(0_)]—p(0_) +a,[sY(s) —v(0 )] +a,Y(s) =bU(s)
)

bU(s) i (s+a,)y0_)+1(0.)
+ 1.C. response - 3
s +a;s+a,

Y(s) = forced response -——
() P s?+a,s+a,

Consider the case where s* + a, s + a, can be factorised into (s — o, )(s — )
with o, and o, being real, and u(¢) is a unit impulse, so U(s)is 1. We split ¥ (s)
into partial fractions and invert them to find the total response

1
ry=—— ~lb-a)0.) + 30 )]explaty 1) = [b—ot; 1W0) + 3(0 ) Jexplo, 1)}

1 2

Provided o, and a, are not too close, we can estimate them from the impulse-
response test by saying that y(s) is dominated by the slower-to-decay
exponential towards the end of the transient, fitting a single exponential to this
tail, subtracting it from y(7) and fitting a faster exponential to the remainder.
Hence a, and a, are estimated. However, b can be found only if y(0_) and
¥(0_) are known in advance. The response to any specified initial conditions
can be determined without knowing b, and therefore without knowing the
1(0_) and y(0_) in the impulse-response test. A

2.1.2 Discrete-Time Forced Response: Unit-Pulse Response

The forced response of a discrete-time system is easily found by superposition.
The obvious standard input is a unit pulse, i.e. one at time zero. The zero-
initial-condition response to this input, the unit-pulse response (u.p.r.),
consists of a sequence of pulses of size /i, /i, h,,... at times 0, 7,27, ...,
where T'is the sampling period. No real system responds instantly to an input,
so /i, is zero, although it sometimes makes sense to ignore a delay much
smaller than 7. Superposition gives the response at sample instant 7 to an
input sequence u,, U, 15, ... at 0, 7,27, ... as the convolution sum

t

yo= Zh,,kuk. h, probably zero, integer r >0 (2.1.3)

k=0

Example2.1.2 Atintervals of T'seconds, a radar gives a sample of the position
x of a target moving in a straight line. A microprocessor forms an estimate
g, =(x,—2x,_, +x,_,)/T? of the target’s acceleration, which is added to the
signal controlling the torque of the motor rotating the radar antenna, by way
of a digital-analogue converter, hold and power amplifier.
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The response g to a unit pulse x, = 1 at time zero is 1/7% at time 7., —2/T*
at T+ 1, and 1/T? at 2T + 1., where 1, is the delay in the microprocessor.
Hence the initial response g, is zero, and the hold output is 1/7% at time 7,
—2/T? at 2T and 1/T? at 3T. However, if 1, < T and the motor torque
responds rapidly to the control signal, the antenna angular position is more
accurately calculated by ignoring the delay 7. On the other hand, the inertia of
the motor and antenna prevents angular position from responding rapidly to
torque changes, so the response of sampled angular position to x, first shows
at sample 7 + 1, and A, is taken as zero in the overall u.p.r. YaN

Commonly an estimated u.p.r. describes the sampled behaviour of a
continuous-time system. We must be careful to recognise the limitations of a
u.p.r. in those circumstances. The u.p.r. may miss significant fast dynamics by
having too large a sampling period, or slow dynamics by being too restricted in
duration. The dead time (pure delay) is determined only to within one
sampling period.

Example 2.1.3 (i) Figure 2.1.2a shows two u.p.r.’s,one with 2, = 1.1(0.6)' "' —
0.1(0.95)""!, r> 1 and the other with #,=0.555'"", 1> 1. Over the first five
samples they look very similar, yet the corresponding steady-state gains (final
responses to a sampled unit step) are 0.75 and 2.247, respectively. The
explanation is that the steady-state gain is the sum of all the u.p.r. values 4, to
h_, and the low-amplitude slowly decaying second component of the first
u.p.r. ultimately cancels 73 9, of the sum due to the faster first component,
even though its effect on A, to Ay is small.

(i) The two sections of u.p.r. in Fig. 2.1.2b differ by at most 5%, or so. They
are h,=0.8'—0.1', 1 >1 and h,=0.72(0.828)' "', 1 > 1. They represent the
sampled behaviour of zero-dead-time continuous-time systems with greatly
differing impulse responses. That of the first system rises at a finite rate from
zero, while that of the latter jumps abruptly to 0.87 (Problem 2.5). The former
has fast dynamics which are initially important in the impulse response but
hardly show at all in the u.p.r.

(ii1) Consider the second u.p.r. in (i). It could derive from sampling a
continuous-time system with negligible dead time, impulse response
exp[(7/T)In0.555]/0.555, steady-state gain (area under the impulse response)
3.06 and impulse-response peak 1.802. At the other extreme, it might come
from a continuous-time system with dead time just less than T, impulse
response exp[(¢/T — 1)In0.555], t > T, steady-state gain 1.698 and impulse-
response peak 1. A

The difficulties and dangers of fitting models to impulse responses are
further illustrated, with many numerical examples, by Godfrey (1983).
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Fig. 2.1.2 (a) Unit-pulse responses, Example 2.1.3(). h,=0.555""", O: h,= L10.6) ' =

0.1(0.95)"', . (b) Unit-pulse responses, Example 2.1.3(ii). 4,=0.8'-0.1', O; h=
0.72(0.828)"" ', O.

Another point to note when identifying the u.p.r. of a continuous-time
system is that a sampled input is usually applied to a continuous-time system
through a hold circuit, which reconstructs a continuous-time signal from the
samples. The dynamics of the hold circuit will be included with those of the
system in the identified model, and might noticeably affect them. The simplest
and most widely used hold is the zero-order hold, which provides a constant
output equal to the most recent input. If itis taken to respond to the area of the
input pulse rather than its amplitude, as is realistic. its impulse response h(t).is
a pulse of height 1 and duration T, the sampling interval. Hence /(t) and its
frequency transfer function are

h(t) = p(t) —pt —T), H(jw) = (1/jw)(1 —e T) (2.1.4)

where u(1) is the unit step at time zero. The effects of the hold are negligible at
frequencies much below 1/77 Hz (Problem 2.7).
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2.1.3 Step Response

A convenient feature of linear systems is that an ideal integrator at the input
has the same effect as one at the output. The response to an integrated unit
impulse, i.e. a unit step, is therefore the time-integral of the impulse response.
We can, in principle, measure the step response and find the impulse response
by differentiation. How practical this is we discuss in Section 2.2.2.

We must be rather careful with discrete-time systems on this point. The
u.p.r.can be found, in principle, by differencing the response to a sampled unit
step but not the sampled response to an unsampled unit step.

Example 2.1.4 A continuous-time system has unit-impulse response ac¢ ™. Its
unit-step response is therefore at(l —e¢~ "), which when sampled gives
at(l — ¢~ *T") at sample k. The response at time AT to a sampled-unit-step
input, on the other hand, is

aT((’ kTl +£'7'k‘ DTy + PN + C -Tit + l)
—ar(l— e * I~ T A

2.2 DIRECT MEASUREMENT OF IMPULSE AND STEP
RESPONSES

2.2.1 Measurement of Impulse Response

The simplest of all identification techniques is to find the impulse response by
putting in an impulse and seeing what comes out. The model is acquired in a
single response measurement if noise is not excessive. The influence of noise
can be reduced if necessary by repeating the perturbation and averaging the
responses. The averaging depends on the inconsistency of the noise. Summing
N responses gives N times the consistent part but less than N times the
inconsistent part, and thus improves the signal:noise ratio (s.n.r.). A more
formal statistical justification is investigated in Problem 5.4. Measured
impulse responses may also contain structured disturbances such as slow drift
or periodic responses to unmeasured forcing inputs, not necessarily reduced
by averaging. They must be filtered out instead. Freehand interpolation and
subtraction of the disturbance on a response plot may be ecnough. Other
options are bandpass filtering or even fitting an explicit model to the
disturbance so that it can be subtracted.

A practicable test input has finite duration and amplitude, and can only
approximate the o function. The duration must be short compared with the
fastest feature of interest in the impulse response, and the amplitude large
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enough to give an acceptable output s.n.r. The actual response is the ideal
impulse response convolved with the input pulse waveform, as in (2.1.2). The
effect is to blur the impulse response. For instance, a rectangular pulse of
duration ¢, and area 1 would give by (2.1.2)

]

y(t):‘l— [ h(t —t)dt ~h(r) 2.2.1)
td Jo

rather than the ideal /(7).

A large-amplitude short pulse may be difficult to produce. Moreover, it
leaves some doubt as to whether the response is linear and typical or is affected
by large-signal non-linearity such as saturation. The pulse amplitude is limited
by the input actuator range, and usually by the maximum size of perturbation
regarded as acceptable.

Example 2.2.1 Thesilicon content of the pigiron produced by a blast furnace
is a good indicator of how the furnace is running. It is influenced by the
temperature of the hot air blast. The response of silicon content to a blast
temperature perturbation lasts of the order of a day and affects several
successive casts of iron (Unbehauen and Diekmann, 1983; Norton, 1973). The
temperature can be altered quite rapidly, but a short pulse of higher or lower
temperature would have to be very large for its effect to be discernible in the
normal cast-to-cast silicon variation. Even if it could be produced. such a
pulse would not be risked. The prime concern is to run the furnace smoothly.
A large temperature pulse might cause irregular behaviour, difficult to predict
orcorrect and untypical of normal operation. In an extreme case, hanging and
slipping of the burden (ore, sinter and coke) could occur, perhaps damaging
the refractory lining. A

Another potential difficulty is that the actuator may have dynamics
comparable in time scale with, and inseparable from, the dynamics of the rest
of the system, but we may not want to include them in the model.

2.2.2 Measurement of Step Response

A step is an indefinite succession of contiguous, equal, short, rectangular
pulses and produces a much larger response and higher s.n.r. than does one
short pulse of the same peak amplitude. Conversely, a given peak output
amplitude is achievable with a smaller step input than pulse iput. and
therefore there is less risk of saturation within the system.

The effect of noise on a parameter estimate differs according to whether the
estimate is obtained from a step response or from an impulse or unit-pulse
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response. For example, steady-state gain is easily found, in the absence of
drift, from the initial and final values of the step response, even in considerable
noise. By contrast, the value obtained by integrating the impulse response
includes an unknown contribution from noise, and a value found by summing
u.p.r. samples would be susceptible to dead-time uncertainty introduced by
the sampling, as in Example 2.1.3(iii). Another example, favouring the
impulse response this time, is estimation of the impulse-response peak.
Differentiation of a noisy step response would exaggerate wideband noise
because differentiation amounts to filtering with gain proportional to
frequency. Unless the peak of the derivative were found from a parametric
model fitted to the whole step response with high confidence, its value would
be very uncertain.

We note finally that a step is the easiest of all inputs to produce with
acceptable fidelity, and repeated steps in a square wave are equally easy.

2.3 TRANSFORM DESCRIPTION OF RESPONSE

Laplace and Fourier transforms are the basis of classical control design and
much of the analysis of electrical systems. We recall their definitions

’(l)[f(t)]E[:(S')%J\ j'([)e*srd[
o (2.3.1)
//7[/([)] = F(ju)) L J f'([)e*jwtd[
0

Their popularity is due to the way they simplify the input -output convolution
relation (2.1.2) to a multiplication of Laplace transforms

Y(s) = H(s)U(s) (2.3.2)
or the Fourier version with jw for s. In identification we are interested in
solving (2.3.2) for the transfer function H(s), which is the Laplace transform
of the impulse response A(¢). Usually (2.3.2) is much easier to solve than the

integral equation (2.1.2), and if we want /(t), we can find it by inverse Laplace
transformation of H(s).

Example 2.3.1 The output of a certain initially quiescent, linear, time-
invariant system forced by u(r) =e*', 1 >0, is

y(1) = et —ex)

so the convolution relation (2.1.2) is

Blemt — emt) = J hit — t)en" de

0
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We start a time-domain solution for A(r) by differentiating:

! dh(t — 1)
Bla, et — o,e™') = h(0)e™ 1 + | €™~

dt
o dr

We then put —dh(s — t)/dr for dh(t — t)/dt and integrate by parts:

— ! !
[ealrjv_@_ﬁdl—] +J o h(t —1)de
dt 0 0

= —eM'h(0) + A(t) + o, e’ — e™')

We now collect terms and cancel, to find A(f) = («, —a,)pexpla,f). By
contrast, Equation (2.3.2) is

(a, — o) Bis — oy ) (s — ay) = H(s)/(s — )
giving H(s) and hence /i(t) with negligible effort. A

2.3.1 Identification of Laplace Transfer Function

Through (2.3.2) we can in principle identify H(s) as Y(s)/U(s) using any
Laplace-transformable signal as input. We have to fit a Laplace transform to
the waveform (1) by breaking it into components with known Laplace
transforms, such as a constant, a ramp and exponentials. By doing so we are
selecting a parameterised model, a more demanding business than merely
recording an unparameterised impulse response. To add to the complication,
Y(s) contains components stemming from U(s) as well as H(s), as in Example
2.3.1. This weighs against any input more complicated than a step, but a more
elaborate waveform may be forced on us by input-actuator limitations.

2.3.2 Discrete-Time Transfer Function

We now review briefly the description of sampled signals by = transforms and
at the same time establish notation which will be useful later. In discrete-time
systems the relation between a sampled signal and its transform description is
very direct. If a signal f(z) is sampled every T seconds, the result is fully
described by listing the sample values and their times. As before, we denote
sample f(kT) by f,, and we shall usually be concerned with signals whlch start
at time zero. The list of sample values f, , 1. /3. - . . is denoted by { /}, the curly
brackets being read as “sequence”. To complete the description we need an
operator o shift a sample along to the correct place in the sequence. If a plain
number x is taken to mean a sample at time zero of value x, and a T-second
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delaying of a sample is denoted by an operator = ', a sample /, at time kT is
=7%, . conventionally written f,=~* The entire sampled signal is then

fo+ iz Pz i = F(ETY) (2.3.3)
This polynomial in =~ "' is the z-rransform of the sampled f(¢). Its length is
finite or infinite according to when f'(¢) ends, and for most simple waveforms
F(z~') can be written concisely in closed form as the quotient of two
polynomials in = ' (that is, a rational polynomial function). For example,
when a finite-duration exponential f(r) =¢™, 0 <1< NT, is sampled, its =
transform is

f,‘(:*l)zl+()1T:-l+(,11T:*l+”_+()NaT:*N
(N+ Dal' o —~N-1

| —¢
N (2.3.4)

T

A z-transform input-output equation comes straight from superposition of
the responses to individual input samples. With u.p.r. and input respectively

Hiz Y=h,+hz""+hz" 2+
7 (2.3.5)
Uiz Y=ug+uz " Huym 2+
the output is altogether
Yz Y=y +hz" "+ Dug+2 Yy + s
o g AT A,
:(/1(,+/7,:71+~-)(u(, +u,:71 +.)=HE HueE Y (2.3.6)

Clearly (2.3.6) is the discrete-time counterpart of (2.3.2). Sample 1 can be
picked out:

e =T g+ 2T s 2
1
= Eh'uk”k: o >0 (2.3.7)
k=0

We recognise this as the convolution sum (2.1.3), with a time marker =
attached. In discrete time the step from the operational input-output relation
(2.3.6) to the explicit expression (2.3.7) for the output is trivial, compared with
the step from the transform relation (2.3.2) to the convolution (2.1.2) in
continuous time. Furthermore, the discrete-time convolution sum is easy to
compute.
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The convolution sum suggests an identification method in which v, to vy
and u, to u are recorded, then the N + 1 simultaneous linear equations given
by (2.1.3) are solved for /i, to /1y. Assuming the input is zero before time zero,
(2.1.3) gives

Vo =hotty. Vo =houy +hguy, vy =g+ g+l o0 (2.3.8)

so it looks as if we can solve successively for /1, /1, , /15, etc. The only thing that
spoils the idea is the presence of output noise. Careful choice of , to uy might
keep the noise-induced errors in /1, to /1, tolerable (Problem 2.8), but a better
solution is to record more input and output samples, and find estimates of /1,
to /1, which give a good overall fit to the observed output. Chapter 4 follows up
this idea in detail.

Let us now think about identifying the z-transform transfer function
written as a rational polynomial function of =~ ' rather than a long, or even
infinite, power series. A typical u.p.r. consists of # sampled exponentials, and
can be written as

Hz )=y (0B iz 20 b+ fm 4 fam Z 0
o (LB VBT )

B I R o T

B R Y = R

:}'l(l */))3:41)([ _/f;—'il)()(l ;/f“: ‘71)+),1(”.)+,_,«'y”(:,,)
(I == H =z HE-H0 =420

byt bz b2

= 2.3.9)
l+a, ="'+ +a,z" (

Here the dead time has been taken as zero; more often it will be non-zero, with
the effect of making b,, and perhaps other leading numerator cocflicients.
zero. From (2.3.9) and (2.3.6),

(I +a,z "o ta,s MY(sT ) = (b, 4—/71:71 +~~+[7”“1:"””)U(:' )
(2.3.10)

The coeflicients of = 7' on each sidc give us a difference equation
VoAay, e ay s =bou b+ b, (230D
from which

+hott,+ b, A+ b
(2.3.12)

Ye=d g Ty TV,

Like the convolution sum, this cquation for v, is linear in its transfer-function
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coefficients, and we should expect that the @’s and #’s can be estimated in much
the same way as the u.p.r. coefficients s, to h,. Later chapters will show how
far this is true. The most important advantage of (2.3.9)(2.3.12) is that for
most systems n can be quite small, typically 2 or 3, whereas the number of
significant u.p.r. samples may be very much larger.

2.3.3 Frequency Transfer Function

Although we shall concentrate on the identification of discrete-time systems,
we should not ignore the most widely used identification method of all, sine-
wave testing to obtain the frequency transfer function H(jw) of a continuous-
time system.

The response of a system to a sine-wave input can be found algebraically by
first writing down its response to ¢/, applied from time — oo. The response to
e 7 follows by putting —; for j, and the response to sin wr or cos wr by
expressing them in terms of ¢/ and e~ The convolution integral gives the
response to e/ as

NOE J h(t — t)el* de (2.3.13)

Substitution of t’ for 1 — ¢ then gives

3

0 e
w1) = J h(tYed' " (—dt')y = (j h(r’)e‘j‘”’rdr’>ej”“ = H(jw)e’" (2.3.14)
‘ 0

where H(jw) is the bracketed integral, i.e. the one-sided Fourier transform of
the impulse response. If H(jw) is 4 + jB with 4 and B real (and frequency-
dependent), a sine-wave input
u(r) =sin wt = (e — ¢ 41 2j (2.3.15)
gives an output
y(1) = [H(jw)e™ — H(—jw)e ~"]/2j
= [(4 +jB)(cos wt +jsin wt) — (A — jB)(cos wi — jsin wt)]/2j
=Asinwt + Beoswt = (A4” + B?)'sin(wt + tan ~ Y(B/A4)) (2.3.16)

In other words, the output is a sine-wave of the same frequency as u(7),
multiplied in amplitude by (4 + B?)"/2, which is |H(jw)|, and advanced in
phase by tan " '(B/A4), which is ZH(jw). Since the system is linear and time-
invariant, a scaled or time-shifted input produces a similarly scaled or time-
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shifted output, so the gain |H(jw)| and phase change £ H(jw) apply to any
input sine-wave at frequency w/2n Hz.

For sinusoidal or periodic inputs we need the complex value of H(jw) only
at the frequency of the input and its harmonics, if any. This is the situation, for
instance, in steady-state analysis of power systems. More generally we want
the frequency transfer function H(jw) over the whole range of frequencies
passed by the system, so we can predict the response to any input waveform
which has a Fourier transform, using

Y(jw) = H(jw)U(jw) (2.3.17)

The impulse response can be recovered from H(jw), in theory by inverse
Fourier transformation and in practice by fitting a parametric model with a
known inverse to an experimental H(jw), as in the next section.

At this point it is worth noting that the delay operator z~* in discrete-time
systems can be interpreted as a compressed notation for e ~*T, where T is the
sampling period. That is, sample f, at time kT is regarded as a & function of
area f,, which has a Laplace transform f,e 7, i.e. f,-7* Two benefits are
conferred by this view. First, we can put jw for s and obtain the frequency
transfer function of a discrete-time system from its z-transform transfer
function, and the spectrum F(e T} of a signal from its z-transform. Second,
we can use Laplace transforms to analyse the sampled input response of a
system between the sampling instants, writing U(e *T) for U(z™!') and
H(e ") for H(z™'). The only thing that then marks out discrete-time linear
systems from any others is the relative complication of their Laplace and
frequency transfer functions.

Example 2.3.2 A sampled exponential {u} =e*,t=0,T,2T, .. c witha <0
has z transform U(z™ ) =1+eTz" ' 42 =724 . =1/[1 —e*'z71],
and Laplace transform 1/[1 — ¢~ 97]. The response of a system with transfer
function 1/(s — y) to {u} has Laplace transform
T 1 T (,*AT - ()—?_s'l'
Y(s)=1/{[l =" T(s—p)t=—-+eT — e — ... %
s—y s—7 s—7
SO
y(t)y=e'u(t)+e e It = T) +e>* e 2Dyt — 2Ty + - x

where p(r) is the unit step at time zero. That is, each sample from {u } excites a
new response starting at the sampling instant and persisting for ever. The
expression for y(¢) is good for all times, not just the sample instants,

The spectrum of {u} is 1/[1 —e* /7], Since e?™ is 1, e* JT =
gla e =QmINT for any integer k, so the spectrum repeats itself at intervals
of 2n/T in w. AN
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2.3.4 Measurement of Frequency Transfer Function

Some input actuators cannot apply a sine-wave. Many valves in process plant
open and close at fixed rates, for instance. Any hysteresis (backlash) in an
input actuator will distort a sine-wave but not spoil a step. If we are lucky and a
sine-wave can be applied, and the output is undistorted and the s.n.r. high, the
gain and phase change at a number of frequencies can be measured by just
looking at input and output, once the initial-condition response due to
switching the input on has subsided and the response looks as if the sinc-wave
has been going for ever. Morc often the output contains noise, harmonics
caused by non-linearity (i.e. components at integer multiples of the input
frcquency), constant bias and perhaps drift. Periodic disturbances such as
diurnal variation in biological systems, seasonal factors in economic records
or mains-{requency interference in electrical systems are also common. Gain
and phase-change measurements can be made less susceptible to such
impairments by extracting the fundamental Fourier component from the
output and measuring its amplitude and phase. That is, we compute the
averages

Lw [N . Cw [me ]
S = Nn L y(r)sin o dt C = Nn L yv(tycoswmtdr  (2.3.18)
over N cycles of the output. An mput Fsinwmr produces an output
GVsin(wr + () + v(r) where G is the gain, ) is the phase change and (1)
comprises all the impairments. Now '

GL/U) (2N o .
S = [s(cos ) —cos(2mt + 0)) + v(t) sin wi] di

v |,
GV ) Gl [¥me .
:——z—fcos( + Sy ), v(1)sin wr dt (2.3.19)

and the last integral is zero if #(r) 1s constant, a ramp or any sinusoid at an
integer multiple of the input frequency (Problem 2.11). It is small if N is large
and o¢(r) is random noise independent of the input or a sinusoid at a
frequency unrelated to that of the input. Similarly, C gives GV sin 0 plus a
term which can be made small, so altogether

G~2S*+ CH" Y, 0 ~tan "(C/S) (2.3.20)

Commercial transfer-function analysers work on this principle.

Frequency transfer functions are attractive for scveral reasons. They are
familiar to electrical engineers through their role in a.c. circuit analysis, and to
control engineers through classical stability analysis and control design. The
Bode plots used in control engineering, plots of log G against log m and 0
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against logw (D'Azzo and Houpis, 1981; Melsa and Schultz, 1969), are
particularly useful in suggesting parameterised rational polynomial transfer-
function models. Think of

Hjoy = KUt DUon 2 Dot 2D G g 30
s GoT, + D )(oT, +1) T

with the t's and T’s real. As we increase the frequency {rom near zero, the low-
frequency gain is roughly K, then cach lactor jor, + 1 contributes significant
gain and phase advance from about @ =1/t; up, and each I/(joT;+1)
contributes attenuation and phase lag from about @ = 1/T; up. If the decibel
gain 20log,, G is plotted, each jwrt; + 1 is asymptotically proportional to w,
and contributes 20dB more gain per decade increase in . Each 1/(jowT; + 1)
gives 20dB less. With @ also plotted logarithmically the asymptote is a
straight line, approached within 0.17dB (2", at w=5/t; or 5T, If
we fit straight-line sections with slopes integer multiples of +20dB/decadc to
the measured gain Bode plot, @ at each junction between two successive
sections determines a I/t; or 1/T,, according as the bend is upwards or
downwards. The phasc plot provides a rough check, since jwt, + 1 givesa 45°
lead at w = 1/t,, 1/(joT, + 1)a45° lag at « = 1/T;, and the other factors little
lag or lead at frequencies well below their values of 1/t or I/T butalmost +90°
well above those frequencies.

Dead time is visible on the phase plot as a constant rate of increase of phase
lag with o, since a delay 1, gives risc to ¢ '« in the transfer function.
Complex conjugate roots of the numerator or denominator of H(jw) are less
straightforward to estimate, but Exercise 2.3.3 will give an cxample. Factors
Jjevin the denominator contribute 90° lag and —20dB/decade gain over all w,
and are easiest to detect from the low-frequency behaviour which they
dominate.

Example 2.3.3 The open-loop dynamics of a motor-specd control system.
sketched in Fig. 2.3.1, are to be identified by sinc-wave testing. The sinusoid is
added to the d.c. speed reference voltage, and the gain and phase change
measured by the tachogenerator voltage normally fed back. The amplidyne is

Speed
reference Speed feedback

Amplidyne
(constant
speed)

Tacho-
generator

@
TG0

Fig. 2.3.1  Speed-control systemn.
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Fig. 2.3.2 Bode gain and phase-change plots for speed-control system. Vertical bars indicate
uncertain measurements.

a high-gain d.c. generator acting as an amplifier. The dynamics might be quite
complicated, as they include the amplidyne field time constant, the armature-
circuit time constant of the amplidyne and motor, and the mechanical time
constant of the motor—armature:tachogenerator-armature: motor—load
combination. The output, of r.m.s. amplitude between about 0.25 V and a few
volts, has superimposed on it about 25V d.c., a near-sinusoidal 200 Hz
commutator ripple of 5-10V r.m.s. and a few volts r.m.s. of wideband
commutation noise. Given the opportunity, one would test the various
machines separately, but testing the overall dynamics is quicker and needs less
instrumentation.

The Bode plots of the test results are given in Fig. 2.3.2. The downward
breaks of the straight-line approximations to the gain plot, to —20dB/decade
slope at 1.8rad/s and —40dB/decade at 12.6rad/s, indicate denominator
factors joT 4 1 with T} =0.556 and T, =0.080. The phase changes at those
frequencies are close to —45°and —90° —145°, confirming the values of T
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and T, and leaving no extra lag to suggest significant dead time. The low-
frequency gain gives K =18 in the transfer function. The high-frequency
behaviour is more thought-provoking. A very sharp resonance peak at about
17 Hz suggests a transfer-function factor Y[(jwjw,)*+ 2 jow,+ 1] with {, the
damping ratio (D’Azzo and Houpis, 1981), very small. The full-line curves in
Fig. 2.3.2 given by w,= 113 and {=0-05 are a good fit in phase but only a
moderate fit in gain. It looks as if even this { may be too high. At this stage
some physical insight is essential to make sense of the results. A likely source
of very lightly damped resonance is torsional oscillation between the
armatures of motor and tachogenerator. The motor-tachogenerator
combination is, in fact, a laboratory motor—-generator set with two identical
large armatures. Further testing with the tachogenerator electrically loaded
confirmed this explanation; a 10 W load provided enough damping to reduce
the resonance peak height to about 1.5dB.

Two lessons may be drawn from this example. First, surprisingly smooth
and apparently accurate results are obtained by averaging y(¢)sin o and
y(t) cos wt (over 10 cycles up to 5 Hz, 100 cycles up to 10 Hz, then 1000 cycles)
even in the presence of extreme impairment of the output. Second, a
convincing model can only be found by interplay between test results and
background knowledge of the system. A

Frequency-response identification is not short of disadvantages to balance
its virtues. It requires a succession of tests at different frequencies, taking time
and necessitating trial and error to arrive at a suitable range and spacing of
frequencies. At each frequency the initial-condition response due to sudden
transition from no input to a sine-wave must dic out before the steady-state
forced response is observed. For that reason sweeping of the frequency may
not be acceptable. A frequency-domain model is not convenient for some
applications. For instance, the intersymbol interference and echo behaviour
of a data-communication channel is better modelled in the time domain, by
impulse responses or u.p.r.’s. Finally, frequency transfer functions ot discrete-
time systems are complicated, as Problem 2.10 discovers.
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PROBLEMS

2.1 A system with impulse response /i(1) = exp(— 107) is quiescent at time
zero. Find and sketch (i) its response to an input u(r) =1, 0 <1< 0.2; (ii) the
sampled response to this input, the samples being at time intervals of 0.05
from time zero: (iii) the sampled response to the sampled version of this input,
ie.

() =0.050(t —0.05) + 0.15(: = 0.1) + 0.156(+ — 0.15)

(iv) the continuous-time response to the input in (iii).

2.2 Investigate the effects of a non-ideal input in an impulse-response test by
plotting the response of the system with impulse response /(1) =exp(—1) —
exp( — 5¢) to a rectangular pulse input of unit area and duration (i) 0.1, (i1) 0.2,
(it1) 0.5. Compare each response with /i(r).

2.3 A system has a u.p.r. consisting of two sampled exponential
components, one fast and one slow. In each sampling interval, the fast one
falls to o, times its value at the start of the interval. The corresponding figure
for the slow one is a, , and «, is about o}, with r a large integer. As in Example
1.3.8, the difference in speed causes difficulty in identifying «, and a,
adequately. They could be identified in two separate experiments with
sampling intervals differing by a factor r. Should the results for «, and o, be
combined in a z-transform transfer function of the form

H(z")y=by /(1 —o =" )+ by/(1 —ajz™")?

If not, how should they be combined?

2.4 Find and sketch the sampled unit-step responses of the two systems of
Example 2.1.3(1).

2.5 By treating the first u.p.r. in Example 2.1.3(i1)) as two sampled
exponentials and the second u.p.r. as a single sampled exponential, verify that
the continuous-time impulse responses of the two systems just after time zero
behave as stated in that example.

2.6. Two first-order continuous-time systems have the same u.p.r.’s when
their outputs are sampled, but one system has a dead time much less than one
sampling interval, and the other a dead time just less than one sampling
interval, as considered in Example 2.1.3(iit). Show that the ratio of their
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steady-state gains equals the common ratio between successive samples in
their u.p.r.’s, and so does the ratio of their peak impulse-response values.
2.7 Show that the gain and phase change of the zero-order hold described in
Section 2.1.2 are 2 sin(w7/2)/w and —wT/2, where w is the angular frequency.
Explain the asymptotic gain as o tends to zero. At what frequency does the
gain differ by 1 dB from its zero-frequency value?

2.8 For the identification method tentatively suggested in Section 2.3.2,
solving (2.3.8) for the u.p.r. ordinates, consider the effects of an estimation
error o/,in /1, on the estimates of later ordinates /1, |, etc. What features of the
input sequence would cause the error to increase as it propagated? Would a
diverging sampled exponential be a good test input? Would a converging
exponential?

2.9 Find and sketch the amplitude and phase spectra of the sampled
exponential u(iT) =exp(aiT), i=0,1,2,..., considered in Example 2.3.2,
with « real and negative. [Rather than grinding out algebraic expressions.
think of exp(a — jw)T as a vector of length exp(«7T) at an angle — T radians
to the positive real axis, and do some geometry.]

2.10 A microprocessor takes samples £, f,.,. .. of asignal /(¢) at intervals T
and forms the three-term moving average g, = (f,+/,_, +/,-.,)/3. Find the
transfer function G(jw)/F(jw). Sketch how the gain and phase change vary
with frequency.

2.11 Referring to (2.3.19), verify that constant, ramp or harmonic-frequency
components in the output have no effect on the {requency transfer function
measured by the Fourier analysis method of Section 2.3 4.

2.12 Two adjacent break frequencies on a Bode gain plot are scparated by a
factor of 3. The gain contribution at the lower break frequency of the transfer-
function factor which gives rise to the upper break is therefore less than 0.5dB.
negligible for most practical purposes. What is its phase contribution? What
do you conclude about the relative convenience of gain and phase Bode plots
for identification?

2.13 Roughly, what dead time would be the smallest reliably detectable in test
results of the apparent quality of those in Example 2.3.37

2.14 (For control engineers) What limitations, if any, would the high-
frequency resonance found in Example 2.3.3 place on the steady-state-error
capability of the closed-loop control system? Would your answer change if the
resonance peak were at —3dB rather than — 15dB or so?




Chapter 3

Identification Based on Correlation Functions

3.1 TIME AVERAGING TO REDUCE EFFECTS OF NOISE
3.1.1 Time-Average Relations between Signals

A basic problem in identification is to distinguish the eflects of the input from
noise in the observed output. Averaging the responses was recommended in
the last chapter for impulse and step tests, and in a frequency response test,
Example 2.3.3, we achieved impressive rejection of noise and other
impairments by averaging the product of the output and sin wr or cos wt,
signals derived from the input. The idea of averaging can be extended to other
forms of input by employing the cross-correlation function (c.c.f) r, (1,0
between input u(r) and output v(¢), defined as '

ro T ) = Efu()y(t + 1)) (3.1.1)

The notation E[- ] signifies “the expected value of -7, so r, (7, 1) is the average
of u(t)y(¢ + 1) over all possible values, regarding u(¢)y(t + 7) for given r and t
as a random variable (Helstrom, 1984; Melsa and Sage, 1973). For our
immediate purposes, we can rcad it as “the average of -~ and interpret it as the
1ime average
r
Fol) = lim 31? J u(t)v(r + 1) dt (3.1.2)
T—x <« -T
This average is a function of lag t but not of 7. The two averages do not
coincide for all signals, since E[u(¢)y(tr + t)] might well vary with ¢. That is,
averaging over time in one long experiment need not give the same result as
averaging at one time over a large number of experiments, even in the limit as
experiment length and number of experiments tend to infinity. A random
variable for which they do coincide, as we shall be assuming, is called ergodic.
The reason for letting the start time — 7T in (3.1.2) tend to — oc rather than
fixing it at zero is that we shall be interested in the steady-state forced response
to an input which started long ago, not the transient response to a signal which
starts at time zero. The c.c.f. defined by (3.1.1) measures how closely y(7 + 1) is
43
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related to u(¢); the value a which minimises E[(ou(s) — y(t + 1))*] is easily
shown to be r_ (t)/E[u*(t)] (Problem 3.1).

uy

A discrete-time counterpart of (3.1.2) is

N

1 :
i /\' = 1 _ 1. -1
Fup(K) Nl~1-11 INE u;y:, Kk integer (3.1.3)

i=-N

which can be approximated by an average computed from finite records.
The autocorrelation function (a.c.f) of a single signal is defined

analogously. For instance, the continuous-time a.c.f. of an ergodic u(r) is

T
FoolT) = Elu(Du(t + 1)} = lim LT J u(Du(t + 1) dt (3.1.4)

T"xz -T

and the discrete-time a.c.f. is
N

1
- (k)= lim — — )
K NIII},~21V+1 E TRV (3.1.5)
i=-N

The a.c.f. covers negative as well as positive lags T or k, and is an even function
of lag. From (3.1.5), for mstance,

N+k
, 1
Fudk) = }Jlm AN+ 2 Ui\l
i=—N+k
N+k
1
= lim~- u_ =1 (—k
Nl..l.n,,2N+l 2 wt; o =r,(—k) (3.1.6)
i=-N+k

since the starting point of the summation is immaterial. Although the c.c.f.
also exists for negative lags, it is not an even function, and values of r, at
negative lags are seldom of interest, as y does not then depend on u.

The a.c.f. r,,and c.c.l. r, are important in identification because they are
related through the impulse response or u.p.r. of the system with u as input
and y as output. A good estimate of the impulse response or u.p.r. is often
obtainable from the relation, since r_,, and if necessary r,_, can be measured
by a time average on which noise has little effect.

e

3.1.2 Input-Output Relation in Terms of Correlation Functions

The discrete-time refation is of most use to us. The output at sample instant
i+ k due to an input that started an indefinitely long time ago, so that the
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initial-condition response has long since vanished, is

x

_1’,”:2/7,“,,,‘_,] (3.1.7)

J=0

sojthe c.c.f. between {u} and {v}is

N ¥
. |
r“".(l\):Nllam,‘m 2 lliz“/zju,-“]
i= N j=0

gl N ¥

1
— zhjlxlvi«nl INTT 2 Ul o = Zhjr““(/\' -7 (3.1.8)

i=0 i=-N i=0

This is the Wiener- Hopf equation. The continuous-time version, derived in
much the same way, is

[s
FolT) = J h(tyr, (t—t)dt 3.1.9)
4]

where ¢, is the settling time beyond which /1(¢) is negligible. The equation
originally arose in optimal filter design. We want to solve (3.1.8) for the u.p.r.
{h}, which can be truncated at &, say, in an asymptotically stable system,
cutting off the negligible part of the decaying tail. The unknowns /i, to i1 enter
linearly, so we can compute r, (k) for s 4+ 1 values of k, insert them into (3.1.8)
with the corresponding r, (k) to r,,(k — ), and solve by matrix inversion. We
go to the trouble of computing {r, } and {r ,} to reduce the influence of noise.
If the observed output {y}iscomposed of clean output { 1! plus noise {r}, we
compute

N -k

- 2 (g + ) = K) 1K) (3.1.10)

R Tk
i= M
So long as {v} is unrelated to {u} and zero-mean, the long-term average of
u.v; ., 1s very likely to be close to zero. We formalise this by saying {u}and {r}
are mutually uncorrelated if v, (k) is zero for all lags k. A more restrictive way
to ensure that r, (k) is zero is to assume that u; and v;,, are statistically
independent, so that Efu;, ,]is E[u,]E[v; ], and one of them is zero-mean,
i.e. Efu;] or Elv;,,] is zero. The precise assumption is unimportant, as we
cannot in any case verify that {r, }is negligible during the experiment since {r}
is unobservable. A heuristic “engineering” assumption is that we can be pretty
sure {r, }1s negligible if we take care to avoid treating any input-dependent or
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constant components of the output as noise. We can be surer still that the
computed {r,, }in(3.1.8)is less affected by noise than {y}in the input-output
convolution (2.3.8) which offered an alternative way to find the u.p.r.

Solution for {A} is very easy if we employ an input with an uncomplicated
a.c.f. The best of all is a white input which has r,,(k — j) zero except when lag
k —j is zero, yielding {h} directly from

e

Vu_v(k):zhjrw(k —j)=ho?, k=0,1,...,s (3.1.11)
j=0
where o} is r,(0), the m.s. value of u.
Before we examine specific white or near-white input signals for

identification, itis worth taking a look at the frequency-domain significance of
correlation functions and of white signals.

3.1.3 Power Spectral Density: White Noise

As we are considering signals which go on for ever, we cannot discuss their
frequency-domain characteristics without first ensuring that their Fourier
transforms exist. The transform of u(r) may not exist unless u(t) 1s absolutely
integrable, i.e. Ji | lu(0)|dtis finite (Gabel and Roberts, 1980; Bracewell, 1978).
To make sure it is, we restrict #(r) to a finite but long duration from — T'to T,
and correspondingly redefine r, (1) as

T

|
Fu(T) =57 B u(t)y(t +1)dr (3.1.12)

and similarly for r, (7). Discrete-time signals are treated the same way, with
the a.c.f. and c.c.f. regarded as finite-time averages over as long an interval as
we please.

The = transforms of {u} and {y}, both extending from sample M to sample
N, are

Uz =uyz M tuy, oM 4 uyz"N
Y D=y My gy (3.1.13)
and it is easy to see that
[coefficient of =¥ in U(2)Y(z ™" )] =ty Vyras + Uprs 1 Vagonss +- + Uy _ Vn
for O<k<N—M  (3.1.14)
If we divide through by N — M +1 —k, this approximates r, (k), and as

uy
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N — M is increased, the z-transform of the c.c.f. gets closer and closer to
U(z)Y(z"')/(N — M +1). If the sampling interval is T, say, the frequency-
domain behaviour of the c.c.f. is therefore found by writing - as exp(jwT")
in U)Y(z"")/(N-M+1). The a.ct. is dealt with similarly, using
U(z)U(z™")/(N — M + 1), and is more informative since

U)U(z™ ") = U2 =|Ue 7T (3.1.15)

That is, the Fourier transform of the a.c.f. gives the square of the amplitude of
the signal spectrum. By analogy with a sinusoid, the square of the amplitude is
proportional to the signal power at the frequency in question, or more
accurately the power per unit frequency, since the signal is represented as a
continuum of frequency components. The Fourier transform of the a.c.f. is
therefore called the power (auto-) spectral density. The c.c.f. gives rise to the
cross-spectral power density, less readily interpreted.

For completeness let us Fourier transform the c.c.f. and a.ct. of
continuous-time signals and find a similar interpretation. With r (1) as in
(3.1.12),

.

Ruy(j(l)) - '%[’."J‘(T)] - J ru)‘(’[)e —itdt

R

x T
— J L J u(t)ery (1 + T)efj“’(wf) dtdr
1 T ) * .
2T J u(ryer” J W+ e T drdt
r (3.1.16)

In the inner integral ¢ stays constant, so dt equals d(¢ + ) and the integral
gives the Fourier transform Y{(jw) of the output. The transform exists
provided the response to any short section of u(z) is absolutely integrable,
which 1s so in any system of which all poles have negative real parts. As u(r)
extends only from — T'to T, the outer integral is the Fourier transform integral
with j in place of —j, so

Ryy(jw) =(1/2TYU(— jw)Y(jw) (3.1.17)

In exactly the same way, the transform of the a.c.f. of u(s) is
Ryy(jw) = (12TYU(—jw) U(jw) = (1)2T)|U(jo)|* (3.1.18)

A frequency-response identification method can be based on
H(jw)=Y(jw)/ U(jw) = RU)'(A/.(U)/RUU(]‘U)) (3.1.19)

and some commercial frequency-response analysers work that way, but the
time-domain alternative is more convenient, as it avoids the practical

— -
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problems of aliasing, leakage and windowing in numerical Fourier
transformation (Ziemer et al. 1983).

Although we have written the transform of the input a.c.f. in terms of the
input spectrum in deriving the power spectrum, we would in practice usually
find the p.s.d. from the a.c.f. directly.

Example 3.1.1 A sampled signal has a.c.f. r (k) =a¥ with —1 <a <. Its
p.s.d. is found from {r,} written as the z transform |+a(z+z"')+
a’(z* 4+ z7%) + - oc with exp jo T" for z. Since |a| < |, the infinite series can
be summed to get

1 ] l —a?

()=~ ——— - T
Rou 1- aexp/mT l —aexp — joT’ l +a? = 2acoswT’

or written as

2(1 +acoswT’ +a*cos2wT’ +---o0) — 1

= Re[2(1 + aexpjoT’ +a’exp2joT’ + ... x) — 1]
and summed.
The p.s.d. Ry (jw)is periodic in « and oscillates between (1 — a)/(1 + a) at
w=xn/T", £30/T",. .. and (1 +a)/(l —a) at 0 =0, +20/T", +47/T", .. ..
VAN

One special case merits close attention. A sequence {w'} with a.c.l. zero
excepl at lag zero has a constant p.s.d., since the z-transform of {r,, } is just
o, the m:s. value of w, and putting exp/u)T’ for = does not change it. In
continuous time, a J-function r . (t) transforms to a flat, infinite-bandwidth
p-s.d. A signal with a flat power spectrum is called white noise, by loose
analogy with white light. The total power of such an infinite-bandwidth signal
would be infinite if the power in any finite bandwidth were non-zero, so pure
white noise is pure fiction; we are actually concerned with finite-bandwidth,
finite-power signals with flat power spectra. A signal with a d-function or
single-impulse a.c.f. has no consistent time structure. Its future values do not
depend on its present value. Because of its lack of structure, white noise
represents an ideal against which to measure the output errors of a model,
since no model can do more than embody all the structure of the output.
White noise is also a convenient raw material for modelling structured signals.
The idea is to describe a structured noise or input signal as the result of linear
filtering of white noise.

Example 3.1.2 A test signal u(r) is generated by filtering white noise 1w(r) of
constant p.s.d. p over the bandwidth of interest. The filter transfer function is
H(jw) =1/(joT;+1). The p.s.d. of u(r) is to be found.
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Since U(jw) is H(jw)W(jw), |U(jw)]* is [H(jw)|*|W(jm)|* so the p.s.d. of
u(r) is |H(jw)|*p, i.e. p/(0*T{ + 1). The larger T;, the narrower the spectral
spread of u(r). A

[t is important to recognise the limitations of white noise as a basis for
modelling structured signals. Real-life inputs and noise more often than not
contain features which cannot be represented as filtered white noise. Sustained
deterministic components or sporadic disturbances are often present.
Sometimes the model can be extended to include them, but sometimes we are
reduced to hoping they do not matter too much, or selecting records where
they are not too prominent.

3.2 CORRELATION-BASED IDENTIFICATION WITH SPECIAL
PERTURBATION

3.2.1 White-Noise Test

A white discrete-time perturbation signal {u} can readily be generated by
sampling a physical source of wideband ﬂal -spectrum noise such as thermal
noise (Helstrom, 1984), looking up a random-number table or computing a
deterministic long-period number sequence indistinguishable from noise
samples, as in the pseudo-random number generators provided by high-level
languages. It is wise always to compute the sample a.c.f. and reject any
unrepresentative test sequence. The standard deviation of a sample a.c.f.
computed from N samples of a genuinely white, zero-mean {u} is E[u’]// N at
any non-zero lag (Problem 3.4). As E[u?] is the autocorrelation at lag zero, a
trial {u} might reasonably be rejected if the sample a.c.f. at any small non-zero
lag exceeded iZ/\/W times the sample autocorrelation at lag zero, roughly
the 95, confidence limits for a Gaussian variate. A more refined test is hardly
justified, as the criterion for rejection is subjective anyway.

Identification of the u.p.r. from (3.1.8) using a white input {u} is known as
white-noise testing. A white test signal is called “noise™ to emphasise its
unstructured nature, even when it is completely known. White-noise testing
has some drawbacks. Very large input values may occur, depending on the
source, and be clipped by the digital-analogue converter or input actuator,
altering the a.c.f. A signal from a genuinely random noise source is not
reproducible but can, of course, be recorded to allow direct comparison of
experiments. More seriously, a finite stretch of a white sequence has a finite
risk of a far-from-ideal sample a.c.f., invalidating the use of (3.1.11) on the
sample a.c.f. and c.c.f.

The reliability of results from finite records can be assessed more easily if
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{u} is a deterministic pseudo-noise signal, with a.c.f. behaviour over a finite
interval precisely known. A family of pseudo-noise signals with several
convenient features is considered next.

3.2.2 Pseudo-Random Binary Sequence Test

A pseudo-random binary sequence (p.r.b.s.) (Peterson, 1961; Golomb, 1967;
Godfrey, 1969) is

(i) deterministic but pseudo-random in the sense that its a.c.f. is close to
zero, compared with the value at lag zero, over a range of non-zero lags;

(ii) binary, a great advantage as it maximises the power for a given
maximum amplitude, simplifies digital generation and storage of the
sequence, suits most actuators and makes c.c.f. computation easy as explained
later;

(i) periodic, so its a.c.f. is periodic and is found accurately by averaging
over a single period, since if we take 2p periods,

p-1  (j+t1P-1
. 1
ruu(l‘) :LH}( 2[) P Ul 4y
j=-p  i=jp
P-1 P-1
1 1

~p ”iui+k:F Ul vp = Tk +1P) (3.2.1)

i=0 i=0

where / is an integer and P the period;
(iv) synchronous, i.e. the samples are produced regularly at one per bit
interval ¢,.

The best-known p.r.b.s. is the maximal-length sequence or m-sequence. An
m-sequence has period 2" — 1 during which every n-bit binary number except n
zeros starts exactly once. For example, one period of the m-sequence with n=3
is 1011100, so the three-bit numbers 101, 011, 111, 110, 100, 001, 010 start
successively in that period (and run into the first two bits of the next). The a.c.f.
characteristics of m-sequences are best seen in an example.

Example 3.2.1 We calculate the a.c.f. of the seven-bit m-sequence by
averaging u;u; ., over seven successive samples, starting at i =1 and taking
u; ,, from the second period 1011100 as required. We find

F@) =1 +04+1+14+14+0+0)/7=4/7
Ful D=0 4+0+14+1+0+0+0)/7=2/7
Fa2)=(14+0+1+0+0+0+0)/7=2/7
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and so on: r,(3)=r, &) =r. 5 =r 0 =3 r.(H=3=r0), r. (8=
r.(1),.... The a.cf. is far from that of white noise but can be brought
closer by a d.c. shift in {u}. If we subtract ¢ from every bit, forming {u'},

o7
k) = Z—(“i - C)(;"' =6 (k) = 2ei 4
i=1

where # is the mean of {u}, 2. The choice ¢ = (4 + \/7.)/7 makes r,..(k) zero at
all lags except multiples of 7. The resulting binary levels 0.227 and —0.773 or
0.631 and —0.369 may be less convenient than symmetrical levels.
Symmetrical ievels give non-zero autocorrelations at all lags, but the
measured {r,,} can be adjusted to allow for them, as described shortly. A

Figure 3.2.1a shows the a.c.f. of a general m-sequence with binary levels
+ b. The sequence is normally applied via a zero-order hold to the input of a
continuous-time system, and the output is sampled. The u.p.r. is then a
description of the sample-time dynamics of the zero-order hold and system
combined. An alternative is to view the output of the zero-order hold as a
continuous-time input, observe the system output continuously and form

(a)
Tyulk)

“P4]. R

Tl T TT T

k (bits)

b
(b) 70 (T)

bZ

T(X 1)
Fig. 3.2.1(a) Autocorrelation function of m-sequence. The negative valuesof r, areall — b/ P.

uu

(b) autocorrelation function of output of zero-order hold driven by m-sequence.
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r.(7) by analogue means, for any lag t of interest. Hence /i(t) at particular
values of 7 is found, rather than the u.p.r. Figure 3.2.1b shows the a.c.f. of the
zero-order hold output. It deviates from the ideal more than the discrete-time
a.c.f. of the m-sequence, by virtue of the two-bit-interval width of the spikes.

The input-output c.c.f. corresponding to Fig. 3.2.1a, with output noise {v}
present, 1s

s

ru_r(k) = Zhjrnu(k _/) + I‘m.(/\')

ji=0
: O
= b'(/zk — 2 ;;) +r, (k)
&
pr P DA g
P

where g is the steady-state gain Z; o f1;of the system, i.e. the final value of its
unit-sampled-step response. 1t can be measured in a step-test, inferred from
steady input and output levels, calculated as P} P (K)/((P —s5)b?) or
estimated from steady-state performance specifications.

Continuous- or discrete-time cross-correlation is particularly easy when the
binary input has symmetrical levels or one level zero, since multiplication by
the input only requires sign reversal or switching on and oft of the lagged
output.

Experiment design for p.r.b.s. tests is straightforward. The bit interval
should be short compared with the shortest feature of interest in the impulse
response or u.p.r., to avoid blurring it or missing it, respectively. The period
should be longer than the settling time of the impulse response or u.p.r., to
avoid superimposing the effects of iyand h;, ,in(3.1.8) orsimilarly in (3.1.9).
The swing between binary levels should be as large as permitted to maximise
the output s.n.r., and the experiment as long as possible to minimise the
contribution of noise to the input—output c.c.f. Several short periods of
p.r.b.s. are preferable to one long one, to prevent one or two short breakdowns
from ruining the experiment; the good a.c.f. properties apply only to complete
periods.

Industrial applications of p.r.b.s. testing are described by Godfrey (1970)
and Cumming (1972), who discuss their results in detail.

Example 3.2.2 The open-loop speed-control system of Example 2.3.3 was
perturbed by a 63-bit /n-sequence with bit interval 25 ms and mean-square
value similar to that of the input in Example 2.3.3.
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Two different cross-correlators were used. One produced the continuous-
time cross-correlation one lag at a time by analogue integration of the output,
with sign reversed whenever the input changed binary level. Irregular drift of
about 0.2Hz bandwidth in the output made values at successive lags
inconsistent and unrepeatable, even with careful biasing of the output to zero
long-term d.c. level and averaging over several periods. Susceptibility to drift
is common in open-loop systems normally controlled by feedback, since they
have high gain at low frequencies.

= (a)

ol

>

5

% O B . 1 L 1 —
< 20 40 60 80 1OO
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S
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_1_

Fig. 3.2.2 Results of open-loop p.r.b.s. test of speed-control system (a) c.c.f. computed from
2048 samples showing dominant time constants (sampling interval 10 ms). and (b) c.c.[. computed
from 16384 samples showing resonance as ringing.

Drift-correction schemes for mi-sequence testing are well investigated
(Brown, 1969) and fairly straightforward, but only compensate for dritt
adequately represented by a polynomial or short Fourier series. Unavoidable
erratic drift is better modelled as non-deterministic, as in some methods in
Chapter 7, where the disturbances as well as the dynamics are explicitly
identified.

The second correlator sampled the input and output at a rate well above the
bit rate and computed the c.c.f. over a range of lags from the same samples. As
Fig. 3.2.2 shows, acceptable results werc obtained, now repeatable. They are
consistent with the dominant time constants 0.08 and 0.56 s found in Example
2.3.3, and reveal a similar high-frequency resonance. Averaging over 1[5 or
more p.r.b.s. periods was necessary to obtain sufficiently repeatable and
plausibly smooth u.p.r.’s. A
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Pseudo-random binary sequence results have the disadvantage that non-
linearity or drift may have effects indistinguishable from those of noise, in
contrast to sine-wave responses. Inspection of the response waveform before
any processing is highly advisable in either case. A major advantage of p.r.b.s.
testing is its relative speed, even with considerable averaging, compared with a
succession of sine-wave tests, providing the cross-correlations at all lags are
found from the same records. Fast frequency-sweeping sine-wave-based
transfer-function analysers exist, however (Doebelin, 1980). In them, the
output is passed through a narrowband filter to extract the fundamental
without long averaging, and the variable-frequency output is heterodyned to a
fixed frequency so that a fixed filter can be used. Determining the fastest
permissible sweep rate may not be very easy when, as usual, the required
frequency resolution is initially unknown.

M-sequences are easy to generate compared with the other main family of
periodic p.r.b.s., quadratic-residue codes (Everett, 1966; Godfrey, 1969). The
m-sequence of period 2" — | appears in the right-most stage of an n-stage shift
register fed at the left-hand end by the modulo-2 sum (i.e. the remainder of the
sum when divided by 2) of the outputs of the right-most stage and one or more
others. Table 3.2.1 gives the stages summed fornupto 11.

Table 3.2.1
Feedback connections to generate m-sequences

Number of Sequence Input to stage |
stages period is mod-2 sum of
(bits) stages

X

7

15
31
63
127
255
511
1023
2047

»

— S v 0N L bW
—_—— 0 B 9N bW

[-JPN VW SRV

Modulo-2 addition of two bits 4 and B obeys the accompanying exclusive-OR
truth table

A B (4 + B)ymod2

0 o 0
0 1 1

1 0 1

1 1 0
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Shift register

Clock

__ M-sequence
output

Fig. 3.2.3 Shift-register generation of 7-bit m-sequence.

Example 3.2.3 The contents of the 3-stage shift register in Fig. 3.2.3 are
initially set to 001. The first clock pulse shifts them rightward one stage and
transfers 1, the modulo-2 sum of bits 2 and 3, into stage 1, making the contents
100. Succeeding clock pulses produce contents 010, 101, 110, 111, 011, 001;
then the sequence repeats. Stage 3 gives the 7 bit m-sequence 1001011. Stages 1
and 2 give the sequence delayed by 5 and 6 bits (not 2 and 1 bits!), and other
delayed versions are easily obtainable; for instance, the modulo-2 sum of stage
1 and 3 contents is 1100101, the sequence delayed by 1 bit. A

FURTHER READING

Bendat and Piersol (1980) and Jenkins and Watts (1968) cover spectral and
correlation methods of identification in depth. Further examples of p.r.b.s.
identification are given by Billings (1981) and Hogg (1981).
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PROBLEMS

3.1 Show that, in the notation of Section 3.1.1, the gain « which makes au(r)
as close as possible to y(r + 1), in the sense that E[(aw(r) — v(1 +1))7] is
minimised, is r, (7)/r,,(0).

3.2 A discrete-time system with unit-pulse response H(z ™'y =h, +h,z 71 +
h,= 7%+ - isdriven by a white-noise input {w ! and hasoutput {y!. By writing
r.{0) in terms of the autocorrelation function of {w|, show that the power
gain of the system, i.e. m.s. output/m.s. input, is hl + /7 + 1% + .- for this
input.

3.3 Alinear system with input u(r) has an output z() consisting of noise-free
output y(7) plus noise uncorrelated with y(z). If the transfer function H{ jw) of
the system is to be identified from correlation functions and the effect of noise
is Lo be as small as possible, would R, (jm)/R yu(jor) or Ryz(—jm)/ Ry —jo)
be preferable as the estimator of H(jw)?

3.4 A sample autocorrelation is computed as 7 (k) = Z‘\ Uit 4/ N. Show
that if’ successive samples from {u} are independent, zero-mean and of
constant m.s. value g2, 7, (k) has a mean zero and r.m.s. value af/V/WA
[Note that no assumption need be made about the amplitude probability
distribution of {u}.]

3.5 A discrete-time deterministic test signal has a period of M samples and
sampling interval 7. Find (i) the interval in lag at which its autocorrelation
function repeai- itself; (it) the interval in frequency at which its discrete power
spectrum repeats itself; (ii1) how many values on its discrete power spectrum
can be specified independently when the signal is being designed in the
frequency domain.

3.6 Find modulo-2sums of stage contents and/or gate output in Fig. 3.2.3to
give the 7-bit m-sequence delayed by 2. 3 and 4 bits.

h

PROBLEMS 7

3.7 Aninverse-repeat sequence of period 2P is the result of changing the sign
of alternate bits, say the even-numbered bits, in 2 periods of a P-bit /-
sequence. Find the a.c.f. of such a sequence. Compare the contribution of a
constant-plus-linear-drift output component to the input-output c.c.f., when
the input is an inverse-repeat sequence, with that given by an m-sequence
input.

3.8 Show that the cross-correlation function between an m-sequence and the
inverse-repeat sequence derived from it as in Problem 3.7 is zero at all lags.
Verify that this makes it possible to identify the two u.p.r.’s of a two-input,
one-output linear system simultaneously, using the Wiener Hopt equation.
3.9 The quadratic-residue sequence of period 7is 1 1 —11 —1 —1 + 1. Take
whichever sign you like for the last bit and check whether the a.c.f. of this
sequence is the same as that of the 7-bit m-sequence 1001011. How is this m-
sequence related to the q.r. sequence? [Note that not all q.r. sequences have
the same period as an m-sequence; a q.r. sequence with period 4k — [ exists
whenever 4k — 1 is a prime (Godfrey, 1969).}

3.10 Inan identification experiment, the first bit in each period of the 7-bit /-
sequence 1001011 used as an input is inadvertently changed to 0. The mistake
is later discovered. What alterations to the u.p.r. estimates obtained by way of
the Wiener- Hop!{ equation are necessary to correct the error?

3.11 A discrete-time model of a linear, time-invariant s.i.5.0. system is to be
found by a p.r.b.s. test. The system is known to have a continuous-time
impulse response approximating to /(1) = 100(exp( —0.1¢) — exp(—1)). Find
acceptable values of the p.r.b.s. bit interval, sequence length 2V — 1 bits
(N integer) and amplitude, if the mean-square value of the sampled output is
not to exceed 25.

[Hint for last part: {ind the discrete-time power gain of the system for an
uncorrelated input, on the reasonable assumption that the p.rb.s.
approximates white noise. ]



Chapter 4

Least-Squares Model Fitting

4.1 FINDING THE “BEST-FIT” MODEL

In the last two chapters we reduced the influence of noise on the estimate of
step response, impulse response or transfer function by time-averaging. The
justification was essentially statistical. We relied on the zero-mean noise-
dependent terms affecting the estimates becoming negligible if averaged over a
long enough interval. For discrete-time models, we had to take many more
observations than would be needed in the absence of noise, i.e. many more
observations than unknowns in the model.

In this chapter we take a different approach to the problem of estimating a
model from a large set of observations. We find the model, of specified
structure, which fits the observations best according to a deterministic
measure of error between model output and observed output, totalled over all
the observations. Initially we appeal to statistical theory as little as possible
(not at all, in fact, for most of this chapter). We examine the resulting
estimators in a probabilistic setting in later chapters.

4.1.1 Least Squares

We shall find the values of the coefficients in a given model which minimise the
sum of the squared errors between the model output and the observations of
the output: least-squares estimates of the coefficients. We might well consider
other measures of fit than output error squared, but this measure has two big
advantages. First, large errors are heavily penalized: an error twice as large is
four times as bad. This usually accords with common sense, but there are
exceptions. For instance, when a few observations are very poor, or even
totally spurious misreadings, the best thing may be to ignore them altogether,
and the worst thing to take a lot of notice of them. The other advantage is
mathematical tractability. The formula giving the least-squares estimates is
obtained by quite simple matrix algebra, and the estimates are computed as
59
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the solution to a set of linear equations. Moreover, the properties of the
estimates are relatively easy to analyse. Gauss, who devised least-squares
estimation at roughly the same time as Legendre, wrote: ... of all these
principles ours is the most simple; by the others we would be led into the most
complicated calculations™ (Gauss, 1809).

4.1.2 Ordinary Least Squares

The model we use relates an observed variable y,, the regressand, to p
explanatory variables, the regressors u,, to u,, all known in advance or
observed. In dynamical models the sample-indexing variable ¢ is time, but the
method is not restricted to dynamical models, and  need not represent time.
For instance, an econometric model might relate expenditure y, to such
indicators as income, age and family size. In that case  would index observed
individuals or groups.

The model has one unknown coeflicient 0, per explanatory variable. If the
u's for one sample and the (s are collected into p-vectors

uo=[uy, uy ou,ll 0=10, 0, --- 0,]" (4.1.1)

then the model is
v, =/ (u,0) +e, r=1.2,3,...,N (4.1.2)
where ¢, accounts for observation error (measurement noise) and modelling

error, since even without observation error few models are perfect. We aim to
find the value @ of @ which minimises

s Ze,l :Z (v, —/(u,.0)) (4.1.3)
=1 t=1

for the practically useftul case where /(- -) is linear in the unknown cocfficients
making up 6. That is.
vo=u0+e. (=1.23....N (4.1.4)

It is important to realise that the model need not be linear in the physical
variables giving rise to the u’s. For example, we might model the smooth
trajectory ol a radar target in one dimension by

y,=0,+ 0,0+ 0,07 +¢, (4.1.5)

The model is clearly non-linear in ¢, but linear in 0,, 0, and 0. Notice that 0,
covers any constant component of y, so {¢! can be assumed zero-mean. The
explanatory “variable” whose coeflicient is 6, is | for all samples.
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To make the algebra tidy, collect all the samples y, to yy into an N-vectory,
all the u, vectors into an N x p matrix U and e, to ey into e, giving
y= U0 +e (4.1.0)
and
S=ele=(y"—0"U")(y - U9) (4.1.7)
The value @ which minimises S makes the gradient of S with respect to 6 zero:
A oS O AS T
OS_[oS s Sy (4.1.8)
a0 0,00, 00,
To evaluate aS/C0 we need two standard results for derivatives of vector-

matrix expressions, namely

P

a T o}
L(a 0) = vector with element 7 —: al;)=a (4.1.9)
a0 co, I
) i1
and
r P
AOT ot
i{,) /,m). :(veclor with element / :(— 3‘ y“il\()i“k>
co . VA
i=1 k=1
r 4
= (vcctor with element i Z a0, + Z u,.,.()J)
k=1 =
=(A+AN0 (4.1.10)

We multiply out the expression for S in (4.1.7), note that 0" Uy is identical to
yTUB since it is a scalar, and putting Uy for a and U'U for A in (4.1.9) and
(4.1.10) obtain

S autysautue (4110

Q
The 0 that makes the gradient of S zero is therefore
0=[UTUT" 'U"y (4.1.12)
To check that § gives a minimum of S, not a maximum or saddle point, we
must see whether any small change 60 about 0 increases S. With ¢5/¢0 zero,
N

dS=280TUTU S0 =2(U 50)"U 60 =2 Z{(clcmcnt tof Usd)y'I (4.1.13)

=1
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The condition for 4S to be positive whatever the set of small changes 40 is
therefore that U 60 should not be zero. In other words, the columns of U must
not be linearly dependent, or to put it another way, none of the regressors may
be totally redundant by being a linear combination of the others at every
sample. A corollary states that UTU is positive-definite, ensuring that
80TUT U 30 is positive and also guaranteeing that the inverse of UTU exists,
since UTU 80 cannot be zero for any real, non-zero 0. It does not guarantee
that the inverse is easy to compute accurately, though, as we shall see in a
moment.

The 6 given by (4.12) is called the ordinary least-squares (0.l.s.) estimate of
6. We shall find that it has some out-of-the-ordinary properties.

Example 4.1.1 The positive x of a radar target moving in a straight line is
observed at intervals of 0.2s over 1 s. Its position is to be predicted. A simple
way is to assume constant acceleration over the observation and prediction
interval, estimate the initial position x,, velocity v, and acceleration a and
predict future position using the model x(1) = x,, + v,f + at?/2. Putting the
time origin at the first observation, the radar gives

s) 0 02 04 0.6 0.8 1
x(m) 3 59 98 151 218 264

Here 0is [x, v, a]"andyis[3 59 264]". Matrix U has all 1's in

column 1, the sample times 0,0.2,...,1 in column 2 and r%/2 values
0,0.02,...,0.5 in column 3, so
793 6 3 1.1
U'y=| 580 |, Utu=1| 3 22 09
238 1.1 09 0.3916

and to three figures

0.821 —-2095 4.46
[Utuy1t=| —295 182 =335
446 —335 67.0
so

0"=[%, 0, dal=[479 234 554] JaN

Several practical points show up in this example. First, the dimensions of
the normal matrix U U are fixed by the relatively small number of coefficients
being estimated, three here, however many observations there may be.
Second, UTU is symmetric and, as we saw earlier, positive-definite, and there
are special efficient methods of solving sets of linear equations with such
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coefficient matrices. Some are described in Section 4.2. However, if Nislarge,
a lot of computation is required just to form the normal equations

UTu6=U"y (4.1.14)

A third point is that the normal matrix may be near-singular. Computing its
inverse would then be ill-conditioned, involving at some stage small
differences of large quantities. In Example 4.1.1 the computation is not very
ill-conditioned, but |UT U] and the cofactors of some elements of U U are an
order or so smaller than any element of U'U. In more serious cases like
Example 4.1.2, ill-conditioning may prevent satisfactory solution of the
normal equations. When this happens, it signals that at least one regressor is
not pulling its weight, as it is close to being linearly dependent on the other
regressors, which would cause U to lose rank and UTU to become singular.
Poor numerical conditioning therefore indicates a badly constructed
model, with near-redundancy among its explanatory variables. Such near-
redundancy can be induced by a bad choice of co-ordinates for the
observations, obscuring the information in one or more regressors, as
Example 4.1.2 will show.

Example 4.1.2 The same radar observations are obtained as in Example
4.1.1, at intervals of 0.2's but starting at 10s rather than time zero. The same
model as in Example 4.1.1, quadratic in ¢, is fitted. With the new values of 1,
10(0.2)11, keeping eight significant figures to try to maintain accuracy gives

793 6 63 331.1
Uly= 8510 R U'u=| 63 662.2 34839
45687.96 331.1 34839 18348.392
and
20963.816 —3995.7237 380.39474
[UTU] ' = | —3995.7237 761.74342  —72.532895
380.39474 —72.532895 6.9078947

so, rounding finally to three figures,
0T =[157 —52.4 5.71]
The position at 11s given by this 0 is —73.9m, clearly at odds with the given
observations. so something is amiss. The observations are actually
(1) =5 +250(t — 10) + 5(t — 10)* +e(1)
= — 1995 + 1501 + 51 +e(1)

and the observation noise e(f) has samples with r.m.s. value 6.12, s0 fis wildly
inaccurate. The normal matrix UTU is now very ill-conditioned, and the
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calculated |UTU|, 0.608, is about eight orders smaller than the individual
product terms in its calculation. The cause is the new choice of time origin,
which has made the regressors very nearly linearly dependent. Over the
observation range 10 < < 11, denoting r — 10.5 by t and recognising that t is
small,

?=(t+4+10.5)2 =21t 4+ 110.25 =21r — 110.25

so in U, column 3 is almost equal to 10.5 x column 2 — 55.125 x column 1,
making UTU almost singular.

If 10 significant figures are kept, the ill-conditioning has less effect but 67 is
[417 —310 53.4], still far from the correct values. Now the reason is that
the coeflicients of 1 and r are very sensitive to any noise-induced error in the
acceleration and initial velocity implied by the observations. Specifically, with
the observations generated by

X(t)=xy + vyt — T)+ (a/2)(1 — T)? +e(t)
the model is
x(1) =[xy — v, T+ (@T*2)] + (0, —aT) + (ar*/2) +e(r)
=x(=T)+ (=T +(at?*/2) +e(r)

If Tis large (10 here), a small error in a or v, corresponds to large errors in
coefficients xv(—7) and o(—T) of the present model. The 10-figure
calculations give a @ which, although it looks poor, implics x, = —15.9,
vo =224, a =534, so the indirect estimates of r, and « are little worse than in
Example 4.1.1. The error in x, is larger because of the ill-conditioning but
much smaller than might have been guessed from the poor 0. Nevertheless, it
leads to a mean error of 26.3 between model output and observed position,
enough to detect the model deficiency easily. A

Two lessons can be drawn from Example 4.1.2. First, the model and the
observation co-ordinates should be chosen to avoid approaching linear
dependence between the regressors. Second, the sensitivity of the model
coeflicient estimates to noise may be much higher than that of the goodness of
fit. The importance of avoiding high sensitivity varies according to whether
mterest centres on the accuracy of the coeflicients or their ability to fit the
observations.

4.1.3 Orthogonality

A property of great value in interpreting least squares, orthogonality, becomes
apparent when the model output

y=U0 (4.1.15)
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iscompared with the observed output y. The vector of errors between yandyis
é=y—-y (4.1.16)
(Incidentally, it may seem odd to define error so that overestimating the
output gives a negative error. It is odd, but it is an almost universal convention
and we are stuck with it.) Looking at the sum of the products of corresponding
model-output and output-error samples, we find that
ye=0TU(y— Uf)=y'U[UTU]'UN(y—-U[U"U]™! UTy)
—y"(U[UTU Ut = Uutuy Uy =0 (4.1.17)
Two vectors whose inner product is zero, like the model-output and output-
error vectors here, are said to be orthogonal. This follows from Pythagoras’
theorem and the definition of Euclidean length of a vector as the square root of
its inner product with itself, that is, the sum of squares of its elements.
Denoting the length of a vector by |- |, if y'é is zero we have

Iyli? =yTy ="y +2y'e +é%e = [§1” + ell* (4.1.18)

i.e. y,é and y form a right-angled triangle. That makes sense, as in o.ls.
estimation @ is chosen to make & as short as possible, subject to y being of the
form U0, a linear combination of the column vectors u§ to uy of U:
N ~ . A . A e Q
y=0,uf +0u5+ - +0u; 4119
In other words, ¥ has to lie in the hyperplane spanned by uf tou},. Figure 4.1.1
shows the situation for p = 2. Plainly, the shortest error vector is obtained by

Plane containing

N all vectors of the form
\ — G1Ui+egug
\\\
D —

Fig. 4.1.1 Ordinary least-squares estimation viewed as orthogonal projection,
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making ¥ the orthogonal projection of y on to the hyperplane of the u®’s. The
picture also makes it clear that € is orthogonal to each individual regressor
vector u® in the hyperplane. Algebraically,

UTe = UT(y — U[UTU] 'U%y)=U"y— Uy =0 (4.1.20)

Example 4.1.3 The o.l.s. model obtained in Example 4.1.1 gives, rounding
10-figure computations,

t 0 0.2 0.4 0.6 0.8 1
¥ 4.786 5279 103.0 155.4 210.1 266.9
é —1.786 6.214 —-5.000 —4.429 7929 —2.929

and y'e is —0.0012, near enough to zero. The regressors 1, t and ¢?/2 give
wTe=—-8x107% —4.6x107%and —1.7 x 107°. Notice that whenever a
constant term is included in the regression equation, the sample mean of the
model-output error will be zero. A

With the view that y is the orthogonal projection of y on to the hyperplane
defined by U, it is natural to speak of a projection matrix P(U) projecting y on
to U:

y=U0=U[UTU] Uy = P(U)y (4.1.21)

We see that o.Ls. is a linear estimator, in that # and ¥ are both linear in the
observations y.

Another useful interpretation of o.l.s. is in terms of correlation functions.
The discrete-time Wiener—Hopf equation approach to identifying the unit-
pulse response (Section 3.1) was based on

20

r“y(k) = 2 hiruu(k - l), k

i=0

1,2,...,L (4.1.22)

where r, (k) is the input-output cross-correlation at lag &, r,,(k — i) the input
autocorrelation at lag A — i and A, the unit-pulse response at lag /. The sum in
(4.1.23) is in practice from i=1 to i =s, the effective settling time beyond
which the u.p.r. is negligible. Collecting r,,(1) tor, (L) into a vector r,, the
significantly non-zero u.p.r. values 4, to A into h, and the r  values into an
L x s matrix

uu

rull(o) ruu( - 1) T r“u(l - S)

R (L’ S) — ruu'(l ) ruu(o)

uu

(4.1.23)
rL—1) r.(L—2) - 7 (L—s)

uu uu
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(4.1.22) becomes
r, =R, (L, sh (4.1.24)

We can take L equal to s and compute the u.p.r. estimate
h=R_ (s,5)r, (4.1.25)

Here R, is symmetric, as autocorrelation values at equal positive and negative
lags are, by definition, equal. It is also positive-definite and invertible unless
some exact linear relation holds between any s successive input samples, an
easy situation to avoid.

In practice the correlation values in r, and R,, would be replaced by finite-

sample estimates
N+I-1

1
Fulk) = 2 W, k=125 (4.1.26)
j=1
N+m—-1
1
Fulk) = Z Wy, k=0.1,...5—1 (4.1.27)
j=m

where / and m are any convenient starting times from which the necessary
samples of u and y are available. We could, for instance, use

t,=/N)U'y, R,=(/N)U'U (4.1.28)
with
MO u'l ul—s }‘1
= |t e . oy= |0 (4.1.29)
Uy_y Uy-z 77 Uy YN

The u.p.r. estimate h found by inverting the Wiener-Hopf equation would
then be
h=[UTU] Uy (4.1.30)

which is identical to the o.l.s. estimate based on the same observations. The
model in both cases is

s

}:’:Zhiu,‘,—i-e’, 4.1.31)

i=1
The sole difference, insignificant for long records, is that the two methods

might start some calculations at slightly different points in the streams of
samples.
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A correlation interpretation of the orthogonality of yand éis that,if yand é
are each composed of an ergodic sequence of samples, y%€ is N times the
sample discrete-time correlation between {y} and {é} at lag zero. In that case
one can say that the output error is uncorrelated (in the finite sample) with the
corresponding model output. Intuition agrees that there should be no
correlation between the explained part ¥ of the output and the unexplained
part ¢ if € cannot be reduced further by adjusting the explanatory terms.

4.1.4 Weighted Least Squares

Ordinary least squares estimation weights each output error in the same way;
the significance of an error depends only on its size, not on its position in the
succession of N samples. There are occasions when it makes sense to weight
errors at some points more heavily than others. For example, in tracking a
radar target one might be more worried by errors in recent position than by
older ones. Another possibility is that some observations might be distrusted
more than others, so that one would wish to take less notice of the
corresponding errors. Such eventualities are the concern of this section.
The algebra deriving the o.l.s. estimate is scarcely altered if e"We is used
instead of e”e, as the error measure to be minimised, with W a symmetric
matrix showing the desired weighting of individual error terms contributing to

the total
N N

Sy 2 e We — y 2 e, (4.1.32)

d
i=1j=1

A diagonal W can be used, each i, element weighting an individual squared
error. We could even specify non-zero off-diagonal terms to penalize products
of errors, but at the moment it is not clear what circumstances would require
this. It will prove necessary when we consider estimation in autocorrelated
noise, in Section 5.3.5.

The estimate 6, of @ minimising S, is easily found by making

S0 =2(UTWUO— UTWy)=0 {4.1.33)
giving as the weighted-least-squares (w.l.s.) estimate
0,=[U"WU] "UTWy (4.1.34)

The expression for 0, is little more complicated than the o.ls. estimate, and
UTWU s still symmetric. With B positive-definite to ensurc that S is
positive, U'WU is also positive-definite and therefore invertible. Generally,
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the presence of W might imply a large increase in computation, as Wis N x N.
So long as W is diagonal, however, the increase is small. One need only
multiply y, and u, in each regression equation by w}/? then calculate as if for
o.l.s. or, equally simply, multiply each column u, of UT by w,, producing ZT,
say, then calculate

i

b,=[2"U]"'Z7y (4.1.35)

Both these ideas are capable of extension to non-diagonal W. They are
followed up in Section 5.3 in connection with the Markov estimate and
instrumental variables, respectively.

Example 4.1.4 Once more we use the radar observations from Example
4.1.1. This time we have prior knowledge that the third, fourth and fifth
observations are subject to larger noise than the others. (The sequence {e} 1s,
infact,2 —38 7.8 58 —98 —4) Wedecide toweight the squares of
these errors § as strongly as the others, making w,;=w,, =w.;=1 and
Wy, =w,, =w,,=4I1n a diagonal W. Note that the absolute scaling of W is
immaterial. UTW is

4 4 | | l 4
0 08 04 06 08 4
0 0.08 008 0.18 032 2
giving
15 6.6  2.66 RV 459
6,=] 6.6 532 2412 1407.4 | = | 250
266 2,412 1.1428 637.5 19.0

The weighting has greatly improved the estimates of the initial velocity i, = 4,
and acceleration d = 0,. Even rough prior information on noise behaviour is
secn to be valuable, particularly in estimating parameters which depend, as
here, on derivatives of an observed variable. A

4.2 COMPUTATIONAL METHODS FOR ORDINARY LEAST-
SQUARES

We have discovered two good reasons for seeking better methods of solving
the normal equations than general-purpose matrix-inversion routines: the fact
that the normal matrix U U has special properties which should be exploited,
namely symmetry and positive-definiteness, and the possibility that U' U isill-
conditioned, causing inaccuracy in its inversion. All the methods we shall
examine entail splitting UTU into matrix factors.
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4.2.1 Choleski Factorisation

The simplest factorisation method is Choleski factorisation into a real
triangular matrix and its transpose. Denoting UTU by 4 for convenience,
Choleski factorisation finds a lower-triangular matrix square roor L of A
satisfying

A=LLT (4.2.1)

Matrix square roots are not unique, for if Bis a square root of 4 and P is any
orthogonal matrix of the appropriate dimension, then as PPT is /,

A =BB"=BIB" = BPP"B" — BP(BP)" (4.2.2)

so BPis also a square root of 4. A lower-triangular square root may be made
unique by requiring all its principal-diagonal elements to be positive. Once 4
isintheform LLT,itiseasy toinvert,as 4 ~'is L~ "L~ ' and a lower-triangular
matrix is invertible, a row at a time, by successive substitution.

Choleski decomposition of 4 is nothing more exotic than completing the
square, familiar from school algebra. The quadratic 2" 4z is rewritten as a sum
of squares of linear combinations of the z’s:

Az =(1{z)> + (J2)’ +  + (IJ2)* = (L") (LT2) =2"LL"z  (4.2.3)

where

LT=} | (4.2.4)

and l{z contains, in general, all p 2’s, 13z contains the last p — | of them, and so
on, so that L' is upper-triangular and L lower-triangular. As (4.2.3) is true
whatever the value of z, LL" equals 4 as required.

Example 4.2.1 The normal matrix 4 in Example 4.1.1 gives
2'Az =62} +62,2,+2.22,2,+2.222 4+ 1.82,2, +0.391622
=6(z{ +2,2,+0.36°z,2,) +2.2:3 +1.82,2, +0.391622
=(/6(z, +0.52, +0.183'2,))2 4 (2.2 — 1.5)z2
+(1.8— 1.1)z,2, 4 (0.3916 — 0.2016") 2
= (/6(z, +0.52, +0.1832,))% + (/0.7 (=, +0.52,))* + (0.1222z,)?
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SO

J6 056 0.183./6

L'z=) o /07 05/07 |2
0 0 0.1222

Now LT can be found by solving L7z ={, starting with the last row and
working upwards:

2, ~(,/0.1222 ~8.183¢,
2, =0,/ /0.7 —0.52, ~ 1.195(, — 4.092(,
2, =0//6.6 0.5z, —0.183z, ~0.40827, — 0.5976(, + 0.5455( ,

S0
0.4082 —0.5976  0.5455 0.4082 0 0
A ' =L"TL7 >0 1.195 —4.092 —0.5976  1.195 0
0 0 8.183 0.5455 —4.092 8.183
giving

0.821 —-2095 4.46
A 1 =[-295 182 —-335
446 —335 67.0

rounded to three figures (from ten-figure calculations). This agrees with the
inverse found in Example 4.1.1. A

An alternative and easily programmed way to find L is by direct identification
of columns of LLT with the same columns of 4, one at a time. The first column
of Lisfound by noting that /| times column 1 of L equals column 1 of 4, and
{1, equals a,,. Column 2 of L is then the only unknown in

Iy, (column 1 of L) +/,,(column 2 of L)=column 2 of 4 (4.2.5)

and /,, is obtainable from
I3, +13,=a,, (4.2.6)

The process is continued until all the columns of L are found.

Both methods of finding L will break down if at any stage i the expression
for [} is negative. The positive-definiteness of A4 ensures that this will not
happen, as we can see by considering the situation after / — 1 successful stages
of completing the square. By then, z"4z is in the form

G+G+ + G, +di7 7 4470 (4.2.7)
where ¢~ " is the quadratic remainderin z,, , to =, and a'i ~ ! is the square of

P
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the coefficient of z; in the next square to be computed, (7. For {; to be found,
al" " must be positive. Now z" Az s positive for any real, non-zero z, including
thatin which z;is 1, 7;, | to =, zero, and =, to z;_, chosen to make ¢, to {;_, all
zero (certainly feasible since the coeflicients of =, to z; _, in {, to {;_, form an
upper-triangular matrix with non-zero principal-diagonal elements, which is
consequently non-singular). For this z, z" 4z is just @'/ ", so @'~ ' is certainly
positive.

A refinement removing the need to compute the square roots a!i” "2 is to
replace LL" by LDL", where D is diagonal with d;, = a!i~ " and L is still lower-
triangular but with I'’s all along its principal diagonal. An upper-triangular
matrix version is called U-D factorisation, and is the basis of a least-squares
algorithm widely used in estimating the state of dynamical systems (Bierman,
1977). (State estimation is discussed briefly in Section 7.3.2.)

The aim of matrix-square-root methods for finding the o.l.s. estimate is to
reduce inaccuracy due to ill-conditioning of the normal matrix. They work by
reducing the range of number magnitudes, and hence the seriousness of
rounding errors. Computation with matrix square roots gives accuracy
comparable with that obtained by keeping twice as many significant figures
without resort to matrix square roots.

4.2.2 Golub—Householder Technique

A more recent alternative way around numerical difficulties in solving the
normal equations is the Golub-Householder technique (Golub, 1965). A
linear transformation is applied to U and y (i.e. they are premultiplied by a
matrix) so as to modify the regression equation, without changing 6, and make
it easier to solve. Premultiplying the regression equations (4.1.6) byan N x N
matrix Q gives

V¥ 2 0y =QUO + Qe = U*0 + e* (4.2.8)

with modified observations, regressors and errors, but the same 6. The sum of
squares of the output errors given by the o.l.s. estimate 6 and the moditied
model is

S* & (y* — U*0)'(y* — U*0) = (y— U0O)'Q"O(y — UO)  (4.2.9)

This sum can be made equal to S, the sum of squared errors using § in the
original equation, by choosing an orthogonal matrix as Q, so that Q'Q is I.
Furthermore, there is enough freedom in choosing Q for us to insist that U*
should be in the especially convenient form

v
L’*—QU=[0:| (4.2.10)
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where V is an upper-triangular p x p matrix. Notice that, since
UsTU =V =UTQ"QU=U"U (4.2.11)

and V is upper-triangular, ¥ is a Choleski factor ol U "u.
If we now denote the top p elements of y* by y¥ and the other N — p by y¥,
we find from (4.2.9) and (4.2.10) that

S=S*=(yf = VO)'(yi — VO) +y3'y¥ (4.2.12)

In this sum of N squared terms, only the first p depend on 0. s0 Sis minimised
by making them zero. Hence

0=V 'y (4.2.13)
and
S =y¥'y} (4.2.14)

The 0 thus tound is the product of the inverse of an upper-triangular matrix,
easy to compute by back-substitution, and the first p samples from y*, a
linearly filtered version of y. If we can now find a reasonably simple method of
constructing an orthogonal Q to give Q U in the desired form (4.2.10) we shall
have an attractive way to calculate the o.Ls. estimate of 6 without explicitly
forming and inverting the normal matrix.

*4.2.3 Householder Transformation of Regressor Matrix

The required method is provided by Householder transformations. in which
Uis premultiplied successively by orthogonal matrices PV, P2 . P each
of the form

P — [ — 2witwi! (4.2.15)

Each w'” has to do two things: make P orthogonal so that in the long run
pwpe-b.o.opth g orthogonal, and perform a stage of the upper-
triangularisation of QU by making a column zero. Writing out P*"" P shows
that w"w must be | to make P orthogonal. The upper-triangularisation of
U can be carried out column by column if each w” is chosen to leave unaltered
the first i — 1 columns of the matrix

UH):Pqi»l)Pqifl),,,[)(HU (421(\)

when U'"is premultiplied by P!, while making elements 7 + 1 to N of column i
zero. Not only is this possible, but w' can also be chosen to leave the firsti — 1
rows of U™ unchanged, as follows. Denoting columniof U"and U V'byu']!
. (i+1)
and ui' " !,

Uf’ L - P"’u',i’ — u(’_ib _ ZW(”W“)IU(;) (42]7)
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* Wl = (uf) — uf * 1) 2w Tyl (4.2.18)
which says that w' is a scalar times the change from u{” to u{ * V. To make P
orthogonal, w''Tw')  that is |w”|?>, must be 1, so w®¥ is in fact
+ (0 — Y/ lu® — ul T VY. The sign is immaterial, and we shall take it as
positive. Now w'” can be fixed, except for w\”, by specifying that the first
i— 1 elements of u{'*! be unchanged from those of u{’ and the last ¥ —
elements be zero, giving

w;" =0, I<j<i—1; w}“ = u;‘;»)»/a“’, i+1<j<N (42.19)

where
N

1/2
o = uf? —uf* V)| = {(ut-i’ —ut )+ Z “(fi’z} (4.2.20)
j=i+1
The only unknown element u{i* " of u!* V) is determined by noting that since
PY is orthogonal
lluft 22 = | POuP)? = uTPOT PO
=u T = [[u)|? (4.2.21)
The first i — 1 elements of u{ * V) are the same as in u!” and the last N — i/ are
zero, so (4.2.21) requires that

it 12 _ Zu;‘;"‘ 4 42 (4.2.22)

j=1

The sign of #!i* Vis chosen to maximise |w!”| so as to avoid unnecessary loss of
numerical accuracy:
uith.= —gsgnuld (4.2.23)
where o 1s positive, then
() _ (i Q i i
w = () + o sgnul?)/a') (4.2.24)

and, substituting (4.2.23) into (4.2.20),

P
1/2
o = {02 + 20jul?)] +2u3f;“1 ={20(0 + Jui?|)}'2 (4.2.25)

J

Some practical points to notice are that the square root in (4.2.25) need not
be computed, as P involves only second-degree terms in elements of w'”; that
ww T need not be computed and used explicitly, as U'* Y is composed only
of U, wTU™ and w'”; and that o will be zero only if U is singular.

J=i
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The Golub—Householder technique just described has excellent numerical
properties in cases where other methods are vulnerable to ill-conditioning.

Example 4.2.2 Let us carry out the o.l.s. computation for the problem of
Example 4.1.1 by the Golub-Householder method. Starting with

10 0
1 02 0.02
1 0.4 0.08
() — 17—
vh=v 1 06 0.18
1 0.8 0.32
1105

we compute in turn
o = {sum of squares of elements ¢ to p of column i of U?}1?
with i =1, so
o =./6~2.4495
u?) = —osgnu'l) = —2.4495
oV = 20 (|u)] + 0)}1? = 4.1108
Wi =ull/a =0.24326  for j=2...., 6
wih = @) + o sgnud))/oa) = 0.83912
Then
wiT U =[2.0554  0.72978  0.26759]

and
—2.4495 —1.2247 —0.44907

0 ~0.15505 —0.11019
0 0.04495 —0.05019
(2) _ (D) _ yeuth) it T 7ty
U= U= 2ww U 0 0.24495  0.04981
0 0.44495  0.18981
0 0.64495  0.36981
and similarly
y(l)zy(l)‘2w(l),w(l)Ty(H B
[ 3] —323.74
59 35722
98 3.2785
- — 2w, 194.69 =
151 W 56.278
218 123.28
| 264 | 169.28
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For i =2, we compute

0 =0.83666, us) =0.83666,  o¥ =1.2882

and
wIT =10 —0.76984 0.034893 0.19015 0.34540 0.50066]
giving
wATUD =10 0.64410 0.34326]
Hence
—2.4495 —1.2247 —0.44907 —323.74
0 0.83666 0.38916 219.32
0 0 —0.07282 —8.2814
U — 4 (3) _ =
0 0 —0.17315 | And oy —6.7169
0 0 —0.03423 8.8475
0 0 0.04451 3.4120 |

Finally, for i =3,
0=0.12220 =4,  «¥=0.21906
wiT=[0 0 —0.89630 —0.36852 —0.21598 0.11915]
and
wITUS =10 0 0.10953]

Matrix U™ has the same first two rows as U'¥, only «/') non-zero in row 3, and
rows 4 to 6 all zero. As U™ is U*, with V as its first 3 x 3 sub-matrix. we have

—2.4495 —1.2247 —0.44907

V= 0 0.83666  0.41833
0 0 0.12220
and
[ —323.74
219.32 y¥
6.7647
L (4):
y =y —0.53066
12.473 y¥
L 1.4119 |

Solving V6 = y*, we find 0, = 55.4, 0, = 234 (), = 4-79 by back-substitution.
The sum of squares of output errors S is given by yiTy* as 157.8. A

4.2 COMPUTATIONAL METHODS FOR ORDINARY LEAST-SQUARES 77

4.2.4 Singular-Value Decomposition

A factorisation method for o.l.s. which indicates exactly where the cause of
any ill-conditioning lies is singular-value decomposition (Forsythe er al..
1977). 1t has much in common with the Golub-Householder method. The
technique is based on decomposing the regressor matrix U into

U = PRQ" (4.2.26)

where P and Q are orthogonal matrices, respectively N x Nandp x p,and Ris
an N x p matrix zero but for non-negative elements r;, 1 <i<p. These
elements are square roots of the eigenvalues of the normal matrix U"U. To see
why, notice that

U'UQ =QR'"P'PROTQ = QOR'R (4.2.27)
and R"Ris a p x p diagonal matrix with r as element (7, /), so each column g,
of Q satisfies
U'Uq; =riq, (4.2.28)
In other words, r7 is an eigenvalue of UTU, with gq; as the corresponding
eigenvector. Clearly a zero value for r;; would indicate exact linear dependence
between the columns of UTU, reflecting similar dependence between the
regressors.
Again we transform the regression equation linearly, to make the normal
equations easier to solve. Premultiplying by P",
y*=Ply=PTUO + P'e = P'PRQ'0 + P'e = RO* +e* (4.2.29)

where 0* denotes Q70 and e* denotes P'e. Because P' is orthogonal, the
transformation does not alter the sum of squared errors:

S* £ (y* — RO¥)'(y* — RO¥) = (y — UO)'PP'(y — U0) =S (4.2.30)

The first p elements of RO* are r;0F to r
minimised by

op0% and the rest are zero, so §

0, = v¥/r,. i=1.2,.... p (4.2.31)

After the 0% which minimises S*, and therefore S, is found by this trivial
calculation, @1is readily obtained as Q0* since the inverse of Q" an orthogonal
matrix, is Q. Furtnermore, near-linear dependence between the regressors will
show up as a very small value for one or more of the r;’s. In an extreme case,
some r,; might oe negligible or even brought to zero by roundofl error, so §
would scarce.y be affected by adding a large number o to 0%. As Q0% is 0. the
corresponding change to 0 is the addition to 6 of

aQ(vector zero but for I in position i) = a(column 7 of Q) = agq; (4.2.32)
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If addition of agq; to 6 has little effect on S, Uq, must be negligible. In other
words, the linear combination of regressors with the elements of q; as
coefficients contributes nothing to the performance of the model. To
summarise, the attraction of the singular-value decomposition is that it reveals
any ill-conditioning clearly, and provides an easy way to prevent it from
causing numerical difficulties. By setting 0* to zero if r;; is below some small
specified value, a corresponding linear combination ¢/ with little influence
on S is set to zero. If it were not, it could be so large as to obscure the
meaningful part of 8.

The mechanics of obtaining P and Q are a little complicated (Forsythe et
al., 1977) and will not be detailed here. Briefly, Householder transformations
are used to introduce zeros below the leading diagonal of U by
premultiplication, and above the first superdiagonal by postmultiplication,
then a version of the QR algorithm is employed to reduce the bidiagonal
matrix thus obtained to diagonal form, iteratively.

4.3 NON-LINEAR LEAST-SQUARES ESTIMATION

In many situations where the model is not linear in all its coeflicients, it still
makes sense to find the coefficient values which minimise the sum of the
squared errors between model output and observed output. An example is
multi-exponential modelling of an impulse response

»(t) =a,exp(A 1) + a, exp(A,¢) + - +a,exp(4,l) + e(t) (4.3.1)

where the 's enter linearly but the A’s do not. The algebra which gave the o.1.s.
estimate no longer applies, but we can still exploit the fact that the function
being minimised is a sum of squared errors; we are not faced with a general
unconstrained algebraic minimisation problem.

4.3.1 Generalised Normal Equations

Let the model be
y=1£(U,0)+e (4.3.2)

where y is the vector composed of all the output samples, U is the matrix of
explanatory-variable samples, and fcomprises the functions modelling y. The
least-squares estimate of § has to make the gradient of S zero, i.c.

0800 = —2[J,f1(y—1) =0 (4.3.3)

where J,f is the Jacobian matrix of f with respect to 0, i.e. the matrix with
df/00;as element (i, j). We have in (4.3.3) a generalised version of the normal

4.3 NON-LINEAR LEAST-SQUARES ESTIMATION 79

equations. For a model linear in @, fis U6 and J,fis U. The extra difficulty with
anon-linear modelis that J,fis a function of 8, so the normal equations are no
longer linear in 6, and have to be solved iteratively. If some of the coefficients
in 6 enter f linearly, as in the multi-exponential model, they can be found at
each iteration by o.Ls. after the non-linearly entering coeficients have been
fixed.

Example 4.3.1 For many biomedical applications, such as the study of blood
concentration of a drug after a dose, a low-order multi-exponential response
model is employed, either as an end in itself or as a half-way stage to a set of
rate equations making up a compartmental model. One such model, with
initial and final output zero, 1s
V(1) = clexp(4,1) —exp(4,1)) +e(r), 1=0
The vector s [¢ 4, 4,]", and if p(¢) is sampled at times 7,.7,,....1y, we
have exp(4,1,) — exp(A,f,) as ¢f;/30,, cr,exp(4;t;) as &f /0, and —ctexpl(4,l;)
as 0f,/00. Collecting samples exp(4,7;) into a vector y,, exp(4,f;) into n,,
t.expl(4, ;) into ¢, and t;exp(4,1;) into {,, the normal equations become
=20p —my €y =)yl —12)) =0

From the first of these equations, ¢ can be estimated as

c=(n, — '71)7]-)'/('11 - 'Iz)T(’Ix —1)

once 4, and A, have been estimated. At each iteration 4, and A, are adjusted to
try to satisfy the other two normal equations, with ¢ substituted for ¢, either
numerically from the previous iteration or algebraically giving

Ty, — )"y —ma) =y =)'y —my)e j=1.2 A

4.3.2 Gauss-Newton Algorithm

Solving the normal equations amounts to adjusting # until cach of a collection
of functions of @ becomes zero. One approach is Newton's immethod. In a scalar
problem adjusting 0 to bring £(0), say, to zero, iteration k of Newton's method
replaces 0%~ by

0% = 0% 1 — (Cg/A0],_pw-1) (0% D) (4.3.4a)
The rationale is that for small changes about 0 =V ¢(0) varies almost lincarly

with 0, so this adjustment will bring g(()“"’) close 1o zero. The multivariable
version, similarly motivated, 1s

09 = 0% 1 — gl ) e ) (4.3.4)
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Looking back at the normal equations,
g40) = —2(row i of [J,f]"Wy —1) (4.3.5)

so a typical element of the Jacobian matrix in (4.3.4b) is

o8, oh o
= B 43
(() Z{('J()i (‘t()j (7() o H f[ ( 3 6)

=1

Most of the labour in evaluating J,g is due to the Np(p+ 1)/2 second
derivatives. However, if our current estimate 0~ ! already gives quite small
output errors 1, — f,, we may perhaps ignore all the terms in (4.3.6) involving

second derivatives. If so,
N

q/l (/[ T .
[J”g]:EEW 00 =2[J 1T/ ] (4.3.7)
=1
so, denoting J,/ at 8%~" by J*~U and similarly for f, we have the
Gauss - Newton algorithm

011\] 011\*1]+[/(I\“1HJU‘ - ]*lJ(‘\'*lH(yifU\'*I)) (438)

Example 4.3.2 The two-exponential impulse response model of Example
4.3.1 1s to be fitted to observations

0 05 075 125 1.75 225
vo0 90 115 85 55 40

given by a methionine tolerance test (Brown ef al., 1979). Starting gucsses
—0.7 for A" and —2 for £ are made after inspection of a plot of the
observations. They allow calculation of

7T ~[1 0.7047 0.5916 0.4169 0.2938 0.2070]
and

YT~ 1 0.3679 0.2231 0.0821 0.0302 0.0111]

which with the first of the normal equations gives the o.1.s. estimate for ¢:

Yy /(g — g ) (g — ny) ~263.2

0 0y (())

=y =
The model output errors can then be calculated as
p
y _ f“” — y 1(!]('110) (UI)’ giving S(O) as 6767

If ¢ is excluded from the vector of unknown coelficients to be found in the
Gauss-Newton step, because &' will be calculated later from (" and 4. in
the same way as ¢, J'@ is just

((:(O»Ctlm _ (ch(zm]
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giving

JOIT o) 74390 — 16030:!

| 16030 5250

3927 < 107°  1.199 x 10~*
| 1.199 x 107+ 5564 x 10°*

- 1560
T _ o
S =P = 499‘2}

[J(U)TJ(U)]*] ~

and

b

Rounding six-figure calculations to four figures as above, the new values of i,
and 4, are found to be

A —0.8211
(1)7 }(0) T J(O)y3-1 y(OT f(())

{ ] 0 0 + [JO OO N (y — £ > [*2.465}

whence

AN ~268.8, S ~275.8

A reasonable improvement has been achieved in this step. It is intercsting to
find that, if ¢ is retained as an unknown to be adjusted in the Gauss- Newton
step, the very poor values

a' 344.1
A =1 —1.238
AP —1.249
are obtained, at much greater computational cost. A

Ordinary least-squares estimation can be regarded as the single Gauss-
Newton step required to reach the optimum 6 from a starting guess of
zero when the model is linear in 0. For a non-linear model, rapid convergence
can be expected only when we are justified in taking J as near-constant over
each step and ignoring second derivatives. These assumptions can only be
checked at the expense of a great deal of extra computing, and if they are
invalid the iterations may not converge at all. Therc 1s, therefore, some
incentive 1o look for a more reliable iterative method.

4.3.3 Levenberg Marquardt Algorithm

One way of ensuring some progress in reducing S would be to take a small step
in the local downhill gradient direction from ¢* ! to

0 =gtk -0 — 3(((“'5/'(-\'0)“,;9“—41 (4.3.

%]
=3




82 4 LEAST-SQUARES MODEL FITTING

with « a scalar small enough to make the effects of second and higher
derivatives of S(8) over the step negligible. The weakness of this idea is that to
find as large as possible a value for a one would have to examine the local
shape of S(0), and having gone to that trouble would have no excuse for not
using the shape information in a more ambitious algorithm. If, instead, a
conservative value of « were used, progress would be slow, particularly as the
gradient became small near the optimum.

The basic idea of the Levenberg—Marquardt algorithm (Wolfe, 1978) is to
compromise between the downhill gradient direction and the direction given
by the Gauss-Newton algorithm, by finding the step that satisfies

[ DT = D = D9 5= D) = 35/0], gy (4.3.10)

with p'* =Y a positive scalar. If p* ! is chosen to be small, the step is almost a
Gauss—Newton step, and if u*~ " is large it is almost a downhill gradient step
with 1/u% " fora. Notice that for any sensible model, J'J is positive-definite,
since otherwise J 60 would have to be zero for some non-zero 66, implying that
two different values of 6 give precisely the same output values. Positive-
definiteness guarantees that J'J can be inverted in the Gauss—Newton
algorithm and, with i positive and / positive-definite, also guarantees that the
Levenberg-Marquardt step is feasible. The factorisation methods discussed in
Section 4.2 are also applicable here.

The scalar win (4.3.10) is adjusted at each step according to how progress in
the previous step compared with what was expected. Implementations of the
Levenberg-Marquardt algorithm differ in their rules for adjusting;u, aiming
to avoid an excessive number of trial evaluations of S and steps in 0, and in
their safeguards when ;. becomes very small. The algorithm is very widely
used, but as with most search algorithms cases can be found in which it “hangs
up” before reaching an acceptable §. Although this sounds serious, a
disposition to hang up is often a good indication that something is wrong with
the form of the model or the starting guesses 6/”. Moreover, it is far easier to
be fooled into accepting an ill-chosen model structure by an acceptable fit on
one set of records than to be deceived by a hung-up search into thinking an
optimum 6 has been found for the given model when it has not. In the latter
case more runs with different starting guesses will often resolve the
uncertainty; in the former, more records are required, and even then it may
not be easy to recognise an uneconomical model as such.

4.4 WHY BOTHER WITH STATISTICS?

Appealing though the idea of minimising the sum of the squared model-
output errors is, other possibilities exist. To reach a proper assessment of
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least-squares estimation, we must ask how its performance compares with that
of other estimators. Conclusions about estimator performance based on one
set of records, or even several, are not likely to be entirely reliable. Questions
about performance are therefore essentially probabilistic, asking what will
happen on average over a set of estimation experiments specified in statistical
terms.

It may seem a shame to start talking in probabilistic terms when, after all,
the purely deterministically motivated least-squares methods often give
perfectly acceptable results. There are several reasons why the effort is
worthwhile. We shall find that sometimes the performance of ordinary least-
squares can be improved by straightforward modifications, for instance when
something is known or can be estimated about the correlation structure of the
noise present in the observations. We shall see that least-squares estimation
thus modified has attractive statistical properties in addition to its algebraic
simplicity and relative computational convenience. We shall encounter, and
learn to avoid, problems arising when some of the regressors contain noise
correlated with the observation noise. Finally, we may find that in the broader
methodology of identification, the ability of a statistically motivated
estimation method to provide not just 0 but also an estimate of its reliability, in
the form of its covariance (Section 5.3), is valuable.

The next chapter describes how the probabilistic behaviour of an estimator
is characterised, and how least-squares estimation looks from a probabilistic
viewpoint.

FURTHER READING

Econometrics texts such as Goldberger (1964) and Johnston (1972) give some
of the clearest accounts of least squares. Draper and Smith (1981) provide a
detailed basic account of least squares, including non-linear least squares,
with many examples and exercises. Another text with plenty of examples is
Chatterjee and Price (1977). Computational methods based on singular-value
decomposition and Householder transformation are covered in detail by
Lawson and Hanson (1974), with FORTRAN listings. They also consider
equality and inequality constraints such as prior knowledge that model
coefficients are non-negative, and selective deletion of regressors from a
tentative model. Matrix factorisation techniques for least squares are
described by Bierman (1977) with recursive (sequential) processing of the
observations in mind, as in Chapter 7. Sorenson (1970) reviews the history of
least squares.

Least-squares routines are available in many software libraries, but it 1s
unwise to use them without an appreciation of the techniques they use and the
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potential problems of ill-conditioning. Van den Bos (1983) discusses ill-
conditioning in non-linear least squares.

Hamming (1973) sums up the point of exercises such as least squares fitting
pithily: “The purpose of computing is insight, not numbers”.
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PROBLEMS

4.1 A data-logging run on an industrial process gives

Time ¢ 0 1 2 3 4 5 6 7 8 9 10

Inputu, —064 036 052 049 —0.58 —036 —0.32 072 - :
Output y, 043 —041 —1.32 —1.05 -=021 027 040 0.09 —0.10 —0.12 0.44
Find the o.Ls. estimates of the unit-pulse-response ordinates /1, and /, in the
model »,=/hu,_,+hu, ,+e¢,. using as many of the observations as
possible.

4.2 Repeat Problem 4.1, but including a constant term in the model. Use the
Choleski method to invert the normal matrix.

PROBLEMS 8s
4.3 An impulse-response test gives

Time ¢ 0+ 02 04 06 038

Response A(t) 34 23 1.7 1.2 09

By o.ls., find the estimates of K and 7 in the model /i(r) = Kexp( —t/t) + ¢(1)
which give a least-squares fit to the decibel value 20log,,A(), i.e. which
minimise the sum of the squared proportional or percentage, rather than
absolute, errors in /(r).

4.4 Verify algebraically that for any column vector uf from U, P(U)uj is uj,
where P(U) is U[UTU] 'U". What is the geometrical reason?

4.5 Show that P(U)isidempotent. Why is it, geometrically ? Defining P'(U)
as I — P(U), show that P'(U) is also idempotent. What are the geometrical
interpretations of P(U)¢ and P(U)E, where & is any real vector conformable
with P(U)?

4.6 By rewriting the transfer-function model

R o - R _
=1 = T U(=h
l+a,z "+ +a,:

Yz 7Y

as a difference equation relating output sample v, to earlier samples of the
input and output, produce a regression equation which would, in principle,
allow o.l.s. estimation of the transfer-function coefficients. [This idea will be
pursued in Section 7.2.]

4.7 What happens to the expression for the o.Ls. estimate if the columns of
the regressor matrix U form an orthogonal set? What happens if they are
orthonormal? [*Note the connection with singular-value decomposition. ]
4.8 Find the least-squares estimates of acceleration, initial velocity and
initial position as in Example 4.1.1, but weighting the squared errors linearly
from weight 1 at time zero to weight 6 at time 1.0, i.e. penalising recent errors
more heavily. Use the estimates to predict target position at time 1.2, and
compare the prediction error (the actual position being at 312.2m) with thatin
Example 4.1.1.

4.9 Express the o.l.s. sum of squared errors S(#) in terms of y and P(U).
4.10 Compute the second derivatives @*£,/00,00, which appear in (4.3.6). for
the model and observations of Example 4.3.2, and check the effects of
omitting them from the calculation of [J,g] by (4.3.7).




Chapter 5

Statistical Properties of Estimators

5.1 INTRODUCTION

Whenever noise is present in the observations from which a model is
estimated, the parameter estimates are affected by it and are therefore random
variables; taking another set of observations would not give precisely the same
results. Any output prediction making use of the parameter estimates is also a
random variable. We may choose to regard the actual parameters as
deterministic or as themselves random variables. The latter view implies that a
range of possible systems as well as signals should be considered.

When dealing with random variables, it is natural to ask how the estimator
will perform on average over all possible noise realisations, and perhaps all
possible actual parameter values. Our measure of how the estimator performs
should be consistent with the intended use of the model. For instance, we may
be interested in how well it predicts future output values. The accuracy of
individual parameters may not then be of direct interest, particularly for
parameters with no clear physical significance. Conversely, the whole aim may
be to find good values for certain parameters. We need statistical measures of
model accuracy which are flexible enough to suit either situation.

While thinking about the accuracy of parameter estimates, we should bear
in mind that the model structure will rarely coincide exactly with the
mechanism generating the observations. The structure is usually a
compromise between simplicity and power to account for observed behaviour.
Moreover, the ultimate test of the model is adequacy for a specitied purpose,
not optimality and still less truth. In these circumstances it is not strictly to the
point to speak of ‘true’ or ‘optimal’ parameter values, although we shall often
do so for convenience. Adequacy is a difficult attribute to analyse or to
generalise to a variety of applications.

Ideally, we should enquire into the statistical behaviour of an estimator by
examining the joint probability density function (p.d.f.) of the estimates. This
is the basis of Bayes estimation, discussed in Section 6.2. Practically, we
virtually always settle for knowing about the mean and scatter, because

87
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further analysis is either too hard or requires unrealistic quantities of prior
information to be supplied, such as the entire noise probability density
function. Confining our attention to the estimates’ mean and scatter
(covariance, defined shortly) may not be as big a limitation as it seems. In the
special case of a Gaussian p.d.f., which we can sometimes accept as realistic,
the mean and covariance are enough to define the p.d.f. shape completely.
The Gaussian assumption simplifies a great deal of estimation theory, as we
shall see, but cannot be made uncritically.

Initially we shall regard the true parameters 6 as unknown constants. Later
we shall treat them as random variables. Throughout the chapter, statistical
properties of estimators will be discussed by reference to least-squares
estimation, as it is simple, familiar and important in practice. However, the
ideas apply to any estimator, and will recur in connection with other
estimators in later chapters. We shall also assume that every sampled noisy
waveform, i.e. every random process or family of random variables (the
samples, indexed by time) is wide-sense stationary. That is, at least its mean
and variance (or, for a vector process, covariance: see Section 5.3.1) are finite
and constant, and the correlation between its values at any two times depends
only on the difference between the two times. Hence we would, for instance,
treat a noisy sinusoid as a deterministic sinusoid plus a constant-mean
random waveform, not as a varying-mean random waveform. For a Gaussian
random process, wide-sense stationarity implies strict stationarity, i.e. totally
time-invariant statistics, since the p.d.f. iscompletely defined by the mean and
variance (or covariance for a vector).

5.1.1 Bias of Estimators

Our first. statistical question is whether estimates obtained from similar
experiments will cluster about the true value.

For a single fixed but unknown parameter 0, the hias is the difference
between the expected value of its estimate ) and 0:

b= E[0]— 0= J(}p((j)(/()—() (5.1.1)
]

Here the expectation operator E indicates taking the mean of its argument,
and p(0) denotes the p.d.f. of 0. The integration is over the range of all possible
0 values. The definition of bias extends readily to a vector # of parameters:

b2 E[0]—0= J . [0‘,;(0, 0y 0)d0, - d0,—0
0

:J(}p((j)(/(j—l) (5.1.2)
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with p(f,.0,,....0,) the joint p.d.f. of the parameters. When 0 is treated as
random, the conditional bias

b(())éE[9|0]—0%J(§p(é|0)d(§—0 (5.1.3)

a0

is defined, based on the conditional p.d.f. p(8]6). We can then consider a
larger collection of experiments, covering all possible values of @ as well as all
realisations of the signals and noise. The overall unconditional bias is then

B%E[b(())]zE[E[éW]—O] (5.1.4)
0 a1 460

Example 5.1.1 The gain o of a device is estimated from N measurements of its
input u and output )y with additive noise ¢, the model being

y,=ou, +e, t=1,2,....N

The estimator, which does not use any very small values of u, is

Each u, will be regarded as deterministic and known exactly. any uncertainty
being included in ¢,. Each , is a random variable, as it contains noise. The bias
ingais

N

. Elou, +e,]
b = El4] —a:Z{ —”f W}/N—rx

=1

N N

S-S

=1 =1

Swapping E and ) like this is allowed by the linearity of the expectation
operation; from its definition, the expected value of a sum is the sum of the
expected values of its parts, whether or not they are independent.

The bias here depends on the noise mean and input values but not on a. If
the noise has a constant mean ¢, the bias is ¢ times the mean of 1 /i through the
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experiment, so unless ¢ is zero, the larger the u values the better, as intuition
suggests. If ¢ is zero, & is unbiased for any selection of non-zero input samples
and any'number of measurements N. A

As records are of finite length in real life, we wish to know the finite-sample
bias of an estimate based on N samples of each variable, as in Example 5.1.1.
We may make do with the asymptotic bias in the limit as N tends to infinity, as
second best, since it may be possible to determine whether an estimator is
asymptotically biased even though its finite-sample bias is difficult or
impossible to evaluate.

Example 5.1.2 The variance s & E[(v — 0)] of a wide-sense stationary signal
v(t) with mean v is estimated from N independent samples v, to yy by

N ~
i (v, —0)?)
i N

where v is the sample mean Y ™| v/N. The bias in § is

N

b= El:z{(v, — )2 !J/N — E[(v —0)7]

=1

N

N E:E[“f — 200+ 02]}/N — E[v? — 200 + 5?]

=1

N N N N
= E[?] - 22 ZE[U[DX]/NE + E[Z ZU,UX/N2:| — E[07] 4 207 — i
(=1 s=1 =1 s=1
N N
:—E[z Zv,l?x}/Nz+152:—(NE[L‘3]+N(N~ 1)o?)/N? + 52
(=1 s=1

= —(E[*] = 0v?*)/N =—s/N

The bias is asymptotically zero since s is finite, but is non-zero for a finite N, in
spite of the plausible look of §. Although the bias depends on the unknown s, a
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finite-sample-unbiased estimator is obtainable just by rescaling § to
N§/(N —1). A

So long as the finite-sample bias can be found in terms of quantities we can
evaluate or estimate well, we can choose the sample size N to make the bias
acceptably small. Even so, the estimation error in any one experiment may be
large; to accept an estimate is an act of faith. We normally wish to bolster our
faith with some assurance that the scatter of the estimates produced by the
estimator is, on average, small, and even then there is some risk that we shall
be disappointed.

It seems reasonable to select, whenever possible, an unbiased estimator.
However, we shall see in Section 5.3.6 that a biased estimator may produce
estimates with so much less scatter than an alternative unbiased estimator that
it has smaller mean-square error, and is preferable.

5.1.2 Unbiased Linear Estimator for Linear-in-Parameters Model

Estimators which are linear i the output observations forming y are
attractively simple, computationally and algebraically. When the model
relating y to explanatory variables through parameters 6 is also linear, as in
o.l.s. and w.Ls., it it is easy to find the conditions for the estimator to be
unbiased. The model and estimator are

y= U0 +e, 0=Ay (5.1.5)
For a fixed 0, the bias 1s
b=E[Ay]—0=E[AU — 110 + E[Ae] (5.1.6)

Here 4 will depend in some perhaps complicated way on samples of the
explanatory variables. If all those variables are uncorrelated with e, which is so
if the model is good at explaining the systematic behaviour of the output, and
if also e is zero-mean, the last term in (5.1.6) is zero, so the bias is zero if

E[AU] =1 (5.1.7)

This restriction on 4 will be invoked in Chapter 7 when deriving recursive
estimators, but more immediately we check if it is obeyed by least-squares
estimators in the next section.

An important property of linear-in-the-parameters models with zero-mean
e uncorrelated with U is that unbiased parameter estimates imply unbiased
model predictions y of the output due to any specified U, since then

E[y]—y=E[U(0—0) —e] = Ub— Ee] (5.1.8)
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5.2 BIAS OF LEAST-SQUARES ESTIMATE

To analyse the bias of least-squares estimates, we must distinguish between
deterministic and random regressors, and between regressors correlated and
uncorrelated with the regression-equation error.

5.2.1 Bias with Regressors Deterministic

The o.ls. estimate (4.1.12) is linear in y and based on the linear-in-
parameters model (4.1.4), so (5.1.5) applies, with [UTU] ' U" for A. Treating
both # and the regressors forming U as deterministic,

ElAUI=[U'UI"'U'U=1 (5.2.1)
so from (5.1.6) the bias in @ is
b=[U'U] '"U"Ele] (5.2.2)

Provided e is zero-mean, the o.l.s. estimate is therefore unbiased, for any
number N of samples making up y. As in Example 4.1.1, the mean of e can be
made zero even when 1 and;or the regressors contain constant components,
by including a constant term in the regression model.

For aw.Ls. estimate, (4.1.34) has [UTWU] ' UTW as A, so again AU is I,
and the bias is

b=[U"WU] 'U WE[e] (5.2.3)

which is zero so long as e is zero-mean.

If 0is taken to be random, the conditional bias b(#) defined by (5.1.3) must
be considered, but in fact the o.l.s. and w.l.s. biases we have just found are
independent of @, so b(f) and its mean b coincide with b.

Example 5.2.1 Observations of v(#) are affected by linear drift d(1) = ar + ffas
well as zero-mean noise n(1). A regression with a constant term f§ but no ot
term 1s tried. The corresponding regression-equation error is

e=ot+n

where t compriscs the sampling instants. Since the mean of e is not zero, the
0.l.s. and w.Ls. estimates will be biased. The o.Ls. residuals & £y — U have
the property that

Ule=UNy—-UlU'U]"'UTy)y=U"y—U"y=0

so the bias could be regarded as caused by o.1.s. forcing U'e to be zero when
UTe is not. Weighted-least-squares similarly forces U"W¢ to be zero. Since
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the row of UT due to the constant term f3 consists wholly of I's. we see from
UTé being zero that the residuals add up to zero even though the error samples
do not. The presence of the constant term in the model ensures that the
constant component of the residuals. but not ¢ in this case, 1S zero. A

5.2.2 Bias with Regressors Random

When U is partly or wholly random, the bias has to be averaged over U as well
as e and for o.l.s. becomes

b= E[[U'U] 'U"e] (5.2.4)
el

Little extra complication ensues if e is independent of U, since then (5.1.7) is

still true,
bzg[[UTU]’ VUM E]e] (5.2.5)

and once more @ is unbiased if eis zero-mean. On the other hand, if U/ and eare
not independent, the biasis not generally zero. The bias in these circumstances
is investigated in Section 5.2.5, using probability limits.

Two common causes of dependence between regressors and regression-
equation error are noise in observing the regressors, and inclusion of earlier
samples of the output (regressand) among the regressors in a dynamical
model. They are the subjects of the next two sections.

5.2.3 Bias due to Noisily Observed Regressors: The “Errors in Variables”
Problem+

Let us first examine o0.l.s. estimation of a scalar parameter () in a model
vi=u0+n, (5.2.6)

from measurements

(=1,2.3,....N (5.2.7

— ’ il v — oy N
U, =u, 4w, yo=ry +ru,

affected by mutually uncorrelated, zero-mean noises i, and r,. The modelling
error n, is uncorrelated with w, and v, and has mean zero. The regression
equation is

re=ul+e, (5.2.8)
in which, from (5.2.6-5.2.8),

e,=n 4 v, —wl (5.2.9)

+ Kendall and Stuart, 1979; Johnston, 1972.
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so there is dependence between e, and regressor u, through w,. The o.ls.
estimate of 6 is

N N
():Z;u,y,:/z;uf; (5.2.10)
=1 =1
so the bias is
N N
b=E zm,(u,ﬁ +e,) }/Z:uﬁ}} -0
=1 (=1
N N
= FEl Z{ll,e,:/sz}:l
=1 =1
_ N N
=F z{(u,’ +w)(n, + v, —w0) }/Z{uf }}
Ti=1 =1
N N

— E[Z{(u; +w)w, }/Z{(u; + w,)2 }:|() (5.2.11)

=1 =1

where the last line follows from the assumed uncorrelatedness and zero
means. The estimate is clearly biased in general, for deterministic or random u;
and for any N. The o.L.s. estimate of a vector € is similarly biased in the same
circumstances:

b= E[[UTU]" ' Ulel = — E[[(U' + W)'(U' + W)] ' [U' + W]TW10
(5.2.12)

Note that the bias is due to dependence between U and e, so noise in the
inputs to a system being identified by o.l.s. causes bias only when it appears
both in the input measurements and in e. Bias would not arise, for instance,
from actuator noise affecting the input u" actually applied when a known test
signal u was intended, since then v would be uncorrelated with w and hence ¢,
even though v’ would be correlated with .

5.2.4 Bias due to Presence of Output among Regressors

Cross-correlation between regressors and the regression-equation error may
also arise when a z-transform transfer-function model

YETH=EBETH/(+ACDUEH+VET) (5.2.13)
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is rewritten in regression-equation form via
I+ AW (E Y=z B HUCE Y+ +AE Vi) (5214

Here k is the dead time in sample intervals, V(= ') represents the output noise,
and

Az Y=a,z " +a,z 2 +-4a:z"" Bz ) =byz '+ 4b,s "
(5.2.15)

Interpreting =~ ! as the one-sample-delay operator, we obtain the difference
equation

Yo=Y — Ay, — A, bt bt 1€
=ulf +e¢, r=1,2,3.... (5.2.16)
The parameter vector 6 to be estimated is
[—a, —a, --- —a, b, - b1

and the regressor vector u/ is

[ylfl .“l~n ul'*k*l ur*k*m]

From (5.2.14), e, is seen to be a moving average of n + 1 successive samples of
the original noise sequence {v} in (5.2.13),s0 {¢} is autocorrelated even if {¢} is
not. .

We shall see in Section 5.3.5 that autocorrelation of {e} affects the scatter of
Jeast-squares estimates of . Our present concern is bias, though. Each y, _;
among the regressors in (5.2.16) is directly affected by ¢, ;. We also see, by
writing (5.2.16) with 1 — i in place of 7, that y, _, depends indirectly one,_;_, to
through y, , , toy, ;. ,and yet more indirectly on all earlier samples

g
(l—i*n Sr—i-

from {e!. Thus correlation of e, with any earlier ¢, _; leads to correlation

between ¢, and one or more regressor y, | o y,_,. Bias will result in 6, as
shown by (5.2.4).
One aim of the instrumental variable method described in Section 5.3.6 is
to avoid such bias.
Example 5.2.2 A system is described by the first-order discrete-time model
YY) =(bz YA +a=""))UE )+ Fiz"h
The model is rewritten as a regression equation
y=—a )y oy b e 1=1.2.3,...

where
e, =0 +ar.,
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Suppose that {v}is zero-mean.uncorrelated and of constant variance o2. Even
then, {e} is autocorrelated:

ro(0)y=E[(v, + a,v,_ )] =E[}]+ alE[e? 1=+ ai)o?

redD=El(v,+av,._ WMo, +ar)]=a,E[tf]=a,6*=r,(—1)

Feek) =E[(v, +a,v,_ ey +ae, - )1=0=r (-1 forall i>2
Regressor vy, , is correlated with ¢, since both depend on v,_, . Specifically.

Ely,-ye]= E[((function of «’s up to u, _,) +v,_ ), +a,v,_,)] =a,d*

when, as usual, the input sequence |u} is independent of {r!. A

5.2.5 Convergence, Probability Limits and Consistency

Analysis of bias soon runs up against the problem of finding expectations of
relatively complicated functions of random variables. as in (5.2.4) if U
contains random variables. The problem can be avoided by considering
asymptotic bias and employing prohability liniits. Probability limits refer to
one particular way in which estimates may settle down as the number N of
observations they are based on is increased. A sequence of random variables
&(N) with N increasing (for instance, parameter estimates computed from
longer and longer records) is said to converge in probability to x if for any
positive real numbers ¢ and # we can find a value N, of N such that

prob(|S(N) — x| <) > 1 —y forall N> N, (5.2.17)
which implies that

lim prob(|&(N) — x| >¢)=0 (5.2.18)
N— s
Put less formally, the chance that &(N) is further than & from x becomes. then
remains, as small as we like as N increases past V. Be careful not to interpret
this as implying that almost every realisation of &( N ) converges within ¢ of v
and remains there; the tiny proportion of realisations not within £ may consist
of different realisations at different values of N. Nor does convergence
in probability to v mean that every realisation has x as the limit of &N).
Permanent convergence of almost every realisation to within « of v is called
convergence with probability 1 (w.p. 1) or almost sure (a.s.) convergence. An
alternative form of convergence is mean-square (m.s.) convergence or
convergence in quadratic mean, defined as convergence of the m.s. deviation of’
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E(N) from x to zero as N tends to infinity. Almost sure and mean square
convergence each imply convergence in probability: neither is implied by it.
Convergence in probability is a weaker property than a.s. or m.s. convergence,
but is usually easier (and certainly no harder!) to prove.

If & N) converges in probability to x, x is said to be the probability limit
plim(&) of & N). The big attraction of probability limits is the property (Wilks,
1962) that for any continuous function f(<),

plim /(&) =/ (plim &) (5.2.19)
so, for example
plim &2 = (plim &)* (5.2.20)

and for two matrices 4 and B, both functions of the same random variables,
we can find the probability limit of cach element of 4B from

n

220

plim(AB) = plim 4 plim B (

We can now enquire into the probability limits of o.l.s. parameter
estimates. Assuming that the probability limits

1
R&plim{ — UTU ).
p 1m<N >

exist, the o.Ls. estimate has a probability limit

1 .
céplim(}v— U‘e> (5.222

\

plim @ = plim{[UTU] 'UT(UO +e)!

=0+ plim /,] U"'U)il plim L U"e1
k[\/ / N J

=0+R 'c (5.2.23)

By its definition, R is positive-definite, and therefore invertible, except in the
degenerate case where exact linear dependence between the regressors makes
Ua zero for some non-zero a. As R~ is non-singular, the bias R~ "¢ is zero if’
and only if ¢ is zero. With the regressors and {e! stationary, ¢ turns out to be
the vector of cross-correlations Efwe] between regressors and ¢!, so the
necessary and sufficient condition for @ to be asymptotically unbiased, in the
sense that it converges in probability to 0, is that every regressor 1s
uncorrelated with the regression-cquation error.

Anestimator O( N)which converges in probability to @ is said to be (weakly)
consisteni. We have just seen, then, that the consistency of Ufe;N as an
estimator of the cross-correlations between the regressors and (e} guarantees
consistency of @, provided the cross-correlations are all zero.
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5.3 COVARIANCE OF ESTIMATES

5.3.1 Definition of Covariance

The average scatter of a scalar random variable x about its mean is described
by its variance

varx = o2(x) £ E[(x — Ex)?] (5.3.1)

or standard deviation a(x). For a vector variable x, the counterpart is the
covariance matrix

covx = R(x) & [(x — Ex)(x — Ex)T] (5.3.2)

Element r;; of R(x) is the covariance E[(x; — Ex;)(x; — EX;)] between elements
i and j of x, so the variances of individual elements of x make up the principal
diagonal of R(x). A random process x,, i.e. a random variable with a time
argument 7, has its covariance defined as

cov(x, s, 1) & E[(x, — Ex)(x, — Ex)"] (5.3.3)

A function of two time arguments like this is cumbersome, and we more often
deal with the covariance cov(x,t — s) of a wide-sense stationary process. In
that case element (i, ) is the cross-correlation at lag t — s between x, and x;.
For the moment we are concerned mainly with the simplest definition (5.3.2),
applied to 6.

The covariance matrix is easily expressed in terms of the “mean-square
value” matrix and the mean:

covxl=E[xx" — Ex-x" — xEx" + Ex-Ex"] = E[xx"] — ExEx" (5.3.4)

so for a zero-mean random variable, E[xx"] and covx can be used
interchangeably.

In addition to the covariance of an estimate, we shall often be interested in
the covariance of input, noise or error samples which have been written as a
vector, like e in the regression model, usually comprising successive samples
uniform in time. Element (/,j) of cov x is then autocorrelation r _ (i — j|) at lag
li — j| sampling intervals, so

Fo 0y ro () r (2 - r (N)
R _ =covx r"'\,:(l) Fal0) "’\"':(N - (5.3.9)
ro Ny e r . [(0)

A special case is when [x} is an uncorrelated (white) sequence, with r_ (0)
equal to ¢ and the autocorrelation zero at all other lags, so that R is o*/.
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Another common situation occurs when x consists of simultaneous
samples of a collection of separate variables, all white, and

cov(x,t —s)=Ro(t —5) (5.3.6)

i.e. the covariance is zero except at lag t — s zero, when it is R. This occurs in

the process- or observation-noise part of state-space models, which we shall be
employing in Section 8.1.

Example 5.3.1 If the noise sequence {v} in the transfer-function model of
Example 5.2.2 is white and has constant variance o> and zero-mean, the

regression-equation error vector e has

_ N
1 +al a
a, 1 +d? a, 0
2
Ree=0 a, 1 +ai  a
0 a;
L a, 1 +al |

If we decided instead to use a state-space model

X, =—a;x,_ +bu_, y=xX 10

1
the (co)variance of the scalar observation noise sequence {r} would be

cov(v, t —s)=0c> (1t — ) A

5.3.2 Covariance of Linear Functions of Estimate;
Significance of Minimum-Covariance Estimate

In comparing two estimators or assessing the quality of a model, it is often
necessary to examine the covariance of a fixed linear function of parameter
estimates making up a vector 6. Keeping it as general as possible, the function
is CO with C a matrix, although most often C will only be a row vector. An
example is a row vector u” of specified regressor values for which we want to
know the model-output mean-square error E[(u"(d — 0))?] attributable to
parameter error. The covariance of Cois

cov(Ch) = E[(CO — E[CH)(CO— E[CH)") = C(cov)CT (537

Example 5.3.2 An unbiased estimate 0 with variance p is obtained from
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batch i/ of some observations. We enquire how much the variance could be

reduced by taking M batches of observations and computing as () the mean of

6" to 6", assuming the batches are independent and statistically identical.
The variance of the mean @ is

S G ISRX (e Gt

i=1 j=1
= Mp/M*=p/M

The next-to-last step above recognises that (0" — 0 is independent of (09 — ¢
and has zero mean, since 0 is unbiased. so all the cross-product terms in the
sum are zero.

In the notation of (5.3.7), C is a row vector with every entry 1/M. 0 is the
column vector containing 0" to 0" and cov @ is pI. Notice that the variance
of 0 tends to zero as M is increased indefinitely. A

Armed with (5.3.7) we can investigate how to get the minimum-variance
estimator of any scalar linear function ¢'9. We denote a candidate unbiased
estimate of @ by 0* and its covariance by P*. We shall compare the variance
of ¢"0* with that of ¢"0. where 6 is any unbiased estimate, with covariance P.
Putting ¢ for C in (5.3.7),

var(c"0) — var(c"0*) = ¢"Pc — ¢"P¥c = (P — P*)e (5.3.8)

so ¢'0* has the lower variance if P — P* is positive-definite. or, putting it
another way. if P* is smaller than P. What is more, this is true wharever our
choice of ¢. As well as implying lower variance of the model output due to any
specified regressor values, smaller P* implies lower variance for each
individual element (7;“ of 0* than for the corresponding element of 0. We see
this by choosing as ¢ a vector which is zero but for one in position i. Among
unbiased estimates. smaller variance implies smaller m.s. error, since m.s.
error is variance plus (mean error) squared.

The good implications of minimum parameter-estimate covariance are so
wide that we are justified in paying covariance close attention as an indicator
of estimator quality. particularly in the context of unbiased estimators.

A warning is in order here. [t is easy to confuse the variance of an unbiased
estimate of a model output u'@ with the mean-square output error actually
obtained in fitting the model. The two are not the same. The o.l.s. parameter
estimates minimisc the actual mean-square model-output error over the
record. but do not generally minimise the mean-squarc model-output error
over all regression-cquation-error realisations for any specified regressor
values, not even for the valucs occurring in the record. The o.1.s. estimates do,
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however, minimise it in the special case where the regression-equation error is
white. We follow up this point in Sections 5.3.4 and 5.3.5.

5.3.3 Covariance of Ordinary Least-Square and Weighted Least-Square
Estimates

When U is independent of e and e is zero-mean, the o.ls. estimate has
covariance
cov@=E[([UTU]! UTy —o(uTUIT Uy -0
—E[(JUTU] ' UN(UB +e) —0)([UTU] 'U'(UB +e)—0)']
:E[[UTU]"UTcov(e)U[UTU]"] (5.3.9)

In the simplest case, cove is 62/, the elements of e are uncorrclated and all of
variance ¢2. That is so for uniform sampling of a system with stationary
e(1). autocorrelated only over lags less than one sampling interval. Il so.

covl=ca*E[[UTU]™"] (5.3.10)

and the expectation operation can be dropped when U is non-random. Since
[UTU] " can be extracted Cdbl]y from the o.l.s. computation, cov 0 can be
estimated readily providing a2 can be estimated. One would guess that the
sum of squares of the residuals is proportional to a*. In fact

S=e'e= Uo)" (y— Uf) =y"ly— U[UTU] 'UYy
=y'(Iy - U[U Ul"'UNy =tri(ly — ULUTUT'UNyy"t (5.3.11)

where 7, denotes the N x N identity matrix, the trace tr is the sum of the
principal-diagonal elements, and we have used the relation

XAI‘Ay :z Z Ny Ve = [I:Ay\ “n (5.3.12)
i k

Since, when U is non-random and cove is 631,,
E[S]‘n Iy — U[UTU] "UYE[yy']!
=tri(ly— UUTU "U WU U + 671!
—o2trily— U[UTUI 'UT =c(tril =t [UTU] U0 )
=0 (N—p) (5.3.13)

we conclude that S/(N — p) is an unbiased estimator of ¢°.
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Example 5.3.3 In Example 4.1.1, the o.ls. estimates of initial target position
Xy, velocity vy and acceleration a were X, = 4-79, ¢, = 234, G = 55.4. The sum
of squares of the residuals was S=1579, so ¢ is estimated as
S/(N —p)=157.9/(6 — 3) = 52.6, and cov 0 is estimated as

432 —155 235
526[UTU]) "= | —155 958 —1763
235 —1763 3526

The square roots of the principal-diagonal elements give estimated standard
deviations 6.57 for X, 31.0 for ¢, andi59.4 for 4. As N is so small, we should
not trust the covariance estimate too much, however. A

For the w.Ls. estimate ,, given by (4.1.34), the covariance is found by the
same steps as in (5.3.9) to be

covl, =E[[UTWU] '"U"WRWTU[U W U] ] (5.3.14)

where Ris cove. As [UTWU] ™' UTW is the matrix relating §,, to y, it might
appear that cov f, can be computed cheaply, given R. Direct computation
would, on the contrary, be expensive since Ris N x N, normally very large. It
can be avoided in the most important w.l.s. estimator, the Markov estimator
which minimises cov éw, as discussed in Section 5.3.5.

5.3.4 Minimum-Covariance Property of Ordinary Least Squares When
Error Is Uncorrelated

We shall now discover that when the regression-equation errors forming e are
zero-mean, uncorrelated and all of the same variance, so that R is ¢2/, the
covariance of the o.ls. estimate 6 is the smallest of any linear, unbiased
estimate. If we denote any such estimate Ay by , then, using (5.1.7) to ensure
zero bias,

covl, =E[(Ay — 0)Ay — 0)T] = E[dee" 4" = 62E[4A4"] (5.3.15)

under the.assumption that e is uncorrelated with the samples making up 4.
We could now assume that 4 and U are non-random, allowing us to
drop the expectation signs in (5.3.10) and (5.3.15), then show fairly easily
(Problem 5.4) that ¢%AA"— [UTU]™Y) is positive-semi-definite, dem-
onstrating that no 0, gives cov@, smaller than covf. A less restrictive
assumption is that 4 may be stochastic but is of the form [BU] 'B, which
satisfies the condition (5.1.7) that ensures unbiasedness. All the linear,
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unbiased estimates we shall encounter are of this form. Keeping 4 and U
stochastic, consider

DAE[A—-[UTUI ' UYA4 - [UTU] ' UDT
=E[AAT)— E[AU[UTU] Y = E[[UTU1 'UTAY + E[[UT U] !
(5.3.16)
Replacing 4 by [BU] ™ 'B, we see that

E[AUIUTU] 1= E[[UTU] "1 =E[[UTU] 'UT4AT] (53.17)
SO
D=E[AA"] — E[[UTU] ']=covf,,—covl (5.3.18)

and D is positive-semi-definite, being the mean of the positive-semi-definite
product of a real matrix and its transpose, so

covl,>covd (5.3.19)

This minimum-covariance property is a powerful incentive to employ o.1.s.
when the regression-equation error /s uncorrelated and of constant variance.
It would be nice to have a comparably simple minimum-covariance estimate
when the error-vector elements are correlated and/or of differing variances.
Such an estimate is found in the next section.

5.3.5 Minimum-Covariance Estimate When Error Is Autocorrelated/Non-
Stationary: The Markov Estimate

When the covariance of the regression-equation error e is not of the form ¢/,
we no longer have any reason to suppose that the o.l.s. estimate of 4 has the
smallest covariance of all linear, unbiased estimates. We can, however, still
obtain the minimum-covariance estimate if we first operate on the regression
equation so as to turn it into an equation with an error vector which does have
covariance ¢ /. The required operation is linear filtering. That is, y and U are
pre-multiplied by some N x N matrix Q to give

y=9Qy. U=0U (5.3.20)
From the original regression equation we then have
y=0(U0+e)=U'0+¢ (5.3.21)

where e’ is Qe. This new error is still zero-mean, but its covariance is
cove = E[Qee'Q"] = QRO" (5.3.22)
where R is cove. By choosing Q such that

Q0 'Q T=R (5.3.23)
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we make the covariance
cove =00 'Q0 0T =1 (5.3.249)

It is always possible to factorize R as in (5.3.23), because R is positive-definite
(unless the elements of e are always linearly dependent, not a practical
possibility); the factorisation amounts to rewriting the quadratic form ETRE as
(07 TEYT(QTE), and positive-definiteness ensures that at least one element of
QO 'Eisnon-zero, so Q exists. The Choleski factorisation in Chapter 4 is one
such factorisation.

The o.l.s. estimate based on the filtered equation (5.3.21) is

0 =[UTUT Uy =[UTQTQUTTUTQ Oy
=[UTR'UI"'UR 'y (5.3.25)

so it turns out that the minimum-covariance, linear, unbiased estimate isw.l.s.,
with the inverse of the covariance of the regression-equation error as the
weighting matrix. The estimate is called the Markov, Aitken or generalized-
least squares (g.1.s.) estimate. Since the filtering of the regression equation not
only uncorrelates the error {¢} but also makes its variance unity. the
covariance of @ is, from (5.3.10), E[[U" U] "] or E[[UTR™'U]™ '}

Direct implementation of (5.3.25) is unattractive, as Ris N x N, normally
large. A better solution is to find a low-order linear filter with the required
“noise whitening” effect on {e}. This may be done iteratively, processing all the
regression-equation errors at once as in Section 7.2.2, or recursively, running
through the observations and regression-equation errors one at a time, as in
Section 7.4. In either method we find the required filter by identifying the
structure of the regression-equation error. The problem is a special case of the
usual input- output identification problem, with “output™ ¢, modelled as a
linear function of earlier samples of itself and white-noise forcing. The
sequence {¢} s, of course, not directly available and must be approximated by
residuals {3, —u'@} with @ the best estimate of @ at hand.

transfer-function model was rewritten as a regression equation

v,o=—av,_,+bu_, +e, r=1,2,....N

1
with
e, =v, +ar,_,
Suppose that in reality ¢ is —0.8 and the noise sequence v} of the transfer-
function model is uncorrelated. Il the autocorrelation function of {¢! could be
calculated exactly, it would be

1 (0)=(+ atyor =1.640% r.(+1)=ac?=—080% r (+i)=0. =2
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as found in Example 5.2.2. In practice, {e} is not accessible from {y| and i}
without exact knowledge of ¢ and &, which would do away with the need for
identification. Instead. we have to use the o.ls. residuals !¢}, for instance,
which differ systematically from {¢} because the o.ls. estimates ¢ and b are
inexact. We find, we hope,

1.64 —0.38 0 0 ... 0
—0.8 1.64 -08 0 ... O
cove~R=7"| o
0 ... lo4

Gaussian elimination inverts this tridiagonal matrix quite quickly for use in
(5.3.25)(Fenner, 1974), but a neater and more informative solution 1s Lo notice
that R can be factorized as SS* where S is the N x (N + 1) matrix

g —0.80 0 - 0 0
0 g —08 --- 0 0
0 ¢ —08¢

Generally we can see that when ¢, is a linear combination of # + | successive
samples t, to t,_,, R has 2n + 1 non-zero diagonals containing r . .(0) to r_..(n).
and each row of S has 1 + 1 non-zero clements, proportional to the coefticients
of v, 1o r,_, in ¢,. Equating clements of SS" and R gives those coefficients
uniquely. We then want to invert the linear relation between (¢! and jr!soas
to find the filter that turns {u} into {u'} and {y}into (1"}, just as Q' was
inverted to give O to premultiply U and y. As Sis not squarc. it is not obvious
how to do so (S~ ' does not exist). We can, however, invert U/ =SU" and
y = Sy’ one sample at a time. In this example

= —0.8u;_, =1 =08y 4. r=12....N
gives
u, =0.8u,_ | +u,. =08y _, +r. r=1.2.....N

The only difficulty is that we do not know the initial conditions, w; and r',
here, and must choose them arbitrarily. So long as the filtering from ju! and
Gyl to 'l and 1y is stable, the effects of incorrect initial conditions

eventually die out, so we need only discard the first few (we hope) valuesin {u'

and {1y}, AN

We saw in Section 5.2.4 that the combination ol autocorrelated (e} and

inclusion of earlier outputs among the regressors (like v, _, in Example 5.3.4)
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causes bias in @, due to correlation between e, and those earlier-output
regressors. The bias does not arise if {e} has its autocorrelation removed by
linear filtering, since then the correlation between regressors and regression-
equation error vanishes. An alternative method of avoiding such bias is the
subject of the next section.

5.3.6 Instrumental Variables

The bias due to correlation between regressors and regression-equation error,
described in Section 5.2.4, can be avoided by modifying the 0.l s. estimate into
the instrumental variable estimate

0,=[Z"U1"'Z7y (5.3.26)
where Z is a matrix in which the error-correlated regressors of U are replaced
by other variables (the instrumental variables, or just instruments) not
correlated with the error. A suitable choice of Z will make 6, a consistent
estimator of 0, for

plim, = plim([ZTU] 'ZT(UB +e)) = 0 + plim([Z"U] "' Z"e)

=0+ plim(([ZTUYN) V) plim(ZTe/N) = 0 + R}, (5.3.27)

We are assuming here that putting in the 1/N is enough to make the
probability limits R, and 7, exist. The effect is that, for instance, element
(i,j) of R, becomes the probability limit of the mean, over the N samples in
column /of Z and column j of U, of the product of the variables forming those
columns. As one would guess, in many cases each such N-sample mean tends
with increasing N to the expected value of the product. Hence, if the variables
in Z, U and e are zero-mean, the elements of R,,, and r,, are the covariances
between the corresponding variables. (Caution is needed here, for situations
can be devised in which an N-sample mean is asymptotically biased but still
consistent. A proportion of realisations might be biased, the proportion
decreasing asymptotically to zero as N increases and so not preventing
consistency, but the bias in that proportion might rise more rapidly with N
and produce non-zero nett bias. We cannot therefore assume blindly that for
any variable £, with a probability limit, plim ¢, and limy _, ££, coincide.)

Returning to (5.3.27) we see that plim 0, is 0 if r,, is zero. When 7, is the
vector of covariances between the instrumental variables and {e} as discussed
above, we conclude that @, is consistent if the instrumental variables are
uncorrelated with {e}.

Our choice of Z s further guided by wanting 8, to have a small asymptotic
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covariance. Taking cov e to be g2/, the simplest possibility, and using the fact
that in general

E[f(&m)]

]

E[E[_ﬂ&_, »l é]J

BRIE
(Melsa and Sage, 1973, p. 162), we find that
cov, 2 JE [(0,—0)0,—-0)"]

— E[[Z'U) ' ZTee' Z[UZ] )
Z.U.e

— E[[Z'U)'Z" E [ee"1Z[U'Z] "]

\1Z.U

:aIZEU[[Z“U] AVALAVA RS

_ X E[[ZTU/N) Z Z/NWUTZ/NT YN (5.3.28)
zZ,U

Like Z"U, Z7Z has to be divided by N to get a finite probability limit R .

Plim U"Z/Nis just R}, and the inversion of Z'U/N and U"Z/N inverts R,

and R}, so altogether

plimcov@, = ¢ plim[Z"U/N] ' plim[Z"Z/N]|plim[U'Z/N]"'/N
=a’R,'R,,R,J/N (5.3.29)

Now (5.3.29) reveals a danger. If, in making Z uncorrelated with {e!, we
should render Z almost uncorrelated with U, R, and R, would be small and
their inverses large. With R, not particularly small, we could then have an
undesirably large asymptotic covariance for ,, even though 6, might be
consistent. It seems Z must consist of instrumental variables correlated as
little as possible with {¢} but as much as possible with U. There need be no
conflict, in principle; the error-correlated variables in U are functions of both
the noise-free variables driving the system ({u} here) and the regression-
equation error, and we are merely asking for the former to be emphasised
and the latter suppressed in Z. However, not knowing e exactly, we cannot
check accurately how closely Z approaches the desired correlation behaviour.

The required correlation properties of Z do not prescribe explicitly what we
should choose as instrumental variables. Several possible choices will now be
reviewed in an example.
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Example 5.3.5 Biaswascaused in Examples 5.2.2 and 5.3.4 by the presence of
¥,_,.correlated with ¢, as one of the regressors. To avoid bias, we replace v, _,
by an instrumental variable =, _, uncorrelated with ¢,. We must also take care
that

_ N N ~
Iy I U
: —1.1—-1 : t—17—1
plim -—=—= plim = .—
N N
B (=1 =1
Ry, =
N N
U v,
plim E : 17’\—/—’7—1 plim % .l
L =1 =1 |

[7.00) 1,(0)
rp(0) - 1,(0)
is not near-singular, inflating plimcov@,. Let us examine R, for three
choices of z,_ |, each uncorrelated with ¢,:

(i) z,_y=u,_, so that r_(0)=r,(0) and r_(0)=r,(0). Clearly, R,,
becomes singular. We should have forescen this disaster, as we have
introduced exact linear dependence between the columns of Z, namely column
1 — column 2 = 0. Linear dependence or near-dependence among columns of
Z might be much harder to foresee in an example with more regressors.

(1) z,_, =y,_,, so that r_(0) =r, (1) and r_(0)=r_(1). With

yo=—av,_, +bu_, +e, e, =0, +dr,_,, r=12.....N

¥,_,dependsonusuptou, ,andesuptoe, ,.andthusoncsuptor,_,. As

i} is uncorrelated with {ri, r, (1) is then zero providing r,, (i) is zero for all
i> 1. Similarly, r,(0) depends on r,, and is zero if {u} is white. Hence
IR, = r.{Dr.(0)—(a contribution which depends on r,, and is zero if
F(iy=0foralli>1). Itis not difficult to see that r (1) is not generally zero,
so |R,.| is non-zero and R, exists. Problem 5.5 examines the resulting
probability limit of Ncov @, when {u} is not strongly autocorrelated.

(i) z,.,=¥»_,—¢_,. Now z,_, is not obtainable exactly, since ¢,_, is
not known exactly, but it could be approximated by —dv, , + bu, , using
tentative estimates of @ and b, for instance from o.l.s. This choice of =, | 1s
appealing because it modities the troublesome regressor y,_, as little as
necessary to uncorrelate it from ¢,. It {u} is white, it is fairly easy to show
(Problem 5.6) that R,;., R,, and R, are all diagonal, with principal-diagonal
elements (@?g? + by, (0)and r, (0), where g is the “power gain” from r,,(0)
to r, (0), obtainable by calculating from ¢ and / the unit-pulse response then
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squaring and summing its ordinates, as in Problem 3.2. Hence,

. - (L+ady (O [ ag* + b7y 0
limNcovl, =— " )
plim Ncov0, " (0) 0 |
and high input power compared with noise power, i.c. low r, (0)/r,,(0), is seen
to be beneficial, as one would expect. A

5.3.7 Minimum-Mean-Square-Error Estimation: Ridge Regression

Up to now we have asked first that an estimator should be unbiased, then that
it should have minimum covariance among unbiased estimators. Reasonable
as this seems, it is not always the best thing to do, as it does not guarantee
minimum mean-square error (m.s.e.) in the cstimates. The m.s.c. matrix for
estimate 0 of 0, with mean Ef equal to 0, is (treating € as non-random)

M2E[@—0)0—0)=E[0—0+0—0)0—-0+0—0)]
=E[0—0)0—0)")+(0—0)0—0)" +(0—0)(0—) +(0—0)0—0)'
=covh + bb" (5.3.30)

where b is the bias in . This matrix counterpart of the familiar “mean-square
value equals variance plus mean squared” indicates that a finite bias may be
worth exchanging for a reduced covariance.
Reduction of m.s.e. is the aim of ridge regression, which modifies the o.ls.
estimate to
0, =[U"U+ K] 'U"y (5.3.31

with K some symmetric matrix. Several forms have been suggested for K
(Hoerl and Kennard, 1970; Goldstein and Smith, 1974). the simplest being k
with k a positive scalar. To see how a reduction in m.s.e. comes about,
consider a scalar 0, for which (5.3.31) becomes

N N
0,= zu,y,/<2uf + /(>
=1 T=
N N
/ )
= (Z uud+e)+k0— k()>/ <Zu,‘ + /()
r=1 =1 ’
N N

—(H—(Eu,e, /(())/(Zuf +/\'> (5.3.3D)

=1 =1
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Assuming {e ! is not autocorrelated or correlated with {u}, and has mean zero
. [ N ~ A -
and variance ¢2, and writing " u? as Y, the m.s.e. of Oy is

SN we, —ko\? o’y +k0?
M=F|{&=0100 "% =E|—&= 3.

A stationary value of M is achieved when

oM E[ k0> 2s*Y + klz)l)] o

which requires & to be ¢?/67. The stationary value is, in fact. a minimum since
0?M/ck? is entirely composed of positive terms. We cannot choose the best &
in advance even in the scalar case. not knowing o or 0, but we could find an
acceptable k by trial and error (Hoerl and Kennard, 1970), checking that the
estimates are credible and the sum of squares of residuals is not unduly inflated
by using k.

For a vector 0, analysis of how k affects M is not easy, and Hoerl and
Kennard avoid it by considering the mean sum of squares of estimate errors
E[(6—0)7(6 — 0)]. Thisis less satisfactory, particularly if the elements of § are
of differing orders of magnitude, as all the squared errors are weighted
equally. Goldstein and Smith justify the choice 47 through its effect in
reducing ill-conditioning. The singular-value decomposition described in
Section 4.2.4 is applied to U, so

U=PRQ" (5.3.35)

(5.3.34)

where P and Q are orthogonal matrices and R is N x p and zero but for non-
negative singular values r,;, 1 <i<p. Asin Section 4.2.4. P. Q and R are used
to transform the normal equations to

RTRO* = RVy*, e, rf0F=rvE i=1.2.....p (53.36)
where

0* 2 070, y* & Ply (5.3.37)

lll-conditioning appears as at least one 1 being very small, making the sum of
squares of residuals (model-output errors)

r N
S'ZI(J'?“:',-,»(j,-*)l! + Z (rF2) (5.3.38)
i=1 i=p+1

from the transformed regression equation
y* =P (UO+e)=P"PRQ0 + P'e = RO* + e* (5.3.39)

very insensitive o the related 0* . Since Sis the same as in the original problem,
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the 0% is a linear combination of elements of @ which has little influence on the
model fit, and is consequently poorly estimated. The ill—condiﬁoning can be
alleviated by replacing every 1/r, by r,/(ri + k) with k positive, effectively
preventing any r,; from being too small. The result is to modAify each 0¥ trom
v¥/ri; (which minimises S in (5.3.38)) to r;;v¥/(ri + k), say 0%, The diagonal
matrix RTR in (5.3.36) is thereby modified to R'R + k1. so solving (5.3.36),
0% =[R"R + kI 'R"y*
=[QTUTUQ + kQTQ] 'R"P"y (5.3.40)
where we have used the fact that P and Q are both orthogonal. Hence
0, =0 "0% =005 =[0"U"U +kQ"] 'R Py
=[U'U+ kI "QR"P 'y = [UTU + k11" 'UTy (5.3.41)
and ridge regression emerges as the result of preventing any singular values of
U from being very small. ‘
Ridge regression can be shown to be capable of reducing the m.s.e. of each
clement of . The proof consists of writing the derivative of the m.s.e. at :.0,
1.e. at the point where ridge regression departs from o.l.s., as a sum of negative
terms.

5.3.8 Minimum-Mean-Square-Error Linear Estimator and Orthogonality

Having established that the minimum-mean-square-error (m.m.s.e.) esti-
mator is not generally the minimum-covariance unbiased estimator, let us find
out what it 1s. Initially we shall consider the scalar weighted m.s.e.

Q=FE[0—0)"W©—0) (5.3.42)

rather than the m.s.e. matrix M in (5.3.30). The difference is less significant
than it might seem, as we are usually interested in m.s. weighted errors of the
form
E[(c"(0—0))*1=E[(0—0)Tcc (0 — 0)]
=E[cT(0—6)0—0)'c]=c"Mc (5.3.43)
We also restrict the estimator to the form
0= Ay (5.3.44)

linear in the obsecrvations, like all the least-squares estimators, tor
computational and analytical simplicity.
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Each element a;; of 4 must give

A 2 o0
©0_ E[({g (0—0)" W@ - 0))"fﬁ}
a

('(I,-j \ (’(Iu

= E[(element jof 2 W — 0)))'.,-] =0 (5.3.45)
so, writing out ¢Q/da, for all rows 7 and columns j of A4,
CQ/0A =2WE[(0 —0)y"1 =0 (5.3.46)
Whatever the value of W, é¢Q/0A4 will be zero if A gives
E[(0—0)y'1=0 (5.3.47)

These orthogonality conditions say that, on average over all possible values of
the observations, the error in each parameter should be unrelated to each
observation. The orthogonality conditions (4.1.20) for the output estimate
based on o.l.s. are rather similar; they imply that there is no relation between
the output error and each regressor, on average over the samples in one
record. The output estimate is lincar in the regressors, just as @ is linear in the
observations here.

We can find 4 for the m.m.s.e. estimator explicitly where the observations
are generated by

y= U0 +e, Ee=0, cove=R (5.3.48)

with U and 0 deterministic. The weighted m.s.e. in 0 is calculated over all
realisations of e for a particular value of U/ and 6. Substituting (5.3.48) into
(5.3.47), ,
E[((AU =10+ Ae)(UO +¢e)'| =AU - 100"U" + 4R =0 (5.3.49)
SO
A=00"UT[UOOTU" + R] ™! (5.3.50)

The inverse in this expression exists, since R is a positive-definite covariance
and U60"U" is non-negative-definite. Although such an cxpression for A in
terms of the unknown @ is not directly usable, it does allow us to work out the
bias and m.s. error of the theorctically optimal cstimator. We can then
compare this estimator with the g.l.s. minimum-covariance estimator.
First, we must simplify 4. We can easily verify that
00"UTR ! 00"U'R "

ASVLUR U0 14a Y (5351
by postmultiplying this cxpression and the original one (5.3.50) by
U00"U" + R. Hence the bias is

0

0
E[Ay —0]=E[AU0+ Ae — 0] =AU -0 =-— - —0= — (5.3.52)
1 + o | + o
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so the m.m.s.e. estimator is indeed biased. Its m.s.e. matrix is
M =E[0 - 60)(0—0)"]
=E[((AU—=1)0 + Ae)e' 4T +0"(U' 4T —1))]
=(AU—= 100" (U4 — )+ ARA" (5.3.33)

and from (5.3.51),
ARAT = 000"/(1 + o0)?

SO
00" af0" 06"
M= - + 5= 5.3.54)
T+ 0+’ 1+ (
The g.l.s. estimate 0 given by (5.3.25) is unbiased. since
E[0 —0]=E[[U'R"'U]""UTR™ (U +e)— 0]
—E[[U'R '"U]""U'R 'e] =0 (5.3.55)

and its m.s.e. matrix is

M =E[[UTR"'"U] "U'R 'ee'R'"U[U'R™'U] '|=[U'R "U]"!
(5.3.56)

N

We show that M’ is larger than M. in the sense that M’ — M is positive-
definite, by first noting that

o RTTUGOTUTR N
U'R'UM —MU'R'U=U"\R"— — U

= UT[R+ U0OTU") " U>0
(5.2.57)

The last step can be verified by multiplying the inner matrices by R + U00" U",
and the inequality follows from [R+ U0 U"']™"' being the inverse of a
positive-definite matrix, as noted earlier, and therefore itself positive-definite.
Now since UTR™'U is invertible, any quadratic form E'"(M' — M )& can be
rewritten ("UTR 'U(M’' — MYUYR 'U{ where { is [UTR™'U] "¢ so
(5.3.57) shows that M’ — M is positive-definite. The practical conclusion is
that the g.l.s. estimate has a larger mean-square weighted error

N

E[(c"(0' —0)* ) =c"M'c (5.3.58)

than the theoretical m.m.s.e. estimator. as the penalty for being unbiased.
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5.4 EFFICIENCY

5.4.1 Cramer—Rao Bound

Besides establishing that an estimator converges, we may wish to measure its
performance against some standard. A standard for estimation covariance is
provided by the Cramér—Rao bound. The bound applies to any unbiased
estimator 0(y) of a parameter vector § using measurements y. For instance, y
might comprise all the elements of y and U in the usual regression model, but
the bound is not restricted to any particular model or any particular estimator
form. Some at least of the measurements are random variables (noise is
present) so they are described by their joint probability density function
p(»]0), which is influenced by 6. Subject to some conditions on p(y|8),
discussed below, the covariance of §(y) cannot be less than the Cramér-Rao

bound F~! where
FAFE {lnp(wﬂ)( lnp(yl())) } (5.4.1)

Matrix F is called the Fisher information matrix. Without attempting a
detailed interpretation of F, we can accept the name as associating lowest
potential covariance F~! of an estimate with most information about it. It
also seems reasonable that the information about 8 is conveyed by its influence
on the measurements through p(v|0).

The Cramér—Rao inequality

covl(y)> F! (5.4.2)
1s proved by considering the covariance of the augmented vector

0(y)
| a 543
¢ Cnp(r10) (>-4.3)
a0

First we find E{(¢/0)Inp(y10)}:

s}

i
E{ﬂ np(vw)} J;olnp(yw)-p(yw)dy

ap(y|0) <
d
J (30 y=

a
N@)ydy =—(1) = 4.
Jml Ydy =2, =0 (5.4.4)

assuming that p(y|0) is well enough behaved to allow reversal of the order of
differentiation and integration. To be more specific, the regularity conditions
on p(1|0) are that the range of integration (over which p(y|0) is non-zero) must
not depend on 0, and the integral must converge in spite of the differentiation
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in its integrand. Next let us examine E{0(y)(8/30) In p(y10)} in the same
fashion:

0
{Gm lnpow)} Jf»( R )dy—

¢ £ ¢ 5.4.5
— B0 =250) =1 (5.4.5)

jO(J)pU |0)dy

since O(y) is by assumption unbiased. Hence

covl(y) 1
T
cove = I { lnp(vlﬂ)( 1“P()’|9)> }
_[covl(») 1 (5.4.6)
- 1 F -

Like any other covariance matrix, cov¢ is positive-semi-definite, so in
particular

[1 F‘T][ COV]G(}’) 11:}[ ;?7 1} — cov é(V) —F1>90 (547)

proving (5.4.2).

Example 5.4.1 We want to estimate parameter « of the probability density
plx|a) = (1ja) exp( — x/a), x >0 from N independent samples of v. We shall
find the Cramér—Rao bound on the variance of any unbiased estimator of «,
and then check whether the unbiased estimator a = Zf\" | X/N attains it.

Integrating xp(x|«) and x?p(x|«) by parts, we find the mean ¥ to be « and
the m.s. value x7 to be 242, The samples of x have a joint probability density

N

-N _ZN—'—'I'\AI
p(¥10) =p(x,. x5, ..., xy|a) = plx oy =o" "exp 4&/

t=1

for x, to x, non-negative, so

N
Inp(y|0) = —Nlncx—Z@

and therefore

In p(y|0)= — ¥ 4 o=
5(91”)(1 I o’
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From this we find, given the independence of the samples, that

('! 2
F=FE{| .
b{(ﬁalnp(} |oc)> }

N N
N2 2N ! 2
N ’ _ﬁ‘rE A\‘l +74E <Z‘\hl>}
o x o
1=1 =1
N2 2N 1 o, N
=— = Na4+ 3 (NE{X2] + N(N — 1)(Ex)2) =
[o4 o o a-

so the Cramér-Rao bound on the variance of 4 is a?/N.
The mean of a is « and the variance of 4 is

N2 5 N 2
vara = E{(d— o)’ ! = E{(ZIL\’) ‘iz;v’ilf\’ +a1} _x

N2 N

so a does attain the Cramér-Rao bound ; we couldn’t do better with any other

unbiased estimator, however ingenious. A

We next examine an equally simple example in which things are not so
straightforward.
Example 5.4.2 The gain g of a plant modelled by
»l‘l = glll + ()l

is to be estimated from N independent pairs of measurements (1,.v,). The
modelerror ¢, is belicved to be uniformly distributed over [—r.r]. What is the
Cramér-Rao bound for g7 Here

N
1
Py 8= H{?_r for |y, —gu|<r only}
=1 ) ’
B ],,, if {3} is such that gur, —r < v, < gu, +r
=< (2" fort=1,2,....N
0 otherwise

The range over which p(1|6) is non-zero clearly depends on 0 (g here), so the
regularity conditions are not all satisfied, and the Cramér- Rao bound is
inapplicable. A moment’s thought reveals that in principle the variance of ¢
can be made as small as you please by using large enough absolute values l‘o‘r
the input samples !, A

-
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The Fisher information matrix relates easily to the second-derivative
matrix of In p(y |6) with respect to 6, for

o ¢ I ap(r|0)
IR | )= -—f —m - 2
20,00, nprio) P(),(p(ylG) 20,

L a%p(r]0) 1

T op(y10) 20,00,  pA(r10)

’Dp( o) ép(v|0)

548
o, ("7()/ ( )

and if once more we can reverse the order of integration and differentiation,

1 &p(y|0) p(v)0) o
. L o - = . 1',
E{ p(r10) 0,00, 20,60, ¥ = ag,a0, | 110D
2
= —— (1)=0 5.4.9
a0, Do_,.( ) (3.4.9)
giving
g{Epuioy o f L apri8) ap(y]0)
00,00, | piyv10)  éo, 0,
Clnp(vi®)ycinp(ri0)
= —E{ T 0, a} (5.4.10)

which is minus element (1, j) of the Fisher information matrix, so altogether

ar
F=— E{Fﬂl Inp(v| 0)}

We shall re-encounter Inp(r|6) when we cover maximum-likelihood
estimation in Chapter 6.

(5.4.11)

5.4.2 Efficiency

An unbiased cstimate is said to be efficient if its covariance equals the
Cramér-Rao bound. We can define the cfficiency of a scalar estimate as the
Cramér-Rao bound divided by the estimation variance. The main practical
significance of efficiency is in determining whether further efforts to devise a
lower-covariance estimate would be futile because the present estimate is
eflicient or nearly efficient. Even so, efficiency is not always critical, as a far-
from-efficient estimate may be the best practicable and. more to the point, may
be acceptably accurate.

Investigation of efficiency may require some idealising assumption about
the form of p(y|@), as in the following example.
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Example 5.4.3 Weshall test the efficiency of the Markov estimate introduced
in Section 5.3.5. With the usual regression model, and considering U not to be
random,

p(y|0)=prob(y = observed value| )

=proble=y— U6|0) with observed yand U inserted

To get any further we have to assume some form for the p.d.f. of e. A popular
assumption which makes the algebra easy and may bear some resemblance to
the truth is that e is a zero-mean, Gaussian random variable with p.d.f.

ple|0) =exp(—3e"R™'e)/((2m)"?|R])

where R is cov e as usual. Putting y — U@ for e and then using (5.4.11), we
obtain the Fisher information matrix

In p(y|0)=—3(y — UO)'R™'(y — UB) + const independent of 0

P A2
Fal

0 — 2 .
M PYIO=UTR Ny = U8, Inp(r10)=—UTR'U

d
so, with U non-random,
F=U'R'U, F “=[U'R"'U]"!
The Markov estimate @' given by (5.3.25):
¢ —[UTR U] "UTR 'y

has covariance [UTR ' U]~ ' as we saw in Section (5.3.5), so §’ has covariance
equal to the Cramér Rao bound F~! and is efficient. A

FURTHER READING

Wadsworth and Bryan (1974) and Helstrom (1984) among many other books
give the basic material on probability in detail and are generous with examples
and problems. Whittle (1970) is more advanced but very concise and readable,
and discusses the convergence of random sequences. This topic is also
introduced by Papoulis (1965), who provides a wide background in stochastic
processes and looks at least-squares estimation in a stochastic setting.

Silvey (1975) covers minimum-covariance unbiased estimation and the
main topics of Chapter 6, and is beautifully concise. A good selection of the
estimation theory we need is summarised by Goodwin and Payne (1977), and
the appendices of that book contain several standard results we shall find
useful later.
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PROBLEMS

5.1 Show that, in the notation of Example 5.1.2, 2 is a biased estimator of
72, with bias s/N. If two independent batches of N samples of v have sample
means £V and 2, is 1A an unbiased estimator of ¢*? Show that
Z‘,V:x te,(c, — @)}/ N is an unbiased estimator of s, where 2 is based on N
samples independent of ¢, Lo vy. Does it matter whether v, to vy are mutually
independent in this estimator?

5.2 Find the variance of 0'"'6' in Problem 5.1.
5.3 If.in the “errors in variables” situation described in Section 5.2.3,01s a
vector but only one regressor is affected by noise, does that noise cause bias n
all of 0, only the element multiplying the affected regressor, or none of 67
Would your answer change if 8 were estimated by w.Ls., with any positive-
definite weighting matrix?

5.4 1In Problem4.5, /— U[UTU] 'U" was found to be idempotent. Verify
that, because it is idempotent and symmetric, it is positive-semi-definite. With
A amatrix such that AU = I, write 44" — [UT U]~ ' as a symmetric expression
in A and I — U[UTU]"'UT and hence show that it is positive-semi-definite.
[Section 5.3.4 brings out the relevance of this problem to the minimum-
covariance property of o.l.s.]
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5.5 Assuming that the input sequence {1} in Example 5.3.4 is uncorrelated,
show (by expressing r, (1) in terms of r, (0) and r,(0) and then r.,(0) in terms
of r,(0) and r,(0)) that r (1) is not generally zero. Hence find the probability
limit of N cov @, in part (i1) of Example 5.3.4 in terms of ra(0), 1, (0), aand b.
5.6 Verify that in part (iii) of Example 5.3.5, R, and R, are as claimed
there.

5.7 Isu, ., a suitable instrumental variable to replace y,_, in the model in
Example 5.3.47 Specifically, is it uncorrelated with e, but strongly correlated
with U?

58 Is y,_; —u,_, an acceptable instrumental variable to replace v
Example 5.3.47

B

Chapter 6

Optimal Estimation, Bayes and Maximum-Likelihood
Estimators

6.1 INTRODUCTION

A large number of identification methods will be described in Chapter 7, yet
they represent only a fraction of the methods available. We must somehow
classify and compare the throng of competing methods, whether we want a
technique for one application or a broad perspective on the whole field. A
framework which will accommodate many identification methods is set up in
this chapter; Chapters 7-10 go on to see how the methods are implemented.

It 1s convenient to categorise methods initially according to what measure
of estimation goodness they try to optimise. Model structure and com-
putational tactics can be considered later. Our basis for categorising will be
Bayes estimation, which is easy to appreciate, almost all-embracing and
appealing to common sense. Other frameworks are possible, and one in
particular, the prediction-error formulation (discussed briefly in Chapter 7) is
a very useful basis for analysis of asymptotic properties of parameter
estimators. Least-squares methods for models lincar in their parameters will
fit into either framework, and will be the main object of our attention in later
chapters.

We shall be asking of each method “Is it simple and computationally
cheap”” and “Are its assumptions realistic7". The answers will often be "no™,
and will lead us to simplify the methods and be wary of their results.

6.2 BAYESIAN APPROACH TO OPTIMAL ESTIMATION

The least-squares estimators we have concentrated on were motivated by the
simple idea of fitting model output to observed output as closely as possible.
They proved to have attractive statistical properties under suitable
assumptions, including optimality in the sense of minimum covariance among

121
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all linear, unbiased estimators. The following questions about them remain
unanswered, however:

(1) Can we improve on them by using some non-linear estimator?

(2) Whatestimatoris best if the criterion is something other than minimum
output m.s. error or parameter-estimate covariance?

(3) How can we bring in prior information on the most likely values for the
parameters?

(4) Regarding the parameters as random variables, can we estimate their
joint p.d.f. rather than just their means? )

The aim of Sections 6.2 and 6.3 is to answer these questions. We start by
setting in a broader context the definition of the best estimator.

6.2.1 Optimality: Loss Functions and Risk

Think for the moment of a scalar parameter 6. We could express how seriously
we take estimation errors of different sizes by nominatinga scalar loss function
L(0,0), larger for a worse error. Some possible loss functions are (0 — 0)2,
which we have already met; |0 — 0}, which gives less weight than (0—-0)*to
large errors: ((§ — 0)/0)*, which implies that proportional rather than absolute
error is important; maxu|0 — 0], a pessimist’s choice, which weighs only the
worst error; 0 for |§ — 0] < o and 1 for |0 — 0] > «, which indicates indifference
toerrors up to « and equal dislike of all larger errors, i.e. classifies each error as
“serious” or “not serious”; or (0 — 8)? for |0 — 0] <o and 2«|f — 6] — «* for
|0 — 0] > «, a compromise between (§ — 0)? and |0 — ]. Evidently choosing a
loss function is a subjective matter, and depends on how bad the consequences
of an error of any given size are perceived to be. Sometimes the ultimate
application of the model makes the choice easy, but more often not.

Example 6.2.1 A river-flow predictor based on an estimated model of the
catchment dynamics and rainfall measurements is required to give warning of
any flow f'likely to overtop a coffer dam protecting civil engineering works. If
the overtopping flow is f;, and the predicted flow f, a prediction error is fairly
important when f>/0 and /< f,, as it will precipitate an unnecessary and
expensive halt and evacuation, extremely important when /> f, and f < £ as
everything and everybody will get wet, and unimportant in all other cases. The
simplest loss function reflecting this situation is 0 when (f — f;)(f— f,) > 0. «
when f<f, and f>f,, and f§ when f>/fy and f<f,, with B>a>0.
Refinements are possible, and the practicability of designing an estimator with
this loss function is an open question. A
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Once a loss function is chosen we can begin to design an estimator to
minimise the scalar risk
r(0) = EL(0,0) (6.2.1)
v
defined as the average loss over all possible realisations Y of the measured
output and explanatory-variable values (y and U together, in regression). The
minimum-covariance estimator, for instance, minimises the risk with
(c"( — 0))? as L(6, 0), whatever the real, non-zero value of ¢. At this point, we
can open up an entirely new possibility by extending the aim of the estimator
to minimising the average risk i over all possible values of 6:

= Er(0) (6.2.2)
0

The crucial importance of this extension is that it makes use of a prior p.d.f.
p(0) embodying all the available background knowledge about the likely
parameter values. The need to provide a prior p.d.f. for the parameters
characterises Bayes estimation and, we shall see presently, is responsible for

both its power and its practical weakness.

Example 6.2.2 In compartmental models of drug metabolism in the body,
each rate constant for transfer of a drug between compartments is non-
negative by definition. An experienced investigator may be able to quote
maximum credible values for each. In the absence of any further information,
each rate constant k; can be assigned a uniform prior probability density I/a,j
over the range zero to its maximum credible value a;;. The rate constants doin
fact vary from subject to subject, so it is redsondble to treat them as random
variables. A

6.2.2 Posterior Probability Density of Parameters; Bayes’ Rule

The easiest way to find the minimum-risk estimator which minimises r 1s to
think of Y as fixed and determine the estimator 0(Y) which minimises the
average loss over all possible 6 for that Y. If the estimator minimises
EL(G(Y 0) for every realisation Y, it minimises the average risk over all § and

Y With Y fixed, averaging over 6 requires use of the posterior p.d.f.p(6]Y)ot @
given Y:

oEyL(é(Y),O) = J : J LB(Y).0)p0|Y)do (6.2.3)
-

-
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Subsequent averaging over Y would produce 7

ool [ [

j LO(Y).0)p BIY)d()}p Y)dY

:j J j J LO(Y).0)p(0.Y)d0dY
= J f J J LO(Y).0 )P(Y [ @)p(0)dY do
= J f E‘i‘L(é(Y),O)/;(O)(I()

(6.2.4)

{EL 0)}
l) 10
Buried in (6.2.4) is the relation between the posterior p.d.f. p(@]Y) and the
prior p.d.f. p(0) given by

Bayes’ Rule p(0|Y)=p(Y|0)p(0)/p(Y) (6.2.5)

Before seeing in detail how Bayes' rule is employed in minimum-risk
estimation, let us pause to weigh up the idea of finding p(@|Y).

The most we could ask of any estimation method is that it should find the
entire p.d.f. of the parameters. given the measurements. The p.d.f. says much
more about the parameters than a point estimate 0 and its covariance could.
Figure 6.2.1 exemplifies p(0| Y) for a scalar parameter. It indicates that in this
instance too little is yet known to locate 0 confidently, values over a
considerable range being estimated as about equally likely. We should want to
refine p(0]Y) by adding more measurements to ¥. Nonethelcss. it is already
clear that 0 is unlikely to be negative. Notice the danger of relying on a point

\ 0(877)
\
\

o

®)
n
(8o}

Range of almost
equi-probable values

Fig. 6.2.1 Posterior probability density function of parameter.

e LTS —
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estimate. The “most likely™ value of ) might reasonably be taken as 0, at the
global maximum of p(6|Y), but a good case could be argued for the notably
different centroid 02 and for other measures of the middle of p(0]Y). An
associated variance estimate, even if accurate, would fail to warn adequately
of the uncertainty in 0, as we might be quite happy with that variance if the
p.d.f. were unimodal.

Granted that p(0]Y) is highly desirable in itselt and will also take us along
the road to a minimum-risk estimate, how is it computed?

6.2.3 Bayes Estimation: Details

Once the measurements Y have been taken, p(Y) in Bayes' rule (6.2.5) 1s just a
number, and serves only to scale p(0]Y') so that its integral over € is unity.
According to what estimator is used. p(}Y) may or may not have to be
computed. When it must, it is found by integrating p(Y|0)p(0), i.e. p(6.Y),
over all 0. The prior density p(0) is provided by the user from background
knowledge or guesswork, and p(Y]0) comes from the model relating 6 to Y,
together with the p.d.f. of each random variable influencing Y.

Example 6.2.3 A plant is modelled by

l.l :glll 1 + ()l

and its gain g is to be estimated from N independent measurements 1, to vy.
Each noise sample ¢, is believed to be a Gaussian random variable with mean
zero and variance o*. The input sequence u,, 0 1y _, is known exactly. and so
can be treated as deterministic, leaving only », to ry as Y. Thus with g as 6.
p(Y|0)is

N N

Inlg) = [ II)_.-(J‘,I.‘J) = l]lh.(.l‘, —gu, )

t=1 =1

Py

N

:(2n61)“'16xp<—l l(}‘.— t-1)/(Q20° ))

=1

where each p.d.f. refers to the random variable indicated by its subscript.
Before the measurements are made. g is known on physical grounds to lie
between | and 5, but that is all, so we assign to g the uniform p.d.f.

pg)=4  1<g<5s
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Fig. 6.2.2 Probability density functions
for Example 6.2.3.

Inserting the known values of « and measurements of ¥, We can compute

pglY)=pYig)p(g)/p(Y)

N
i 2 N2 2
=4 (2n07) N’“exp<‘ H(_V, *gll,q)‘/(ZGZ)) p(Y), l<g<5
=1

We could calculate p(Y) by integrating p(Y|g)p(g) over all g, but it is

unnecessary as p(Y) does not affect the shape of p(g|Y). The shape is

easily seen (Fig. 6.2.2) to be a Gaussian p.d.f., with peak at
N N 2 . 2 2

g=), v, /> ul, and variance a’/Z:V:]u,:], chopped off at g =1

and g =5. A

One of the most valuable features of Bayes estimation is its aptness for
estimation in steps, bringing in new measurements at each. Chapter 7 covers
stepwise estimation, but we should note here that it is necessary whenever
measurements are received and must be processed in real time, and that it is a
cor}veni.ent way to estimate a time-varying model, even off-line. Bayes
espmatmn In steps involves using the posterior p.d.f. from each step as the
prior p.d.f. for the next, after allowing, usually straightforwardly, for any
dynamics of the parameters themselves if the parameters are time-varying.

Example 6.2.4 The measurements in Example 6.2.3 could have been
processed one at a time. As g is assumed constant, it is not necessary to update
g at each time to account for its evolution; we need only bring in the
information conveyed by the new measurement. On receiving y,, we update
Py -y to

LY =P (gl y s v DIp )

The effect is to adjust the location of the peak of the posterior p.d.t. and
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sharpen it, reducing its variance (discounting the truncation at g =1 and

g=>5) from
az/ Zu,z , to al/Zuf__l A

Having recognised the attractions of Bayes estimation, let us pass on to its
drawbacks. They result from its membership of the luxury class, providing
everything you could want but at a high price in information and
computation. The need to provide a prior p.d.f. is hardest to meet; indeed,
some statisticians find themselves unable to do so with a clear conscience,
because it is subjective. Before you dismiss these scruples, consider an
example. In Example 5.4.1 we estimated the parameter o of the p.d.f.
p(x) =exp(—x/o)/a. If we had opted for Bayes estimation, but knew in
advance only that o lay between 1 and 2, we might well have taken the prior
pla) as uniform at 1 from 1 to 2. If alternatively we had written the model as
p(x) = Bexp(— Bx) with f for 1/a, then knowing only that fwas between +and
1 we should have taken a uniform p.d.f. with p(f) equal to 2 over that range.
However, this is equivalent to a prior p.d.f. p(a) = p(B)|df/da| = 2/a*. The
paradox would not arise if we had enough previous experience of parameter
values in similar cases to guess their relative frequencies of occurrence, in other
words, if we had an empirical prior p.d.f. Rarely is this so. Instead we have to
interpret the prior p.d.f. as stating degrees of belief, however shakily founded,
in each possible parameter value.

A further factor is that often the information conveyed by the
measurements far outweighs that contained in the prior p.d.f., so the final
parameter estimate is not very sensitive to the prior p.d.f. A fair question is
then “Why use a prior p.d.f. at all, if it has an insignificant final effect 7. The
answer 1s that Bayes estimation is still an appealing conceptual framework
even if its use of a prior p.d.f. is not, in the upshot, numerically significant.

The other fundamental drawback of Bayes estimation is the amount of
work entailed in forming the posterior p.d.f. and then extracting the
minimum-risk estimate. A short-cut procedure which forms or updates the
estimate without computing the entire posterior p.d.f. is more likely to be
acceptable, especially when many parameters must be estimated at once.

For these reasons full-blown Bayes estimators are seldom implemented
(Moore and Jones, 1978), but the Bayes framework is often helpful in
interpreting other algorithms. An important special case is that of Gaussian
prior and posterior p.d.f.’s, which are completely defined by their means and
variances (or covariance matrices, for vector r.v.'s). We shall see in Chapter 7
that several recursive estimators operate by updating a parameter estimate
and its estimated covariance each time a new measurement is made. For a
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Gaussian-distributed estimate, the updating can be viewed as computing the
posterior p.d.f., via its mean and covariance, from a prior p.d.f. also described
by its mean (the old estimate) and covariance.

The next section examines some minimum-risk estimators.

6.3 MINIMUM-RISK ESTIMATORS
6.3.1 Minimum Quadratic Cost

The estimate  minimising the expected value of () — ()% over all possible 0,
given measurements Y, is found from

f) o N 7’ -
”(—(j{J (070)2])(()|Y)d()}-2J. (0—=Np0|¥Y)do=0 (6.3.1)
‘ - - X

giving

0 [ pO1Y)do=0= [ Op(01Y)d0=E[0|Y] (6.3.2)
A minimum is found by (6.3.2) since the second derivative equals 2, which is
positive. Equation (6.3.2) says that the minimum-quadratic-cost estimator is
the conditional (posterior) mean.

Example 6.3.1 The posterior p.d.[. of the gain g in Example 6.2.3 was
Gaussian, but truncated at g = 1 and 5. In one expertment, the input values,
measurements and noise variance put the peak at g =2.2 and make the
variance before truncation 4. A table of the cumulative Gaussian distribution
allows us to calculate that for the area under the truncated p.d.f. to be I, the
p.d.f. between g = | and 5 must be 3.101 times the Gaussian p.d.f. with mean
2.2 and variance 4. Numerical integration of gp(g|Y). using a table of the
Gaussian p.d.f., then gives the conditional mean as E[g}Y]~2.73. A

For a vector 6, the minimum-quadratic-cost estimator is found in much the
same way. For any weighting matrix W,

((OH J (é())"W(()—O)p(mY)do}

:2w[ ( O —0p0]Y)do

o I, ‘

=2WWO—-E[0|Y])=0 (6.3.3)
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The second-derivative matrix is W, so if the minimum is to be unique, W must
be positive-definite, and to satisfy (6.3.3), # must equal E[0|Y]: again the
minimum-quadratic-cost estimator is the conditional mean.

We should pause here to note the distinction between the minimum-
quadratic-cost estimate and the minimum-covariance estimate in Section
5.3.2, which also minimised the expected value of a quadratic cost. There the
m.s. error of any linear function ¢'@ was minimised. i.e.

c'covfe=cTE[(§ — 0)(0 —0)"]c = E[(cT(d —0))]
=E[(6—6)Tcc™(0 — 0)] (6.3.4)

which is the expected quadratic cost with ec” for W. The strong similarity of
the two estimators is only superficial. The averaging in (6.3.4) is over
measurement realisations with @ fixed. but in (6.3.3) it is over realisations of ¢
with the measurements fixed. In (6.3.4) the random variable is 8 in (6.3.3) it is
0. Although the two estimates might coincide in particular cases, they are not
the same in general.

The conditional mean has been shown (Sherman, 1958 ; Deutsch. 1965) to
be optimal for a broader class of loss functions than quadratic cost. The
conditional mean is the minimum-risk estimator provided that

(i) The loss function (of & — @ only) is symmetrical about zero error and
monotonically non-decreasing each side of zero error:
(i) the posterior p.d.f. 1s symmetrical about the mean; and
(iii) either the loss function is also convex or the posterior cumulative
distribution function is also convex below the mean.

(A convex function f(x) satisfies f(Av, + (1 — A)x,) < A (v ) + (1 — AV f(xs)
forall v, and x,and any 0 < A < 1. Thatis, the section of f{.v) between any two
points on f(.x) lies entirely under or on the straight line joining them.) Of the
list of loss functions in Section 6.2.1, the first two are convex and symmetrical
about zcro error, but not the fifth, which is not convex. Asymmetrical p.d.f.’s
abound, but many of them are not skewed enough to make the conditional
mean a bad estimator. Convexity of the cumulative distribution function is
destroyed if the p.d.f. increases at any point as you move away from the mean:
such behaviour may well result from the presence of two or more sources of
estimation error with different means, or from a conflict between the prior
p.d.f. and the cvidence in the measurements. However, the cumulative
distribution function need not be convex nor the p.d.f. symmetrical for the
conditional mean to be the minimum mean-square-error estimate (Deutsch,
1965).
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6.3.2 Minimum Expected Absolute Error

For a vector @, absolute error does not lend itself to forming a single scalar risk
function. Instead, we can minimise the risks E[[(),- — 0] Y] for all the elements
of 8 at once, by requiring their derivatives with respect to 0 to be zero:

o (" N
= j,ji 10.—60]p(0]Y)do
o [~

, g, o
o0 J "'_[_J_("f—é’.-)p(fll)’)do
+

a a0 e o A
mjf ~-~f,w,-~o.-)p<0|mo
x 6, o
:‘if f J pO1Y)do
S
- g,
=1,2

f p(01Y)de
2,0p (6.3.5)

=0, i

where 6, is zero but for one as element 7. In (6.3.5), the contribution to the
derivative due to variation of 0, in the integration limits is zero since 0, - 0,is
zero at that point. The integrals in the last expression of (6.3.5) are the
cumulative probabilities of 6, being respectively below and above 0;. To satisfy
(6.3.5) they must be equal, so we conclude that 0, must be the median of the
marginal posterior p.d.f. of 0; rhe minimum-expected-absolute-error esti-
mator is the conditional (posterior) median.

Example 6.3.2 Refer again to Example 6.2.3, with numbers as in Example
6.3.1. The minimum-expected-absolute-error estimate of g cuts the area under
the posterior p.d.f. in half. From a table of the Gaussian distribution, we find
that 0.2743 of the area under the untruncated p.d.f. is chopped off at g =1
(0.60 below the peak) and 0.0808 at g =5 (1.4¢ above the peak), leaving
0.6449. The proportion of the area under the untruncated p.d.f. below g is
therefore 0.2743 + 3(0.6449) = 0.5968. The table then gives g as 0.245¢ ab‘ove
the peak, so ¢ =2.2 +0.245(2.0) = 2.69. This conditional-median estimate
differs from the conditional mean found in Example 6.3.1 since p(g|Y) is
asymmetrical, but the difference is quite small. N

Here the normalising constant p(Y) in Bayes’ rule need not be calculated,
whereas it must be to get the conditional mean.
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6.3.3 Minimax Estimator

The most pessimistic choice is the minimax estimator, which minimises the
expected maximum possible error. The idea makes sense only with regard to a
scalar parameter, unless we are prepared to measure the error in a vector
parameter by some additional cost function. Leaving aside such com-
plications for the moment, an instant’s thought shows that the minimax 0 is
the mid point of the range of possible values of 6 as indicated by the extremities
of p(8|Y).

Minimax estimation fits into a Bayes context by virtue of the fact that it
minimises the loss function lim,ﬁj(é —0)*4, weighting extreme values
infinitely more heavily than all others. Bayes estimation does not, however,
seem a natural context, since we need not compute the whole of p(6|Y) if we
are interested only in its endpoints. Furthermore, the most obvious reason for
restricting attention to the ends of the range of 6 would be that the range was
the only convincing information, and too little was known to determine
p(Y]0) and p(0).

Example 6.3.3 If in the problem of Example 6.2.3, we did not know the noise
p.d.f. but knew only that the noise in each observation was between — 5 and S,
we could still establish the range of possible values of 0, 1.e. g, as follows. Since

N

PO =p (v, y2-u0,18) = HPU(}) =84 -1)

t=1

we know that p(Y|0) is zero outside the range
gu_y —S<y<gu_,+5 1<I1<N

which implies that

{v, - 5} . {y, + 5}
max — < g < min g—— 3, say g, <g<g,
I<esN( U,y l<isNQ U,y

As in Example 6.2.3, our prior information on g is that I < g <5, so p(#) is
zero for 0 <1 and 6> 5. We conclude from Bayes’ rule that p(0]Y) is zero
below max(g,,1)and above min(g,,5). These values define the possible range
for g, and the minimax estimate of g is their mean. A

The problem presented by Example 6.3.3 is to identify the range of
parameter values consistent with given prior bounds and with measurements
containing noise described only by bounds. Only relatively recently has this
problem, estimation based on a bare minimum of statistical information,
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received much attention in the engineering literature (Schweppe, 1973; Fogel
and Huang, 1982). Unlike the more general minimax problem, it generalises
readily to cover a vector parameter, becoming the problem of identifying the
region in parameter space consistent with a prior region and with the
bounded-noise measurements. We consider this further in Section 8.6.

6.3.4 “Most Likely” Fstimate

The simplest idea of all is to take as @ the value giving the largest value of
PO Y): the conditional (posterior) mode or maximum a posteriori estimator.
Figure 6.2.1 shows that this is not always a good idea. The location of the
mode may give an incomplete or misleading impression when the posterior
p.d.f isstrongly skewed or has two or more peaks of not very different heights.
To some extent the same criticism can be made of any other point estimate, as
the inl‘qrmalion in the p.d.f. cannot always be adequately summarised by a
single #. Even so, unless the peak is very high it seems wise to choosc an
estimator which is at the middle, in some defined sense, of the p.d.f.

The conditional-mode estimator is the lmit, as o tends to zero, of a
minimum-risk estimator with loss function zero for § within a distance o of 0
and unity everywhere else.

Example 6.3.4 The conditional-mode estimate based on the p.d.f. of Fig.
0.2.2 is g =2.2, quite a way from the conditional-mean and conditional-
median estimates. Had the peak been sharper or the truncation more nearly
symmetrical, the three estimates would have differed less. A

6.3.5 Bayes Estimation with Gaussian Probability Density Function

A Gaussian posterior p.d.f. simplifies analysis greatly, and often approxi-
mates the truth well enough. For parameter 8 with p elements, a Gaussian
posterior p.d.f. is

POIY)Y = (2R~ rexpl— 50— 0)'R™ (0 - 0)) (6.3.6)

where R~ !is a positive-definite matrix, and # and R depend on the prior p.d.f.
and Y.

The conditional mean, median and mode can be found for this p.d.{. by a
transformation of variables. Since R "' is positive-definite, it can be factorised
into QQ" where Q is a square non-singular matrix. If we define ¢ as Q7(0 — 8),
we obtain B

pOIY)Y=(2n)"|R) "' exp(—i¢' o) (6.3.7)
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The exponential is at its maximum, maximising p(0]Y), where ¢ is zero and
0-6+0 "$p=0 (6.3.8)

The conditional mode is thus at @, and because p(8Y) is totally symmetrical
about ¢ =0, the conditional mean and median also occur at #. We conclude
that @ is simultaneously the “most likely”, minimum-quadratic-cost and
minimum-expected-absolute-error estimate of 6.

The coincidence of these three optimal estimates is an incentive to assume,
or even pretend, that the p.d.f. is Gaussian. For the estimates to coincide, the
posterior p.d.f. need only be symmetrical about its peak. The Gaussian p.d.f.
is, however, the most popular to assume for other reasons as well, including its
significance in maximum-likelihood estimation (Section 6.4.2) and its relative
ease of analysis.

6.4 MAXIMUM-LIKELIHOOD ESTIMATION

The reliance of Bayes estimation on a prior p.d.f.1s both its principal strength
and its most worrying aspect. Maximum-likelihood (m.1.) estimation forgoes
the strength but avoids the worry.

6.4.1 Conditional Maximum-Likelihood Estimator

The joint p.d.f. p(Y|0) of the measurements is determined, as before, by the
model structure together with the p.d.f’s of the noise and of the inputs if they
are stochastic. Once the measurements have been made and numbers can be
substituted for ¥, p(Y]8)is a function of the unknown parameters 6 only. The
maximum-likelihood (m.1.) estimate of @ is the value which maximises p(}'| ).
That is. once Y is known, p(Y | 0) is taken to indicate the likelihood of 8. Tt may
help if we imagine 0 being stepped in very small increments over a wide range.
and a fixed large number of sets of measurements being made at cach 6. 1f we
then examine only those results where the measurements are very close to a
particular set of values Y, we shall find more generated by 0 values such that
p(Y'10) is high than by values with p(Y]0) low.

Computation of an m.l. estimate is simple in principle. Given the model
form and numerical ¥, we write down p(Y | 0) and find its global maximum. In
practice, p(Y|0) is usually a complicated function of #, and any trick which
simplifies its maximisation is welcome. If the measurement set Y can be
arranged to consist of a number of much smaller independent sets ¥, to Yy
then p(Y | @) is HII‘L Py |9). An effective trick to make this product casier o
maximise is to take logs, giving Z’V logp(Y,]0)as log p(Y]0). Since log is a
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monotonically increasing function of positive values of its argument, the 6
which maximises the log-likelihood function logp(Y|0) also maximises
pY10).

Example 6.4.1 A known input sequence {u }is applied to a system with known
unit-pulse response {4} but unknown constant output disturbance p, and N
samples of the output y are observed. The noise {e } is zero-mean and has p.d.f.
p.(e) =exp(—le|/a)/2a with o positive but unknown. The noise samples
affecting successive output observations may be assumed independent. We
wish to find m.l. estimates of yx and a.

From the model

yvo=hu_,+hu s+ +hu _,+u+e,

we can calculate at each observation instant ¢ an eftfective measurement

Y( =pte =y - hlur— | S hmul—m
whose p.d.f., given p and a, is just the p.d.f. of ¢, so
N
YN gy —
p(Y]0)= Hpﬂ. 1,0 = exp{;z';‘i(«'ﬁ““} / 22"

=1

The log-likelihood function is then
N

L(0) = logp(Y]0) = —Z(W, — pp)/o— N(log2 + loga)
=1

The values g and 2 maximising L(0) are found by examining

oL _ YL (Yi—p) N AL Y sen(Y,— )

Ot o o au o

Setting ?L,/Cx to zero gives o as vas LY, —al)/N. As 0L/ is discontinuous at

each Y, it requires a little more thought. If N is even, any value of g between
the (N/2)th smallest Y, and the next larger makes 0L /¢y zero; L is a piccewise
linear continuous function of u with a flat top, for any given a. If Nis odd, g
must coincide with the middle-ranking Y, as, although 0L/ép is undefined at
that value, a small change in pin either direction reduces L. For completeness,
the whole shape of L(u,a) about s and & should be checked to verify that a
maximum has been found. A

Even an example as simple as Example 6.4.1 brings out the need for care in
maximising the log-likelihood function, particularly where a non-smooth or
local maximum may exist.
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Before enquiring into the statistical properties of m.1. estimates, we look at
two special cases in the next two sections.

6.4.2 Maximum-Likelihood Estimator with Gaussian Measurements and
Linear Model

Let us return to the regression model
y=U0+e (6.4.1)

with U determinstic and e zero-mean and of known covariance R. If e is
assumed Gaussian, as is often reasonable, and it has N elements, its p.d.f. is

pe) =(@m)"R)™ " exp(—3e"R™'e) (6.42)
and the log-likelihood function for 6 is
L(@)=Inp,(y— U6]|0)
= —3In(Q@m)"R) — 3y — U)'R ' (y - UO) (6.4.3)

With R independent of @, we can maximise L(6) by minimising
(y— U0)'R™(y — U#). From Section 5.3.4, the minimising 0 is the Markov
estimate

O=[U'R ‘U] 'U'R 'y (6.4.4)
Hence the m.l. estimator for a model linear in the parameters and with
Gaussian additive noise is identical to the Markov estimator and shares its
properties of zero bias and minimum covariance of all linear. unbiased
estimators. For this reason, the Markov estimation algorithms described in
Chapter 7 often go under the name of maximume-likelihood. but the name is
accurate only if p(Y|0) is Gaussian.

6.4.3 Unconditional Maximum-Likelihood Estimator

The conditional-mode Bayes estimator in Section 6.3.4 bears some similarity
to the m.l. estimator in Section 6.4.1, but maximises p(0]|Y) rather than
p(Y|6). Now fora given Y, p(0| Y ) differs from p(Y, 8) only by the factor p(Y).
a number independent of @, so the conditional-mode estimator can be viewed
as an m.l. estimator based on the unconditional joint p.d.f. p(Y, #) rather than
the conditional p.d.f. p(Y]0).

What is more, if we have no prior information on # and so take p(#) as flat
and of unlimited extent, p(Y, 6) is the same shape as p(}'| 8), being p(Y | 9) p(0).
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and the distinction between conditional and unconditional m.l. estimators
vanishes.

6.4.4 Properties of Maximum-Likelihood Estimators

Maximum-likelihood estimators have finite-sample bias in some instances. An
example is estimating the standard deviation o of uncorrelated additive noise
in the model (6.4.1). Following through (6.4.2) and (6.4.3) with ¢/ for the
noise covariance R, and allowing for an unknown noise mean ¢, we find

N
N 1 . .,
L(()):——zr In2n) — NIno — 297 (y,—u 0—¢)° (6.4.5)
=1
where u! is row 7 of U. Diflerentiating,
N N
oL 1 . oL N
— S 0—7¢), L = o atp 52
o Tl Z(), u, c) o . + = Z(J, u 6 —¢) (6.4.6)
=1 =1

so to make ¢L/¢0 and ¢L/Co zero, the estimates must be

2~ l I 2 ] ] =\ 0
o= N Z( v, —u'f), g° = N Z(_l', —u'0—¢)* (6.4.7)

The sample mean ¢ is unbiased, but, as we saw in Example 5.1.2, the sample
mean-square deviation from the sample mean, 67, is biased for finite N.
Maximum-likelihood estimates are nevertheless asymprotically unbiased in
this instance and in general.

Maximum-likelihood estimates from independent, identically distributed
measurements are strongly consistent (w.p.1.). The proof is not simple (Wald,
1949). When the measurements are not all identically distributed because the
system generating them varies or the distribution of the system’s forcing or
noise does, the m.1. estimate may well not be consistent (Kendall and Stuart,
1979, Chapter 18). The root of the trouble is that measurements then
correspond to realisations of random variables whose p.d.f.’s have difTerent
parameter values at cach sampling instant. The amount of information about
each parameter value no longer increases continually as more measurements
are taken, so the small-sample bias persists.
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An additional assumption that L(0) is everywhere diflerentiable twice
enables a consistent m.l. estimate to be proved unique (ibid).

The covariance of m.l. estimates asymptotically reaches the Cramer-Rao
bound, so they are asymptotically efficient (Cramér, 1946: Wald, 1943).

Granted that with appropriate assumptions m.l. estimates have good
asymptotic statistical properties, a further property becomes significant,
namely invariance. Invariance is the property that the m.1. estimate of a vector
f(6) of functions, no more in number than the dimension of 6. is just f(0) where
f is the m.l. estimate of 0. This applics whether or not the ¢ corresponding to
any particular value of f(8) is unique. The invariance property saves an
enormous amount of work enquiring into the behaviour of practically
important functions of estimated parameters, as Example 6.4.2 demonstrates.

The explanation for this helpful property is quite simple. The maximised
L(6) is no smaller than L(0) for any other 6, including all those values which
give £(0) different from £(0). The m.1. estimate of fis found by evaluating the
same log-likelihood but regarding fas its argument: at each value of fwe pick
the largest log-likelihood given by any @ which gives the required f(6). As we
have just remarked, no value of f different from £(0) will result in a larger log-
likelihood than does f(6), so f(()) is the m.l. estimate ol f.

Example 6.4.2 Suppose we have found m.1. estimates @, to d, and b, to b, of
the cocflicients in the model

W=y T —da,) +bl“l~k——1+ et /)n“tfl\ ’H+L,l

r=n

and we require estimates of the steady-state (d.c.) gain and poles and zeros of
the input-output relation.
In z-transtorms the model is

_-_"(/11:’]+...+/7’I:”’) ) E(z Y

Yz = P S UET D PR
l+a,z "+ +a,.- L+ 4,z

Letting = tend to 1. the steady-state gain is
(by+-—+by)/(I+a, +--+a,)
and its m.1. estimate is
(hy+ -+ b))/ +d, 4+ +a,)

with negligible further computation and no further analysis. Similarly
the m.l. estimates of the poles and zeros are simply the zeros of
l4d,z "+ - +d,z- "and = Kbz '+ + b,z "), respectively. Notice
that although the poles and zeros correspond to unique values of the original
parameters «, to a, and b, to b, the steady-state gain does not. AN
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6.4.5 Maximum-Likelihood Estimation with Gaussian Vector
Measurements and Unknown Regression-Equation Error Covariance

We conclude our look at maximum-likelihood estimation by finding the m.1.
estimate of 6 from r-vector measurements y, given by

t=12,...,N (6.4.8)

with the covariance R of e, independent of 7 but unknown. Every e, is taken as
zero-mean, Gaussian and, in contrast to Section 6.4.2, independent of all the
others. Note that R is now the covariance between errors in one sample, not
different samples as in Section 6.4.2. If also each U, is deterministic,

Y =U0+e,

N

P(Y10,R)=p.e e,,....e,)= H{(Qn)'lRl)‘ YZexp(—4e[R™'e)]
=1

N
_ _ 1 .
= (2m) "N R|TN? exp(—EZe,’ R"‘e,) (6.4.9)
=1
so by taking logs, the log-likelihood function is
N
I N 1 S
(O,R):fi(rln 27t+|n|R|)*§ e, R e (6.4.10)
=1

Differentiation with respect to 0, with e, related to @ by (6.4.8), gives one of the
conditions for a maximum of L:

N

oL Tp-1
E:ZU,R e =0 (6.4.11)

t=1
so the m.l. estimates R and 6 must satisfy
N N
-1
0:(2 U,TR“‘U,> ZU,TR"‘y, (6.4.12)
t=1 =1

Also @L/CR must be zero. To find @L/6R we need the standard results
(Goodwin and Payne, 1977)

0 o l&
(?R(lnIRI)=R1, GRUAR™ ) =—(RTAR™HT  (6.4.13)
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and a little manipulation of e/ R 'e,:

N N
_ﬁ - -
ZefR"e,:thr(e,e,’R‘) (6.4.14)
=1

t=1
Then, remembering that the covariance R is symmetric.

N

oL NR ' 1 R o
’672:_’ *2 *‘f‘; R e,e,R (6413)
=1
The maximum of L is therefore where
N N

u(N]):Nr_u(Zé,é‘fR‘>_Zé,TR*é, (6.4.16)

=1 1= 1

so back in (6.4.10),

o v ]
L(0.R) = '12" /(1 +In270) + In[R]) (6.4.17)

and from (6.4.15) and (6.4.8),

N N

. 1 o 1 - N

R= Nzere? :/72()]1 - UIO)(YI - U,B)Y (6.4.18)
=1 =1

The coupled equations (6.4.12) and (6.4.18) give the m.l. estimates § and R. In
the scalar case, R ™' cancels in (6.4.12) leaving the o.l.s. estimate, and the m.1.
estimate of the error variance is, from (6.4.18), the sample mean-square error.

6.5 PRACTICAL IMPLICATIONS OF THIS CHAPTER

We have seen that Bayes estimation has a satisfying rationale, and provides a
broad framework in which other estimators can usually be seen as simplified
versions of a Bayes estimator. The need in Bayes estimation tor a prior p.d.f.
and a loss function is, depending on your viewpoint, either an advantage,
allowing the estimator to be tailored to the problem in hand and to any
background information, or a disadvantage, introducing subjective and even
arbitrary judgements. Ambitious optimists with time to experiment feel the
former, conservative pessimists in a hurry the latter.

Bayes estimators are almost always too demanding in computation to
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implement fully. A small number of features of the posterior p.d.f. is
computed rather than the whole p.d.f., most often the mean because it is
optimal in several ways as discussed earlier, and the covariance as an indicator
of the spread of possible parameter values. The idea of proceeding from a
prior to a posterior p.d.f. is well suited to recursive estimation, considered in
Chapter 7.

Maximum-likelihood estimation is popular because of its good asymptotic
properties, reasonable computational demands and considerable intuitive
appeal. The ‘maximum-likelihood’ algorithms popular in the identification
community are, in fact, Markov least-squares algorithms. This is not to say
they are good only for observations with Gaussian random components; the
Markov estimator was derived as the minimum-covariance, unbiased, linear,
generalised least-squares estimator without reference to any p.d.f.

FURTHER READING

Bayes and maximum-likelihood estimation are introduced in an easy-to-read
fashion by Mood er al., (1974), a good general reference for Chapters 5 and 6.
The material is also covered by Zacks (1971, 1981) at a rather more advanced
level, and an enormous number of other textbooks. Sage and Melsa (1971)
give a clear account of estimation theory slanted towards control-engineering
applications.

The incorporation of prior background knowledge into estimation and
observation-based decision-making has had considerable attention in the
engineering literature (Jaynes, 1968; Kashyap, 1971; Potter and Anderson,
1980). Approximate Bayesian computational methods are relatively well
developed for state estimation. closely related to identification as we shall sec
in Chapter 7, and for combined state and parameter estimation, discussed in
Section 8.9. The best-known technique (Sorenson and Alspach, 1971) uses a
weighted sum of Gaussian p.d.f’s to approximate the non-Gaussian posterior
p.d.f. of the state or parameters. Gaussian sums have been used, for instance,
to decide between possible manoeuvres in target tracking. The underlying idea
has quite a long history (Magill, 1965).
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PROBLEMS

6.1 After observations Y. the information about an unknown (Jisin the form
of the posterior p.d.f. p(0]Y)=¢""" 0> x. Find the minimum-expected-
absolute-error, minimum-quadratic-cost and unconditional maximum-
likelihood estimates of 0.

6.2 A noisy observation y = 0 + ¢ = 2.5 is made of an unknown ¢ with prior
p.d.f. p0) =20, 0 <0< 1. The noise ¢ is known to have p.d.f. p(r)=r/2,
0 < ¢ < 2, and is independent of 0. Find the conditional-m.1., posterior-mode,
conditional-median and conditional-mean estimates of (.

6.3 An unknown 0 is observed indirectly and noisily by y = 0% + ¢, where
noise ¢ has a uniform p.d.f. over 0 to 2 and is independent of (7, and the prior
p.d.f. of @ is uniform over 0 to 1. Find the posterior p.d.f. of 01f (i) y = 2.5 and
(i) y=0.5.

6.4 A scalar loss function which is sometimes realistic is L(0,0) = 0. |0 — 0] <
D: L(0,0)=1.]0— 0| > D. It implies that errors in 0 up to D are acceptable.
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and larger errors unacceptable. How is the minimum-risk estimate 0 based on
this loss function found from the posterior p.d.f. of 07 In what circumstances
might 6 be non-unique? How could the non-uniqueness be removed or
avoided in those circumstancgs'? [Hint: Think of maximising something.]
6.5 Find the minimum-risk 6, according to the loss function of Problem 6.4,
given by the observation and p.d.f’s of Problem 6.2.

6.6 Repeat Problem 6.4 for the loss function £(0,0) = |6 — 0}, |0 — 0| < D;
L0,0)=1,10—0/>D.

6.7 Repeat Problem 6.5 for the loss function of Problem 6.6. Note that a
straightforward analytical solution is not possible, but numerical search is not
necessary.

Chapter 7

Computational Algorithms for Identification

The control-engineering literature of the past two decades describes work on a
huge variety of identification methods, problems and applications (Eykhoft,
1974; Bekey and Saridis, 1983; Isermann, 1980; Eykhoft, 1981).

On the theoretical side, one of the greatest successes has been the
unification of many algorithms and experimental situations, notably in
analyses of asymptotic behaviour. Just the same, we cannot hope to cover
more than a small fraction of the available methods, even at an introductory
level. Our selection is on the basis of popularity and proven effectiveness,
relative simplicity and value as examples. The selection is also influenced, of
course, by personal bias. From a user’s point of view, a good practical
appreciation of a few methods is more valuable than a theoretical
acquaintance with a great many.

7.1 ASSUMPTIONS AND MODEL FORM
7.1.1 Assumptions

The algorithms to be described all cater for s.i.s.o. systems with linear
dynamics. They will accept non-linear functions of the observed variables as
explanatory variables, but like least-squares most of them rely on the model
being linear in the parameters. The model may have to be split up or rewritten
to that end. Methods for non-linear systems are reviewed in Section 8.8.
We pass over m.i.m.o. systems because they raise a new complication.
Unlike s.i.s.0. systems. a m.i.m.o. system can be represented by more than one
minimum-order “transter-function” model (matrix-fraction description: see
Section 8.7) with exactly the same input—output behaviour, so the first
problem is to decide which one to identify. Alternative representations which
are input-output equivalent may differ, for instance, in ease of physical
interpretation or in how well conditioned the parameter estimation will be. We
have too little space to do justice to multivariable representation theory, so we
143
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confine ourselves to an example or two in Section 8.7 showing the new features
with no s.i.s.0. counterparts. Leaving aside the problem of choosing a model
structure, we may extend the s.i.s.0. regression model heuristically by adding
terms in further inputs. A m.i.s.0. model with inputs «'" to 4! and output y
would then be

o (1),,(1) (1),,(1)
Ye=—q Vo —al, + b o+ by Wy -2

o B4 D te, (7.1.1)

t “m —kg—m
or in transfer-function form
(BVEHUNGE )+ + BO( YU )+ E(")

Yz )= (7.1.2)
1+ A4A(z7Y

Note the restriction that all the input-output relations have the same poles in
this model.

Single-input-multi-output models are probably best treated as a collection
of s.i.s.0. models. The alternative, employing a vector-output model, might in
principle require fewer parameters, as part of the model would be common to
more than one output. An example is the state equation of a state-space
model. On the other hand, identification of separate s.i.s.0. models, each with
no more parameters than necessary to describe its dominant dynamics, could
well be computationally cheaper than simultaneous estimation of all the
parameters in a s.i.m.o. modcl. It could also be more convenient because it
does not require access to all the outputs at the same time.

Several other assumptions, some dubious, underlie the identification
algorithms in this chapter. We assume:

(i) A quadratic function of residuals, prediction errors or parameter errors
is the performance criterion, mainly for mathematical convenience but also
because of a lack of well tried rules for choosing other criteria in specific
experimental situations. Maximume-likelihood estimation is an exception, as it
relates the function to be minimised to the p.d.f. of the observations, and
hence to the noise p.d.f. However, the algorithm of that name popular in
control engineering and described in Section 7.2.3 assumes a Gaussian p.d.f.
and minimises a quadratic cost function.

(1) The plant and noise parameters are taken as constant or at most slowly
changing. The design of the algorithms takes no account of changes in
dynamics due to common occurrences like variation of feedstock quality,
operating point or demand in process plant, and the effects of unmonitored
inputs generally. Nor does it consider non-stationary noise dominated at

different times by different sources. Some well established techniques for

tracking time-varying dynamics are described in Section §.1.
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(i) The input and noise are assumed independent. This natural-looking
assumption means we shall have to consider separately the identitication of
closed-loop systems, where the input depends on the fed-back noisy output.
Section 8.3 does so.

(iv) The model order is assumed fixed, which may cause difticulty in on-line
identification. Uncertainty about the best model order and doubt whether it
can be adjusted reliably on line may lead to too high an order being used. The
identification then runs a risk of ill-conditioning because of near-redundancy
of some parameters. As an example, model terms in too-recent input samples
may be included if the dead time is uncertain or variable. Model-order testing
is covered in Section 9.4, but existing techniques are aimed mainly at off-line
use.

(v) Asymptotic properties are assumed important. They are, but the
emphasis on them is largely due to a lack of finite-sample theory. An algorithm
with better asymptotic properties, such as efficiency, may also perform better
on finite records, but it may not. The r.m.1. 2 algorithm of Section 7.4.3 is a
case in point, where a modification to improve asymptotic behaviour tends to
destabilisc the algorithm, ruining its performance on short records (Norton,
1977).

7.1.2 Standard Linear Single-Input Single-Output Model

All the algorithms described employ one or other specialisation of the model
illustrated in Fig. 7.1.1:
Bz~ ")k I+Cizh

UG Y — o T (7.1.3)

Y(z )= """
= 1+ A4(z"h 1 +D(z 1

in which

Az Y=a,:z "+ - +az- " Biz""Y=bz "+ 4h ™

m

) (7.1.4)

Ce =z e Diz"YY=dz""+- +dz"

Often n1 is taken equal to n, but this is not essential. Integer k. the dead
time, is specified in advance. The estimation of k is discussed in Chapter 10.
but we noted under assumption (iv) that too small a value for A can result in ill-
conditioning. If the actual dead time is &, and the model dead time k.
parameters b, to b, .| _, areredundant. Whatis more, il the order nof A(z ')
is also higher than necessary, near-cancelling pole-zero pairs will be
estimated, contributing almost nothing to the input-output behaviour. The
spurious poles and zeros have little effect on the model performance so long as
the poles remain stable, but the accompanying ill-conditioning may afTect the
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1+C(27")
e =
1+0(z27%)
i
k 1 1 \
Up———- % }—oB(z7") »4
1t [ w4z h [ ¥ { Wi
|
| Dead Plant Plant |
| time numerator denominator |
4 dynamics dynamics 4
Observed Observed
or
known

Fig. 7.1.1 Standard z-transform model for linear s.i.s.0. system where {v} is the white noise-
generating sequence, {u} the input, and {w} the structured noise.

non-redundant parameters too. Luckily near-cancelling pole-zero pairs are
easy to detect, at the cost of factorising 1 + 4(z~ ') and B(z™').

The noise in (7.1.3), say {w}, is represented as the result of filtering a zero-
mean stationary white sequence (v} through the transfer function
(1 4+ C(z~ ")W1 + D(z"")), thereby shaping the noise autocorrelation func-
tion and power spectral density. We assume that the input sequence {u} is
independent of {v} and hence of |}, so we do not allow feedback of the noisy
output. The connection between the noise-shaping filter coefficients and the
a.c.f. of {w}can be seen with the help of the unit-pulse response H(="") of the
filter, given by

1+C(:"2
1+ D)

WeE = Viz"Y=HE HYveEh (7.1.5)

The a.c.f. of {w} at lag i is
Pl =EDwr, ]
=E[(hgv, +hv, | +hyv, 5+ o) hyr, + o+ -00)]
=o2(hoh, +hyh |+ x0)
=¢? x coefficient of =77 in H(z"")H(z)

) (14+Cz"H)(1 +C(2))
(1 + D "N +D(2))

= o2 x coefficient of = " i1 (7.1.6)
where ¢7 is the m.s. value of |¢}. The final expression in (7.1.6) is a rational
polynomial function of 7! or z, so {1} is said to be a stochastic process with
rational spectral density. Numerical a.c.f. values for {w} can be found by
splitting the rational polynomial function into partial fractions symmetrical in
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27! and z, giving the z-transforms of the a.c.f. for positive and negative lags
respectively.

Example7.1.1 A noise-generating sequence {v} of zero mean and m.s. value 1
produces a noise sequence {w} through

W(z"1) =V ")/l —0.5z"")

so the a.c.f. of {w! can be found from

1 4 1 1
- YH() = - + —1
H(=DAE) (1 =0.52"1(1—-0.5z) 3<l~0.5:‘ 1—-0.5z >
The infinite-series expansion of the first term gives

41 4+0.5271 4025272+~ o0)

S0
(i) =%(0.5) for i>0

"N'W'
and the other terms give

Foeli) =3(0.5) for i<0, Fow0) =31 +1—1)=3% A

7.1.3 Output-Error and Equation-Error Models

The estimation algorithms in this chapter all identify the coefficients a, to a,
and b, to b, in model (7.1.3), but differ in how they treat the noise part. Two
basic approaches to the noise can be distinguished, leading to output-error
and equation-error algorithms. Figure 7.1.2 shows the difference. Equation-
error methods rewrite (7.1.3) into a form suitable for Ls. estimation.
Multiplying (7.1.3) by | + A(z"") and dropping ="' for brevity, we obtain

Y=—AY +Bz U+ E 7.1.7

However, Eis (1 + A)W, so even if {w} is white, {e} is not. Consequently {e} is
correlated with the noise content of the lagged output samples in 4Y. As seen
in section 5.2.4. such correlation causes bias in |.s. estimates A and B. To avoid
bias, equation-error algorithms identify a noise-structure model along with 4
and B, as we shall see later.

Output-error algorithms (Dugard and Landau, 1980) instead adjust A and
B to minimise the error {ii} in

Y=—AV+B=""U+ W; ya - (7.1.8)
+ 4
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(a)
i
System
jul * Output
Model = error
Bzt }
1+4(27") 174 ‘
L
Adjustment
Adjustment
(b)
i
i . ‘
System 1+ 40271
3”‘ P Equation
h error
Gz Nt {
f
N
Adjustment

Fig. 7.1.2 (a) Output-error, and (b) equation-error identification, where {e) is the input.

The explanatory variables in AY are all lagged versions of {u} and thus
uncorrelated with {w}. Bias does not arise since { ¥} is free of the noise which
affects { v}. Clearly the lagged versions of { ¥} in A Y are instrumental variables.
Section 7.4.5 discusses instrumental-variable identification further. The
output-error approach looks direct, but has its own complication, the need to
estimate the unobservable { ¥} using some prior 4 and B. In other words. {w}
ip (7.1.8) is non-linear in A and B. whereas the equation error {e} in (7.1.7) is
linear in 4 and B.

7.1.4 A.r.m.a.x. Model

Equation (7.1.7) gives the regression-type equation

»]'l:7(II»‘YI'-]_"‘¥(1n»1.l"n+/)!”1 k’1+-"+/)m“l k m+()l (71())
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The present output v, is partly an autoregression (the —a,y, ; terms) and
partly a moving average (the b, _, ., terms) of the exogenous (externally
generated) input {u}: altogether an autoregressive-moving average-exogenous
(a.r.m.a.x.) model. 1If no observed exogenous input were present, 1! could
still be modelled by an autoregressive-moving average or a.r.m.a. model
driven by an unobserved white noise-generating sequence. Several of the
identification algorithms we shall discuss are based on least-squares applied to
(7.1.9).

7.2 BATCH (OFF-LINE) IDENTIFICATION ALGORITHMS
7.2.1 Role of Batch Algorithms

Batch algorithms process all the observations of y and u simultaneously and
produce a single estimate of the parameter vector. By contrast, the recursive
methods of Sections 7.3-7.5 process the observations one sampling instant at
a timc and update the parameter estimates each time. Batch algorithms are
suitable only when estimates are required once and for all or at long intervals,
or when computing is cheap, since they process the entire record every time.
Most real-time applications are better met by recursive algorithms since time
and computing power are strictly limited. An important example 1s
microprocessor-based self-tuning control (Astrém et al., 1977; Wellstead er
al.. 1979), in which a new control value is computed by reference to a freshly
updated model after each sampling of the output. Batch methods huve some
advantage in iterative processing, where the estimates are improved by a
succession of iterations, each processing the whole record. They allow
monitoring of output or equation errors at the end of each iteration, using the
model obtained in that iteration. Progress can be checked and anomaties like
large isolated errors due to untrustworthy observations can be detected and
removed. This may be less casy in recursive estimation, where the quality of
the estimates varies during an iteration, starting relatively poor but improving
as more observations are processed. The significance of a given crror value
correspondingly increases in the course of the iteration. The effect is most
pronounced in early iterations and with short records.

The high cost of recomputing the estimate at short intervals by batch
methods makes recursive methods preferable for time-varying systems.

The flexibility and computational cconomy of recursive algorithms has led
to great practical and theoretical emphasis on them over the past decade. We
should not forget batch methods, however, as apart from their occasional
advantages they provide an introduction and motivation for recursive
methods.
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7.2.2 Iterative Generalised Least-Squares?

Model (7.1.3)isused with Czeroand | + D of the form (1 + 4)(1 + D'), giving
Y=—AY+Bz"*U+(1/(1 + D')V=—AY + Bz *U + E (7.2.1)

Unless D’ is zero, which is improbable, {e! is autocorrelated. An equation-
error method therefore must take action to avoid bias arising as in Section
5.2.4. The algorithm filters {y} and {u} with a transfer function I + D,
producing {y*} and {u*} related by

Y*2(14+D)Y=—AY*+Bz"*U*+V (7.2.2)

With {v} white, there is no correlation between v,and regressors v* | toy* by
way of v, _, and earlier samples. There is no correlation between v} and {u*)
either, so minimum-covariance linear unbiased estimates of the coeflicients in
A and B can be found by o.l.s. The problem is how to find D', not normally
known in advance. It is estimated iteratively, alternately with 4 and B, as
follows.

Batch Iterative g.l.s. Iteration i is

(i) estimate 4 and B by o.Ls. using filtered Y*'~" and {/*-1
produced in the previous iteration;:
(i1) form residuals

EW = (1 4 A9)y=i-1 _ gk
(i1i) fit an autoregressive model
EW = _ pfa + P
to £ by o.ls.. yielding D';
(iv) filter Y*~ Y and U*'~ " to form

yri — (1 + [‘)m))‘/*u— n O*i — (1 + D’(H)U*(i— 1)

Step (i) of the first iteration uses ¥ and U as Y*? and U*'”). Subsequent
iterations gradually build up a noise-whitening filter as a cascade of 1 + D'V
i=1,2,.... Each 1 + Dis of low order, up to order 3 or so. The convergence
rate is markedly influenced by the structure of E, but is usually quite rapid,
with insignificant reduction of the sum of squares of residuals from step (iii)
beyond about five to ten iterations.

t Clarke, 1967.
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7.2.3 Maximum-Likelihood Algorithmf
The model (7.1.3) is rewritten to look like a regression equation, by taking D as
identical to 4 then multiplying by I + 4:
Y=—AY+Bz"*U+ (1 +C)V (7.2.3)
or in difference-equation form
yWw=—ay,_,—-—ay,_,+bu_,_+ - +bu .

Bk LI o ol R S ol 4

=u'l0+uo, r=1,2,....N (7.2.4)
where
u;l»:[,\'r*l e Yeen Ui-k-1 - Ur—k-m Ui-1 - l‘l—q]
0" =[—a, -+ —a, by - b, ¢ - ¢] (7.2.5)

The “regression-equation noise™ v, is white, but we cannot apply o.l.s. to
(7.2.4) because regressors v, to v,_, are unknown. The idea of replacing
them by estimates from some auxiliary model is pursued in Section 7.4.1.
Instead, Astrom and Bohlin recognised that, with {u} and {y! given, the
conditional p.d.f. p(Y|0) of the observations given 0 is determined solely by
the joint p.d.f. of {v}. We looked in Section 6.4.2 at the special case for which
{v} is Gaussian and all the regressors in each u, are known (deterministic).
Writing (7.2.4) as

y=U60+v, covy =R (7.2.6)

we found that the log-likelihood function is
L(0) = —iIni2o)NR| — Xy — UO)TR '(y — U8) (7.2.7)

soif Ris known, we are left with the minimisation of the Markov cost function
(y— UB)'R '(y— UB). The present situation differs in that U is not
completely known but depends on {v}. Accordingly, v' R~ v must be used in
place of (y — U8)TR ~'(y — U#), with v estimated iteratively along with @ and
any unknown parameters of R. Assuming |r} is zero-mean, white and of
constant but unknown variance ¢, R is ¢>/ and ¢ can be adjoined to the
parameters to be estimated. To sum up, we are faced with the non-linear
programming problem of finding 6 and ¢ to maximise

N 1 ,
L(0.0)= D In2n) — Nlno — — Zr; (7.2.8)
> 262

+ Astrom and Bohlin, 1966.
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Each @L/20; is found via {dr,/00,}, which in turn come from a recurrence
relation obtained by differentiating (7.2.4). The algorithm takes m equal to
n+1 and ¢ equal to n, then from (7.2.4)

Bl for 1<i<n
(l‘l . (l'l—n (‘]Pl—n ~ .
50"-}—(, ) +...+(-"fmr= — U 4 i for n+1<i<2n+]
— U iyans for 2n4+2<i<3n+1
(7.2.9)
The second derivatives of L follow from (7.2.8):
N
L1 . a2, N fy, Cr, 7910
c0,c0,  ¢* 100,00, 00,00, (7210

=1

in which all @*0,/00,00; are zero except those with i and j between 21 + 2 and
3n+1 inclusive, which are obtained by differentiating (7.2.9). Only the
derivatives involving {v} have to be recalculated at each iteration. the rest
being zero or fixed by {u} and {y}. Lastly ¢L/Ca and 02L/Ca? are found by
differentiating (7.2.8).

Batch iterative m.1. Iteration i for the parameter vector 0’7 2 [0"g] is

- (1) recalculate all first and second derivatives which depend on @', at
0"~ " and form ¢L/c0" and the Hessian matrix [H,,L]
(ii) update 6" by a Newton-Raphson step

0" = 0'7“* " [HyoL]” : CLjco’

(iii) check whether the estimates and/or likelihood function have
settled enough to stop.

Applications of this widely used algorithm appear in Astrém (1967) and
Gustavsson (1969).

7.3 RECURSIVE ESTIMATION

Recursive estimation consists of repeatedly updating the estimates. each
update processing only one output observation. Its most obvious application
is to real-time control or prediction. An example is hourly updating of a flow-
prediction model of a river catchment on receipt of a rew sample of input (an
hour’s rainfall) and output (present river flow). Less obviously, recursive
cstimators are valuable off line because their structure is simple and they are
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able, with simple modifications at most, to track time-varying dynamics as
discussed in Section 8.1. They also allow prior information in the form of an
existing estimate to be exploited as the starting value for the recursion.

Some recursive estimators update a covariance to indicate the reliability of
the estimates. A starting value for the covariance is provided by the user, along
with the initial estimate itself, and tells the estimator how good the initial
estimate is. This sort of estimator can be viewed as a pared-down Bayes
estimator. Each update produces in place of the posterior p.d.f. just the
posterior mean and covariance, which provide prior values for the next
update. For a p.d.f. which is completely determined by its mean and
covariance, as a Gaussian p.d.f. is, the updating amounts to full Bayes
estimation. We shall not normally take this view of the estimators, partly to
avoid thinking of the mean and covariance as necessarily the whole story, and
partly to retain the option of regarding the parameters as unknown but
deterministic.

Recursive updating is popular in state estimation (Jazwinski, 1970:
Maybeck, 1979) for the same reasons as it is in identification. and some
identification algorithms differ from state-estimation algorithms only in
detailed interpretation. The next two sections will emphasize the similarity by

Xr-1 Ay
Hf
Model
— Y,
Yr
Update X
Uy
Update P fe——————m——— "
X, ’D/
Fig. 7.3.1 One step of recursive estimator, where P, | is estimated covariance of X, _,. H, is

observation (regressor) matrix, ¥,is observed output, y, is predicted output and v, is prediction
error (innovation).
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discussing estimation rather than specifically identification, and employing a
more general notation. Figure 7.3.1 introduces the notation and shows an
updating step. The broken lines indicate parts not present in all recursive
estimators. For generality, a vector output y is considered. Our exploration of
recursive estimators starts by seeing how the updating mechanism of Fig. 7.3.1
arises if we demand that the estimator is linear and has good finite-record
statistical properties.

7.3.1 Linear Unbiased Updating

Suppose we have at time ¢ an old unbiased estimate x,_, of a vector x
(parameter or state) with a covariance P,_,. We receive new noisy
observations making up y,, related linearly to x by

y=Hx+v, (7.3.1)

The observation noise v, has zero mean and covariance R, and is assumed
uncorrelated with the error in X,_,. We wish to combine %X, _, and y, linearly
(to keep the computation and analysis simple), forming a new estimate X,. In
other words, we want

X, =J%_, +Ky, (7.3.2)

with matrices J, and K, chosen to make X, a good estimate. If we ask for X, to be
unbiased, it means that for any x and any given H,

Ex,=JEX,_,+ KEy,=Jx+ KHx=x (7.3.3)

Hence
J+KH =1 (7.3.4)

and so
X, =(I—KH)X,_ +Ky=%_,+K(y,—HX, _)) (7.3.5)

Our new linear and unbiased estimate must therefore add to the old estimate a
correction proportional to the prediction error between the new observation
and its value predicted by the old estimate. The prediction error is often called
the innovation. Already the structure of Fig. 7.3.1 is partly explained.

Example 7.3.1 Old unbiased estimates X{"', =5 %' =—2 of two para-

=1
meters x'"" and x'? are to be updated using a new observation

ki
=X e =45
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in which the noise is zero-mean. The new estimate is to be linear and unbiased,
so it has to be of the form

) 57 [k ST\ [ 5+ 15k
T O E e

We have yet to fix K.

7.3.2 Minimum-Covariance Linear Unbiased Updating

We next ask for %, to have the smallest possible covariance. Its covariance is
P,= E[(%,— EX)()']1= E[((/ — KH)X,_, + Ky, —x)()"]
= E[((I— K,H)X,_, —x) + K(y,— Hx)()']
=(—KH)P,_,(I-H'K')+ K,RK (7.3.6)

where (-) denotes a repeat of the previous bracketed expression. The last step
in (7.3.6) relies on the noise y, — H x, that is v, being uncorrelated with the
error X,_, —x. We can find the K, that minimises P, by writing down the
change AP, due to a small change AK, and choosing K, to make the rate of
change of P, with K, zero:

AP, =(I— (K, +AK)H)P, ,(I— H'(K' +AK/))
+ (K, + AK)R(K! + AK") — (I — KH)P,_\(I—H'K") — K,RK!
~AK(—HP, (I—H'K))+RK)+(-(—KH)P,_ H+ K,R)AK!
(7.3.7)

Here the second-degree terms in AK, have been neglected as we are about to
make AK, tend to zero. For AP, to have zero rate of change with AK,
whatever the relative sizes of the elements of AK,, the expressions multiplying
AK, and AK/ in (7.3.7) must both be zero, requiring

—(I—KH)P,_ H'+KR=0 (7.3.8)
The optimal gain matrix for the updating is therefore

K =P, _ H'HP,_ H +R) " (7.3.9)

tf -1

The inverse in this expression exists unless y, is both noisefree, making R zero,
and part-redundant, making H,P,_ H' singular. The neglected second-
degree terms in AK, are readily seen to be positive-definite with the same
exceptions, confirming that a minimum of P, has been achieved.




156 7 COMPUTATIONAL ALGORITHMS FOR IDENTIFICATION

Example7.3.2 We are told the covariance of the old estimate X, | in Example
7.3.1 and the noise variance of the new observation y,, respectively

4 0
P,;lzlio 1:| and R=5

The minimum-covariance linear unbiased new estimate of x is obtained using
the correction gain matrix

[k T4 o 4 o]t T4 0.4
 Cln b B G R Y Rt G R b
SO

o[ sHrsk_[ s

o 72+1.5A—‘,3'}_[—1.85}

(1) Weﬂ‘clz)ln.see n lh.15 small exzur:ple why A" is larger than &' According

to P,_,, x!"), isless reliable than xX{2) (it has a larger variance) and X', is not
e . .

correlated with X{¥ : as in addition H, shows that x{"' and ¥2' affect 7

) X ] o N : K - - l*. X Bl
equal!y, Ehf' error between y, and ¥, should induce a larger correction in 3"
than in X

(i1) The dimensions of the matrix inverted in the computation of K, are

!

fixed by the dimensions of y,. Here y, is a scalar and the matrixis [ x 1. A

Notice that

We can find the minimal covariance of X, by substituting (7.3.9) into (7.3.6):

P =P | —-KHP _,—P._ HU KN+ K(HP,_ \H' + R)K/
=P _,—P_ HNHP H'+R) '"HP, _, (7.3.10)
=(—KH)P, _, (7.3.11)
A simpler expression for K, can be found from (7.3.10) and (7.3.9):
PH'R '=P,_ H'(I—(HP, HY+ R 'HP, \HDR™!
=P, HYH.P, H'+R) “HP, H'+R—HP, H)R
:P,AIH‘T(H,P,,IH,'.+R)fl:K, (7.3.12)

Equations (7.3.11) and (7.3.12) for P, and K, simplify the algebra but are not
necessarily good recipes for computation, where sensitivity to round-off error
may have to be considered. They could not be used together, in any case, since
P, would require K, and vice versa.
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Example 7.3.3 The covariance of X, in Example 7.3.2 is given by (7.3.11) as

p 1 0 0.4 Lo 4 0] 24 —-04

c\lo 1 01! 0 1] [-04 09

so the estimated standard deviation of X' is /2.4 ~1.55, that of X is
\/69 ~0.95, and 3" and ¥ are negatively correlated.

Sub-optimal correction gains kD =k =0.2, say, would make the
covariance, given by (7.3.6).

0.8 —02}4 0 08 —02 0.2
= + 502 0.2
P [;0.2 0.8}[0 1][—0.2 0.8] [O,Z][ ]
28 —0.6
| -06 1.0
The variances of &' and \* are larger, and the difference between this P, and

the optimal one is easily seen to be non-negative-definite, e.g. by Sylvester’s
criterion. A

At this juncture we can look back at Fig. 7.3.1 and recognise the whole
mechanism in our equations. The only other things required arc initial
conditions X, and P, to start the recursion wheny, arrives. 1 X, is poorand P,
very large, the effect is that

H\ X, =H (X, + Ky, — H X))
=H,(X, +H|P(vH‘lr(H|P(>H1II+R)" "y, — H,Xy)
~H Xy +(y, — H X)) =Y, (7.3.13)

That is to say, the correction of X, to X, is almost enough to make H X, fity,
exactly. The influence of X, is negligible because its uncertainty, specitied by
P,. is much larger than that in y,. specified by the noise covariance K.
Generally, the larger P, the smaller the influence of X,.

In state estimation, (7.3.9), (7.3.5) and (7.3.6) or their alternatives listed
below are a large part of the famous Kalman filter ( Kalman. 1960; Jazwinski,
1970: Maybeck, 1979). The only items missing account for time variation of
the state. as described by a state equation. We arc not primarily concerned
with state estimation, but we shall bring in a state equation to describe
evolution of the parameters of time-varying systems in Section 8.1.5. The
resemblance between state and parameter estimation was pointed out not long
after the Kalman filter was devised (Mayne, 1963: Lee, 1964).
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Let us summarise what we have found so far.

Recursive Minimum-Covariance Linear Unbiased Estimator In order of
computation,

K1:Pz—lH,T(H,PtlerT‘{FR)il (739) (7310)
X, =%_, +K(y,—HX,_,) (7.3.5)] or ¢(7.3.12)
P=(—KH)P,_,(I-H'K")+ K,RK] (7.3.6) (7.3.5)

(or (7.3.11))

forr=1,2,...,N; X,, P, given.

The updating equations can be written in several other ways, differing in
numerical properties such as sensitivity to round-off error.

It is important to remember that we assumed v, to be uncorrelated with
X,_; —X. Since x,_, depends on y, , and through X,_, on all earlier
observations, it depends on the noise present in those observations. Our
assumption therefore implies that {v} is white. The covariance R is between
noise variables all at one time, and does not describe correlation between
successive samples.

We have treated H, as deterministic in deriving this algorithm. The
observation equation (7.3.1) is a vector-output generalisation of our usual
regression-type model, with H, made up of regressors. When we rewrite a
transfer-function model like (7.1.3) in regression-equation form, (7.1.9) or
(7.2.4), the regressors are partly stochastic since they include earlier output
samples, and they are also generally correlated with the regression-equation
noise. A vector-output version would have H, stochastic and correlated with v,
in (7.3.1). Section 7.4 is concerned with finding minimum-covariance linear
recursive estimates in those more complicated circumstances.

Having just derived the estimator from first principles, by direct minimisa-
tion of the covariance subject to linearity and unbiasedness, we trace an
alternative derivation in the next section.

7.3.3 Recursive Minimum-Covariance Estimator Derived from Least
Squares

The idea behind this derivation is to apply the batch Markov (g.l.s.) estimate
given by (5.3.25) to all the observations, and pick out the effect of the new
observation and corresponding regressor samples at time . Again we do the
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vector-output case. The regression equation (7.3.1) from 1 to time ¢ gives
altogether

Y =AX+Y, (7.3.14)
where
Y1 H, vy
S el I L e I (7.3.15)
Y, H, v,

The Markov estimate based on (7.3.14) is
X, =(ATAAH) AR Y, (7.3.16)

where #,is the covariance matrix of ¥”,. As in the previous section, we assume
that {v}is white, with covv, given by R,. Therefore, cov ¥",isa block-diagonal
matrix and has a block-diagonal inverse:

R, 0 e 0 R/' 0 e 0
a0 R0 0 P 9 Ry" 0 - 0
(:) .0 R, 0 -0 R
(7.3.17)
Hence
AVAT V= [HIRY HIR;' -+ HIR'] (7.3.18)

and defining (# T2, ' # )~ " as P,, which we know from the end of Section
5.3.5 is the covariance of %X,, we have
t
Pl =ATA A = EH,TRi "Ho=# T A7\ A, (+H'R'H,
i=1
=P +H'R;'H, (7.3.19)
Similarly,

‘”'lr ‘%ty 1@1 =4 Tf 1 *%)x:ll({yw p + fl:v}‘Rzi IYI (7330)

t
and so
il - Pl( y{'{l'r 1 '%,rillqytf 1 + HlTRtv lyl) = Pr(Plillit*I + HITRF lyl)

:Pz((PIHI #H;rRzilHl)ilfl + H,TR[ lyl)
:ix—l +P1H;I-R;1(‘y1*Hzirfl) (732])
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We recognisc this updating equation as identical to(7.3.5) with K, replaced
by P.HTR ™" asin (7.3.12). The covariance updating equation (7.3.19) is less
familiar. We can twist it into a recognisable form by writing

P, :Pl"lPlW IP: :PI*I(PI:II +[{ITR1 lH1)P1
:P,+P[,1H,TR1 IH,PI (7.3.22)
which gives

HP,_ =(I+HP, H'R "VHP, (7.3.23)

1

On substituting (7.3.23) into (7.3.22), we find
Pooy=P +P_ H'R™ "I+ H,P, HIR Y tHP, (7.3.24)

Pi=P =P \HNR +HP H)'HP | (7.3.25)

This is (7.3.10). The equivalence of (7.3.19) and (7.3.25) is called the marriv-
inversion lemma. 1t is a special case of

(A+BC) '=4"'— A" 'B(I+CA4 B)TCa ! (7.3.26)

and 1s often helpful in obtaining alternative ways of writing the updating
equations. Although (7.3.25) looks more complicated than (7.3.19), it uses
only one matrix inversion to go from P, _, to P, whereas (7.3.19) takes two.
Moreover, the matrix inverted in (7.3.25) has as many rows or columns as the
dimension of y,, usually smaller than the dimension of X, so the matrix is
smaller than P,_ | or P,. If the covariance is updated on a short-word-length
computer over many steps, (7.3.25) is risky, since round-ofl error may inflate
the last term and uliimately cause P, to be indcfinite rather than positive-
definite. Safer alternatives exist (Bierman, 1977; Maybeck, 1979), but
floating-point computation with longer word length, say 30 bits, seems to
avoid trouble.
The scalar-output algorithm has h! for H, and &7 for R,.

v
I

t Plfl' P' lhlh']‘P/——l/((T,z+h’,lP,,Ih) (7327)

Xl:il -1 + [)/hl(.l‘/;h:ri‘l——1)//(7,Z (7328)

for r=1.2,....N; x,, P, given.
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The noise variance o} may well be constant but unknown. I{’ so, we can define
a normalised covariance P, as P /o* and write

P =P _,~-P _bh'P _ /1 +h'P |h,) (7.3.29)

X,=X,_,+Ph(r,—h'x,_)) (7.3.30)
This algorithm is the cornerstone of s.i.s.0. recursive identification. Although
the algorithm was generalised and brought to prominence by Plackett (1950).
its essentials were derived, without the benefit of matrix algebra. by Gauss
(Young, 1984).

Example 7.3.4 In example 4.1.4, a weighted l.s. csli‘malc of the pur;}meler
vector [initial position, initial velocity, acceleration]’ was compl}led» for the
tracking problem of Example 4.1.1. Observations at six sampling instants
were processed using the batch w.ls. estimator

0,=[U"WU] "U"Wy

) The weighting matrix W was diagonal with principal diagonal
4 4 1 1 1 4]

0 1s equal to the Markov estimate for a system with white noise ol covariance
" ; i ; Ganee b 1o
R=diag[t 4 1 | 1 1] ic oftime-varyingvariance [, 3. 1.1, 1.1, since
. . R BN T : N .

the Markov and w.l.s. estimates differ only by R~ replacing H'. We use ow

recursive Markov estimator instead. The model was
. 2.9
XN(T) =X, + T +ar/2

and the data were

T 0 02 04 0.6 0.8 ]
Xry=x, 3 59 98 151 218 264
{ 2 3 4 5 6

Fp=y Xx=[v, v, al

KW =[1 t 2= 020—1) 0.02(¢—1)

t
Let us go through two recursion steps, starting with a guess X, =0 and
P, = 10*1, which states correctly that X, Is very poor. (ulculullpn to about
cight iigures is necessary because of ill-conditioning, but results will be quoted

to four figures for conciseness.
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Att=0,rislandh}=[1 0 O],hiP,=[10* 0 0]. Equations(7.3.27)
and (7.3.28) then give

10* 0 0f/, 025 0 0
P =107—] 0 0 0 <Z+]04>: 0 10* 0
0 0 0 0 0 10*
025 0 0[1 3
3—hTo
X, ~0+ [0 104 0 ]]o0 <025‘ ): 0
0 0 10*)]0 ' 0

At t=02, =2 hi=[1 02 002], hIP,~[0.25 2000 200],
o3 + hiP h, ~404.5,

0.2498 —1.236 —0.1236
P,~ | —1.236 111.2 —988.9
| —0.1236  —988.9 9901
[1.545 x 1074
P>h,~ | 1.236
| 0.1236
3.035
v, —hix, >~ 56, X, ~ | 2769
27.69

Figure 7.3.2 shows the evolution of X, and P, over six updates. Convergence is
rapid, and x, is [4.613 250.1 19.30]", close to the batch estimate
[4.592 250.2 18.97]". As the initial error in v, is about 250, its initial
estimated variance 10* used as element (2, 2) of P,, is rather small. A guide is
that each principal-diagonal element of P, should not be smaller than the
square of the largest initial error in that parameter which would be
unremarkable. For a Gaussian random variable, the +¢ limits encompass
about % of all samples, so the guide is reasonable.

The main numerical difficulty in this example is in calculating the gain Ph,.

A

7.3.4 Information Updating

The updating equation (7.3.19) for P! is worth closer inspection. An
iluminating interpretation is that P~' measures information, and (7.3.19)
says how much information about x is supplied by the new observation y,. For
a Gaussian Xx,, we can show that P ' is in fact the Fisher information matrix.
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Fig. 7.3.2 Recursive minimum-covariance unbiased estimates and their computed variances.
Example 7.3.4, where O: X;,; At X550 01 X3,

First we must realise that the p.d.f. p(x,) can act the part of the p.d.f. of the
observations given the parameters, in the definition (5.4.1) of the information
matrix. We can think of X, as a vector of processed observations, containing
the information in all the original observations up to time . Omitting the
explicit dependence of X, on x from our notation for brevity, we have

p(x,) = const x exp(— 3(X,—x,)"P (X, — x,)) (7.3.31)
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since X, 1s the mean of the unbiased x, and P, its covariance. Hence

('T ('T
(1 KD = (const — Yv —x TP 1ig _
X, ((Inp(x,)) o, (const —5(x, = x )" P (¥, X,))

=~ PTUR, —x) (7.3.32)

and the Fisher information matrix for ¥, is

- ;A i
F, ;F[ ,‘:.,, (In /)(i,))( ﬂ(; (Inp(i,))> ]
Cx, CX, )

=PUENN, —x )N, =) P =P (7.3.33)

1 i

With this interpretation, the role of H'R, "H,in (7.3.19) is clear. A larger
observation-noise covariance implies that y, brings less information about x.
A large P, is seen to signal that X, contains little information.

The idea of updating P~ " rather than P has received a lot of attention in
state estimation (Bierman, 1977) but not apparently in identification. The
relative dimensions of 'y and x determine whether there is any computational
saving.

7.4 RECURSIVE IDENTIFICATION INCLUDING A NOISE-
STRUCTURE MODEL

We now examine several techniques which approximate the minimum-
covariance estimate when the noise is not white but can be modelled as linearly
filtered white noise. The notation that x is the parameter vector and h the
“regressor” veetor will be retained, to allow casy comparison with the
preceding recursive algorithms and avoid confusion between a regressor
vector uand inputs . Italso helps when, in Chapter 8. we borrow [urther state-
estimation methods.

7.4.1 Extended Least Squares

The aim of this algorithm is to modity (7.3.27) and (7.3.28) as little as possible
yet attain acceptably small covariance and bias in the prescnce  of
autocorrelated noisc. The algorithm takes D equal to 4 in the standard model
(7.1.3) like the batch m.1. algorithm. The result is (7.2.4), or in our present
notation

yo=hix 4o, (7.4.1)
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where
L (R
x=[—a, - —a, b - b, - ] (7.4.2)

with ¢} zero-mean, white and usually of constant variance ¢2. I we knew ¢, _,
to v,_, at ume ¢, (7.3.27) and (7.3.28) would give minimum-covariance
estimates, unbiased as ¢, is uncorrelated with h,. As we step through the
records updating X, we can generate residuals

¢ o=y, —hl X, i=q,q—1,...,1 (7.4.3)

to stand in for the unknown r, _, to r,_ 1n h,. By doing so, we introduce an
indirect link between the earlier estimates x, _; and x,. The asymptotic and
finite-sample behaviour ol the estimator is thereby altered, and we can no
longer be sure even that it is consistent. These worrics are postponed (o
Section 7.5. For now, it is ecnough to know that misbehaviour is possible but is
very seldom seen in practice.

The cxtended least squares (c.l.s.) algorithm became popular (Panuska,
1968 Young, 1968) under a variety of other names such as Panuska s method.
r.m.l. 1 (recursive maximum-likelihood 1;r.m.l. 2is discussed later) and, when
uscd for noise-structure estimation as in Section 7.4.5, ¢.n./. (approximate
maximum-likelihood). A common variant of ¢.l.s. uses the imnovauon

R (744

' —
‘1 { ) [ e

1 B
in place of ,_;. Asx, ,_, 1s one step out of date. v, approximates r, , less
well than does ¢, ;. and the performance of the algorithm suflers. There is
rarely any computational saving since the residuals are needed for model
validation anyway. Some authors reserve the names r.m 1. | for the version
using (7.4.4) and a.m.l. for that using (7.4.3).

Extended Least-Squares Algorithm
Fori=1,2,....N
(i) Update h,_ | to h,asin (7.4.2), using ¢, | for v, ;.

(i) P,=P,_,— P _,hh'P /(6] +hlP |h). (7.4.5)
(iti) Calculate innovation v, =y, —h/X, . (7.4.6)
(iv) X, =%x,_, + Phy/o} X,. P, given. (7.4.7)

Unknown early samples of ¢ and perhaps v and y in early h/'s are taken as
zero. Alternatively, batch o.ls. can be performed on the first few sets of
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samples to get X, P, and the earliest residuals, but the extra programming
effort is scarcely worthwhile.

A constant term can be added to the model by adjoining 1 as an extra
element of h,, to go with the unknown constant as an element of x. The extra
term copes automatically with unknown means of {u}, {y} and {v} providing
they do not change too quickly. Deterministic trends, e.g. ramps, could also be
accommodated by extra regression terms, but we shall find more flexible and
elegant methods in Section 8.1.

Most of the results in Chapter 10 were obtained by e.ls.

7.4.2 Extended Matrix Method

A weakness of e.lis. is that the noise-model order may have to be high.
Coeflicients ¢, to ¢, are the u.p.r. ordinates of the filter which shapes the noise.
If this transfer function, more generally (1 + C)(1 + 4)/(1 + D), includes a
z-plane pole just inside the unit circle, the u.p.r. has a long tail and g has to be
large. Estimating an a.r.m.a. noise model avoids this problem (Talmon and
van den Boom, 1973). With

:gl + O)(1 +ﬂV 1+ C ”

L .

1+D 1+D

(7.4.8)

aregression equation can be written in terms of both Fand V' which is linear in
all the plant- and noise-model coefficients:

Y=—AY+Bz"*U+ (1 +CHV/(1 + D)

=—AY+B:"*U+CV—-DE+V (7.4.9)
The e.l.s. updating equations are used to estimate
X = [—al e —a, bl e hm LI,I e C(’[ 7(11 e ——dr]T
(7.4.10)

Assuming enough previous samples are available, approximate values of ¢, _,
and ¢,_, to update h,_, can be provided by

6, =Y, +ay, s+ +ay. . —bu_,_,— - —bu

m-k-m—1

(7.4.11)
(7.4.12)

by =—Cly— = Cl_ oy +é +- - +de

t—r—1
where the coefficient estimates come from X, . Initially zeros are used for é

and ¢ in h, until é, ., _, to ¢, ., have all been found from (7.4.11). From that
point on, h fills with values calculated by (7.4.11) and (7.4.12).
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Talmon and van den Boom advise exponential weighting-out of old
residuals, asin Section 8.1.3, to weaken the influence of poor initial estimates.

7.4.3 Extended Least-Squares as Approximate Maximum-Likelihood;
Recursive Maximum-Likelihood 2

Extended least-squares appears in a new light if we think of (7.4.7) as a step of
a numerical search routine to minimise the sum of squares of residuals

s, Zfo :z(y,—hfi)l (7.4.13)
=1 1=1

t {

| z(f;’ g =2 Z(h, + [0 (7.4.14)
X X

I=1 =1

The gradient is

where element (i, j) of the Jacobian matrix [J ] is ¢h, /¢ X;. The Jacobian is
non-zero because X affects ¢,_, to ¢,_, in h,, which are computed as
y,-;—hl_ X, 1 <i<gq. Precise evaluation of ¢S,/cx would mean going back
over the entire record to recalculate every ¢ and h at each new value of X; the
algorithm would not be recursive. To keep the computation recursive and
simple, we might ignore at time 7 the influence of X on all earlier v and hvalues,
neglecting even [Jh,]. Only —2h¢, would remain in 0S,/CX, and we could
regard hv, in (7.4.7) as approximating — 3¢S,/ evaluated at x,_ .
Element (i, /) of the Hessian matrix of S, with respect to X 1s

t t

H.S] =05 ~ ) S‘ B tao Zh“h” (7.4.15)
A Y e /N, :

J
1=1 =1

neglecting the Jacobian again. The whole Hessian is then roughly
1
[H.S]=~2 z:h,h,r (7.4.16)
I=1

It relates easily to P, in e.l.s., since from the information equation (7.3.19)
specialised to scalar output

P, =P +hhl/c? (7.4.17)

1
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so that if the noise variance ¢2 is constant and Py 1s large,
. . v
- . _, hh/ " hh!
pPl=p;t +;”6’4 ’f:Lf(;ZJ,’ ~[H S]26>  (7.4.18)

The e.l.s. updating of X is therefore

>N HIH S 0S 0% (7.4.19)

We recognise this as a Newton-Raphson step (Adby and Dempster, 1974)
towards minimising .S,.

Extended least-squares can be modified relatively cheaply to include the
Jacobian in the gradient calculation (7.4.14) by finding an expression for
dv,jox which does not necessitate going back over the whole record
(Soderstrom, 1973). Since

T T b 3o A "
=YX =ytdyy o 4+ e Dudly
B LR Tl L/ (7.4.20)
we have for each element ¥, of %
et felement / ¢ oy N q 5
o= . G =
P of h, P N (7.4.21)

?onsjequcntly —h, is F‘f,/(“i filtered by 1 + C, and C,/CX is obtainable by
filtering - h, by 1/(1 + C), instead of using — h, for 76,/0% as we did formerly.
The modification improves the asymptotic properties of e.l.s., ensuring
consistency for all parameter values, which e.l.s. lacks (Ljung, Soderstréom and
Gustavsson, 1975). The modified algorithm is *often called r.m.1.2 to
distinguish it from r.m.l. I, which is e.l.s.

The actual performance of r.m.1. 2 at realistic s.n.r. is an object lesson in the
dangers of relying on asymptotic results. The fittering by 1/(1 4+ C}) is often
unstable, as Cisinitially poor (Norton., 1977). Even when it is not unstable, the
filtering is liable (0 be counterproductive, because it uses (7.4.21) with old
values from ¢ previous steps as °r, 1/CX10 08, /X, Hence CF,/CX, s still not
uccu-rul& especially when x is changing rapidly from step to step, and errors
pel}mst and accumulate whenever 1/(1 + ) has one or more poles close to the
unit circle. A stability check is therefore no guarantee of good performance.

7.4.4 Stochastic Approximation

The heaviest computational task in e.ls. and related methods is updating the
covariance. We could dispense with the covariance updating and calculate the
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correction gain some other way, while keeping the corrector form of updating
for X, but only at the price of a larger actual covariance for X. Unbiasedness,
by contrast, does not depend on the choice of correction-gain matrix, X, in
(7.3.5), providing the regressors are not correlated with the noise.

The simplest scheme would be (o replace P/} in (7.3.28) or (7.4.7) by a
predetermined positive scalar y,, giving a stochastic approximation (s.a.)
algorithm.

Stochastic Approximation Algorithm

(1) Update h,_ | to h,.
(i1) Calculate innovation v, =y, —h'x, .

(i) &, =%, | +7h, (7.4.22)
for r=1,2,...,N; {y! given.

=

Stochastic approximation (Robbins and Monro, 1951) originated as a trial-
and-error technique for finding the root x of a scalar equation

mx) =y (7.4.23)

from noisy observations /71(x,), t = 1,2, ..., where the forms of mi( - ) and the
noise p.d.f. are not necessarily known, but the noise has zero mean. Successive
trial values X, are found by the scalar version ol (7.4.22) with y —s(x,_ )
forh,r,. A distinctive feature of s.a. is that m( - ) need not be parameterised, so
its adoption for parameter estimation is ironical.

As the correction to X is still proportional to h,v,. we can interpret s.a. as
another gradient-based method for minimising S,. The step-size factors {7}
have 1o be both large enough for X to reach the correct value and small enough
finally for X to stay there. As v, depends on the noise, h v, is a random variable
with, in general, a finite covariance, $so |X | can settle (o a zero-covariance Hmit
as t— 7 only if 7, —0. In e Ls. the corrections decrease automatically as 2,
decreases. A sufficient condition for {X} to converge w.p.l (and in mecan
square)isthat ), | y7 stays finiteas 7 > ». The commonest choice fory,. (1 *
with 4 < o < 1 and Ca positive constant, satisfies this condition. The sequence
w1 can decrease more slowly without losing convergence if the noise is
bounded, which it is in actual observations; 0 <x < | is allowed (Ljung,
1977a). If {1 1s to decrease slowly enough for (X} to reach the correct value
however far away it started at X,. Y, |, must tend to inlinity as 1— » .

There s a large literature on how to select |71, buts.a. incurs such a penalty
in slower convergence through replacing a matrix-dependent updating gain by
a gain depending on a scalar that it 1s useful only as a last resort, when
computing power is very limited. One of the original attractions of s.a., the
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relative ease with which convergence can be guaranteed, has lost its
significance now that the convergence properties of more ambitious
algorithms are better understood (Ljung, 1977a; Goodwin and Sin, 1984;
Solo, 1979).

Example 7.4.1 We shall repeat Example 7.3.4, but using the s.a. updating
equation (7.4.22) with

(i) y,= 1/t so that the update at ¢ =1 is the same as in Example 7.3.4;
(ii) y, = 1/101¢;
(iil) y, = 10/t.

Figure 7.4.1 shows the resulting estimates.

Case (i) shows clearly the ill effects of restricting the correction to be a scalar
times h,; the initial-position estimate rises far too rapidly and the initial
velocity far too slowly. The results also underline the fact that consistency
(ensured by this choice of {y}) is no guarantee of good, or even tolerable,
small-sample behaviour. Case (ii) shows the effects of observation noise less,
but is even slower to converge than case (1). Case (ii1) illustrates the serious
consequences of making y, larger. We can explain them by examining the
estimation-error recursion resulting from (7.4.22),

‘;(1 =(I— yrhzh;r)ir» 1t '))lh'l’,

where X is x — X. Thesum of the eigenvalues of the transition matrix / — y hh[ is
its trace p — y,hlh,.If v, is large enough and h'h, not too small, at least one
eigenvalue must be below —1. The recursion step is then unstable, and
contributes to divergence of X. A

7.4.5 Recursive Instrumental-Variable Algorithm+

The els., em.m. and r.m.l.2 algorithms circumvented the bias due to
correlation between regressors and regression-equation noise by integrating a
noise model into the regression equation. The remaining noise-generating
term v, was white and uncorrelated with the input, and as a result uncorrelated
with the regressors. An alternative stratagem, seen in batch form in Section
5.3.6, is to replace the noise-correlated regressors by instrumental variables,
which are totally uncorrelated with the noise. They must also be strongly
correlated with the information-bearing regressors to yield low-covariance
estimates. The idea can be implemented recursively, but it shares a weakness
with the alternative recursive methods. The instrumental variables and the

t Soderstrom and Stoica, 1983; Young, 1974, 1984.
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Fig. 7.4.1 Stochastic approximation estimates, Example 7.4.1, where O: vt A1 X, 00y,
(i) y, = 1/t, (i) y, = 1/10¢ and (iii) y, = 10/1.

noise models of the alternatives are only as good as the parameter estimates
they depend on. Early estimates are poor, so bias occurs initially, declining,
one hopes, as more observations are processed. It is not at all obvious that any
of the methods will indeed converge to unbiased parameter estimates with
acceptable covariance. We pursue convergence further in Section 7.5.

The recursive instrumental-variable (r.i.v.) algorithm to be described has a
distinctive feature, separation of plant-parameter from noise-parameter
estimation. The separation allows a free choice of noise-parameter estimation
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method, but the best-tested is a.m.l., the a.r.m.a. version of e.l.s. More
significantly, splitting the estimation of a (m + 1 + ¢ + r) vector of parameters
into separate estimation of an (m + 1) vector and a (g +r) vector saves
computing, as the computing demand rises more than linearly with the
number of parameters.

The mechanics of r.i.v. plant-parameter estimation are straightforward.
From Section (5.3.6), the batch i.v. estimate is

0.=[Z"U) ' Z% (7.4.24)

with Z the matrix of instrumental variables. We need only replace # .4, 'in
the algebra leading to (7.3.21) and (7.3.25), (7.3.27) and (7.3.28) by Z" to
obtain the algorithm.

Forr=1.2,....N

(iy Update h, [ and z, | to h,and z,. (7.4.25)
(i) M,=M,_ =M, zh"M,_ (1 +hiM, z).

(1) Calculate innovation v, =y, — h/'x,

(iv) X, =X,_, + Mz, (7.4.26)
mechanism for generating iz} given; X,, M, given;

U - k- m]‘]

[-a, - a, b, - b

n

hy=[vy o v u

&

X,

Here z,iscolumn rof Z'. We see from (7.4.25) that M 1s not symmetric, and of
course it is no longer the error covariance of x,.

We have yet to specily z,. Intuitively, the ideal thing would be to replace the
noisy output samples in h, which cause all the trouble by “clean™ values y¢_ | to
Y., computed, as in the output-error approach of Section 7.1.3, by

WEma oy e b e b

mttt

(7.4.27)

m

We do not know the plant parameters, and the best we can do is use the current
estimates. More generally, we can generate an i.v. sequence as the output of
an auxiliary model.

We have some freedom in generating the instrumental variables, since 0. in
(7.4.24) 1s unaffected by any non-singular linear transformation of Z, i.efby
any linear reversible filtering of the sequences of samples forming Z, for if we
premultiply Z" by G,
0.=[GZ'U) 'GZ'y=[Z2"U)""'G" 'GZ%y = 0. (7.4.28)
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A surprising consequence is that the numerator B of the auxiliary model has
noeffect on the i.v. estimates. To see this, consider the sequence {'} produced
by filtering ju} with 1/(1 + A4). Since

o i i ’ N S~
,‘vlL = bl”l’*lr 1 +- +bmu; -k—m> u, :”1 +(1]l(' -1 o +un“1~n

(7.4.29)
we can write column ¢ of Z" as
I R N 0|
\:C 0 0 [;I Am 0 0
BN . .
_ .‘A‘;—:* n _ 0 e /;,,, t k ! I
5= u, ., VUt oa - a4 0 - 0 w o J
. ~ 1—k-m n
: o 1 .- a, 0 - 0
”l k--m
L 0 ll”
=Gy, (7.4.30)

where u; is column 7 of an alternative i.v. matrix entirely composed of samples
of {1'}. It turns out that G in (7.4.30) (a Sy/vester matrix) is invertible unless B
and 1 + A have a zero in common, so u/ gives precisely the same parameter
estimates as z,, algebraically. There may, however, be numerical differences,
especially before the eftects of initial unknown values subside in the recursion
giving '} from lu}.

The auxiliary model may be updated after every plant-parameter update,
orless often. Forinstance, the algorithm may be iterated, performing repeated
passes through the records with the auxiliary model updated at the end of
each. lteration of a recursive algorithm is clumsy and may be too slow for real-
time identification, but it may help in getting usable results from short records.
If the final M or P from one iteration is carried over as the initial value for the
next, the records are being treated arbitrarily as periodic with period equal to
their original length. Instead. it has been suggested (Young, 1984) thatinr.i.v.
cach iteration be initialised with M from (1//)th of the way through the
previous iteration, where / iterations in all are performed. This seems equally
arbitrary and results in heavy dependence of the final M on the first (1;/)th of
the record, but appears to yield good results.

Approximate maximum-likelihood estimates of the noise parameters are
obtained from the model (7.1.5), written as the a.r.m.a. model
W= —dw, = —dae, e, FoL, T

1 "

= h;lrxll +r, (7431)
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where superscript # denotes notse, and

nA . ’ i T
hrzl”r—l oW, Uiy lf'li]’
X&[—dy - —=d, ey et (7.4.32)
Both {w} and {v} are unobservable, of course, and have to be estimated by
0 — e N b _ Rl on
W= =V O =W — WX

i=1.2,....r.  j=1,2,....q (1433

where {7} is found as in (7.4.27) with estimated plant parameters, and h"is
defined analogously to h".

A long series of refinements and extensions to the basic r.i.v./a.m.l
combination has been reported (Young and Jakeman, 1979, 1980; Jakeman
and Young, 1979), and supported by extensive results from real and simulated
records.

7.4.6 Prediction-Error Algorithms

With a few exceptions, we have examined algorithms which give parameter
estimates with zero bias and minimum covariance. As noted in Section 5.3.2,
the attraction of minimum parameter-estimate covariance is that it
guarantees, for any scalar quantity linear in the parameters, the smallest
variance and m.s. error obtainable with zero bias. It thereby kills two birds
with one stone; it gives a minimum m.s. error both in each individual
parameter and in the output at fixed values of the explanatory variables.

To find the parameter-estimate covariance, we must specify not only the
estimation algorithm but also the form of the model and the system actually
generating the records. However, when the model is intended for prediction,
we are not interested in the parameter estimates or model structure for their
own sake, and can concentrate on prediction performance. In comparing the
performance of a predictor estimated by a particular algorithm with the best
attainable by that type of predictor. we need not specify either the original
model from which the predictor arose or the actual plant and noise dynamics.
In these circumstances, it is simplest to regard the predictor itself as the model,
and think of identification as predictor-building. The adequacy of the
parameter estimates for purposes other than prediction can then be left as a
separate issue.

Example 7.4.1 A one-step-ahead predictor of the output can be developed
from the regression equation model (7.2.3):

Y=—AY + Bz"*U +(l + Y
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by noting that in the corresponding difference equation

Y = —ay Y-y T T a,¥Yi—n + blul*k—l +-+ bmur'k*m
+e v e

the only quantity on the right-hand side not known at instant 1 — 1 is‘v, ifA: B
C and k are known. Since Ev, is zero, the conditional-mean predictor y, 1s
y, — v,, obtained by setting ¢, to zero and using the known values for all the
other terms making up v,. We can avoid working out the terms ¢, _, to ¢,
explicitly by expressing ¥, in terms of u’s, s and ¥'s up to r— 1. In =-
transforms,

Y=Y —V=—AY+B="*U + CV=(C— Y+ B:"*U-CY
so the one-step-ahead predictor is a recursion

V=Y eyt Y R T

—C Vg T (‘q.“l"q

where ¢ is ¢; — a; and s 1s max(q,n). Although the predictor came from the
model (7.2.3). it could equally have been devised empirically or simply chosen
as a convenient structure. For prediction, the parameter vector which must be

identified is [¢, --- ¢ b, - b, —c —c,l pr¢ver, the
original model implies some redundancy in these parameters if ¢ 1s greater
than n. A

The way the simplified view of identification as predictor-building allpws us
to defer consideration of the underlying model and the process generating the
records has led to strong emphasis on prediction-¢rror algorithms recently
(Ljung and Soderstrom, 1983). These algorithms aim to minimise a scalar risk
function .

1 .
r,(x)éE[V,(x)]%E[{Z/(y,ry,‘x)‘l (7.4.34)

i=1

The loss function / measures the error in predicting output y; one sample
ahead. The expectation is over the observations up to /. with the parameter
vector x fixed. The algorithms actually minimise }(x) in lieu of r(x) by
adjusting x according to the derivatives of ¥ (x) with respect to x. jL'lS[' as
r.m.1. 2did in Section 7.4.3. They consequently require each output prediction
to be a known and sufficiently differentiable function of x. The algorithms’
inability to compute r,(x) without making assumptions about the p.d.f. of the
observations does not matter asymptotically (Ljung, 1981, for under weak
assumptions the X, that minimises V(x) tends w.p.! to the X that minimises
lim r(x), as 1 tends to infinity.

1=
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Minimisation of r(x). for a given predictor structure provides initial
motivation for a prediction-error algorithm, but as soon as we enquire
whether a different predictor structure might be better, we have to discuss the
process actually generating the records. Statements can be made about the
asymptotic covariance of X,, i.e. the efficiency of the algorithm, at the price of
assuming that the model underlying the predictor can explain the
observations, in the sense that the observations could have been gencrated by
the model with some true value of x.

A recursive prediction-error algorithm can be developed in quite a general
form (Ljung and Soéderstrom, 1983) and then specialised by choice of loss
function, model structure and detailed implementation. Many familiar
algorithms can be obtained in this way as prediction-error or approximate
prediction-error algorithms. This reinterpretation may suggest modifications
to improve asymptotic properties, as when e.l.s. was modified into r.m.1. 2.
The prediction-error approach is direct and elegant when the problem really is
prediction, but it is also valuable because 1t allows degree of specialisation to
be traded against power of asymptotic convergence and efficiency results when
the algorithms are analysed.

*7.5 CONVERGENCE ANALYSIS FOR RECURSIVE
IDENTIFICATION ALGORITHMS

Since the early 1970%s, several methods have been developed for convergence
analysis of a wide range of recursive identification algorithms. Their
development was stimulated by two trends, a proliferation of recursive
algorithms with similar updating structure (Astrém and Eykhotl, 1971) and a
rebirth of adaptive control in the shape of self-tuning controllers (Astrom and
Wittenmark, 1973). Self-tuning controllers combine a recursive identifier and
a control law based on the updated model, as will be shown in Fig. 8.3.2 and
covered in Section 8.3.3. A convergence analysis was needed for such closed-
loop systems as well as systems with input independent of earlier output. The
analysis outlined below (Ljung, 1977a) is general enough to cover both.
As even an informal account of the analysis is quite complicated, and its

implications are much casier Lo see in specific examples, a careful reading of

Examples 7.5.1-7.5.3 is strongly advised.

7.5.1 Formulation of an Archetype Algorithm

Our first aim is to fit a broad class of recursive algorithms into a single
framework, the archetype algorithm. It has to encompass a variety of
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recursive schemes, including o.l.s., e.l.s., s.a. and the commonest self-tuning
controllers. It consists of (wo dilference equations, one the parameter-
updating equation and the other relating current samples of the output and
regressors to earlier samples. Covariance updating will be added later.
Parameter-updating equations (7.3.28) for recursive minimum-covariance
estimation. (7.4.7) for e.l.s. and e.m.m., (7.4.22) for s.a. and (7.4.26) for r.i.v.
are all of the form
X, =X+ sy —hix ) (7.5.1)
where 7, is a scalar gain, sometimes 1. Let us collect the regressor vector h, and
output y, into

¢, =[r bl (7.5.2)

and write an equation stating how ¢, evolves from ¢, . To obtain ¢, from
¢,_, we delete the oldest samples of input, output and, if present, noise
estimate, shift the rest down one place and insert the new values. Unless the
new input sample can be treated as deterministic, it is modelled as a function of
earlier input samples and a white driving sequence and, if feedback is present,
earlier output samples. In self-tuning controllers the control input at time
{—1 depends on the parameter estimates X, , used in the control
computation, and this relation must be included in the equation for ¢,. The
new output v, depends on the rest of ¢, via the system dynamics, and the new
depends on x, _, and part of ¢, | through the model, e.g.

noise estimate &,

N

o I T o b
ll—lf.lr—lfhtfl'\tr»l (7 -3)

The evolution of ¢ in a linear system is altogether described by
¢1:K(i171)¢171+[‘(i1> 1)9, (754)

where K and L depend on X, ;| in general but not in some of the simpler
algorithms, and {e! is a white sequencc.

Example 7.5.1 Extended least squares is based on

r :7(’1.“1'*1 - _(’n»“lfn + hl”l*k‘l + +[7m“l*k”m

1
+ g deee (‘111‘1 a + 1
so v, and the regressors h, form

. Co
¢l:[.‘l .‘17:11’”171\ 1
elements 2 to n | ) elements n + 2 (o
= ) , )
of ¢, , ! n+mol ¢,
|

= o . . )
+[hix+e, 0 u P T

[ -
i

[ g r
”I"k”m\"vlfl ‘-,,,‘!]
|

elements m+n+2 '
tom+n+qol ¢, |
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If {u} is, for instance, an autoregression of order / < m so that
Up ooy =8 Myt U Wy

then ¢, can be written as

1 0
0
T . -
0 x 0" g' o g (])
¢14LP¢1~J+ 0 ¢l+ I ,Q__, d’l*l_’_ 0 0 €
. _ )"(T I
0 0' ! 0 0

=%Y¢, +F¢,+Hop,_, +Je say

Here the partitioning separates samples of y, u and 7§, the forcing e, is
[v, w,_,_,]" and W accounts for the downward shift of most elements from
¢, ., to ¢,. The partitions of ¥ are

0 0
10 0

Y,=l0 1 0 ... 0 W,=0, i#j, i=1,23 j=123
0 - 10

Hence (7.5.4) for this algorithm and input is
¢, =[1—F]"'[(¥+H),_, +Je]=KX,_)¢,_, +Le

where L does not depend on %X, _; but K does. Both depend on x. A

In (7.5.1), s, depends on h, directly, and in most algorithms also indirectly
through P or M,. The correction term in the parameter-updating equation is
consequently a complicated function of @,, so we write

X =%_,+yr4(¢,. %)) (7.5.5)

where q(-. -) is a vector of functions we must specify, along with the exact
contents of ¢,, for each algorithm analysed.

The convergence analysis applies to the archetype algorithm (7.5.4) and
(7.5.5). Covariance updating is adjoined to (7.5.5), as we see shortly. The
analysis is difficult because (7.5.4) and (7.5.5) are coupled; in particular, %,
depends not only on %, | but also, through ¢,, on all earlier Xs in general.

Let us now see how L.s. covariance and parameter updating fit into (7.5.5).
As usual it is easiest to consider the information-updating equation

P ' =P +hhl/c? (7.5.6)
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We can make this look very like (7.5.1) by writing it as

-1 -1 1/h T =1
i) 75
For each column v of P '/t, defining y, as 1/t we have
i =r 4y (hPh/e? -1 ), i=1.2,....p (7.5.8)
and
X, =X,_, +Pi;’ (v,—h'%, )
1
=%, +M(}*, —h'%, ) (1.5.9)

0y

We then need only define an augmented “parameter™ vector consisting of X,
followed by columns r'” to r'”’ to make (7.5.8) and (7.5.9) into (7.5.5). Example
7.5.2 illustrates the procedure for e.l.s.

7.5.2 Asymptotic Behaviour of Archetype Algorithm

Rigorous analysis of the archetype algorithm is complicated and difficult, but
its spirit is conveyed by the following loose and heuristic argument.

In (7.5.4), the influence of the forcing e at one instant on later ¢'s will
eventually fade until negligible in almost any conceivable practical
circumstances, and so will the effect of the initial value ¢,. Also, if the
parameter estimates converge, X, — X,_, gets very small as ¢ increases. (We are
notembarking on a circular argument along the lines “if it converges then . . . it
converges”, as we shall be enquiring into the value to which X converges and its
manner of convergence, not whether it converges.) We should not then be too
far out if, in calculating ¢, at any time i close to a large time ¢, we replace all
earlier X values by X, and ignore the effect of ¢, giving

¢ = HK(X,‘ P + Z H K(X;_ )L(X,_ e,
i=1 h

=1 j=k+1

i

~ Z{ K(x) 1 "FL(X,)e, = d,(X,) say

k=1

(7.5.10)

Furthermore, if {e} is stationary and K(X,) has only stable eigenvalues.
$,(x,) will become a stationary random vector as i increases. We can now
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approximate the change in X over s steps from time 7 using (7.5.5):

1+s (+s

iw.\_i:: Z (P, X)) = Z }';q(‘ﬁf(i‘,)ai,) (7.5.11)

i=t+1 i=1+1

At large enough i, q(¢,(X,). X,) also becomes a stationary random variable by
virtue of its dependence on @, (with X, regarded strictly as a parameter, not a
variable, at the moment). We can thus express q in terms of its deviation P
from its mean f(x,): l

q(tﬁ,-(i,),i,):gq(di(i,), X,) +p, =f(X,) + p, (7.5.12)
and write (7.5.11) as
t+s t+s 1+s
X, — X, =1M(x,) z Vi 2 ViPi = f(X,) Z Vi (7.5.13)
i=1+1 i=r+1 i=r+1

This last approximation is clearly acceptable if we are interested in the mean
behaviour of X, since the term neglected has zero mean. It is not clear without a
more careful analysis how far (7.5.13) is true for individual realisations of X
We can tidy up (7.5.13) without essentially altering it by the trick of treating
Z::+ , 7; as the increment of a transformed time 1, giving

xl*s—xlzxr+Ar¥x1:f(X1.) g )‘iE"(x1)AT (7514)
=1+ 1

This can be viewed as the discrete-time version of a time-invariant differential

equation

x(1) ~ f(x(1)) (7.5.15)

The asymptotic behaviour of X} can then be investigated by solving the
differential equation numerically or, with luck, analytically.

Example 7.5.2 We continue with the e.ls. algorithm, defining X; as X,
augmented by the stacked columns ;" to r{"” of P, '/t, and R, as P, Y. (R, is
Ljung’s notation, unrclated to regression-equation noise covariance). The
joint parameter and covariance updating equation (7.5.5) for X; then gives
q(.i,,(x;),x;)—[ ke~ Bk :I

stacked columns of hhl/o? — R,

). . -
where ¢° is constant as le| has been assumed stationary, and h; is what the
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regressor vector would be if the fixed value x, were used tor evaluating K and L
at every update from the indefinite past to time i. Only ¢, | to ¢,_, are
affected, in fact.

Denoting E[h,(y; — hlx,)] by d(X,) and E[hh] by G(xX,), we obtain

R7(R,)/0?
stacked columns of G(X,)/o” — R,

f(x)) = EqQ(§,(X)). X;) =[

The differential equation (7.5.15) is then
X(1) = R™ ' (0)d(X(1))/0”

for the x part of X', and for the remainder, writing the columns of R and G side
by side once more,

R(1) = G(X(1))/a” — R(1)
The converged state is given by x and R both zero, i.e.
R =G/o? and R 'd/c? =0

Assuming no redundancy among the regressors in h,, G is non-singular and,
for bounded input and output, finite. So therefore is the asymptotic R. Hence
R~ 'isfinite, so d must generally converge to zero. That is to say, the residuals
y;— hlX,are asymptotically uncorrelated with the regressors h,. We recognise
this as the probabilistic counterpart of the orthogonality property of l.s.
A

For (7.5.15) to approximate the large-sample behaviour of {Xx | adequately,
some regularity conditions must be imposed on {7}, K, L, je} and q. Without
wishing to go into them in detail, we should look briefly at them to see that
they are not very restrictive. They are:

(i) e} must be a sequence of independent random variables, not
necessarily stationary although we took them to be so in the heuristic

argument.
(i) Either (a) e, must be bounded w.p.1. at all ¢ (real-life disturbances and

forcing are bounded), and q must be continuously differentiable with respect
to ¢ and x, the derivatives being bounded at all 7, or (b) to permit analysis with
e, not bounded, other conditions on e, and q must be assumed (Ljung, 1977a).

(i) K and L must be Lipschitz continuous (Vidyasagar, 1978).

(iv) q must be such that lim, , , (X)) exists.

(v) {7} must be a decreasing sequence with ) " | y, infinite, ) " 7% finite
for some « and 1/y, — 1/y,_, finite as 1 — .

The conditions on q, K and L have to be met over some region of X, say D,
throughout which K has only strictly stable eigenvalues.
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7.5.3 Convergence Theorems for Archetype Algorithm

Three theorems (Ljung, 1977a) state how individual sequences {X} of
estimates relate to the differential equation (7.5.15).

Theorem 1 says that the distance between X, and the nearest point of a region
D,., which contains only trajectories of (7.5.15) which have been and will
remain in it forever, tends to zero w.p.1 as t — 0o. At its simplest, D, (called an
invariant set of (7.5.15)) is a single equilibrium point where f is zero. The
theorem applies when, w.p.1 and at an infinite number of instants, |@,] is below
some value and X, is in a region from which no trajectory leaves D, and all
trajectories converge to D, as t— 0.

The usefulness of Theorem 1 depends on how easily the domain of
attraction of D_, the region from which trajectories of (7.5.15) converge to D,,
can be identified. Lyapunov stability analysis (Vidyasagar, 1978) is required
for all but trivial cases, and is notoriously more an art than a science.
Alternative approaches, some not relying on Lyapunov theory, have more
recently been developed (Goodwin. et al., 1980; Solo, 1980; Fogel, 1981;
Goodwin et al., 1984).

Theorem 2 says that if X, has non-zero probability of converging to within a
distance p of some point x* however small p is, then x* must be a stable
equilibrium point of (7.5.15). It applies so long as cov q(@(x*), x*).is positive-
definite and f(%,) has continuous derivatives throughout a neighbourhood of
x*, the derivatives converging uniformly as ¢ — oc.

An algorithm therefore cannot give consistent estimates unless the true
value x is a stable equilibrium point of (7.5.15).

Theorem 3 says how closely {x | follows a trajectory of (7.5.15). It states that if
the solution of (7.5.15) from X, onwards is compared at instants ¢, to ¢, with
{X | obtained from the same X, , the probability of the difference exceeding ¢ at
any of the instants is not more than KZJ',Vzo(«,',j/i;“)“ forany o > | and any¢ up
to ¢, and ¢, beyond T,,, where ¢,, T, and constant K depend on o and on the
minimum spacing between instants.

Now if we increase ¢, but nothing else, so that K stays the same, then with
{y} decreasing and Z,’: , Vi finite for some a (two of our earlier assumptions
(V). K)o (y,/e*)* gets smaller and smaller. Hence the estimates from X,
onwards stay close to the solution of (7.5.15) more and more certainly as we
increase f,; the later the section of {X| considered, the more certainly the
trajectory starting at the first X, of the section approximates the rest of {X} well.

Example 7.5.3 completes the analysis of e.l.s. and introduces the important
property of positive realness.
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Example 7.5.3 (Ljung, 1977b). In Example 7.5.2 we found that for e.l.s. d(x,)
is zero in the converged state. Let us check whether the actual x is an
equilibrium point by examining d(X,). By definition

d(x,) = E[h(y; —h{x)] = E[h5;)
where
b, = v, —h'%, =h'x + v, —hf%, = x"(h, —h) + hf (x = %) + v;

Now in e.l.s. h, —h, is zero except for the last ¢ elements v;_, —v;_, to

Vo= Di—4» SO

b — v+ X" —h) =0, — v+ ¢ (0 = v )4 F (0 — i)

We therefore get &, — v, if we pass h! (x — %,) through the filter 1/(1 + C(z™")),
ie.
¢, — v, =hl(x — X,)
where h, is h, filtered by 1/(1 + C(z~')). Consequently,
d(X,) = E[h(h](x — %,) +v)] = E[hh]](x — X ) = G(x — X))

where G is E[hh]], itself a function of X,. Here we are treating X, as a
parameter, not a random variable, and E[hy,] is zero since (v} is white. Any
converged value of %, has to make d and hence G(x — X,) zero. One such value
is x, but there may be others.

We can discover how any other X, might make d zero by looking at
(x — %,)"G(x — %,), which is zero whenever d is zero. Defining &, and & through

(x —%)TG(x — X,) = E[(x — X,)"hh] (x — %)] = E[£,]

we see that when d is zero, the cross-correlation at lag zero between &, and &, is
zero. As & is & filtered by 1/(1 + C(z ")), the cross-correlation is easily written
in terms of the power spectral density @:( jw) of &; by Parseval's theorem:

n T
E[E.é.] :1 J P jw)/(1 + C(P-jwr))d(')
2n ) yr "
Like any auto-spectral density, ¢ {jw) is real and non-negative at all w, so the
integrand is negative only when Re{l/(1 + C(e /*"))} is. We can say more
about the X, values which make d zero if we assume Re { 1/(1 + C(e “JeTy) i to be
positive for all T between —mand m,i.e. 1/(1 + C(z~ ")) to be strictly positive
real. When it is, E[&E,] is zero only if ¢.(jw) is zero over this range of «w,
implying that {&} has zero power. That is, e.l.s. can converge at some X, other
than x only if (x — X,)"h; is zero at all instants i w.p.1. Since (x — X )"h;is ; — v,
filtered by 1 + C(z'), we conclude that the residuals |¢} of any converged
model are identical to {v!. The model output thus coincides with that given by
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the true parameter and regressor values. If the model order is minimal (no
pole-zero cancellation) X, actually equals x, as the parameters are transfer-
function coeflicients.

Without the strictly-positive-real assumption, no such conclusions can be
drawn; the converged estimates may difter from the true values. A stable and
unremarkable example which is not strictly positive real is

A +CE" ")) =1/(1 +1.627'4+0.8z "2

which has a negative real part for any = between the 98.4 and 148.6° or —98.4
and —148.6° radii on the unit circle. A positive-real condition turns up in
many recursive algorithms (Ljung, 1977b).

We complete our check whether {xX} converges w.p.1 to x by testing the
local stability of the solution of (7.5.15) about the equilibrium point x, as
required by Theorem 2. From Example 7.5.2,

dx R4 dR G

= =R 'G(x , -
dt o (x = %) dt o’

and so at X =x, R is G/g” and the linearised equations are

d(x — , -~ (R — 2
BN gy, RGO G Gk
dt dt o’ X o¢°

with G, G and ¢G/dx evaluated at x. The second equation is stable if the first is,
so that the term in X — x decays. Stability of the first follows from G~ being
positive-definite and G + G" positive-semi-definite, but only under the strictly
positive-real assumption. Ljung (1977b) gives the details. A

Example 7.5.4 The motivation for the r.m.l. 2 modification of e.l.s. (Section
7.4.3) is clear in the present context. Recursive maximum-likelihood 2 filters h;
by 1/(1 +C(z™")), with the effect asymptotically of replacing h; by h, in G,
making G and G identical. The linearised differential equation for X dbout X is
then

which is stable without the strictly positive-real condition on 1/ /(1 +C(z7 ).

A
FURTHER READING

Several excellent books on recursive identification have appeared recently.
Ljung and Soderstrom (1983) give broad coverage and are strong on the
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analysis of algorithms and the connections between them. Young (1984)
introduces recursive identification via least-squares and pays close practical
attention (o time-varying models (which we discuss in Section 8.1) and
instrumental-variable algorithms. Soderstrom and Stoica (1983) analyse
instrumental-variable algorithms at a fairly advanced level, but point out the
practical implications of their results and present a number of case studies. A
detailed account of stochastic approximation is given in an older book by
Wasan (1969).

We took only a cursory glance, in Section 7.1.2, at the connection between
an a.r.m.a. model of a stochastic process and its autocorrelation function, for
two reasons. First, the inputs and noise in actual dynamic systems are at best
only approximately modelled by low-order a.r.m.a. models. Second,
identification is most conveniently carried out by trying successive models,
each estimated straight from the input and output records, until an adequate
one is found. It is not normally feasible to choose even the noise-model
structure mainly by reference to observed correlation functions. However,
correlation functions might on occasion give some guidance, and an
acquaintance with representation theory for stochastic processes might help,
so two widely respected textbooks are recommended: Astrom (1970) and
Whittle (1963, extended and reprinted 1984).
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PROBLEMS

7.1 An autocorrelated sequence is represented as the result of passing
a white sequence though a filter with transfer function (I+0.5z7 by
(1-0.8z""). Find the a.c.f. of the autocorrelated sequence, normalised by
the m.s. value. Show that the autocorrelated sequence has m.s. value
5.694 times that of the white sequence

7.2 In the recursive, minimum-covariance algorithm of Section 7.3.2,
HP,_,H'+ R must be inverted. If the noise and modelling error
contributions to the observed variables are negligible, R is zero. If also there is
some redundancy in the observation vector, the rows of H, are linearly
dependent, so H,P,_ H. is singular and the inversion is not feasible. Can we
make it feasible by deleting observed variables until the redundancy vanishes?
Does the answer change if only one of the observed variables is free of noise
and modelling error? What is special about P when one of the observed
variables contains no noise or modelling error ? Can the information-updating
form of the algorithm be employed in such a case?
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7.3 Repeat Example 7.3.4 retaining only five figures at the end of each stage
of calculation, to see the effects of ill-conditioning.

7.4 Section 7.3.2 mentioned state estimation, in which x is modelled as
evolying in accordance with a state equation x, = ®,_ ,x,_, + I w,_, where
{w | 1s a zero-mean, white sequence. As we shall see in Section 8.1, it sometimes
makes sense to model a parameter vector x in this way. With that in mind,
show that the only unbiased estimator of x, in the form AX,_, where x,_, is
unbiased, is ®,_ X, _,.

7.5 Two possible choices for the step-size factors iy} In stochastic
approxiriation (in addition to those in Example 7.4.1) are y, =1/t and
7, =10/t"2. Try them out over six steps on the problem considered in
Examples 7.3.4 and 7.4.1.

7.6 This problem traces the steps proving stability of the differential
equation for X — x at the end of Example 7.5.3, and thus showing that the true
value x is a possible convergence point for e.l.s.

(i) Show thatif G + G is positive-semi-definite and G ~ ! positive-definite,

a posilivq-deﬁnite matrix P can be found such that P(—G 'G)+
(=G 'G)'"P <0. [The easiest way to show it is to produce a suitable P

(i) By considering m*(P4 + A" P)m, where m is any eigenvector of 4 and
P 1s positive-definite, and then n'(4 + 4")n, where n is any eigenvector of 4.
show that negative-semi-definiteness of P4 + AP ensures that all eigenvalues
of A are in the left-hand half plane.

(iii) Notice that with —¢2G G as 4, (ii) proves that thed.e. in X — x in
Example 7.5.3 is stable when the assumptions on G ™! and G are met.

Chapter 8

Specialised Topics in Identification

8.1 RECURSIVE IDENTIFICATION OF LINEAR, TIME-VARYING
MODELS

8.1.1 Role of Time-Varying Models

Up to this point we have treated the dynamics, and hence the model structure
and parameters, asconstant. We could argue that we have no alternative, since
a parameter is essentially not a variable: a sufliciently comprehensive consrant-
parameter model should be able to represent the dynamics throughout.
Practical factors force us to take a less dogmatic view, however. We may know
or care too little about the detailed dynamics to propose a comprehensive
model structure. The model may have to be linear and low-order because
modelling eflort is limited or the end use requires a simple model, even at the
price of the parameters having to vary to accommodate non-linear or higher-
order behaviour. In those circumstances the distinction between parameters
and variables is blurred, so we adopt the ad hoc definition that a parameter is
anything we want to regard as such, usually because of its physical
interpretation or its place in a standard model structure.

Example 8.1.1 Wec need a model, for control design, of an industrial boiler in
which water passes through tubes heated from outside by an oil burner. In
time the heat transfer through the tube walls slows as soot [rom incomplete
combustion builds up on the outside and minerals accrete on the inside of the
tubes. With enough instrumentation, time, access and skill a constant-
parameter model could be built, no doubt non-linear, relating the heat-
transfer coeflicient to the history of burner air/fuel ratio, fuel rate. water or
stecam flow rate, and fuel and water composition. In practice, the coeflicient
would at most be treated as a parameter and measured, directly or by
estimation from operating records, periodically or more probably once and
for all. More probably still, its influence would be lumped with the rest of the
189
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boiler dynamics into a simplified overall model relating fuel, steam and
feedwater flow rates to steam temperature and pressure: A

A less obvious justification for a time-varying model is that systematic time-
variation of parameters in a tentative model, induced by unmodelled
behaviour. can be very effective as a guide to how the model should be
extended or modified.

Example8.1.2 Figure 8.1.1 shows time variation of the estimated steady-state
gain of a river catchment. the Mackintosh in Tasmania, with hourly rainfall as
input and river flow as output. The gain was estimated by an extension of the
e.l.s. algorithm as described in Section 8.1.5.
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Fig. 8.1.1 Time-variation of river-catchment model, Example 8.1.2. (a) Steady-state gain, (b)
last hour’s rainfall, and (c) flow.
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As the highest gains coincide with flow peaks and the lowest with relatively
dry spells, the variation is plainly due to changing soil dryness, with
consequent variation in the proportion of rainfall running off rapidly. A
model allowing for storage and saturation would be worth investigating, it
seems. YA

8.1.2 Modification of Recursive Algorithms to Track Time Variation

Our task is to modify the recursive algorithms of Sections 7.3 and 7.4 to track
time-varying parameters. The observation (or regression) equation

(&.1.1)

= h;rxr +

with parameter vector x, constant gave rise to updating equations (7.3.28),
(7.4.7), (7.4.22) and (7.4.26), all of the form

X, =X%,_,+k(r,—h'x, ) (8.1.2)

which can track parameter variation provided the correction gain k, is not too
small. The problem is that the gain decreases as 7 increases. in any algorithm
which for time-invariant dynamics yields ever-increasing accuracy for x,_, . If
the prediction error v, —h'x,_, is due less and less to error in %,., and is
ultimately due mostly to observation noise, a small correction gain is
appropriate. On the other hand, with time-varying dynamics %,_ , may not be
a good estimator of x, even at large ¢, and a larger gain is necessary. To
improve tracking ability, the gain k, has to be increased in some systematic
way. In the Markov, els. and other recursive ls. algorithms, k, is
Ph/o?, so k, may be increased by increasing P,. that is by making the
covariance reflect less confidence in the updated x,. We shall examine three
ways of doing so.

8.1.3 Recursive Weighted-Least-Squares with a Forgetting Factor

In recursive o.1.s.. x, differs little from x, , at large 7 because X, _, minimises
the sum of squared residuals from time 1 to + — I, and the new residual ¢, has a
proportionately small influence on the sum from 1 to t. If we think the
dynamics are time-varying, we can attach more weight to recent than to earlier
residuals, reasoning that x, should not have to give small residuals at past
times when x was very different from x,. Thus we are led to minimise a

weighted sum
1

- 2 =Ty
S, = E witi =v, Wy,

i=1

(8.1.3)
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where W, is a diagonal matrix and the weights w, increase with time. The
scalar-output Markov estimator in Section 7.3.3 attaches weight /o7 to i,
giving (7.3.27) and (7.3.28). If we put »w; for 1/a? we obtain (8.1.2) with

k,=w Ph, (8.1.4)
and
w,.P,_ hh!P
P=pP ,——- it
! S s wh!P,_ h, (8.1.3)
These equations are often written in terms of w, P, and w,_, /w,. denoted by P,
and f3,: '

(=1

1
Pl/:W ( l/'-l T T To
P, B+ h P h,
The commonest choice of 3, is a constant forgetting factor j3 just below 1,
generating an exponentially increasing sequence of weights w, ="' The
value of f is adjusted until credible parameter variation and acceptable
residuals are obtained. A typical value is between 0.95 and 0.99.

P._ hh'P
k, = Plh, (8.1.6)

8.1.4 Covariance Resetting

Alternatively, P, can be prevented from becoming too small as 7 increases by
being reset to a fixed large value whenever its size, measured for instance by
tr P, falls below a certain value. By doing so we express disbelief that X, 1S
really as good as P, says, and dismiss the confidence in x, derived from earlier
observations.

The method has the technical virtue of allowing convergence to be proved
relatively casily for time-invariant parameters (Goodwin and Sin, 1984). On
the other hand. it gives much more influence 1o observations immediately after
a covariance resetling than to those just before, generally for no good reason.

8.1.5 Explicit Modelling of Parameter Variation

We cannot easily pick a forgetting factor or resetting threshold in advance
even if we know roughly what parameter variation to expect. The best
forgetting factor may in any case be a poor compromise when some
parameters vary much more rapidly than others. Greater flexibility and
simpler incorporation of prior knowledge can be achieved by basing the
estimator on an explicit model of the parameter variation. If we are to avoid a
substantial extra identification problem, we must keep the model of the
variation very simple.
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One simple yet flexible model is a random walk for cach parameter:

X =X W, covw, =0, (8.1.7)

Herew, | isindependentofx, |,zero-meanand white,i.e. E[ww/}]iszero lor
st 1t can usually be taken as wide-sense stationary, so Q, -, can be written
as just Q. In the absence of special background knowledge we take Q as
diagonal. implying that the parameters vary independently, and thus we need
only specify the mean-square variation of each parameter. This simple randomn
walk (s.r.w.) model is a special case of the more general parameter-evolution
model

X, =0 _x, ,+T,_,w covw, ,=Q, (8.1.8)

=1

Werecognise (8.1.8) as a state equation (D'Azzo and Houpis, 1981 Gabel and
Roberts, 1980) to accompany the observation equation (8.1.1). Estimation of
x, Is therefore a sort of state estimation problem, with a parameter vector as
the state. We should not find this too paradoxical, given the haziness of the
distinction between time-varying parameters and variables, discussed carlier.
The view of parameter estimation as state estimation is enormously helpful, as
itopens the door to a great armoury of state-estimation technique. as we shall
soon see. There is one difference between parameter and state estimation. The
observation vector h, (matrix H, for vector observations) is taken as known
and deterministic in state estimation, but in parameter estimation it is usually
stochastic, containing noisy previous output samples and/or samples of the
noise-generating variable, as well as input samples which may be viewed as
stochastic. We saw in Section 7.5 that the stochastic and often complicated
naturce of h, makes analysis of recursive parameter estimators difticult.

We normally know too little to specify @ and I' in the full parameter-
variation model (8.1.8), but we can see its effects on recursive least-squares
algorithms with very little more algebraic effort than considering (8.1.7), and
end up with an algorithm recognisable as a standard state estimator. State
equation (8.1.8) adds a new stage to each recursion step. 1 1s used to project
X,-, forward in time to a new prior estimate X,, ., of x,. The second sub-
script indicates that X, is based on observations up to ¢ — 1. For x,,_, to
be linear and unbiased, it must be of the form Ax, | +b, with

EX,, ,=AEX, ,+b=dEX, ,+b=Ex =0, Ex, , (819

since X, ; isunbiased and £w, | iszero. To satisfy (8.1.9). whatever the value
of x,_,. we must have 4 equal to ®,_; and b zcro, so
X, =D %, (8.1.10)

[l 1

The covariance P, of x,, | isfound by noting that neither x, | norx, ,is
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correlated with w,_,. as both depend only on earlier values of w. Hence,
denoting x,_, —X,_, by X, .

P:]r- 1 :E[(*(D,,,lf(,,] 7rr~lw1—l)(_(blflitfl _rl—rlwr I)T]
:(Dr~ 1E[i17 lilrfl](b;rvl +rl IE[wl' thTfl]rlTvl

:(Dlrlplflq)-lr-l+rt*th«]rlrfl (81“)
For the s.r.w. model (8.1.7) with constant-covariance {w}, this reduces to
P,“,,:Pl,l-i-Q (8112)
and X, _, s just X, .

The rest of the recursion step is exactly as for time-invariant parameters,
with %, and P,,_, replacing x,_, and P,_ | in(8.1.2) and in the covariance
equation

P,_ hhpP
P =P LA (8.1.13)

"' 6+ h'P,_h,
or its w.Ls. counterpart.

For vector observations, (8.1.10) and (8.1.11) are unchanged. Together
with (7.3.9), (7.3.5) and (7.3.6) they form the complete algorithm. The
algorithm is identical to the Kalman filter for state estimation. The notation
%,;, and P, , is usual for what we have been calling X, and P,, to emphasise that
the latest observation y, has been processed.

Parameter tracking with an s.r.w. model adds only (8.1.12) to the recursion.
The choice of Q must avoid over-inflation of P and consequent inefficiency of
% on the one hand, and inability to follow rapid variations on the other. Prior
knowledge is not usually enough to fix Q, so we must adjust Q with reference to
some performance measure. A simple and effective technique (Norton, 1975)
is to compare the m.s. innovations and residuals at trial values of Q with those
obtained when Q is zero.

Background knowledge rarely provides ®,_ , and I', | in the more general
model (8.1.8) either. 1t is not easy to estimate them along with x, partly
because too many unknowns are to be estimated and partly because products
of unknown elements of ®, | with the unknown elements of x,_, make the
overall estimation problem non-linear. This problem is pursued further in
Section 8.9. There is, however. one versatile model more elaborate than the
s.r.w. but actually easier to use, the integrated random walk (i.r.w.) model

(Norton, 1976) for a parameter vector x':
s, =8, ,+tw._
oL ! covw, , =Q (8.1.14)
X,:X, I+Str~1j

The parameter increments s are now random walks and Q dictates the
smoothness of the parameter variation rather than the m.s. variation itself.
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Both x’ and s are estimated, so

A% I, 1, 0
2 D, _, = . r,., = 8.1.15
xr [S'j|, ! [0 II’:I l [[I’ ( )

In the observation equation (8.1.1). h, is padded with zeros to multiply s,. We
partition P,j,_, into (p x p) blocks to match x" and s:

pan Pnz):|
Pi_.=| _, . (8.1.16)
tle—1 [P‘“” P -1

and similarly for P,. Defining

'fH) Ptll) h
f=|" s -1 L7 8.1.17
' [ﬂzy] [P:IZ,HI s ( )

%, =®%,_, + (1, —h'dx, /(1 +hID (8.1.18)
P, =P, - ff/(1 +hT) (8.1.19)

we obtain

It is much easier to find, by trial and error, a satisfactory value for Q in the
i.r.w. model (8.1.14) thanin the s.r.w. model (8.1.7), because the effect of a less-
than-ideal choice in the i.r.w. model is merely to make the parameter-estimate
sequence (x| a little too smooth or rough. The overall extent of time variation
in !X !, which is usually our main interest. is not very sensitive to Q in the i.r.w.
model.

8.1.6 Optimal Smoothing

When the parameters are modelled as time-varying and stochastic asin(8.1.8),
the extra uncertainty introduced by I',_,w,., adds [, @, ,I'" | to the
covariance of the parameter estimates, as in (8.1.11). The increase in
uncertainty makes it important that at every sample instant X should utilise
the information in as many observations as possible. Also, as the detailed time
variation in {X| may be of great interest, we should like good parameter
estimates throughout the record, early as well as late. This applies especially
with short records, where error in {x} due to a poor initial guess x,, may
decrease stowly enough to obscure the time variation over much of the record.

The key to improved parameter estimates is the fact that x, influences all
later values of x through the state equation, and hence all later observations
up to the last, 3. Consequently X, should embody information from all jater
observations as well as those up to v,. Thatis, we should compute X, . not just
X,,- Computation of X,y is the function of fixed-interval optimal smoothing in
state estimation (Jazwinski, 1970; Bierman, 1977: Maybeck, 1982). In the
same way that recursive ls. identification is identical to Kalman filtering
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except for the stochastic nature of H,, optimal smoothing algorithms
developed for state estimation can be used unchanged for parameter
estimation.

We cun derive a fixed-interval smoothing algorithm as the optimally
weighted Markov Ls. estimator of x, fromy, toy, . Vector observations do not
add to the complication, so we shall consider them. We start by writing down
all the available information about !x1:

y,— HX, =v, covy, = R, (=1,2,....N

=0 x o W covw, =0, . =1.2....N

PR 3 SOV Y —p " v

X = X0+ Xqpa- COV \u;u*[u\w Xojo £1ven
(8.1.20)

The Markov estimates X,y to Ny and the corresponding estimates w, to
Wy | must minimisc
N

i

o Vv s T Ty 2 B A - M
.S\Z,(),"H,\l,\) R, (.\1*111\:(\)+wll IQ: lxw' i
[
+ Xy — §4>4<))rP1)4:)(x(1|\ — Xoja) (8.1.21)
subject to equality constraints

=0, % AW . =120 N (8.1.22)

We usc the Lagrange multiplier method (Adby and Dempster, 1974), defining

N
L =35y — Zijl(",w O Xy W) (8.1.23)
=1
and setting AL/¢A,_ ., CL/0X, y and (LjéW, | to zero to find the constrained

minimum of S The constraints (8.1.22) are satisfied by /34, _ | being zero.
Also

oL
?;,,,,, = —HIR 'y, —~ HX,y) — 4 + O, =0, =12 . N—1
S (8.1.24)
¢L PN i _—
e PgloXg iy — Xg10) + Ppdy =0 (8.1.25)
CXg N
oL ) A
o= HARG Yy — HyXyy) =4y =0 (8.1.26)
X vy
aL A
=0 \W,_ +I7_4,_, =0, r=1,2,...,N (8.1.27)

—
CW,
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Boundary conditions for these equations are the initial guess, X,,,, and the
last estimate X,y computed by the ordinary non-smoothing Markov
estimator. Once 4y_, is found from (8.1.26) using X, the backwards-in-
time recursion formed by (8.1.24), (8.1.27) and (8.1.22) gives 4,_,, w,_, and
%,_ |y successively, providing @, _ , is invertible. The recursion can be written
more concisely as

=00 A —HI Ry — Ho X i), I=N—-LN=2....0
X N:(DFI(QMHN‘FFIQAFT’{:) (8.1.28)
but it has a fatal flaw: it is unstable.
Proof that Smoothing Algorithm (8.1.28) is Unsiable Substituting 4, from

the first equation into the second and dropping inessential subscripts, onc step
of the backward recursion is

|:§(,;,\-J _ [(Dl 1([ + rerHTR - lH) (le lrQl"'l"(l)lT+ 1:|[ﬁ,+ 11N:|

4, H'R™'H @/, A
® 'TQI"HTR™!
- HTR ! Yoo
— | Meenn +forcing by y, , , (8.1.29)
A’lfl

For stability, all eigenvalues of 'V, i.e. zeros ¢ of ¢/ + V|, must lie inside or on
the unit circle. The identities (Goodwin and Payne, 1977)

A A, - :

4“ Al~ E|A22||A11*szAzzlAleE|A11||A237A21A111A'2}

| 21 22 (8.1.30)
give

ol —W| =0l —®F, |lof —® '(I+ TQITHYR 'H)
— O 'TOIT Y, (61 — @, ) 'HR 'H]
=6l — DT, |lol — D' —g® 'TOI (6] —®F, ) '"H'R 'H)|
NZET S A v
H'R'H ol—®T,,

=lol—®; Yol - DY, , - H'R "H(gl —® ") 'o®, 'TOTT =0
' (8.1.31)

Now the zeros of |61 —®, '| are the eigenvalues of @', which are the
reciprocals of those of ®,. For any stable parameter-evolution model (8.1.8),
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the eigenvalues of @, are unstable, so from (8.1.31) ¥ has some unstable
eigenvalues. A A

The instability of (8.1.28) is not an essential property of the 4’s or X’s, but is due
to the way they are calculated. It can be avoided by computing X,y from%,,
or X, rather than X, 5. The mechanics of establishing a suitable relation are
boring, and will only be sketched briefly. From the second equation of
(8.1.28), (8.1.10) and (8.1.11),

X+ 1t ir+ 1IN = (I)l(illl - i(lN) + (PH- e — (DIP”,(DIT)L (8132)

and from the observation-updating equations giving X, , 1)+ fromxX, ., and
P+ from P, as in (7.3.21) and (7.3.19), substituted into the first
equation of (8.1.28),

11:(D1T+llt+1 +Pt‘+1llr+1(iv+ l|N_i(l+ 1|v+l) +Pt'+11|1(i1+ lll_il+l|N) (8133)

Premultiplying (8.1.33) by @,,, P}, and then putting ¢ for z+ 1 and
substituting the result into (8.1.32) yields a recursion for % X
P:+ lixlI:

- 2 . _ -1 A -
x1+1l1 xl+\|N P1+1|1}':_(D:Pt|rp,.,v l(xlll'l—XIIN_PIII—'IA'I*I)

1+l|1_xr+1[N_

(8.1.34)

An initial condition is found by adding @, P, times (8.1.25) to (8.1.32) with 1
zero:

X110 = Xijn = Pyjoho =0 (8.1.35)
Running forwards in time, the left-hand side of (8.1.34) is therefore zero, i.e.
Xev v =X 10— Pra 1 i t=0,1,....N—1 (8.1.36)

A recursion for 4, in terms of X,,,,, can be obtained by writing the first
equation of (8.1.28) as

— HhT T -1 <
lr_q)l+lj'r+1 _H1+1RI+I(YI+1 —H1+|x1+1|()

+HL ORI H Ry — X4 (8.1.37)

then substituting X,y —%,,,,, from (8.1.36) and using the updating

equation (7.3.19) from P.' |, to PLY ., . A is

lx:(l_ H:T+ 1R:+11H,+ 1P1+ 1+ 1)((D1T+ ,l,+ 1 H1T+ 1R:—+11(Yx+ 1 H:+ 15‘1+ 1|:))
t=N—-1,N-2,...,0 (8.1.38)
The rearranged optimal-smoothing algorithm uses (8.1.38) and (8.1.36) to find

X4 1y In @ backward run, using the results %, |, and P, |, of the ordinary,
non-smoothing forward recursion.
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Alternatively, X,, 5 can be found in terms of X, ,,.,, by substituting
(8.1.36) into (8.1.33), which gives

t=N—-1,N—-2,...,0 (8.1.39)

o _3 T
xr+1|N_x:+l||+1 _P1+l|r+l(D1+llr+1:

The matching recursion for 4, follows by substituting (8.1.39) into the first
equation of (8.1.28) rewritten as (8.1.37) but with X, |, for X, :

}'!=(1_HT+1RI‘+11HI+1P1+1|t+l)(b.rr+lll+ 1 _H1T+ 1Rr_+ll(y|+1 _H1+1§(H 1|:+1)

t=N—1,N—2,...,0 (8.1.40)

Summary A fixed-interval optimal smoothing algorithn for time-
varying parameters or states consists of either (8.1.36) with (8.1.38),
or (8.1.39) with (8.1.40).

The question of stability does not arise in (8.1.36) or (8.1.39) as they are not
recursions, but we must prove that (8.1.38) and (8.1.40) are stable.

Proof thar (8.1.38) and (8.1.40) are siah/y The transition matrix of either
recursion is (/ — H}, \R\H o Py 1y @) . The updating from X, ), to
X420+ 15 altogether

i:+zlr+|:¢r+|§‘1+1|n+|
: T -1
=@, K H P H R
:(D:H”*P:Hw 1}1;I<+1R1‘+II}114 1)’2;+1t1

’Hu ti1+ m))

+ forcing not dependent on X, ), (8.1.41)

As R, and P, ,, are symmetric, the transition matrix in (8.1.38) or
(8.1.40) 1s the transpose of that of (8.1.41). Hence, it has the same eigenvalues,
all stable since the forward updating (8.1.41) is stable (Jazwinski, 1970;
McGarty, 1974). A A

A noteworthy feature of these algorithms is that the covariance P, , |y of
X,+ 1|5 need not be computed unless we want it. Of course we may wish to
assess the improvement due to smoothing, particularly off line when extra
computing is no problem. Despite the simplicity of (8.1.36) and (8.1.39).
P, .y is very complicated to derive algebraically. We can find it much more
easily from the orthogonality conditions on the smoothed estimate. Much as
in Section 4.1.3, they say that the error in X is orthogonal to the contribution
of each observation to X, and hence orthogonal to the contribution of any set
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ol observations. Denoting x — X by % as usual, we conclude that

ERX yv(X iy — X, )']1=0 (8.1.42)
as X,y depends on 'y, to yy and X,,,,, on y, to y,. Similarly,
E[Ryy(Rypy — %,)'] =0 (8.1.4)
From (8.1.36),
Xy = Xev 110 =Xw 10— X = Poi 11y (8.1.44)

and (8.1.39) with ¢ for 7 + 1 gives

X”N—im=§(,“—§(,1N=P‘|,G),Tl, (8.1.45)
SO
i(IIN - il|l = Ptll(Dertjrllh(ihL 1IN i:+ l||) (8146)
Now (8.1.42) and (8.1.43) imply respectively that

E[iw1\N(’N‘;+1kr'i;+1m)1j :E[iwl[NiLm]_ P:+1|N =0 (8-1~47)

ETx, y(X,), — i,w)vr] = E[)‘(”Ni,ﬂl] —Py=0 (8.1.48)
from which
E[(i1+ 1IN iﬂr 1[:)(i1+ 1N ilJrUz)T]
= *Ev[iwr l[l(i! FLIN T il+ 1 ix)l‘]
= ‘E[iw 1115‘1T+ IJNJ + P:+ e = _Pl+l|N + P1+ 1)t (8']-49)
- and, similarly,
E[(idN - il[[)(ilj[v - i:[,)] = _PIIN + P’IY (8]50)

[t follows that, multiplying each side of (8.1.46) by its transpose and taking
expectations,

Prlr - P1|N :PIII(D'I]‘P17+1][I(PI+ 1t Pl+ IIN)P1V+11|1(D1P1|, (8151)

Summary The backwards recursion for the covariance of the smoothed
estimate 1s

PrlN :Ptlr + Prqu);rptlllll([)m 1N P1+ 111)P,7+11|,(D,P,[, (8152)

We have P,y from the forward recursion.
Fixed-interval optimal smoothing formulae for state estimation have been
derived in a wide variety of forms (references in Norton, 1975). The versions in
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(8.1.36), (8.1.38), (8.1.39) and (8.1.40) entail little extra computation if the
covariance is not required. For instance, the transition matrix from 4, , to 4,
is, as we saw earlier, the transpose of that from X,,_, to X ;. Scalar
observations and an s.r.w. or i.r.w. parameter-variation model simplify the
algorithms further (Norton, 1975, 1976). The weighty covariance calculation
can be organised so as to avoid matrix inversion. Economical computing
arrangements for identification are discussed further by Norton (1975).

8.2 IDENTIFIABILITY
8.2.1 Factors Aflecting ldentifiability

Identifiability is a joint property of an identification experiment and a model.
It establishes that the model parameters can be estimated adequatcely from the
experiment. The model and experiment need not be complicated for a test of
their identifiability to be non-trivial.

Example 8.2.1 Compartmental models of the type shown in Fig. 8§21
(Carson eral., 1981 Godfrey, 1983) are often employed in biomedical studies
of how various substances are metabolised. The two-compartment model in
Fig. 8.2.1 represents rate equations

, —kyy =k, ki, U,
X = : X+
¥ [ kg] ‘/"UZ */‘1_’ h 07

for flow into and out of the compartments. The rate constants Ay, Ao ks
and k, are to be found. To make physical sense they must be non-negative.
We assume that only compartment 1 can be perturbed and compartment 2
observed, both directly. The observations and estimation method allow the
transfer function X, (s)/ U, (s) to be found with negligible error. Can the rate
constants be determined uniquely?

Input
Uy Observed
X2

Compartment

Fig. 8.2.1 Two-compartment model.
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Taking Laplace transforms of the rate equations and eliminating X (s), we
find

X,(s)/ U (s) =0a/(s* + Bs +7)

where a =k, , B=hkg + ko, +k, +kyand y=ko ko, + ko k5 + Ky kg,
The experiment finds o, f and y. With k,, given by a, two equations remain
in three unknowns, so we need some additional information. Let us check
whether prior knowledge of one of k., k,,, or k,, allows us to find the others
uniquely. Consider each in turn having a known value p (perhaps zero).

(i) Withk,, = p, we can find unique values k,, = (y — p(ff — o — p))/x and
kiy=(f—oa—p)l+p/a)—7y/u

(i) With ko, =p, we have kq, +k,, =f—a—p and pky, + ko k,,=
y—ap., from which k3, +(x— ko, +1—0p=0and k,, = ff—o— p —ky,.
In general, k, and &, are non-unique because of the quadratic. However, no
negative value for k,, or k|, would make physical sense so. depending on the
actual numbers, we may be able to pick out a unique solution for both. For
example, « =1, f =4 and y =2 give

kor=1.5405/1+4p and ki, =15-p T05/1+4p

To make k,, non-negative the ambiguous sign in k,, must be positive if p > 2.
That would make k,, negative, though, so the model with p>2 is
incompatible with the observations. If 2 — \/5 < p < 2. non-negativity of k,
requires the positive square root for &, , and hence the negative square root for
ko, and we obtain a unique solution. For 0 < p <2 — \/E both solutions for
ko, and &k, are non-negative, so the solution is not unique.

5

(1i)) With k,, = p and a, ff and y as before, we have k2, — 2k, +p -1 =0
and ko, =3 — p —k,,. We must take the larger solution for k,, to make it
non-negative if p <1, but if p > 1 the smaller solution for &, is required to
keep ko, non-negative. In both cases the other rate constant is non-negative as
a result. The sign ambiguity is thereby resolved for any practicable p, but on/y
by chance; a small change in «. f or y would leave it unresolved. and the model
not uniquely identified, for some values of p. A

Example 8.2.1 deals with a linear, low-order. time-invariant model whose
transfer function is estimated accurately. Checking its identifiability
nevertheless takes a little thought. Ideally, we should design an identification
experiment with the help of analysis. running through a number of
combinations of usable model and feasible experiment until we find a model
we can in theory identify uniquely. Unfortunately. this may be difficult, as
identifiability depends on many things: scope and quality of the observations,
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nature and location of the inputs, parameterisation and existing knowledge of
the model, and properties of the estimation algorithm. These factors interact
strongly, but we can single out and analyse some fairly restricted aspects of
identifiability. Passing over the properties of estimators, which we have
already enquired into, let us examine model parameterisation and input
properties.

8.2.2 Deterministic Identifiability

We can start identifiability analysis by asking, as in Example 8.2.1, whether
the experiment and model structure yield unique parameter values in
principle, without regard to numerical accuracy or stochastic uncertainty. The
topic is often called the structural identifiability problem (Beliman and
Astrom, 1970), with “structural” understood to mean “for almost all
parameter values”. The unique identifiability for all p found in part (it} of
Example 8.2.1 is not structural, as it applies only over an infinitesimal
proportion of «,  and y values. Nor is the possible uniqueness in part (ii),
which applies for many parameter values but not almost all. Identification of a
usable model does not always require structural identifiability, we conclude.
The term “structural identifiability” is rather misleading, since identifiability
may depend on prior information or on what combination of input waveforms
is applied (Godfrey, 1983, Chapter 6; Problem 8.1), as well as on the model
structure. We prefer to speak of deterministic identifiabifiry.

The deterministic identifiability problem is quite distinct from the problem,
important for multivariable models (Scection 8.7). of tinding an economical
standard “canonical” model to represent the observed behaviour uniquely.
Our choice of model is conditioned not only by a desire for uniqueness and
simplicity, but also by the intended use of the model. the physical significance
of its parameters and our background knowledge about it. Example 8.2.1 s
case in point, where a second-order transfer function with three parameters
completely describes the relation between (1) and x5 (1), but is less physically
informative than the four-parameter compartmental model, and cannot
easily take into account the non-negativity of the rate constants.

For s.is.o. transfer-function, differential- or difference-equation
input-output models, deterministic identifiability merely requires that there is
no redundancy, i.e. the model order is not too high. and that the input
stimulates all the behaviour to be modelled. Section 8.2.3 considers adequacy
of the input. State-space models pose a much stiffer problem, because of the
great variety of possible parameterisations for any given input-output
behaviour. As Example 8.2.1 has shown, Laplace-transform analysis can, with
care, test deterministic identifiability of low-order state-space models, but it
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can be very cumbersome for model order as low as three (Norton, 1982a). The
reason is that the equations relating the parameters in the preferred model to
the directly identifiable transfer-function or impulse-response coefficients are
of degree up to s, the model order. In continuous time the state model

X(1) = Ax(1) + Bu(t), y(r) = Cx(t) + Du(r) (8.2.1)

(with x(0—) and u(r) given) is Laplace-transformed to

sX(s) — x(0—) = AX(s) + BU(s), Y(s)=CX(s) + DU(s) (8.2.2)

and the output is
Y($)=C(sI—A4) 'x(0—=)+ 1C(sT— 4) 'B+ DU(s) (8.2.3)

The clements of the transfer-function matrix C(s/ — A4) 'B+ D have a
common denominator [s/ — A| of degree n in v and the elements of A. To testif
the elements of 4 can be found uniquely from C(s/ — 4)~'B + D requires a
method of testing whether a set of simultaneous equations of degree up ton
has a unique solution, whatever the numerical values. No such general method
exists. We are reduced to ad hoc searching for a unique algebraic solution, as
in Example 8.2.1. Similar comments apply if we look at the impulse-response
matrix Ce™B.

The difficulty can be eased, but not removed, by bridging the gap between
impulse-response matrix and state-space model with a normal-mode
expansion (Reid, 1983, Chapter 10; Blackman, 1977, Chapter 2). The ideaisto
express 4 and CeBin terms of the eigenvalues 4, to 4, of 4, the rowsr] tor]
of the modal matrix M and the columns q, to q, of M " '. The columns of M
are the eigenvectors of 4, so from the defining equation of cigenvalues and
eigenvectors,

MA=Mdiag(s,, /2y, ... A)=AM (8.2.4)
and element (i.j) of 4 1s
a;; =element (i,j) of MAM ™' =r[Aq; (8.2.5)
For any positive integer A,
MA* = AMA* ' = A(AMA ) = = A*M (8.2.6)

so MeMis e*M, and the impulse-response matrix Ce® B is CMe™M ~ ' B. For
brevity we shall assume that individual clements of Me*'M ~ ' can be extracted
from the impulse-response matrix. Thisis so in Example 8.2.1 and whenever B
and C are known because of our choice of state. The observations then give
one or more response components

hi(n)y=rleMg, (8.2.7)

¥
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By definition we also have

g — 1 for i=j 88
4= 0 for i+ (8.2.8)

The eigenvalues are readily found by fitting exponentials to the observed
hij(1)ys, so Ain (8.2.5) and eMin (8.2.7) are known. All our information about
the model is now in the form of bilinear equations in the unknown rows of M
and columns of M ' Prior knowledge consisting of linear equations in
elements of 4 can be expressed in that form also, by usc of (8.2.5).

If we can solve uniquely for M and M ™! and know A. we can find A4
uniquely through (8.2.5). We first choose the value of any one non-zero
element of each eigenvector at will, since the scaling of each eigenvector is left
free by its defining equation. It is usually best to make one row r or column q
entirely ones, or ones and zeros if zeros are present leaving some free choices
elsewhere. The positions of zeros in M and M ~ ' can be lound easily from the
pattern of zeros in 4 imposed by the model structure (Norton, 1980a). With
one r or q known, some of the bilinear equations become linear, and the
identifiability test has been turned into a test whether a mixed set of lincar and
bilinear equations has a unique solution (Norton, 1980b: Norton er ul., 1980).
This reformulation of the original problem of testing whether equations of
degrec up to n have a unique solution makes a quick solution more likely. It
does not, however, produce a neat general criterion for unique identifiability,
and it increases the number of equations.

Example 8.2.2 The problem of Example 8.2. 1 will be tackled by normal-mode
analysis.
The impulse response from wu, to x,, with B and C known, gives
Iy () =rheNqy = ryyqy 0"+ rags
and we choose [1 1] as r}. The amplitudes of the exponentials inl,  (r)|then
give q,, leaving r; and q, unknown. From (8.2.8),

riq, =1, rigq, =0, ryg, =0 (not needed), riq, =1

so we have three equations in four unknowns, and the model is unidentifiable
without further information.

(1) If we know &, = p, then since k,, 1s —a,, —da,,.

. T
—koy =dy +dy, =(r, +1,)Aq, =—p

This is linear in r; and together with rlq, = 0 gives r, uniquely in general. The
remaining equations give q, uniquely, so M and M ™', and hence A4 and the
rate constants, are found uniquely.
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(ii) If we know k,, = p, then much as in (i), (r, +r,)"Aq, = —p, and we
have altogether two linear and two bilinear equations in r, and q,. In this
small example, it is easy to eliminate all but one unknown, ending up with a
quadratic and two roots in general. In a larger example, unique identifiability
is rapidly established when a succession of linear-equation solutions gives all
the unknowns, as in (i), but not when some equations remain bilinear, as here.

(iii) If we know k,, = p, then rTAq, = p and the analysis is very like (ii).

A

Surprisingly, exhaustive deterministic identifiability analysis for even a
modest class of models, such as third-order linear compartmental models
(Norton, 1982a), exposes quite a variety of experiment-model combinations
which give determinate but non-unique solutions, as in Example 8.2.1(ii) and
(ii1). Sometimes the non-uniqueness has a fairly obvious cause, but sometimes
not. Attempts at general deterministic identifiability analysis have been
offered by many authors (Cobelli er al., 1979; Delforge, 1980, 1981 Walter,
1982) with varying but incomplete success (Norton, 1982b).

8.2.3 Signal Requirements for Identifiability: Persistency of Excitation

Deterministic identifiability assures us that we are not prevented from finding
the parameters by practical restrictions on what variables can act as inputs and
observed outputs. We must next make sure that we are not prevented by
failure of the input to excite all the dynamics. For example, a single-sinusoid
input in Example 8.2.1 would allow us only to find one gain and phase change,
too little to determine the three transfer-function coefficients «, ff and ;. Two
sinusoids would be enough.

Cenditions on signals in an identification experiment to ensure adequate
excitation of the dynamics are called persistency of excitation conditions.
They effectively specify how many independent components must be present
in the input signal, and not surprisingly the number depends on the order of
the model. The conditions can be interpreted in the frequency domain. as we
have just done for Example 8.2.1, or the time domain. They apply to both
deterministic and stochastic signals.

We ask first what conditions must be imposed in o.l.s. The o.1.s. estimate f
satisfies the normal equations

VU= Uy (8.2.9)

We cannot solve for  if U'U is singular, i.e. if the regressors forming the
columns of U are linearly dependent. Commonly, several regressors are
lagged versions of the same signal, the input. The possibility arises that
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although they would not be linearly dependent for an arbitrary waveform,
they are for a particular choice of waveform. The risk is significant since we
prefer a simple waveform, all other things being equal.

Example 8.2.3 We contemplate o.l.s. identification of the u.p.r. {4} in the
model
Ye=hou o4+ l’,y“, k-pte

with {u} periodic with period P. If p > P, the last p — P regressors repeat the
first p — P, making U" U singular. Furthermore, if the d.c. component of {u!
(the mean over a period) is zero, P must exceed p since any P successive
regressors u,_, _;tou, _,_;_p,, would always sum to zero. Even when P> p
there may be trouble, e.g. if successive half-cycles of {u | are symmetrical about
zero, so that the sum of any two regressors half a cycle apart is always zero.

Further possible dependences can easily be found (Problem 8.2) but
enumerating them is tedious, and it is simpler just to say that {«#} must make
UTU non-singular. A

For UTU to be singular, a real, non-zero a must exist such that U Ua is zero.
which implies that
N

oTUTUa = Z(elemem tof Ux)*=0

=1

(8.2.10)

Clearly Ua must be zero, i.e. the columns of U must be linearly dependent. We
can write U as

1
1
u=u+|. (8.2.11H

[,y - a1,

1
where «; is the mean of regressor i and column 7 of U’ consists of zero-mean
samples u,; — 17;. The condition for Uax to be zero is then

(8.2.12)

where  is the vector of regressor means. When cach row of U’ is p successive
samples {rom a single stationary sequence {1 — it . the elements of U'a are the
result of filtering {w—u} with a moving-average transter function
ay s b 2,2 """ A moving average of a zero-mean sequence
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cannot be constant and non-zero, so if u'a is not zero, (8.2.12) cannot be
satisfied if {u —ur} is of period N or less; nor, clearly, will it be satisfied|by any
stochastic {i — i }. With aTa zero. it can be satisfied only if U'a is zero. We
can be sure of avoiding trouble so long as U'" U’ is positive-definite, since then
(U'a)"U’a, and hence U'a, cannot be zero.

We now have the motivation for a definition of a usable signal {u}.

Definition A signal {u} is persistently exciting (p.e.) of order n if the
limits
N N
oo . . , _
= ,\}Lm, N/ U Falli) = Vllllll N (v, —u)(u, ,;—ur)
=1 =1
of its sample mean and a.c.f. exist w.p. 1, and if the matrix
Ruu = [’.llll(i 4./-)]”"

is positive-definite.

i=02,....nj=12.....n

If ju}isergodic, expectations can replace the sample averages, and the signalis
p.e. of order n if the mean and a.c.f. exist and the » x n covariance matrix is
positive-definite.

The frequency-domain conditions for an ergodic {u} to be p.e. of order n
can be found from

a'R,a=a"E[(u, —a)(u, — i) Ja = E[(a'(u, —u))?] (8.2.13)

uu

wherew is [, wu,., - wu,_,.,]"anduisnow[u u iu]". According
to (8.2.13), R,, is singular only if a real, non-zero « exists making a'(u, — u)
zero always. We can regard a'(u, — @) as the output of a filter with transfer
function

H(z ")=a, +a,z" "+ o,z ""! (8.2.14)
driven by {u — u}. Its spectral density is therefore |[H (¢ "")|*® ( jir). where T'is

the sampling interval and ®,(jw) the spectral density of {u — ). Parseval's
theorem then gives

n T
a'R, o= ( [H(e DO, (jw) do (8.2.19)
s Jont

T

The spectral density @, ( jo) i1s non-negative at all frequencies, so the only way
a' R, can be zero is if H(e ™7y is zero at every frequency at which ®,(jo)

e
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isnon-zero. Coefficients a, to «, can make H(e ") zero at no more than n — |
frequencies, as they also have to fix its overall amplitude. Consequently no a
can make ' R, @ zero provided ®,( ji) is non-zero at n or more frequencies. In
other words, a scalar ergodic signal is p.e. of order nif it contains energy at nn or
more distinct frequencies. The proof extends to vector signals (Soderstrom
and Stoica, 1983). The converse is also true if ju} is scalar, since if @, (jw) is
non-zero at n— 1 or fewer frequencies, a can be chosen (o make
|H(e™"T)|*® ( jw) zero throughout. However, it is not generally necessary for
a vector signal to contain energy at n frequencies to be p.e. of order n.

Example 8.2.4 Let us examine a possible input {u! obtained by moving-
average filtering of white noise |w}:

u=w +fiow o+ +«/}1”'4—V
Any linear combination of n successive input samples, say
gl +gou gl

has a z-transform G(=~ ') (1 + F(z~ "W (z~1), with obvious definitions of F
and G. For an exact linear dependence to hold between every n successive
input samples, G(z ~")(1 + £(z ")) must be zero. Clearly this is impossible for
non-zero and causal G(z~ '), so such an input signal is persistently exciting of
any required order. In the frequency domain, the p.s.d. of i} is flat and the
filier 1 + F(=~ ") can only have p spectral nulls. leaving an infinity of non-zero
spectral components in ju ). A

*8.2.4 Persistency of Excitation Conditions and Convergence

Persistency of excitation conditions on regressors often play a part in proving
convergence of Ls.-based estimation algorithms. Detailed convergence proofs
are beyond the scope of this book (Goodwin and Sin, 1984; Ljung and
Soderstrom, 1983), but we can afford a detailed look at one algorithm,
recursive 0.1.s., to get a feel for the role of persistency of excitation. In our

present notation and with P interpreted as cov 0/c?, the algorithm is
< P,_,uulP,_
P;l:])l"ll_*_ulul1 or P1:P1717' ’7171,—1'”’ l
1 +u, P, |,

0,=0,_,+Pu(y, —u'd,_)

(8.2.16)

(8.2.17)

with 0, and P, given. We might first investigate its convergence in the absence
of noise and errors in model structure, i.e. with

r=ull =120 (8.2.18)
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A recursion for the parameter error 0 is found by subtracting each side of
(8.2.17) from 0 after substituting for y, from (8.2.18):

0,=6,_,—Puu'd,_ , =PP\0,_, (8.2.19)
SO

P '0,=P_"\0,_, (8.2.20)

With the equation for P, ! in (8.2.16), (8.2.20) is in a sense a complete
statement of how the error evolves; it has very little intuitive appeal, though. A
slightly better idea of how {f} behaves is obtainable from the scalar 8P, '4,.
From (8.2.19) and (8.2.20)

0"P 7 '0,=06" ,(I—uulP)P'0,_, (8.2.21)
and from (8.2.16)

u'P,_u u'pP
Tp =] ——t =17t JyTp —_ Tl 8.2.22
A ( l+u,TP,;1u,>u’ U 4uf Py, ( )
SO
U . 0" uu'd _
TP 0, =0" P70, , — 111t (8.2.23)

B 1 +uvTPt—lul

From (8.2.16) P!, and hence P,_, is non-negative definite, u! P,_ ,u, is non-
negative and the last term in (8.2.23) is positive unless the prediction error
ufd,_, in y,is zero. That is, TP~ '@ decreases unless the model predicts the
output exactly.

No p.e. conditions have yet been imposed on {u}. If they are, we can show
that the more easily interpreted §7 converges. A standard result is that the
smallest (real) eigenvalue A, (A4) of a real, symmetric matrix A4 satisfies

xTAx > 4,:.(4)xTx (8.2.29)
for any real x (Mirsky, 1955, p. 388). Hence

t t

0P 0, = (7,(1’0 'y Z uku{>(§, >0, Z uu 0,

k=1 k=1
= Amm(Z “kul-)ngg; (8225)
k=1
SO
070, <0 P, 15,/}»“"(2 u,\.u{) (8.2.26)
k=1
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By (8.2.23), 8P, '8, is a non-increasing function of 7, so to ensure that "9,
converges to zero as ¢ tends to infinity we need only assume that
Amin{ Y4~ yu,u} ) tends to infinity. Different though it looks, this is equivalent
to a p.e. condition on {u}, for if R, is positive-definite,

uu
t

1
R,, = lim Zuku1251>0 (8.2.27)

uu
1= oC

k=1

and

1 t

v 1 i
lim me(Z uku,!> = lim r/imi,,:(tz u,\u,f) >limre=>x (8.2.28)
= = x 11—

k=1 k=1
A strengthening of the p.e. condition will enable us to say something about
the convergence rate. If

M

“‘(Z u,Hu',"M> >e>0.  1=0.M.2M.. .. (8.2.29)

k=1

with ¢ independent of u,, that is, batches of M successive u's contribute
positive-definite increments to P ', and il also we take Py ' as ;7 with 3,
positive,

iM

/:'mm(PiT\ll ) = me(’)‘()l + Z uk“l}’) = Yo + I (8230)

k=1

Here we have recognised that y,/ has all its eigenvalues equal to y,, and that
the smallest eigenvalue of the sum of two symmetric matrices is no less than the
sum of their smallest eigenvalues. From (8.2.30), (8.2.24) and (8.2.23) applied
fromi=1tot=iM,

(yo + ’."’)6.{46 <A (Pi;tl)ggugw < 5541’.-},’5.-‘\:

iM = ““min
Sg(')rpglgo :)‘05350 (8.2.31)
SO
00,0, <7,000,/(1 + i) (8.2.32)

We conclude that 878 measured at intervals of M recursion steps converges to
zero at a rate asymptotically inversely proportional to time.
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8 SPECIALISED TOPICS IN IDENTIFICATION
8.3 IDENTIFICATION IN CLOSED LOOP

8.3.1 Effects of Feedback on Identifiability

Many systems have feedback which cannot be interrupted for an identification
experiment. The feedback may be inherent, as in a demand-supply-price loop
in economics, or externally applied but no less essential, as when an existing
controller cannot safely be disconnected from an industrial process.
Sometimes feedback causes no difficulty, for instance when the overall closed-
loop behaviour is to be identified and the set-point can be perturbed, or when
the feedback is known in advance and can be allowed for in estimating the
forward-path dynamics from the closed-loop response. In other cases
feedback may render the system unidentifiable.

Example 8.3.1 We want to identify by o.L.s. the forward-path dynamics of a
system which has a sampled-data controller with reference input {r}. The
control law, computed with neghgible delay, is

= g("l _.l‘l) _./”l -1

We test identifiability in various cases by checking for linear dependence
among the regressors.

(i) Proposed model y, = —ay, |+ by, | +byu,_,+e,. The parameter
vectoris [—a b, b,]| and the regressor matrix Uis [y, , wu,_, u,_,]in
obvious notation. Because of the controller,

Y170 _(ul l+./u171)/g

If the reference input is always zero, as it might be in a regulator, the
columns of U are linearly dependent through the control law. For any o, Uy is
zero if p=afg 1 f]%, so a[g 1| f]" could be added to the parameter
estimates without affecting the model output. The model is consequently not
identifiable.

If the reference input varies, the model is identifiable unless r, ., is a linear
combination ofu, , andu, ,.andhenceofy, ,andu, ,.Weneed notworry
about this eventuality, as the reference input will not depend on the current
output.

(ii) Proposed model y,=—a, v, —a,y, s+bu, _;+e¢,. Now U is
ly,., vy,.>» wu,_ ], which from the control law is

roy = (U /u 5)gr o —(u, +A/.“.f3)/'£fu.~ ]

Even with the reference imput zero, the columns of U are lincarly independent
unless u,_,, u, > and u,_; are linearly dependent. The closed-loop transfer
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function from f{e¢! to |u! gives a relation of the form
—gECET ) = (4o, m Yoy T4 ays HUETY
Hence for u, ., u,_, and u, _; to be linearly dependent, so that, say,
(I+ B,z "+, HUE"H=0
le} must be such that
L+ 3,27 4+ 3,2 HECE Y=0

Providing ¢! is p.e. of order 3, this is not so and the model is identifiable.
(iii) Model as in (i) but control law u, = g(r, — v,) — fyu,- | — f>1, . With
the reference input zero, U is

[—(u + 7w, +fu5)/g u o u ]

so the model is identifiable subject to a p.e. condition on {e¢! much as in (ii).

A
I/(Z“I)—l
1+C(z7Y
1+0(27")
Controller
********** o N
Reference ‘ —E Plant orse
input
JOENE: 61z | 4B o o
- ,
| A | trach |t LA
| |
| |
| |
| |
| B |
L Hiz ) i
| |
|
e :

Fig. 8.3.1 Identification in closed-loop system.

The example illustrates how controller complexity and a non-zero reference
input or p.e. output noise help closed-loop identifiability. A more general
picture can be seen by reference to Fig. 8.3.1. The coefficients in the
denominator 1 + 4 and numerator B of the plant transfer function are to be
estimated. We have as usual

Y=—AY+ - *BU+ (1 + O (8.3.1)
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and the controller is
U=(G/(1+ F))(R—HY) (8.3.2)
so, eliminating U,
M+ AN+ F)+z""BGH)Y =-"*BGR+ (1 + C)(1 + F)V (8.3.3)
There are several possible approaches to identifying the system.

(1) With the reference input zero, identify the coefficients in the rational
transfer function Y/V by a.r.m.a. modelling of { v} (with no exogenous input).
Pole-zero cancellation between (1 + A)(1 + F)+z"¥BGH and 1 + C would
prevent calculation of 4 and B, but is unlikely. A more serious snag is that with
R zero,

(1+ F))U=—-GHY (8.3.4)
so we could replace model (8.3.1) by

Y=(—=A+GHHY+(C *B+(1+ P HU+(1+OW (8.3.5)

with J any polynomial in =~ ', and still get precisely the same transfer function

v I+ +F) .
V (U +4)( +F)+- “BGH (8.3.6)

We infer that 4 and B cannot be identified from Y/}, but C can, and so can the
coefficients in the characteristic equation, and hence the closed-loop poles.
Switching between two or more controllers can make 4 and B identifiable by
this method, as will be seen in Section §.3.2. )

(1)) We apply a perturbation to the reference input, identify the parameters
of (1 + A1+ F)4+:z *BGH.z"*BGand (1 + C)(1 + F)in(8.3.3), then solve
for 4, B and C knowing F, G, H and k. The first part presents no problems
beyond the usual open-loop ones such as choosing a suitable perturbation and
getting the model orders and dead time right. The second part involves solving
two over-determined sets of linear equations, one for 4 and Band the other for
C. The former may be ill-conditioned, especially when the controller is
intended to make the closed-loop dynamics insensitive to some of the plant
parameters.

(111) With the reference input zero, we observe {u} and |1} and identify the
parameters of (8.3.1) directly. The feedback may destroy the linear
independence of the explanatory variables in (8.3.1), as in case (i) in Example
8.3.1, making the method unfeasible. The trouble, as with method (i), is
indistinguishability of (8.3.5) from (8.3.1), but now 1+ 4 and -z"*B are
identified separately, rather than combined in the denominator of Y/V. Thus
the extraterms — GHJand (1 + F)Jin(8.3.5) could go undetected only if they
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did not alter the orders of 1 + 4 and B. Depending on the ordersof 4, B, F. G
and H, it may be that no such undetectable terms exist, as in (i) and (iii) of
Example 8.3.1, and the model is identifiable. .

With this method, the identification technique is also important, for if it
does not enforce causality on the model, the non-causal model

GHY = —(1 + F)U + error (8.3.7

will be obtained, impressively accurate but entirely useless if U/Y is already
known. We cannot, for instance, employ the spectral or correlation methods
of Chapter 3.

(iv) A method with the advantages of (if) and (iii) is to reconstruct {u | from
(r1, 11} and the controller equation (8.3.2). The plant parameters can then be
estimated directly. Since {r} is at our disposal we have some choice n {u}
rather than having it imposed on us by i} as in method (iii).

The accuracy attainable by method (i), treating the over-determined
equations as observations and finding the Markov estimates of 4. B apd C, Iis
in principle the same as that achieved by a prediction-error algorithm in
method (iii) (Soderstrom et al., 1976), but round-ofl error may have different
effects. Method (iv) avoids the potential numerical difficulties of method (ii) by
estimating 4, B and C directly. and {u} does not have to be instrumented
(except in the unlikely event that the controller is not known accurately
enough).

8.3.2 Conditions on Feedback and External Inputs to Ensure I1dentifiability

We now examine a widely applicable identifiability condition for multi-
variable linear feedback systems (Soderstrom et al., 1976). The system has p,
control variables, p, outputs and p, external inputs apart from the output
noise. The external inputs {w{ may be perturbed reference inputs, signals
added to the control variables, or both. The model and plant are of the form

Y(z )= HUE D+ VETD (8.3.8)

where Y. U and V are the z-transforms of the vector output. control and
output-noise-generating variables. and %4 and ¢ are matrices of rational
transfer functions (with some weak assumptions ensuring good behaviour).
The feedback mechanism is

Uz D=2 YW D+ 2= HYE . i=1.2.....s (839

with the controller switched between s different control laws to bring about
identifiability when necessary. Each . and ¥;isa rational-transfer-function
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maltrix. Any correlation between {w! and |v| complicates matters slightly,
without changing essentials. The identification is assumed to be indirect as in
(1) and (ii) of Section 8.3.1, or direct as in (iii) and (iv) and by a prediction-error
algorithm. The input {w! is p.e. of any finite order (e.g. linearly filtered white
noise). The dead time in the plant-controller loop is not zero. Finally, the
model is said to be strongly svstem identifiable (s.s.i.) when the parameter
estimates of every parameterisation of 4 and ¢ capable of the same
input-output and noise-output behaviour as the actual system converges
w.p. 1, as the record length tends to infinity, to the values giving that
behaviour. (The reference to “every parameterisation” should become clearer
in Section 8.7.)

(Soderstrom et al., 1976) With the stated assumptions, the model is
s.s.1. if and only if the matrix

A, o XLy o Lo p, TOWS

P, TOWS

(with p, -+ p,,p, - p, columns) is of rank p, + p, for almost every z.

The condition tests the feedback structure but not the model structure; it tests
identifiability for every model of the given dimensions. We are therefore
strongly reassured when the condition is satisfied, but a model of specified
order may be identifiable even when the condition is not satisfied because not
«ll models with dimensions p, and p, are identifiable.

“The need for more than one controller .# and ¥ is clear, since ¢ has fewer
than p, + p, columns if p, is less than p, and s =1, and cannot have rank
P+ p,. Generally s(p,. + p ) must be at least p, + p,, and this turns out to be
sufficient as well as necessary. ‘

Example 8.3.2 (a) In Example 8.3.1, p,=p,=s=1, so for s(p, +p,)=
P, +p,, P, must be I or more. That is, not every model is identifiable without
an external input. Some models are, as we saw in cases (ii) and (iii). With one
external input, the rank condition is satisfied and all models, even case (i), are
identifiable: the model configuration (8.3.8) is s.s.i.

(b) If in general there are as many external inputs as control variables and
only one control law, p, =p, and s=1,s0 ¢ is

Va4
0 I
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with # square. As [ contributes p, to the rank, the rank condition requires .4~
to be of full rank p, for almost all z. ¢ is immaterial. Full row rank for .4
means that the control variables must contain independent contributions
from w. and full column rank requires the corollary that no linear
combination of external inputs has zero effect on u.

(c) If there are no external inputs, 1s

y}l “(/)\7
I

s0 ¥, to ¢, must contribute a total of p, linearly independent rows (and
columns). That is, the output feedback must provide, in time, p, independent
control signals, and some combination of outputs and feedback transfer
functions, p, in all, must be guaranteed Lo excite u. A

We next examine briefly the prime example of identification in a closed-loop
system: self-tuning control.

8.3.3 Self-Tuning Control

Recursive identification allows a controller to tune itself, i.e. adjust its control-
law coefficients on line by reference to a periodically updated plant model.
Self-tuning, if rapid enough, makes initial manual setting-up of the controller
unnecessary and enables a controller to cope with a strongly time-varying
plant. Figure 8.3.2 shows a self-tuning controller. Identification and control
synthesis are carried out by the same digital processor. and can sometimes be
merged so that the model is only implicit. simplifying computation, as we shall
see later.

Ideally, the control synthesis should optimise plant performance taking the
uncertainty in the model into account as well as the performance criterion.
The control signal resulting from such an overall optimisation has to
compromise between conflicting requirements. It must aim at good plant
behaviour, e.g. a well-regulated output, but with caution as dictated by
estimation uncertainty in the model, and at the same time it must excite the
plant enough for satisfactory identification. The combined optimal identifi-
cation and control problem has been investigated over a long period
(Feldbaum, 1960, 1965), but complete solutions have been found only for the
simplest cases. An inviting if’ somewhat risky simplification is to treat the
model as accurate during control synthesis: the certainiy equivalence
principle. Self-tuning control schemes based on this idea and implemented by
microprocessor have developed rapidly since the early 1970's and are now
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Fig. 8.3.2 Self-tuning controller.

available commercially. Astrom and Wittenmark (1984) give a very readable
introduction to self-tuning control, while Goodwin and Sin (1984) go into
greater detail. Certainty-equivalence self-tuners can use any of a large range of
control-synthesis techniques, among them pole placement specifying the
closed-loop poles, linear-dynamics quadratic-cost Gaussian-disturbance
optimal control, deadbeat control and minimum-variance control minimising
a quadratic function of present control and expected output error at a future
instant. Permuted with any of the simple recursive identification algorithms,
they provide a large range of schemes.

Any adaptive control scheme, even a certainty-equivalence self-tuner
applied to a linear, time-invariant plant. is a non-linear and time-varying
closed-loop system. Nevertheless, stability and convergence analyses able to
deal with many such schemes under reasonable assumptions are now
available. Section 7.5 sketched that of Ljung (1977), and others appear in
Goodwin and Sin (1984) and its references, and the references of Astrom and
Wittenmark (1984). An important point in implementing a certainty-
equivalence self-tuning scheme is that the identification algorithm must not
become over-confident and “freeze”. The danger arises when an algorithm
appropriate to time-invariant dynamics is applied to a plant whose dynamics
drift slowly or change infrequently but abruptly. Action to prevent over-
confidence, for instance by the methods of Section 8.1, must also avoid the
opposite danger, of divergence. An excessive cumulative increase in the
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updating gain. while the control-input signal loses persistency of excitation
because it derives from a well-regulated output, can cause divergence.

We conclude this brief glance at an increasingly important topic with an
example. It illustrates how identification and control can be merged. and
introduces the idea of recursive adaptive prediction.

Example 8.3.3 Let us develop a certainty-equivalence selt-tuning controller
for a system described by

-kt 1+Ciz™ Y
Y1) = = (=71 ( ;

where V(2 ") the transform of a zero-mean, uncorrelated noise sequence {r},

and
Az DY=a,;z "+ +a,z " Bz Y=hz"+ +b,z"
Cz" "=z "+ +e

The dead time k is assumed known, so b, is non-zero. The controller is to
compute a new control value at each sampling instant, on receiving the latest
output sample. At instant 7, the controller computes v, to minimise the mean-
square error

J=E[(V 40 _.":*+A+|)l t]

in v ... . the earliest output influenced by u,. Here v, , | is the desired value
of y,41+,. and the conditioning on ¢ indicates that J is calculated from
knowledge available at instant 7. including y,.

AS Cvyy g /Cu,is by,

~7/A - . N2y, 2 )2
Jjcu, = 2Eh (v ooy — Va0 1] and S2J/Cu; =207 >0

s0 Jis minimised by the u, which makes E[v,,, | f]equal v¥, . . For brevity
E[v,cis, I 1]willbecalled ¥, and argument =~ "dropped from transforms
from now on. The only uncertainty in v, , ; at instant #isduetow, and v, ., Lo
U 4xs 1. Since we know all inputs and outputs up tou, ., and y,.and can find all
s up to r, via the system model. We find ¥, ,,,, by first splitting ofl’ the
contribution to v, ., ., due to t,,, 0 t,, . This entails long division to
obtain

(1 + O+ AV =1+ F+ =G/ + 4)

with F of degree k in = ' and remainder G of degree j = max(n,¢ — k). We

then have
B G i
oK T U — V(L 4+ P
! (1 +4 144 > =+
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where the term beginning = ~* gives that part of y,,, , , known at instant 7, and
(I + F)V the part due to later noise. The latter contributes zero to v, , , , , since
Ul IS zero-mean, so

P -—a<B.U+GV>

-k -ThG - kB
Bil+F+-——- U+ GlY—
1+C< ( +I+A> +G<) l+AU>>

-k

=" (BUl+F)U+GY
e (BU+ AU GY)

We now have a recursion for the (k + 1)-step prediction of y:

.‘.l*l\* 1= hl“l + /7/1“! 1 + ot /);\ 0';11“! h=m+ 1 +gl.]'l + e
TEV e T — ‘l,f', kgt

where v, ,, stands for Ey,,, |71 — 1] and so on, and

B; Ehrl:— 1 44 [7"‘ H“:"’\*mE B(l + F)

An explicit minimum-variance self-tuner estimates 4, B and C, computes

N a8 N N 8 eC1e ve ; '
B, F and‘G, findsy, .\, o7, recursively (which requires 1 + C to have all
its zeros inside the unit circle) and calculates u, to make 7, , | equal e

— (k S p SN N
uy=% e+ +‘1)z+k—‘,+1_h2“r~1*

ST P gD/

An implicit self-tuner simplifies the computing by first using the (k + 1)-step
prediction equation as a regression equation

ye=bu, L o ¢/ VAR S D i

R e S P

to update a vector of estimates

0:[/7I hl\+m ﬁ] g\/ (n‘l (T‘l]f
then putting the updated estimates into the control law to find u, as in the
explicit self-tuner. In other words, the controller consists only of a recursively-
updated adaptive (k + 1)-step predictor.

In regulator problems y* is constant, and the origin for « and 1 can be
chosen to make y* zero. Since the minimum-variance control law sets Vo Lo
Yok Voeno o ok, and so on, all the terms in v in the control law are then
zero. The control law simplifies to

Uy == (b + - + b, emi TE +«éj."_v*j+ 1)/5/1
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and we need not identify ¢ to ¢,. We see that it pays to match the form of the
model to the job in hand. A

8.4. ADDITION OF REGRESSORS: RECURSION IN MODEL
ORDER

8.4.1 Order-Incrementing Equations

We saw the ill-effects of including near-redundant regressors in s, in Chapter
4. Such regressors can be detected by singular-value decomposition as in
Section 4.2.4 or by the model-order tests of Chapter 9. In this section we
consider the reverse process of building up a model by adding regressors. It
might be better to start with an over-large set of regressors and whittle it down,
but sometimes the observation of extra variables is expensive or inconvenient
enough to justify working from the bottom up. The results of this section are
also one way of approaching latticc algorithms (Graupe ez al., 1980; Lee er al..
1982), which are recursive in both time and model order.

We start by adding ¢ new parameters ¢ to p original ones 0. adjoining a ¢-
column regressor matrix ¥, to U, to form the new model

0
y=1[U, I'},]Lp] +e (8.4.1)

Denoting the model order by subscripts on 6 and ¢ as well as U and writing

(U, V,asU,,,, we have the new normal equations

. 0 vlu, ulv e uhu.e
Ul, ”L/, ‘I:_lquj": }p » "lr ':_l:”j J”'-’}: Uv;.[w“y_[ ,r' P ,,:’ (843)
AEROE P B TN S I

The first row partition gives

3 ’ - T 4 2
=0,- [V U, UV, ., (8.4.3)

0

nta
which substituted into the second gives
T ~ - r . 7 ‘ - T _ T ,
VIUAO, —[USU, I UMW S, )+ VIV, =Vly  (8.4.4)
50
qS,m! =)y, = VU LuLuL U )T Gy — U,,O,,)

S Wile, (8.4.5)
We now substitute (}S,, +, 1INt (8.4.3) to obtain
0,.,=0,— U U UV WIE, (8.4.6)

The order-incrementing equation (8.4.6) resembles the time-update equation
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(7.3.21) of recursive l.s. Time updating adds new rows rather than columns to
the regressor matrix.

The matrix [UTU]™! must also be order-incremented, to obtain a
covariance estimate for the parameters. To do so we apply a partitioned-
matrix inversion lemma (Goodwin and Payne, 1977, App. E)

A B|'_ (4—BD'C)™! —(A—BD"'C)"'BD!
C D _(D_CA—IB)—lchvl (D_C.A,IB)_l (8.4.7)
and put Uy U, for 4, UV, for B,V U, for Cand V]V, for D. We find that, if

P q"q

we denote [UJU,]" ' by M,,,

o :[U}UP U,’,Vq]"
pta T .
V‘lUI’ I/JV‘I
:[(M"_ UV ViV VU (M= ULV, YU T U )
~WViuM, W
(8.4.8)

where W is defined in (8.4.5). The matrix inversions in partition (1, 1) can be
avoided by use of the matrix-inversion lemma (7.3.26) to give

(M,—~ UV, VIV )" WIU) ' =M, + M ULV WVTU M, (8.49)
and partition (1, 2) is the transpose of partition (2, 1) since M, , is symmetric.
Alternatively, partition (1, 1) can be found directly in the form on the right of
(8.4.9) from

A B[4
c p|
Wa(D—CA 'B)"

Both (8.4.7) and (8.4.10) are easy to verify.
The resemblance to covariance-updating equation (7.3.25) is quite strong if
we write

M . = M, 0 _ —MWU;['_L"‘I-
P 0 0 M,,U},U',

< (VUM UT— DV,

u

"+ A7'BWCA™' — A4 'BW
—WCA4™! w

(8.4.10)

) '[—-VIiuM, UTUM,] (8411

and we would expect much of the technique for avoiding numerical difficulties
in covariance updating to carry over to order incrementing.

Before interpreting the order-incrementing equations further, let us do a
numerical example.

Example 8.4.1 An extra term is added to the target-position model in the
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radar problem of Example 4.1.1, to account for rate of change of acceleration,
making the model

N(1) = Xq + Uot + apt?/2+ b /6
Here 0is [x, v, ao]".already estimated, and the new parameter ¢ is b, with
g=1. M, isalso to hand. The new regressor vector v, is

106 x10°2 3.6x1072 853 x107* 0.167

0 1.3x10°°

so to four figures
vlv, =3.647 x 107?
Ulv,=[03 0.2611

(UyU,) 'Upv, =[-0.02811

W =269.567

¢, =—4358=h

0,,,=[4663 2351 55447
—(UTU,) U, W =[1.576 —40.30 —4.952]"

and from (8.4.9), partition (1,1) of M, is

0.118]"
0.1495 0.01837]"

0.7477 —1.929 0.02481
—1.929 8.067 —0.4897
0.02481 —0.4897  2.551

The extra term contributes little to ¥, and 5 has the large estimated standard
deviation W2 = 16.42. Moreover, its presence increases the s.d.’s of X, and
d, considerably but only reduces the sum of squares of output errors from
157.9 to 157.8. It is clearly not worth including.

The example shows how little computing is needed to add a single term; W
is a scalar, UV, a vector and M, correspondingly easy to form. A

*8.4.2 Orthogonality in Order-Incrementing

We encountered orthogonality between the error y — ¥ and each regressor
vector in Section 4.1.3, and established its connection with the conditional-
mean estimate in Section 6.3.6. The recursive l.s. algorithms of Chapter 7 can
be derived elegantly by reference to orthogonality. but we opted for an
algebraic derivation. To gain some idea of the power and economy of a more
geometrical approach, we shall derive the order-incrementing equations by an
appeal to orthogonality.
Recall that the o.l.s. estimate of y is

y=U[U"U) '"U'y=P(U)y (8.4.12)
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\fvhere the projection matrix P(U) projects y orthogonally on to the plane

formed by all linear combinations of the columns of U. Hence the error

y — P(U)y is orthogonal to each column of U, as is easily verified:
Uty = P(U)y)=U'y = Uy =0 (8.4.13)

By the same tokeny — P([U,},])y is orthogonal to each column of U,andV,

0, with M denoting the inverse of the normal matrix as before,
U, U, :
pr YT T , vam,,Iu, Viy=o0 (8.4.14)
q q

or in terms of the partitions MYV M2 A0 qand M2 of M

ntar
U,l,,V* U,',( UPM“” + V‘!M'N')UIT,)’- U',l,i(U],M““-}— V‘IM‘ZZ')V;:)/:O
(8.4.15)
l"‘_l,)’ o l';:((/l,/‘f“])‘f‘ V‘!M‘ll))U;,y— 13( UI’MUZJ + L,‘!M(Jl))y;i’y:o
(8.4.16)

Now (éT€.4. 15) must be true for any values of U,.V,andy.including y non-zero
but U}y zero, so that

UpU,M Y 4 1 M2 Ty = (8.4.17)
To satisly (8.4.17) itis sufficient to make U} (U,M""? + b,M =2 zero, giving
MU = M UTE M (8.4.18)

Similarly, (8.4.16) requires that
Vay = V(UM 2 1, M 2)pTy — 0 (8.4.19)

zu?d it 1: enough if 7— ¥ J(U,M" > + 1/, M*?) is zero. which on substitution
of M from (8.4.18) gives

MED = (T TU MUY ) = (8.4.20)
Swapping U, and ¥, all through gives M'V as in (8.4.8). and M2 is (12T,
as by definition M, is symmetric.

The order-incrementing equations for 6 and @ also comes from (8.4. 14),
but written as

U’ - R
[V:][y — U,V =0 (8.4.21)

a

We recognise this immediately as the normal cquations (8.4.2).
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8.4.3 Lattice Algorithms and ldentification

A great deal of interest has been aroused in signal processing by the
development of lattice algorithms (Friedlander, 1982). The algorithms employ
an a.r. time-series model for L.s. signal estimation, and are implemented as a
cascade of identical sections, each corresponding to an increase of one in the
a.r. order. The algorithms are attractive for their computational economy and
good numerical properties, and are potentially useful for identification.
However, their economy depends on the model being an autoregression. For
ana.r., the regressor vector at time  is that at r — | shifted down one place and
with one new entry at the top. The normal matrix is correspondingly updated
mainly by shifting south-ecast. Without going into the details, we can
appreciate that this simplifies a combined time-updating and order-
incrementing algorithm greatly. For identification, we are rarely happy with a
purely a.r. model, and almost always require an a.r.m.a. model with
exogenous inputs plus a noise model, and perhaps also a constant term. The
updating is much less simple, with several new samples entering at each
update. The result is that computational economy is lost (Robins and
Wellstead, 1981), and the lattice method has no overwhelming advantage to
counterbalance its relatively complicated programming and difficulty of
interpretation in identification.

8.5 MODEL REDUCTION

The fewer parameters a model has, the easier it is to understand and apply.
The neatest way to ensure that a model has no more parameters than
necessary is to conduct order tests during identification, as described in
Chapter 9. Nevertheless, we sometimes have to reduce an existing model,
perhaps to check whether order reduction alters the overall behaviour
significantly. There are many approaches (Bosley and Lees, 1972) of which we
shall examine a few of the most popular, applied to transfer-function rather
than state-space models.

8.5.1 Moment Matching: Padé Approximation

One way to fit a reduced transfer function

B",(S) bO + hl‘\‘ t+-t hm - ls’“ !

P d,(s)  Las 4ot a,s
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to a larger continuous-time model is to expand the transfer function of the
larger model as a power series in s:

H(s)=hy+hs+ hys? 4 0 (8.5.2)

then pick the 2m coefficients in (8.5.1) so as to match terms of (8.5.2) up to
hyp_18*™ "' The process of rational-function approximation via a Taylor
series is called Padé approximation (Watson, 1980). The numerator and
denominator degrees can be chosen at will; we have made B, (s) of degree one
less than 1 + A4,,(s) to give a realistic finite bandwidth.

Matching #h, matches the steady-state gain, ie. the final value
lim,_, sH(s)/s of the step response, and we can interpret matching higher
powers of s as paying attention to the response to higher derivatives of the
input. The significance of the matching is best seen in terms of the impulse
response. For a stable system

1 d'H(s TH(
ith,=lims—— (i): lim ¥ ! —1 dH(i) (8.5.3)
ds' s ds'

s—0 S A 1= o

and

1d'H(: ! ;
f~{f(;”}:f(_wmmm (8.5:4)
s ds o

(Gabel and Roberts, 1980). We see that matching /i, matches the ith time
moment of the impulse response /(t). That seems sensible enough.
Example 8.5.1 The model

Yoo (1 40.55)(1 £025)
=0 r 9 +02559(1 +0.1s)(1 +0.055)

U(s) + noise

is to be reduced to first or second order. To do so, we write the transfer
function numerator and denominator in ascending powers of s then expand
H(s) by long division, quicker than repeated differentiation and (8.5.3). We
obtain
H(s)=1—0.75 4+ 0.6375s% — 0.6265s° + - -
An mth-order reduced model then matches the coefficients of s° to s2™ "!in
B, (s) = HS)(1 + A,(5))

(1) First-order model: b, =h,and b, =hya, +h, =0so b,=1,a,=0.7
(ii) Second-order model: b, =hy, b, =hya, + h,, b, =hya, + ha, + h, =
0. by=hya, +ha, +h;=0s0 b,=1, b,=0.522, a, =1.222, a, =0.218.

Figure 8.5.1 gives the step and impulse responses of the original and
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Fig. 8.5.1 (a) Step and (b) impulse responses, Example 8.5.1. ————: original model:
— -~ : second-order reduced model; —- -: first-order reduced model.

reduced models. Except very early on, the second-order model fits the step
response well. The impulse-response fit is less impressive, with quite wrong
behaviour initially. The trouble can be traced to a difference in pole-zero
excess, two for the original model and one for each reduced model,
invalidating the approximation

. . B, ()
h(0 = lim sH(s) ~ lim s —"——
1O = i ) = s o) A

m

8.5.2 Continued-Fraction Approximation

A model-reduction method popularised by Chen and Shieh (1968) is to expand
the original rational transfer function as a continued fraction in the second
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t9
2
o

Cauer form

B(s) 1
_— = = 8.5.5
1 + A(s) 1 ( )
C 1 + —————— —
c, |
=4
A
3+ —
Cy
S

then truncate it after 2/ quotients and reconstruct the reduced-model rational
transfer function B, (s)/(1 + 4,,(s)). The continued fraction can be thought of
as the transfer function of the nested feedback-feedforward model in Fig.
8.5.2(a). Figures 8.5.2(b) and (c) show that truncation of the continued
{raction after two and four quotients respectively gives valid first- and second-
order approximations provided the innermost retained feedforward gain is
much larger than the finite gain of the deleted section. At small enough s thisis
certainly so. ‘ j

Coetlicient ¢, is produced by one stage of long division on the reciprocal of
the original transfer function, leaving a remainder sD(s)/B(s) say:

B(s) 1 1

-+ A(s)

(L+ A()/B(s) ¢, +sD(s)/B(s)

1
= 1 (8.5.6)

S
T sy (Bs)/D(s))

Fig. 8.5.2 Continued-fraction model reduction. (a) System with continucd-fraction iransfer

R o . function of 2n quotients, (b) system which is Ist-order when G(s) is deleted.
One stage of long division on B(s)/D(s) then gives ¢,, and so on. The ) 1s deleted

coeflficients turn out to be the ratios of successive elements in the first column Y FE A I i s
of the Routh array Ui i 1)) ’
and (¢) system which is 2nd-order when G(s) is deleted.
1 a, 25} e ] ¢y = ]/b() Y(s) s+ eyes) +oys
by by b ¢y = byfla, — b, /by) U)oy sl gy ) 4 eps
a,—b,/by a,—b,/b, l ‘
. J— s C
. a,— b/b, cy="(a, —bh,/by)/ = | if :>>(,‘
71_)()>~ AT ot »
ay—by/by (by = bolay—by/by)/(a; —by/by) “Te !

(8.5.7)
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Example 8.5.2 For the transfer function of Example 8.5.1, the Routh array is

I L4 04425 004375 - ) o

1 07 01 0 ¢, =1.429
0.7 03425 0.04375 ¢ =332
0.2107  0.0375

¢y =0.9669

0.2179

)

so the first-order model, retaining only ¢, and c,, is l(c, +s/c;) =
1/(1 +0.7s). Retaining ¢, to ¢, gives the same second-order model as in
Example 8.5.1. A

To change the reduced-model order we simply add or delete continued-
fraction coefficients; the only reworking is to turn the continued fraction back
into a rational polynomial function.

8.5.3 Moment Matching in Discrete Time

Most of the literature on model reduction by moment matching concerns
continuous-time systems, but we are mainly interested in discrete-time
models. Expansion of a z-transform transfer function as a power series in z !
just yields the unit-pulse response ordinates g,,g,,... in

Gz ) =go+8& = '+gz T+ (8.5.8)

so the matching process of Section 8.5.1 would only match the start of the
u.p.r., ignoring the rest. The time-moments of {g} can still be related to the
coefficients of the reduced transfer function

B, (=Y by +bhz bz

a 8.5.9
1+Am(241) 1+alzil+"'+amzim ( )
but less readily than in continuous time. The ith moment is
M, = S‘kigk (8.5.10)
L

k=0
and since

A

:Ek(k—l)---(/{~r'+l)g,\ (8.5.11)
o= 1

k=r

aG

8.5 MODEL REDUCTION 231

we can express M, as a weighted sum of G and its first i derivatives, all
evaluated at z =1:

M():Gi:=l
dG \
M=
! d:z 1::1
2
w46 dG ) (8.5.12)
Pod L, dz L
d3G 3a’ZG N dG
dz? ;:1+ d="21._, d=m Lo

and so on. Hence we can match the original and reduced models through
either the moments or the same number of derivatives of their u.p.r.’s. We
conclude that moment-matching in discrete time is equivalent to matching the
leading terms of the Taylor series expansions of the transfer functions about
z =1, in clear correspondence with expansion about s =0 in continuous time
if we interpret z as e*T.

For the reduced model, B, (z” ")/(1 + 4,(z"")) replaces G(z"') in the
derivatives. For the original model, the derivatives or moments can be
computed directly from its u.p.r. if it is available and short-lived. If not. the
original model is also written in rational form and the derivatives found from

that.

Example 8.5.3 The reduced-order model
Bz H)/(1+ A,z ) =(by+ bz D1 +a,z"h

is to be fitted to G(z~)=0.5z"Y(1 +1.1z7' + 024z~ %). Though G(z™")
is unrealistically small, the example will bring out the main features of
the procedure. The three reduced-model parameters allow us to match G,

dGJd="" and d*G/d="? at z=1. Denoting the reduced transfer function
by G,,
by + b, dG,, b, —ab,
Gml:: 1= 5 . _ -1 =——"5
I'+a, ="'y (I+a)
dZGm 2“1(511[’0*/71)
dz™? z=l‘ (1+al)3

so we solve

. dG
bo+b,=(1+a,)Gl._,,
z=1

by —ab,=(l +"l)l({:j

Ld*G
2a(a,by—b)=(1+a,) -2
< z=1
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Fig. 8.5.3 Unit-impulse responses of original and reduced models. O: original model;
A reduced model; A: reduced model with correct dead time.

The derivatives of G are rather tedious to find for even a second-order rational
transfer function, so we might think of summing k‘g,\., k=0,1,...,i=0,1,2,
to get the moments directly (or computing the derivatives by (8.5.11)). In fact,
Y2 kg, is 339 less than M,, and the sum up to g, still 16 less, even
though g, s and g, arc only 0.0352and 0.0115. Accuracy might be poorer still
with a real u.p.r. model because of scatter and bias.

Figure 8.5.3 gives the u.p.r. of each model. Only the first few points are
much in error. Matching M, has made the errors sum to zero, but only by
driving the reduced-model u.p.r. negative initially. This implies non-
minimum-phase continuous-time behaviour, contrary to the original model.
Amodel B, (z")/(1 +A4,(z="")=(b,z" ' +b,2"2)/(1 +a,z"")gives a much
better fit, also shown in Fig. 8.5.3, with no negative excursion. Similar
anomalous u.p.r. behaviour will appear in models estimated from real records
in Chapter 10, again due to too short a model dead time. A

8.5.4 Other Reduction Methods

Padé approximation has the serious drawback that an unstable reduced
model may be obtained from a stable original model (Problem 8.5). Many
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techniques to avoid this snag have been suggested. They usually determine
1 + 4, first, keeping the stable dominant poles of the original model. The
simplest just throw away the fastest poles, i.e. the leftmost in the s-plane or
nearest to the origin in the z-plane. The numerator coefficients can then be
chosen to match m moments, achieving a poorer fit than Padé approximation
does (if stable) matching 2m moments. These alternatives have their own
drawbacks (Shamash, 1983), notably the risk of retaining a slow pole even
when it is almost cancelled by a zero and so has little effect.

8.6 RECURSIVE IDENTIFICATION IN BOUNDED NOISE

The traditional noise model we have adhered to until now is white noise passed
through a low-order linear filter. The white-noise sequence is characterised by
its variance or covariance and its mean. When considering its p.d.f., we have
usually taken it as Gaussian. Real noise is often far from Gaussian, and tends
to exhibit complications such as isolated abrupt events due to unmonitored
control actions, intermittent disturbances in ambient conditions or inputs
such as feedstock quality, and instrument misreadings or transcription errors.
More gradual changes amounting to time variation of the noise statistics also
often occur, as noted in Section §.1. Chapter 10 contains examples of real
noise behaviour.

The filtered-white-Gaussian noise model can be defended on grounds of
mathematical convenience, allied to a hope that an estimator with good
properties in idealised noise will still perform well in real noise. With enough
knowledge of the plant and its environment, a detailed noise p.d.f. might be
formulated and employed by a Bayes or m.l. estimator, but shortage of prior
information or excessive computing demands normally rule out that option. A
more realistic aim is to match the noise representation to the extent of prior
knowledge, keeping it very simple when necessary but allowing for empirical
refinement of the noise model during identification. We shall now examine an
alternative to probabilistic noise modelling which does not pretend to more
knowledge than is actually available, but allows us to discover more about the
noise as we go.

8.6.1 Bounded-Noise, Parameter-Bounding Model

Given that the noise p.d.f. and correlation structure are initially unknown.
perhaps complicated, and difficult to estimate reliably by way of residuals
from limited records, is there a simple non-probabilistic way to characterise
the noise? The answer is yes: by bounds. We specify only the largest credible
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values that noise could take, so the usual model linear in the parameters
becomes

y =90 +uv, lo] <r, (known), t=1,2,...,N (86.])

Here the origin for y, is chosen to make the bounds on v, symmetrical, for
convenience. The bounds are taken as constant unless we know better.
Observation y, tells us that

vo—r U0 <y +r, (8.6.2)
These two constraints on # may be interpreted as hyperplanes in 0 space,
between which @ must lie. A sequence of observations {y,,y,,..., vy} gives N

pairs of hyperplanes, which together confine v to some region D,. After
processing yy, we know that @ is somewhere in D, but we assign no
probabilities to different positions, and make no attempt to extract a “best”
estimate.

Lack of a unique estimate of 0 is at first worrying, but we can reassure
ourselves by reflecting that engineering design is largely a matter of
tolerancing for adequate performance in the worst case. For this purpose,
parameter bounds are just what we want.

Example 8.6.1 In the radar target problem of Example 4.1.1, we decide to
bound the parameters on the (correct) assumption that the noise is between
+ 10 at every sample. Hence

¥(1) = 10 < x4 + vyt +at?/2 < y(1) + 10, 1=0,02,...,1.0

defines the range of the parameters @ =[x, v, a]' compatible with the
observations. Figure 8.6.1 shows the cross-section of the resulting three-
dimensional polyhedron D, at x, =35, the correct value. The observation at
7 =0 merely constrains x, to be between —7 and 13, i.e. puts bounding
hyperplanes parallel to our cross-section, so they do not show.

The slopes — 2/t of the constraints fall in a fairly narrow range, so [0, §,]
is ill defined in one direction but well defined at right angles to it. The
elongated D, says much the same as the estimated covariance

958 —1763 for 18, o1
~1763 3526 16 63)

found by o.ls. in Example 5.3.3. That is, 6, and 6, are individually about
equally ill defined and the errors in 6, and 6, are very likely to have opposite
signs.

As well as being conceptually straightforward, parameter bounding throws
light on the strengths and weaknesses of the observations, and is potentially
valuable in experiment design. In this example it is clear that an observation
yielding constraints with d0,/df, positive and about 1, and 20/t apart in the 6,
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direction, would have reduced D considerably. An observation at t = — | with
noise 5, for instance, would have given the chain-dotted constraints in Fig.
8.6.1 (but only if the target flew backwards). A

As we seem to be talking geometry, let us recall a few facts about vectors in
Euclidean space. Those dealing with orthogonality are already familiar, at
least.

Summary: Euclidean Inner-Product Space (Hadley, 1961; Luenberger,
1973; Halmos, 1958; Rockafellar, 1970) In a real inner-product space,
the length (or norm) ||@|| of vector @ is defined as (§78)'/? and Euclidean
geometry applies. If 5 is the orthogonal projection of @ onto u(Fig. 8.6.2)
and { is @ —n, then by Pythagoras’ theorem

00 =(n+0)'n+O=n"n+L'¢ (8.6.3)
so n and { are orthogonal if and only if §'¢ is zero. If 5 is yu then
w0 ="y +O)/y =n"n/y =lIgll*/y = Inllu) (8.6.4)
and
il u'o u'd

p=——Uu=-— U0=—Uu,
la = ful* " uTu

T

(8.6.5)

llgll =~ = |0l cos «

1]
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Hence u'0 = z says that the length of the orthogonal projection of ¢
onto uis z/{ju)l. This accounts for all # in a hyperplane onto which zu/|ju||?
is the perpendicular from the origin. A pair of hyperplanes u} 0 = z;, and
ul0 = z,, are parallel and |z;, — z,,|/llu;|| apart, with u, normal to both.
In p dimensions, any p linearly independent pairs define a polyhedron
with 27 vertices given by

T - z
u Iy, OF Zy,

ug=|:|o= : (8.6.6)

P

with U, non-singular.
The points in and on the polyhedron form a convex set; that is, if
z,, <z, fori=1,2,...,p, any such points ") and 6'¥ satisfy

7, <U0V<z,, z,<U8%<z (8.6.7)
soforany 0 <A<,
z, <AV +(1 — e <z, (8.6.8)

and the whole of the line joining 8V and 6'? is in the set. The same goes
for a more complicated polyhedron D formed by more than 2p
hyperplanes, not necessarily in pairs.

Assume that distance (vector length) as defined above is appropriate to
measure the uncertainty in 6. (If not, (0"W@)'/* with a specified weighting
matrix W can be accommodated by transforming 6 to 0* 2 G@ where GTG is
W, so that 6*79* is 07 W0.) From the discussion just before (8.6.6) we see that
the hyperplanes (8.6.2) are 2r /||u, || apart. It follows that if we have any choice

n

Fig. 8.6.2 Orthogonal projection.
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in u,, the best, viewed in isolation, is that which maximises ||ju,|| and so brings
the hyperplanes as close together as possible. The distance 2r,/|lu|| can be
interpreted as a noise: signal ratio; the best choice of signal maximises
signal:noise ratio, unsurprisingly.

We must return from this diversion into experiment design and see how the
parameter-bounding region D can be calculated. The principle is very simple;
instead of having to find 0 to minimise some risk, log likelihood or Ls. cost, we
define D by listing the constraints (8.6.2) up to date. For some applications like
toleranced prediction, discussed later, this is good enough, but for others a
more concise description of D is essential. The number of vertices of D, rises
far more rapidly than ¢, so listing them would not be practicable. 1t would also
be difficult to update a vertex list observation by observation. We are thus led
to look for some easily specified and updated approximation to D.

8.6.2 Recursive Parameter-Bounding Algorithm: Ellipsoidal Bound

An appealing idea is to use an ellipsoid
E:(0-0)"P ' (0-0,)<1 (8.6.9)

in place of D,, with the centre , and symmetric positive-definite matrix P,
adjusted to fit D, as closely as possible. As 6, and P, ' have p and p(p + 1)/2
parameters, respectively, we need only update a fixed and quite small number
of parameters. What is more, the updating turns out to be reasonably
uncomplicated, as demonstrated by Schweppe (1968) for state estimation and
Fogel and Huang (1982) for identification.

The algorithm finds an ellipsoid E, which includes all @ contained in both
E,_, and the region F, between the hyperplanes due to the latest observation.
That is, E, contains all parameter values compatible with the latest
observation and, through E,_ ,, all earlier ones. Since the intersection of £,
and F, is not an ellipsoid, E, also contains some values incompatible with the
observations. It is pessimistic about the uncertainty in 0, and gives an outer
bound on D,. Most of the updating process can be followed easily for the
vector-observation case, with the model
vIR ‘v, <1,

Y= UB+v, 1=1,2,... (8.6.10)

Here we generalise the noise constraint to another ellipsoid, its defining
matrix R, becoming r} in (8.6.1). Figure 8.6.3 shows the updating of
the bounding ellipsoid for 8. Any 6 in or on both E,_, and F, satisties

(o—glfl)TPrill(O'él—l)Sla (y,' UIG)TR;l(yl‘ U,())Sl (8611)
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Fig. 8.6.3 Updating of ellipsoidal outer bound for 6.
so for any non-negative p,,
(0 - 01— 1)TP,:11(9 - é(— 1) + pr(.vl - UIO)TR: l(yl - Ure) <l+ P (86 12)

Thehleft-hand side is quadraticin gand can be rearranged into the form (8.6.9),
to give us £,. Writing U@ as U@, , + U(0—0,_,) and collecting terms, we
find

(0 - ()‘171)1‘});:11(0 - 0’\1* i) +P,(y, - U,é[, 1 )Tszl(yr - Utél—l)

=200, = UB_)TRTIU(0 6, ) <1+,
(8.6.13)
where
Pl =P +pUR U, (8.6.14)
Already echoes of the Kalman filter and recursive Ls. are heard. In (8.6.13),

both termsin @ — @,_, can be incorporated in the new quadratic by completing
the square:

(0 - él -1 P,P;, t U:TR: lvt)TP:::(o - é:— [ ptp;— 1 UITR: lv’)
+ v R — plvIRTVUP,_ UTR Yy,
= (0 - ét)TP;il (0 - él) + ptvlT(R; '— er; ! UIP;~ 1 UITRI‘ l)vz <1+ Py

(8.6.15)
where

v1=y!¥Ulél'l‘ 61:0‘1—1+P;P;71U,TR,71V, (8.6.16)

The quadraticin v, in (8.6.15) is scalar, and independent of §. We can tidy it up

by substituting P; _, from (8.6.14) then applying the matrix-inversion lemma
(7.3.26) backwards, giving
R,» ' - .U[R; l UIP;- 1 UzTR; !

=R —pRUP, I+ pU'RUP,_ ) UTR

=(R +nlIP . I/THy"! (RATN
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By transferring the tidied-up term in v, to the right-hand side of (8.6.15) then
dividing through by the right-hand side, we find that the updated ellipsoid is
(8.6.9) with

Po=(1+p,— ppl(R,+p,UP,_,UN"W)P,_,  (86.18)

We have yet to choose p, to make E, as tight a bound as possible. With D,
unknown, tightening E, has to be interpreted as making £, small. The volume

12

of £, is proportional to |P,|'/?, as follows. As P, is positive-definite, all its
eigenvalues 1, to 4, are positive and its eigenvectors m, to m, are orthonormal
if suitably scaled, i.e. m{m; is zero for i/ and 1 for i =j. If

A &diag(d, 4,....,4,), M=[m m,.  .m)] (8.6.19)
then by definition of eigenvalues and eigenvectors
PM=MA (8.6.20)

and MT is M ~'. The description of E, is simpler in terms of &, defined as

M™(6—8,). Since

12 =ETE =0 —0)"MM™(0—6,)=10—6,> (8.6.21)

this change of co-ordinates just shifts the origin to 0, and rotates the axes,
without altering distances measured from the new origin. Now

0—0)"P Y O—0)=E"M P, 'ME=ETATIE<]  (8.6.22)

so E,1s centred at the & origin, with its axes aligned with the £ axes and of half-
length 2}/2, i=1,2,...,p. Thinking of E, as a unit hypersphere "¢ <1
squashed or stretched successively in each ¢, direction by a factor 1}/, we see
its volume is proportional to

p
V= Hx — [N = MMV = MR M =

i=1

(8.6.23)
We must express | P,| as a function of p,. First we tackle |P;_|. The matrix-
inversion lemma turns (8.6.14) into
P;—l :Prfl _/)IPrflUrT(Rr + pIUIPI“lU!T)AllllPl'*I (8624)
For scalar observations, we can write this as
P;, == p[P[ﬁ]ulufT/(r'z + ptu'rrptf Iul))Pr—l (8.6.25)
then find [P;_,| via the lemma (Goodwin and Payne, 1977, Appendix E)

T+ hell =11 & cThl (8.6.26)
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with pP _,u, forband —u,/(r? + pu P, ,u,) for c. Denoting u/ P,_,u, by g,

1Pl = (1= p,&/(r7 + p g IP, ] (8.6.27)
Taking determinants of P,_, and P,in (8.6.18), we'then have | P | in terms of p,.
The p, which minimises ¥V, follows by routine algebra, setting oV /dp, or
0l P |/0p, to zero. It is the positive root of

(p—=Dglpf +(2p — D} — g, +v)gp, +ri(p(r{ —v{) —g) =0 (8.6.28)

If both roots are negative or complex, we infer that £,_, and F, do not
intersect, in other words y, and u, are jointly incompatible with E, | and the
model at the assumed r,. This explicit warning allows us to revise the model or
r,, or set p, to zero and ignore y, as an outlier.

Recursive Ellipsoidal-Outer-Bounding Algorithm for Parameter-Bounding
Identification (Fogel and Huang, 1982) With model (8.6.1), the
algorithm updates the ellipsoid

E@—6)TP '0-6)<1
as the outer bound for the feasible-parameter region.
With 0, P, specified (e.g. 0, =0, P, = al, > 1),

(i) Calculate g, =u/P,_;u, and v,=y, —u'f, ,.
(i) Find p, as positive root of (8.6.28); il no positive real root, set p,
to zero or stop and review model.
(ii)) Calculate P,_, from (8.6.25).
(iv) Set 8, =80, , + p,P,_ uyv/r} (scalar-y version of (8.6.16)).
(v) Set P,=(l+p,—pyi/(ri+p,g))P,_, (scalar-y version of
(8.6.18)).

Belforte and Bona (1985) have recently pointed out that the bound E, can be
tightened, at observations for which only one of the two hyperplanes forming
F, intersects E,_ |, by replacing the one which does not intersect E,_, by a
parallel hyperplane tangent to E,_, before computing p,.

Example 8.6.2 We apply the recursive algorithm to the problem of Example
8.6.1 with 8, zero and P, = 10°]. The first three steps give, rounded to three
figures,
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P, -
! & v, P 7:,;71 Pr 0:
300 0 0 ™ 3.007]
1 10° 30500 1.50 0 1.50 x 10° 0 0
B 0 0 1.50 x 10® 0 |
424 —2.09 x 10> —209 327
216.09%x10* 560 0472 1.42 —2.09 x 10° 3.88 x 10* —2.09 x 10° 275
L —209 —2.09 x10° 211 x10°_1L 27.5 ]
r 540 —3.28x10° 933 %103 ) 4.707
31503x10° —174 0445 1.39 —3.28 x 103 5.09 x 104 —2.16 x 10° } 286
9.33x10%> —2.16x10° 1.03 x 10° L -254_|

As in recursive Ls., updating P takes the bulk of the computing. The extra
work to find p is insignificant.

An interesting thing happens if we take 10*7 as P,,. The first step is little
affected and in the second we get a reasonable-looking p,, 0.333, but
according to (8.6.18) P, is —1.29P). Negative principal-diagonal elements
appear in P,, and the algorithm breaks down (E, is not an ellipsoid). The
explanation is that ¥, does notintersect £, which is too small because E, was
too small. We must make £, large enough to be sure it contains all ¢
compatible with the observations. A

An alternative to bounding the parameters by an ellipsoid is to compute a
“box™ of bounds on the individual parameters (Milanese and Belforte, 1982).
The computation comprises a number of linear programming problems, one
per bound.

Our look at parameter bounding ends with an example of an application
for which the feasible-parameter region need not be explicitly calculated.

*8.6.3 Toleranced Prediction

The output y, due to a specified u,in a bounded-noise model, with @ known to
be within a region D, is predicted by stating bounds between which it will fall.
For a purpose like alarm scanning or checking whether the output will be
within specification, such a prediction is attractive, since it states definitely
whether, according to the model, an alarm condition could arise or whether
the output specification will certainly be met. Similar comments apply
whenever the object of the prediction is to facilitate a yes/no decision.
With
min(u/0) — r, <y, < max(ul0) + r,
0D OeD

(8.6.29)
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v, is predicted by finding the extrema of a linear function of @, subject to linear
inequality constraints if D is a polyhedron. This is the standard linear
programming problem (Hadley, 1961; Luenberger, 1973) for which efficient
methods able to handle hundreds of constraints exist.

Example 8.6.3 We want to predict the target position at T = 2 from the results
of Example 8.6.1. To stay on Fig. 8.6.1 we assume x, = 5. In practice we would
keep x, free, of course. At 1 =2

min(5 + 20, + 20,) — r, < y, <max(5 + 26, + 20;) +r,

6eD (2]
so we need only find the extrema of 26, + 26, in the feasible region. They are
where lines of slope — 1 touch the ends of D, at(6,, 8,) =(261.25, — 18.75)and
(207.75, 122.5), the southernmost and northernmost vertices in Fig. 8.6.1. The
corresponding range for y,, with r =10, is from 480 to 675.5. A

8.7 IDENTIFICATION OF MULTIVARIABLE SYSTEMS

Our limited aim in this section is to introduce two new aspects of identification
opened up by m.i.m.o. systems: choice of parameterisation and choice of cost
function. One of the most striking things about the literature on identification
is its concentration on s.1.5.0. systems (or occasionally m.i.s.o. or s.i.m.o.,
which raise few new issues). Only a small proportion deals with m.i.m.o.
identification, in spite of its importance, and this book is no exception. The
reason is not mere faintheartedness. As well as generally having more
parameters than s.i.s.0. systems, m.i.m.o. systems raise substantial new
problems. One, considered later, is how to base a cost function or risk on a
vector of output variables. Other difficulties arise when we start to choose a
model structure. First, our fundamental need in any identification exercise is
to understand what goes on in the system well enough to judge the validity of
the results and their practical implications. A m.i.m.o. system need not have
many inputs and outputs for its overall behaviour to be too complex to grasp
all at once. We are then forced to investigate one s.i.s.0. (or conceivably
m.i.s.0.) relation at a time. Scientific method itself owes much of its analytical
nature to this fact. By breaking a m.i.m.o. problem down in this way, we
also sidestep another new difficulty, which is to choose an acceptable
parameterisation.

8.7.1 Parameterisation of Multi-Input-Multi-Output Models

It is a non-trivial matter to decide how to parameterise a m.i.m.o. model even
when its general type has been selected. The difficulty is best appreciated
through examples.
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Example 8.7.1 A multivariable system with input u and output y could be
described by the z-transform model

Y(: HY=GE"HUCE Y)Y + noise

where G 1s a matrix of rational transfer functions. There is more than one way
to write this model.

(1) If we start with a difference-equation model and take =-transforms,
getting an a.r.m.a.x. model

A" HY(ET Y =B (2 YUY + noise

with 4, and B, matrices of polynomials in =~ ' and 4, non-singular except at
isolated values of =~ ', we obtain the left matrix-fraction description (m.f.d.)
(Kailath, 1980; Goodwin and Payne, 1977)

Y- Y)=4, (= HB,(z" "YUz ") + noise

For example, we might have a two-input, two-output model with

PR =032 | —08:""
) ST 108820 104

116270 1 —1.82 '—1.62 ¢
Sy
Bil: )-[I—FZ:'"' | — 1.4z 1" —2:-2 ]

The corresponding rational-transfer-function matrix is

Gz""y=4,"C""B,(z "

. .
= - - N | 0.6 |
[l +08-"" 1 1.6z '= ()ASZJV( 0020

with many fewer parameters than we might have expected from the degrees of
elementsin 4, and B, . Nothing similar can happen in s.i.s.0. models where. in
the absence of pole-zero cancellation (which incidentally does not occur here).
all coethicients in 4, and B, appear in G.

(i1) An equally valid model is the right m.f.d.

Y(= ') =By )AL = HUGE ) + noise

. 1 —-0.6-"" ! . - ! 0
Ax(="T) = 0 L B s

the model has exactly the same transfer-function matrix G as in (i), but 4, and
B, have fewer parameters than 4, and B,. and. depending on how far the
degrees of the elements arc known in advance, arguably fewer than G. Single-
input-single-output systems have no such choice between two m.f.d.’s.




244 8 SPECIALISED TOPICS 1M IDENTIFICATION

(1) The rnight m.{.d. with

) Fi—09: 1

Busoy— -
s 074 05!

also gives the same & is in (1) and {(11). The differonces from 4, and £- are due o
the existence of a polynomual muatrix A4{- ') non-singalar for all but isolated
values of = ', such that

A =AM

, B, B,M !
are sull polynomial matrices. Such an M is called a rich: divisor ot 4, and B,
It does not alter G because )

BoA =BT IMA = B,

3

We define the degree of the wif.d. as the degree of [ 4], since the common
denemmator polynomial of the elements of & is |4l avising (youw: 4 7' In
model (1i1),

ERENENIEY sodeglid ] = degld | - degpadl

and going from 4, and £, (0 4, and B, reduces the ro 4., fHreree unless EAS
of degree zero, e, a constant. That is why M is called o divisor. In the present
case

—

o P03
1&”(:7 l) = i

6.0

so [M]is 2, of degree zero, and the degree of the mtd. s not reduced trom (i
(o (i), A polynomial mnirix with constant determinant is called wiimodular

{iv) A left i fd. o degree one less than in (i) and the same & can be
obtained using the leii divisor

R 0
Mz =) f
== oot [
which is not unimodutar sinee [M]is = The details are lefi 1o Problem 8.7

A

The example shows that redundancy in an m.f.d. muliivariable model.
introducing unnecessary parameters ind consequent itl-conditioning, may be
non-trivial to detect even if the degree of the matrix-fraction description is as

T BRI R R T

gyt ey
SRy gidiorent
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structure enough to make it uniquely identifiable if we are interested in the
parameters themselves, or minimal (in number of parameters) if we are only
interested in the model output but do not want to risk ill-conditioned
estimation. The choice of structure is further complicated by doubt over the
minimal number of parameters to fit the actual system adequately, and by the
desire for a structure which suits the application, e.g. control design. Selection
of a parameterisation is discussed by Glover and Willems (1974), Denham
(1974) and Gevers and Wertz (1984). Analogous comments apply Lo the other
main family of multivariable models, state-space descriptions.

These examples and references also indicate that a large body of
multivariable theory underlies m.i.m.o. identification. [ts unfamiliarity is
another reason why we cannot pursue m.i.m.o. systems further.

8.7.2 Cost Functions for Multivariable Models

Many s.i.s.0. identification algorithms minimise a scalar L.s. cost function of
the errors between observed and model outputs. The vector-output
generalisation of the sum of squares of output errors is the matrix

N

SN_E(yLyr)(yz_S]x)r (87})

(=1

so we are presented with an extra choice, how to derive from S, a scalar }'y to
minimise. We might decide to weigh all elements of y, —y, equally uand use

L

Weighted L.s. with a weighting matrix W can also be implemented through

N N
V= E(y, — )Wy, —y) = Z Wy, — vy, —y)"
t=1 =1
—tr WS, (8.7.3)

Finally, the cost function
Vi =ISw/N| (8.7.4)

turns out to have considerable appeal. If we assume that the error sequence
ly — y!1s composed of independent, Gaussian, zero-mean random variables
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with constant but unknown covariance, the parameter estimates which
minimise |Sy/N| are the m.l. estimates. They are therefore asymptotically
efficient. Furthermore, Sy/N is the m.1. estimate of cov(y — ¥) (Ljung, 1976).

8.8 IDENTIFICATION OF NON-LINEAR SYSTEMS

Techniques for analysing linear dynamical systems are effective and relatively
easy to use. We can swap readily from one to another as convenience dictates,
from Laplace transforms to state equations say, or from difference equations
to z-transform transfer functions. We rapidly acquire an intuitive understand-
ing of linear systems and are happy to think in terms of poles and zeros, power
spectra and correlation functions, step and impulse responses. The contrast
with analysis of non-linear dynamics (Vidyasagar, 1978) is sharp. Methods for
non-linear systems tend to apply only to restricted classes. to give only partial
or approximate information and to be cumbersome. The reason is that non-
linear behaviour is vastly diverse and complex. Linearity and time-invariance
impose tight constraints on possible behaviour. If we say a linear system is
stable, we don’t have to add ifs and buts about initial conditions or size of
disturbance. We need not worry about limit cycles, bifurcation and chaos
(Mees and Sparrow, 1981). Superposition makes it routine, almost trivial, to
relate linear-system response to excitation and initial conditions. An impulse
response or transfer function says all there is to say about the input--output
behaviour of a linear, time-invariant system. Jump resonance, subharmonic
oscillation and generation of harmonics do not occur.

We might expect that non-linear systems are also generally much harder to
identify than linear systems, and this is so. A coherent body of economical,
well tried and widely applicable identification technique for non-linear
systems does not exist. The rest of this section reviews briefly some of the
difficulties in identification posed by non-linearity, and some situations where
progress can be made.

8.8.1 Volterra-Series Model

The first difficulty, once non-linearity has been detected, is to find a versatile
but economical form ol model. We know that for linear s.i.s.0. systems
versatility conflicts with economy. For example, an impulse response
(estimated as a discrete-time u.p.r.) will cope with any such system without the
need to determine the model order and dead time explicitly, but requires many
more coefficients than an equivalent rational transfer function. The conflict is
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worse for non-linear systems. The non-linear generalisation of the
input-output convolution

y(t)—j h(tu(r — 1) dt (8.8.1)
0
is the Volterra series (Schetzen, 1980)

y(r):J hl(r)u(t—r)(/r+J j ho(ty, Tt ult — tult — ) de doy + - -
4] (4] 0

+ jm~ J BT Taye a1, Hu(r- t)dr+ - -0 (8.8.2)
Q 0
i=1

Much effort has gone into ways to identify the Volterrakernels'hy, h,, etc.,
mostly based on generalising the correlation methods of Chapter 3 (Bllllggs,
1980). For example, for a Gaussian white-noise input (but not any white noise)

Elu(t —t)v()]=h (1)
Elu(t — tult — t,)0(0)] = d(t, — THEr() + 20y (. 1) (8.8.3)

and with ergodic signals time averages can be computed to approximate the
left-hand sides.

A representation as general as (8.8.2) would only be contemplated il the
system were too poorly understood to suggest a more specific model.
However, in those circumstances only an extreme optimist would expect much
from a model like (8.8.2). Unconstrained estimation of the nth Volterra kernel
is impracticable for n>2 and uninviting for n =2, simply because of the
number of points (or component functions) required to specify a function of n
independent variables. 1f a typical impulse response takes about 15-30 points
to describe it in the absence of good prior information on its shape, /1, might
take several hundred and /h, many thousands. Large quantities of
observations and computing are required to estimate the points adequately.
Even then, the prospects of extracting any meaning from the results arc not
good. It is far from trivial to pick out the important features from a linear-
system u.p.r. estimate in the presence of noise. Interpretation of a detailed and
noise-affected h,(t,.t,) is much harder, and the crucial step of inferring the
form of a parametric model from the unparameterised results is daunting.
Simple non-linearities such as hard saturation give rise to non-simple kernel
behaviour, to add to this difficulty. Marmarelis and Marmarelis (1978) present
case studies which illustrate these points well. A number of ways of alleviating
the difficulties of Volterra-series identification have been investigated.
including use of a deterministic pscudo-noise input (Barker and Davy. 1978)
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or a mixture of sinusoids together with a rational-transfer-function version of
the series (Lawrence, 1981), but nothing can nullify the essential wastefulness
of the representation.

Faced with these difficulties, we shall pass on to more restricted models.

8.8.2 Block-Oriented Models

Many systems display significant non-linearity only in one or two memoryless
relations, and can be represented as cascades of linear dynamical and non-
linear instantaneous sub-systems. Figure 8.8.1 shows one block-oriented
model of this sort. With a suitable input, the contents of each block in this
model can be identified from cross-correlation functions by exploiting the
property of separability (Billings and Fakhouri, 1978 and 1982). If two
processes x, (1) and x,(7) have a joint p.d.f. p(x,(r;), x2(7,)) such that

J | X )px () x5 () d (1))

= J X ()p(x ()| »Vz(lz))p(xz([z))d-\'l(fl)

—x

=P ODE[ (1) XL (1)] = g (v (0))ga (1, — 1) (8.8.4)

then x (7,) 1s said to be separable with respect to x,(7,). Among others, jointly
Gaussian processes are separable. We can find expressions for g, and g, in the
case where x, and x, are the same process x. Putting 1, equal to 7, (8.8.4) gives

£1(x(13))g5(0) = p(x(15))x(1,) (8.8.9)

and so the a.cf. of x at lag 1, — 1, is

roft,—1t,)= xX(75) J X(EOp(x(r), x(1,)) dx(t,) dx(1,)

= X(’3)§1(~\‘(,1))g3(/1*11)(/-\'(11)
= NP g, (15— 1,)/85(0)) dx(1,)
J o

=(g.(1, —1,)r(0))/g,(0) (8.8.6)

Separability allows us to replace the instantaneous non-linearity by an
equivalent gain, in equations analogous to the Wiener- Hopf equation
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7 (7)
u(r) holv) x{f) f ul hplr) —— y(f)

of
L

Linear Non-linear Linear

Fig. 8.8.1 Block-oriented cascade model.

(Section 3.1). Assuming x(r) in Fig. 8.8.1 to be separable with respect to itself,
the cross-correlation across the non-linearity is

r“.,(rg—mj ) (SO X)) d () dx ()

= J ‘ S(x())g (x(15))g5(1, — 1) dx(1,) (8.8.7)

-7

With g, (x(1,)) from (8.8.5) and g,(r, —1,) from (8.8.6),

* X)X, 3 0 LS — 1
rodty — 1) = J /(\(fz))g( \U—)')\(I-) LEL )'A'\’!‘,:""'**l’)' dx(t,)

gZ(O) ’._\’.\'(0)

el 20D ) )] = er - 1) (8.8.8)

where ¢ depends on /() and the p.d.f. of x(7) but not on the time-structure of
x{1).

According to (8.8.8) the non-linearity has the same effecton r, as a gain ¢,
This enables us eventually to write r,, in terms of &, and A, the linear-block
impulse responses in Fig. 8.8.1, as follows. Providing linear operators do not
destroy separability, so that u(1) is separable with respect to x(¢), the Fourier
transform of (8.8.8) implies that

R, (jo) = R, (jo) H,(jo) = R  (jo)/H,(jo) = R, (jo) (88.9)

Back in the time domain, (8.8.9) says we can replace r,, by ¢r,., so

Fo (1) = j J holT (T — 1) dT,
o

—cJ /1,,(1,)J‘ h(t)r (T —1, —1,)dt,ydr (8.8.10)
) 0

where the last step follows from the Wiener-Hopf equation. If we employ an
input which is white as well as separable, r,(t — 1, —1,) Is zero except at
1,=1—1,, where it is g, . and

r (1) = coy J hoft )t —1,)dt, (8.8.11)
0

)




250 8 SPECIALISED TOPICS IN IDENTIFICATION

The integral is the convolution of 4, and A,, that is, the overall impulse
response of the linear sections cascaded. The non-linearity shows up only as
gain ¢. The overall linear dynamics can therefore be identified, to within a scale
factor, by cross-correlation just as in Chapter 3, but with a more restricted
choice of input, separable as well as white.

Billings and Fakhouri (1978) show that with suitable assumptions cross-
correlating u>(¢t) with y(t) gives

r,,(1) = const xj hy(t)hi(t—t,)dt, (8.8.12)
0

and that the z-transform transfer functions of the linear sections can then be
estimated straightforwardly from the transfer-function products correspond-
ing to the convolutionsin (8.8.11) and (8.8.12). An important byproduct of this
approach is a model-structure test. If the first linear block is absent, i.e. /1, (1) is
(1), (8.8.11)and (8.8.12) give the same result to within a scale tactor, and if the
second linear block is absent, the result of (8.8.12) is a constant times the
square of that of (8.8.11).

8.8.3 Regression Models for Non-Linear Systems

As observed in Chapter 4. a regression model for o.1.s. or its variants may be
non-linear in the variables, although it must be linear in the parameters. Non-
linearity may, however, cause a new difficulty in noise modelling (Billings,

Noise
4

+J‘+
Yr

Uy z

Fig. 8.8.2 Non-linear model with additive noise. Example 8.8.1.

1984). Noise which is physically additive at the output will appear non-
additively in the regression equation whenever earlier values of the noise-free
output enter non-additively into the regressors.

Example 8.8.1 The system modelled by Fig. 8.8.2 is described by

vo=bu, _,—au (v, ;—rv,_)+r,

TRV SO — |
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and has a regressor vector [u,_, u,_(y,_, —v,_,)]" atinstant . The noise is
partly additive, partly multiplicative in the regression equation although
physically additive.

The regressor containing the unmeasured v,_, might be replaced by a
recursive estimate

U (v =G ) =1 (buy oy —au (v =)

where d, b and y,_, — 6, , come from the previous step. An interesting
alternative would be to treat b + av, ., as a time-varying first parameter, with
the regressor vector [u,_, u,_,v,.,|". The temptation to extemporise is

considerable. A

8.9 SIMULTANEOUS ESTIMATION OF PARAMETERS AND
STATE

The standard state-estimation problem (Kalman, 1960; Jazwinski. 1970:
Maybeck, 1979) is to estimate x, recursively from known inputs {uj up tou,
and observations {y} up to y, with given initial conditions (x, and its
covariance) and the model

y,=Hx, +v, covy, = R,

(8.9.1)

xrz(bt—lxv~l+Bt*lu1'l+rr-lw1~l~ COVW, |:Ql'|

Matrices H,,®, ., B, ,.I',_,.Q, ,and R, are taken as completely known. In
the aerospace applications where state estimation was so successful in the
1960s, the state model often described Newtonian dynamics and most
parameters were indeed well known. Even in those circumstances. filter
performance can sometimes be improved by refining uncertain parameter
values. An example is when approximations have been made to simplify the
model, so that some parameters hide non-linearity or high-order dynamics,
and vary as a result. For other applications such as process control, state
estimation may well not be feasible without on-line estimation of uncertain
parameters.

State estimation in general, and combined parameter and state estimation
in particular, are heavily technological subjects (Bierman, 1977, Maybeck,
1982). We can afford, however, a brief look at the main ways of tackling the
combined estimation problem. Estimation of Q, ., and R, on-line will not be
considered, as specialised techniques tend to be employed (Mehra, 1974;
Maybeck, 1982).
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8.9.1 State Augmentation and Extended Kalman Filtering

The unknown parameters § can be regarded, as in Section 8.1.3, as state
variables distinguished only by our preference to regard them as such and by
their simple dynamics. They can be adjoined to the other state variables to give
a state equation

‘ s X, _ (D!"l ka/ + Bl*l + 1—171 O ’ 897
B 01 - 0 7 ro1 0 u 0 [w:—l (-—)

where w, | is w, | augmented by non-zero elements for any elements of
modelled as time-varying. The augmented-state observation equation is

y,=[H, O]x, +v, (8.9.3)
Simultaneous estimation of x, and 6, can now go ahead, once a suitable
covariance has been specified for the elements of w, _ | which represent the
changes in 0. Trial and error may be necessary in finding this covariance, but a
more serious difficulty is that any unknown parameter in ®, |, I', , or H,
gives rise to a non-linear term in the augmented state x; or augmented state
and noise w, ;. As the standard recursive state-estimation algorithm, the
Kalman filter, has covariance-updating equations which rely on linearity of
the state and observation equations and additivity of the noise, we must
remedy the situation by local linearisation.

Example 8.9.1 The position of the accelerating target of Example 4.1.1 i3
observed every (0.1s by two instruments. At sample instant ¢ one instrument
gives v, , subject to zero-mean error, uncorrelated with earlier errors. The
other gives v, ,, noise-free but affected by unknown gain and constant bias.
The acceleration of the target varies unpredictably from one sample instant to
the next, but the changes are assumed to have zero mean and known variance,
The target position x and velocity ¥ are to be estimated after each observation
mnstant.

We define the state as [v ¥ ¥]" and derive discrete-time state equations
by trapezoidal integration of ¥ then ¥, yielding

I 0.1 0.005 1005 0.0025
x= 10 1 01 [x_,+ [0 1 005 |w_,
00 |1 00 1

where elements | and 2 of w, , account for the errors in integrating velocity
and acceleration. The gain and bias of the second instrument are treated as
extra state variables x, and v, so

N7 Nagos N5y T Vau-1

Ya =N + Uygs =NV + N

o’
|
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The augmented state equations are still linear, but the second observation
equation must be linearised to

‘S."l.r = N4 ‘S'\Al PR R ‘5'\'4.1 + X5, Uy

where dx, , and dx,, are deviations from nominal values v, and x, . and
oy, ,is thedeviation of y,  from x, ¥, ,. Suitable values for v, cand ., arethe
estimates based on observations up to sample 7 — 1. Noise ¢, , is optional, and
accounts for the linearisation error dx, , dx, , (not uncorrelated with the state
as the filter assumes, in fact).

The presence of x, and x. increases the computing substantially and
introduces some doubt over the effects of the linearisation error. A

If the state and observation equations before linearisation are

Xp=1Mxpou W)
, (8.9.4)
Yo = 8(X,, v)
where f and g are differentiable with respect to x; , and x; respectively, the
flinearised equations are

OX = F,_, ox,_ +fx; u owo ) —f(x) w0, 0) (8.9.5)
dy, = G, ox; + g(x;.v) — g(x;, 0)
where elements (i,j) of F, | and G, are
o . Fg,-
[F-1dij= o }'L‘*’ , G/ =+ (8.9.0)
CN G-ty CNylx;
and the deviations are
(SX,’V 1 é\; \ *i: |- (5x;i4x;—i;, ‘SY/%y;‘yz (8.9.7)
with the nominal values given by
y, = g(x;.0), X, =f(x, ,u,_,.0) (8.9.8)

Notice that the noise terms are allocated to the lincarised state and
observation equations rather than to the non-linear time-update (8.9.8).
The obvious choice for X/, is the up-to-date estimate X; |, .. The time-
updated nominal state X/ is then used in place of X;;, _,, and y, in place of the
one-step-uhead prediction HxX;,.,. in calculating the innovation and
updating the state estimate when observation v, is received. The remainder of
the Kalman filter, with F,_, for ®, , and G, for H,,is(8.1.11)and, with P, _,
for P,_ 1» (7.3.12). This >tdte estimator based on equations linearised about

X,_1y—1- 15 called the ex xtended Kalman filter.
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8.9.2 Alternated Parameter and State Estimation

The need for local linearisation can be avoided by separating parameter
updating from state updating. Figure 8.9.1 shows a scheme suggested by
Goodwin and Sin (1984). A similar arrangement has been used in adaptive
filtering for equalisation of data-communication channels (Nicholson and
Norton, 1979). A Kalman-filter step, with the current estimate 8,_, as .
computes X,,., and passes the prediction error (innovation)
Y. — ¥/{X,,-,0,_,) to a prediction-error recursive identification algorithm of
the type discussed in Section 7.4.6. A step of the identification algorithm then
produces 0, for the next state-estimation step.

One-sample Innovation v,

delay
Y,
K. Filter State
Sumpler/ + i::s;irtchon One-sample e efieate
v | agorithm | 8, |9¢1¥ 8,),_| observation Xr)r-1
update
Yriz-1 Observation

equation

Fig. 8.9.1 Alternated parameter and state estimation.

The arrangement incidentally requires less computing than extended
Kalman filtering with an augmented state. The computing demands of the
parameter estimation algorithm are comparable with those of the state
estimator for any given number of unknowns. whereas the demand of the state
estimator rises more than linearly with the number of state variables.

8.9.3 Maximum-Likelihood Estimator

Both techniques discussed so far involve substituting nominal parameter
values for best values when estimating the state. (We say “best” rather than
“actual” values because the model is not an exact representation of the
underlying dynamical process.) Whatever their asymptotic properties, the
schemes are approximate in finite samples and rather heuristic. A more formal
procedure (Maybeck, 1982) would be to minimise at each recursion step the
log-likelihood function of the parameters. The likelihood function embraces
the entire history of the state estimates and covariances, since they are all
affected by any change in @ applying throughout the recursion.

PR |
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At sample time 7, the likelihood of 8 is. by Bayes’ rule applied repeatedly.

pY 1O =pX, Y. Y1 Y1 D

=pX, YooY Oy Y [0)

r—1
;p(x,typ...,yl,f»ﬂp(y.,~|.v1,-1......v1,0> (8.9.9)

i=0
Further progress depends on assuming a form for the p.d.f.’s. If they are
assumed Gaussian, each is fully specified by its mean and covariance. The
mean of p(x,|¥,.....y,.0)is simply the conditional-mean estimate X,;, of X,
given 0 and the observations up to y,. Both X, and the covariance P,‘[
would be given by a Kalman filter with parameter 6. The mean of

PO, _dYi—iigs---. ¥y, 0) 1s the conditional-mean estimate H, X, ;,;_ of
y,_,, and its covariance, with contributions from the mutually uncorrelated
-1 e .
.. . : T
error in X,_;,_;_,and noise v,_;. 1 H P _y_i-H i +R . which would

also be given by a Kalman filter. Hence the log likelihood is
L(0~ X,) = 7%11]((27[)”1)1'1!) - %(X, - il“)'l‘})’f]'l(x’ - il'l)

-1

- ;Z:ln((Zn)"\H,, P HL AR
i=0
Sy H, X OUH P H R 7!
XY, = Hi X i ) (8.9.10)
Setting CL(0. x,)/CX, to zero we obtain
=P =X ) =0 (8.9.11)

which merely says that %, is the m.1. estimate of x,. under the (jJ‘dllSSi'd'ﬂ
assumption, provided the m.1. estimate of 8 is used in computing X, ;. ll‘ls
clearly impracticable to run a Kalman filter over the whole observation set for
cach conceivable value of @ and find what value maximises L(0, X,). so the
maximisation must be performed algebraically. setting ¢L(8. X,)/C0 to zero.
The resulting equations are complicated, mainly because each Py, oy
depends on 0. They do not allow an explicit solution for @, but have to be
solved iteratively. Maybeck (1982) gives a full account of how they can be
solved.

The drawback of this procedure is its very high computing demand, which
necessitates a succession of approximations detailed by Maybeck (1982).
These include approximating the Hessian matrix CPLJCO7 by a matrix usin‘g
the gradients but not second derivatives of L. using the matrix
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(0%, i~ 1/00)(0X,_y,_; _,/00)" in place of its expected value, updating 0 less
frequently than X and, more drastically, neglecting the dependence of P on ¢
and updating 0*L/060° infrequently.

8.9.4 Bayes Estimator

Recall from Chapter 6 that Bayes estimators are derived fron: the posterior
p.d.f. of the unknowns. If we denote the observation historyy,.y,_,,....y, by
Y, the posterior p.d.f. we are interested in is p(x,, 0] Y,). The most attractive
Bgyes estimator is the conditional mean (Section 6.3.1), which is optimal fora
wide range of loss functions. If we supply 6 and assume that p(x,10,7)) is
Gausgian, the Kalman filter computes the conditional mean as X,;- The
question is, can we exploit this when 6 is not given, but is also unknown?
The joint posterior p.d.f. of x, and 0 is

(X, 01Y)=p(x,[0.Y)p0|Y,) (8.9.12)

and by Bayes’ rule,

:p(yl[0~ thl)p(olyl‘ 1)
p(yIIYI‘ l)

Asp(y|0,Y,_ ) has mean Hx,, ., and covariance HP, _ H'+ R, calculable,
given 0, by a Kalman filter, (8.9.13) looks like a usable recursion for p@1y),
assuming that p(y, 0. Y,_ ) is Gaussian and fully specified by its mean and
covariance. With both p.d.f.’s on the right-hand side of (8.9.12) accounted for,
we seem to be home and dry. However, each Kalman filter gives the
conditional mean and covariance for only one specific value of 0. In both
(8.9.13) and (8.9.12) we need them for the entire range of possible values of 0.
The idea is therefore only computationally feasible if @ is is restricted to a
sufficiently small number of discrete values for one Kalman filter to be
assigned to each possible value. It might be possible to reduce the number of
values of @ as the recursion goes on, as p(0 | Y, ) is likely to become more sharply
peaked as ¢ increases. One virtue of the Bayes approach, the ability to cope
with a changing shape of p(8]Y), would be lost by doing so.

polY,)

aply,]0.Y, Dp@]Y, ) (8.9.13)
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PROBLEMS

8.1 Consider the two-compartment system of Example 8.2.1 with only
compartment | observed. the observation gain being ¢, . Verify that the modcl

B Y O Ky, U,
X = 2 2 X + : =y
: L ki, —kKgs— k> * i Tah

(s + k,o: + kU ) t{\;‘lUﬁ‘\‘))

gives

Y(s) = — — —tm —_— - — O
ST kg Fhy Fhgs +h s+ (b kgy + Ko ks +Kkoaksy)

Show that, if U,(s) and U,(s) are exactly known. the deterministic
identifiability of the model from Y(s) depends on the choice of input
waveforms as follows:

(i) If inputs u, and u, have sleps or impulses applied separately and the
impulse responses from u, (o v and i/, to y are found. the model is completely
identifiable, including ¢, .

(ii) 1f simultaneous steps or impulses are applied as u; and u,. the rate
constants in the modcl cannot be identified.

(iiiy 1t a step is applied as u, and an impulse as u, (treated as a 6 function),
then the model is completely identifiable only if ¢, is known in advance.
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(iv) If an impulse is applied as 1, and a step as u, ., the model is completely
identifiable even if ¢, is not initially known.

8.2 A proposed input signal for o.l.s. identification of a u.p.r. model as in
Example 8.2.3 has period P samples. Is it persistently exciting of order Pif (i) it
has non-zero mean, and successive half-cycles arc symmetrical about the
mean; (i1) successive half-cycles are not symmetrical about the mean but each
cycle is symmetrical about its half-way point in time?

8.3 Consider updating of the covariance of the recursive w.l.s. estimate
discussed in Section 8.1.3. The batch w.ls. estimate has covariance
E(U"WU) "UTWRW'U(U"WU) 'l according to (5.3.14), where U is the
regressor matrix, R the covariance of the regression-equation error and W the
weighting matrix, which in Section 8.1.3 is diagonal. First verify that (8.1.5)
updates (UTWU) ™! by writing U'W, U, in terms of U' W, U,_, and an
increment at time 7 and using the matrix-inversion lemma, much as in Section
7.3.3. Then produce an updating scheme for the covariance of the w.ls.
estimate in the case of zero-mean regression-equation error of constant
variance o7,

8.4 With g and f'known in advance, is model (i) of Example 8.3.1 identifiable
from observations of the reference input and the output by fitting a closed-
loop transfer function to the response to a deterministic reference input and
then solving for a, b, and b, from the coeflicients in the transfer function? Is
the model still identifiable if either g or f1s unknown? [This is not so easy to
answer as it seems at first sight.]

Alternatively, could the model be identified by exciting the system with a
suitable reference input sequence and rewriting the model as a regression
equation relating v, to earlier output samples and to reference-input samples
(eliminating u})? Would o.l.s. do?

8.5 Show that a Padé approximation b/(1 + as) to the transfer function
H(s)y = (1 + fs)/((1 +5)(1 + as))isunstableif f> 1 + o. Can this happen even
if H(s)1s both stable and minimum-phase (i.¢. if all the zeros and poles of H(s)
are in the left-hand half plane)? For such an H(s), can the alternative Pade
approximation (b, + b,s)/(1 4+ as) be unstable?

8.6 Construct the cross-section at 0, =5 of the polyhedron formed by
bounding @ as in Example 8.6.1, with the same observations asin that example
but measuring time from midway between the third and fourth samples.
Notice whether the feasible-parameter region ends up larger or smaller than in
Example 8.6.1.

8.7 Find A4(-"") and B(z"') of the reduced-degree left-matrix-fraction
description of the system of Example 8.7.1 using the left divisor given in part
(iv) of the example. Verify that the degree is reduced and explain the reduction
in terms of removing a common factor from the numerator and denominator
of G as given by 4, 'B, in part (i).
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8.8 Consider alternated state and parameter estimation as described in
Section 8.9.2, with recursive L.s. as the identification algorithm, and recall that
this algorithm is identical in form, although not in interpretation, to a Kalman
filter. The identification algorithm is applied to (8.9.1) with € appearing
linearly in ®,_ , and H,, and not appearingin B, ., or I',; assume 6 is known to
be constant. Write out the updating equations for § and its covariance, and for
X and its covariance.

Compare the combined set of equations with the extended Kalman filter for
the same problem, as described in Section 8.9.1. Would the extended Kalman
filter with the covariance replaced by a block-diagonal matrix

P, 0
o r)
give the same set of equations?
8.9* Investigate the conditions for the model (8.3.8) of a linear feedback
system to be strongly system identifiable if the system has feedback of the form
(8.3.9), two control variables, two outputs and one external input apart from
output noise, and the controller is switched between two different control faws.
Specifically, find which elements of the transfer-function matrix ¥, in(8.3.9)
must differ from the corresponding elements of ¥, if the matrices ., and X/,
are both of the form
ki
i

and the system is (0 be s.s.1.




Chapter 9

Experimental Design and Choice of Model Structure

9.1 INTRODUCTION

As already emphasised, identification is not a matter of applying standard
techniques in a specified way and getting guarantced results. Rather we look at
the intended use of the model, the observations obtainable, the possibilities for
experimentation and the time and effort available, then, if not dissuaded from
going any further, put together a model by an untidy combination of
experiment, computation, analysis and revision. Every stage is uncertain, and
common experience is that each identification exercise raises some new
problem. This is a reflection not primarily of immaturity in identification
techniques, but rather of the immense variety of dynamical behaviour,
experimental constraints and purposes for modelling. For thesc rcasons,
designing a software package for identification is extremely difficult, and the
most successful packages presuppose a great deal of intervention by the user
(Box and Jenkins, 1976: Young, 1984).

There is little point in trying to prescribe a comprehensive list of steps in
identifying a model and techniques for each step. Instead. the next two
chapters consider a number of aspects of experiment design, model structure
selection and model validation, with no pretence that all eventualities are
covered.

9.2 EXPERIMENT DESIGN
9.2.1 Adequacy of Input and Output

We encountered persistency of excitation conditions in Section 8.2.3, with

regard to possible redundancy among the lagged input samples forming the

regressors in least-squares estimation of a unit-pulse response. The input

sequence {u} was persistently exciting (p.e.) of order p if no selection from
263
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every p successive samples was exactly linearly dependent. The frequency-
domain counterpart is that the input contains power at p or more frequencies.
An input which is p.e. of order p allows us to estimate p u.p.r. ordinates by
least squares.

Much recent effort has gone into deriving persistency of excitation
conditions to ensure convergence of recursive algorithms for both
identification and adaptive control (Yuan and Wonham, 1977; Moore, 1983;
Goodwin er al., 1985; Solo, 1983; Goodwin and Sin, 1984). The main
significance of such conditions in open-loop identification is to warn against
over-simple choices of input, such as a deterministic signal with a short period.
It is not normally difficult to ensure adequate excitation by employing, for
instance, a linearly filtered white sequence as input (Example 8.2.4), so long as
we can choose the input. The situation is different in adaptive control, where
the input depends on the output, but we shall not pursue that problem further
than it was taken in Section 8.3. Persistency of excitation also plays a partin
proving consistency of identification algorithms, as we saw for recursive o.1.s.
in Section 8.2.4. An early invocation of p.e. conditions (Astrém and Bohlin,
1966) was to prove that the “maximum-likelihood” algorithm of Section 7.2.3
1s consistent if the system is stable and completely state controllable from the
input {u} or noise {¢} (D’Azzo and Houpis, 1981) allowing response
components due to every pole of the system to be excited, and if also {u} isp.e.
of order 2n and the model is

YW=—a Vg — = a,,y,,,"+b,u,,,‘,,l +ee +b u

n“t—k—n

R e e N (9.2.1)

with ‘et zero-mean, uncorrelated and Gaussian.

Given that an input is p.e. of the required order, the question remains
whether it has enough power in the pass band of the system to yield acceptable
model-coefficient estimates from a record of realistic length. The modest p.e.
requirements, non-zero power at some minimum number of frequencies
(Section 8.2.3), may ensure asymptotic convergence but do not guarantee
satisfactory finite-sample performance. Theoretically the input bandwidth
can be much smaller than that of the system and still allow a model to be
identified, since the model structure relates behaviour beyond the input
bandwidth to behaviour within it. Practically, the bandwidths must be
comparable. The spectral distribution of the noise power may also have to be
taken into account.

Example 9.2.1 The influence of input bandwidth can be seen in an example
(Robins, 1984) of the identification of aircraft dynamics. Lateral acceleration/
and yaw rate r are measured as the aircraft rudder deflection { is perturbed.
The aircraft velocity along its roll axis is &, constant during the test, and along
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its pitch axis is v. The problem is to identify the aerodynamic derivatives y ., y.,
n,, n, and n, in the model (for negligible roll motion)

l2v+ru=yur+yl

F=np+nr+nd
from noisy measurements. Figure 9.2.1a shows the estimates of y, obtained
from a simulated test with a 0.5 Hz bandwidth rudder-perturbation signal.

The estimates converge, but rather slowly. The reason becomes clear on
inspecting the transfer functions from { to / and r:

LG _ = =y joo-+ (= s
—wr— (v, +h)jw+nu+yn,

Z(jw)
R(jw) RJw + Vi, — y.n.
Z(jw) T —wi— (Yot n)jo +nu+yn,

with y.n, much smaller than ys. in practice. At low frequencies the
numerators are dominated by — y nuand — y i1, respectively, and y.does not
appear in the denominator, so the measurements contain little information
about y.. However, at sufficiently high frequencies, L(jw)/Z(jw)=y._. A
higher-bandwidth input signal should therefore give better estimates of v,.
Figure 9.2.1b confirms that it does; a 5 Hz bandwidth rudder-deflection signal

results in much faster convergence of the y, estimate. : A

il

Time (s)

Fig. 9.2.1 Recursive estimates of y., Example 9.2.1.
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The need for a high enough sampling rate for input and output, long
enough records to determine the slower components of the response and allow
the initial-condition response to subside, and a long enough period if the input
is periodic, have been discussed in Chapters 2 and 3. Checking these points
requires rough prior knowledge of the dynamics, but in engineering
applications this is very often at hand, and is in any case highly desirable for
assessing the credibility of the final model before it is put into use. Some prior
experimentation may be required, to get information such as the spread of
time constants, approximate gains, the nature and frequency of disturbances
and the incidence of drift.

When serious data-logging starts, instrument and data-logger unreliability
may be troublesome. For systems with slow dynamics, breaks in records are
very likely, often as simultaneous short breaks in several records. When two
simultaneously interrupted records are shifted relative to one another as
required by their relative timing within the model, each break results in two
equal intervals or one longer interval during which one or other record is
unavailable. The time shifts in computing correlation functions have a similar
effect. Reliability is a worse problem in multi-input or multi-output models, of
course, and this is one reason for the concentration on methods for s.i.s.o.
identification.

*9.2.2 Optimisation of Input

If a specially designed input perturbation is allowed or the output-sampling
schedule can be chosen, it is worth considering whether they can be designed
to optimise model accuracy. Consider input optimisation first (Goodwin and
Payne, 1977). The basic idea is to maximise some scalar measure of estimation
accuracy derived from the information matrix P~ ' or covariance P of an
unbiased estimate @ of the parameter vector ¢. Recall that for an unbiased
estimator, £0 is 6 and

covl=P=E[0—0)0—0)] (9.2.2)

The model structure is assumed to have been selected already. The
optimisation is subject to constraints on, for instance, input or output power
or amplitude, number of output samples or experiment duration. To avoid
specialising the results to a particular estimator, 0 is assumed to achieve the
Cramér-Rao bound on accuracy (Section 5.4.1). so

2 AT
P '=F=E ‘(, 1 Y10 f‘¥
m[(w( np(Y10) -5 (inp(¥]0)) (9.2.3)
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where Y denotes the entire set of observations. One reasonable scalar measure
of estimation accuracy is

r

b[z w0, —0)?

i=1

:l =tr WP’ (9.2.4)
6=0, 0=0,

where the weights i, making up the diagonal matrix B are chosen to suit the
model application, and 6, is a prior estimate of 6. An alternativeis —log|P~ .
which is not affected by the scaling of individual 0;'s.

Any numerical optimisation of an identification experiment has the
drawback that it depends on prior knowledge of 6, so a good design is
guaranteed only when it is least needed. However, a variety of helpful
qualitative results concerning input design have been obtained. particularly in
the frequency domain (Goodwin and Payne, 1977).

*9.2.3 Optimisation of Qutput-Sampling Schedule

Formal optimisation has also been applied successfully to the design of
output-sampling schedules for experiments in which only very limited
observations can be made (Di Stefano, 1980). With these applications in mind,
we shall look into the process of optimising the Fisher information
matrix £

First we must make some assumptions about the model form and noise
probability distribution, to enable us to write down p(Y|@) in (9.2.3). An
important case leading to tractable algebra is the linear state-variable model
(time-invariant for simplicity, although this is not essential):

X(1) = A0)x(1) + B(O)u(r) (

o
|89
o
=

with specified forcing inputs u(s) and initial state x(0), e.g. zero with the system
quiescent before being perturbed. We consider noisy scalar observations

V() =1(1) 4+ e(1) = h(0)'x(1) + e(1) (9.2.6)

sampled at times
=1, k=1.2,....N 9.2.7
For conciseness 1(7,) will be written y,, and similarly v} and ¢,. The noise

samples will be assumed Gaussian, with mean zero and variance o} at time 7,
and independent of one another. Since 1 depends only on x and u. it is
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deterministic, so y, is Gaussian with mean h"x, and variance o}, and the y
samples are independent. Consequently,

N
pY10) =p(y, vy pyl U)Hp(.vklﬂ)
k=1
N
| (r,— thk)2|>
=| \—=— exp| ————— 9.238
H{\ﬂnck p( 20 028
k=1
and so
N
T a2l
Inp(Y|0) = S—‘{%lnﬂnaf) — (J\II,L")I} (9.2.9)
L 20
k=1
Hence
N
Bl v, —h"x, ¢ .
—(Inp(Y|8)) = A TR (h' 2
00(np( |6)) 2% p ﬁo(h ‘(k)} (9.2.10)
k=1

As the noise samples y, — h'x, are independent and zero-mean, the expected
value of the product of any two of them is zero, so on substituting (9.2.10) into
the expression for the Cramér-Rao bound, we are left with

;

(r,—h'xp? @ &t
— 1 a (h1 )81— hl' 9
s2ag " M) g (X (9-2.11)
k=

The only remaining problem in relating F to design parameters such as the
sampling times or input waveforms is to calculate d(h'x,)/00 for each sample
instant. It is

J .

m;(hrxk) = [Jox "Th +[J,h]" X, (9.2.12)
and [J,x,},the Jacobian matrix of x, with respectto , can be found column by
column by differentiating the state equation (9.2.5) with respect to each
unknown 0;, yielding

ox 04 x 0B ‘n

S T LA N
20, ~ a0, a0, a0, " P a0,

j=L2....p (9213
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The whole procedure for evaluating the information matrix £ at a given ¢
comprises integrating first the state equation (9.2.5), then, with x{z) known,
the sensitivity equations (9.2.13), and finally substituting the sample-time
values of the derivatives into (9.2.12) and thence (9.2.11). Trial-and-error
optimisation of F by repetition of this procedure is plainty a heavy
computational task. On the other hand, as Di Stefano points out, useful
guidance can be obtained by a few trial evaluations of Fwithout finding the
optimal solution. The effects of any change in the experiment can be predicted
by comparing two evaluations. Di Stefano comments that in his medical
applications trials of this sort can be performed “prior to drawing a single drop
of biological fluid™.

Example 9.2.2 We consider once more a compartmental model as employed
in biomedical studies. The model shown in Fig. 9.2.2 represents the flow of
material into and out of the compartments by rate equations

. ‘/\':1 /\']_, B 4 l‘
X = X
h kyy =k —kg, 0 !

in the compartment contents x, () and x,(r). Rate constant &, for loss from
compariment 2 to the environment is known in advance, and we have to design
an experiment to estimate k |, and A, , the rate constants for tlow between the
compartments. A bolus dose (impulse) 1s introduced into compartment | of
the previously empty system, and the ensuing variation of the amount in that
compartment sampled. We wish to compare two schedules, taking samples at
times 1,2, 3and 2, 3,4. Our measure of estimation accuracy will be tr £, which
will be evaluated at nominal (guessed) values k,, =0.05, k,, =0.4. The

o

Observed
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known k,, is 0.25, the observation gain is | and the input dose is 1, so the
observations are

yo=[1 0]x, +e,, vare, = of

and standard linear-system theory gives

! 1
x(1) = J e"”””Bu(r)dr:e’“[ }
0 0
4 _{‘km ki, :'
kzn 7”"|1'/"02

At

here, with

The transition matrix ¢” is found, by inverse Laplace transformation of
[sT— A]" ' or otherwise, to be

»4 [%exp(—0.2r)+§exp(—0.51) %exp(O.Zr)~%exp(~O.5/):l
L dexp(—0.21) — 3exp(—0.51)  Fexp(—0.2r) + Lexp(—0.51)
The first column gives x(7). Gradient &(h"x,)/0 in the expression (9.2.11) for

Fis ¢x,(1))/@0, so only the derivatives of x,(¢) need be computed from the
sensitivity equations. With 0, =k,, and 0, =4, ,,

cA [0 o4 -1 0
a0, |0 -1 o0, | 10

and with B, C and u(r) all independent of @, the sensitivity equations are

X y 0x . X,
o0, a0, — X,

_[—0‘4 0.0SJ ax 4|: exp(O.Zr);exp(—O,Sr)jl

04 —-03 3 —exp(—0.2r) +exp(—0.5¢)

+
ag, 3
X 4 x L
0, a0, X,

;[—0.4 0.05:| X 1|:—cxp(—0.2r)—2cxp(*0.5f):|

04 —-03 (703 3 exp(—0.2r) + 2exp(—0.5¢)
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Their initial conditions are zero, because x(0) is independent of §. They are

solved easily, if tediously, obtaining from the convolution integral

v
('T.(\)l :%:({ +4'30)8Xp( —0.21) — (5t +430)€Xp( —0.5)
vy

ax,
a0,

(=2t + 1Y) exp(—0.21) + (107 — ) exp(—0.50) !

Inserting the chosen sample times ¢,, we can now evaluate F for each trial
schedule:

P .,l (0x,/00,)* (Ox, /00 (AN, /C0,) 1
i (O /00,)(@x/00,) (Ox,/00,)? =1 (
K r

I . 1

[§9]
)

4

o} x (increase

[0.0187 00780} [0.1418 0.2378] [03447 0.2927} [0.5304 ().2319:'
in F)

0.0780 0.3256 0.2378 0.3989 0.2927 0.2485 0.2319 0.1014

The contributions to F from samples at times 1, 2, 3 and 4 are given in the
accompanying tabulation, but the influence of an individual sample on the
accuracy of @ cannot be seen from these figures. The most informative
indicator is the covariance F~ ! of 0. If the noise variance is o> for all samples.

F~'is
,|  8.027 —5.020
? [As.ozo 4.167}
for sampling at 1, 2 and 3, compared with
| 4155 —4.230
’ [—4.230 5.642}
for sampling at 2, 3 and 4. The reason why the former schedule allows more
accurate estimation of k,, , as shown by element (2, 2) of F7~ ', is that the faster
decaying of the two exponential components in x, (1) is much more sensitive in
both amplitude and time constant to k,, than is the slower component. and it
is better defined by the earlier sampling schedule. The better definition of k|,
by the later schedule, indicated by element (1, 1) being smaller, is less readily
explained. The slower time constant is actually less sensitive to &, than the
faster one, and the absolute sensitivities of the exponential amplitudes to &,
arc equal. However, the slower component has only about halt the amplitude
of the faster one, so is relatively more sensitive. It is evidently not very easy o

predict which schedule will be better for &, without the full analysis to find
F'.
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For sampling at 1, 2 and 3, tr £~ ! is 12.19¢2, compared with 9.806? for
the other schedule. The other measure —log|F| is 0.9165 + 4logo and
0.7442 + 4log g, respectively. A scalar measure of accuracy is rather un-
satisfactory when, as here and as usual, some parameters improve and
others get worse when schedules are changed. Weighting individual parameter
variances asin (9.2.4) supposes that we know in advance how seriously we take
individual errors. Unfortunately we do not know until we see what variances
are obtained, so trial-and-error adjustment of the weights is necessary. A

3 SELECTION OF MODEL STRUCTURE

The selection of & model structure starts before design of the identification
experiment, and continues during and after it. Decisions on the scope and
form of the model must be made. The scope determines what variables should
be included, what time scale the model is to operate on, what range of
operating conditions should be covered, what observations should be used
and what information the model has to provide. Model form was discussed in
detail in Chapter 1.

Both form and scope are greatly limited by what turns out to be practicable
in collecting observations. Anyone concerned with identification in industry
has had the deflating experience of having what seems a perfectly reasonable
suggestion dismissed on unanswerable grounds such as unserviceable
instrumentation, unwillingness to interrupt normal operation, inability to
wait for the results, lack of manpower, missing records, or a conviction that
the results are already known or impossible to obtain. As rational plans are so
often frustrated, there is little point in generalising further about these
informal aspects of structure selection.

Before going on to the topic of model order determination, we should note
that very often one starts with a strong preference for one particular model
structure. The preference may stem from familiarity, proven effectiveness or
mathematical tractability of the structure. The belief “better the devil you
know than the devil you don’t know™ at times explains retention of a structure
with admitted weaknesses. In other cases one hesitates to drop a “classical”
model on which much effort has been spent, even when 1t has obvious defects.

9.3.1 Model Order Determination
The determination of model order is an important problem, for which

techniques are well developed. Model order will be taken, rather loosely, to
mean either the total number of parameters or the number of the input, output
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or noise terms, as appropriate. Sometimes it coincides with the order of the
dynamics, but more often not. Folklore has something to say about model
order determination: All other things being equal, the simpler of two models
each encompassing the actual system behaviour is felt to be better. This [eeling
has been dignified with the title of the parsimony principle. Although it has
some basis in the numerical ill-conditioning and statistical inefficiency
associated with indiscriminate addition of terms to a model, it is an
oversimplification. Whether a simpler model is on average better depends on
the intended use of the model, the family of alternative models contemplated
and the estimator employed.

Stoica and Soderstrom (1982) discuss under exactly what conditions the
parsimony principle applies. They compare structures by calculating for each
of them the mean value ¥, over all possible values of the model estimates 0, of
any scalar measure V() of model performance (smaller for better
performance) which is differentiable twice with respect to 6. By Taylor series
expansion they show that as the record length N tends to infinity,

= I(;J[V(é*)] V(0) + ﬁv“ (0% P) (9.3.1)
where 6* minimises V, V" is the second-derivative matrix of }" and P the
asymptotic covariance of the normalised estimation error /N (8 — 8%). 1f two
model structures . #, and ./, being compared are hierarchical in the sense
that .« is contained in . 7/, and the system gencmlmg the observations has
the structure . /7, 17(0 )w1ll be no ldrger than ¥ (() ) if the estimator achieves
either the Cramér-Rao bound on P~

pi= E[[Jaé]TR_ ' Je]] (932)

where R is the covariance of the white noise e making up the unpredictable
part of the observed system output, and & is the model-output crror.
Hierarchical structures include important cases like autoregressions or
moving averages of different orders, but not. for example, a two-term moving
average as ./, and a third-order autoregression as . # ,. The assumption that
the structures are hierarchical can be dropped if the performance measure is

V() =|E[ée") (9.3.3)

and the covariance satisfies (9.3.2). In that case F0%) is 2|R|P N and T is

|R|dim @, so a model structure with fewer unknowns to estimate is better,
hierarchical or not. Counterexamples are presented to show that the
parsimony principle does not apply in general unless the conditions above are
met.

These results are very general; they restrict the model structure and
proposed application very little, and apply to large classes of estimators and
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noise and input distributions. However, the assumption that . #/, includes the
process generating the records is doubtful. The most common practical
situation is for a model to be estimated in the full knowledge that it is only a
simplified and partial representation of the system behaviour, adequate for a
stated purpose. For instance, a low-order model may be required so that a
simple controller can be designed from it, or non-linear behaviour may be
treated as time variation of a simple linear model rather than modelled
explicitly. The consequence is a blurring of questions of model goodness. A
larger model might well be a better fit to the observations, and a better
predictor, but unacceptable because of its complexity. We should not lose
sight of the fact that tests of model structure are to help us compromise
between complexity and performance, exclude grossly deficient models and
avoid ill-conditioned computation, rather than to determine the “correct”
structure.

We shall review three popular ways of testing model structure: F tests, the
Akaike information criterion and comparison of product-moment matrices.

9.3.2 F Test

The F test operates on the sample mean-square model-output errors
N

S
V,.(e,.)_NZéf(o,.), i=1.2 (9.3.4)

=1

from two alternative model structures ./, and #,, which usually differ only
in their numbers of terms. If ./, has p, parameters and ./, a larger number
p,,and if the output errors from . #, and . /, form sequences of independent,
Gaussian, zero-mean, constant-variance random variables, then V, and
V', —V, are independent y? variates with N —p, and p, —p, degrees of
freedom (Wadsworth and Bryan, 1974). It follows first that . #/, is an adequate
model, in that its output errors have no time structure, and second that the
statistic

f= Fi=VaN=r: (9.3.5)

Vo pa—py

has an F(p, —p,, N — p,) distribution. The hypothesis that . #, is adequate
can be tested at any chosen significance level by comparing f with the value
exceeded with the corresponding probability.

Example 9.3.1 The rainfall-river flow model

Y=gy, — o —a,_, tbou -+ b, u
+c,e,td+te

Fee e

t—m
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was fitted by the extended least-squares algorithm to 1455 hourly samples {3}
of flow in the Afon Hirnant in Wales. The input samples {u} are means of
readings from six rain gauges. The gauges register total rainfall over an hour,
and the effective pure delay of the flow response to the areal mean rainfall is
under an hour, so the model has b, non-zero. For all runs the noise order ¢ was
3. Three models gave the values in the accompanying tabulation, where p is the

Model nom p V
1 2 3 9 0.074286
2 2 4 10 10.073542
3 3 4 11 0.073248

total number of coefficients estimated and }* the mean-square output error.
For models | and 2, f'is
7.44 x 10+ 1445 R
0073542 1

If this is greater than the value exceeded by a F(1.1445) variate with
probability «, the hypothesis that the extra coefficient in model 2 is redundant
is rejected at level oo. For o = 0.05 the value is 3.84, and for x = 0.01 it is 6.63. so
the hypothesis is rejected at either level. Comparing models 2 and 3, f'is

294 x 107+ 1444 B

S 5.80
0.073248 1

so model 3 is taken as significantly better at level 0.05 but not at level 0.01.
A

9.3.3 The Akaike Information Criterion

The log-likelihood function discussed in Section 6.4 is the basis of an
alternative test of model structure (Akaike, 1974). The Kullback- Liebler
mean information is defined as

1(6,.0,) = E[L(0,) — L(6,)] (9.3.6)
2

where L(0) is the log-likelihood function of @ given the set of observations Y
and 0,, is the “true” value of 8. If we suppress any doubts about the meaning of
the “true™ 0, it turns out that /(0. 6,) can be approximated by the sum of a
term in 0,, the same for any candidate model structure, and a term
proportional to the information criterion

C e =200, +2p, 9.3.7)
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The test then consists of comparing C, with €', and accepting . #, as adequate
if C| is smaller. (The information criterion is abbreviated to AIC. According
to Akaike, the A stands for A, as distinct from B, C, etc.; according to
everyone else, it stands for Akaike.)

From Section 6.4.5, we know that scalar observations aftected by Gaussian
errors of unknown constant variance give rise to a maximum log-likelihood

N

L(0A)__']\'/‘((1+1n7 +In L 2(0)
== ; 2n N e\,

=1

(9.3.8)

If we substitute this into (9.3.7) and drop the part independent of 8, we obtain
the statistic

C!=NlnV,+2p, (9.3.9)

to test. Notice the assumption that , is the m.1. estimate for . /.

Example 9.3.2 The models quoted in Example 9.3.1 were obtained by the
e.l.s. algorithm, which is approximately m.1. if the noise is assumed Gaussian.
The models give the values in the accompanying tabulation, so model 3 is
preferred. A reduction of 0.26", in V', would be enough to make C) < Cj.

Model v P C’
0.07429 9 —3765
~3777

|
2 0.07354 10
3 0.07325 il —-3781

Both the Ftest and the AIC test seem to favour the larger model unless the m.s.
output errors are very close. This point is followed up in problems 9.4 and 9.5.

A

The attraction of the AIC test is that it does not require a significance level
to be chosen subjectively. As Soderstrom (1977) has pointed out, the AIC test
can be viewed as an F test, for if by the AIC test

NInV,+2p, <NInV,+2p, (9.3.10)
then
V1o (2 ( )
- <expl —(p,—p
p, < exply
and so the AIC test is equivalent to an F test giving
(Y N—p, N-p, 2
_/—( 1_ 1)f~L <P (exp(~~ (0, —p,))— 1) (9.3.12)
V, P>—Pr Pa— P N

/ / /
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Moreover, with g7, wnd g, — pyomauch smadler than N,

N-p, ) \ ' Ny 2 N L
Aenp! S, p )\-f )= I (p.—p ) > (9313
¢ A / 1 } PN £
prop AN Py —p

This value corresponds 1o 4 not very siringent significance level of rougnly

169, for p.—p, = U (adduion ol one parameter) and tittle lower for
pa— o= 2oboth dor furee AN

The e doabi aboud the uselubiness of the 77 and AL tosis arses froin

their assumption of Goussian (¢ b In muany identification problems the notse
and residuals ave dstnedy non-Gaussian. An approach o model-order
testing which reiivs fess
the noisc woald be ol interest. For alinear model, the product-manient mainy

ynplos about the probabiitty distribution of

provides just such an wpproach.

9. 3.4 Product-Viomens Mateis Test

The idea behind model-structine esiing using prodisci-moment mairives

(Lee, 1964 s that the noise-lree cuipuc v, rom a ystem with input output

dynainics
_ . N . B PR T \
Vs LR wVeon 0 f T I '
o b 8]
15 eaactly finewrly doprindeat on the set ol samples v o0 v Qi o

For any il model crder ater than «, the dependence reduces iho

“I —n°
rank of

-

py the nusmber 7 - 2o veolumis lneachy dependeat ov the othes columns. 1f
would be to

the *clean” output v weie acesssible. o simple west ol sysiem eider
check the rank of & ol more convencatiy e smadl (27 squares matriy
CYU/N, heneeforth called AL Assuming that e inputis p.o. ot ords

more. the i columuns are still fineavly indepoisiontwhen ais n 4 Uose s on o

of singularity of A at that # indicates vncguivoeally that the sysicay cvdor s

the largest /1 for which 4 remains non-singular. Unfortunately. jaiis no
accessible, and the rank deficiency of 4 is obscured by noise [l w the
observed outnud samnles el
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For high output signal-to-noise ratios, it may be possible to use |} in place of
ix)in U and still detect the onsct of ill-conditioning of 4 as 11 is raised, but for
realistic amounts of noise some modification is normally required. An early
suggestion (Woodside, 1971) was to estimate and remove explicitly the effect
of noise on 4. If we denote U(u, v,11) by

U,y i) =1y, Yioqr Yo W Wi - u] (9.3.17)
where

yili=Ivici Yacier o Yol i=0,1,....n—1 (9.3.18)

and similarly for u,_;, then

[ T T
ViYa YAYi o oo y,',.vx: Yiu; Yiuio yiu,
|
1
1 _V:_V,, YK.VI{ i, yiu,
A(U,_V.Ii):'N - = S Tty (9.3.19)
T Ty !
w,y, “u.‘ul u; u,; u,u,
: |
1 vy Lo T
Lwy,: Wy, nu,; uw,

We assume that e} is uncorrelated with ju} and therefore with {x}, which
depends only on {u}, and also assume that {¢} and {u]j are ergodic and the
system time-invariant. As the number of obscrvations N rises, these
assumptions give

R. .1 O
A(H‘.l‘,ﬁ)—»,4([1,.\.’;)+l: ‘;)( ) ()] (9.3.20)

where clement (7, /) of R, (/i) is the autocorrelation of {ef at lag i— . No@se
on the observed input {u} can be treated by allowing an mput-noise
autocorrelation matrix as the bottom right partition. Estimates of the noise
autocorrelation ordinates have to be supplied if we are to reconstruct the
noise-free 4 from

- . R, (1) 0
A(u,.\:/i)4/4(11.}‘./1)—[ ‘;)(’ 0} (9.3.21)

It may be possible to measure the noise a.c.{. by holding the input steady. so
that all output variation is noise. If not, informed guesswork may yield a
usable estimate of the normalised a.c.f. (normalised by r,(0). the noise m.s.
value). A possible way of providing r_.(0), suggested by Woodside, is to take
the smallest solution of

R..01) 0O
[A(u, x. 1) = )A(u, 1) — ;',‘,(0)[ 0 }. =0 (9.3.22)
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where R, (1) is the normalised autocorrelation matrix and 7 is large enough to
justify (9.3.22). Equation (9.3.22) says r,,(0) is a generalised eigenvalue of
A(u, v, n).

However A(u,x,i) is obtained, it will be ill-<conditioned rather than
singular, because of the approximation error. Some way has to be found of
deciding when the matrix is ill enough conditioned to indicate that 11 is greater
than n. Woodside suggests forming either the determinant ratio

p(1) = A, . 1)|/| A, x00 + 1) (9.3.23)

as a normalised scalar statistic, or another determinant ratio pJs) which
approximates the sum of the squared model-output errors obtainable in the
absence of noise. As 7 is increased, p(r1) should jump upwards at /1 =n, and
p(11) should drop suddenly at i = n, as output modelling error due to too low a
model order vanishes. The derivation of p (1) is a bit tedious, and you may
prefer just to note the results, (9.3.29) and (9.3.31).

First we write down the sum S, _, of squared regression-equation errors for
the o.l.s. model of order 7 — 1. Next we express S, as the quotient of two
determinants which relate closely to A(uw, v,n — 1) and A(u, y.n). Finally, we
replace A(u, v,n— 1) and A(u, y.n) by A(u. x.n— 1) and A(u. x,n) so as to
reduce the effects of the noise in |y}, and compute an “enhanced™ sum of
squares of errors. The details are as follows.

The regressor matrix for the model given by (9.3.14) and (9.3.16), but with
order n — | rather than n, is

v ey u e
Al R n=1 1 _ ’
Hn»1|i< ) :[)n-i L’n-l]
Yv-r o PNemsr Un—qp 0 Uy
(9.3.24)

The o.l.s. model outputs 7, to ¥y form the vector

y=H, [[Hy_H, ] 'H, y, (9.3.25)

n=1

and the sum of squares of errors is
Sy 1=, =N, ==y, (9.3.26)

since y is orthogonal to y, — y. All the quantities in (9.3.25) and (9.3.26) may
be computed from the partitioned matrix

T TH
ynyn yr" n—1 (9327)
I‘I‘l 1)’,, Hu'lHn"l

n-

B(u, v,n) %[

Expansion of |B(u, y,n)| by its first row gives

|B([l,.l', ”)] = y;‘lyH|Hlll‘ lHn ll - yIHn —1 "ld](Hrlt 111 -1 )H?tf Iyn (()328)

n
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SO

N B |B(u, v, n)|
:y:]:yniYIanl[H;xr'lHu*l] 1HT =0T T 7

S n-1Y¥n T T T
! }H:*lHnﬁl'

(9.3.29)

n-1
We can relate HY_ H, | to A(u,y,n — 1) by noticing that

d Ui } (9.3.30)

Yn VN at2 Uy e Un —n+2

n—1

UGu,v,n—1) :|:

so that

NA@w.y,n—1)=Uu,y,n— DTU@,y,n—1)

=H H,_, +[rx - Vyonially o Uyopiall
X[y Incweally o Uy s (9.3.31)
For N large, the right-hand side of (9.3.31) is close to HI |H,. . Also,
Uw,v,m)=1y, Y,., w, U, _|] (9.3.32)

so B(u,y,n) could be obtained by deleting the u, column and u! row from
NA(u, v, n). If we reconstruct the approximate noise-free A(u,x,n — 1) and
A(u. x,n). and pick out B(u, x,n) from the latter, we can compute in place of
(9.3.29)

pln— 1)y =B, x, m)|/|INA@, x,n — 1)| (9.3.33)

Woodside found that this “enhanced™ statistic indicates the correct order of
simulated records with mean-square signal:noise ratios down to about 10.

Instead of finding A (u, x, n) by estimating R..(n), Wellstead (1978) suggests
calculating

A'(u, v, n) =(U"u, z, )Ulu, v,n))/N (9.3.34)

where |z} 1s an instrumental-variable sequence which, as in section 7.4.5, is
strongly correlated with {u} and {x} but uncorrelated with the noise sequence
tet. Provided that -, and u, are uncorrelated with ¢, ,,, uptoe,,,_,,

E[A'(u,y,n)] = E[A'(u, x,n)] (9.3.35)

Now A'(u, x,n) suffers rank deficiency in exactly the same way as does
A(u, x,n) since U(u, x,n) 1s present in both, so the determinant-ratio tests
described above can be performed equally well using A4'(u, x,n) in place of
A(u, x,n). At the small price of having to treat the input as noise-free, this
provides a computationally cheap alternative to Woodside's enhancement
method. Caution is necessary if {z} is generated by passing {u} through a
linear filter; if the order of the filter is less than the trial order 7, the
determinant ratios will detect the filter order rather than the system order.
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Generalisations of the instrumental product-moment matrix method are
presented by Wellstead and Rojas (1982). They point out that minor
amendments to U allow the test to cover different orders n and m for the
autoregressive and moving-average parts of the model (9.3.14) and to find the
dead time k. The testing proceeds in stages. First 7i and 17 + & are increased
together to identify the larger of n and m + &, then si and 7 + k are reduced
alternately to find which is the smaller of n and m1 + k, and establish its value.
Finally 1 and & are varied to find m and k.

Taking a more statistical view, the product-moment matrix tests are
methods of detecting ill-conditioning of the covariance matrix of the model-
coefficient estimates. The normal matrix for o.1.s. with the model (9.3.14) and
(9.3.16) is NA(u,y,n), so on the assumption of uncorrelated regression-
equation error (“white noise™), the covariance of the coefficient estimates is
Fool0)A " N(u, y, m)/N. It is estimated as an intrinsic part of the e.ls. algorithm,
and can also be obtained easily from the product-moment matrix inverse
updated by the recursive instrumental-variable algorithm (Young et al.,
1980). Scalar measures of covariance ill-conditioning are discussed in this
reference also.

We should recall at this point that Chapter 4 has already provided ways of
testing the structure of linear models. The utility of each term can be tested by
singular-value decomposition of U, as described in Section 4.2.4.
Alternatively, the Golub-Householder method described in Scction 4.2.2
makes trial deletion of terms from the model easy; one need only place those
terms last, so that deleting them merely removes corresponding columns from
the extreme right of the triangular matrix ¥ in (4.2.10), leaving the rest of the
computation unchanged.

9.4 SUMMARY

In this chapter we have reviewed several results and techniques which may be
some help in choosing a model structure and designing an experiment to
estimate its coefficients. The reason for such diffident wording is that success in
identifying a useful model depends much more on accurate appreciation of
what the model must do and recognition of what is going on in the results of
identification experiments than on virtuosity in applying analytical tech-
niques. The next chapter will illustrate some of the problems that arise when
we start experimenting in earnest.

FURTHER READING

Optimal experiment design is covered by Silvey (1980), Beck and Arnold
(1977), Zarrop (1979), Goodwin and Payne (1977) and Kalaba and Springarn
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(1982). Mehra and Lainiotis (1976) have two substantial sections on the topic,
along with interesting identification case studies. We have not considered
multivariable systems, although the basic ideas concerning experiment design
and parsimony apply to them too. Model structure and identification
accuracy for multivariable systems are the subjects of a chapter in Kashyap
and Rao (1976). Guidorzi et al. (1982) offer a test for multivariable model
structure which does not require prior fitting of a selection of models.

Comparative studies of a number of structure selection methods have been
carried out by van den Boom and van den Enden (1974).
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PROBLEMS

9.1 Which of the coefficients y,.n,.n, and n.in Example 9.2.1 are likely to be
hard to identify by an experiment in which the input signal {(1) is (1) of small
bandwidth, (i) narrowband, at a frequency high enough for the frequency-
independent terms to have little effect on L/Z and R/Z? [Assume y; is known
in advance.] A

9.2 Investigate the improvement in accuracy of k., and k,, in Example
9.2.2, compared to the results of sampling at times 1. 2 and 3. due to (1)
sampling at times 1, 2, 3 and 4; (i) sampling at 1, 2, 3 and 10; (ili) adding a
second sample at time 1, independent of the first; (iv) adding a second sample
at time 3, independent of the first; (v) halving the sampling interval.

9.3 Three alternative model structures are

A X=ax A+ (XN +g)) 4 bu
My X =ax+ I+ bu
My X=ax bt +aN" + b

What combinations of two or more of these structures are hierarchical ? [State
any restrictions necessary.]
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9.4 [ftwo linear model structures differing by g terms are to be compared by
an F test, and the records are 200 or more samples long, the F distribution
relevant to the testis close to F(g, o). The values of f exceeded by an F(g, )
variate with probability 0.05 are

q\l 2 4 6 8 10

3.84 3.00 237 210 194 1.83

~/0(15

Tabulate the percentage excess of the smaller model’s sum of squared output
errors over that of the larger model when the hypothesis that the larger
model is no better is just accepted by the F test, for these values of ¢ and for
records of length N =200, 1000 and 5000. Ponder the likely practical
significance of percentage differences of this size.

9.5 Tabulate the percentage excess of a smaller model’s sum of squared
output errors over that of a larger model when the Akaike information
criterion says that two linear, time-invariant model structures differing by ¢
terms are equally acceptable, for ¢ =1, 2, 4, 6, 8 and 10, and for records of
length N =200, 1000 and 5000. [Use the mean-square output error of the
larger model as g*.] Compare this table with the one compiled in Problem 9.4.

Chapter 10

Model Validation

10.1 INTRODUCTION
10.1.1 Nature of Validation Tests

A model is validated by answering two questions: is it credible, and does it
work ? The first supposes we have some background knowledge and want the
model to conform with it.

Example 10.1.1 The model
Y=y - arVi-» + hl“l -1 + b.’.ul ety + 02 T30y +

is fitted to hourly recordings of rainfall ju} in the catchment of the River Eden
in north-west England and corresponding recordings of river flow {y}. The
aim is to develop an on-line flow predictor.

After 100 steps of the e.ls. algorithm, we have

[, da, b, by]=[—1527 0598 —0.141 0.992]

Since b, is the first non-zero ordinate of the u.p.r.. it cannot be negative, which
would imply that the initial effect of rainfall is to reduce flow. Hence, b, is
implausible. The reason is that the model has too short a dead time; the latest
input affecting y,isu, ,.In the absence of any influence ofu,_,ony,, thevalue
of h, is determined by its effect on the subsequent u.p.r. shape, i.e. coefficients
from /i, on in

bz '+ byt

hy=" V4 hy T 0= s i
! 2 l+az " +am?

ey

When the u.p.r. of a model with negative b, and too short a dead time is

plotted, it normally approximates the u.p.r. of the model with the correct dead

time quite well at lags beyond the correct dead time. A
285
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A direct and revealing test of whether a model works is to try it on records
different from those it was estimated from. However, there could well be a
noticeable finite-sample difference between the performances of the model on
the two sets of records, even if the model were optimal in some statistical sense
and structurally well chosen. We might consider testing the significance of the
q;ﬁerence in performance by comparing a statistic from the new records, for
instance the m.s. output prediction error, with its theoretical value, computed
frqm the estimated covariance P of the final parameter estimate X, of the
orlgm.al records. At sample instant 7 in the new records, the theoretical m.s.
error in the output prediction y;(X ) obtained from an unbiased estimate X

for a system described by "

_1".:h".]‘x +u; (10.1.1)

Ef(y; — ,‘A'i(’n‘/v))lj = E[(hiT(x —Xy) + L’i)(h;'r(x —Xy) + )]
=h'E[(x — xy)(x — X3)"Th, + E[¢7]
—hIPyh o2 (10.12)

Here h, has been treated as deterministic as we are not averaging over a range
of possible h;, and (10.1.1) has been assumed an adequate description of y,.
Also,.v,» is assumed to be zero-mean and not correlated with %. The actﬂuil
covariance P, and variance ¢, would be replaced by their computed estimates
to approximate the expected sample m.s. prediction error

! t

1 o ]
E[{ Z( ¥i— _1',-(XN))“} = Z(hiTPNh,. + k) (10.1.3)

i=1 i=1

Such a statistic is easy to compute, for given {h} and {67!, but has some
unconvincing aspects. We should really take into account the uncertainty in
Py e_md the estimates of ¢7. To assess the significance of a deviation of the
sl.atlslic from its theoretical value given by (10.1.3) we need its sampling
distribution. The distribution may be difficult to specify, as the prediction
errors may well not form a stationary sequence. Formal tests of this sort may
have a role in refining an already good model, but in earlier stages of model
validation or when a good model is not realistically attainable, less formal
checks less reliant on idealising assumptions are more to the point.

The remainder of this chapter illustrates a selection of validation checks
applied to results from actual records. The tests are mostly quite informal, and
bring out typical weaknesses in models. As usual, we do not pretend the tests
are comprehensive or universally applicable.
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10.1.2 What Do We Test?

The short answer is “everything we can”, but more specifically we can test

(i) the records, before we do anything with ‘them:

(i) the parameter estimates, in the light of background knowledge:

(iii) the fit of the model to the records. through the residuals {y —¥}:

(iv) the estimated covariance of the parameter estimates: and

(v) the behaviour of the model as a whole, measured for instance by
steady-state gain, u.p.r., poles and zeros.

We shall examine these tests entirely by examples, and try to resist too-
sweeping conclusions.

10.2 CHECKS BEFORE AND DURING ESTIMATION

10.2.1 Checks on Records

Valuable information can be gained by looking at a plot of the records as soon
as they are received.

Example 10.2.1 The rainfall and river flow records used in Example 10.1.1are
shown in Fig. 10.2.1. We see immediately that two distinct situations
alternate: rapidly changing flow with frequent or continuous rainfall, and
smooth monotonic flow decrease (recession) with little or no rainfall. The
question arises whether one constant-parameter model can cater for both
situations. We also see that the low-frequency gain from rainfall to flow varies
from one flow peak to another: for instance, the peak near 213 his higher than
the one near 189 h, but preceded by less rainfall in the previous 10 h or so. We
should not expect too much from a time-invariant linear model, and may well
have to resort to a time-varying model for on-line prediction. the ultimate aim.
A time-invariant non-linear model might be preferable if we knew enough to
choose its form, but we shall not pursue that option.

The spread of time constants looks large, from two hours or so as indicated
by the rises to perhaps ten hours or more for the slowest recession
components. The flow record is quite smooth, so the sampling interval is
probably short enough to avoid aliasing. The rainfall record is both uneven
and heavily quantised. but each point is the integrated rainfall over an hour
and the rainfall-to-flow dynamics are clearly of low bandwidth. Any increase
in explanatory power of the rainfall record achieved by shortening the
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Fig. 10.2.1 (a) Rainfall and (b) river-flow records.

sampling interval would consequently be outweighed by the increase in
quantisation error. The sampling interval may be too short to allow precise
estimation of the longest time constant of the u.p.r.

The dead time cannot be assessed from the raw records in this instance, but
is not more than a few hours.

We shall employ these records in many examples, since their behaviour is
complex enough to be a good test of identification and validation methods.

A

Other things to look for, not evident in the example, are instrument
breakdowns, transcription errors and patching-up of interrupted records.
Errors are hard to avoid in records taken or transcribed manually, but they are
easy to detect in smooth records and need not be detected if infrequent and
comparable with noise from other sources. Breaks in records, particularly due
to oversight, are sometimes repaired by crude interpolation without the
recipient being informed, so any constant or straight-line section should be
regarded with suspicion.

10.2.2 Checks on Parameter Estimates

In Example 10.1.1, unrealistic model behaviour was detected through the
value of a single parameter. Quantities affected by all the parameters, such as
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u.p.r., steady-state (zero-frequency) gain and poles and zeros can be computed
easily from a.r.m.a.x. parameter estimates, on line if necessary, and checked
against background knowledge. The u.p.r. {1} is given by

/;1 = 7dl/;1 S drﬁl*n + [;151"1\" B f)m(slAAﬂu (1021)
where o,_,_;is 1 for t =k +7and 0 otherwise. The steady-state gain is
A AN
g = = h, (10.2.2)
VL +a, + - +d,

1=k+1

The poles are readily interpreted in terms of time constants. A positive real
pole = = o corresponds to a sampled exponential component proportional to

of = (exp(— T/1)) =exp(—iT/1). i=0,1,2,... (10.2.3)

in the u.p.r. Hence the time constant tis —7/Ina, where T is the sampling
interval. Complex-conjugate poles can be interpreted as in the following
example.

Example 10.2.2 We decided that the hydrological records in Example 10.2.1
exhibited a wide spread of time constants, and there was no evidence of
oscillatory response in the flow, so we expect positive real poles between 0
and 1.

A model

Vo=—ay, o —ayy ot b s+ bau e Hor oG

1
i.e. ana.r.m.a.x. model with (17, m. ¢) = (2.2, 3) and dead time I, was fitted by
els. to 280 input-output pairs from the hydrological records. The final
a.r.m.a .x. coefficient estimates were

[, d, b, b,]=[-1.401 05135 0.5399 0.8917]
The poles are complex conjugate, and since the -transtorms of
exp(—/t)sin it and exp(—t/T)cos it

have denominator | —2z ‘exp(—T/t)cos T+ : “exp(—2T/1), the en-
velope time constant t of the damped oscillatory u.p.r.is —27/Ind,, 1.¢.3.0h,
and the oscillation period 2m/f is 2aT/cos ~'(—d,j2./d;), 1.e. 29.6h. The
oscillation has no obvious physical explanation, and takes the u.p.r. negative
for lags between 17 and 31 h, contrary to expectation.

We can permit a wider range of u.p.r. shapes by raising the m.a. order »1 to
6. The (2, 6, 3) model obtained with dead time zero (in case there is some small
early response) has [d, d,]=[—1.086 0.2629], implying time constants
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Fig. 10.2.2  Unit-pulse responses of (2,2, 3)and (2, 6, 3) catchment models. []: n =2, m = 2,
g=3:0O:n=2,m=6,q=3.

3.07 and 0.99 h and a completely non-negative u.p.r. As Fig. 10.2.2 shows, the
u.p.r.’s of the (2, 2, 3) and (2, 6, 3) models are quite close over the entire range
of lags, so we should expect similar prediction performances. The smaller
model in fact has r.m.s. prediction error 9 %, higher than the larger one over
these records. A

The steady-state gain will be of most interest when we examine time-varying
models, later.

10.2.3 Checks on Residuals

The recursive algorithms of Chapter 7 correct the parameter estimates at each
update by an amount proportional to the most recent innovation y, — h'%,_,.
Although e.ls. and some other algorithms calculate the correction gain on a
logical basis, the gain will still be poor if the calculation is based on inadequate
information about the reliability of X, _, or the relation between y, and x. An
awkward and easily overlooked point is that excessive correction may give X,
such that y, —h/%, is very small but v, , —h'_ &, is large; this is particularly
likely when parameters are represented as time-varying and assigned too
much short-term variability. We must therefore keep an eye on both the
residuals sequence {y, —h/%,} and the innovations sequence {y, — h'%,_,!.
They should be similar in m.s. value if {X} is about right (Norton, 1975).
Before we compare m.s. residuals and innovations, mode! deficiencies can

be detected on line or off by noting large and time-structured residuals or
innovations.

Example 10.2.3 Figure 10.2.3 shows the innovations produced by the (2, 2, 3)

§ Ly D
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Fig. 10.2.3 (2) One-step prediction errors and (b) steady-state gain for (2,2, 3) model of
Example 10.2.2.

model of Example 10.2.2, and the accompanying parameter variation as
reflected in the steady-state gain at intervals of 5h. From about 130h,
parameter updating fails to respond to the fall in prediction accuracy during
flow rises. The prediction performance over the less severely disturbed period
from 160 h on is unimpressive, and there is sustained error even during flow
recession between 140 and 160 h. It appears that the parameters should be
treated as time-varying, by one of the methods of Section 8.1, since when they
are represented as constant, the correction gain is too low. A

Although poor performance may be detected on line as in this example, the
remedial action needed will vary. For that reason on-line adaptive
identification will be difficult, whether it modifies thc model structure and
assumptions or adjusts the correction gain directly. Experience in state
estimation, where adaptive recursive filtering is more an art than a science
(Maybeck, 1982), bears this out. With enough prior experimentation,
adaptive state-estimation algorithms can sometimes be made to work, but the
best technique in a particular case is hard to predict. In short, recursive
algorithms must be tuned oft-line.
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10.2.4 Checks on Covariance
An obvious way to assess the reliability of parameter estimates is to inspect

their estimated covariance in the algorithms which, like e.l.s. ,compute it. The
most convenient implementation of e.l.s. updates the normalised covariance

S, &P Jo} = (covk)/E[v?] (10.2.4)
The algorithm is then
S, ;hhls, . . .
Sl:Sl"l Vll+]|i%§ﬁ X =X +blhl(_l’l—h,lx,, ) (10.2.5)

I*l

The covariance of X, can be estimated as

5 S :
P, =035, ~ "t Z(_\‘,— —h!})? (10.2.6)

if 67 is assumed independent of 7. The summation should start late enough to
miss the residuals greatly affected by the poor initial guess X, -

Example 10.2.4 Figure 10.2.4 shows the estimated standard deviation piidof
the estimate of the third parameter b, which became unrealistically negative in
Example 10.1.1. It is found by (10 7 .6) with 1, = 50. Also shown are s}? and
py32/b,. The normalised s.d. sy is uninformative about the reliability of b,
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Fig. 10.2.4 Computed standard deviation of 4, , standard deviation as proportionof b, dnd
square root of principal-diagonal element of S, in model of Example 10.1.1. @: pYb, ) A s
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since ¢} is far from constant. The estimated p}/? gives a better picture, showing
for instance that the increase in 6] at about 120 h more than cancels the fall in
s34 Even piiis less than ideal, though, as it relies on a dubious estimate of 67,
too small in disturbed periods and too large in smooth recessions It can be
seen from Fig. 10.2.4 that p}i is initially erratic, partly because a7 is estimated
from a small number of residuals. Later, p}} is under-responsive, e.g. around
180 h, since ¢} is estimated from many residuals, not all still relevant. Between
120 and 210 h, p}3/|h,| warns clearly that b, is unreliable. The warning is less
clear from 85 to 120h, when 4, is unredllsncally negative. None of the
quantities in Fig. 10.2.4 seems 0 be a trustworthy guide (o reliability of A,

Further evidence that the reliability of parameter estimates cannot always
be gauged effectively by such quantities appears in the results of Example
10.2.2. The estimates d, zmd d, which implied unconvincing complex-
conjugate poles in the (2,2,3) model have pl2/d,|=0.025 and
py/lds| =0.062. We should therefore expect both estimates to be highly
reliable, yet in the (2, 6, 3) model, which has credible poles, p} */|d,| = 0.083
and pY5*/ld,| = 0.268 (a result of spreading the information in the records over
more parameter estimates). Evidently choices between model structures
cannot be made on this basis.

A final comment is that at any one point in the recursion, all the process a.r.
coefficients (a,, etc.) have similar estimated variances. seldom diftering by
more than a factor of 2. This empirical fact applies also to the process m.a.
coefficients (5, etc.) and the noise-model coefficients, and seems to be true in a
wide range of examples, not only this one. Estimated variances appear not to
be very sensitive to poor choices of model structure. A

We next examine results retrospectively (off-line) to find out whether and how
the model should be modified. Off-linec working allows us to reprocess the
records and estimates at leisure, which will prove especially helpful in models
with strongly time-varying parameters.

10.3 POST-ESTIMATION CHECKS
10.3.1 Employment of Time-Varying Models

The markedly non-stationary innovations sequence in Example 10.2.3
suggested a nced for a higher-order or time-varying or non-linear model. As it
iseven less feasible to draw general conclusions about identification from non-
linear examples than from linear ones, we shall focus on time-varying and
higher-order models. By time-varying we mean with the dynamics represented
as time-varying in the model structure; we are not thinking of the incidental
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time variation of recursive estimates of time-invariant dynamics as they settle
from inaccurate initial guesses.

As we saw in Section 8.1.5, random walks provide a flexible representation
of time-varying model coefficients x. We model x by

X, =X,_, +W,_,, Ew,_, =0, covw,_, =0 (10.3.1)

where Q is diagonal and each principal-diagonal element controls the
variation of one coefficient. In e.l.s., Q merely increases P before each new
observation is processed.

The estimation of a time-varying model is not only of interest when the final
model will be time-varying, but is also valuable as a bridge between a very
simple first-attempt model and a refined and extended time-invariant final
model. The nature of the time variation in a simple model is a good pointer to
the extra or modified features the final model should have.

To get the most benefit from the random-walk representation, we must
distinguish genuine time-variation in x from the initial variation of x as it
converges from a poor X,. The only way we can do so is by improving early
estimates retrospectively, by optimal smoothing which brings into X, all the
information about x, contained in later observations, as outlined in Section
8.1.6.

We employ time-varying models and retrospective updating extensively
from now on. However, some of the validation checks can equally be applied
to models with coefficients represented as constant.

10.3.2 Checks on Parameter Estimates

The detailed variation of parameter estimates or derived quantities such as
u.p.r. and steady-state gain can be checked against qualitative knowledge of
the physics underlying the dynamics.

Example 10.3.1 Figure 10.3.1 shows the time-varying steady-state gain g, and
coeflicient b, estimated by e.l.s. and optimal smoothing from the records of
Example 10.2.1. The (2, 6, 3) model has dead time 1. The principal-diagonal
elements of Q/c? are 10 *and 10~ for the a.r. and m.a. coefficients in A(z ")
and B(z™'). respectively, and zero for the noise polynomial C(z~"'). These
values result from trial-and-error adjustment by factors of 10 to achieve the
smallest m.s. residual obtainable without excessive time variation of the
parameters and consequent inflation of the m.s. innovation (Norton, 1975).
There is a substantial rise in ¢, during each flow rise (Fig. 10.2.1), and a fall
during dry spells. The interpretation is that more of the rainfall is absorbed
into the ground after dry spells and less after heavy rain. The increases in f,
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Fig. 10.3.1 Estimates of time-varying (a) steady-state (zero-frequency) gain and (b) b,.
Example 10.3.1.

during flow rises are even sharper than those in g, suggesting that the dead
time shortens.

Changes in the initial part of the u.p.r., as the dead time and shortest time
constant vary, are made clear in Fig. 10.3.2 by plotting the u.p.r. normalised
by its peak value, for various significant instants. Shortening of the dead time
and shortest time constant occurs during heavy rainfall between 110 and
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Fig. 10.3.2  Unit-pulse responses at various instants, normalised to have unity peak values,
Example 10.3.1. Unit pulse response is for model at @: [10h: A: 130h; W: 250 h.
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130 h. Comparison of the u.p.r.’s at 130 and 250 h finds a lengthening of the
longest time constant and a further reduction in dead time, both due to
cumulative wetting of the catchment. We conclude that ideally a non-linear
model should give rising gain, shortening dead time and lengthening overall
response as the catchment gets wetter. A

The following example illustrates (in a constant-parameter model) how a
deficiency in model structure may show up clearly in unlikely parameter values
although it is not obvious from the residuals.

Example 10.3.2 In a methionine tolerance test (Brown e¢r al., 1979), the
response of methionine concentration in the blood of a subject following a
rapid dose was

time ¢ (h) 0 0.5 0.75 125 L.75 225
response v 0 90 115 85 55 40

A plot of this response and several others suggested that they might be fitted by
V(1) =alexp(—1/t,) —exp(—1/1,)), with the aim of investigating whether the
response parameters are related to clinical condition.

Because the samples are unevenly spaced, parameters «, t; and t, were
estimated directly by non-linear least squares rather than trying to fit a
transter-function model. The Levenberg- Marquardt method of Section 4.3.3
produced

V(1) =5.41 x 10*(exp( —1/0.714) — exp(—1/0-710)).

The fit i1s moderate, with an r.m.s. error 6.03, about 16", of the r.m.s.
deviation of the samples from their mean. However, a is implausibly large and
the time constants suspiciously similar. A possible reason is omission of dead
time. Figure 10.3.3 shows how r.m.s. error, ¢, 7, and 7, were found to vary
with dead time. The optimal dead time 0.35 h reduces the r.m.s. error to 1.13
and gives credible values for a, 7, and t,, reassuring us that the improvement
in fit is not merely due to increasing by one the number of parameters
estimated from a very short record. A

10.3.3 Checks on Residuals

A straightforward plot of the residuals or innovations can say a great deal
about the adequacy of the model, as in Example 10.2.3. Another post-
estimation check often proposed is to test whether the sample autocorrelation
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Fig. 10.3.3 Variation of parameter estimates and r.m.s. output error with dead time,
methionine tolerance test, Example 10.3.2.

function of the innovations difters significantly from that of a white sequence.
i.e. zero at all non-zero lags. The idea is that a good model predicts all the
systematic part of the output, leaving an unstructured innovations sequence.
Unfortunately, sample autocorrelation is not always a good measure of
whether a sequence is structured, as we shall now see.

Example 10.3.3 Time-varying (2.2, 3) models with various dead times were
estimated from the records shown in Fig. 10.2.1, with Q asin Example 10.3.1.
The sample a.c.f. of the innovations is given in Fig. 10.3.4 for dead times | and
9. The a.c.f. for dead time 9 is quite compatible with the assumption that the
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innovations sequence is white, with only one value outside the +2 standard-
deviation lines for an uncorrelated sequence, and that only marginally. For
dead time 1 the a.c.f. looks more structured and is beyond the + 2 standard-
deviation lines at two lags and close at a third. Nevertheless, dead time 1 is far
closer to the truth. It gives smaller residuals, better predictions and smaller
estimated standard deviations for the parameter estimates. It is also consistent
with the look of the records; dead time 9 is not.
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Fig. 10.3.4 Sample autocorrelation function of innovations for models with different dead
times, Example 10.3.3. Model dead time O: 1 h; @: 9h.

The explanation for the failure of the test is that a few large innovations
dominate the sample a.c.f., the reliability of which is therefore low. For
instance, the five largest innovations for dead time 9 account for 53.6 %, of the
sum of squares. Incidentally, none of the large innovations is near the start of
the records and so avoidable by a later start for the a.c.f. calculation. We
conclude that the sample a.c.f. is helpful only it the innovations sequence is
reasonably stationary, a rare event in practice. A

We next ask whether the r.m.s. innovation is an adequate guide to the best
model. At the same time we see the effects on the innovations of retrospective
re-estimation of {x} by optimal smoothing.

Example 10.3.4 Root mean square innovations are plotted in Fig. 10.3.5a for
(2.2, 3)and (2, 6, 3) models, with and without optimal smoothing of {X}, for a
range of model dead times. In all cases x is represented as a random walk, with
Q the same as before. The optimally smoothed estimates are retrospective,
being based on the entire record of N input-output pairs rather than the
observations received up to each point in the recursion. The one-step
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“predictions” they yield are not therefore available on line. However, the
smoothed “predictions” {h/X,_, | should give a better indication ot long-
term one-step prediction performance than {hX, _,,_, |, because early in the
records the latter is still much affected by the error in the initial estimate.

In this example, optimal smoothing reduces the r.m.s. value of the
innovations by about a factor of 2. The variation with dead time and process
m.a. order is, however, much the same with and without smoothing.
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Fig. 10.3.5 (a) Variation of r.m.s. innovation with dead time, for time-varying models
obtained with and without optimal smoothing, Example 10.3.4, and (b) variation of r.m.s.
residual with dead time. Without smoothing: O: (2.2, 3) model: [J: (2. 6, 3) model. With optimal
smoothing: @: (2,2,3) model; M: (2,6,3) model.

From Fig. 10.3.5a, u,_, is the latest input essential for predicting v,; the
(2,2.3) and (2,6.3) models perform well only when w,_; is included in the
explanatory variables. Only a small deterioration in prediction performance
results when too short a dead time is specified in the (2,6, 3) model. even
though the redundant leading m.a. terms b,u, ., . etc.. contribute nothing.
Evidently fewer than six m.a. terms are necessary if the dead time is well
chosen. The closeness of the r.m.s. innovation values of the (2.2,3) and
(2. 6,3) models at dead time 1 or 2 confirms this.

Figure 10.3.5 gives the r.m.s values of residuals {y — h/x, 1 and
{y,—h'%X,y}. They demonstrate how effective optimal smoothing is in
reducing noise-induced spurious short-term variation of the parameter
estimates. Such variation makes the r.m.s. innovation three to four times the
size of the r.m.s. residual in the forward recursion. In the backward recursion
which produces {X,y1. {3, —hX )y} and {3, —h/x,yi, the s inno-
vation is only 20 to 309, larger. We conclude that the optimally smoothed
estimates {X,} contain considerably less spurious variation than the on-line
estimates {X,,}. A
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10.3.4 Simulation-Mode Runs

A severe and informative test of a model is to run it over records in simulation
mode, that is, with earlier model-output samples in place of the observed
output in the explanatory variables, generating

R T A ‘Il+bl“l N L

+ bm“!*‘r*m +Cl"’!*l ot

WUy (10.3.2)
The recursion is started with y, to y, -, for ¥, to , . Deficiencies in model
structure and poor parameter estimates or dead time give rise to obvious

systematic error in the simulation-mode output sequence.

Example 10.3.5 A (2,6, 3) model with dead time | was estimated from the
records shown in Fig. 10.2.1, with the parameters represented as constant.
Figure 10.3.6 compares the observed and simulation-mode flows over part of
the record. The shortcomings of the model are plain to see: It overestimates
the lower peak flows and underestimates the largest peak, misses the slowest
dynamics in the recessions and gives too large and rapid a response to the start
of rain after a long dry spell. These features appear much more clearly than in
the on-line residuals or innovations, for several reasons. The simulation-mode
computation deliberately omits the noise model, which on-line takes up some
of the output behaviour not captured by the input-output part of the model.
Missing or inaccurate dynamics in the model causes cumulative output error
in the simulation mode, but the error is constantly removed on-line by use of
observed flows in predicting the present flow. Finally, the parameter estimates
evolve on-line even if represented as constant with Q zero, and can follow time-
varying dynamics to some extent. This is so until the covariance P and
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Fig. 10.3.6 Observed and simulation-mode flows, Example 10.3.5. Observed flow is a
continuous line.
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correction gain have become small. Simulation-mode results are pessimistic if
the correction gain does indeed stay large enough to allow significant variation
of x.

Raising the model orders to (6,6,3) in this example improves the
simulation-mode performance very little, reinforcing the conclusion that only
time-varying representation of the a.r.m.a. coefficients will match the
dynamics betler. A

Simulation-mode results for short sections of record where the parameter
estimates of a time-varying model change rapidly help us to understand the
changes and assess whether they are sufficient. The “before change”™ and “after
change™ models are compared according to how the simulation-mode (v fits
iy} in the vicinity of the change.

Example 10.3.6 A (2,2, 3) model with dead time 1 a nd coeflicients represented
as time-varying was estimated from the records of Fig. 10.2.1. The estimates
change rapidly during the flow rise at about 120 h. Figure 10.3.7 plots the
simulation-mode | '} generated by the model asit stood at I15and 125h, fora
period covering the rise, peak and recession. The model at 115 h has far too
low a gain and is oo slow; the flow peak is 2h late. The 125h model, by
contrast, has about the right gain and places the peak at the correct time. Its
recession time constant is too short, but that is of little consequence for on-line
flow prediction; any fairly long time constant ensures good one-step
prediction while the flow changes slowly, and predictions during a recession
are in any case of little importance. We can be satistied with the change mn X
during the rise, it seems. JAN
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120 130 140
Time (h)
Fig. 10.3.7 Observed flow and simulation-mode flows given by models betore and after
changes during flow rise, Example 10.3.6. Observed flow s a continuous line. Flows modelled at
@®: 15h: O: 125h.
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10.3.5 Informal Checks

Worthwhile checks after an estimation run are for:

(1) isolated large residuals (outliers), which may reveal transcription or
instrument errors;

(ii) short periods of large and highly structured, or anomalously small,
residuals, which may show up doctored records;

(iii) abrupt and unexpected changes in the parameter estimates or
residuals, which may point to unrecorded incidents such as a feed-stock
change, unrecorded control action, change or inconsistency in the way
measurements are made or shift-to-shift variations in process-operating
practice;

(iv) input features with no apparent output consequences or output
features with no apparent cause, as shown by large residuals over short
periods, suggesting that more extensive or better measurements or a higher
sampling rate may be required;

(v) periodicity: specialised models for periodic phenomena may be
necessary, an important topic we have too little space to pursue (Box and
Jenkins, 1970).

Simulation-mode runs are effective in bringing out such features.
Example 10.3.7 Hourly records were taken of flow in the Mackintosh River

in Western Tasmania, together with rainfall at two gauges, one not far above
the stream-gauging point and the other diametrically across the catchment

125

Observed\

1
0] 100
Time (h)
Fig. 10.3.8 Observed flow and simulation-mode flows given by two separate rain-gauge
records, Example 10.3.7.
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and just outside it. Figure 10.3.8 gives 180h of observed flow and the
simulation-mode flows calculated from rainfall at each gauge on its own, using
(2.6, 3) constant-parameter models fitted to 217 h of record. Gauge | predicts
a flow peak at 32 h absent from the observed flow, and misses the peak at 70 h
almost completely. A peak at 168 h predicted by gauge 2 fails to eventuate,
and the observed peak at 114h is missed by gauge 2. Apparently the
catchment is too large and the rainfall too local for two rain gauges to be
enough. Furthermore, the absolute as well as relative success of the two gauges
varies greatly, so a weighted sum of their readings would not do, either. A

10.4 EPILOGUE

Let us finish with a story.

Once upon a time, a researcher interested in identification was invited by an
industrial research association to identify the dynamics of a certain process.
He was told records could be provided but were likely to be very noisy. He
agreed to take the job on. There was some delay in producing the records, and

] the researcher moved overseas. He was keen to do the work, even though
contact with the people producing the records was now less easy, so the
agreement stood. In due course the records arrived. Day after day he laboured
to fit a convincing model, but with no success. Finally he gave up and, rather
shamefaced, wrote to the research association to admit defeat. Many weeks
passed, until one day a letter arrived from the research association. It read:

“Dear

—_—

Thank yvou for your recent letter. We appreciate your efforts on our behalf,
and were sorry that they met with no success. You will be pleased to hear that
we can now account for the difficulty. The input record we sent you was for
Tuesday 23rd March. The output record was for Tuesday [6th March.

Yours sincerely,

FURTHER READING

Tests for absence of structure in residual sequences are discussed by Box and
Jenkins (1970), Kendall (1976) and the regression texts mentioned at the end
of Chapter 4.



304 10 MODEL VALIDATION

Identification case studies are given by Bohlin (1976), Ljung and
Soéderstrom (1983), Olson (1976), Séderstrom and Stoica (1983) and Young
(1984). Gustavsson (1975) surveys applications in the process industries and
gives 143 references.
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