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   .مينىيم مطرح را فًتًوي بلًرَاي اساسي ييژگيُاي از اي خلاصٍ فصل ايه در 

 .بفُميم بُتر را بعدي فصلُاي تا بيامًزيم را مطالبي بايد مًضًع، ايه درك براي 

  ي آوُا برجستٍ ييژگيُاي ،فًتًوي باود ساختار از اي خلاصٍ ابتدا مىظًر، ايه براي 

 دَيم، مي وشان را فًتًوي بلًرَاي ي اديات

  فيسيني اساسي فُم براي وياز مًرد ريابظ يا بىيادي قًاويه ي اساسي مفاَيم َمچىيه 

 .ميدَيم ومايش ي شرح بعدي يل فًتًوي باود ساختار اساسي تشريح از استفادٌ با را

   .بريم مي مار بٍ آمدوشان، بدست چگًوگي شرح بدين را وًاري ساختار ديگر، درحالات 

M. A. Mansouri-Birjandi 



2.1 One-Dimensional Photonic Crystal: Band Calculation 

2.1.1 Bloch Theorem 
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  A 1D periodic multilayer of dielectric films is illustrative;  

 Example: A lossless mirror (Bragg reflector) or a quarter-wave plate. 

  aA, aB : thickness of the two layers,                 

  εA, εB : dielectric constants,  

Fig. 2 .1. 1D stack of A and B films in the z direction. The 

length of the unit cell  a=aA+aB defines the periodicity of this 

1D PC. 

periodicity of this 1D PC 



2.1.1 Bloch Theorem (2) 
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  μ0 : the vacuum permeability in our nonmagnetic PC           ;(μr=1) 

  the direction of the polarization of  E(z) as the x direction and  

     that of  B(z) in the y direction.  

 Using the scalar symbol for the amplitudes, the electric field satisfies: 
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with the periodic dielectric constant ε(z) defined by 

(2.2) 



2.1.1 Bloch Theorem (3) 
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  The periodic function ε(z) ( -∞ < z < ∞) is expanded into a Fourier series: 

Here the basis functions  have periodicity of the lattice and 

defines the reciprocal lattice ''vector''. 

The Fourier coefficients are given by 

(2.3) 

(2.4) 



2.1.1 Bloch Theorem (4) 
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  the pre-factor 1/ a being the inverse of the unit cell ''volume", over which the 

integral is made. For our unit cell of 

(2.5) 

(2.4) yields 

(2.6) 

We assume the harmonic oscillation in the temporal behavior 



2.1.1 Bloch Theorem (5) 
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  To find the solutions of wave equation (2.1), a Bloch form is substituted for 

E(z), which is given by 

(2.7) 

This is a plane-wave expansion  (PWE) form of the PB solution. 

  Inserting (2.3) and (2.7) into (2.1) and putting the pre-factor of the plane 

wave  ei(k+ (2πp/a))z    to zero, we find 

(2.8) 



2.1.1 Bloch Theorem (5-2) 
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(2.7) 

Inserting (2.3) and (2.7) 

into (2.1) and putting the 

pre-factor of the plane 

wave  ei(k+ (2πp/a))z    to 

zero, we find 

(2.8) 
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(2.3) 

secular equation: معادله مشخصه 



2.1.1 Bloch Theorem (6) 
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  These are linear coupled equations for the coefficients · · · , c-l, co, c1, c2, · · 

· . 

The solutions exist only when ω  satisfies the secular equation constructed 

from the coefficients of the coupled equations: 

(2.9) 

We note the regularity of the matrix elements; the diagonal elements are 



2.1.1 Bloch Theorem (7) 
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  The Fourier components {εp} of the dielectric function ε(z) appear in each 

row in the order 

with εo present at the diagonal position of the matrix. 

 That the solutions of (2.1) could be found in this way is wholly 

attributed to the Bloch form (2.7) assumed for the solution. It satisfies 

(2.10) 

which is the Bloch theorem, to be met by any solution of a periodic system. 

  It is the wave number k that specifies the Eigen-solutions. 



2.1.1 Bloch Theorem (8) 

M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 16 

(2.11) 

  The periodicity of the solutions with respect to k:  

solution for k of (2.8) or (2.9)   =  for k + p(2π /a) with an integer p 

  These two k lead to the same form in (2.7), as seen by renumbering the 

coefficient cp, and to the same eigenvalues for ω in (2.9), as seen by using the 

regularity of the matrix elements. 

  Since the identical solutions are obtained for the set of wavenumbers k, 

k+(2π/a) , . . ., all possible normal modes of (2.9) are covered by letting k run 

only over the first Brillouin zone (BZ), which is for the present 1D system a 

region of k defined by 

For a givenvalue of k in the first BZ, the secular equation (2.9) gives the 

eigenvalues ω1, ω2, · · ·. 
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  The number of the eigenvalues is fixed by the size of the matrix truncated 

in the secular equation. 

  As k varies, each of the eigenvalues changes gradually. As a result, (2.9) 

gives a set of continuous functions of k, ω1(k), ω2(k), · · ·. 

  They are the dispersion curves of the PBs, of our 1D system. The subscript 

n of ωn(k) is usually called a band index. 

  (We sometimes use n as a superscript as in υg
(n), the group velocity of nth 

band.)  

  For the concrete case of A=Si (εA=12), B=air (εB=1), and aA=aB=a/2, the 

band structure is given in Fig. 2.2.  

2.1.1 Bloch Theorem (9) 



2.1.1 Bloch Theorem (10) 
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Fig. 2. 2. Band structure of the 1D 

photonic crystal shown in Fig. 2.1 

for A= Si and B = air. 
 

The case of aA = aB = a/2  with 

εA=12 (dielectric constant of Si in 

the visible range) and εB=1 is 

shown. 

Both the frequency ω and 

wavenumber k are shown in 

dimensionless units.  

Fig. 2.1  

Fig . 2. 2.  



M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 19 

 If we take account of a larger range of integer p in truncating the sum of 

(2.7), the matrix of the secular equation becomes bigger. 

 In calculating Fig. 2.2 we have used 11 plane waves  (- 5 ≤ p ≤ 5) in (2.7). 

 As the size of the secular determinant increases, so does the number of 

solutions for ω for a fixed k. 

 With increase of the number of plane waves, the contributions of the 

shorter waves are incorporated, for the larger the wavenumber |k + (2πp/a)| is, 

the shorter becomes the wavelength of exp i(k + (2πp/a)z. 

 As a result, if we attempt to obtain the PBS in a higher frequency range, 

we necessarily need to treat a larger secular matrix. 

2.1.1 Bloch Theorem (11) 
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 The actual trend that a PB of higher frequency is better represented by a 

larger number of plane waves, is seen in Fig. 2.3, which shows the 

calculated band frequency at k = π/a to be improved progressively with the 

increase of the cutoff size of the secular matrix. 

 It is important here to understand the PBS of a system in terms of the 

dispersion  relation of photons in the empty lattice. 

2.1.1 Bloch Theorem (12) 
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Fig. 2.3. Convergence of the band energy as a function of the number of plane 

waves used in the calculation. The result is given for the 20th band at the BZ 

edge. The parameters  used in the band calculation are the same  as those used 

in Fig. 2.2 

2.1.1 Bloch Theorem (13) 
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An empty lattice of a PC is a fictitious system which has only the 

periodicity of that PC but is identical to free space otherwise. 

  In an empty lattice, therefore, ε ±1, ε ± 2, ... all vanish identically 

except εo = 1 in (2.9). The PBS of the empty lattice is obtained by folding 

the free space dispersion curve ω = ck at the edge of the first BZ. 

This is because what remains in the secular matrix of (2.9) are solely the 

diagonal elements 

2.1.1 Bloch Theorem (13) 

  The empty-lattice test is especially useful in a PC of weak periodicity. See 

Fig. 2.4 for the PBS of a model system. 
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2.1.1 Bloch Theorem (14) 

Fig. 2.4. Band structure of a 1D 

photonic crystal of weak  

periodicity. The straight lines 

show the dispersion curves of the 

empty lattice, ω=c|k+(2πp/a)|, 

(p=0, ± 1, ±2, · · · ). 

The band structure with small 

band gaps is the one calculated 

for aA = aB = a/2 with εA= 2 and 

εB =1  
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  From (2.1) and (2.8) we can deduce an important scaling property. 

  We introduce, in place of k and ω, the dimensionless wavenumber k' and 

frequency ω', which are defined by 

2.1.2 Scaling Property of Photonic Band Structure (1) 

or 

 k' : wavenumber of photons measured in units of 2π/a  

 ω' : frequency measured in units of 2πc/a 

  reciprocal lattice points: (In the new scale of the wavevector,) · · , - 2, - 1, 0, 1, 2 · ·. 

  Thus the first BZ is defined in the k' axis to be - 0.5 < k' < 0.5. 

 When the secular equation (2.9) is rewritten using k' and ω', the size a can 

be removed everywhere.  

(2.13) 

(2.12) 
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 To see it, let us return to the Fourier component (2.4). We find 

2.1.2 Scaling Property of Photonic Band Structure (2) 

where 

έ)z’) is the dielectric function expressed using the new coordinate z' 

measured in units of a.  

(2.14) 

(2.15) 
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2.1.2 Scaling Property of Photonic Band Structure (3) 

 This final result has nothing to do with the periodicity a of the PC under  

consideration. 

  Therefore, if there are two PCs and their dielectric functions are identical 

when expressed using the lattice constant a as the unit of length, the PBSs of 

the two systems are the same, when exhibited using ω' as functions of k'.  

(2.16) 

  The conclusion is that in terms of the dimensionless quantities of k', ω' and 

έp, (2.8) is transformed to 
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  Two PCs have the same PBS when expressed using ω' and k' , if εA 

and εB of the two cases are identical. 

 In the scaled units, the dispersion curve ω = ck of a free photon 

gives ω' = 0.5 at the BZ edge k' = ±0.5. 

  Because of these scaling properties, PBSs are usually discussed and 

displayed in these scaled units. 

2.1.2 Scaling Property of Photonic Band Structure (4) 

 For example, two PCs of repeated A and B:  

and the second one having: 

the first having: 
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  In the above example, the BZ edge ±0.5 corresponds to the 

wavelength of the PB of the order of microns and millimeters, 

respectively. 

  In two systems having such a huge difference of scales, and hence 

involving totally different wavelengths of PBs, identical values of 

dielectric functions are hardly expected. 

2.1.2 Scaling Property of Photonic Band Structure (5) 
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2.2 One-Dimensional Photonic Crystal:  (1) 
Various Concepts and Characteristic Features of 

Photonic Bands 

In the calculated PBS, several characteristic features of BSs are seen, which 

are, in fact, common not only in 1D but also in 2D and 3D PCs. Let us  again 

take a look at Fig. 2.2.  

2.2.1   First Band at k ≈ 0 

2.2.2   Photonic Bands for k near the BZ Boundary 

2.2.3   Tendency of Photon Localization: Dielectric and Air Bands 

2.2.4   Slow Group Velocity 

 2.2.5   Density of States 
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  The first band, the lowest of all in 

frequency, has a linear dispersion relation 

near the center of the BZ.  

  In view of the empty-lattice test, this 

feature is natural; since the state with k ≈ 

0 in the first band has a wavelength much 

longer than the lattice constant. (λ > a)  

2.2 One-Dimensional Photonic Crystal:  (2) 
Various Concepts and Characteristic Features of Photonic Bands 

2.2.1 First Band at k ≈ 0 



M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 31 

2.2 One-Dimensional Photonic Crystal:  (3) 
Various Concepts and Characteristic Features of Photonic Bands 

 In the BZ edge, the dispersion curves are gradually curved.  

 At the edge k' = 0.5, the PB state is an equal admixture of eikx and e- ikx and 

propagates neither to right nor to left by forming a standing wave. 

 This is why the group velocity υg of the photon vanishes there: 

 Beyond the BG, there is a partner of the standing-wave with υg = 0 

at the BZ edge. 

2.2.2 Photonic Bands for k near the BZ Boundary 

(2.17) 
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  To show the difference of the two states at the BZ edges, the intensity of 

the electric field is plotted in Fig. 2.5. 

  Below the BG (band n = 1) has a higher intensity within the region of 

higher ε-value, while the reverse is true for the state above the BG. 

 In this sense we often call the lower band of the pair a dielectric band  

 and the higher band an air band, having in mind a periodic repetition of 

dielectric and air. 

  This type of distribution of the electric field is more or less seen in the pair 

of states at the BZ edge in the higher frequency range, though the contrast 

gets gradually obscured due to the nodes appearing both in dielectric and air 

regions. 

2.2 One-Dimensional Photonic Crystal:  (4) 
Various Concepts and Characteristic Features of Photonic Bands 

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands 
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2.2 One-Dimensional Photonic Crystal:  (5) 
Various Concepts and Characteristic Features of Photonic Bands 

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands 

Fig. 2.5. Squared electric field as a function of z of the states at the BZ edge. 

The solid curve shows the first band (dielectric band) and the dashed curve  

shows the second band (air band) for the band structure shown in Fig. 2.2 
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2.2 One-Dimensional Photonic Crystal:  (6) 
Various Concepts and Characteristic Features of Photonic Bands 

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands 

 The contrasting feature of the two bands stems from the general trend for 

photons that a higher ε induces a stronger localization of photons. To see it, 

let us return to the wave equation (2.1).  

(2.18) 
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 For the stationary state of ω, we have ∂2/∂t2 ≈ - ω2. Adding (ω/c)2E(z) on 

both side of (2.1) then yields 
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2.2 One-Dimensional Photonic Crystal:  (7) 
Various Concepts and Characteristic Features of Photonic Bands 

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands 

  To compare it with the 

Schrodinger equation 

  By comparison, we see at once that 

(2.19) 

plays the role of the potential V(z) (the dimensions are not of potential,  

however). 

  Therefore we see that a substance with ε higher than unity works as an 

attractive potential relative to free space, by having a negative potential. 

(2.18) 

for a particle of mass m  and energy eigenvalue E in the potential energy 

V(z).  
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2.2 One-Dimensional Photonic Crystal:  (7) 
Various Concepts and Characteristic Features of Photonic Bands 

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands 

  To compare it with the 

Schrodinger equation 

  By 

comparison

,  

(2.19) 

  Therefore we see that a substance with ε >1 works as an attractive 

potential relative to free space, by having a negative potential. 

(2.18) 

for a particle of mass m  and energy eigenvalue E in the potential energy 

V(z).  

plays the role of the potential V(z). 

(however the dimensions are not of 

potential,). 
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 This is why the band having a higher electric-field intensity at A (εA = 12) than B 

(εB = 1) is found to have a lower frequency. 

 The quantity ω2/c2 plays the role of an energy eigenvalue of the electron. 

 Because ω2/c2 is always positive in the photonic case, there cannot be a bound 

state in an ordinary sense,  

 i.e., the situation of a photon being localized completely in an attractive 

potential can never be achieved. 

 The leakage of photons as an outflow of electromagnetic energy is thus 

inevitable in the photonic case. 

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands 

2.2 One-Dimensional Photonic Crystal:  (8) 
Various Concepts and Characteristic Features of Photonic Bands 
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Table 1. Electron-photon similarity 
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(b) the reflected intensity 

indicating the PBG 

Bragg’s mirror 

(a) Λ is the lattice period; 

m

an
B

02
 

k B
n

n





0
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Examples of 2D-PBG and their first Brillouin’s zone:  

(a) square cell, (b) triangular and (c) hexagonal; and 

(d) definition of the lattice radius r and period a. 
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Figure 1.6. Case of index guiding: light-line 
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Figure 1.9. The dispersion characteristics of optical modes in a periodic 

medium are widely determined by diffraction processes and optical mode 

coupling properties 
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Figure 1.10. Photonic band gap (PBG) and bandwidth of a Bragg reflector 
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Figure 1.11. Air band and dielectric band at the photonic band edges 
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Figure 1.13. Donor or acceptor type localized state 
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Figure 1.16. 1D photonic crystal in a dielectric waveguide: coupling processes 

between propagating and counter-propagating waves, and between waveguided 

and radiated mode 
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Figure 1.17. Coupling between waveguided modes of different orders (here with 

the same even symmetry: the only crossing point where coupling is possible is 

shown in the circle) 
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Figure 1.18. Dispersion characteristics of a localized defect or of an optical cavity: 

there always exist components of the k vector located above the light-line 
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Figure 1.25. Direct and reciprocal triangular lattices. The two so called ΓΜ and ΓΚ high 

symmetry directions of the crystal are shown. 

The first Brillouin zone is included in the hexagon drawn in the reciprocal lattice. b is the 

module of the base vector of the reciprocal lattice. 
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Figure 1.26. Conical surface dispersion of a two-dimensional 

homogenous medium 
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  Photons propagate very slowly near the BZ 

edge due to the slowing down of  υg. 

  The slow υg is a feature generally observed in 

the PBS not only in the BZ edge region, but also 

in the vicinity of the Γ point, as seen in Fig. 2.2. 

 At k = 0, υg of each of the bands vanishes. 

2.2.4 Slow Group Velocity 

  In 2D and 3D structures, the band repulsion takes place more often than in 

1D PCs and makes the band edges appear frequently inside the BZ. 

  Since the states at band edges have vanishing υg, we encounter the feature 

of small υg more often in a 2D or 3D PC than in a simple 1D system. 
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 The density of states (DOS) of photons, ρ(ω) , is defined so that the number 

of states N (ω) within the frequency region [ω, ω + Δω] of an infinitesimally 

small interval Δω is given by 

2.2.5 Density of States  (1) 

 Since k = 2πn/L , L being the size of the 1D system, 

number N(ω) = number of the allowed k values within the interval Δk 

determined by the prescribed allowance Δω. 

  From Fig. 2.6, (a small part of the dispersion curve of a band ω = ωn(k)),  

we have, for an infinitesimal Δω, 

(2.20) 

(2.21) 
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2.2.5 Density of States  (2) 

Fig. 2.6. DOS versus the 

curvature of photonic  bands. 

As a band becomes flatter, the 

number of the states lying in a 

given range Δω increases. 

The spacing between the 

quantized values of k is 2π/L. 
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2.2.5 Density of States  (3) 

(2.21) 

  The prefactor 2 of being given to take account of the two polarizations of 

photons propagating in the z direction of the system shown in Fig. 2.1. 

  The allowance Δk for a given Δω increases with the decrease of the 

curvature of the dispersion curve. 

(2.22

) 

Dividing Δk by the spacing 2π/L of the quantization yields N(ω). Therefore, 

it follows that 

  The DOS is thus related to the inverse of  υg , 
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2.2.5 Density of States  (4) 

  The feature of enhanced DOS: (group velocity anomaly) 

  For example, the emission probability of photons of frequency ω from an 

atom in a PC is proportional to ρ(ω) and it is natural to expect an enhanced 

light emission from the atoms at the frequency of the DOS peaks. 

 The suppression of the DOS: by the existence of the region of zero DOS at the 

frequency regions of PBGs. 

 In the PBG regions we have the zero emission rate of photons from an atom. 

 Control of the light emission rate by designing a PC to meet one demand and 

another is one of the ultimate goals of the technological application of PCs. 

 One reason for the increasing demand for high-quality 2D and 3D systems is that 

these characteristics of group velocity or DOS manifest themselves much more 

dramatically in a PC of higher dimension. 
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 Finite PCs, especially those with finite thickness in one direction and 

infinite extension in the other two directions, are treated repeatedly both 

theoretically and experimentally. 

 In such a system, called in this book a slab type PC or simply a slab PC, 

it is important to consider whether light coming from an outside homogeneous 

medium can couple to the inside modes through the entrance boundary plane. 

 If there is a coupling the mode is called a leaky mode because it is not an 

eigenmode in a strict sense because of its leakage to the outer space through the 

coupling. 

 The leakage gives a finite lifetime to the mode. 

2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band 



M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 57 

2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (2) 

  In a homogeneous substance of uniform refractive index n the light cone 

is literally a cone in the (ω, k||) space defined by the relation: 

(2.23) 

(2.24) 

  A mode with wavevector k1 and frequency ω1 = ω(k1) of an outside region 

can be coupled to one with k2 and ω2 in a PC. 

  The spatial dispersion ω2(k2) is determined by the PBS calculation. 

  In this coupling process, the conservation of both energy and k||, the 

wavevector component parallel to the surface, is established between the two 

outside fields , such that 
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (3) 

  When the region is air with n = 1 and the x axis 

is chosen in the direction of k ||, it holds that 

 we often call the light cone as the light line. 

 The concept of t he light cone was first introduced as early as 1966 by K. L. 

Kliewer and R. Fuchs, as a concept used to distinguish the leaky and nonleak'Y 

modes of a dielectric slab. 

 In PCs, this concept was first used in 1982 to examine the photonic modes of a 

periodic system of finite thickness, a slab PC in the present terminology, by Inoue 

and Ohtaka. 

 The classification between leaky and nonleaky modes is still an important 

fundamental in the technological application of P Cs, because a PC of practical use 

is always bounded by surfaces, as in slab-type PCs and PC fibers. 

(2.25) 

(2.24) 
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Fig. 2. 7. A schematic drawing of refraction at a boundary 

2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (4) 

n1 > n2  
  We take the boundary to 

be  the xy plane, with n1 for 

z < 0, and  n2 for z > 0 with 

n1 > n2 . 

  The plane of incidence is 

taken as the xz plane with 

the incident angle of θ1  
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (5) 

 In Fig. 2.8 we plot two straight lines, 

one corresponding to a light line (the 

dispersion relation) in medium 1, and the 

other in medium 2, respectively, which 

are expressed as ω = (c / n1)k || with i 

referred to 1 or 2. 

 These lines just correspond to the 

cases where light propagates in parallel 

to the plane in the respective media. 

 Suppose in medium 1 one mode on 

the point B has the same energy ω as that 

on A. 

Fig. 2.8. A schematic drawing of an 

example explaining the concept of the light 

line 
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (6) 

  Since the magnitude of k of the mode with the k|| component is given by 

ω = (c/n1)k, the mode is nothing other than one propagating with an angle θ1 

such that 

 Therefore, all modes in the medium are presented on the left-hand side of the 

line: any light modes do not exist on the right-hand side. 

  The same is also true with medium 2. As a consequence, light that is incident on 

the boundary plane with wand k|| on the left-hand side of medium 2 can go 

inside medium 2 with the refraction angle θ2 given by 

(2.26) 

(2.27) 
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 On the other hand, light with ω and k|| on the right-hand side cannot go inside 

medium 2, but is totally reflected back into medium 1. 

  Therefore, from the above two equations the critical condition is given by the light 

line of medium 2, such that 

 In the case of total reflection θ > θc, there is no wave propagating at large 

distances from the boundary in medium 2. 

  However, this does not indicate that the light field vanishes completely in medium 

2 for z > 0. 

  Namely, the evanescent wave can propagate along the boundary plane, the 

wavevector kx of which is expressed as 

(2.28) 

(2.29) 

2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (7) 
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (8) 

 Those features which discriminate 

the leaky modes and guided modes 

are shown in Fig. 2.9. See Sects. 

3.4 and 4.3 for leaky modes. 

Fig. 2.9. Leaky modes and guided 

modes. The outside fields are those of 

plane-wave light in the leaky modes, 

while they are evanescent light in the 

guided modes. 
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (9) 

Fig. 2.10. The off-axis modes 

in a 1D multiple-Layer film. 

Two layers A and B are 

stacked in the z direction. 

The dispersion curves of the 

modes of ky = 0 and polarized 

in the y direction are plotted as 

functions of kz, the boundary 

of the grey regions being 

given by the dispersion curve 

with kz = 0 or kz = π/a. 

From the points at kx = 0, the 

dispersion curves of the 

modes of kx = 0 are drawn on 

the left band side in the first 

BZ ;  0 < kz < π / a 
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (10) 

 As the simplest case, let us consider the off-axis modes, i.e., the mode 

with k not perpendicular to the layers or film, in the multiple-layers film 

described. 

 The structure considered here is the same as that shown in Fig. 2.1, 

except that it is not infinitely long but semi-infinite by the presence of 

the surface. 

  Let kx be the wavevector component parallel to the surface between the 

semi-infinite 1D PC and air. 

 Now the guided mode is specified by kz and kx. 
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2.3 Concept of the Light Cone and Example 
of One-Dimensional Off-Axis Band  (11) 

 In Fig. 2.10 is shown the dispersion of the TM (s-polarized) guided 

modes of the 1D PC used in Fig. 2.2. 

 The band structure with kx = 0 is given on the left as a function of kz, 

which is reproduced from Fig. 2.2. 

 The shaded regions of the band structure on the right show the continuum 

of bands coming from the freedom of the kz values. 

 For a multilayer stack of finite thickness, bounded by a surface parallel to 

the xy plane, only the modes below the light line, shown by the dashed 

line in the figure, are true guided modes confined completely inside the 

PC, while those above the light line are actually the leaky modes which 

can escape from the PC into air. 
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2.4 Band Structures of 
Two- and Three-Dimensional Photonic Crystals 

2.4.1 Examples of Two-Dimensional Photonic Band 

 As for PBS in 2D and 3D PCs, many examples will be presented in the 

subsequent chapters in relation to the concrete samples fabricated. 

 So, here we show only a few typica1 examples. 

 First, in Fig. 2.11 we show an example of a 2D PC with the square lattice 

of dielectric rods of circular cross-section.  

 The first BZ corresponding to this structure is also a square lattice, where 

there exist two high symmetry points, i.e. , X (a/π, 0) and M (a/π, a/π) 

other than the  Γ point (0, 0) (for the naming of these special points, see 

Appendix A) . 
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2.4.1 Examples of Two-Dimensional Photonic Band (2) 

 The eigenmodes for this structure can be specified by the polarization. That is, 

those are classified into the E(H )-polarized modes with E(H) parallel to the 

dielectric cylinders, which are called TM-(TE-) modes, respectively. 

 It is seen that an ample variety of PBSs manifest themselves in the 2D PC as 

compared to 1D PCs. 

 First, each band belongs to the specific irreducible representation of the relevant 

point group that depends not only on polarization, but also on the k direction. 

 For example, if the mirror plane is present for the lattice, the respective bands are 

classified to even or odd symmetry ones according as E becomes symmetric or 

anti-symmetric with respect to the mirror plane. 

 In this case the odd modes, or odd-parity modes cannot be coupled to the 

external plane wave at normal incidence for symmetric reasons. 

 This situation is met frequently in 2D and 3D P Cs, although it does not occur in 

1D PCs. Those modes are called the "uncoupled modes“. 
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2.4.1 Examples of Two-Dimensional Photonic Band (3) 

Fig. 2.11. Photonic band structure of a 2D PC of cylinders arrayed in a square 

lattice: TM bands (left) and TE bands (right ). The cylinders of ε = 12 (Si) are 

arrayed in a lattice in the air. The ratio of the radius r of cylinders to a is r /a = 

0.3. The states X1 through X5 at the X point are examined below 
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2.4.1 Examples of Two-Dimensional Photonic Band (4) 

 Second, there exist three PBGs for TM-modes, although the PBG common to both 

polarized modes does not open in this case. 

 Third, there are a number of very narrow bands and the υg-anomalies occur not 

only at the zone edge but also in the interior of the first BZ. 

 The appearance of so many narrow bands can be understood by the empty lattice 

test. 

 Figure 2.12 shows the BS of the empty-lattice for k|| along the Γ-X axis, i.e., k|| = 

(kx, 0) as a function of kx. 

 In obtaining it, we drew the dispersion curves for plane-wave light of wavevector 

k|| + h|| 

with h|| given by 

(2.30) 

(2.31) 

 etc. and plotted the curves by putting k|| = (kx, 0).  

 In short, some of them originate from the flat bands in the empty 2D lattice; 

notice that this is not the case for 1D. 
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2.4.1 Examples of Two-Dimensional Photonic Band (5) 

Fig. 2.12. Photonic band structure of empty lattice: (a) 1D photonic 

crystal and (b) 2D photonic crystal of square lattice (Γ- X) direction 
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2.4.1 Examples of Two-Dimensional Photonic Band (6) 

 Next, the eigenvector of the PB of (nk|| ) gives the intensity of the electric 

field, |Enk|| ( r )|
2 , associated with that Bloch state. 

 Without specifying the normalization of the eigenvectors, Fig. 2.13 shows 

the intensity of the electric field |Enk|| ( r )|
2 in arbitrary units, for the bands 

n = 1 and 2 of Fig. 2.11 at the X point of the first BZ. 

 We see the typical feature of a dielectric band in the lower band-state X1. 

The air-band characteristic of the X2 state is less obvious than the 

dielectric-band feature of X1, however. 

 As for the band states with higher energy marked by X3 to X5 , a similar 

plot of intensity reveals that the distinction between the dielectric and air 

bands becomes progressively vague, since the mixing among the 

increasing number of plane waves of shorter wavelengths comes in. 
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2.4.1 Examples of Two-Dimensional Photonic Band (7) 

Fig. 2.13. Plot of intensity |E( r )|2 of the states Xl and X2 of Fig. 2.11 (arbitrary 

units). The state X1 (left) has a typical dielectric-band character in (a) and band 

X2 (right) shows an air-band character in (b). 
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2.4.1 Examples of Two-Dimensional Photonic Band (8) 

 In Fig. 2.14 is shown another example of a 2D PBS for a triangular lattice of 

air holes; the 2D BZ corresponding to this structure is shown in Appendix A. 

 It is well-known that the PBS for this structure exhibits a 2D PBG,  

irrespective of polarization, as is seen in Fig. 2.14, if the difference of c: 

between the background material and air (holes) is large enough; in this 

example the difference is 12 used for Si against 1. 

 Rather unusually, for this structure the gap does not open for E-polarized 

modes between the lowest (first) and the second-lowest (second) bands, but 

instead, it does between the higher-energy bands. 

 This is because the first and second bands for E-polarized modes are 

degenerate at the K point [9). 

 Note that the notation X and J are sometimes used in the literature {also in 

this book) in place of M and K, respectively. 
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2.4.1 Examples of Two-Dimensional Photonic Band (9) 

Fig. 2.14. An example of 2D photonic band structure with a 2D photonic 

band gap (a triangular air-hole structure) 
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2.4.2 Example of Three-Dimensional Photonic Band 

 In Fig. 2.15 is shown an example of a calculated PBS with a full 3D BG 

in an inverse diamond lattice structure, which is  composed of the 

respective tetra-bonds consisting of air-rods  (diameter R) in the 

dielectric of ε = 7 ; R/a = 0.1 is adopted in calculation. 

 The shape of the first BZ  corresponding to this structure is the face-

centered cubic (fcc) lattice, as shown in Appendix A. 

 There, it is seen that a full BG opens in all directions. 
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2.4.2 Example of Three-Dimensional Photonic Band (2) 

Fig. 2.15. An example of 3D photonic band structure with the diamond lattice 

structure (a sample of inverse diamond structure) 
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2.4.2 Example of Three-Dimensional Photonic Band (3) 

 This PBG corresponds to the well-known BG of electron in semiconductors  such 

as GaAs, which also has the same BZ structure of the fcc lattice. 

 As is well known, a BG for GaAs exists between the valence and conduction 

bands. 

 Notice that the two band structures (photonic and electronic) resemble each other 

in many respects, which arises from the resemblance of the two different wave 

equations. 

 In particular, the existence of the BG is common between the two. However, the 

two differ from each other in some respects. 

 For example, in the photon case one can excite any state, while in the electron 

case one can do so only when the state is not occupied. 

 This is because the photon is a boson governed by Bose-Einstein statistics, 

whereas the electron is a fermion governed by Fermi- Dirac statistics. 
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 How can we experimentally get information about individual PBSs 

corresponding to a sample? We explain very briefly the methods below. 

2.5 How to Experimentally Explore the Band Structure (1) 

 A simple and reliable method is to observe either the transmittance (T) or 

reflectance (R) spectrum, or both in general, as a function of wavelength 

over a broad range.  

 We need to do so with the propagation direction of incident light varied. 

This can be done by preparing samples with the surface normal directed in 

several high-symmetry directions such as Γ - K, Γ- M, etc.  

 Therefore it needs rather a troublesome task. 

 However, in some simple cases, information about such spectra only for 

the particular directions may suffice for the purpose. 
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 For wavelengths corresponding to a stop band, T drops very much, 

whereas R should be unity, since there exist no photon modes inside in that 

direction for the external light to couple to, causing it to be reflected 

completely. 

 However, it is important to note that the reverse is not necessarily true. 

 In other words, observation that the external light is completely or totally 

reflected over a wavelength range does not necessarily indicate that the 

range corresponds to a stop band. 

 This is because complete reflection or drastic attenuation of T occurs for a 

range of the uncoupled band, which has already been explained in the 

preceding section. 

 Next, to what extent the incident light can couple to an individual band 

(coupled band) of a PC depends on the band itself, or the character of the 

band. 

2.5 How to Experimentally Explore the Band Structure (2) 
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 Finally, in the case of a practical sample T drops considerably even for a 

coupled band, whenever the quality of the sample under study is not good. 

 Also, another problem exists from a practical point of view in that we have 

to make a measurement by using a sample with finite periods, although the 

PBS is calculated, with a few exceptions, for an infinitely long sample.  

 If the number of periods of the sample is too small, say, 5 or 10, the 

correspondence of the T-spectrum between the observed and the calculated 

PBS is not good. 

 Except these points, the correspondence is very good between theories and 

experiments carried out for PCs. 

 This is because the calculated PBS is reliable enough due primarily to t he 

lack of photon- photon scattering; in contrast the one-electron 

approximation is often not good in the electronic case because of the 

existence of electron-electron and electron- phonon (vibration) interactions. 

2.5 How to Experimentally Explore the Band Structure (3) 
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 Thus far we have described and discussed a regular or completely periodic PC 

lattice, i.e., one that can be called a bulk PC. 

 It is rather easy to technically introduce a defect or disorder to a particular lattice 

point or place, or thereby. 

 As a consequence, this kind of defect causes, generally speaking, breakdown of the 

symmetry that a PC has originally possessed. 

 An eigen-mode due to the defect is possible to newly manifest itself in a PBG. 

 As an example of the zero- dimensional (0D) or point defect in a 1D and 2D PC of 

air cylinder or dielectric pillar type, we have only to enlarge or lessen the size 

(diameter), for example, of only one air cylinder at the particular lattice point, as 

compared to others, or the surrounding ones; the special case of this is to leave it 

without any air cylinder. 

 Such examples of an enlarged air cylinder and without (missing) air cylinder in a 2D 

PC are schematically shown in Fig. 2.16(a). 

2.6 Defect Modes (1) 
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2.6 Defect Modes (2) 

Fig. 2 .16. A schematic drawing of examples of the defect modes in a 2D PC. (a) 

0D (point) defect modes (top view) in an array of air holes; the acceptor (upper) 

and donor (lower) types, and (b) 1D (tine) defect mode in an array of dielectric 

pillars 
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 Another typical example of a 0D defect in a 1D PC is to make the period at one 

lattice position different, as compared to the others. 

 This kind of 0D defect mode corresponds to an impurity state, either the donor or the 

acceptor state of electrons in a semiconductor; in the case of a different size of air 

hole introduced, increasing (decreasing) the hole size that causes decrease (increase) 

of the dielectric constant there corresponds to an acceptor (donor) state for electrons.  

 In the case of PCs, in addition to the above-mentioned 0D defects, 1D and 2D types 

of defects, i.e., line and plane defects, can also be created, which are also important 

in controlling light or developing unique devices in optoelectronics. 

 As an example of a 1D defect, we create it in a 2D PC of air cylinders or dielectric 

pillars by leaving a single line of air cylinder imperforated, or introducing a single 

line of air, as is schematically shown in Fig. 2.16(b). 

 One can also create it in a 3D PC, e.g., of air-hole type in such a way that we leave a 

single line of holes unopened. 

 A typical example of a 2D defect is such that one lattice plane is left homogeneous in 

a 3D PC. 

2.6 Defect Modes (3) 
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 Now, introducing this kind of defect into the bulk PC creates newly an 

eigenmode or an eigen band called a defect-mode or a defect-band, 

generally speaking, in a BG: the point-defect modes in a BG correspond 

to the impurity modes in the  electronic case, or in semiconductor. 

 It is noted that the line defect band exhibits a ω - k dispersion along the 

direction, which will be repeatedly discussed in later chapters, e.g., in 

Chaps. 7, 11 and 12. 

2.6 Defect Modes (4) 
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2.7 Common and Fundamental Features 
of Photonic Band Structure 

In Sec. 2.2, based on an example we have already explained several basic 

features of the 1D PBS. This section is devoted to newly summarize the 

unique and outstanding features that 2D and 3D PCs generally exhibit. As 

will be shown in the next section, PCs are very well suited for controlling 

light, i.e., both the radiation field and light propagation characteristics. This 

important potential is primarily based on one or two of the following features: 

1. Existence of photonic band gap 

2. Existence of defect or local mode 

3. Anomalous group velocity 

4. Remarkable polarization dependence 

5. Manifestation of peculiar band 

6. Others 

Let us make a survey of each item one by one, taking into account how to 

utilize those for observing new phenomena and developing PC-based devices. 
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 A question arises as to in what cases a full PBG opens. 

 There exist rather severe requisites to satisfy for a 3D PC to possess such a PBG. 

Those are related to the crystalline structure, the difference of the relevant E-

values, and the occupation ratio f between two constituted materials. It is generally 

recognized that the diamond lattice structure is the best in order to obtain a full 

PBG as well as a wide gap. This is primarily because the shape of the first BZ is 

close to the sphere (most sphere like) as compared to other structures such as the 

simple or body-centered cubic one. 

 This feature is advantageous to opening a gap between the second- and third-lowest 

bands. However, this is not the case for the higher bands. In fact, it is known that a 

full PBG opens for such higher bands in a face-centered cubic lattice [12] and even 

in the simple cubic lattice [13]. 

 In Fig. 2.17 is shown the BS. It is remarked that in this case the conditions 

regarding the contrast of € as well as f are relatively severe, and more importantly, 

the relative gap width L).wjwo is not large enough, where L). w and wo refer to the 

width and the center frequency of the gap, respectively. 

2.7.1 Existence of Photonic Band Gap (1) 



M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 88 

F ig. 2.17. Another example of 30 photonic band structure for square-

shaped air rods in a simple cubic lattice: εb = 13, εa = 1 and f = 0.83, quoted 

from (13] by courtesy or Professor J. W. Haus 

2.7.1 Existence of Photonic Band Gap (2) 
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In contrast, it is rather easier to design a sample with a 2D PBG. In both 2D 

and 3D cases, in a given crystal structure there is, as far as the structure is 

adequate, a trend that as the ratio of € A/ E B is larger, a gap is easier to 

open, where A and B refer to the two constituted materials. 

Here we mention how the term PBG is used. It is better to use the 

terminology "PBG" only for the complete BG already defined. However, it 

is true that in some cases people in this field use this term even for the case 

where there is no such BG, or for an incomplete BG: in physics we have 

used the term of "stop band" for the latter case. Therefore, in order to avoid 

confusion , we will use hereafter in this book the term "a full PBG" only in a 

strict sense.  

2.7.1 Existence of Photonic Band Gap (3) 
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In this connection, it is important to note that the situation for a 2D PC slab (a sort of 

quasi-3D PC) is substantially different from the 2D case; it differs also from the 3D 

case. Namely, because of the existence of the socaJJed light cone, already explained in 

Sect. 2.3, any complete BG should not exist within the 20 slab plane: inside the light 

cone there are, in principle, continuous extended states (not eigenmodes for the PC 

slab) for arbitrary wavelength. However, we define a 2D PBG even for this case in 

such a manner that any guided modes (eigenmodes) of the PC slab are missing over a 

specific energy range in all 2D directions. This will be presented in more detail in 

Chap. 6.  

Now we mention briefly a few examples of direct application of a full BG. Fi.rst, 

unique mirrors for complete reflection without loss can evidently be developed, and in 

fact, some of those have already been commercially available. Next, it can be utilized 

for controlling the radiation from matter. For example, an emission from atoms placed 

inside a PC with a full 3D PBG is inhibited when the photon energy is in an energy 

range of the PBG. This is because the emission probability is zero, since the DOS for 

photons within the PBG vanishes; the probability in the radiative process is 

proportional to the DOS. In order to completely suppress the spontaneous emission 

from atoms one needs to use a 3D PC with a full 3D PBG. 

2.7.1 Existence of Photonic Band Gap (4) 
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2.7.1 Existence of Photonic Band Gap (5) 

On the other hand, whether the probability of the spontaneous emission 

becomes enhanced or not at the edge of a full 3D PBG as compared to that in 

the  homogeneous case with the same effective refractive index is not clear. 

First of all, the radiative lifetime of an oscillating electric dipole placed inside 

a PC depends not only on the DOS per unit volume, but also on a few other 

factors. Namely, it depends on whether the dipole is placed in the constituent 

material with the higher or lower dielectric constant, and on the oscillation 

direction, i.e., the orientation of polarization. 
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2.7.1 Existence of Photonic Band Gap (6) 

Furthermore, the probability of the spontaneous emission depends also on in 

what direction the emission is observed. So, generally speaking, the 

probability is possible to be enhanced or reduced in the case of a 3D PC. In 

particular, the probability is expected to be enhanced to some extent around 

the band edge depending on the case. The same is also true in the case for a 

2D BG. In contrast, there exists the case where t he probability should 

increase in a divergent way at the edge of a BG for a 1D PC. This problem in 

quantum electrodynamics will be discussed in a bit more detail in Chap. 10. 

It is important to note that in many cases we can control the radiation field 

and light propagation properties with use of a 3D PC without such a full PBG, 

except for some cases including complete suppression of the spontaneous 

emission described above. For the same reason, 2D PCs also serve for 

controlling light. Thus, we should be able to develop a variety of devices by 

using such a PC, irrespective of the 2D or 3D nature. 
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The existence of the defect modes has already been stated in the preceding 

section, with special emphasis placed on how to create those. Here we discuss 

the physical property to some extent. By exciting this mode, light can be 

localized around the defect or the region with disorder. Therefore, the defect 

mode is localized both energetica1ly and spatially, as stated in Sect. 2.6. In the 

OD case, where the mode is localized in a small spatial region, the mode does 

not have a definite wavevector k because of the uncertainty principle 

concerning k versus r in quantum mechanics. This feature is very similar to that 

for the impurity state, i.e., the donor or acceptor state, for electrons in a BG, as 

already described in Sect. 2.6. In contrast to the point-defect (OD) case, the 

line-defect mode shows a particular dispersion in a BG. Namely, with k1 

defined to be the wavevector in the direction along the line defect, the mode 

frequency w varies with kt in the gap. 

2.7.2 Existence of Defect or Local Modes (1) 
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An example of such a line defect mode in a 2D PC of a triangular array of 

dielectric pillars in air is shown in Fig. 2.18. The present line-defect is 

composed of one row of missing pillars along the r - K direction (adopted as 

the X axis) I so the band structure for the TM-modes with k t parallel to the x 

axis is shown in Fig. 2.18 with kx used for lkd; the x and y axes are taken 

within the 2D plane, whereas 

the z axis is in the direction of the pillar axis. In Fig. 2.18 the hatched areas are 

obtained by projecting all the bands wn(kx, ky) in the first BZ onto the w - kx 

plane, these bands being often called the slab bands in the literature. The 

dispersion relation of the line-defect bands are shown by the thin curves 

between the hatched regions. 

2.7.2 Existence of Defect or Local Modes (2) 
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2.7.2 Existence of Defect or Local Modes (3) 

Fig. 2.18. Dispersion 

feat me of the line-

defect modes in a 20 

PC of dielectric 

pillars of c = 12 

arrayed in the 

triangular lattice in 

free space. The 

electric fields of the 

defect modes and the 

projected bands are 

both polarized in 

directions of the 

pillar axis. The thick 

line is the air light-

line w = ck:r: 
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The solid and dotted curves show the even and odd defect modes, with the 

parity of the defect modes defined according as Ez is symmetric and 

antisymroetric with respect to the mirror plane (xz plane). The parameters are r 

/a = 0.3 and c = 12, r being the radius of pillars and a the lattice constant. 

Needless to say, the defect modes shown here provide the light propagation 

along the x direction. 

2.7.2 Existence of Defect or Local Modes (4) 
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Let us consider in a bit more detail the significance of localization of the 

electric (magnetic) field due to the defect or disorder mode. That light without 

real mass can be localized, e.g., around a particular point in space, just like the 

case for an electron, is very important from the physical point of view; this 

phenomenon of light localization should be discriminated from the case where 

light is confined with use of the specific boundaries such as metal walls. 

Anyway, the OD defect mode can be utilized, for example, either as an 

extremely small optical cavity, or as a very narrow band-pass filter. On the 

other band, the line-defect mode already described is considered to serve as a 

novel type of waveguide without any propagation loss even at an abruptly bent 

corner [16, 17]. This type of waveguide, called a PC waveguide, becomes at 

present very important [18] (see also the literature in Chaps. 11 and 12, where 

this PC waveguide is discussed in more detail). 

2.7.2 Existence of Defect or Local Modes (5) 
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Both υg and group velocity dispersion (GVD) play an important role in light 

propagation. Theoretically, υg is given by the slope (dw/dk) of a band, where k 

refers to the magnitude of k in the relevant direction of light propagation; 

usually, the magnitude of v9 is estimated for the band calculated for an 

infinitely long or large sample. In general, there appear in a PC a lot of band 

portions or positions where the band slope is fiat , which makes υg anomalous. 

At the band edge υg should become extremely small without fail [19-21]. Such 

a flat energy position is also encountered at both the maximum and minimum 

points of the lower and upper bands resulting from an anti-crossing between 

two bands with the same symmetry, as already described in Sect. 2.2. A photon 

with such a small v9 at those positions is sometimes called a heavy photon in 

analogy with the heavy electron (see Sect. 3.6) 

2.7.3 Anomalous Group Velocity (1) 
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It is also important to note that very frequently a relatively flat band, i.e., a very 

small υg , is encountered in a 2D and 3D PC [21, 22], as the origin of t he flat 

band was already explained in Sect. 2.2. Moreover, there are many bands 

where υg becomes negative. We call all these anomalous group velocity. 

That v9 is very small indicates that the electric field strength becomes very 

large there; the fact that the Poynting vector must be constant everywhere 

requires that E2 becomes large for a small υg . T his fact is very important, 

since the effective interaction length between light and matter becomes short 

enough by using such a small υg . That is, the radiation signal in many physical 

phenomena such as second-harmonic generation (SHG) can be very effectively 

generated from a PC, or equivalently, can be greatly enhanced in a PC sample 

as compared to a conventional sample with the same length [23- 25]. This also 

makes sense in the case of a laser, because the threshold value of electrical 

current or fiuence for pumping can be greatly reduced by utilizing a small v9 

[26- 29]. 

2.7.3 Anomalous Group Velocity (2) 
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As for the GVD in P Cs, it is very large in general; the line-defect mode 

already described can be designed to also have a large GVD [30]. This is 

because the GVD in a PC originating from the periodicity can be artificially 

altered unlike the GVD in a transparent wavelength region of a material which 

is governed by the dispersion of the refractive index, i.e., essentially by the 

intrinsic absorption. 

2.7.3 Anomalous Group Velocity (3) 
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Characteristically, in many PCs propagation of light incident from the outside 

through a sample is markedly influenced or governed by the polarization; of 

course this property arises from the fact that the PBS under study is 

polarization-dependent. This property applies generally to all PCs irrespective 

of the dimension, with t he exception of on-axis light propagation in a lD 

multilayer film; notice that even in this case the BS for the off axis propagation 

already described in Sect. 2.3 becomes polarization-dependent. If we focus on 

only the guided modes, the polarization dependence is par ticula1·ly 

remarkable even around the first BG in 2D PCs and 2D PC slabs. In contrast, it 

is, generally speaking, less remarkable for 3D PCs. This is particularly true 

with the diamond-lattice structure, as compared to the cases for a simple cubic 

lattice 113) and a face-centered cubic lattice [31]. 

2.7.4 Remarkable Polarization Dependence (1) 



M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 102 

As a consequence, a tmique polarizer can be developed by utilizing a pair of 

specific bands for two different polarized light beams with t he same frequency. 

A simple example is the case that there exists a stop band for one polarized 

light beam, while there is a band for the other. Even for the case where there 

are respective bands for two different polarizations, the magnitude of v9 should 

be generally significantly different from each other, except for an accidental 

case. Based on this feature, a different kind of polarizer can also be developed 

for an ultra-fast light pulse. Namely, such a pulse is easily split into two, 

depending on the polarization, after passing through a thin PC ample 132]. 

Thus, utilizing time delay together with a gate, one can pick up only a pulse 

with the desired polarization. 

2.7.4 Remarkable Polarization Dependence (2) 
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There are a variety of peculiar PBs showing anomalous or singular points [33}. 

Roughly speaking, such an anomaly is likely to manifest itself in the higher 

energy region where many bands run. It has already been revealed that well 

established crystalline optics no longer apply to the case of a PC; it is again 

remarked that a PC is not a natural crystal, but an artificially fabricated one. 

Consequently, we need to introduce new crystalline optics or concepts, called 

"photonic crystal optics" to cover the case of PCs. Let us show the simplest 

example below to understand this fact. It is well known that all crystals except 

for quasi-crystals in an optical region are classified into three cases, i.e. , 

uniform crystalline, uni-axial crystalline, and biaxial crystalline, corresponding, 

respectively, to 

2.7.5 Manifestation of Peculiar Bands (1) 

(2.32) 

where ε1, ε2 , and ε3 refer to the dielectric constants along the optic axes. 

This classification no longer applies to a PC; for detail, see Sect. 4.7. 
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First of all, Snell's law of refraction does not generally apply to the boundary 

plane between a PC and a normal material. Anyway, propagation 

characteristics of light at such a singular point are very complicated on one 

hand, and unique on the other hand. As a result, several peculiar phenomena 

have already been found, such that t he phenomenon of tri-refringence occurs 

(34), and v9 cannot be determined uniquely 133]. From the view point of 

application, the superprism phenomenon (35] is very important, which 

manifests itself at a specific equi-energy surface portion of a particular band. 

There, ·the propagation direction of light going inside a PC through the 

interface varies remarkably with small change of wavelength of the incident 

light. This phenomenon showing anomalously large dispersion of wavelength 

versus incident angle enables one to develop, in principle. a new type of device 

of wavelength dispersion with the size much reduced as compared to the 

conventional ones. 

2.7.5 Manifestation of Peculiar Bands (2) 
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Similarly, a phenomenon called super collimation has also been found in a PC 

(36): a light wave with a finite cross-section can propagate in a PC with the 

size unchanged, which occurs also at a specific band. 

When we formally apply Snell's law for an anomalous band or at wavelengths 

exhibiting negative υg , n becomes negative. Utilizing this sort of band, one can 

create a superlens (an ideal lens in a sense) [37]. However, in order to 

implement this kind of lens, v9 must be negative over a wide range of 

wavelengths for all incident angles. This requisite is very severe, but it is 

reported that this is still possible (38). 

2.7.5 Manifestation of Peculiar Bands (3) 
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Because of their unique properties, PCs are very attractive for exploring new 

physical phenomena and developing novel and important devices in the field of 

optoelectronics as well. In this survey, we focus rather on the latter. Concerning 

the latter, some simple passive optical components such as narrow-band filters, 

unique polarizers and wonderful super-prisms described in the preceding 

section have already been developed, and some others are expected to be 

developed one after another from now on and to be commercially available in 

the near future.  

Let us mention some applications below, other than the above-mentioned 

simple components. First, we describe applications to nonlinear optical 

phenomena, or the related active components. By utilizing the unique PBS in 

either 2D or 3D P Cs, the phase-matching (PM) can be easily fulfilled at 

several wavelengths; it is well known that the PM is very important in 

nonlinear optical phenomena, particularly in coherent phenomena such as 

second harmonic generation (SHG). 

2.8 Application of Photonic Crystals (1) 
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Furthermore, a novel type of PM can be expected to be utilized in PCs 

including 1D in this case [39). That is, an umklapp process can be utilized, 

since the reciprocal vector q is on the same order in magnitude with the 

relevant  wave-vectors involved in the phenomenon under study; it has already 

been proved that this process is useful in SHG for a 1D periodic system (1D 

PC). We describe below the SHG case as an example, 

2.8 Application of Photonic Crystals (2) 

(2.33) 

where ki and ks, and ωi and ωs are the wave-vectors, and angular frequencies 

of incident (fundamental) and second-harmonic light waves, respectively. 
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As for other active components, several kinds of unique 2D PC lasers have 

been successfully developed. Those are categorized into two types, i.e. , one 

(40] utilizing an ultra-small PC cavity, or a point defect already mentioned in 

Sect. 2.7.2, and the other [26-28] utilizing a small υg . So, some of them may be 

in practical use soon. The first type of laser has prominent characteristic of 

being  extremely small. The latter type of lasers include a sort of vertically 

emitted laser excited by an electrical current [27], a 2D laser with a low 

threshold, and an small size of laser. The same is also true with a light emitter 

embedded in a PC slab, where the extraction efficiency of light has already 

been demonstrated to be greatly improved compared to the record obtained 

thus far (41]. 

2.8 Application of Photonic Crystals (3) 
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PC fibers, both of PBG type and refractive-index confined, are also very 

attractive. The latter type of optical fiber is considered to be an ideal 

transmission line for light, so it will be in practical use, depending on the case. 

Independently of the above application, it has been demonstrated that light can 

be generated over an extremely broad range of wavelengths by illuminating the 

latter type, Le., with the silica core in the central portion, using an ultra-short, 

i.e., sub-picosecond light pulse. This phenomenon should be utilized as a white 

light source for spectroscopic use (42]. 

2.8 Application of Photonic Crystals (4) 
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Next, the Smith- Purcell radiation with use of a PC is also attractive and 

important, because it has the possibility of developing a compact wavelength 

unable  coherent light source in a range from far- to near-infrared; the Smith 

Purcell effect is such that coherent light is radiated due to interaction between 

high-speed traveling charged particles and a periodic system such as a grating. 

It has been predicted theoretically [43] and has already been verified very 

recently that use of a PC instead of a grating enables one to observe the 

radiation much more efficiently than the previous cases (44). This topic is 

treated in Sect. 10.7. 

2.8 Application of Photonic Crystals (5) 
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Finally, we would like to mention one of the most important applications of a 

PC, i.e., development of ultra-fast and ultra-compact integrated light circuits; 

such a development is crucially important for future telecommunications. It is 

considered that such a circuit based on PCs may be developed in the future. For 

this purpose, there are a few key components to be developed. One is a novel 

type of light waveguide that is capable of being bent sharply. This can be 

achieved by utilizing a PC-based waveguide. The PC-based waveguide is 

constituted of line defect modes in a 2D or 3D PC; in the case of a 2D PC of 

triangular lattice of air hole type, for example, a line-defect is produced by 

leaving a single line of air holes imperforated along one of six equivalent r - K 

directions. Importantly, in the PC-based waveguide the light wave is confined 

due to the PBG, so that it can be bent sharply without any propagation loss, 

while light is confined by total reflection in the lateral plane in the conventional 

dielectric waveguide; in the case of PC-slab waveguides, the vertical 

confinement of light is achieved by the total reflection. Another is the compact 

de-multiplexer, but we do not go into details here (see Chaps. 11 and 12). 

2.8 Application of Photonic Crystals (6) 
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From the practical point of view, the planar type of integrated circuit, in 

particular, made of PC slabs, bas the advantage over the 3D type. This is 

because it is much easier to fabricate the planar type than a 3D one. So, up until 

now many investigations have been devoted to this type, both theoretically and 

experimentally. As a result, it may be possible to finally develop such an ultra-

small integrated circuit . The details will be presented also in Chap. 12. 

2.8 Application of Photonic Crystals (7) 
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Structure PBG of 2D grating in LiNbO3: A square lattice 
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Structure PBG of 2D grating in LiNbO3: A triangular lattice 
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بیٍ َمیراٌ ياختیٍ ياحید     ( شینل بیالا  )شبنٍ مثلثیي  با تيغٍ اي حفرٌ اي شماي سادٌ اي از ساختاربلًر فًتًوي  (الف) 
 (.شنل پاييه)آن فضاي يارين 

 (.وقاط آبي) TMقطبش ي  (وقاط قرمس) TE براي قطبش( الف)شنل  بلًر تيغٍ ايساختار وًار مربًط بٍ ( ب )
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PBG structures of pillar triangular lattice of  

GaAs, εo= 12.6 in air (TE mode) 
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ِ ای  ساختار باود مًجبر  K Γدر جُتًقص خطی سيلينًوي با بلَر فَتًَی تيغ
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Figure 2.2 Simulated photonic band structures for bulk PC with finite height  

(a) Schematic of 2-D PCS triangular lattice structure; 

(b) Simulated photonic band structure of 2-D triangular lattice PCS, the shadow 

region marked the PBG 
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PBG structures of pillar triangular lattice of   

LiNbO3, εo= 4.884 in air (TE mode) 
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Evolution PBG width as a function of the ration r/a for:  

LiNbO3, εo= 4.884 and GaAs, εo= 0.46 (TE mode) 
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Add and drop filter principle based on photonic crystals 
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Hetero-structure of 2D and 3D photonic crystals 
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Historical review of photonic crystal development 
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 تراشه فوتونی تمام نوری 
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 Lab on chipنمونه 
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