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2.1 One-Dimensional Photonic Crystal: Band Calculation
2.1.1 Bloch Theorem

» A 1D periodic multilayer of dielectric films is illustrative;

s Example: A lossless mirror (Bragg reflector) or a quarter-wave plate.
d a,, ag : thickness of the two layers,

d &,, €g : dielectric constants,

B B B
periodicity of this 1D PC € € € .
= A T ap, - -
e

Fig. 2 .1. 1D stack of A and B films in the z direction. The
length of the unit cell a=a,+ag defines the periodicity of this
1D PC.
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2.1.1 Bloch Theorem (2)

> L, : the vacuum permeability in our nonmagnetic PC (1=1)
» the direction of the polarization of E(z) as the x direction and

that of B(z) in the y direction. B(Z) = ,UOH(Z)

» Using the scalar symbol for the amplitudes, the electric field satisfies:

i 1 0°
EE(z,t)—?Eg(z)E(z,t):O (2.1)

with the periodic dielectric constant £(z) defined by

(&4 if zis inA}
e(z) = {83 if zisinB (2.2)
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2.1.1 Bloch Theorem (3)

» The periodic function g(z) (- <z < ) is expanded into a Fourier series:

- 2
_ z : i=Ez
p=-—00
. . i2ZP 2\ 00 o .
Here the basis functions {C o p=-—oc have periodicity of the lattice and
27p _ _ _
= (p=0, 1, £2,---.) defines the reciprocal lattice "vector".

The Fourier coefficients are given by

l " - Aw
&= —f dze(z)e™ 5 2, (2.4)
aJo
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2.1.1 Bloch Theorem (4)

» the pre-factor 1/ a being the inverse of the unit cell "volume", over which the
integral is made. For our unit cell of

(&4 0<z<aA} -
E(Z)_{EB a,<z<a &

(2.4) yields
A | ¢ for p=10

(e”ﬂ?“" ~ 1) for p # 0.

a

21rp (EA

(2.6)

=
valm

We assume the harmonic oscillation in the temporal behavior

E(z,t) = e “*E(2).
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2.1.1 Bloch Theorem (5)

» To find the solutions of wave equation (2.1), a Bloch form is substituted for
E(z), which is given by

00

E(z) s Z Cpel( +P a )Z. (27)

p=—0Q
This is a plane-wave expansion (PWE) form of the PB solution.

> Inserting (2.3) and (2.7) into (2.1) and putting the pre-factor of the plane

i(k+ (2np/a))z

wave € to zero, we find

C

2mp\ 5 2
(F+Z2) - 3 (£) erper =0 (p=0.414200) @O
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2.1.1 Bloch Theorem (5-2)

Inserting (2.3) and (2.7)

into (2.1) and putting the 0* 1 02
pre-factor of the plane ?E(Z’t)—?ﬁg(Z)E(Z,t)=O
wave elkt (2np/a))z 4,
zero, we find -
E(Z) — Z Epelg-z-zz
p=—00
00 . g
E(Z) — Z ¢ el(k'f‘p'f)z.
p=—00

secular equation: aazx.iw alsles

2 o0
(k+@) Cp — Z (g)zep_pfcpizﬂ (p=0,%£1,%2,.-:)

a C

p'=-—o0
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2.1.1 Bloch Theorem (6)

» These are linear coupled equations for the coefficients - - -, ¢, c,, Cy, Cy, - -

The solutions exist only when ® satisfies the secular equation constructed
from the coefficients of the coupled equations:

(k—2E)% — ()2 —(2)%, —(%)%e_2
det |--- -—(‘—;-))261 (k)2 — (%‘,’-)280 —(-‘;—’)25_1 =0 (2.9)
—(¥)% —(%’)251 (k + 2—:')2 — (%)250

We note the regularity of the matrix elements; the diagonal elements are
2 2 2 2
o = 00w (W3, (37
a a a a
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2.1.1 Bloch Theorem (7)

> The Fourier components {&,} of the dielectric function &(z) appear in each
row in the order

s 9 €1y €y Cayyure
with €, present at the diagonal position of the matrix.

» That the solutions of (2.1) could be found in this way is wholly
attributed to the Bloch form (2.7) assumed for the solution. It satisfies

E(z +a) = % E(2), (2.10)

which is the Bloch theorem, to be met by any solution of a periodic system.

> It is the wave number K that specifies the Eigen-solutions.
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2.1.1 Bloch Theorem (8)

> The periodicity of the solutions with respect to K:

solution for K of (2.8) or (2.9) = for k + p(2x /a) with an integer p

> These two K lead to the same form in (2.7), as seen by renumbering the

coefficient Cp, and to the same eigenvalues for @ in (2.9), as seen by using the
regularity of the matrix elements.

> Since the identical solutions are obtained for the set of wavenumbers K,
k+(2=m/a) , . . ., all possible normal modes of (2.9) are covered by letting k run
only over the first Brillouin zone (BZ), which is for the present 1D system a

region of K defined by

w
-<k<-. (2.11)
a (

For a givenvalue of K in the first BZ, the secular equation (2.9) gives the
eigenvalues o, ®,, - -

M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 16



2.1.1 Bloch Theorem (9)

» The number of the eigenvalues is fixed by the size of the matrix truncated
In the secular equation.

» As k varies, each of the eigenvalues changes gradually. As a result, (2.9)
gives a set of continuous functions of k, o,(k), w,(k), - - -.

» They are the dispersion curves of the PBs, of our 1D system. The subscript
n of o, (k) is usually called a band index.

» (We sometimes use n as a superscript as in ug(”), the group velocity of nth

band.)

» For the concrete case of A=Si (g,=12), B=air (¢z=1), and a,=ag=a/2, the

band structure is given in Fig. 2.2.
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2.1.1 Bloch Theorem (10)

Fig. 2. 2. Band structure of the 1D

photonic crystal shown in Fig. 2.1
for A= Si and B = air.

The case of a, = ag = a/2 with
ea=12 (dielectric constant of Si in
the visible range) and eg=1 s
shown.

Both the frequency ® and
wavenumber k are shown in

dimensionless units.

LR

0.8 |-

0.6

wa
2nc

04

0.2
Fig . 2. 2.

0
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2.1.1 Bloch Theorem (11)

O If we take account of a larger range of integer p in truncating the sum of

(2.7), the matrix of the secular equation becomes bigger.

O In calculating Fig. 2.2 we have used 11 plane waves (-5 <p <5)in (2.7).

+» As the size of the secular determinant increases, so does the number of

solutions for o for a fixed k.

O With increase of the number of plane waves, the contributions of the

shorter waves are incorporated, for the larger the wavenumber |k + (2zp/a)| is,
the shorter becomes the wavelength of exp i(k + (2np/a)z.

s As a result, if we attempt to obtain the PBS in a higher frequency range,

we necessarily need to treat a larger secular matrix.
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2.1.1 Bloch Theorem (12)

* The actual trend that a PB of higher frequency is better represented by a
larger number of plane waves, is seen in Fig. 2.3, which shows the
calculated band frequency at k = n/a to be improved progressively with the

increase of the cutoff size of the secular matrix.

¢ It is important here to understand the PBS of a system in terms of the

dispersion relation of photons in the empty lattice.
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2.1.1 Bloch Theorem (13)

Number of plane waves

Fig. 2.3. Convergence of the band energy as a function of the number of plane
waves used in the calculation. The result is given for the 20th band at the BZ
edge. The parameters used in the band calculation are the same as those used
in Fig. 2.2
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2.1.1 Bloch Theorem (13)

»An empty lattice of a PC is a fictitious system which has only the

periodicity of that PC but iIs identical to free space otherwise.

> In an empty lattice, therefore, € .4, € , 5, ... all vanish identically

except ¢, = 1in (2.9). The PBS of the empty lattice is obtained by folding

the free space dispersion curve ® = cK at the edge of the first BZ.
» This is because what remains in the secular matrix of (2.9) are solely the

diagonal elements

(k + 27p/a)? — (w/c)?.

» The empty-Ilattice test is especially useful in a PC of weak periodicity. See

Fig. 2.4 for the PBS of a model system.
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2.1.1 Bloch Theorem (14)

Fig. 2.4. Band structure of a 1D
photonic  crystal of weak
periodicity. The straight Ilines
show the dispersion curves of the
empty lattice, w=c|k+(2np/a)|,
(p=0, £ 1, £2, - - ).

The band structure with small
band gaps iIs the one calculated
for a, = ag = a/2 with ¢,= 2 and

eg =1

| e 0 n 2n
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2.1.2 Scaling Property of Photonic Band Structure (1)

» From (2.1) and (2.8) we can deduce an important scaling property.

» We introduce, in place of k and o, the dimensionless wavenumber k' and
frequency o', which are defined by

k=k (2_") B (2_””) (2.12)
a a

_ ka L = W
-2’ 27’ (2.13)

or
kl

O k' : wavenumber of photons measured in units of 2n/a

O o' : frequency measured in units of 2xc/a
» reciprocal lattice points: (In the new scale of the wavevector,) - -,-2,-1,0,1, 2 - -
» Thus the first BZ is defined in the k' axis to be - 0.5 < k' < 0.5.

O When the secular equation (2.9) is rewritten using k' and o', the size a can
be removed everywhere.
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2.1.2 Scaling Property of Photonic Band Structure (2)

*» To see it, let us return to the Fourier component (2.4). We find

T 2wp
Ep = —/ dze(z)e ™' = *
a Jo
l . '
= / dz’e(az’)e™1%"P? (2.14)
0
1
- [ asatren
0
= £y
where 5(3') o 5(412’) (2.15)

€(z’) is the dielectric function expressed using the new coordinate z'
measured in units of a.
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2.1.2 Scaling Property of Photonic Band Structure (3)

» The conclusion is that in terms of the dimensionless quantities of k', ' and

£y, (2.8) Is transformed to

(K + Zu"":p pCp = 0. (2.16)

*» This final result has nothing to do with the periodicity a of the PC under

consideration.

» Therefore, if there are two PCs and their dielectric functions are identical

when expressed using the lattice constant a as the unit of length, the PBSs of

the two systems are the same, when exhibited using o' as functions of k'
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2.1.2 Scaling Property of Photonic Band Structure (4)

s For example, two PCs of repeated A and B:

the first having: a=2um, ag = 0.8um, ap = 1.2um

and the second one having: |@ =1mm, ay =0.4mm, ap = 0.6 mm,

» Two PCs have the same PBS when expressed using o' and k', if €5

and €5 of the two cases are identical.

» In the scaled units, the dispersion curve o = ck of a free photon
gives o' = 0.5 at the BZ edge k' = £0.5.

> Because of these scaling properties, PBSs are usually discussed and
displayed in these scaled units.
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2.1.2 Scaling Property of Photonic Band Structure (5)

» In the above example, the BZ edge +0.5 corresponds to the
wavelength of the PB of the order of microns and millimeters,

respectively.

» In two systems having such a huge difference of scales, and hence

involving totally different wavelengths of PBs, identical values of

dielectric functions are hardly expected.
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2.2 One-Dimensional Photonic Crystal: (1)
Various Concepts and Characteristic Features of

Photonic Bands

In the calculated PBS, several characteristic features of BSs are seen, which
are, in fact, common not only in 1D but also in 2D and 3D PCs. Let us again

take a look at Fig. 2.2.

2.2.1 First Band atk =0

2.2.2 Photonic Bands for k near the BZ Boundary

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands
2.2.4 Slow Group Velocity

2.2.5 Density of States
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2.2 One-Dimensional Photonic Crystal: (2)
Various Concepts and Characteristic Features of Photonic Bands

2.2.1 First Band atk =2 0

» The first band, the lowest of all in

frequency, has a linear dispersion relation

near the center of the BZ.

3| 8
» In view of the empty-lattice test, this
feature is natural; since the state with k =
0 in the first band has a wavelength much
. g Laead NG5
longer than the lattice constant. (A > a) 05 025 0 025 05
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2.2 One-Dimensional Photonic Crystal: (3)
Various Concepts and Characteristic Features of Photonic Bands

2.2.2 Photonic Bands for k near the BZ Boundary

¢ In the BZ edge, the dispersion curves are gradually curved.

< At the edge k' = 0.5, the PB state is an equal admixture of €% and e ¥ and

propagates neither to right nor to left by forming a standing wave.

« This is why the group velocity v, of the photon vanishes there:

0

w
‘Ufg — "é"k—u.?l(k) = at k= 055 (2.17)

U Beyond the BG, there Is a partner of the standing-wave with v, =0
at the BZ edge.
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2.2 One-Dimensional Photonic Crystal: (4)
Various Concepts and Characteristic Features of Photonic Bands

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands

» To show the difference of the two states at the BZ edges, the intensity of
the electric field is plotted in Fig. 2.5.

» Below the BG (band n = 1) has a higher intensity within the region of
higher g-value, while the reverse is true for the state above the BG.

¢ In this sense we often call the lower band of the pair a dielectric band

¢ and the higher band an air band, having in mind a periodic repetition of
dielectric and air.

» This type of distribution of the electric field is more or less seen in the pair
of states at the BZ edge in the higher frequency range, though the contrast
gets gradually obscured due to the nodes appearing both in dielectric and air
regions.
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2.2 One-Dimensional Photonic Crystal: (5)
Various Concepts and Characteristic Features of Photonic Bands

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands

3 | T T T T

0 a 2a 3a
Fig. 2.5. Squared electric field as a function of Z of the states at the BZ edge.

The solid curve shows the first band (dielectric band) and the dashed curve
shows the second band (air band) for the band structure shown in Fig. 2.2

M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 33



2.2 One-Dimensional Photonic Crystal: (6)
Various Concepts and Characteristic Features of Photonic Bands

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands

s The contrasting feature of the two bands stems from the general trend for

photons that a higher € induces a stronger localization of photons. To see it,
let us return to the wave equation (2.1).

0° 1 07
EE(Z,t)—?WE(Z)E(Z,t):O (2.1)

% For the stationary state of o, we have 0%/0t?> = - ®?. Adding (o/c)?E(z) on

both side of (2.1) then yields

2 o3 4
—%E(z) - —(e(2) - 1)E(2) = w—E(Z)- (2.18)
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2.2 One-Dimensional Photonic Crystal: (7)
Various Concepts and Characteristic Features of Photonic Bands

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands

—-QQ—E(z) 2 “’—2(5(z) ~1)E(z) = -“c’—:E(z). (2.18)

c2

2 o2
» To compare it with the B h* 0O B e
Schrodinger equation 27 22 Y(z) + V(2)Y(z) = EY(2)| (219

for a particle of mass M and energy eigenvalue E in the potential energy

\é(@y comparison, we see at once that w?
—~gfe(s)~1)

plays the role of the potential VV(z) (the dimensions are not of potential,
however).

» Therefore we see that a substance with € higher than unity works as an
attractive potential relative to free space, by having a negative potential.
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2.2 One-Dimensional Photonic Crystal: (7)
Various Concepts and Characteristic Features of Photonic Bands

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands

» To compare it with the
Schrodinger equation

2 2 2
--(%-Q-E(z) - %(s(z) ~1)E(2) = ‘:—QE(z). (2.18)
h* 02
—5 92V (3) +V(2)¥(2) = By¥(2) 219)

for a particle of mass M and energy eigenvalue E in the potential energy

V(2).

2
> By w
comparison c

-—5(e(2) - 1)

plays the role of the potential V(z).

(however the dimensions are not of

potential,).

» Therefore we see that a substance with € >1 works as an attractive
potential relative to free space, by having a negative potential.

M. A. Mansouri-Birjandi
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2.2 One-Dimensional Photonic Crystal: (8)
Various Concepts and Characteristic Features of Photonic Bands

2.2.3 Tendency of Photon Localization: Dielectric and Air Bands

» This is why the band having a higher electric-field intensity at A (e, = 12) than B
(eg = 1) is found to have a lower frequency.

QO The quantity ®?/c? plays the role of an energy eigenvalue of the electron.

> Because ®?/c? is always positive in the photonic case, there cannot be a bound

state in an ordinary sense,

> i.e., the situation of a photon being localized completely in an attractive

potential can never be achieved.

O The leakage of photons as an outflow of electromagnetic energy is thus

inevitable in the photonic case.
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Table 1. Electron-photon similarity

Electron (Schrédinger) Photon (Maxwell)
Field p(r,0) =y exp(—iwt) | H(F,t) = H(F)exp(—iwl)
Specific term Vir) E(7)
3 12V
Hermitian operator H = + 1V (r) O =Vx V X
2m e(r)
Eigen'value Hy = Ey OH = (w- }H
equation c*
h* 92
o —(2) + VI(2)Y(2) = EY(z
253 0(2) + V(2)9(2) = Ey(2)
0°  wh w?
-5 E(2) - S5 (e(2) - DE(2) = S E(2)

M. A. Mansouri-Birjandi
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Bragg’s mirror

(a) A is the lattice period;

(b) the reflected intensity
indicating the PBG

M. A. Mansouri-Birjandi

(a)

1.0

R

0.5 4

0.0
(b)

Period

A

il

PBG
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Examples of 2D-PBG and their first Brillouin’s zone:
(a) square cell, (b) triangular and (c) hexagonal; and
(d) definition of the lattice radius r and period a.

OO L:

M K

—
L
@00
ﬂ

(b)

0:3:0
©) {} P
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t /
C

/

c/n

Light-line No more zero v,

or forbidden zone

l{II

Figure 1.6. Case of index guiding: light-line
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-c/n c/n -c/n \ c/n
e K ol

(ﬂ) -77/a (b) 7/a
mat
| . . k
-m/a (c) /a k (d) 7a
Diffraction Coupling

Figure 1.9. The dispersion characteristics of optical modes in a periodic
medium are widely determined by diffraction processes and optical mode
coupling properties
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PBG
()] 100

80r

PBG 1 Photonic 601

band gap a0t

Reflectivity. %

20|

> 0
ma K 400 600 800 1,000
Wavelength, nm

Figure 1.10. Photonic band gap (PBG) and bandwidth of a Bragg reflector
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Dielectric

o\ A
o Dielectric

n, 2 n,

Figure 1.11. Air band and dielectric band at the photonic band edges
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n, 1 Air

Donor

Acceptor

n, J Dielectric

Figure 1.13. Donor or acceptor type localized state
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c/n

Figure 1.16. 1D photonic crystal in a dielectric waveguide: coupling processes
between propagating and counter-propagating waves, and between waveguided
and radiated mode
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Figure 1.17. Coupling between waveguided modes of different orders (here with
the same even symmetry: the only crossing point where coupling is possible is
shown in the circle)
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Light-line

Figure 1.18. Dispersion characteristics of a localized defect or of an optical cavity:
there always exist components of the K vector located above the light-line
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I'K, I'M: high symmetry direction

Figure 1.25. Direct and reciprocal triangular lattices. The two so called I'M and I'K high

symmetry directions of the crystal are shown.

The first Brillouin zone is included in the hexagon drawn in the reciprocal lattice. b is the

module of the base vector of the reciprocal lattice.
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Figure 1.26. Conical surface dispersion of a two-dimensional
homogenous medium
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2.2.4 Slow Group Velocity

» Photons propagate very slowly near the BZ

edge due to the slowing down of v

g°

. . 06 F
» The slow Vg ls a feature generally observed in

wa
2nc

the PBS not only in the BZ edge region, but also 04 |

In the vicinity of the I" point, as seen in Fig. 2.2. 82

O Atk =0, Vg of each of the bands vanishes.

0 1 2 ad
05 025 0 025 05
k

» In 2D and 3D structures, the band repulsion takes place more often than in
1D PCs and makes the band edges appear frequently inside the BZ.

» Since the states at band edges have vanishing v, we encounter the feature

of small v, more often in a 2D or 3D PC than in a simple 1D system.

9
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2.2.5 Density of States (1)

# The density of states (DOS) of photons, p(w) , is defined so that the number
of states N (w) within the frequency region [o, ® + Aw] of an infinitesimally

small interval Aw is given by

N(w) = p(w)Aw.

= Since K = 2zn/L , L being the size of the 1D system,

(2.20)

number N(o) = number of the allowed K values within the interval Ak

determined by the prescribed allowance Aw.

» From Fig. 2.6, (a small part of the dispersion curve of a band o = o,(k)),

we have, for an infinitesimal Ao,

9, : J
Ay == %wn(k)Ak 1.e. Ak = (a—kwn

=
(k)) Aw.

(2.21)
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2.2.5 Density of States (2)

0
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Aw = —w,(k)Ak i.e. Ok = (—

Fig. 2.6. DOS versus the

curvature of photonic bands.

As a band becomes flatter, the
number of the states lying in a

given range Aw increases.

The spacing between the

quantized values of k is 27/L.
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2.2.5 Density of States (3)

0 d =
Aw = %wn(k)Ak 1.e. Ak = (-a—kwn(k)) Aw. (2.21)
Dividing Ak by the spacing 2=n/L of the quantization yields N(w). Therefore,
it follows that

L (8 e
Nw) =pw)dw.| mEm) |plw)= 227r (akwn(k)) (2.22

«» The DOS is thus related to the inverse of Wy -

» The prefactor 2 of being given to take account of the two polarizations of
photons propagating in the Z direction of the system shown in Fig. 2.1.
» The allowance Ak for a given Aw increases with the decrease of the

curvature of the dispersion curve.
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2.2.5 Density of States (4)

» The feature of enhanced DOS: (group velocity anomaly)
» For example, the emission probability of photons of frequency ® from an

atom in a PC is proportional to p(w) and it is natural to expect an enhanced

light emission from the atoms at the frequency of the DOS peaks.

O The suppression of the DOS: by the existence of the region of zero DOS at the
frequency regions of PBGs.

QO In the PBG regions we have the zero emission rate of photons from an atom.

O Control of the light emission rate by designing a PC to meet one demand and
another is one of the ultimate goals of the technological application of PCs.

0 One reason for the increasing demand for high-quality 2D and 3D systems is that
these characteristics of group velocity or DOS manifest themselves much more
dramatically in a PC of higher dimension.
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band

s Finite PCs, especially those with finite thickness in one direction and
infinite extension in the other two directions, are treated repeatedly both
theoretically and experimentally.

< In such a system, called in this book a slab type PC or simply a slab PC,
It is important to consider whether light coming from an outside homogeneous
medium can couple to the inside modes through the entrance boundary plane.

< If there is a coupling the mode is called a leaky mode because it is not an
eigenmode in a strict sense because of its leakage to the outer space through the

coupling.

*» The leakage gives a finite lifetime to the mode.
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (2)

» A mode with wavevector k; and frequency o, = o(k,;) of an outside region
can be coupled to one with k, and o, in a PC.

» The spatial dispersion o,(k,) is determined by the PBS calculation.

» In this coupling process, the conservation of both energy and k”, the
wavevector component parallel to the surface, is established between the two

outside fields , such that

w1 = w2 and (k1)) = (k2))- (2.23)

O In a homogeneous substance of uniform refractive index N the light cone
Is literally a cone in the (o, k) space defined by the relation:

C
w = —\|kyl.
nl 1 (2.24)
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (3)

» When the region is air with n = 1 and the x axis — £|k|||. (2.24)
IS chosen in the direction of k " it holds that < n

w = cky.| (225)

> we often call the light cone as the light line.

» The concept of t he light cone was first introduced as early as 1966 by K. L.
Kliewer and R. Fuchs, as a concept used to distinguish the leaky and nonleak'Y
modes of a dielectric slab.

> In PCs, this concept was first used in 1982 to examine the photonic modes of a
periodic system of finite thickness, a slab PC in the present terminology, by Inoue
and Ohtaka.

» The classification between leaky and nonleaky modes is still an important
fundamental in the technological application of P Cs, because a PC of practical use
is always bounded by surfaces, as in slab-type PCs and PC fibers.
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (4)

y
> We take the boundary to 4
be the xy plane, with n, for X
z <0, and n, for z> 0 with
interface

» The plane of incidence is
taken as the xz plane with
the incident angle of 6, kl

Fig. 2. 7. A schematic drawing of refraction at a boundary
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (5)

> In Fig. 2.8 we plot two straight lines,
one corresponding to a light line (the
dispersion relation) in medium 1, and the
other in medium 2, respectively, which
are expressed as o = (¢ / nyk; with i
referred to 1 or 2.

» These lines just correspond to the
cases where light propagates in parallel
to the plane in the respective media.

» Suppose in medium 1 one mode on
the point B has the same energy o as that
on A.

kv

Fig. 2.8. A schematic drawing of an
example explaining the concept of the light
line
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (6)

> Since the magnitude of K of the mode with the K, component is given by

o = (c¢/ny)k, the mode is nothing other than one propagating with an angle 6,
such that

sin 91 = k“/h = km/((f—lmw). (2.26)

» Therefore, all modes in the medium are presented on the left-hand side of the
line: any light modes do not exist on the right-hand side.

» The same is also true with medium 2. As a consequence, light that is incident on
the boundary plane with wand k|| on the left-hand side of medium 2 can go
inside medium 2 with the refraction angle 0, given by

sin fy = k”/k = kl-/(CWIRQW). (2.27)
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (7)

Q On the other hand, light with ® and k|| on the right-hand side cannot go inside
medium 2, but is totally reflected back into medium 1.

O Therefore, from the above two equations the critical condition is given by the light
line of medium 2, such that

sinf,. = nay/n;, (2.28)

O In the case of total reflection O > 0_, there is no wave propagating at large
distances from the boundary in medium 2.

O However, this does not indicate that the light field vanishes completely in medium
2 forz > 0.

O Namely, the evanescent wave can propagate along the boundary plane, the
wavevector K, of which is expressed as

kry = (n1/c)wsinfy, = n (27 /A) sin 6. (2.29)
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (8)

% Those features which discriminate
the leaky modes and guided modes
are shown in Fig. 2.9. See Sects. a8
3.4 and 4.3 for leaky modes. — | Q
— r—
=T S
Fig. 2.9. Leaky modes and guided Q; g;
modes. The outside fields are those of = - ]
plane-wave light in the leaky modes, \ fide.
while they are evanescent light in the
guided modes. | T
nonleaky mode leaky mode
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (9)

Fig. 2.10. The off-axis modes
in a 1D multiple-Layer film.
Two layers A and B are

stacked in the z direction.

The dispersion curves of the
modes of k, = 0 and polarized
in the y direction are plotted as
functions of k,, the boundary
of the grey regions being
given by the dispersion curve
with k, = 0 or k, = n/a.

From the points at k, = 0, the
dispersion curves of the
modes of k, = 0 are drawn on
the left band side in the first
BZ; O<k,<m/a

M. A. Mansouri-Birjandi

-na 0 2/a 4dna
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (10)

» As the simplest case, let us consider the off-axis modes, I.e., the mode
with k not perpendicular to the layers or film, in the multiple-layers film
described.

» The structure considered here is the same as that shown in Fig. 2.1,
except that it is not infinitely long but semi-infinite by the presence of
the surface.

> Let k, be the wavevector component parallel to the surface between the
semi-infinite 1D PC and air.

» Now the guided mode is specified by k, and k..
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2.3 Concept of the Light Cone and Example
of One-Dimensional Off-Axis Band (11)

O In Fig. 2.10 is shown the dispersion of the TM (s-polarized) guided
modes of the 1D PC used in Fig. 2.2.

d The band structure with k, = 0 is given on the left as a function of k,,
which is reproduced from Fig. 2.2.

O The shaded regions of the band structure on the right show the continuum
of bands coming from the freedom of the k, values.

O For a multilayer stack of finite thickness, bounded by a surface parallel to
the xy plane, only the modes below the light line, shown by the dashed
line in the figure, are true guided modes confined completely inside the
PC, while those above the light line are actually the leaky modes which
can escape from the PC into air.
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2.4 Band Structures of
Two- and Three-Dimensional Photonic Crystals

2.4.1 Examples of Two-Dimensional Photonic Band

» As for PBS in 2D and 3D PCs, many examples will be presented in the
subsequent chapters in relation to the concrete samples fabricated.

» So, here we show only a few typical examples.

» First, in Fig. 2.11 we show an example of a 2D PC with the square lattice
of dielectric rods of circular cross-section.

» The first BZ corresponding to this structure is also a square lattice, where
there exist two high symmetry points, i.e. , X (a/x, 0) and M (a/n, a/m)
other than the I point (0, 0) (for the naming of these special points, see
Appendix A) .
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2.4.1 Examples of Two-Dimensional Photonic Band (2)

O The eigenmodes for this structure can be specified by the polarization. That is,
those are classified into the E(H )-polarized modes with E(H) parallel to the
dielectric cylinders, which are called TM-(TE-) modes, respectively.

O It is seen that an ample variety of PBSs manifest themselves in the 2D PC as
compared to 1D PCs.
O First, each band belongs to the specific irreducible representation of the relevant

point group that depends not only on polarization, but also on the k direction.

O For example, if the mirror plane is present for the lattice, the respective bands are
classified to even or odd symmetry ones according as E becomes symmetric or
anti-symmetric with respect to the mirror plane.

O In this case the odd modes, or odd-parity modes cannot be coupled to the
external plane wave at normal incidence for symmetric reasons.

O This situation is met frequently in 2D and 3D P Cs, although it does not occur in
1D PCs. Those modes are called the "uncoupled modes®.
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2.4.1 Examples of Two-Dimensional Photonic Band (3)
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Fig. 2.11. Photonic band structure of a 2D PC of cylinders arrayed in a square
lattice: TM bands (left) and TE bands (right ). The cylinders of ¢ = 12 (Si) are

arrayed in a lattice in the air. The ratio of the radius r of cylinders toaisr /a =
0.3. The states X, through X; at the X point are examined below
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2.4.1 Examples of Two-Dimensional Photonic Band (4)

O Second, there exist three PBGs for TM-modes, although the PBG common to both
polarized modes does not open in this case.

O Third, there are a number of very narrow bands and the v -anomalies occur not
only at the zone edge but also in the interior of the first BZ.

O The appearance of so many narrow bands can be understood by the empty lattice
test.

O Figure 2.12 shows the BS of the empty-lattice for k|| along the I'-X axis, i.e., k; =
(k,, 0) as a function of k,.

O In obtaining it, we drew the dispersion curves for plane-wave light of wavevector

Ky +hy w = clky + by, (2.30)
with h, given by
27 27 27
h, = —(£1,0), —(0, , —(£1,+1), |
| =<5k )y —(0,0), —(+1,£1), (2.31)

O etc. and plotted the curves by putting k;, = (k,, 0).
O In short, some of them originate from the flat bands in the empty 2D lattice;
notice that this is not the case for 1D.
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2.4.1 Examples of Two-Dimensional Photonic Band (5)

@ (b) .
(a) : ;

n 0 P & -_":; 0 3 k.

Fig. 2.12. Photonic band structure of empty lattice: (a) 1D photonic
crystal and (b) 2D photonic crystal of square lattice (I'- X) direction
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2.4.1 Examples of Two-Dimensional Photonic Band (6)

» Next, the eigenvector of the PB of (nk; ) gives the intensity of the electric
field, |E, (r)|*, associated with that Bloch state.

» Without specifying the normalization of the eigenvectors, Fig. 2.13 shows
the intensity of the electric field |E,,, (1 )|? in arbitrary units, for the bands
n=1and 2 of Fig. 2.11 at the X point of the first BZ.

» We see the typical feature of a dielectric band in the lower band-state X,.
The air-band characteristic of the X, state is less obvious than the
dielectric-band feature of X, however.

> As for the band states with higher energy marked by X; to X. , a similar
plot of intensity reveals that the distinction between the dielectric and air
bands becomes progressively vague, since the mixing among the
Increasing number of plane waves of shorter wavelengths comes in.
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2.4.1 Examples of Two-Dimensional Photonic Band (7)

(b)

T 0 1 1 0 1
x/a x/a

y/a

Fig. 2.13. Plot of intensity |E( r )|?> of the states X, and X, of Fig. 2.11 (arbitrary
units). The state X, (left) has a typical dielectric-band character in (a) and band
X, (right) shows an air-band character in (b).
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2.4.1 Examples of Two-Dimensional Photonic Band (8)

In Fig. 2.14 is shown another example of a 2D PBS for a triangular lattice of
air holes; the 2D BZ corresponding to this structure is shown in Appendix A.

It is well-known that the PBS for this structure exhibits a 2D PBG,
irrespective of polarization, as is seen in Fig. 2.14, if the difference of c:
between the background material and air (holes) is large enough; in this

example the difference is 12 used for Si against 1.

Rather unusually, for this structure the gap does not open for E-polarized
modes between the lowest (first) and the second-lowest (second) bands, but
instead, it does between the higher-energy bands.

This is because the first and second bands for E-polarized modes are
degenerate at the K point [9).

Note that the notation X and J are sometimes used in the literature {also in
this book) in place of M and K, respectively.
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2.4.1 Examples of Two-Dimensional Photonic Band (9)

0.7
0.6

0.5
04

PBG

wa/2nc

0.3
0.2
0.1
0.0

X I J X

Fig. 2.14. An example of 2D photonic band structure with a 2D photonic
band gap (a triangular air-hole structure)
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2.4.2 Example of Three-Dimensional Photonic Band

» In Fig. 2.15 is shown an example of a calculated PBS with a full 3D BG
In an inverse diamond lattice structure, which is composed of the
respective tetra-bonds consisting of air-rods  (diameter R) in the

dielectric of ¢ =7 ; R/a = 0.1 is adopted in calculation.

» The shape of the first BZ corresponding to this structure is the face-

centered cubic (fcc) lattice, as shown in Appendix A.

» There, it is seen that a full BG opens in all directions.
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2.4.2 Example of Three-Dimensional Photonic Band (2)
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Fig. 2.15. An example of 3D photonic band structure with the diamond lattice
structure (a sample of inverse diamond structure)
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2.4.2 Example of Three-Dimensional Photonic Band (3)

This PBG corresponds to the well-known BG of electron in semiconductors such
as GaAs, which also has the same BZ structure of the fcc lattice.

As is well known, a BG for GaAs exists between the valence and conduction
bands.

Notice that the two band structures (photonic and electronic) resemble each other
In many respects, which arises from the resemblance of the two different wave
equations.

In particular, the existence of the BG is common between the two. However, the
two differ from each other in some respects.

For example, in the photon case one can excite any state, while in the electron
case one can do so only when the state is not occupied.

This 1s because the photon is a boson governed by Bose-Einstein statistics,
whereas the electron is a fermion governed by Fermi- Dirac statistics.
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2.5 How to Experimentally Explore the Band Structure (1)

O How can we experimentally get information about individual PBSs
corresponding to a sample? We explain very briefly the methods below.

O A simple and reliable method is to observe either the transmittance (T) or
reflectance (R) spectrum, or both in general, as a function of wavelength
over a broad range.

0 We need to do so with the propagation direction of incident light varied.
This can be done by preparing samples with the surface normal directed in
several high-symmetry directions such as I' - K, I'- M, etc.

d Therefore it needs rather a troublesome task.

O However, in some simple cases, information about such spectra only for
the particular directions may suffice for the purpose.
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2.5 How to Experimentally Explore the Band Structure (2)

s For wavelengths corresponding to a stop band, T drops very much,
whereas R should be unity, since there exist no photon modes inside in that
direction for the external light to couple to, causing it to be reflected
completely.

* However, it is important to note that the reverse is not necessarily true.

% In other words, observation that the external light is completely or totally
reflected over a wavelength range does not necessarily indicate that the
range corresponds to a stop band.

% This is because complete reflection or drastic attenuation of T occurs for a
range of the uncoupled band, which has already been explained in the
preceding section.

* Next, to what extent the incident light can couple to an individual band
(coupled band) of a PC depends on the band itself, or the character of the
band.
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2.5 How to Experimentally Explore the Band Structure (3)

>

Finally, in the case of a practical sample T drops considerably even for a
coupled band, whenever the quality of the sample under study is not good.

Also, another problem exists from a practical point of view in that we have
to make a measurement by using a sample with finite periods, although the
PBS is calculated, with a few exceptions, for an infinitely long sample.

If the number of periods of the sample is too small, say, 5 or 10, the
correspondence of the T-spectrum between the observed and the calculated
PBS is not good.

Except these points, the correspondence is very good between theories and
experiments carried out for PCs.

This Is because the calculated PBS is reliable enough due primarily to t he
lack of photon- photon scattering; in contrast the one-electron
approximation is often not good in the electronic case because of the
existence of electron-electron and electron- phonon (vibration) interactions.
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2.6 Defect Modes (1)

O Thus far we have described and discussed a regular or completely periodic PC
lattice, i.e., one that can be called a bulk PC.

O It is rather easy to technically introduce a defect or disorder to a particular lattice
point or place, or thereby.

L As a consequence, this kind of defect causes, generally speaking, breakdown of the
symmetry that a PC has originally possessed.

O An eigen-mode due to the defect is possible to newly manifest itself in a PBG.

O As an example of the zero- dimensional (OD) or point defect in a 1D and 2D PC of
air cylinder or dielectric pillar type, we have only to enlarge or lessen the size
(diameter), for example, of only one air cylinder at the particular lattice point, as
compared to others, or the surrounding ones; the special case of this is to leave it
without any air cylinder.

L Such examples of an enlarged air cylinder and without (missing) air cylinder in a 2D
PC are schematically shown in Fig. 2.16(a).
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2.6 Defect Modes (2)
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(a) (b)

Fig. 2 .16. A schematic drawing of examples of the defect modes in a 2D PC. (a)
0D (point) defect modes (top view) in an array of air holes; the acceptor (upper)
and donor (lower) types, and (b) 1D (tine) defect mode in an array of dielectric
pillars
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2.6 Defect Modes (3)

>

>

Another typical example of a 0D defect in a 1D PC is to make the period at one
lattice position different, as compared to the others.

This kind of 0D defect mode corresponds to an impurity state, either the donor or the
acceptor state of electrons in a semiconductor; in the case of a different size of air
hole introduced, increasing (decreasing) the hole size that causes decrease (increase)
of the dielectric constant there corresponds to an acceptor (donor) state for electrons.

In the case of PCs, in addition to the above-mentioned 0D defects, 1D and 2D types
of defects, i.e., line and plane defects, can also be created, which are also important
in controlling light or developing unique devices in optoelectronics.

As an example of a 1D defect, we create it in a 2D PC of air cylinders or dielectric
pillars by leaving a single line of air cylinder imperforated, or introducing a single
line of air, as is schematically shown in Fig. 2.16(b).

One can also create it in a 3D PC, e.g., of air-hole type in such a way that we leave a
single line of holes unopened.

A typical example of a 2D defect is such that one lattice plane is left homogeneous in
a 3D PC.
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2.6 Defect Modes (4)

» Now, introducing this kind of defect into the bulk PC creates newly an
eigenmode or an eigen band called a defect-mode or a defect-band,
generally speaking, in a BG: the point-defect modes in a BG correspond
to the impurity modes in the electronic case, or in semiconductor.

» It i1s noted that the line defect band exhibits a w - k dispersion along the
direction, which will be repeatedly discussed in later chapters, e.g., in
Chaps. 7, 11 and 12.
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2.7 Common and Fundamental Features
of Photonic Band Structure

In Sec. 2.2, based on an example we have already explained several basic
features of the 1D PBS. This section iIs devoted to newly summarize the
unique and outstanding features that 2D and 3D PCs generally exhibit. As
will be shown in the next section, PCs are very well suited for controlling
light, i.e., both the radiation field and light propagation characteristics. This
Important potential is primarily based on one or two of the following features:
1. Existence of photonic band gap

2. Existence of defect or local mode

3. Anomalous group velocity

4. Remarkable polarization dependence

5. Manifestation of peculiar band

6. Others

Let us make a survey of each item one by one, taking into account how to
utilize those for observing new phenomena and developing PC-based devices.
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2.7.1 Existence of Photonic Band Gap (1)

A guestion arises as to in what cases a full PBG opens.

There exist rather severe requisites to satisfy for a 3D PC to possess such a PBG.
Those are related to the crystalline structure, the difference of the relevant E-
values, and the occupation ratio f between two constituted materials. It is generally
recognized that the diamond lattice structure is the best in order to obtain a full
PBG as well as a wide gap. This is primarily because the shape of the first BZ is
close to the sphere (most sphere like) as compared to other structures such as the
simple or body-centered cubic one.

This feature is advantageous to opening a gap between the second- and third-lowest
bands. However, this is not the case for the higher bands. In fact, it is known that a
full PBG opens for such higher bands in a face-centered cubic lattice [12] and even
in the simple cubic lattice [13].

In Fig. 2.17 is shown the BS. It is remarked that in this case the conditions
regarding the contrast of € as well as f are relatively severe, and more importantly,
the relative gap width L).wjwo is not large enough, where L). w and wo refer to the
width and the center frequency of the gap, respectively.
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2.7.1 Existence of Photonic Band Gap (2)
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Fig. 2.17. Another example of 30 photonic band structure for square-
shaped air rods in a simple cubic lattice: ¢, = 13, ¢, = 1 and f = 0.83, quoted

from (13] by courtesy or Professor J. W. Haus
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2.7.1 Existence of Photonic Band Gap (3)

In contrast, it is rather easier to design a sample with a 2D PBG. In both 2D
and 3D cases, in a given crystal structure there is, as far as the structure is
adequate, a trend that as the ratio of € A/ E B is larger, a gap is easier to
open, where A and B refer to the two constituted materials.

Here we mention how the term PBG is used. It is better to use the
terminology "PBG" only for the complete BG already defined. However, it
IS true that in some cases people in this field use this term even for the case
where there is no such BG, or for an incomplete BG: in physics we have
used the term of "stop band" for the latter case. Therefore, in order to avoid
confusion , we will use hereafter in this book the term "a full PBG" only in a
strict sense.
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2.7.1 Existence of Photonic Band Gap (4)

In this connection, it is important to note that the situation for a 2D PC slab (a sort of
quasi-3D PC) is substantially different from the 2D case; it differs also from the 3D
case. Namely, because of the existence of the socalJed light cone, already explained in
Sect. 2.3, any complete BG should not exist within the 20 slab plane: inside the light
cone there are, in principle, continuous extended states (not eigenmodes for the PC
slab) for arbitrary wavelength. However, we define a 2D PBG even for this case in
such a manner that any guided modes (eigenmodes) of the PC slab are missing over a
specific energy range in all 2D directions. This will be presented in more detail in
Chap. 6.

Now we mention briefly a few examples of direct application of a full BG. Fi.rst,
unique mirrors for complete reflection without loss can evidently be developed, and in
fact, some of those have already been commercially available. Next, it can be utilized
for controlling the radiation from matter. For example, an emission from atoms placed
inside a PC with a full 3D PBG is inhibited when the photon energy is in an energy
range of the PBG. This is because the emission probability is zero, since the DOS for
photons within the PBG vanishes; the probability in the radiative process is
proportional to the DOS. In order to completely suppress the spontaneous emission
from atoms one needs to use a 3D PC with a full 3D PBG.
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2.7.1 Existence of Photonic Band Gap (5)

On the other hand, whether the probability of the spontaneous emission
becomes enhanced or not at the edge of a full 3D PBG as compared to that in
the homogeneous case with the same effective refractive index is not clear.
First of all, the radiative lifetime of an oscillating electric dipole placed inside
a PC depends not only on the DOS per unit volume, but also on a few other
factors. Namely, it depends on whether the dipole is placed in the constituent
material with the higher or lower dielectric constant, and on the oscillation
direction, i.e., the orientation of polarization.
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2.7.1 Existence of Photonic Band Gap (6)

Furthermore, the probability of the spontaneous emission depends also on in
what direction the emission is observed. So, generally speaking, the
probability is possible to be enhanced or reduced in the case of a 3D PC. In
particular, the probability is expected to be enhanced to some extent around
the band edge depending on the case. The same is also true in the case for a
2D BG. In contrast, there exists the case where t he probability should
Increase in a divergent way at the edge of a BG for a 1D PC. This problem in
quantum electrodynamics will be discussed in a bit more detail in Chap. 10.

It is important to note that in many cases we can control the radiation field
and light propagation properties with use of a 3D PC without such a full PBG,
except for some cases including complete suppression of the spontaneous
emission described above. For the same reason, 2D PCs also serve for
controlling light. Thus, we should be able to develop a variety of devices by
using such a PC, irrespective of the 2D or 3D nature.
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2.7.2 Existence of Defect or Local Modes (1)

The existence of the defect modes has already been stated in the preceding
section, with special emphasis placed on how to create those. Here we discuss
the physical property to some extent. By exciting this mode, light can be
localized around the defect or the region with disorder. Therefore, the defect
mode is localized both energetically and spatially, as stated in Sect. 2.6. In the
OD case, where the mode is localized in a small spatial region, the mode does
not have a definite wavevector k because of the uncertainty principle
concerning k versus r in guantum mechanics. This feature is very similar to that
for the impurity state, i.e., the donor or acceptor state, for electrons in a BG, as
already described in Sect. 2.6. In contrast to the point-defect (OD) case, the
line-defect mode shows a particular dispersion in a BG. Namely, with k1l
defined to be the wavevector in the direction along the line defect, the mode
frequency w varies with kt in the gap.

M. A. Mansouri-Birjandi Lecture 2: Fundamental Features 93



2.7.2 Existence of Defect or Local Modes (2)

An example of such a line defect mode in a 2D PC of a triangular array of
dielectric pillars in air is shown in Fig. 2.18. The present line-defect is
composed of one row of missing pillars along the r - K direction (adopted as
the X axis) | so the band structure for the TM-modes with k t parallel to the x
axis i1s shown in Fig. 2.18 with kx used for Ikd; the x and y axes are taken
within the 2D plane, whereas

the z axis is in the direction of the pillar axis. In Fig. 2.18 the hatched areas are
obtained by projecting all the bands wn(kx, Ky) in the first BZ onto the w - kx
plane, these bands being often called the slab bands in the literature. The
dispersion relation of the line-defect bands are shown by the thin curves
between the hatched regions.
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2.7.2 Existence of Defect or Local Modes (3)

Fig. 2.18. Dispersion
feat me of the line-
defect modes in a 20
PC of dielectric
pillars of ¢ = 12
arrayed in the
triangular lattice iIn
free space. The
electric fields of the
defect modes and the
projected bands are
both  polarized In
directions of the
pillar axis. The thick
line is the air light-
line w = ck:r:

coa{2nc
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2.7.2 Existence of Defect or Local Modes (4)

The solid and dotted curves show the even and odd defect modes, with the
parity of the defect modes defined according as Ez is symmetric and
antisymroetric with respect to the mirror plane (xz plane). The parameters are r
/a = 0.3 and ¢ = 12, r being the radius of pillars and a the lattice constant.
Needless to say, the defect modes shown here provide the light propagation
along the x direction.
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2.7.2 Existence of Defect or Local Modes (5)

Let us consider in a bit more detail the significance of localization of the
electric (magnetic) field due to the defect or disorder mode. That light without
real mass can be localized, e.g., around a particular point in space, just like the
case for an electron, is very important from the physical point of view; this
phenomenon of light localization should be discriminated from the case where
light is confined with use of the specific boundaries such as metal walls.
Anyway, the OD defect mode can be utilized, for example, either as an
extremely small optical cavity, or as a very narrow band-pass filter. On the
other band, the line-defect mode already described is considered to serve as a
novel type of waveguide without any propagation loss even at an abruptly bent
corner [16, 17]. This type of waveguide, called a PC waveguide, becomes at
present very important [18] (see also the literature in Chaps. 11 and 12, where
this PC waveguide is discussed in more detail).
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2.7.3 Anomalous Group Velocity (1)

Both v, and group velocity dispersion (GVD) play an important role in light
propagation. Theoretically, v, is given by the slope (dw/dk) of a band, where k
refers to the magnitude of k in the relevant direction of light propagation;
usually, the magnitude of v9 is estimated for the band calculated for an
Infinitely long or large sample. In general, there appear in a PC a lot of band
portions or positions where the band slope is fiat , which makes v, anomalous.
At the band edge v, should become extremely small without fail [19-21]. Such
a flat energy position is also encountered at both the maximum and minimum
points of the lower and upper bands resulting from an anti-crossing between
two bands with the same symmetry, as already described in Sect. 2.2. A photon
with such a small v9 at those positions is sometimes called a heavy photon in
analogy with the heavy electron (see Sect. 3.6)
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2.7.3 Anomalous Group Velocity (2)

It is also important to note that very frequently a relatively flat band, i.e., a very
small v, , is encountered in a 2D and 3D PC [21, 22], as the origin of t he flat
band was already explained in Sect. 2.2. Moreover, there are many bands
where v, becomes negative. We call all these anomalous group velocity.

That v9 is very small indicates that the electric field strength becomes very
large there; the fact that the Poynting vector must be constant everywhere
requires that E2 becomes large for a small v, . T his fact is very important,
since the effective interaction length between light and matter becomes short
enough by using such a small v, . That is, the radiation signal in many physical
phenomena such as second-harmonic generation (SHG) can be very effectively
generated from a PC, or equivalently, can be greatly enhanced in a PC sample
as compared to a conventional sample with the same length [23- 25]. This also
makes sense in the case of a laser, because the threshold value of electrical
current or fiuence for pumping can be greatly reduced by utilizing a small v9
[26- 29].
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2.7.3 Anomalous Group Velocity (3)

As for the GVD in P Cs, it is very large in general; the line-defect mode
already described can be designed to also have a large GVD [30]. This is
because the GVD in a PC originating from the periodicity can be artificially
altered unlike the GVD in a transparent wavelength region of a material which

IS governed by the dispersion of the refractive index, i.e., essentially by the
Intrinsic absorption.
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2.7.4 Remarkable Polarization Dependence (1)

Characteristically, in many PCs propagation of light incident from the outside
through a sample is markedly influenced or governed by the polarization; of
course this property arises from the fact that the PBS under study is
polarization-dependent. This property applies generally to all PCs irrespective
of the dimension, with t he exception of on-axis light propagation in a ID
multilayer film; notice that even in this case the BS for the off axis propagation
already described in Sect. 2.3 becomes polarization-dependent. If we focus on
only the guided modes, the polarization dependence is par ticulal:ly
remarkable even around the first BG in 2D PCs and 2D PC slabs. In contrast, it
IS, generally speaking, less remarkable for 3D PCs. This is particularly true
with the diamond-Ilattice structure, as compared to the cases for a simple cubic
lattice 113) and a face-centered cubic lattice [31].
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2.7.4 Remarkable Polarization Dependence (2)

As a consequence, a tmique polarizer can be developed by utilizing a pair of
specific bands for two different polarized light beams with t he same frequency.
A simple example is the case that there exists a stop band for one polarized
light beam, while there is a band for the other. Even for the case where there
are respective bands for two different polarizations, the magnitude of v9 should
be generally significantly different from each other, except for an accidental
case. Based on this feature, a different kind of polarizer can also be developed
for an ultra-fast light pulse. Namely, such a pulse is easily split into two,
depending on the polarization, after passing through a thin PC ample 132].
Thus, utilizing time delay together with a gate, one can pick up only a pulse
with the desired polarization.
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2.7.5 Manifestation of Peculiar Bands (1)

There are a variety of peculiar PBs showing anomalous or singular points [33}.
Roughly speaking, such an anomaly is likely to manifest itself in the higher
energy region where many bands run. It has already been revealed that well
established crystalline optics no longer apply to the case of a PC; it is again
remarked that a PC is not a natural crystal, but an artificially fabricated one.
Consequently, we need to introduce new crystalline optics or concepts, called
"photonic crystal optics™ to cover the case of PCs. Let us show the simplest
example below to understand this fact. It is well known that all crystals except
for quasi-crystals in an optical region are classified into three cases, i.e.
uniform crystalline, uni-axial crystalline, and biaxial crystalline, corresponding,
respectively, to

£1 =E9 =E€n, €1 =E9F£Ea. £ €0 # £3,
I > 3 ! 2 # €3 | 7 €2 # €3 (2.32)

where €1, 2 , and &3 refer to the dielectric constants along the optic axes.
This classification no longer applies to a PC; for detail, see Sect. 4.7.
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2.7.5 Manifestation of Peculiar Bands (2)

First of all, Snell's law of refraction does not generally apply to the boundary
plane between a PC and a normal material. Anyway, propagation
characteristics of light at such a singular point are very complicated on one
hand, and unique on the other hand. As a result, several peculiar phenomena
have already been found, such that t he phenomenon of tri-refringence occurs
(34), and vq4 cannot be determined uniquely 133]. From the view point of
application, the superprism phenomenon (35] is very important, which
manifests itself at a specific equi-energy surface portion of a particular band.
There, -the propagation direction of light going inside a PC through the
Iinterface varies remarkably with small change of wavelength of the incident
light. This phenomenon showing anomalously large dispersion of wavelength
versus incident angle enables one to develop, in principle. a new type of device
of wavelength dispersion with the size much reduced as compared to the
conventional ones.
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2.7.5 Manifestation of Peculiar Bands (3)

Similarly, a phenomenon called super collimation has also been found in a PC
(36): a light wave with a finite cross-section can propagate in a PC with the
size unchanged, which occurs also at a specific band.

When we formally apply Snell's law for an anomalous band or at wavelengths
exhibiting negative v, , n becomes negative. Utilizing this sort of band, one can
create a superlens (an ideal lens in a sense) [37]. However, in order to
iImplement this kind of lens, v9 must be negative over a wide range of
wavelengths for all incident angles. This requisite is very severe, but it is
reported that this is still possible (38).
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2.8 Application of Photonic Crystals (1)

Because of their unique properties, PCs are very attractive for exploring new
physical phenomena and developing novel and important devices in the field of
optoelectronics as well. In this survey, we focus rather on the latter. Concerning
the latter, some simple passive optical components such as narrow-band filters,
unique polarizers and wonderful super-prisms described in the preceding
section have already been developed, and some others are expected to be
developed one after another from now on and to be commercially available in
the near future.

Let us mention some applications below, other than the above-mentioned
simple components. First, we describe applications to nonlinear optical
phenomena, or the related active components. By utilizing the unique PBS in
either 2D or 3D P Cs, the phase-matching (PM) can be easily fulfilled at
several wavelengths; it is well known that the PM is very important in
nonlinear optical phenomena, particularly in coherent phenomena such as
second harmonic generation (SHG).
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2.8 Application of Photonic Crystals (2)

Furthermore, a novel type of PM can be expected to be utilized in PCs
including 1D in this case [39). That is, an umklapp process can be utilized,
since the reciprocal vector q is on the same order in magnitude with the
relevant wave-vectors involved in the phenomenon under study; it has already
been proved that this process is useful in SHG for a 1D periodic system (1D
PC). We describe below the SHG case as an example,

e = 28; T q, Wy = 2%, (2.33)

where ki and ks, and oi and s are the wave-vectors, and angular frequencies
of incident (fundamental) and second-harmonic light waves, respectively.
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2.8 Application of Photonic Crystals (3)

As for other active components, several kinds of unique 2D PC lasers have
been successfully developed. Those are categorized into two types, i.e. , one
(40] utilizing an ultra-small PC cavity, or a point defect already mentioned in
Sect. 2.7.2, and the other [26-28] utilizing a small v, . So, some of them may be
In practical use soon. The first type of laser has prominent characteristic of
being extremely small. The latter type of lasers include a sort of vertically
emitted laser excited by an electrical current [27], a 2D laser with a low
threshold, and an small size of laser. The same is also true with a light emitter
embedded in a PC slab, where the extraction efficiency of light has already
been demonstrated to be greatly improved compared to the record obtained
thus far (41].
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2.8 Application of Photonic Crystals (4)

PC fibers, both of PBG type and refractive-index confined, are also very
attractive. The latter type of optical fiber is considered to be an ideal
transmission line for light, so it will be in practical use, depending on the case.
Independently of the above application, it has been demonstrated that light can
be generated over an extremely broad range of wavelengths by illuminating the
latter type, Le., with the silica core in the central portion, using an ultra-short,
I.e., sub-picosecond light pulse. This phenomenon should be utilized as a white
light source for spectroscopic use (42].
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2.8 Application of Photonic Crystals (5)

Next, the Smith- Purcell radiation with use of a PC is also attractive and
Important, because it has the possibility of developing a compact wavelength
unable coherent light source in a range from far- to near-infrared; the Smith
Purcell effect is such that coherent light is radiated due to interaction between
high-speed traveling charged particles and a periodic system such as a grating.
It has been predicted theoretically [43] and has already been verified very
recently that use of a PC instead of a grating enables one to observe the
radiation much more efficiently than the previous cases (44). This topic is
treated in Sect. 10.7.
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2.8 Application of Photonic Crystals (6)

Finally, we would like to mention one of the most important applications of a
PC, i.e., development of ultra-fast and ultra-compact integrated light circuits;
such a development is crucially important for future telecommunications. It is
considered that such a circuit based on PCs may be developed in the future. For
this purpose, there are a few key components to be developed. One is a novel
type of light waveguide that is capable of being bent sharply. This can be
achieved by utilizing a PC-based waveguide. The PC-based waveguide is
constituted of line defect modes in a 2D or 3D PC; in the case of a 2D PC of
triangular lattice of air hole type, for example, a line-defect is produced by
leaving a single line of air holes imperforated along one of six equivalent r - K
directions. Importantly, in the PC-based waveguide the light wave is confined
due to the PBG, so that it can be bent sharply without any propagation loss,
while light is confined by total reflection in the lateral plane in the conventional
dielectric waveguide; in the case of PC-slab waveguides, the vertical
confinement of light is achieved by the total reflection. Another is the compact
de-multiplexer, but we do not go into details here (see Chaps. 11 and 12).
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2.8 Application of Photonic Crystals (7)

From the practical point of view, the planar type of integrated circuit, in
particular, made of PC slabs, bas the advantage over the 3D type. This is
because it is much easier to fabricate the planar type than a 3D one. So, up until
now many investigations have been devoted to this type, both theoretically and
experimentally. As a result, it may be possible to finally develop such an ultra-
small integrated circuit . The details will be presented also in Chap. 12.
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Structure PBG of 2D grating in LINbO3: A square lattice
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Structure PBG of 2D grating in LINbO3: A triangular lattice
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Hybrid Band Structure
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PBG structures of pillar triangular lattice of
GaAs, ¢,= 12.6 in air (TE mode)
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Hybrid Band Structure - y-parity. even
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Figure 2.2 Simulated photonic band structures for bulk PC with finite height
(a) Schematic of 2-D PCS triangular lattice structure;
(b) Simulated photonic band structure of 2-D triangular lattice PCS, the shadow

region marked the PBG
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PBG structures of pillar triangular lattice of
LINDbO,, ¢,= 4.884 in air (TE mode)
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Evolution PBG width as a function of the ration r/a for:

LINDO,, ¢,= 4.884 and GaAs, ¢,= 0.46 (TE mode)
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Add and drop filter principle based on photonic crystals
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Hetero-structure of 2D and 3D photonic crystals
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Historical review of photonic crystal development
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