Module title:	Heat Transfer 1
Module code:	24-14-218-01
Module credit:	3

Module objectives

This course is intended for undergraduate students in Mechanical Engineering. The general goal of this course is to create the ability for students to formulate and solve heat transfer problems by the general and particular laws of transport phenomena.

Term: Second Term

Lecturer: Dr. Faramarz Sarhaddi

Associate Professor

fsarhaddi@eng.usb.ac.ir

Assessments:

30% mid-term exam

60% final exam

10% quiz and home works

Reference:

Fundamentals of Heat and Mass Transfer (7th Edition), T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. Dewitt, ISBN-13: 978-0470917855; ISBN-10: 0470917857

Module subjects:

1st. week: Introduction

- Physical Origins and Rate Equations
- Relationship to the First Law of Thermodynamics
- Analysis of Heat Transfer Problems: Methodology

2nd. week: Introduction to Conduction

- The Conduction Rate Equation
- The Thermal Properties of Matter
- Boundary and Initial Conditions

3rd, 4th and 5th weeks: One-Dimensional, Steady-State Conduction

- The Plane Wall
- Radial Systems
- Conduction with Thermal Energy Generation

• Heat Transfer from Extended Surfaces

6th. week: Two-Dimensional, Steady-State Conduction

- The Method of Separation of Variables
- Finite-Difference Equations

Mid-term Exam

7th and 8th weeks: Transient Conduction

- The Lumped Capacitance Method
- Spatial Effects
- The Semi-Infinite Solid
- Finite-Difference Methods

9th. week: Introduction to Convection

- The Convection Boundary Layers
- Boundary Layer Similarity: The Normalized Boundary Layer Equations
- Physical Interpretation of the Dimensionless Parameters
- Boundary Layer Analogies

10th and 11th weeks: Heat Exchangers

13th and 14th weeks: Radiation: Processes and Properties

- Radiation Heat Fluxes and Intensity
- Blackbody Radiation
- Emission from Real Surfaces
- The Gray Surface
- Environmental Radiation

15th and 16th weeks: Radiation Exchange between Surfaces

- The View Factor
- Blackbody Radiation Exchange
- Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
- Multimode Heat Transfer
- Radiation Exchange with Participating Media

Final Term Exam