Microflows and Nanoflows First term 1398-99 (Fall 2019) Code: 24-14-4-703-01 Credit: 3 Lecturer: Hassan Azarkish Assistant Professor, Mechanical Engineering Department Hassan.Azarkish@eng.usb.ac.ir **Assessments:** Projects (50%) Final exam (50%) **References:** • Microflows and Nanoflows, Fundamentals and Simulation (Chih-Ming Ho) Fundamentals of Microfabrication and Nanotechnology (Mark J. Madou) Microsystem Design (Stephen D. Senturia) • Microfluidic Technologies for Miniaturized Analysis Systems (Steffen Hasdt) • Introduction to Microsystem Design (Werner Karl Schomburg) | Weeks | Subjects | |-------------------------------------|--| | 1 st | Pre-assessment | | | Describe the main objectives | | 2 nd | Introduction to microfluidics, applications and market | | 3 rd – 6 th | Micro fabrication process for microfluidic Materials Cleaning, oxidation and doping Evaporation, sputtering, and chemical vapor deposition Photolithography Wet etching Dry etching Wafer Bonding | | 7 th | CNC machining, injection molding and rapid hot embossing Basic concepts of microflows and nanoflows | | 8 th | Governing equations and slip models | | 9 th - 10 th | Shear-driven flows | | $11^{th} - 12^{th}$ | Pressure-driven flows | | 13 th | Surface tension-driven flows | | 14 th – 15 th | Applications | | 10 | Project presentations |